
A Development Strategy of User Navigation Systems
and GUI Applications

Jeongwon Baeg, Atsushi Hirahara and Yoshiaki Fukazawa

Dept. of Information and Computer Science,
School of Science and Engineering,

Waseda University
3-4-1, Okubo, Shinjuku-ku,

Tokyo 169, Japan
{ baeg, hirahara, fukazawa}Qkka.info.waseda.x.jp

Abstract

GUIs(Graphical User Interfaces) have been devel-
oped to make applications easier to w e . However, ef-
fective methods to support the development process for
GUI-based applications are highly required as the ap-
plications have become increasingly complex. As the
supporting methods, we propose a representation tech-
nique to suitably describe the structure of an applico-
t ion using Petri nets. Our technique supports all de-
velopment activities of G UI-based applications during
the analysis, design and implementation stage.

On the other hand, concise explanations are indis-
pensible to easily use complez applications and to help
achieve user’s intended actions. I n this paper, we also
present a method which i s to navigate how to w e ap-
plications for a user by changing messages depending
on the present state of the application based o n Petri
nets.

1 Introduction

To provide easily usable application software, the
studies on the use in GUIs (Graphid User Inter-
faces) have been continued. As a result, some methods
to assist the development of GUI-based applications
such as GUI build= tools and UIMS have been pro-
posed [1][2]. By utilizing these methods, it has become
possible to build applications with ever increasingly
complex GUIs.

However, these conventional approaches lack the
important concept in which software development
should be supported all over the life cycle stages.

Hence, we propose a method considering the follow-
ing aspects:

0 Correct understanding of users’ requirements: TO
clarify user’s requirements at an early stage, a
method is essential which supports interactive
participation of the end-users. In this phase,
characteristics of GUI applications must be con-
sidered, which means the user interacts with the
application.

0 Natural representation of GUI applications: The
structure of the most GUI applications is event-
driven. For that reason, design methods which
are suitable for modeling event-driven systems are
required.

0 Verification of the results in the design process:
A method to verify the results of the design pro-
cess for an application is necessary because it is
difficult to express dynamic behaviors of complex
GUI applications.

0 Support of the implementation process: To easily
develop reliable programs, it is desirable to auto-
matically produce some parts of programs from
the results of the design process.

In order to fulfill the above four needs, we built a
model based on Petri nets for the development of GUI-
based applications.

It is well-known that a GUI-oriented model is use
ful to effectively design and implement complex GUI
applications. For this reason, statetransition mod-
els [3], Petri net models [4][5], Message Sequence
Chart(MSC) models [6], etc., have been proposed to
model various aspects of GUI applications. Among
these models, Petri nets have some superior charac-
teristics: describability of event-based asynchronous

163
0730-3157/94 $04.00 Q 1994 IEEE

I I

http://fukazawa}Qkka.info.waseda.x.jp

dialog, representability of behavioral features of a sys-
tem, and simulation capability. We have adopted the
Petri net model and have added some extended repre-
sentations in order to conveniently describe GUI ap-
plications.

In this paper, methods for representing GUI appli-
cations with the Petri net model and automatic pro-
gram generation technique are mainly described.

To easily use applications with complex GUIs, ap-
propriate explanation and guidance to help achieve
user’s intended actions are indispensable. A method
to navigate how to use GUI applications for a user
with Petri nets is also described.

2 Main System Features

2.1 Support of GUI Representation

Several Petri net representations to properly de-
scribe GUI applications are specially introduced to
our system. Generally many kinds of windows, menus,
and buttons are used in GUI applications, and a suit-
able model is needed to describe those dialog compo-
nents in the development process. Using our extended
representations of Petri nets, some characteristics and
constraints which GUI components have can be de-
scribed easily.

2.2 Support of GUI Development

e Requirements analysis: In our method, at first,
the structure of an application is represented with
Petri nets for describing end-user’s requirements.
Then the dynamic behaviors of the Petri nets can
be simulated.

e Design: Iterative refinement of already defined
Petri nets is carried on in this phase. Also some
design information is added to considering imple-
mentation of applications. Futhermore, the re-
sults in this phase are verified through continuing
simulation.

e Implementation: Based on Petri nets obtained
from the design process, the skeleton of program
is automatically generated during this activity.
Then the application functions in addition to the
generated program are written and whole applica-
tion programs are completed. Automatic genera-
tion of program fragments of a.n application from
Petri nets contributes to enhancement of program
productivity and a decrease in its development
costs.

