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Abstract 

To achieve &‘erlive load balancing and a robust 
Grid environment, actended load forecast for  
computational resources is increasingly required. 
Thus, this paper proposes a method of predicting 
network and CPU load variance within a wide range, 
from ~tveral minutes to over than a week This is the 
widest range of prediction o f the  existing algorithms 
in the load of computational resources for the Grid 
environment. The distinctiveness of our algorithm is 
in using seasonal load variation for  both load 
variance and one-stq-ahead prediction. We apply 
seasonal fluctuation in CPti load fo network load 
variation especially for  network load variance 
prediction. Furthermore, the Marhv model-based 
meta-predictor is used for one-stepahead prediction, 
which is sensitive to late trends. The results of the 
experiments demonstrate that our algorithm gives a 
good airvefor expected Bdaylong load variance, and 
ma.& accurate ones fcp-ahead predictions. The mean 
error rate for  one-step-ahead predictions is 9.4% in 
the case of network load, and 6.2% in the case of 
CPU load. Moreover, the least mean error rate for  
wider range forecasts is 5.5% for network load 
variation, and 3.6% for CPU load variation. 

1. Introduction 

A cluster of PCs or workstations scattered 
geographically worldwide and connected to each other 
by a network, which is called computational Grid [I], 
is becoming significant. To make Grid environment 
greatly useful, a scheduling system [2]-[7] is essential 
because computational Grid is o f m  a heterogeneous 
environment. G e n d l y ,  a scheduling system 
periodically gathers the load information of 
computational resou~ces, such as CPU, network, 
memory, and disks, and then decides how to allocate 

applications based on the gathered information. In the 
Grid environment, however, it is difficult to keep this 
information up-to-date for the amplitude of the Grid 
environment. This implies that predicting CPU and 
network load, which waves frequently, is useful in 
obtaining good scheduling [8]-[1O]. Moreover, this 
prediction is also useful in predicting tumaround time 
of application, which is one of the most important 
information items for the scheduling system [I 1]-[13], 
because the CPU and network are most essential 
elements of computational resources. At the same time, 
predicting load is useful in stably managing the Grid 
environment itself. 

There are some projects on load prediction in the 
Grid environment [14]-[16]. However, the prediction 
range is around IO seconds, and this is very short 
compared with the executing times of applications 
supposed to tun on the computational Grid. We need 
not only short-term, precise prediction, but also mid- 
term and long-term prediction, for example, from 
hours and days to a longer range, 

For this reason, this paper proposes an algorithm 
that predicts CPU load and network load. Our 
approach is to sepamte seasonal variation in CPU load 
for extended forecast of CPU load, and to apply 
seasonal variation for the extended forecast of network 
load. In addition, we use the Markov model-based 
meta-predictor 1171 for precise one-step-ahead 
prediction. In the experiments, our method accurately 
predicts waves of CPU load and network load over a 
week, and the mean error rate for one-step-ahead 
prediction was 6.2% for CPU load and 9.4% for 
network load. 

2. Related work 

First, the Network Weather Service (NWS) [I41 is 
one of the most famous projects on load forecast in the 
Grid environment. The meta-predictor is characteristic 
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of NWS. NWS periodically monitoe load, Iuns 
several prediction algorithms, and prepares several 
predictions according to each algorithm. At every 
prediction, the meta-predictor selects one prediction 
that is expected to he the most precise based on past 
prediction results of several prediction algorithms. 
N W S  gives usage prediction of CPU, network, and 
memory, but its prediction range is only about 10 
seconds, that is, one-stepahead prediction. 

Dinda et al. [16] use a linear model to predict mean 
CPU load for 5 minutes. However, the range of 
prediction is also in seconds. 

Yang et al. [I81 use periodically monitored CPU 
load to calculate 1) one-stepahead prediction, 2) mean 
average CPU load for expected application execution 
time on a node, and 3) standard deviation over the 
approximated application execution time, and they 
then propose a scheduling method based on these 
predictions. The prediction of 2) and 3) is 
indispensable information to minimize the turnaround 
time of applications. The application execution time 
varies h m  1 minute to 10 minutes. However, to thin 
out a large amount of available nodes to allocate 
applications, we need to know the qualitative load 
variance of each node. 

Din& et al. and Yang et al. predict only CPU load. 
However, in the Grid environment, a node often needs 
to cooperate with other nodes over the network and has 
to handle streaming media This means that only CPU 
load prediction is inadequate for scheduling and we 
also need to at least know network load variance. 
Moreover, the range of all predictors is just in seconds 
or minutes. Assuming Grid applications are run with 
network access, this range is too short. 

