
A Metrics Suite for Measuring Reusability of Software Components

Hironori Washizaki�, Hirokazu Yamamoto� and Yoshiaki Fukazawa�
�Department of Computer Science, Waseda University

3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
� washi, fukazawa �@fuka.info.waseda.ac.jp

�Matsushita Electric Industrial Co., Ltd.
1006 Kadoma, Kadoma City, Osaka 571-8501, Japan

h-yama@isl.mei.co.jp

Abstract

In component-based software development, it is neces-
sary to measure the reusability of components in order to
realize the reuse of components effectively. There are some
product metrics for measuring the reusability of Object-
Oriented software. However, in application development
with reuse, it is difficult to use conventional metrics because
the source codes of components cannot be obtained, and
these metrics require analysis of source codes. In this pa-
per, we propose a metrics suite for measuring the reusability
of such black-box components based on limited information
that can be obtained from the outside of components with-
out any source codes. We define five metrics for measuring
a component’s understandability, adaptability, and porta-
bility, with confidence intervals that were set by statistical
analysis of a number of JavaBeans components. Moreover,
we provide a reusability metric by combining these metrics
based on a reusability model. As a result of evaluation ex-
periments, it is found that our metrics can effectively iden-
tify black-box components with high reusability.

1. Introduction

Component-based software development (CBD) has
become widely accepted as a cost-effective approach
to software development, as it emphasizes the design
and construction of software systems using reusable
components[1]. CBD is capable of reducing developmen-
tal costs and improving the reliability of an entire software
system. Since it is natural to model and implement compo-
nents in an object-oriented paradigm/language[2], we limit
this study to the use of OO language for the implementation
of components. In a narrow sense, a software component
is defined as a unit of composition. A user of a compo-

nent can exchange it independently in the form of an ob-
ject code without source codes. We call such components,
whose source codes are unavailable for users, “black-box
components.”

As the number of components available on the market
increases, it is becoming more important to devise soft-
ware metrics to qualify the various characteristics of com-
ponents. Software metrics are intended to measure software
quality characteristics quantitatively. Among several qual-
ity characteristics, the reusability is particularly important
when reusing components. It is necessary to measure the
reusability of components in order to realize the reuse of
components effectively.

Some measurement methods (product metrics) for mea-
suring the reusability of OO software, such as Chi-
damber and Kemerer’s metrics[3](C&K metrics), have been
proposed[4]. However, since many of these conventional
metrics require analysis of source codes, these metrics can-
not be applied to black-box components. Moreover, con-
ventional metrics do not consider the features of compo-
nents. CBD requires a considerably different approach to
that of OO methods.

In this paper, we propose a metrics suite for measuring
the reusability of black-box components for the activity of
development with component reuse, based on the limited
static information that can be obtained from the outside of
components without any source codes, in order to identify
the best components in terms of their reusability.

2. Software components

A software component is a unit of composition with con-
tractually specified interfaces. The component can be used
from the outside of it via the interfaces. To component
users, a component is a self-contained unit that can be used
for a specific purpose. The internal implementation of a

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

component is usually hidden from its users. Components
are not only reused within organizations to which the com-
ponents’ developers belong, but are also distributed in the
form of an object code via the Internet and reused in other
environments[5]. Therefore, users who want to reuse com-
ponents often cannot obtain source codes of the components
except for object codes.

2.1. Granularity of component

The granularity of the component can be defined as the
conceptual size of the component’s functions. The granular-
ities of components are classified into the following: coarse-
grained, medium-grained and fine-grained[6].

The business component that encapsulates business logic
is a coarse-grained component. The application component,
which is composed of fine-grained components and specific
logic, is a medium-grained component.

GUI widgets and generic components with minimum
logic are fine-grained components. These fine-grained com-
ponents are mainly provided by the component library at-
tached to the Rapid Application Development (RAD) tool.

2.2. Fine-grained components

Currently, fine-grained components are the most
widespread due to the success of the RAD tool. ActiveX[7]
and JavaBeans[8] are component architectures that are suit-
able for treating fine-grained components. In this paper, the
target component architecture is JavaBeans, which brings
the component development model to Java. However, our
approach can be similarly applied to other component ar-
chitectures that are suitable for treating fine-grained com-
ponents.

A JavaBeans component is a reusable component that
can be manipulated visually in a RAD tool[8]. One Jav-
aBeans component is composed of one or more Java classes,
and opens only one Facade class to the public, based on the
Facade pattern[9]. The Facade class is a front class for the
outside of a component, and all method invocations from
outside of the component can be realized via the Facade
class. The name of the Facade class becomes the name of
the corresponding component.

There are four important features of any JavaBeans com-
ponent.

� Property: Properties are the named attributes associ-
ated with a JavaBeans component, whose values can
be read or written by invoking appropriate read/write
methods. Usually, properties correspond to the Fa-
cade class’s fields one-to-one. Properties whose val-
ues can be read are called “readable properties”, and
those whose values can be written are called “writable
properties.”

� Read method: Read methods are methods imple-
mented within the Facade class to read the properties’
values from outside of the component.

� Write method: Write methods are methods imple-
mented within the Facade class to change the proper-
ties’ values from outside of the component.

� Business method: Business methods are simply nor-
mal Java methods that can be invoked from outside of
the component, except for write/read methods, imple-
mented within the Facade class.

