
A Global Code Scheduling Technique Using Guarded PDG 

Akira Kosekit Hideaki Komatsd Yoshiaki F'ukazawat 

tSchool of Saence k Engineering, Waseda Univemity $Tokyo Research Laboratory, IBM Japan, Ltd. 
3-4-1 Okubo, Shinjuku-ku, 

Tokyo 169, Japan 
{koseki,fukazawa}ePfuka.info.waMdssc.jp 

Abstract 

For instruction-level pamllel machines, it is es- 
sential to extmct pamllelly executable instructions 
from a progmm by code scheduling. I n  this pa- 
per, we propose a new code scheduling technique 
using on extension of PDG. This technique p a d -  
lelizes non-numerical progmms, producing better 
machine codes than these created by percolation 
scheduling. 

1 Introduction 

Much research has been done on parallel process- 
ing at the instruction level with the aim of real- 
izing high-performance computers. At this level, 
code scheduling is very important for obtaining 
parallelized code. 

The purpose of code scheduling is to transform 
instructions so that they can be executed as fast 
as possible in accordance with the target archi- 
tecture. In the case the of instruction-level paral- 
lelism, "code scheduling" means moving instruc- 
tions and scheduling them to be executed in par- 
allel for maximum efficiency. In general, code- 
scheduling techniques can be divided into two cat- 
egories: local scheduling and global scheduling. 
A typical example of the former is List Schedul- 
ing [?I, while examples of the latter are Trace 
Scheduling [?I and Percolation Scheduling [?I. 

In this paper, we propose a new codescheduling 
technique that can parallelize large parts of non- 
numerical programs to which Trace Scheduling 
cannot be applied. It generates a more efficient 
code than Percolation Scheduling. 

1623-14 Shimots-a, Yamato-shi, 
Kanagawa 242, Japan 
komatsuQtrl.ibm.co.jp 

2 Background of this re- 
search 

In the extraction of parallelly executable instruc- 
t iov  from a program, dynamic behavior such as 
conditional branching is an obstacle to effective 
parallelkation, since the behavior of a program 
cannot be determined until it is actually executed. 

Trace Scheduling can make programs highly 
parallel by means of branch prediction. This type 
of scheduling is known to be efficient for numerical 
programs, but it involves problems when applied 
in other fields where branch prediction cannot be 
used. 

In Percolation Scheduling, instructions in a prc- 
gram are moved toward the top of the program by 
four basic transformation rules. This method can 
parallelize non-numerical programs by moving in- 
structions in both directions from the branch in- 
struction, but it involves the following three prob- 
lems: 
1. Transformations in Percolation Scheduling do 
not always shorten the execution time of a prc- 
gram. 
2. A transformation rule may produce anti-depen- 
dencies, which may interfere with other efficient 
transformations. 
3. The application of the transformation rules 
is terminated in accordance with the number of 
arithmetic logical units (ALUs) in the target ma- 
chine. As a result, an instruction occupying an 
ALU resource. that does not affect the execution 
time of the program may prevent other efficient 
transformations. 

To solve the above problems, we developed 
a new code-scheduling technique using Guarded 
Program Dependence Graph (GPDG), which is 
an extension of PDG [?I, and the Static Single 
Assignment (SSA) [?I form 

In this method, instructions in the innermost 

661 

0-7803-2018-2/95/~.00 0 1995 IEEE 

http://koseki,fukazawa}ePfuka.info.waMdssc.jp
http://komatsuQtrl.ibm.co.jp


loop of a program that is transformed into SSA 
form are expressed by GPDG, and some basic 
transformations are applied to GPDG for paral- 
lelization. In this technique, the abbve problems 
are solved as follows: 
1. The execution time of a code can always be 
estimated by interpreting GPDG, so our trans- 
formation guarantees that the execution time for 
GPDG will be shortened. 
2. Anti-dependence of variables cannot be gener- 
ated with the SSA form. Therefore, our transfor- 
mation is not terminated by antidependence. 
3. We can determine what instructions are criti- 
cal to the execution time by interpreting GPDG. 
Therefore, such instructions occupy resources be- 
fore others, and non-critical instructions occupy 
the resources after them 80 as not to prevent other 
efficient transformations. 