3. CPU load prediction 

3.1. Extended forecast of CPU load 

It is highly possible to find periodicity in waves of 
CPU load in the long term. Generally, time series data 
can he separated into 4 variations: 1) variation in the 
range of years, that does not circulate (trend variation), 
2) variation in the range of years that does circulate 
(cyclical variation), 3) cyclic variation in the shorter 
range than cyclical variation (seasonal variation), and 
4) variation without any trends (irregular variation). In 
this paper, the range is short enough to take no account 
of trend variation or cyclical variation. Therefore, along 
this. sepamtion, CPU load can he expressed by 
following expression. Here, ycpu(t) measures CPU 

load at time t ,  M,, is mean value of measured CPU 

load, {Si(t). i = 1,2,...,N} are seasonal variations, 
and Icpu( t )  is irregular Variation. 

In this paper, we assume = 0 for extended 
forecast because the purpose of extended forecast is to 
predict the load variance, not to indicate a precise value. 
Therefore, all we have to do for extended forecast is to 
calculate Mcpu and separate S i ( t ) .  With the 

definition of y,,(t) = Ycpu(t)  - M,,, the moving 

average method sepaates Si(t). When d, is the 
seasonal cycleof S, ( t ) ,  m,(t). whichis the result of 
separation of S i ( t )  from y,,(t), it is calculated by 
following formula. 

i) case di = 2q 

ii) case d, = 2q + 1 

If n is the maximum value of t ,  the series of 
seasonal variation in Si(t). s i ( r )  canbeestimated by 
following formula, where {w,,,, r =1;..d,} is the 
mean value of deviation of y,,(t) and mi(t) ,  and 
the deviation can be calculated by 
ycpu(r + j * d,) - mi(r + j * d i ) ,  which satisfies 
q c r + j * di s n - q. 

i) case r = l,...,d, 

ii) case I > d, 
si(r) = si(r - d,) 

Then, FS,(t)  is an approximation of s,(r) using 
the least squares method, and extended forecast of 
CPU load EP,,(t) can be expressed by following 
formula. 
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In the evaluation in this paper, we assumed 
seasonal variation cycles to he 24 hours and 1 week 
hecause CPU load variation is strongly related the life 
style of the user. 

3.2. One-step-ahead CPU load prediction 

While extended forecast is mainly used to 
understand load variation tendencies or average load, 
one-step-ahead prediction is required to be accurate and 
sensitive to ment changes in measurements. Therefore, 
for one-step-ahead prediction, we use the Markov 
model-based meta-predictor to estimate irregular 
variation f c p u ( f )  in addition to the seasonal variation 

used for extended forecast:That is, f c p , , ( f )  is expected 
to express recent fine changes. As a result, one-step- 
ahead prediction SPcpu(f) is expressed by following 

formula, where Efcgu(f) is the estimated irregular 
variation according to the Markov model-based meta- 
predictor. 

SP,"(t)  = EP,,( t )  + El,&) 

The meta-predictor is a selector of the predicting 
algorithm at every prediction time. Each predicting 
algorithm calculates the prediction value itself, hut the 
meta-predictor predicts which algorithm is the hest for 
the next prediction. 

P( St( 1 )IS t( 1 )) P(St(2)ISt(2)) 

P(St( l ) lSt(2))  878 

algorithm gave the most precise prediction for the last 
2 prediction times, while Sf(2) means the state in 
which no algorithm gave the most precise prediction in 
succession for the last 2 prediction times. 
P(Sf (a )  I Sf(b)) is the probability of state transition 
from state a to state b. 

Now, suppose one algorithm is selected that will 
calculate the most precise prediction for the next 
prediction time among prediction algorithms Mfl, 
Mf,, and Mf,. If Mfl  gives the most precise 
forecasts for last 2 prediction times, the current state is 
Sf(1). For the next prediction, there are three 
possibilities: 1) M f ,  gives the most precise prediction 
again, and the state is still st(1) (let this probability 
he p(Mt,  I St(1) + St(l))), 2) Mf2 gives the most 
precise prediction and the state changes to St(2) (let 
this probability he p(Mt,  I %(I) + Sf@))), and 3) 
Mt, gives the most precise prediction and the state 
changes to Sf(2) (let this probability he 
p ( M f ,  I St(1) - St(2))). The meta-predictor 
chooses the most probable of these 3 cases, comparing 

P W ,  I - St(2)) I and 

With this method, all predicting algorithms 
dculate  predictions separately at every prediction time, 
meta-predictor obtains a m e a s m e n t  and recognizes 
which algorithm is the best. It then recalculates all the 
probabilities. Thus, the state transition matrix becomes 
accustomed to the environment as the meta-predictor 
predicts the load repeatedly. Moreover, even if there is 
one strongly precise algorithm, the state transition 
matrix is accustomed to mainly using the strong 
algorithm. As a result, this meta-predictor will not 
deteriorate the precision of each algorithm. 