Information on the number and type of the above-
mentioned features can be statically obtained for all black-
box JavaBeans components without source codes by us-
ing Java’s introspection mechanism, In addition to these
features, information on the number and type of fields of
the Facade class can also be statically obtained for all Jav-
aBeans components.

JavaBeans provides naming conventions that enable Jav-
aBeans components to be manipulated in a uniform way,
particularly with respect to the component properties[1].
Using the introspection mechanism that JavaBeans pro-
vides, the method whose name is “setXXX” or “getXXX”
can be recognized as the write method or the read method
corresponding to the property “XXX”.

Moreover, by preparing BeanInfo classes that represent
the meta-information of components, developers of com-
ponents can specify the read/write methods and properties
without using the naming conventions. BeanInfo classes are
classes that implement the BeanInfo interface that is pro-
vided by the Java Development Kit APIs.

Figure 1 shows the UML class diagram[10] of a typical
JavaBeans component. In Figure 1, “Stock” is composed of
three classes, and has four fields (“amount”, “brand”, a ref-
erence pointer to an instance of “Broker”, and a reference
pointer to an instance of “Market”) in the facade class. The
Facade class of the component is the class “Stock.” Since
there are a read method “getBrand” and a write method “set-
Brand” corresponding to the field, the introspection mech-
anism recognizes that the component also has one readable
and writable property, named “brand.”

In the following section, we will define a reusability
model for black-box components, and consider the reusabil-
ity metrics for black-box components in terms of their prop-
erties, read methods, write methods, and business methods.

3. Reusability metrics for components

CBD is characterized by two activities: development of
components for reuse, and development of software systems
with reuse of components[11]. The activity of development

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Stock
- amount : Integer
- brand : String

Readable
and

Writable
property

Facade

Broker Market

Facade

Subsystem
classes

Write method

Read method

Business
method

+ Map()
+ setBrand(s : String) : void
+ getBrand() : String
+ plan(i : Integer[]) : void

Figure 1. Class diagram of a JavaBeans com-
ponent

with reuse is realized by developing software with existing
components.

For users who want to reuse components in the activ-
ity of development with reuse, one of the most impor-
tant quality characteristics of a component is its reusabil-
ity. Reusability is the degree to which a component can be
reused, and reduces the software development cost by en-
abling less writing and more assembly. How users can de-
tect which component is the most reusable among several
components implementing the same specification, and how
users can select components with higher reusability are key
issues. It is necessary to measure the reusability of compo-
nents in order to realize the reuse of components effectively.

3.1. Component reusability model

We define a new reusability model for black-box com-
ponents from the viewpoint of component users. Figure 2
shows our reusability model based on the McCall’s Factor-
Criteria-Metrics (FCM[12]) approach. The FCM approach
is used by ISO; for example, ISO 9126[13] applies the FCM
model to the assessment for software quality. Our reusabil-
ity model is inspired from the reusability model given by the
REBOOT approach[14], but the criteria and metrics used in
our model are quite different from those in the REBOOT
approach. The measurement target of our model is also dif-
ferent from that of the REBOOT approach. The reusability
model is structured in three levels in a top-down manner.
The three terms (factor, criterion and metric) are organized
in an evaluation and assessment hierarchy. Factors are used
at management level, as the nonfunctional requirements of
a component. Criteria are used at (application) design level.
Metrics are used at product level.

Metrics are used to determine quality factors that af-
fect reusability. A component alone has certain charac-
teristics that tend to affect its reusability. In this reusabil-
ity model, the component reusability can be decomposed
into three factors: understandability, adaptability, and porta-

()

Component
Reusability

Understandability

Adaptability

Portability

EMI

RCC

RCO

SCCr
SCCp

Characteristic MetricQuality Factor Criteria

Observability

Customizability

External
Dependency

Existence of
Meta-Information

Figure 2. Black-box component reusability
model

bility. This reusability model includes aspects related to
the Understandability, Adaptability, and Portability factors
given by ISO 9126[13]. The quality factors are selected
only to provide an analysis of the reusability of a compo-
nent. Factors related to other aspects of component quality
that are not considered to be important to reusability are
not considered. The choice of the three factors affecting
reusability has been made on the basis of an analysis of the
activities carried out when reusing a black-box component.
These activities are as follows.

� Understanding the functionality of the component, to
decide whether it meets the new functional require-
ments.

A user needs high understandability to do this activity.
Understandability is defined based on the estimated ef-
fort needed by a user to recognize the concept behind
a component and its applicability.

� Adapting the component to the specific functional re-
quirements of the new system.

A user needs high adaptability to do this activity.
Adaptability is the ease with which a component can
be adapted to fulfill a requirement that differs from that
for which it was originally developed.

� Porting the component to a new environment.

A user needs high portability to do this activity. Porta-
bility is the ease with which software can be trans-
ferred from one environment to another.

These factors are hierarchically subdivided into criterion
and metrics as shown in Figure 2.

There are well-known reusability criterion that do not ap-
pear in our model: cohesion and coupling. We do not use
these criterion because these criterion usually need metrics
that require the analysis of source codes of components (de-
scribed in Section 6).