This paper defines GPDG and its characteris- 
tics, and shows how to transform GPDG in order 
to parallelize a program. Later, an example of 
parallelization is given, and our method is evalu- 
ated. Because of restrictions on the length of the 
paper, a description of physical code generation 
from GPDG is omitted. 

3 Definition of GPDG 

3.1 Dependencies in a program and 
GPDG 

Between instructions, there are some dependen- 
cies that indicate the order of the execution. If 
none exist, all instructions can be executed si- 
multaneously, provided the machine has enough 
ALUs. 

These dependencies have been widely used in 
research on program optimization, most notably 
by Ferrante et al. in PDG [4]. We use GPDG 
which is an extension of PDG to parallelize pro- 
grams. One of the most important characteris- 
tics of GPDG is that every control dependence is 
expressed by a "guard", which indicates whether 
an instruction can be executed or not. Control 
dependence is described as the relation between 
the producer of a guard and its consumer. It is 
thus similar to data dependence. Therefore we can 
treat data  dependence and control dependence in 
a single graph in the same way. These benefits are 
described in detail in Section 4.1. 

3.2 Constitution of GPDG 
GPDG is a graph' whose nodes are instructions of 
a program and whose edges indicate dependence. 
Each node includes the murce and destination of 
data produced by the corresponding instruction 
and its guard. 

The types of these edges are classified as follows: 
1. Data dependence 

When a certain instruction A produces a set 
of data and another instruction B uses them, B 
cannot be executed until the data have been pro- 
duced. This kind of relation is called data depen- 
dence. 

2 + r3 poaKclon ol rl unl wrrumplla d I2.n 

poblstbn ol d mdcorrumpUa d rl 

podusth M r l  md eonumpUa d I2.d 

r' := f 
r4 := f' * 
,.5 := r4 . fl 

Fig. 1: Data dependence 

2. Control dependence 
In Von Neumann architecture machines, the ex- 

ecution of a program is controlled by changing 
the internal state of the machine. After a branch, 
instructions cannot be executed until the change 
of the state is complete. This kind of relation 
is called control dependence. We show this de- 
pendence as the relation between a producer of a 
guard and its consumer. In Fig. 2, the braced part 
of each node represents a guard. An instruction 
with (cc) is executed when the conditional regis- 
ter cc is true. An instruction with the guard !cc 
is also executed when cc is false. 

\ 
(tee) r2 := 1 

Fig. 2: Control dependence 

3. Resource dependence 
A relation between instructions that are not 

executed at  the same time because of restricted 
resources is called resource dependence. Anti- 
dependence and output dependence are classified 
as belonging to this category. 
4. Other types of dependence 

There are some other cases in which a certain 
pair of instructions cannot be executed simulta- 

662 



4 Characteristics of GPDG 
r1:j2 w d e p e n h m  

r3 := r l  + 2 

r l  := r5 - 1 
I ) r. .oum~p.ndenerofnglater 

Fig. 3: Resource dependence 

neously. For example, a branch instruction must 
not fire before previous instructions. 

By using these dependences and some nodes, 
we can express any instruction in the innermost 
loop of a program as a graph. The execution of 
instructions satisfying the partial order of GPDG 
is equivalent to the execution of the original pro- 
gram. An example of GPDG is shown in Fig. e a .  

3.3 Introducing the SSA form into 
GPDG 

In this algorithm, the SSA form for removing anti- 
dependence is introduced. SSA transformation, 
which means modifying the original code to con- 
vert it into SSA form, is performed as follows: 
1. Change a program into a representation where 
there is only one assignment for each variable. 
Variables are given new names ( for example, a 
variable x is renamed xl,x2,.. ). 
2. To maintain the meanings of the original code, 
@ functions [5] are inserted at certain points called 
dominance frontiers to distinguish incoming con- 
trol flows. 

Figure 4 b  shows a GPDG transformed into 
SSA form. In this graph, all anti-dependence is 
eliminated and several 0 functions are inserted at 
necessary points. 

