
A Register Allocation Technique Using Register Existence Graph 

A. Koseki H. Komastu Y. Fukazawa 

School of Science k Engineering Tokyo Research Laboratory 
Waseda University IBM Japan, Ltd. Waseda University 

3-4-1 Okubo, Shinjuku-ku 1623-14 Shimotsuruma, Yamato-shi 3-4-1 Okubo, Shinjuku-ku 
Tokyo 169, Japan Kanagawa 242, Japan Tokyo 169, Japan 

School of Science & Engineering 

koseki@fuka.info.waseda.ac.jp komatsu@trl.ibm.co.jp fukazawa@fuka.info. waseda.ac.jp 

Abstract 
Optamzztng compalataon as very amportant f o r  gen- 

eratang code sequentes an order to  utalaze the charac- 
terastacs of processor archatectures. One of the most 
essentaal optzmazataon technaques 1s regaster allocataon. 
In regaster allocataon that takes account of anstructaon- 
level parallelasm, anta-dependences generated when the 
same regaster as allocated to dafferent varaables, and 
spall code generated when the number of regasters as 
ansuflczent should be handled an such a way that the 
parallelasm an a program as not lost. In  our method, 
we realazed regaster allocatzon usang a new data struc- 
ture called the regzster exzstence graph, an whzch the 
parallelasm zn a program as well expressed. 

1 Introduction 
The number of registers in a processor is limited; 

therefore, variables and pseudo-registers in the inter- 
mediate code used by a compiler (symbolic registers) 
should be mapped to a restricted number of registers. 
This mapping is called register allocation [I, 2 ,  3,  4, 51. 
In a register allocator, the most important considera- 
tion is how symbolic registers are used and how many 
of them are live at the same time. Symbolic registers 
live at the same time cannot be mapped to the same 
registers; therefore, if the number of such symbolic 
registers exceeds the number of registers, some code 
changes are needed to decrease their number. 

The mapping process has hitherto been performed 
by algorithms using a register interference graph [I, 21 
that expresses the overlap of the lifespans of symbolic 
registers. It can map symbolic registers and decrease 
their number by spilling them out and in. In this 
process, anti-dependence, which arises when symbolic 
registers are mapped, and spill code are generated. 

Register allocation using a register interference 
graph gives better code for scalar processors. However, 
register interference graphs cannot express parallelism 
among instructions [B]; therefore, it is difficult to  han- 
dle the generation of spill code and anti-dependence 
without losing the parallelism. 

This paper describes a new register allocation tech- 
nique using a register existence graph that can express 
the interference among symbolic registers and the par- 

h= ... 
p= ... 

i 
tz=s>> 1 
t3=load[A+h] 
t5=fZ+t3 
t6=t5-1 
tl=load[Xl 
s=t&tl 
t&h+l 
Il=t4>>p 

hO= ... 

s l=phi(sO,sZ) 
h l=phi(hO,hZ) 

t2=s I>> 1 
t3=load[A+h 11 
tS=tZ+t3 
t6=t5-1 
t 1 =load[X] 
sz=t6-t1 
t4=h2+ I 
hZ=t4>>pO 

Figure I: Source Program and SSA Transformation 

allelism among instructions in a program simultane- 
ously. 

2 Background 
Generally, registers are allocated by coloring a reg- 

ister interference graph with the number of the reg- 
isters. Register interference graphs are produced by 
scanning instructions in a program and by adding 
edges between nodes that indicate symbolic registers 
live at the same time. 

Fig. 1 shows an example of the construction of a 
register interference graph. 

Fig. la)  shows the source program, and Fig. lb )  
shows the target program after applying SSA (Static 
Single Assignment) transformation [7]. We assume the 
use of the hierarchical register allocation proposed by 
Callahan and Koblenz [3] ,  so the target code should 
comprise the instructions in the innermost loop. 

Then, we obtain a register interference graph by 

404 
0190-3918/97 $10.00 0 1997 IEEE 

mailto:koseki@fuka.info.waseda.ac.jp
mailto:komatsu@trl.ibm.co.jp
http://waseda.ac.jp


Figure 2: Register Interference Graph 

hl:r l  pl:Rsl:r3 

r3=#>> I 
r4=load[A+rl] 
r3=r3+r4 
r4=r3-1 
#=load[X] 
#=r4-# 
r4=r1+1 
rl=r4,>R 

Figure 3: Possible Register Allocation 

scanning the code. Fig. 2 shows the register interfer- 
ence graph. 