A brief description of the criteria in our model and of the
related evaluation is given below.
(1) Existence of meta-information

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

The existence of meta-information indicates whether the
meta-information of the target component is provided. If
the meta-information of the component is provided, users
of the component can easily understand the component’s
usage, which the component’s developer assumes.

We can specify the existence of meta-information by
checking whether the BeanInfo class corresponding to the
target component is provided.
(2) Observability

Observability measures how easy it is to observe a com-
ponent in terms of its operational behaviors, input parame-
ters, and outputs.

The behavior of a black-box component can be mainly
confirmed by using read methods corresponding to the com-
ponent properties. Therefore, the number of read methods
provided by a component is the important factor contribut-
ing to the observability of the component.

JavaBeans allows software developers to construct appli-
cations by piecing components together either programmat-
ically or visually. Thus, JavaBeans components must al-
low their property values to be observed programmatically
or through some type of visual interface. Therefore, many
components expose fields of Facade classes intrinsic to their
behavior as readable properties by the read methods.

Figure 3 shows an example of using BeanBox[15] as
a RAD tool that provides visual interfaces to manipulate
JavaBeans components visually. A line chart component,
named “FukaGraphBean”[16], is selected on BeanBox, and
BeanBox displays all of the properties of the component on
a property sheet located at the right-hand side of Figure 3.
For example, by seeing the property sheet, a user can con-
firm the value of the property, named “colorGraph”, that
determines the color of the graph.

Figure 3. Example of using RAD tool

(3) Customizability
Customizability indicates the built-in capability for sup-

porting the customization and configuration of a compo-
nent’s internal functional features.

Properties are used for component customization and
configuration[17]. Therefore, components must allow their
property values to be changed programmatically or through
some type of visual interface for their customization. The
number of write methods provided by a component strongly
affects the customizability of the component.
(4) External dependency

External dependency indicates the component’s degree
of independence from the rest of the software which origi-
nally used the component.

Invoking component’s business methods from the out-
side of the component provides functions to outside. There-
fore, the external dependency of the business methods im-
plemented within a component strongly affects the compo-
nent’s external dependency. In business methods, there is
a possibility that parameters or return values depend on the
rest of the software which originally used the component.
In contrast, business methods without parameters or return
values provide functions that are self-completed within the
component.

3.2. Definitions of reusability metrics

According to the above-mentioned reusability model, we
define five metrics, EMI, RCO, RCC, SCCr, and SCCp, for
measuring the existence of meta-information, observabil-
ity, customizability, and external dependency of a black-box
JavaBeans component, with confidence limits that were set
by statistical analysis of a number of components (shown in
Section 4).

Measurement values of all our metrics are always nor-
malized to a number between 0 and 1. Each metric has
a confidence interval[18] with confidence coefficient 95%
(except the upper confidence limit of SCCr). If the value
of each metric � is in a confidence interval ���� � ��� �
from the lower confidence limit ��� to the upper confi-
dence limit ��� , the quality factor corresponding to the
metric is thought to be appropriately high.

3.2.1 Existence of Meta-Information

Definition 3.1 (EMI: Existence of Meta-Information)
������ is whether the BeanInfo class corresponding to

the target component � is provided:

������ �

�
� �BeanInfo class exists�
� �otherwise�

Confidence interval: [0.5, 1.0]
Consideration: If the value of ������ is 1, users of �
can easily understand the usage of �, which �’s developer
assumes.

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Example: Figure 4 shows a comparison of measurement
values in terms of our five metrics for two components
(Chart and Graph). In Figure 4, Chart has a BeanInfo class
(ChartBeanInfo), and Graph does not. In this case, the un-
derstandability of Chart is thought to be higher than that of
Graph.

3.2.2 Rate of Component Observability

Definition 3.2 (RCO: Rate of Component Observability)
������ is a percentage of readable properties in all

fields implemented within the Facade class of a component
�.

������ �

�
�����
���� ����� � ��

� �otherwise�

where:
����� � number of readable properties in �
���� � number of fields in �’s Facade class

Confidence interval: [0.17, 0.42]
Consideration: RCO indicates the component’s degree of
observability for users of the component. To understand
the behavior of a component from outside the component,
the observability of the component should be high. How-
ever, there is a possibility that it is difficult for users to find
an important readable property among all of the readable
properties when the observability is too high.

If the value of ������ is in the confidence interval, the
height of the observability is appropriate, and the under-
standability of � is high.
Example: In Figure 4, Chart’s Facade class has four fields
(“title”, “values”, a reference pointer to an instance of Grid,
and a reference pointer to an instance of Border), and Chart
has one read method (getTitle) corresponding to the field
(“title”). Graph’s Facade class also has four fields, but
Graph has no read methods. In this case, the understand-
ability of Chart is higher than that of Graph.

3.2.3 Rate of Component Customizability

Definition 3.3 (RCC: Rate of Component Customizability)
������ is a percentage of writable properties in all

fields implemented within a Facade class of a component
�:

������ �

�
�����
���� ����� � ��

� �otherwise�

where:
����� � number of writable properties in �

Confidence interval: [0.17, 0.34]
Consideration: RCC indicates the component’s degree of
customizability for users of the component. To adapt the
settings of a component from outside the component to the
user’s requirements, the customizability of the component
should be high. However, too high a customizability vio-
lates the encapsulation of the component, and leads to larger
opportunities of wrong use.