4.1 The longest path of GPDG and 
its optimization 

In List Scheduling (with the critical path method) 
[I], a data flow graph of each basic block is gen- 

erated and the longest path in each graph is used 
for scheduling. 
In our method, a control dependence is ex- 

pressed as a relation between the producer of a 
guard and its consumer. Therefore, we can treat 
control dependences in the same way as data de- 
pendences. In GPDG, the instructions in the in- 
nermost loop, including branches, are expressed as 
a single graph. Therefore, we can regard GPDG 
as a "global data flow graph," and can obtain very 
efficient code by using a code generation method 
in which the number of execution cycles in the 
longest path remains constant. 

We use the longest path of GPDG for optimiza- 
tion, but it is necessary to extend the notion of 
such apath in GPDG, to take account of branches. 
For example, when the longest path of GPDG in- 
cludes a node with a guard that is executed when 
a conditional register is true, and the value of the 
conditional register is normally false, scheduling 
the instructions on the basis of this longest path 
makes no sense. Therefore, it is necessary to si- 
multaneously use the longest paths of the sub- 
graphs produced by the division of GPDG accord- 
ing to branches and the probability of branches. 

GPDG, including branches, is divided into sub- 
graphs corresponding to various combinations of 
branches. Each subgraph has its own longest path 
and probability. The probabilities of branches can 
be obtained from the execution profile of a p r e  
gram. If this is not provided, the probability of a 
branch is assumed to be 50%. The probability of 
a branch for exiting a loop is treated as 100%. 

4.2 Relation between GPDG and 
the execution time of a program 

In our method, the estimated execution time of a 
program is used to transform GPDG. Instead of 
the actual execution time, we use the number of 
machine cycles needed for the execution of prw 
grams. To estimate the number of cycles, we use 
the longest paths of the subgraphs produced by 
the division of GPDG according to combinations 
of branches and their probabilities. 

We estimate the number of cycles as follows: 

663 



Estimated value = Ccombination 01 brancher p X 

where P is the probability when the combination is 
taken and S is the number of cycles in the longest 
path of the subgraph corresponding to the combi- 
nation. 

For example, in Fig. 4 b ,  we assume the condi- 
tion b<tmp2 for c1 and its negation for !cl. Each 
combination is represented as an ordered n-tuple 
C~({cl,!cl),{c2,!c2}, ...). The probability of the 
occurrence of C is denoted by P(C), the longest 
path of the subgraph corresponding to C is de- 
noted by L(C) (it is expressed as a sequence of 
nodes), and the number of cycles needed for the 
path is denoted by S(L(C)). The estimation of the 
execution time of the graph Est(G) is represented 

s, 

as 
P(c1) xs(L(cl))+P(!cl)xs(L(!cl)). 
The value of P is calculated by using an execu- 

tion profile if one exists. If not, P is set in the way 
described in the previous section. L is calculated 
by tracing the graph. 

After P and L have been calculated, Ekt(G) is 
obtained by calculating S(L). Since a sequence of 
nodes shows the order of instructions in a critical 
path, S(L) can be calculated when the number 
of cycles each instruction takes is known. How- 
ever, a load instruction and a branch instruction 
may take various numbers of cycles, according to 
the architecture. We use some special nodes cor- 
responding to  the delay of an instruction and a 
jump according to  the target architecture, and in- 
sert them into GPDG to absorb these difference, 
as shown in Fig. 5. In this figure, we assume that 
the delay of a load instruction is two machine cy- 
cles, that the delay when a branch instruction is 
taken is one cycle, and that if the branch is not 
taken, the next instruction is executed without a 
break. The direction of a branch instruction is 
determined by its probability, and new nodes are 
inserted to prolong the path that has lower prob  
ability. If the probability is biased, new nodes are 
inserted to prolong the path that includes nodes 
having high probability. 

In a graph containing such nodes, S(L) is equiv- 
alent to the length of the path. 

Fig. 5:  Insertion of delay nodes 

shortening the longest path of each subgraph cor- 
responding to a combination of branches through 
graph transformations. 

. Speculative moving 

. Node splitting 

applied step by step to each longest path. 

