Finite Element Analysis with Heterogeneous Parallel Computer
Environment over ATM Network

Hideo Fukumori, Yoichi Kono, IKen Nishimatsu, and Yoichi Muraoka
E-mail: fukumori@muraoka.info.waseda.ac.jp
School of Science and Engineering
Waseda University
3-4-1 Okubo Shinjyuku-ku, Tokyo, Japan
Plhone: +81-3-3209-5198
Fax: +81-3-3209-5198

Abstract

In this paper. we present an implementation of
FEM solver on heterogeneous parallel environment
that consists of two different parallel computers (the
Fugitsu AP1000 and NEC Cengu-3). We used OLU
(On Line University) Network. which is one of the
wide area ATM network connecting over 20 universi-
ties and research facilities all over Japan.

We used substructure method applied in multiple
levels for the calculation algorithm. This algorithm
has small data dependency in the calculation phase
and the number of data transfer between the parallel
computers 18 hmated. thus the overhead for the syn-
chronization can be smaller than iterative method.

This paper also refers to the parallel triangular
mesh generator based on the Delawnay Triangulation
currently being tmplemented on the Fujitsu AP1000
parallel computer.

1 OLU Network

OLU(On Line University) Network is a wide area
network project using ATM and optic fiber technology.
There are 23 sites in Japan and they are connected
in ring topology. The theoretical bandwidth of this
network is 156Mbps and actual bandwidth is 67TMbps.

Owr iinplementation used the link between Waseda
University(Shinjyuku. Tokyo) and NEC C&C Labo-
ratory (Kawasaki, Kanagawa) (fig.1). There are five
other sites in between, and the total physical network
length is 370 kilometers,

1087-4089/96 $5.00 © 1996 IEEE

124

20km 20km

Fujitsu Hﬂiv. of Tokyo

60km

Maseda Univ.
AP1000

Figure 1: OLU Network Connection Between Waseda
and NEC

2 Calculation Algorithm

Substructure method [1][2] applied in multiple
levels[3][4] was used as the algorithm for the calcu-
lation process. Basically. this algorithm is the direct
method used with domain decomposition. The calcu-
lation and assembly of the coefficient matrices is done
in multiple levels and this results in producing small.
dense matrices instead of one large sparse cocfficient
matrix. The quality of the dense matrix makes it cas-
ier to reduce the number of fill-ins and achieve cffi-
cient data exchange between the parallel computers
over network.

Multi-level substructuring is done in the following
steps:

1. Decompose the domain of analysis into the first
level substructures that consists of 9 nodes. One

node is placed inside of the substructure and the
rest is on the outside edge (fig.2).

2. Tn the substructure level k.

(a) Index the nodes inside the substructure, fol-
lowed by the nodes on the boundary. This
indexing results in the equation:

8152 0

‘45111) 411(' & })H bg)k)

(h) The upper and lower part represents the
equations for the node inside the substruc-
ture and the nodes on the boundary of the
substructure, respectively. Inserting the up-
per part of this equation into the lower part
yields:

4x(l\)l(1\>_,xm (2)

bb b

(¢) Sul)snu(tuu s make pairs and add up Ahb
and h, " hetween them to form Abb " and
(k1)
T (fig.3).

3. Repeat above steps until there is only one sub-
structure left. Denote this highest substructure
level as Kpoe.

4. Solve
A(1-'.,,“(,-)‘r(’\‘nm.f) — b(lfmw) (3)

C (Ken)
and obtain 1(’ et

3. Substructures in the level k—1 obtain 1(Y from
the equation:
(#—«l) (4(14)_1(((k—1) 4(A -1) 7k)) (4)

6. Repeat above processes until they reach the first
substructure level, where k = 1.

Tle overall calculation process in multi-level sub-
structuring can be shown in binary tree (fig.4). Data
exchange between levels occurs in:

o the assembly of coefficient matrix (step 2.(c))

e the calenlation for the final solution (step 5.)

If the size of the problem is n (nodes) and the per-
fect binary tree could be constructed. the order of the
multiplication will be O(n #) for the two-dimensional
problems.

125

0 = internal node
A = external node

Figure 2: First Level Substructure

A Ay ||xd o |bi
ApAsy| by) o ™

for levet & A”’ Xo=by

- 1]

Torlevel k+1

© =internal node
A = boundary node

ot

and bj

Figure 3: Calculation Process of the Multi-level Sub-

structuring

B
=\:>?