If the value of ������ is in the confidence interval, the
height of the customizability is appropriate, and the adapt-
ability of � is high.
Example: In Figure 4, Chart’s Facade class has four fields,
and Chart has one write method (setTitle) corresponding
to the field. Graph’s Facade class also has four fields, but
Graph has no write methods. In this case, the adaptability
of Chart is higher than that of Graph.

3.2.4 Self-Completeness of Component’s Return Value

Definition 3.4 (SCCr: Self-Completeness of Component’s
Return Value)
������� is a percentage of business methods with-

out any return value in all business methods implemented
within a component �:

������� �

�
�����
���� �	��� � ��

� �otherwise�

where:
	���� � number of business methods without
return value in �
	��� � number of business methods in �

Confidence interval: [0.61, 1.0]
We first obtained 0.96 as the upper confidence limit of

SCCr (
�����) by statistical analysis. However, we found
that components tend to have business methods without re-
turn values regardless of the reusability (described in Sec-
tion 4.4). Therefore, we use 1.0 as
�����.
Consideration: SCCr indicates the component’s degree of
self-completeness, and the low degree of external depen-
dency for users of the component. Simply, the smaller
the number of business methods without return value, the
smaller the possibility of the component having external de-
pendency. High self-completeness of a component (low ex-
ternal dependency) leads to high portability of the compo-
nent.

If the value of ������� is in the confidence interval, the
external dependency to outside of a component is low, and
the portability of � is high.
Example: In Figure 4, Chart provides two business meth-
ods (plot, grid), and the types of these business methods’
return values are �
��. Since �
�� represents no value in

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

- title : String

+ plot() : void
+ grid() : void

- values : List
- name : String
- amount : Integer

+ setTitle(t : String) : void
+ getTitle() : StringChartBeanInfo

1

1

+ Graph()
+ draw(i: Integer) : String
+ analysis(s: String) : Integer

BeanInfo
<< interface >>

EMI(Chart) = 1
RCO(Chart) = 0.25
RCC(Chart) = 0.25
SCCr(Chart) = 1
SCCp(Chart) = 1 Grid Border

Constraint Direction

Chart Graph

EMI(Graph) = 0
RCO(Graph) = 0
RCC(Graph) = 0
SCCr(Graph) = 0
SCCp(Graph) = 0

+ Chart()

Figure 4. Example of a comparison of measurement values

Java language, these business methods are those without re-
turn values. Graph has two business methods with specific
types of return values. In this case, the portability of Chart
is higher than that of Graph.

3.2.5 Self-Completeness of Component’s Parameter

Definition 3.5 (SCCp: Self-Completeness of Component’s
Parameter)

������� is the percentage of business methods without
any parameters in all business methods implemented within
a component �:

������� �

�
�����
���� ����� � ��

� �otherwise�

where:
����� � number of business methods without
parameters in �

Confidence interval: [0.42, 0.77]
Consideration: SCCp indicates the component’s degree of
self-completeness, and the low degree of external depen-
dency for users of the component. Simply, the smaller
the number of business methods without parameters, the
smaller the possibility of having dependency outside the
component.
Example: In Figure 4, Chart provides two business meth-
ods (plot, grid), and these business methods have no param-
eters. Graph has two business methods with parameters. In
this case, the portability of Chart is thought to be higher
than that of Graph.

4. Validation of reusability metrics

We have developed a component analysis tool for black-
box JavaBeans components in Java language. Our tool au-
tomatically measures primitive values, such as the number
of methods in a Facade class, and calculates the values of
our five metrics using the measured primitive values.

Metrics without any thresholds or appropriate intervals
for measurement values cannot be effectively used. We cal-
culated the confidence intervals of our four metrics by us-
ing 125 JavaBeans components provided at JARS.COM[19]
and our analysis tool.

At JARS.COM, a rating committee reviews all submit-
ted components, and rates all components by giving rating
scores from 0.125 to 1.0 (eight levels) based on the overall
quality of components. In the following, the rating score of
a component � is described as ����. Submitted components
are reviewed and evaluated based on presentation, function-
ality, and originality:

� Presentation: Look & feel and documentation

� Functionality: Usefulness and ease of use,

� Originality: Uniqueness and innovativity.

Although the rating score does not directly indicate the
reusability of a component, the above-mentioned character-
istics that are considered in the review (presentation, func-
tionality, and originality) tend to affect the component’s
reusability. Therefore, we believe the rating score reflects
the reusability of a component, and also reflects quality fac-
tors that impact on the reusability (understandability, adapt-
ability, and portability).

The rating committee also categorizes components into
nine categories. Table 1 shows the number of components
and the average of the rating scores in each category among
all 125 samples. The average of the numbers of properties
among all samples is 5.14, and the average of the numbers
of business methods is 8.23.

We calculated the confidence intervals of our metrics in
terms of the reusable components using the rating scores.
First, we assumed that the reusability of components (� �
���� ���� ���) that satisfy ����� � ����� is high. Sec-
ond, by an interval estimation based on the inversion of
the one-sample Wilcoxon signed-rank (nonparametric) test
statistic[18], we calculated confidence intervals with confi-
dence coefficient 95% for our five metrics (except the upper

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Table 1. Number of components and ����

Category Number of components Average of ����
Programming 98 0.42

WWW 4 0.71
Game 3 0.79

Utilities 4 0.71
Science 16 0.79

Total 125 0.50

confidence limit of SCCr) using all components that satisfy
����� � ����� from among all samples. The number of
such high rated components was 19.