Our transformation rules consist of 

To optimize a program, each transformation is 

5.1.1 Speculative move transformation 

Some instructions can be speculatively executed 
before the conditional value of a branch has been 
determined. In this way, we can shorten the 
longest paths. This transformation involves elim- 
inating the edge of control dependence in GPDG. 
Figure 6 shows an example in which instruction 
2 is speculatively moved by elimination of the 
edge. On the assumption that the longest path 
includes a sequence of nodes 1-2-4-5, it is trans- 
formed into a sequence 1-4-5 through this trans- 
formation. Consequently, it can be expected that 
the number of cycles for the execution of the code 
will be shortened by about (the probability that 
r7 == 2) x (the decrease in the length of the path). 

5 Transformation of GPDG 
Fig. 6: Speculative move transformation 

5.1 Shortening the execution time 
In this subsection, we describe a actual method 
of shortening the execution time of instructions 
by transforming GPDG. Essentially, it consists of 

The targets of this transformation are limited to 
instructions that do not change the meanings of a 
program even if branch prediction fails. Recently, 

664 



architectures have been proposed that guarantee 
the invariance of program semantics if branch pre- 
diction fails [6, 71, so our system obtains what 
instructions can be executed speculatively from 
the specification of a target architecture, and in- 
structions that cannot be executed speculatively, 
are marked in order to inhibit transformation (in 
Fig. 8, such instructions are marked S). 

5.1.2 Node split transformation 

Node split transformation produces new instruc- 
tions to be moved speculatively. In some cases, 
the path is shortened by this transformation. 

Node split transformation involves duplicating 
a node dominated by a @ function. Figure 7 
shows an example in which the instruction that as- 
signs [ register 4 ] - 5 to register 5 is split. In split- 
ting, we prepare new available registers 6 and 7, 
and change the destination register of the copied 
instructions to the new registers. The function 
is then adjusted to set the final result to register 
5. 

Fig. 7: Node split transformation 

5.2 How to apply transformations 
The algorithm for applying transformations is as 
follows: 

1 Choose a path 

1.1 

1.2 

1.3 

1.4 

Choose the path whose probability is 
highest and which is not yet marked with 
a termination mark. If more than one 
such path exists, choose all of them. 
If more than one path is chosen, choose 
the longest path. If more than one 
longest path exists, choose all of them. 
If more than one path is chosen, chose 
the path that has speculatively movable 
nodes. If more that one path such nodes, 
choose all of them. 
If more than one path is chosen, chose a 
path at random. 

1.5 If no path is chosen, terminate this algo- 
rithm. 

2 Choose a transformation to apply 

2.1 If the path has speculatively movable 
nodes, apply speculative move transfor- 
mation and eliminate redundancy in the 
expressions. If it is recognized that ap- 
plication of the transformation will have 
no effect, nothing will be performed. 
This recognition rule is described in Sec- 
tion 5.3. 

2.2 If the path has no speculatively mov- 
able nodes, apply node split transforma- 
tion. If the length of the path is short- 
ened after this transformation, go to step . 
3. Otherwise, apply speculative move 
transformation to the split node. If it 
is recognized that application of specu- 
lative move transformation will have no 
effect, split transformation itself will not 
be performed. 

2.3 If no transformation is to be applied, 
mark the path with a termination mark. 

3 Recalculate the length of the path and go to 
step 1. 

5.3 Restriction on node splitting 
If node splitting is applied without any restric- 
tion; the number of instructions will increase ex- 
ponentially. To avoid this, we use the following 
heuristics. 

We assume that all nodes in each longest path 
provisionally occupy ALU resources. As a result 
of the continued application of transformations, 
the longest path is shortened and its nodes come 
to have more than one child. If the application of 
transformations is continued still further, it will 
have no effect, since the number of nodes in the 
longest path will exceed the number of ALUs in 
the target architecture. Therefore, a transforma- 
tion can be inhibited by watching the growth of 
the path to determine whether the transformation 
takes effect or not. 