Fig. 3 shows the result of a possible register allo- 
cation, assuming that four registers are available. 

Coloring a register interference graph produces a 
maapping of physical registers to symbolic registers. 
It works in order to obtain the lowest number *of sym- 
bolic registers that should be spilled. On scalar pro- 
cessors, decreasing the ammount of spill code improves 
the performance of computing. Therefore, register al- 
location by coloring is very effective for producing bet- 
ter code for scalar processors, and has contributed to  
speedups of the execution of programs. However, tak- 
ing account of instruction-level parallel processors, it 
cannot fully utilize the parallelism in a processor. We 
can demonstrate these three problems in conventional 
register allocators using a register interference graph. 
1. Loss of Parallelism Due to Generation of 
Ant i-dependence 

Fig. 4a) shows a data dependence DAG of the tar- 
get code in Fig lb) .  Fig. 4b) shows a DAG after the 
allocation of registers as shown in Fig. 3 and the ad- 
dition of edges expressing anti-dependence. Assuming 
the delay of load instructions to be 2 cycles and the 
delay of the others to  be 1 cycle, the code shown in 
Fig. 4a) can be executed in 5 cycles on an instruction- 
level parallel processor that has sufficient ALUs. How- 
ever, the code after register allocation in Fig. 4b) 
needs 2 more cycles, because of the generation of anti- 
dependence. The generation of anti-dependence is in- 

r3=r3>> 1 r&Ioad[A+rlJ 

hZ=t4>>p 

tl=/oad[Xj t?=sl>>l t3=load[A+hlj 

t5=t?+w \“( / 
r3doad[XJ ---- -----Er / 

r3=r4-r3 --- r4=rI+l 

rl=r4>>R - 
How dependence 

Exlt 

b) 

............... * 
ant/ dependence 

a) 

Figure 4: Loss of Parallelism 

Figure 5: Utilizing Spill Code 

evitable, but it is important to consider ways of gener- 
ating anti-dependence without losing the parallelism 
in a program. 
2. No Consideration of Spill Code That Gives 
Higher Parallelism 

Fig. 5 shows the result of allocating 3 registers and 
scheduling instructions to  obtain the minimum execu- 
tion time. Fig. 5a) shows that 8 cycles are needed and 
that 1 symbolic register is spilled out. However, the 
code shown in Fig. 5b) has 2 symbolic registers that 
are spilled and the necessary execution time is 7 cy- 
cles. This is because spill code can be simultaneously 
executed with other instructions. This example indi- 
cates that there are some cases in which optimizations 
that take account of parallel execution of spill code 
and other instructions are needed when a program is 
executed on an instruction-level parallel processor. 
3. No Consideration of Reference Differences 
of Symbolic Registers in Different Contexts 

If the same symbolic register is referred to in several 
different places, these references have different impor- 
tance. For example, “hl” in Fig. 4 is referred to  by 
t3=load[X+hl] and t4=hl+ 1. Conventional register 
allocators do not take account of the difference be- 
tween the reference to  h l  in t3=load[X+hl] and the 
reference in t4=hl+l .  However, Fig. 4 obviously 
shows that the reference to h l  in t3=load[X+hl] is 
more important than that in t4=hl+l ,  because the ex- 
ecution of t3=load[X+hl] is more critical to the total 
execution time of the program. Therefore, a register 

405 



Figure 6: DAG Figure 7: Transitive Closure 

should be preferentially allocated to  the part of the 
lifespan of h l  from the beginning to the time when 
t3=load[X+hl] is executed. This kind of allocation 
gives the following technique for obtaining better code: 

1. Allocate a register to  h l .  

2. Spill out h l  after executing t3=load[X+hl] 

3 .  Spill in h l  before executing t4=h1+1. 

3 Recent Approaches 
To solve the problem of generating anti-dependence 

several approaches have been suggested. 
The methods of Pinter [8] and Norris and Pollock 

[9] consider the parallelism in a program in such a 
way that not only the interferences between symbolic 
registers obtained by scanning code lexically but also 
possible interferences that may appear when instruc- 
tions are reordered by the code scheduler are used. 

This is performed as follows. First, make a DAG 
from a source code (Fig. 6). 

Next, make the transitive closure of the graph, and 
eliminate the edge directions (Fig. 7). 

In this graph, there is no flow-dependence between 
nodes not connected by edges. Therefore, allocating 
the same register to symbolic registers represented 
by these nodes may cause the generation of anti- 
dependence that results in the loss of parallelism in 
a program. 