>ﬂ
bb

(ﬂ)
A.b: ? i {n- ‘)
i

Figure 4: Assembly of Ay, and Redistribution of .x;

Machine a

Figure 3: Implementation of the Multi-level Substructuring over Network

3 Issues in the Implementation
Generally. implementation of applications on the
computers connected with the network involves several
problems that comes with data transfer stage.

The main issues in data transfer can be categorized
as follows:

e nctwork latency
e the limitation of the bandwidth

Network latency can be the main issue in the ap-
plications that require numbers of synchronizations.
such as iterative solvers.

The applications that use the burst data transfer
and require fewer synchronizations will not be affected
by the network latency. In that case. the actual per-
formance limitation mostly depends on the bandwidth
of the network. whicli can be much more casier to han-
dle.

The data transter required in the multi-level sub-
structuring is basically the burst type of transfer and
the mumber of the synchironization is limited in a few
parts. Thus. the effect of the network latency will not
be muech concern compared to the iterative method.

The overall calculation process of the multi-level
substructuring on parallel computers is shown in fig.5.
The main calculation process can be divided into the
following four stages:

1. Calculation and assembly of the coeflicient matri-
ces

2. Obtaining the solution in the highest substructure
level

3. Calculation of the final solution .r&“

126

4. Obtaining whole solution fronr the two parallel
computers

The stage 4 consists of a series of simple substitu-
tions only and the required processing time is small
enough compared to other three stages.

Suppose all of the above processes were performed
on a single parallel computer a and the processing
time for the stage 1. 2,and 3 was T7.75.73.

When the same calculation was performed on the
two parallel computers « and J, let the calculation
time for stage 1, 2, 3 as Tl['l"/ﬂ,Tgol‘d].Tg““d].

If the performance ratio measurcd in Flops was
a : 1(a > 1) and the best load balancing has been

achieved, the Tl[al‘/ﬂ.Tz[olia].fgn'i‘fj]. can be expressed as:

(IT[
TS = T/ =—LX
1 ! a+1
¢ = =T
; (IT;
7o = T = :
3 3 a-+1

The data transfer between the parallel computers
occurs in the three parts. The time required for cach
parts is defined as follows:

1. the time for the data transfer between stage 1 and
2—0C

2. the time for the data transfer between stage 2 and
33—

3. the time for the data transfer between stage 3 and
4 — C';;

In order to achieve better performance with the two
parallel computers, the following relationship should

be satisfied: (fig.6)

aly aly
Cy+ T+ Cy
(1‘+1+ ptht “+(1.+1

<T1+T2+T3 (5)

+C3

Figure 6: A Model of Total Execution Time

Trans{ormation of Eq.(3) yields in simpler form as:

v+ Ty > (a+1)(Cr + C2 4 C3) (6)

Now we arc going to examine the communication
time C4,Cy. and Cy in more detail.

First. we assume a rectangular that is divided into
finite clements as thie domain of analysis.

Let the total number of the nodes in that domain
n, and the number of the nodes on the boundary of
the arcas assigned for cach parallel computer /n. In
that case, data to be exchanged between the parallel
computers in the stage 1 and 2 of the calculation pro-
cess will be the full matrix with the size of /n x /1.
If cacli eiement in the matrix was expressed in dou-
ble floating point numbers, and the position of that
clement in the assembled matrix was expressed in two
integers (row and column), the approximate number
of bytes to be transfered between stage 1 and 2 will
be:

Vv x \/ﬁx()(8+4+4)=8" (7)

In the highest level. the solution for the nodes on
the boundary of the assigned area for each computer
is obtained (stage 2). This solution is passed back
to the lower levels. where the solution for the whole
domain is calculated (stage 3). The multiplication of
the number of the nodes on the boundary /n and the
number of the bytes needed to express double floating
number.

v x 8 (8)

is the number of bytes transfered between the par-
allel computers between stage 2 and stage 3.