5.4 An example of the shortening of 
paths 

An example of the shortening of paths in a graph 
is shown in Fig. 4b .  Here, a branch condition 
(bctmp2) is denoted by cl ,  and the probability 

665 



that it is true is assumed to be 60%. Figure 8 is 
a graph containing load delay nodes, jump nodes, 
and jump delay nodes according to the architeo 
ture described in Section 4.2. Juinp &odes and 
jump delay nodes are inserted to prolong the path 
that is executed when cl is false, since the proba- 
bility that c l  is true is assumed to be high. 

b3) 

\15 bnp := b4'12 

16 a := tmp3+c 

& 
Fig. 8: Insertion of nodes 

We assume that variable a is valid only after ex- 
ecution of the program expressed by this GPDG. 

In Fig. 8, 
P(cl)=0.6, P(!cl)=0.4, 
L(cl)=start-l-4-6-7-&9-11-1415-16-end, 
and 
L( !cl) =s tar t- 1-4-6-7-8- 10- 12-13- 14 15-16-end, 
so 
S(L(cl))=ll, S(L(!cl))=12. 
Therefore, the estimated number of execution cy- 
cles Est(G) is 11.4 in the initial state. 

Transformations of the graph are now per- 
formed according to the algorithm described 
above. At first, the path L(c1) is chosen to 
be transformed, since its probability is the high- 
est. In this path, node 11 is speculatively mov- 
able, so speculative move transformation is a p  
plied (Fig. Sa), as follows: 
1. The edge from the instruction that produces a 
guard is eliminated along with the guard of target 
node. 
2. A new edge (between nodes 11 and 9) is gen- 

erated 80 that the moved instruction can be exe- 
cuted before the branch. 
3. An additional edge (the edge between nodes 9 
and. 14) is generated to maintain the form of the 
graph. 
4. Redundancies in the expressions are ehmj- 
nated. 

After this transformation, L(c1) is transformed 
into L(cl)=start-l-46-7-8-9-14-15-16-end. 

U 

Fig. 9: Application of speculative move transfor- 
mation 

Next, L(c1) is again chosen for transformation. 
We can apply node split transformation to it. 

Node 15 is split and the graph is transformed 
as follows (Figs. 10-a and 10-b): 
1. The target node is copied over the 0 func- 
tion, and the source register of the copied node is 
changed. The, destination register of the @ func- 
tion is changed to guarantee single assignment 
rules. 
2. The copied node is marked to inhibit specu- 
lative moving if the instruction corresponding to 
the node is not speculatively movable in the target 
architecture. 
3. The transformation is terminated if the length 
of L is shortened (without a speculative move). 
4. Redundancies in the expressions are eliminated 
(Figs. 10-b and 10-c). The transformation is ter- 
minated if the length of L is also shortened. 
5. If the copied instruction is not speculatively 
movable, this transformation is terminated and 
GPDG is returned to the state it was in before 
copying began. If the copied instruction is specu- 
latively movable, a speculative move is performed 
and this transformation is terminated (Figs. 10- 
c and 10-d). If a speculative move is recognized 
as having no effect on the heuristics described in 
Section 5.3, this transformation is terminated and 
GPDG is returned to the state.it was in before 
copying began. 
As a result,'L(cl) is transformed into 

666 



1 a 

Fig. 10: Application of node splitting and specu- 
lative move transformations 

7-8 
start-l-46< 11-15, >9-14-16-end, 
and L(!cl) is transformed into 
start- 1-46-7-8-15”- 12- 13- 14- 16-end; 
thus Est(G) becomes 9.8. 

L(c1) does not have any nodes that can be 
moved speculatively or split (splitting of node 16 
is not performed because it has no effect), and 
therefore the target for the application of trans- 
formations is changed to L(!cl). Some transfor- 
mations are applied, and the final result is shown 
in Fig. 11. 

Fig. 11: The final result after application of some 
transformations 

7-8 
L(cl)=starbl46< 11-15’ >9-16-14-end, 
~(!~l)=start-1-4-6-7-&12-13-14end, 
and Est(G) becomes 9. 

6 Discussion 
0.1 Properties of our transforma- 

In our method, as in Percolation Scheduling, a 
program is parallelbed by the application of some 
transformation rulea. This section describes the 
difference between Percolation Scheduling and our 
method. 