Table 2 lists the lower confidence limit ��� and upper
confidence limit ��� for each metric � of our metrics.
Table 2 also lists the average of measurement values of all
samples, and the number of components whose measure-
ment values are in the confidence interval (Corresponding
components). In the following, the measurement value of
the metric � for the component � is denoted as ����.

Table 2. Average of ����, etc.
Metric All average ��� ��� Corresponding

of ���� components
EMI 0.84 0.5 1.0 105
RCO 0.40 0.17 0.42 36
RCC 0.35 0.17 0.34 35
SCCr 0.85 0.61 1.0 108
SCCp 0.74 0.42 0.77 28

4.1. Measurement result of EMI

We categorized all samples into two categories (���� �
����� and ���� � �����), and counted the number of com-
ponents that satisfy ������ � �. Table 3 lists the results
of the number of components.

In Table 3, 84% of all samples have BeanInfo classes.
Regardless of the height of rating scores, components tend
to have BeanInfo classes. Moreover, 68% of components
that satisfy ���� � ����� have BeanInfo classes. Therefore,
the value of EMI should be 1 for high understandability of
components, but it is difficult to judge the reusability using
only the value of EMI.

4.2. Measurement result of RCO

Figure 5 shows the number of components in each sec-
tion among ten evenly split sections with respect to mea-
surement values of RCO. Figure 5 also shows averages of
rating scores in each section.

Table 3. Number of component in categories
EMI Number of components

���� � ����� ���� � �����

1 92 13
0 14 6

From the obtained confidence interval, the understand-
ability of components that expose �	� � �	� of the Fa-
cade classes’ fields as readable properties by read methods
is high.

Among all samples, the percentage of components
whose values of RCO are in the confidence interval is only
29% (shown in Table 2). This means that the confidence
interval of RCO is not a general range where every com-
ponent corresponds. Therefore, it is evident that RCO with
its confidence interval can be effectively used for measuring
the understandability and reusability of components.

Moreover, the rating scores of components whose values
of RCO are higher than 0.8 tend to be low. This means that
components with too high an observability are not reusable;
the fields of components’ Facade classes should be hidden
to some extent.

Figure 5. Histograms for RCO

4.3. Measurement result of RCC

Figure 6 shows the histograms of measured values of
RCC. From the obtained confidence interval, the adaptabil-
ity of components that expose �	� � �		 of the Facade
classes’ fields as writable properties by write methods is
high.

In all samples, the percentage of components whose val-
ues of RCC are in the confidence interval is 28% (shown in
Table 2). This means that the confidence interval of RCC
is not a general range where every component corresponds.
Therefore, it is found that RCC with its confidence interval

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

can be effectively used for measuring the adaptability and
reusability of components.

Moreover, the rating scores of components whose values
of RCC are higher than 0.6 tend to be low. This means
that components with too high a customizability are not
reusable.

Figure 6. Histograms for RCC

4.4. Measurement result of SCCr

Figure 7 shows the histograms of measured values of
SCCr. From the obtained confidence interval, the portabil-
ity of components for which more than ��� of the business
methods have no return values is high. This result is related
to the typical usage of the component. In general, a proce-
dure for utilizing a component’s functions is composed of
the following three steps:
(1) Set values into writable properties by using write meth-
ods to input user’s values.
(2) Invoke some business methods to use provided func-
tions. Results of the functions may by stored in the values
of properties.
(3) Get values of readable properties by read methods to
obtain the results of executed functions.

The result of measuring SCCr means it is preferable that
a user of a component obtains the results of the business
method’s invocation by invoking the read methods of read-
able properties, rather than by capturing the return value of
the business method.

In all samples, the percentage of components whose val-
ues of SCCr are in the confidence interval is 86% (shown in
Table 2). Moreover, in Figure 7, components tend to have
business methods without return values regardless of the
height of rating scores. Therefore, the value of SCCr should
be more than ��� for high portability of components, but it
is difficult to judge the reusability using only the value of
SCCr.

Figure 7. Histograms for SCCr

4.5. Measurement result of SCCp

Figure 8 shows the histograms of measured values of
SCCp. In all samples, the percentage of components whose
values of SCCp are in the confidence interval [0.42, 0.77] is
22% (shown in Table 2).

However, in Figure 8, components tend to have business
methods without any parameters regardless of the height of
rating scores. Therefore, it is difficult to judge the reusabil-
ity using only the value of SCCp.

This result is related to the above-mentioned typical us-
age of the component. It is preferable that a user of a com-
ponent inputs values to the component by the write meth-
ods of writable properties before invoking business meth-
ods, rather than by parameters of the business method.

Figure 8. Histograms for SCCp

4.6. Correlation analysis

We verified correlations among our four metrics. Table
4 lists the coefficients of correlation for all combinations of
measurement values of our four metrics (RCO, RCC, SCCr,

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

and SCCp). In Table 4, it is found that the metrics for the
properties (RCO and RCC) are independent of the metrics
for the business methods (SCCr and SCCp).