3 Modeling with Petri Nets

3.1 Petri Net Notation

Components of Petri nets are represented as fol-
lows:

e Places (conditions) represent states of an appli-
cation.
A place is defined as an application’s state. In-
put places are preconditions required to execute
a function, and output places are postconditions
which describe the states resulting from the exe-
cution of the function.

e Transitions (actions) represent functions of an ap-
plication or its interactive components.

A transition is defined as an application’s function
which is fired (executed) if the input conditions
are satisfied. Events issued by the user are rep-
resented as transitions. For example, Upresing a
button” is an event.

e Markings represent the application states at a
time.

Markings are changed by user’s actions carried
out in the application.

3.2 Extended Representations of Petri
Nets

In our system, the representation capability of Petri
nets are extended beyond those described in sec-
tion 3.1. These extensions contain frequently appear-
ing patterns found in many GUI applications, and can
reduce the cost required to construct Petri nets.

a) inhibitor arc b) arc holding a token
place losing a token

Figure 1: Extended arcs and places

164

(1) Inhibitor arc inhibiting a transition’s firing.
When a button is pressed in a GUI function, such
as to open a popup window, if the popup win-
dow has already been opened then the button
press should be canceled. Also, before a p o p
down action is designated, a pop-up window must
be displayed. There are many such cases where
one state enables the firing of one transition while
at the same time disabling the firing of another.
Therefore, we introduce an inhibitor arc which
disables firing when an input place has a token
(“arc A” in Figure 1 a)). Although a transition
has been fired, a token is not moved through an
inhibitor arc. Zero test (a test of whether a place
has a token or not) can be achieved using this
inhibitor arc[7][8].

(2) Arcs through which tokens axe not moved despite
the firing of a transition.
Several GUI components hold their own states.
In cases where transitions are fired from these
states, it is often convenient not to move tokens
from an input place. For example, the state of
a toggle button is kept, although a transition is
fired. An arc through which tokens of each input
place are not moved despite the firing of a transi-
tion is therefore introduced (“arc B” in Figure 1
b)). By utilizing this arc, the arc from “TI” of
Figure 1 a) to place “a” can be omitted.

(3) A place removing a token in the case where tran-
sitions can not fire.
Many kinds of GUI components, l i e buttons, al-
ways enable the user’s input. However, some GUI
components begin to act only when other condi-
tions are satisfied, e.g. a save button of an editor
is valid only during editing. We introduce a place
removing a token in the case where transitions
can not fire in order to naturally represent such
GUI components (place “b” in Figure 1 b)). By
adopting this place, a transition “sink”, as shown
in Figure 1 a), together with its two input arcs can
be omitted.

(4) State transition with multiple outputs based on
conditions.
Generally, the state change caused by a procedure
call is not uniquely determined. As an example,
in a file opening procedure the function’s output
state consists of two possible alternatives: “The
file has successfully opened” and “Opening the
file has failed”. Our system is extended to repre-
sent branches of outputs in a transition as shown

in Figure 2. This extended representation is not
always necessary if all possible states are specified
in detail, however, the resulting Petri nets would
become complex. This representation would be
suitable for representing the branches of a pull-
down menu resulting from a user’s selection.

6 6

a) former b) extended
representation representation

Figure 2: Extended Petri nets for multiple outputs

(5) OR Representation.

b
a) former b) extended

representation representation

Figure 3: Representation of OR

In GUIs, there are various kinds of operations
used to execute a function. Short-cut keys
and confirmation procedures during file selection
(pressing the OK button or double clicking) are
their good examples. Generally, the firing condi-
tion for a transition is an AND type, i.e. all input
places must have tokens (except in the case of an
inhibitor arc, whose input place has no token). In
Figure 3 a), transition “TI” is enabled if either
or both of places “a” and “b” have a token and
place “c” gains a token. In this situation, the de-

165

scription of a normal OR type condition becomes
complicated. Figure 3 b) shows our simplified de-
scription of an OR type condition.