The logically minimum execution time of a pro- 
gram depends on the relationships of the producer 
and consumer chains in the program. In the pro- 
gram, however, there are other dependences, such 
as control and resource dependences, which ex- 
tend the execution time of the chain. For exam- 
ple, in the control flow graph in Fig. 12, the log- 
ically minimum execution time of the program is 
the time for execution of the path a-c-d-g if both 
branches to the left are taken. In this case, we 
can realize the minimum execution time if a-c-d- 
g is scheduled without any break. In Percolation 
Scheduling, there is no way to schedule this path 
without a break. Furthermore, only changes in 
the length of each critical path in the basic blocks 
are considered. Therefore, there is no index of the 
reduction in the total execution time. 

In comparison with Percolation Scheduling, our 
method always shortens the longest paths, which 
affect the execution time. This means that apply- 
ing our transformation always reduces the total 
execution time. 

tions 

Fig. 1 2  Data dependence in a control flow graph 
Consequently, each longest path is transformed 

into 

667 



6.2 Effects of using the execution 
profile 

the number of instructions in basic blocks is com- 
paratively large and they can easily be optimized 
by other mStho9. It is reported [SI that the num- 
ber of btrudions in basic blocks b small b non- we  can find the lonical minimum execution time ’ 
numerical programs, and therefore the use of an 
effective optimizing method for such program is 
very important. 

for Fig. 12 in TrLScheduling if all the biases of 
the directions of branches are given in advance. 

Like Percolation Scheduling, our method can 
parallelize both directions of branches, and there- 
fore it can optimize programs that have few biases 
of branches. Additionally, if a profile is available 
and the probability of each branch is known. the 
paths that have higher probability (corresponding 
to the trace in ‘Race Scheduling) are optimized 
before others. Therefore, if a profile is available 
and all biases of branch directions are known, we 
can get the same effect aa with Trace Scheduling. 
If not, we can still get better codes than with Per- 
colation Scheduling. 

7 Evaluation 
Table 1 shows the speedups of the codes of 
Stanford Benchmark program optimized by our 
method. The innermost loops of the programs 
are unrolled several times and each recursive call 
is translated into simple loops. As a target for 
evaluation, we chose a VLIW architecture that 
has some hardware support for speculative moves 
like TORCH [7], and we evaluated our method on 
some machines with various numbers of parallel 
ALUs. 

All the values in the table are speeds relative 
to those when the original programs are executed 
on a scalar processor. For example, in Permute, 
the optimized program is executed 1.6 times faster 
than the original code on VLIW with two paral- 
lel ALUs, and it is executed 2.3 times faster on 
VLIW with six parallel ALUs. The data in the 
column of 00 means that the scheduling is per- 
formed with enough ALUs for the program. On 
this architecture, a 2.3 times speedup is achieved. 

Table 1 also shows that for most programs the 
effect of our method is saturated in more than 
6 parallel ALUs. This means that the program 
do not have very large inherent parallelism, and 
therefore their longest paths cannot be further 
shortend. Thus, near six parallel ALUs, the fac- 
tor determining the execution speed is changed 
from the number of instructions and parallel units 
to the length of the longest path. On the other 
hand, in Fft and Extab, the longest path is so 
short in comparison with the number of instruc- 
tions that its execution speed is raised along with 
the number of parallel ALUs. In those programs, 

Table 2 shows the ratio of the number of instruc- 
tions to which graph transformations are applied 
to the total number of instructions in VLIW with 
eight parallel ALUs. Application of graph trans- 
formations is terminated when the longest path of 
a graph cannot be shortened any more, or when 
each applicable transformation is judged to have 
no effect because the longest path has many nodes 
at the same level. A node once moved specula- 
tively will never be transformed, and a split node 
will be speculatively moved after it has been split 
a finite number of times. The number of nodes to 
which graph ttansformations are applied is repre- 

, and its maximum value sented as Nn + 
is Nn + Nn * 2% 2:ere, the number of nodes 
is denoted by Nn, the number of 0 functions by 
Nf, and the number of node splits for a node i 
by Nsi. As explained in Section 5.3, node split- 
ting is performed with some restrictions, and the 
number of splits has an upper bound determined 
by the constant number of parallel ALUs and the 
longest path of the original code. As the real value 
of E,. 2”l is expressed by the linear term of Nn, 
the order of the total number of transformed nodes 
is Nn. In Table 2, our system is terminated when 
transformations are applied for 74% of all the in- 
structions at  most and for 26% on average; this 
shows that our system can be terminated after a 
reasonable number of transformations. 