In the evaluation in this paper, we used the 
following algorithms for each prediction algorithm: 
mean value, median value, stochastic gradient, and an 
auto regressive model. 

each probability, P W ,  I SKl) - Sa)),  

p(Mt ,  ISt(1) -Sst(2)). 

4. Network load prediction 

P(St(S)ISt(l)) 
Figure 1: The Markov model used by 
meta-predictor. 

4.1. Extended forecast of network load 

There are several reasons for generating CPU load. 
However, packet transmission undoubtedly generates 
CPU load. Therefore, we group CPU load into two 

Figure 1 is an illustration of the Markov model categories by causation: I )  load generated by 
used by the meta-predictor at every prediction time. applications without the network, and 2) load 
Sf(1) means the state in which one predicting 
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generated by tasks related to network interfaces, such 
as data transmission, communication with other nodes, 
and so on. in patticular, the variance in CPU load 2) is 
assumed to directly concern network load variance. For 
this reason, in this paper, we called CPU load 2) 
"network-related CPU load," and applied it to network 
load prediction. Network-related CPU load can be 
forecasted in exactly the same way as CPU load 
forecast. 

Therefore, after estimating and approximating 
seasonal variations in network-related CPU load, the 
approximated seasonal variations can be regarded as 
seasonal variations in network load variation. The 
variation in network load is strongly assumed to he 
similar to the variation in network-related CPU load. 
However, it is difficult to determine the expected 
network load measurement itself only through 
measurements of network-related CPU load. Thus, we 
calculate extended forecast of network load, EP,,,(t), 
using seasonal variations in network-related CPU load 
and the mean value of network load as the following 
formula. 

EP,,, ( t )  = M",, + FS, ( r )  + . . . + FS, ( t )  

4.2. One-step-ahead prediction of network 
load 

The same to as onestep-ahead CPU load 
predictions, onestep-ahead network load predictions 
are also required to be sufficiently precise and sensitive 
to resent complex change tendencies in the 
measurements. For this reason, we used the Markov 
model-based meta-predictor again to predict one-step- 
ahead network load measurement because we need to 
estimate irregular variation in network load, Zne,(t), 
Here, another meta-predictor is prepared only for 
network load prediction. The model itself is exactly 
the same as the model shown in Figure 1, but 
recalculation of probabilities is performed for CPU 
load and network load sepamtely h m  the two different 
state transition models to  allow the meta-predictor to 
be more sensitive to network load waves. As a result, 
onestep-ahead prediction of network load, SP,,,(t), 
is calculated by the following formula. 

5. Evaluations 

In this section, we evaluate our prediction method 
using CPU load and network load using Cisco 75 13 in 
the Science and Engineering School of Waseda 
University by MRTG [19] for about 11 months 
(November 9, 2002 - October 14, 2003). The 
remainder of this section considers this taken CPU 
load to be the network-related CPU load of this muter 
because this router is a special-putpose machine, and 
the taken CPU load is generated only by network- 
related task like routing. Cisco 7513 bas several 
network interfaces. However, we used the network load 
of the FastEthemet interface, which connects the 
Science and Engineering School and the main campus 
of Waseda University. 
If these experiments demonstrate that forecasts of 
network-related CPU load can be applied to network 
load forecasts, applying our forecast method to PC 
routers, PCs, workstations, and so on is well founded 
with the separation of network-related CPU load from 
the whole CPU load. 

5.1. Evaluation of predicting network- 
related CPU load 

Figure 2 shows the measurements of network- 
related CPU load and 8-day-long forecast of network- 
related CPU load at 3:OO on September 24, 2003. The 
measurements are the mean values of network-related 
CPU load every 2 hours. The accuacy of the measured 
values, such as the maximum value or the minimum 
value, need to be improved. However, the variation in 
load is well pictured. 

Figure 3 shows the measurements and one-step- 
ahead predictions of network-related CPU load from 
3:30 to 1530 on October 14, 2003. The forecast was 
calculated at each monitoring time. The network- 
related CPU load was taken every 5 minutes. The 
prediction sometimes peaked slightly later than the 
measurement. However, the forecast pictures the 
maximum values and minimum values precisely, as 
well as the variation in the measurements. The mean 
average m r  rate, which is calculated using the 
following expression, was 6.2%. 