3.3 Stepwise Refinement of Petri Nets

Hierarchical editing to refine Petri nets of a system
is possible with our Petri net editor. Coarse structures
of a system are first described as high-level nets, and
next a series of gradual refinement steps is followed to
describe low-level ones while maintaining consistency
between the inputs and outputs of high-level ones.

3.4 Petri Net Editor

We developed a graphical editor to construct Petri
nets. A developer writes Petri net graphs which repre-
sent the structure of an application using this editor.

This editor has several functions:

0 graphical editing of Petri nets,
0 simulation of constructed Petri nets,

automatic generation of application program
fragments.

4 Application Development Support

4.1 Automatic Program Generation

When a procedure(transiti0n) is focused on, states
that can be reached from the procedure, i.e. proce-
dures that may execute next can be detected by check-
ing its output places. Therefore, the mechanism which
causes the state to change can be generated. Figure 5
illustrates an example of automatically generated pro-
gram fragments.

Function calls such as “Changestate(...)” in Fig-
ure 5 are state transition procedures. Developers
write the application’s body in “Manufacturing part”
Though the developer must write the procedures to
be called from “Manufacturing part”, he needs not to
write procedures concerning the state transitions in
these procedures, as these will be generated automat-
ically. In this way, the skeleton of an application can
be generated automatically from the output places of
a transition.

Pile. is selected Play button is pressed

An example of Petri nets constructed using the
Petri net editor is illustrated in Figure 4. This net
represents the record function, one part in all func-
tions of a sound application.

Figure 4: A Petri net for the record function

’ intstate;
I* Manyfaclwing part +I

if(state==OK){ /. State OK ‘I
ChangeState(Play9; .

)else{ r tate F ~ I I *I
ChangeState(Enab1eg);

b) generated procedure

Figure 5: A Petri net and its generated code

4.2 Control of Processing

Transitions can be fired, and registered procedures
called, when each input place gains a token, i.e. ev-
ery input state satisfies their constraints. In our sys-
tem, the State Manager (Petri net engine) controls the
application’s process flow. The State Manager mon-
itors state transitions and fires a transition if every
input place of that transition has at least one token.
Also, called procedures request a state change in order

166

for the State Manager to transit tokens to the output
places for firing the next transition. The State Man-
ager includes IF-THEN style expressions that are au-
tomatically translated from every input place of each
transition of the given Petri net, and repeatedly eval-
uates these expressions during execution.

Figure 6 illustrates the internal structure of an ap-
plication constructed by applying our method. The
parts surrounded by solid lines are automatically gen-
erated, and the parts drawn with dotted lines are ap-
plication body components to be completed by hand
coding.

ken or not. A token in place “e” means that function
B has already executed. In Figure 7, because place
“d” has no token, function A has not yet executed.
Therefore, the user is given the message “change the
state of “d” using function A”. In this example, a
navigation message for function B is not displayed
because it would be redundant in this situation. If
the user doesn’t know how to operate function A, the
same process is repeated for the previous states. Thus,
our system displays only the necessary information by
selecting arcs which should be traced back from the
present state.

Figure 6: Internal structure of an application

5 Navigation Mechanism

We also propose a navigation mechanism to cope
with the problems of recent on-line help systems that
display even redundant information which a user has
already known.

In this paper, “navigation” means a designation of
pre-conditions of the action when a user carries out
an action in an application. Specifically, we simply
assume that a user has enough knowledge on the ac-
tions that have already been carried out. When a user
requests navigation, information on functions which
have not yet been executed among pre-conditions for
executing a function at the present application’s state
is displayed to the user. This information is called a
navigation message.

Navigation message derivation mechanism is ex-
plained using an example. Let us assume that a
user wants to read navigation messages for function
C in Figure 7. Our system checks whether each input
places of function C, i.e. “d” and “e”, contains a to-

Figure 7: Navigation message derivation mechanism

In order to realize this mechanism, the following
approach is taken. To start with, Petri nets repre-
senting the structure of an application, including the
GUI, are written with our Petri net editor. Next, nav-
igation messages based on these Petri nets are edited
with that editor. Navigation system also has the same
structure of Petri nets described before. Then, from
these Petri nets, our system automatically produces
program fragments which notify the navigation system
of its application’s state transitions, so that the change
of an application’s state occurred by user’s actions is
reflected. Our navigation system generates navigation
messages according to the markings of these Petri nets.