668 



References 
[l] A.V. Aho and J.D. Ullman, ”Principles of 

Compiler Design,” Addison- Wesley 1977. 
(21 J.R. Ellis, UBulldog: A Compiler for VLIW 

Architectures,” MIT Press 1985 
[3] A. Aiken, and A. Nicolau, “A Develop 

ment Environment for Horizontal Microcode,” 
IEEE lhnsactions on Software Engineering, 
Vol. 14, No. 5, pp. 584-594 1988 

[4] J. Ferrante, K.J. Ottenatein, and J.D. Warren, 
“The Program Dependence Graph and Its Use 
in Optimization,” ACM Iltansactions on Pro- 
gramming Languages and Systems, Vol. 9, No. 
3, pp. 319-349 1987 

[5] R. Cytron, J. Femante, B.K. Rosen,M.N. 
Wegman, and F.K. Zadeck, “An Mficient 
Method of Computing Static Single Assign- 
ment Form,” Conference Record of the Six- 
teenth ACM Symposium on the Principles of 
Progmmming Languages, pp. 25-35 1989 

[6] K. Ebcioglu, “Some Design Ideas for a VLIW 
Architecture for Sequential Natured Soft- 
ware,” Parallel Processing (Proceedings of 
IFIP WG 10.3 Working Conference on Par- 
allel Processing), North Holland 1988 

[7] M.D. Smith, M.S. Lam, and M.A. Horowitz, 
, “Boosting Beyond Static Scheduring in a Su- 

perscalar Processor,” Proceedings of the 17th 
Annual Intemational Symposium on Com- 
puter Amhitecture, pp. 344354 1987 

[8] A. Nicolau, and J.A. Fisher, “Measuring the 
Parallelism Available for Very Long Instruc- 
tion Word Architectures,” IEEE lhnsacttons 
on Computers, Vol. C33, No. 11, pp. 968-976 
1984 

[9] M. Girkar and C.D.Polychronopoulos, “Au- 
tomatic Extraction of Functional Parallelism 
from Ordinary Programs,” IEEE lhnsactions 
on Pamllel and Distributed Systems, Vol. 3, 
No. 2, pp. 166178 1992 

[10]’R. Gupta and M. Soffa, “Region Scheduling: 
An Approach for Detecting and Redistributing 
Parallelism,” IEEE ltnnsactions on Software 
Engineering, Vol. 16, No. 4, pp. 421-431 1990 

[ll] A. Nicolau and S. Novack, ’Trailblazing: A 
Hierarchical Approach to  Percolation Schedul- 
ing,” Proceedings of Intemational Conference 
on Pamllel Pmessing, Vol. 2, pp. 120-124 
1993 

Table 2: ratio of instructions applied transforma- 
tions 

29 I 74 
Average I - I - I 26 

8 Related work 

For optimization of programs, representation 
methods that use a graph representing depen- 
dence of a program are described by Ferrante et 
al. [4] and Girkar et al. [9]. Our GPDG can 
express control dependence such as data depen- 
dence, taking account of the control dependence 
on the relation between the producer of a guard 
and its consumer. Therefore, we can easily imple- 
ment the algorithm described in Sections 5.2 and 
5.4. Other approaches using PDG for optimiza- 
tion have been proposed, such as Region Schedul- 
ing [lo]. This method can be applied for coarse 
grain parallel architectures, but it has same prob- 
lems in code movement as Percolation scheduling. 

A new approach to Percolation Scheduling, 
named Trailbrazing (111 has also been proposed. 
This method can solve problem 3 in Section 2, but 
does not have an index for applying code-moving 
rules, and therefore cannot guarantee the effec- 
tiveness if each code movement. 

9 Conclusion and future 
tasks 

This paper has introduced a codescheduling tech- 
nique using GPDG ,and has described the algo- 
rithm, its characteristics, and other details. Two 
important future tasks will be to develop a tech- 
nique for connecting the innermost loop and its 
outside code, and for combining the scheduling 
method with the register allocator. 

669 