Data transfer from parallel computer /3 to o occurs
between the stage 3 and stage 4. If the ratio of the
number of the nodes in each assigned area is m @ 1.
the size of the data to be transfered will be:

8n

m+1)

As mentioned in the previous section, the number
of the multiplication is O(n?%) for the problem with
n nodes. If the performance ratio hetween a and 3.
which is measured in Flops, was @ : 1. m can be ex-
pressed in the following form:

m=a? (10)

With Eq.(10), Eq.(9) can be rewritten as:

8n
a3 +1
If the bandwidth of the network is B(bit/s). C.C.
and ('3 will be:

(11)

8n 64n

! = — = —_— 12

Cy 7 = 5 (12)

. ynxS8 64/ ,

Cy, = 3 x 8§ = 5 (13)

Gy = 28'11. X 8= L (14)
as +1 (a3 +1)x DB

4 Evaluation

We implemented a FEM solver based on multi-
level substructuring on the two parallel computers (the
Fujitsu AP1000 (64-cell configuration) and the NEC
Cenju-3 (64-processor configuration)) connected over
On-Line University network.

The domain of analysis was a rectangular domain

in the area
0<z<1.0<y<1,

which was decomposed into triangle finite clements
based on 128x128 mesh. A two-dimensional Poisson
differential equation

o%u 0%

—+—=0 15
ox? Oy? (13)
with the boundary condition

Up,y = 100.,

Upo = Ugen =u1,y, =0 (16)

was used for the problem.

Table 1: Ratio of the execution time between Cenju and AP1000

of nodes | Exec.time{Cenju)

Exec.time(AP)

The ratio of execution time(Cenju:AD)

4225
16641

0.241
1.163

0.736
3.187

1:3.05
1:2.73

Table 2: Execution time for the stages in calculation {# of Nodes: 16641)

stage

execution time(s)

Calculation and assembly of A7 (T1)
Transfer of the coefficient matrix Atfmer=1} (C1)

Calculation of zime) (T28C2)

Calculation of x¥ (T3)

Transfer of the final solution +£% (C3)

Total

3.08
12.66
0.056
0.027
8.27
24.10

The total number of element was 32768, and the
number of the node was 16641.

Fig.5 shows the overall implementation. Ma-
chine(a) and (b) in the figure corresponds to the
Cenju-3 and the AP1000. respectively.

First. the domain is divided into two areas and as-
signed to the AP1000 and Cenju-3. Indexing table for
the assigied area 1s created in the front end of each
parallel computer. It was assumed the data necessary
to start caleulation (node and element information) is
alrcady stored in the local storages.

o Tlie two parallel computers execute the first half
of the calculation process until the structure level
reaches hyae—1-

e The APIO00 sends the coefficient matrix
AtRwae=1) to the Cenju-3. It is assembled with
the nther coefficient matrix Af»er=1) created in

Cenju-3 to make Alkmer),

o The Cenju-3 solves Eq.(3) to obtain the solution
for the highest level.
o APl i sent back to the AP1000.

i

e Two parallel computers calculates ¥ according
to the Eq.(4) for the all substructure levels.

o The final solution obtained in the AP1000 1% is
transfered to the Cenju-3.

Now. we discuss the performance prediction and
load balancing based on the measurcment of actual
performance.

128

Previous discussions used the Flops numbers to
show the difference in the performance. However. they
are basically a theoretical figures and may not reflect
the actual performance.

To know the performance in actual application pre-
cisely. we ran the single parallel computer versiou of
multi-level substructuring program as a beuclimark
and measured the execution time. The result is shown
in table 1.

Calculating the Eq.(10) using the the reversed ratio
of the execution time, the proper ratio of the number
of nodes can be calculated as 2.10:1 for the case of 4225
nodes and 1.95:1 for the case of 16641 nodes. The
proper ratio is thought to be somewhere in between
these two numbers. For the sake of simplicity. we used
2.0:1 in this implementation.

The execution time for 16641 node problem divided
in the stages in the execution is shown in table 2. The
lower performance compared to the execution time in
table 1 can be seen.

The cause of this performauce is due to the irregu-
larity of work load and overhead in data transfer,

¢ An imperfect binary tree structure appears in the
matrix assembly process if the number of the first
level substructure is not the power of 2.

The original version of the program was optimized
for the matrix assembly process exccuted in the
perfect binary tree structure. It worked against
the imperfect binary tree in which the number of
the first level substructure is not the power of 2.
and resulted in slower execution time.

In addition, if the number of substructures does
not match the multiple of the number of proces-
sors available the parallel efficiency is expected to
be also affected.

o In the data transfer stage, the data is stored in the
particular machine/processor (front-end machine
for the AP1000. processor #0 for the Cenju-3)
before it is sent through the network. This kind
of concentration may be the cause of another bot-
tleneck that comes before network bandwidth.