Finally, add edges between the nodes in a regis- 
ter interference graph that are not connected by edges 
in the non-directed transitive closure of a DAG (Fig. 
8). Pinter called this graph a parallelized register in- 
terference graph [a]. A similar graph is obtained by 
the method of Norris and Pollock. Register allocation 
based on this kind of graph allows code schedulers to  
extract the parallelism in a program despite the gen- 
eration of anti-dependence. 

Theoretically, register allocators that use paral- 
lelized register interference graph coloring give a bet- 
ter code if a very large number of registers are avail- 
able. However, a parallelized register intekference 

Figure 8: Interference Graph Considering Parallelism 

graph contains too many edges, and therefore pro- 
duces unnecessary spill code and impairs the code if 
the number of registers is not very large. 

Pinter, and also Norris and Pollock, attempted to  
avoid this problem by removing edges from a paral- 
lelized register interference graph. However, remov- 
ing edges after adding them makes allocation more 
complicated and results in futile processes. Moreover, 
removing processes does not ensure the retention of 
parallelism in the graph. The method of Norris and 
Pollock can possibly maintain the parallelism, but how 
it does so was not mentioned. 

4 Our Approach 
This section describes a new approach to regis- 

ter allocation that is very different from existing ap- 
proaches based on register interference graph coloring. 
We introduce a data structure for register allocation in 
which the parallelism in a program and data flows over 
symbolic registers can be well described. The data 
structure is called a Register Existence Graph. 

Section 4.1 describes the method of constructing a 

406 



Figure 9: Weighed Data Dependence DAG 

register existence graph. Section 4.2 explains how the 
interference among symbolic registers is expressed in 
a register existence graph. Then, section 4.3 presents 
a register allocation model using a register existence 
graph. After a description of the method of handling 
spill code in section 4.4, the specifications of the reg- 
ister allocation algorithm are given in section 4.5. 

4.1 
This section describes the construction of a regis- 

ter existence graph. First, a data dependence DAG 
is made from source code in which nodes express in- 
structions and edges express data dependence. Then, 
each edge is weighted according to the delay needed 
to execute the instructions that the nodes connected 
by the edge represent. Fig. 9 shows a DAG of Fig. 
lb) .  For example, there is a delay of 2 cycles between 
instruction t3=load[A+hl] and instruction t5=t2+t3, 
so the weight of the edge is 2. 

In this DAG, the distance between nodes is defined 
as the largest total weight of nodes in the path. The 
path that has the largest distance is called the critical 
path. When the code expressed by a DAG is executed 
on processors that have a sufficient number of ALUs, 
it needs at least as many cycles as the critical path, 
so the execution time of a program should be deter- 
mined by the length of the critical path [lo]. Using 
this length as an index for optimizing elements such 
as register allocator and code scheduler is obviously 

Making a Register Existence Graph 

effective. \ 
Next, make a register existence graph from the ob-\ 

tained DAG. Except in some cases, in register exis- 
tence graphs, nodes represent symbolic registers and 
edges represent the use of data in symbolic registers. 
For example, if data in a symbolic register b are de- 
fined by data in a symbolic register a, add an edge 
from a to b. Each node in a register existence graph is 
weighted by the delay needed to generate data in the 
symbolic register that the node represents. 

The method for obtaining a register existence graph 
from a DAG is as follows: 

Put Entry and Exit as the source and the sink of 
the register existence graph, respectively. 

0 Analyze symbolic registers that are live in the en- 
trance of the code, put nodes that represent the 

Figure 
Graph 

lnntluctlon I a I b op E I a = b (op immediate) 1 a I Immediate 

x Nodes 

Dummy + 
10: Making Nodes in a Register Existence 

symbolic registers, and then put edges from Entry 
to  the nodes. 

0 Analyze symbolic registers that are live in the exit 
of the code, put nodes that represent the symbolic 
registers, and then put edges from the nodes to  
Exit. 

For each instruction in the DAG, apply the trans- 
formation shown in Fig. 10. 

Fig. 11 shows a register existence graph made by 

How a Register Existence Graph Ex- 
presses Interference among Symbolic 
Registers 

Consider the register existence graph in Fig. 12, in 
which two thick lines are drawn. 

These lines divide the graph into two planes: one 
includes Entry and the other includes Exit. A line of 
this kind indicates the following: 

these processes. 
4.2 

e A result of code scheduling exists in which the 
symbolic registers represented by nodes crossed 
by the line are live at  the same time. 