(Mean error rate) 
- I (measurement) - (prediction) I 

x loo[%] - 
(measurement) 
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Figure 2 :  Measurements and extended 
(September 24 - October 2, 2 0 0 3 ) .  
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Figure 3 :  Measured values and one- 
step-ahead predictions of network- 
related CPU load (3:30  - 15:30  o n  
October 14, 2 0 0 3 ) .  

5.2. Evaluation of prediction of network 
load 

Figure 4 shows the measurements and 8-day-long 
forecast of network load at 23:OO on September 14, 
2003. The measurements are the mean values of 
network load every 2 hours. The prediction sometimes 
peaked later than the measurements, but expressed the 
waves of the measurements well. Moreover, the 
forecast ofien provided maximum values and 
minimum values precisely. However, it is still 
necessary to improve precision. 

forecast of network-related C P U  load 

3:w 5:oo 700 am ,I:" 13:w 
"me 

1 . measurement - p " n l  

Figure 5: Measured values and one- 
step-ahead predictions of network load 
(3:OO - 15:OO on October 14, 2 0 0 3 ) .  

Figure 5 shows the measurements and one-step- 
ahead predictions of network load h m  3:OO to 15:OO 
on October 14, 2003. The predictions were calculated 
at each measuring time, and the measurements were 
taken every 5 minutes. The mean mor rate was 9.4%. 
The forecasts picture complex network load variation 
well, as well as maximum values and minimum values. 
Sometimes the forecast peaked slightly later than the 
measurements, but the forecast did not continue to 
provide very inaccurate values. 

Considering all the results of these experiments, 
network forecasting using seasonal variation in 
network-related CPU load is effective. 
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Figure 4: Measurements and extended forecast of network load (September 1 4  - 22 ,  
2003) .  

Table 1 : Results of evaluation of practicability of extended network-related CPU load 
forecast using the proposed method. 

Table 2: Results of evaluation of practicability of extended network load forecast using 
the proposed method. 
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5.3. Practicability 

To confirm the practicability of OUT forecast, we 
conducted an experiment following the procedure 
below. This experiment assumed the arrangement of 
video c o n f m c e  or other network-related applications 
in need of predicting network throughput or CPU 
usage. The procedure of this experiment was: 1) 
generate a random number to decide when to start the 
application, 2) genmte another random number to 
decide the execution time of the application, 3) 
calculate the expected mean load during the application 
runs using the proposed method, and 4) calculate the 
mean emor rate against the real mean load. 

Table 1 shows the results for network-related CPU 
load, and Table 2 shows the-results for network load. 
The mean error rate for eaih m e  was the mean value of 
1000 sets of the experiments. The predictions were 
calculated using only the extended forecast method, 
without the one-step-ahead prediction method. For 
example, the average error rate of network-related CPU 
load for applications, those application starting times 
vary from 24 hours to 48 hours and application 
running times vary h m  48 hours to 72 hours, was 
9.1%. 

For this w e ,  we could not find a clear relationship 
among application running time, application starting 
time, and forecast precision. However, the mean error 
rate of the prediction becomes smaller as the 
application run time becomes longer. This means that 
the proposed method forecasts the general curve very 
well, while the method sometimes predicts with 
emergent error. Moreover, when the predictions of 
network-related CPU load were with small error rate, 
the predictions of network load were generally also 
with small error rate. On the other hand, the 
predictions of network load were generally with large 
error mte when the predictions of network-related CPU 
load were with large error rate. Through these results, 
we confirmed that the load variance in the network- 
related CPU load strongly concerns network load 
variance. This means that using variance in network- 
related CPU load for predictions of network load is 
effective. 

6. Conclusions 

This paper proposes a method for extended forecast 
of CPU load and network load. The distinctive feature 
of OUT method is using seasonal variation for extended 
forecast, and using the Markov model-based meta- 
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predictor in addition to seasonal variation for one-step- 
ahead prediction. Particularly for extended forecast of 
network load, we applied seasonal variation in 
network-related CPU load instead of seasonal variation 
in network load itself. 

To confirm the accuracy and the practicability of 
our method, we conducted experiments using real CPU 
load and network load taken on a Cisco router. 
Throughout the experiments, our predictor expressed 
the expected m e  of load variation well, giving very 
precise one-stephead prediction. The mean error rate 
for one-step-ahead prediction is 6.2% for CPU load, 
and 9.4% for network load. 

As hture work, we plan to improve the precision, 
especially for CPU load variation, maximum values, 
and minimum values. We will, in addition, apply this 
method to PCs, workstations and so on, because we 
confirmed the effect of OUT method for router only use 
machines Moreover, we need to develop cooperation 
with the load-balancing system to improve 
practicability and determine the prediction format to 
provide forecast for other applications. 
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