Table 4. Correlations coefficient table
Correlation coefficient RCO RCC SCCr SCCp

RCO 1 0.876 0.084 -0.037
RCC 0.876 1 0.151 -0.001
SCCr 0.084 0.151 1 0.516
SCCp -0.037 -0.001 0.516 1

4.6.1 Correlation between RCO and RCC

Figure 9 shows a scatter diagram comparing the measure-
ment values of RCO and those of RCC for all samples. The
coefficient of correlation is � � �����, so there is a very
strong positive correlation between RCO and RCC. This
means that the developers of components ordinarily prepare
both the read method and the write method corresponding
to the same field of Facade classes when developers feel
necessity of exposing the field.

In Section 4.2 and Section 4.3, the confidence interval of
RCO is very similar to that of RCC. Therefore, if the un-
derstandability of a component were high, the adaptability
would also be high.

Figure 9. Scatter diagram of RCO and RCC

4.6.2 Correlation between SCCr and SCCp

Figure 10 shows a scatter diagram comparing the measure-
ment values of SCCr and those of SCCp for all samples.
The coefficient of correlation is � � �����; there is a pos-
itive correlation between SCCr and SCCp. This means
that the developers of components often implement busi-
ness methods without return values or parameters.

However, in Section 4.4 and Section 4.5, the confidence
intervals of both metrics are completely different. This re-
sult originates in the fact that SCCp cannot reflect the porta-
bility of a component compared with SCCr. We believe that
a user should use only SCCr for measuring the portability
of a component.

Figure 10. Scatter diagram of SCCr and SCCp

4.7. Metrics combination

Our five metrics can be used to judge the reusability by
measuring detailed individual quality factors that are related
to the reusability of a component. However, these metrics
cannot measure an overall picture of the reusability in a sim-
ple manner.

Thus, we define a final reusability metric, named Com-
ponent Overall Reusability (COR), by combining our met-
rics based on our reusability model. According to the
reusability model, the reusability is composed of the un-
derstandability, adaptability, and portability.

We use only SCCr for the portability because SCCp is
not appropriate as a metric for measuring the portability (de-
scribed in Section 4.6.2).

Moreover, described in Section 4.6.1, the coefficient of
correlation between RCO and RCC is 0.876. It is known
that if there is a strong positive correlation between two
metrics (correlation coefficient � 0.8), targeted quality fac-
tor can be measured enough using only one metric of these
two metrics; if these two metrics are used together, one of
these become redundant[20]. For users of a component, it
is expected to specify the component’s reusability using a
fewer number of metrics. Therefore, since RCC is used for
measuring customizability, we use only EMI for measuring
understandability and do not use RCO.

We defined COR as a discriminant function that discrim-
inates the reusable components that satisfy ���� � �����
from other samples by a discriminant analysis based on the
Stepwise method[21].

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Definition 4.1 (COR: Component Overall Reusability)
������ indicates the component �’s degree of reusabil-

ity for users of the component.

������ � ����
������� � ������� � ��������

�
� ����

where:

�� ��� �

�
� ����� � ��� ����� � ��� �
� �otherwise�

Consideration: If the value of������ is larger than 0, the
component � is thought to be reusable. Since the discrimi-
nant coefficient is 1.76, at least two of the component’s un-
derstandability, adaptability, and portability should be high
for users to reuse the component.

By using of COR, we have discriminated the reusable
components with probability of 79% from other samples.
Therefore, COR can be effectively used for the compo-
nent selection in terms of reusability when there are sev-
eral black-box components implementing the same specifi-
cation.

5. Evaluation

We evaluated the usefulness of our three metrics, RCO,
RCC, and COR. We verified the validity of the confidence
intervals of these metrics by means of experimental tests.

We prepared three versions of FukaGraphBean[16] with
different measurement values of RCO and RCC. Fuka-
GraphBean is a line chart component, and originally has
13 fields within its Facade class, 13 read methods and 13
write methods corresponding to all fields. In the follow-
ing, this original version of FukaGraphBean is described as
��. Moreover, we prepared two other versions of Fuka-
GraphBean (�� and ��). In �� , several read methods and
write methods that are unnecessary for the required func-
tions of FukaGraphBean to be achieved are removed in or-
der to put its values of RCO and RCC in the confidence
intervals of their metrics. In �� , all read methods and write
methods that are unnecessary for the required functions to
be achieved are removed.

Each version of FukaGraphBean is a black-box compo-
nent without source codes for testers; testers cannot investi-
gate the component’s internal structure.

Table 5 lists the measurement values of RCO, RCC and
COR for three versions of FukaGraphBean. The measure-
ment values of�� and�� are in the confidence intervals in
terms of RCO and RCC. Moreover, the measurement value
of�� is smaller than those of�� and�� in terms of COR.
Therefore, the reusability of �� and �� is assumed to be
higher than that of ��.

Table 5. Three versions of FukaGraphBean
Version of FukaGraphBean RCO RCC COR

�� 1 1 0.04
�� 0.38 0.31 0.63
�� 0.23 0.23 0.63

Five testers constructed chart-drawing applications by
piecing FukaGraphBean and other components (GUI text-
input component, GUI label component, and GUI button
component, etc.) together visually using BeanBox, with
three versions of FukaGraphBean. FukaGraphBean pro-
vides almost all of the necessary functions which are re-
quired as application specifications.