Fig. 12b) shows the result of code scheduling. Sym- 
bolic registers t2, h l  and p0 are crossed by line1 and 
are simultaneously live between cycles n and n+1. 
In addition, symbolic registers t l ,  t5, t4 and p0 are 
crossed by line2 and are simultaneously live between 
cycles n+3 and n+4. 

We call these lines con-time lines in the sense that 
the line indicates the time at which the symbolic reg- 
isters in the nodes that the line crosses are live simul- 
taneously. The existence of the possibility of drawing 

407 



Enirv Entrv 

Exit 

Figure 11: Register Existence Graph 

E n t n  

.................................................. 
t2=s1>>7 cycle n 

iI=load[X] il;;load[A+hl] cycle nt i  .................................................. 
t4=h I +  I cycle n+2 .................................................. 
t5riz+t3 cycle n+3 

16-15-1 h2-t4+pO cycle nc4 .................................................. 
r2=tB-t7 cy& n+.5 .................................................. 

bJ 

Exlt 

aJ 

Figure 12: Cutting a Register Existence Graph 

such a line means that there exists a possible interfer- 
ence among the symbolic registers in the nodes that 
the line crosses, so does a result of code scheduling 
that produces such interference. 
4.3 Register Allocation and 

Code Scheduling in a Register Exis- 
tence Graph 

As mentioned in the previous section, the drawing 
of a con-time line is related to  the interference among 
symbolic registers and the results of code scheduling. 
Therefore, drawing con-time lines as follows on a reg- 
ister existence graph somewhat restricts the allocation 
of registers and scheduling of instructions. 

0 Con-time lines never cross each other 

0 For each node, one or more con-time lines repre- 
senting weights equivalent to or greater than that 
of the node are drawn horizontally. 

Exit 

Figure 13: Leveling a Register Existence Graph 

We call this process leveling. Leveling fixes the 
overlaps of the lifespans of symbolic registers for the 
entire code, in other words, it determines which sym- 
bolic registers interfere with each other at the same 
time. Thus, leveling means performing a part of the 
register allocation and a part of the code scheduling. 

Fig. 13 shows an example of leveling. 
Here, the number put on each line indicates the 

number of symbolic registers the line crosses. This in- 
dicates the number of symbolic registers that are live 
simultaneously. Therefore, we call the number “the 
degree of interference of symbolic registers.” Level- 
ing determines the degrees of interference of symbolic 
registers for each con-time line. The maximum de- 
gree means the smallest number of physical registers 
the code needs after leveling without spilling. In this 
example, 4 registers can be mapped to the symbolic 
registers without spilling. 
4.4 Handling Spill Code in a Register Ex- 

istence Graph 
This section describes the method of spilling out 

and in symbolic registers on a register existence graph. 
The symbolic registers are spilled out and in by insert- 
ing nodes that express spilled symbolic registers into 
the register existence graph. These nodes are called 
spill nodes, and do not produce an increase in the de- 
gree of interference among symbolic registers, even if 
a con-time line goes through the nodes. 

Spill nodes are inserted as shown in Fig. 14. 
Fig. 14 a) shows an example in which a temporal 

register used in an intermediate code is spilled out and 
in. The lifespan of the temporal register is within the 
code expressed by the register existence graph, so the 
register is not live at  either the top or the bottom of 

408 



Entry 

spill ‘ P Exit 

b) 

1 

Figure 14: Inserting Spill Nodes 

the code. In this case, after duplication of the node 
that expresses the symbolic register being spilled, a 
spill node is inserted between the duplicated nodes. 
Thus, the degree of interference is decreased by mak- 
ing the con-time lines that used to go through the 
temporal register go through the spill node. 

Figs. 14 b) and c) are examples in which a vari- 
able (transformed into SSA form) is spilled out and 
in. Its lifespan is not within the code expressed by a 
register existence graph, so it is live at  both the top 
and bottom of the code. Here, we have two cases of 
inserting a spill node. One is a case in which data in 
the variable that are live over the iteration, i.e., live at 
both the top and bottom of the code, are spilled. The 
other is a case in which other data in the variable are 
spilled. For a variable “V” transformed as V1, V2 ..., 
Vn, the datum defined first is V1 and that defined last 
is Vn, and edges are put from Entry to  V1, and from 
Vn to Exit. In this case, V1 and Vn are live over the 
iteration. V1 and Vn are spilled out and in as shown 
in Fig. 14 b). Others are spilled out and in as shown 
in Fig. 14 c). 