6 Evaluation

To evaluate our system, several examples were used.
Our system and these test cases were implemented
under SunOS 4.1.3 + XllR5 on a SUN SPARC sta-
tion 10. Case A is the whole application described in
the section 3.4, and case B is similar to case A, but
includes several more complex functions. Case B is

167

Table 1: Effectiveness of extended Petri nets.

cases

case A

Table 2: Scale of the trial svstems.

total generated parts(lines) (lines)

4500 500 I 300
code skeleton I State Manager

case B
case C

13000 1600 950
8900 1050 720

the new version of a system which had been already
developed, and therefore also represents a feasibility
study for software re-engineering. Cuse C is a Petri
net editor developed as part of our project. In case D,
the Xarchie tool which is an X11 browser interface to
the Archie Internet Information system has described.
Each of these cases was developed by different indi-
viduals.

Table 1 illustrates the number of places, transitions
and arcs for each case. The numbers in parentheses
represent extended Petri net features described in sec-
tion 3. From these results, extended elements were
used for about 30% of the places, about 39% of tran-
sitions, and about 16% of arcs. These ratios show that
extended features are very effective. However, the de-
scription style of Petri nets varies with each developer,
so it is necessary to provide guidelines for describing
Petri nets.

Table 2 illustrates the total number of lines for case
A, cuse B and c u e C, and the line numbers for au-
tomatically generated procedures and the State Man-
ager. All were implemented in C, and code that was
automatically generated is included in the totals. The
original version of cuse B was expressed in about 11000
lines. After reconstruction with our system, the appli-
cation body was reduced to about 10450 lines (13000
lines - 1600 lines - 950 lines) and the number of state-
ments decreased somewhat as code related to process
flow were moved to the State Manager. The resulting
increase in execution time was minimal and shown no
problem for practical use of the system.

Our method introduces some additional cost for the
construction of Petri nets. However, several merits
such as the support of development activities from the
requirements analysis phase, and enhancement of pro-
gram productivity are also obtained.

7 Conclusion

We have illustrated the process for constructing
GUI-based applications using Petri nets.

Our system can support software development ac-
tivities, via simulation in the Petri net editor, from
the requirements analysis phase. However, when these
requirements are changed, it is necessary to modify
original Petri nets in our system. Also if the skeleton
of an automatically generated application program is
modified, it is very difficult to modify the correspond-
ing hand-written code. For this purpose, a method
will be needed that minimizes parts of the application
program that must be modified owing to changes in
the requirements.

As a part of our future work, we are planning to
build a system to more effectively navigate using his-
tories of user’s previous actions. Also, we need more
research to generate concise information for other help
information except preconditions to execute a func-
tion.

References

J.C.Armstrong Jr, “Six GUI Builders Face Off,”
Sun World, December, 1992.

M.Green, “A Survey of Three Dialog Models,”
ACM TOG, Vo1.5, No.3, 1986.

P.D.Wellner. Statemaster, “A UIMS based on
Statecharts for Prototyping and Target Implemen-
tation,” In PTOC. CHI’89, pp. 177-182, ACM, 1989.

C. Janssen, A.Weisbecker, J.Ziegler., “ Generating
User Interface from Data Models and Dialogue Net
Specifications,” In Proc. INTERCHI ’93, pp. 418-
423, ACM, 1993.

Peterson, J.L., Petri Net Theory and the Modeling
of Systems, Prentice Hall, 1981.

Working Party X/3. Draft Recommendation
2.120-Message Sequence Chart(MSC). CCITT,
March, 1992.

Jensen, K. and Rosenberg, G. (eds.), High-Level
Petri Nets, Theory and Application, Springer-
Verlag, Berlin, 1991.

W. Reisig, Petri Nets (An Introduction), Springer-
Verlag, 1985.

168