For all tests, we measured the number of all executed
operations, such as the operation of binding events to busi-
ness methods by means of the mouse, operation of binding
properties to other properties by means of the mouse, and
the operation of changing a properties’ values by means of
the mouse and keyboard. When a tester only selects one
of the properties or events and does not perform operation
any more, we counted such incomplete operations as 0.5.
Testers executed these operations to adapt all components
and relations among them for application specifications.

Table 6 shows the comparison of the average for all
testers of the execution time for constructing applications
and the average of operation times on BeanBox. In Table 6,
the number of operation times and the execution time of��
are seen to be smaller than those of��. This result suggests
that �� lacks somewhat understandability and adaptabil-
ity compared with �� because testers could specify neces-
sary readable/writable properties among limited properties
in �� much easier than in ��.

The tester spent more time for �� compared with that
for �� . This result originates in the fact that all of the nec-
essary properties are already specified in �� . However, the
difference in execution times is not large, and the number
of operation times of �� is smaller than that of �� . There-
fore, it is found that �� has high understandability while
keeping an appropriately adaptability to meet the applica-
tion’s specifications, based on the confidence intervals of
our metrics.

The understandability and adaptability of �� and �� ,
whose measurement values of RCO and RCC are in the
confidence intervals, are more appropriate compared with
those of ��. Such appropriate understandability and adapt-
ability lead to a high reusability of components. Since the
measurement values of �� and �� are larger than that of
�� in terms of COR, it is confirmed that COR appropriately
indicates the reusability of a component.

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

Table 6. Comparison of test results
Version Number of executed operations Execution time
�� 18.1 [times] 274 [sec]
�� 14.4 [times] 177 [sec]
�� 16.2 [times] 152 [sec]

6. Related work

There are a significant number of software metrics for
measuring a program size, related data structures and con-
trol structures. However, there are few metrics on the
reusability of a software component in a CBD context. In
the following, we compare the conventional reusability met-
rics with our metrics.

6.1. OO metrics

Some product metrics for measuring the reusability of
OO software have been proposed. These metrics focus on
the object structure which reflects the complexity of each
individual entity, such as its methods and classes, and on the
external complexity that measures the interactions among
entities, such as coupling and inheritance.

Etzkorn’s approach is to measure various static charac-
teristics for C++ classes, such as the cohesion and com-
plexity, and to add the measured values into one value that
indicates the reusability of classes[22]. However, since this
approach uses measured values that can be obtained by the
analysis of source codes, it cannot be applied to black-box
components.

C&K metrics is a suite of metrics for OO design, and
is composed of six design metrics: Weighted Methods Per
Class (WMC), Depth of Inheritance Tree (DIT), Number of
Children (NOC), Coupling Between Object Classes (CBO),
Response For a Class (RFC), and Lack of Cohesion in
Methods (LCOM)[3]. Among these six metrics, WMC,
DIT, CBO, and LCOM can be used to measure the reusabil-
ity of OO classes[23].

However, CBO and LCOM cannot be applied to black-
box components. CBO aims to measure the relations among
classes by analyzing the source codes of the classes, and
LCOM investigates the methods and fields in classes by an-
alyzing the source codes.

WMC and DIT measure the characteristics of a single
piece of a class without analyzing the source codes. There-
fore, these can be applied to the Facade classes of black-box
components. We measured WMC and DIT of all samples
described in Section 4, and verified the correlations between
measurement values and the rating scores. Definitions and
measurement results of WMC and DIT are shown below.

6.1.1 Weighted Methods per Class (WMC)

WMC is a count of the methods implemented within a
class or the sum of complexities of the methods. Since the
method complexity cannot be measured for black-box com-
ponents, we simply treat WMC as the methods count of the
component’s Facade class. The number of methods is a pre-
dictor of how much time and effort is required to develop

and maintain the class.
Figure 11 shows the histograms of measured values of

WMC. The confidence interval of WMC was [23, 50].
Among all samples, the percentage of components whose
values of WMC are in the confidence interval is 22%.

While the measurement values of our metrics are always
normalized to a number between 0 and 1, the value of WMC
cannot be normalized. The obtained confidence interval of
WMC greatly depends on what kinds of components are
used, and may change in each measurement time. More-
over, WMC does not take into consideration the type of
method (read, write, or business). Therefore, WMC cannot
be efficiently applied to black-box components.

Figure 11. Histograms for WMC

6.1.2 Depth of Inheritance Tree (DIT)

DIT is the maximum number of steps from the class node
to the root of the inheritance tree and is measured by the
number of ancestor classes. The deeper a class is within the
hierarchy, the more complex its behavior is to predict.

We measured DIT for the Facade class of the samples.
Figure 12 shows the histograms of measured values of DIT.
The confidence interval of DIT was [2, 4]. This result is
similar to empirical idioms; most C++ classes in an applica-
tion tend to be close to the root[3], while programmer-made
Java classes should not be deeper than five levels from the
root[24].

Among all samples, the percentage of components
whose values of DIT are in the confidence interval is 71%.
This means that the Facade classes of these components

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

tend to be shallower than five levels within the hierarchy,
which is the same as normal classes. Therefore, it is diffi-
cult to judge the reusability by using only the value of DIT.