4.5 
All nodes inserted are weighted as in Fig. 14. 

Required Specifications of the Regis- 
ter Allocation Algorithm 

The specification of register allocation with leveling 
a register existence graph is as follows: 

0 Leveling and the insertion of spill nodes are per- 
formed to ensure that every node is crossed by as 
many or more lines than its weighted value, and 
to ensure that the degree of interference on ev- 
ery con-time line does not exceed the number of 
available registers. 

An algorithm that satisfies this specification will be 
described in Section 5. 
4.6 Information for Leveling Derived 

from a Register Existence Graph 
Number of con-time lines 

Entrv 

Figure 15: Slackness of Nodes 

We have shown that the distance of the critical path 
of a DAG can be considered as the execution time of 
a program, and its utilization as an index of optimiza- 
tion techniques using DAG is effective. 

Since a register existence graph is a type of transfor- 
mation of a DAG, it includes some information that 
corresponds to the distance of the critical path of a 
DAG. In a register existence graph, this information 
is the number of con-time lines that satisfy the re- 
striction mentioned in Section 4.3. Therefore, since 
this number can be considerd as the execution time 
of a program, an algorithm using a register existence 
graph should work in such a way that it does not in- 
crease this number. 
Slackness of a node 

The slackness of a node is defined as the maximum 
weight that can be added to  the node without an in- 
crease in the number of con-time lines. Taking Fig. 
15 as an example, the addition of one weight to node 
s l ,  whose weight is 1, does not increase the number 
of con-time lines. Therefore, the slackness of the node 
is 1. Fig. 15 shows the slackness of each node in 
Fig. 11. This information is useful for minimizing 
the increase in the number of con-time lines, which 
is achieved by allocating hardware resources preferen- 
tially to less slack nodes and spilling symbolic registers 
expressed by slacker nodes. 

5 An Example of an Algorithm 
This section presents an algorithm for leveling a 

register existence graph. The algorithm works at the 
order of n2, where n is the number of nodes. 

Nodes = choose-successors(Entry); 
Level = 1; 

while(Nodes != € E x i t ) ) €  
if(the degree of interference exceeds 

the number of registers)( 

409 



6 Evaluation 
This section compares our appFoach using a register 

existence graph, an ordinary register allocation using 
a register interference graph, and a register allocation 
using the parallelized interference graph described in 
section 3. We selected some programs from the Stan- 
ford Benchmark for evaluation, and the lengths of 
their critical paths after register allocation using each 
method and code scheduling are listed in Tables 1 and 
2. Our target machine is a VLIW that can execute 
fixed-point instructions in 1 cycle, and floating-point 
and load/store instructions in 2 cycles. 

Table 1 shows a comparison of critical path lengths 
when the register pressure is high (8 registers avail- 
able). Table 2 shows a comparison of critical path 
lengths when the register pressure is low (32 registers 
available). 

If the register pressure is high, our method gives 
better results than the other two methods. Conse- 
quently, it performs 2.01 times better on average than 
the method using a parallelized interference graph, 
and 2.17 times better on average than the method us- 
ing an interference graph. Table 1 shows that the ratio 
of performance improvement with the method using 
a parallelized interference graph is higher when the 
number of available ALUs is larger. This is because 
that method increases the edges of the interference 
among symbolic registers so much that it is difficult 
to  determine which edges should be deleted. Table 
1 also shows that the ratio of performance improve- 
ment with the method using an interference graph is 
higher when the number of available ALUs is smaller. 
This is because that method increases the number of 
instructions by inserting spill code to  decrease the in- 
terference among symbolic registers. 

If the register pressure is low, our method gives 
almost the same result as that using an interference 
graph because, spill code is rarely generated. As a re- 
sult, it performs 1.28 times better on average than the 
method using a parallelized interference graph, and 
1.02 times better on average than the method using an 
interference graph. The method using a parallelized 
interference graph gives the worst results, because of 
an increase in the number of edges of the interference. 
In the method using a parallelized interference graph, 
it is imporntant to  improve the method of deleting the 
added edges if the register pressure is not very high. 

In our method, the interference among symbolic 
registers changes during leveling. This method of han- 
dling the interference, using a register existence graph, 
allows us to consider the parallelism among instruc- 
tions and to  handle the interference according to the 
number of registers available. 