Currently we are working on the improvements in
the calculation and the network routines. Once they
arc completed, we expect the the program to show
proper performance that will match the presented
modcl.

5 Parallel Mesh Generator

Parallelizing the Finite Element program with the
large scale parallel environment mentioned in the pre-
vious sections implies the possibility of dealing with
very large problems. In that case. the finite element
mesh generation is expected to have much more im-
portant role. There are two reasons for this:

e Generally, the performance in the parallel Fi-
nite Element solver strongly depends on the good
work load distribution. To ensure the good per-
formaunce. this problem should be considered from
the very beginning of the whole process.

o Iu large scale problems. the overhead that comes
with the initial data distribution is expected to
be great. Parallel mesh generation will reduce
the amount of initial data and contribute to the
improvement of the total throughput.

To meet these needs. we are implementing the par-
allel mesh generator on the Fujitsu AP1000 parallel
computer. This mesh generator is also expected to be
used in the heterogenecous parallel computer environ-
ment over network.

The Finite Element Method requires the mesh with
proper shape in order to get a good calculation re-
sult. The Delaunay triangulation. which can be de-
rived from the Voronoi Diagram. is known to create
the good triangular mesh that suits well for that pur-
posc. This parallel mesh generation uses the combi-
nation of the incremental method and the divide-and-
conquer method to create Voronot Diagram.

The area is first cut into strips which bound-
aries are parallel to the y-axis and assigned to the
processors(fig.7). Each processor creates the Voronoi
Diagram for the assigned area, then they are merged
between processors(fig.8). Delaunay triangle mesh is
created from this diagram, by connecting these nodes.

Then. the assigned area for cach processor is re-
shaped from the long strip area to more rectangu-
lar domain to reduce the length of the bonndary.
The nodes and elements are redistributed accordingly
(fig.9).

So far, in the 32 processor configuration. the
speedup ratio of 11 was achieved for the 6000 node
problem.

12 3 Node

Node

¥y » Y
L . *
e o
.
of Nodes
g x

.
* Ve
Y

4 6 5 & # of Nodes

Two-dimension Case Three-dimension Case

Figure 7: Node assignment to processors

Creation of Volonoi Diagram for the assigned node

Mergi

Mergin: ging
PE#2 and #3

ging
PE#1 and #2

Merging
PE#0 and #1

129

|
Ay W N :
=2, " <= The final triangular mesh

o

e i
Figure 8 Merging process between processors

PEO PE1 PE2 PEO PE2

PE3

——

PE1 gﬂ PE3

Area reassignment (two-dimension)

A
/
o |0 |16]32]48
4 {20]36]52
63
8 |24]|40|s6 9:/5!:1%&2
12(28|44 50

PEO... ...PE63
Area reassignment (three-dimension)

Figure 9: Reassignment of the elements

6 Conclusion

We implemented an FEM solver on the hetero-
gencons parallel environment using the substructure

method applied in multiple levels.

Currently. the following improvement is under way

to achicve hetter performance:

e the research of the cause of the large com-
murnication time

The current data transfer rate obtained so far
is far from the the expected performance of the
network. The possible reason is the bottleneck
cansed by the concentration of the data in partic-
ular processor or front end machine. However, the
definite reason is not known and further research
in this issue is going to be needed.

the application of the parallel mesh gener-
ator

Heterogeneous environment version of the paral-
lel mesh generator in is expected to provide the
solution to the issues of the load balancing and
the reduction of the overliead of the node and el-
cuient data distribution in the initial stage. The
problems with the network environment will have
to be examined in the process of actual implemen-
tation.

References

[1] I.St.Doltsinis and S.Nolting: Studies on parallel

processing for coupled ficld problems, Computer

130

Methods in Applied Mechanics and Engineering
vol.89. pp.497-521, 1991

Hideo Fukumori and Yoichi Muraoka: Parallcl
FEM Solution Based on Substructure Mecthod.
PCW’93 Proceedings of Fujitsu Second Parallel
Computing Workshop, P1-K, 1993

F.J.Peters: Sparse Matrices and Substructures,
Mathematisch Centrum, 1980

Hideo Fukumori et al.: “Parallelization of FEM
with multi-level substructure method”. Proceed-

ings of HPC ASIA 1995, 1995