Figure 12. Histograms for DIT

6.2. Component metrics

There are some metrics for measuring a component’s
reusability. Cho proposes metrics for measuring the
complexity, customizability, and reusability of software
components[25]. The metrics require the analysis of source
codes of components or the detailed analysis of compo-
nents’ specifications. Therefore, the metrics cannot be ap-
plied to black-box components which lack component spec-
ifications.

Wang proposes metrics for measuring the reusability of
JavaBeans components[11]. The metrics indicate the actual
reuse rates of the reused component in a component library
and in a software product. However, the metrics cannot be
used in a situation where sufficient time has not passed since
the target component was developed. Moreover, since the
metrics are based on the internal structure of the component,
the metrics cannot be applied to black-box components.

In contrast, our metrics can be used in two situations
where the source codes are unavailable and where the com-
ponents were newly developed.

7. Conclusion

We proposed a metrics suite composed of six metrics
for black-box components, and set confidence intervals for
these metrics using the rating scores from JARS.COM. As a
result of experimental evaluation, it is found that our metrics
can be used to measure the component’s reusability. Using
our metrics with confidence intervals, users of components
can easily select those with higher reusability. Therefore,
our approach can help and promote the activity of develop-
ment with the reuse of existing black-box components.

Our analysis tool is currently developed to accept Jav-
aBeans components only. We will extend it to accept com-
ponents based on other component architectures, such as
ActiveX.

References

[1] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1999.

[2] J. Hopkins, Component Primer, Communications of
the ACM, Vol.43, No.10, ACM, 2000, pp. 27–30.

[3] S. Chidamber and C. Kemerer, A Metrics Suite for
Object Oriented Design, IEEE Transactions on Soft-
ware Engineering, vol.20, No.6, IEEE CS, 1994, pp.
476–493.

[4] W. Frakes and C. Terry, Software Reuse: Metrics
and Models, ACM Computing Surveys, Vol.28, No.2,
ACM, 1996, pp. 415–435.

[5] M. Aoyama et al., Software Commerce Broker over
the Internet, In Proc. of 22nd Annual International
Computer Software and Applications Conference,
IEEE CS, 1998, pp. 430–435.

[6] H. Washizaki and Y. Fukazawa, Dynamic Hierarchi-
cal Undo Facility in a Fine-Grained Component Envi-
ronment, In Proc. of 40th International Conference on
Technology of Object-Oriented Languages and Sys-
tems, Australian Computer Society, 2002, pp. 191–
199.

[7] A. Denning, ActiveX Controls Inside Out, Microsoft
Press, 1997.

[8] G. Hamilton, JavaBeans Specification 1.01, Sun Mi-
crosystems, 1997.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1994.

[10] Object Management Group, OMG Unified Model-
ing Language Guide Specification Version 1.4, 1999,
http://www.uml.org/, Last visited June 6, 2003.

[11] A.J.A. Wand, Reuse Metrics and Assessment in
Component-Based Development, In Proc. of 6th
IASTED International Conference on Software Engi-
neering and Applications, IASTED, 2002, pp. 583–
588.

[12] J.A. McCall, P.K. Richards and G.F. Walters, Factors
in Software Quality, US Rome Air Development Cen-
ter Reports, Vol. I, II, III, RADC-TR-77-369, 1977.

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

[13] ISO/IEC Standard ISO-9126, Software Product
Evaluation-Quality Characteristics and Guidelines for
Their Use, 1991.

[14] G. Sindre, R. Conradi and E. Karlsson, The REBOOT
Approach to Software Reuse, Journal of Systems and
Software, Vol.30, No.3, Elsevier, 1995, pp. 201–212.

[15] BeanBox, http://java.sun.com/products/javabeans/,
Last visited June 6, 2003.

[16] FukaBeans, http://www.fuka.info.waseda.ac.jp/, Last
visited June 6, 2003.

[17] J. Han, A Comprehensive Interface Definition Frame-
work for Software Components, In Proc. of 5th Asia-
Pacific Software Engineering Conference, IEEE CS,
1998, pp. 110–117.

[18] E.L. Lehmann, Nonparametrics: Statistical Methods
Based on Ranks, Holden-Day, 1975.

[19] JARS.COM, http://www.jars.com/, Last visited June
6, 2003.

[20] H. Aman et al., A Quantitative Method of Verify-
ing Metrics Using Principal Component Analysis and
Correlation Analysis, Journal of IEICE, Vol.J85-D-I,
No.10, IEICE, 2002, pp. 1000–1002 (in Japanese).

[21] G.W. Snedecor and W.G. Cochran, Statistical Meth-
ods, Iowa State University Press, 1980.

[22] L.H. Etzkorn et al., Automated reusability quality
analysis of OO legacy software, Information and Soft-
ware Technology, Vol.43, No.5, Elsevier, 2001, pp.
295–308.

[23] L.H. Rosenberg and L.E. Hyatt, Software Quality
Metrics for Object-Oriented Environments, The Jour-
nal of Defense Software Engineering, STSC, April,
1997.

[24] N. Warren and P. Bishop, Java in Practice: Design
Styles and Idioms for Effective Java, Addison-Wesley,
1999.

[25] E. Cho, M. Kim and S. Kim, Component Metrics to
Measure Component Quality, In Proc. of 8th Asia-
Pacific Software Engineering Conference, IEEE CS,
2001.

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)

1530-1435/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