Entry 

Exit 

Figure 16: Result of Leveling 

Nodes = sort-nodes-by-slackness(N0des); 
ChosenNodes = choose-as-many-nodes-as- 

the-number-of-registers- 
from-the-top(Nodes); 

f inished[Level++] = ChosenNodes; 
spill nodes except ChosenNodes 

ChosenNodes = Nodes; 
)else€ 

3 
Remains = Null; 
foreach(Node in ChosenNodes)C 
Node.weight--; 
if(Node.weight > 0) 
Remains = Remains + Node: 

I- 
Nodes = Null; 
foreach(Node in ChosenNodes)C 
Nodes = choose-successors(Node) 
if (exists Successorl and Successor2 

in Nodes such that 
Successor1 is the successor 
o f  Successor2))€ 

Nodes = Nodes + Node; 
Nodes = Nodes - Successorl; 

3 
3 
Nodes = Nodes + Remains; 

1 

The result of leveling the code is shown in Fig. 16. 

7 Conclusions 
We have introduced a register existence graph that 

can express the interference among symbolic registers 
and the parallelism among instructions in a program. 
We have also shown that leveling a register existence 
graph realizes the generation of anti-dependence and 
spill code taking account of the parallelism in a pro- 
gram, which existing methods rarely do. We are now 

410 



Our  method 
I I &  U .  , - .  

Numbero fALUsI  1 1 2 1 4 1 8 1 0 0 1  1 1 2  1 4  1 8  1 0 0  1 1  1 2  1 4  1 8  1 0 0  
Bubble I 39 I 22 I 14 I 11 I 11 I 53 I 37 I 37 I 37 I 37 I 59 I 32 I 19 I 18 I 18 

Method using Met,hod using 
a Darallelized interference eraoh an  interference eraDh 

Remove [ 81 I 46 I 44 1 44 1 44 I 99 I 83 I 83 1 83 I 83 I 243 1 106 I 104 I 104 I 104 
Try I 109 I 62 I 44 I 42 I 41 I 163 I 137 I 137 I 137 I 137 I 290 I 86 I 85 I 79 1 79 

Table 2: Comparison When Register Pressure Is Low (32 Registers Available) 

considering the ways of improving the leveling algo- 
rithm and allowing cooperation between a spill code 
generator and a code scheduler. 

References 
G.J.Chaitin, M.A.Auslander, A.K.Chandra, 
J.Cocke, M.E.Hopplins and P.W.Markstein, 
“Register Allocation via Coloring,” Computer 
Languages 6 (1981)’ pp.47-57. 

G.J.Chaitin, “Register Allocation & Spilling via 
Graph Coloring,” Proceedings of the ACM SIG- 
PLAN ’82 Symposium on Compiler Construction 
(Jun. 1982)’ pp.98-105. 

D.Callahan and B.Koblenz, “Register Allocation 
via Hierarchical Graph Coloring,” Proceedings of 
the ACM SIGPLAN ’91 Conference on Program- 
ming Language Design and Implementation (Jun. 

A.Koseki, H.Komatsu and Y.Fukazawa “A Regis- 
ter Allocation Technique Using Guarded PDG,” 
Proceedings of the International Conference on 
Supercomputing (May 1996), pp.270-277. 

J.R.Goodman and W.C.Hsu, “Code Schedul- 
ing and Register Allocation in Large Basic 

1991), pp.192-203. 

Blocks,” International Conference on Supercom- 
puting (Jul. 1988), pp.442-452. 

J.R.Ellis, “Bulldog: A Compiler for VLIW Archi- 
t e c t u r e ~ , ~ ~  The MIT Press (1985). 

R.Cytron, J .Ferrante, B .K .Rosen, M .N.Wegman 
and F.K.Zadeck, “An Efficient Method of Com- 
puting Static Single Assignment Form,” Confer- 
ence Record of the Sixteenth ACM Symposium on 
the Principles of Programming Languages (Jan. 
1989), pp.25-35. 

S.S.Pinter, “Register Allocation with Instruc- 
tion Scheduling: A New Approach,” Proceedings 
of the ACM SIGPLAN ’93 Conference on Pro- 
gramming Languages Design and Implementation 

C.Norris and L.L.Pollock, “A Scheduler-Sensitive 
Global Register Allocation,” Proceedings of the 
ACM SIGPLAN ’93 Conference on Supercomput- 
ing (1993)’ pp.804-813. 

E.B. Fernandez and B. Bussel, “Bounds on 
the Number of Processors and Time for Multi- 
processor Optimal Schedules,” IEEE Trans. 
Computers, VoLC22, No.8, pp.745-751 (1973). 

(1993), pp.248-257. 

411 


