
An attempt to increase sofk ware quality
by detecting irregular styles

Masayoshi Sakakura Yoshiaki Fukazawa

The Centre for Informatics
Waseda University
Tokyo 169, Japan

Abstract

A static progmm analyzer has been designed and
developed. Even though it is natural that large-scale
software is developed by a number of groups under
standard guidelines, it i s often convenient that each
group have group-oriented guidelines in addition t o
the standard guidelines. This is because the standard
guidelines do not reflect factors unique io each group.
Our tool regards coding styles as a set of static proper-
ties of a progmm. With this tool, the user can define
such static properties to be detected, called irregular
styles. This paper describes the definition of an irreg-
ular style, a detection strategy, and evaluation of its
n?SUHs.

1 Introduction

A number of methodologies have been propaed
to increase reliability of large-scale software. Among
them, it is plausible to adopt standard guidelines in
each step of the software development process[l,2].
Use of some tools has been attempted to support
software development activities under standard guide-
lines. Nevertheless, according to our experience with
large-scale software development , it is necessary to
have grouporiented guidelines, that is, rules unique to
each group in addition to the standard guidelines[3].
This is because standard guidelines do not reflect fac-
tors unique to each group, such as the aim of the sys-
tem, development environments, knowledge and skill
of staff and so on. This means that even though a pro-
gram structure is considered to be normal in a project,
the same structure may be considered to be anormal
in other project. Following cases are these practical
examples.

0-8186-4240-8/93 $03.00 0 1993 IEEE

Dept. of Information & Computer Science
Waseda University
Tokyo 169, Japan

- For each programming language, some standards
are proposed by standardization organization like ISO,
ANSI and so on. But almmt all commercial language
processors have more facilities than these standards.
For the purpose of implementation of highly portable
software, these extended facilities, which do not con-
tained in every standards, must not be used.

- In case that future extensions are expected, a re-
dundant representation may be permitted. For exam-
ple, following segment is usually redundant.

switch := 1; if switch = 1 then prog-a;
But if the variable switch is assured to have many

kinds of values by a future extension, above segment
is suitable.

- Programs are used as a communication media for
various kinds of project members. Therefore their
know-hows and skills must be considered. For ex-
ample, in software development by an organization
which contains many beginners, too complicated soft-
ware structure should be avoided.

Therefore, it is desired that we have an automatic
tool that is adaptable to the rules of each group. We
have designed and developed a static program ana-
lyzer. In this tool, a user can easily define static prop-
erties of program to be detected. A set of defined
static properties reflect the target of the attained soft-
ware properties. The tool is intended to detect viola-
tions automatically in the coding stage of the software
development process.

2 Concept of the tool

With this tool, we regard the coding style at a cod-
ing stage as a static attribute of a program, and call
the static attribute to be detected an irregular style of

273

the program. The user can define irregular styles by
describing their static properties. The tool analyzes
a target program statically, detects positions corre-
sponding to the models and reports them.

To describe an irregular style, it is essential for the
tool to have the following features:

- User can describe irregular styles as naturally as
possible.

- Behavior of values of variables and mutual rela-
tionships among them can be described.

In order to realize these features, the tool is de-
signed using the following strategies:

- The description of a model is divided into a struc-
ture description and a condition description.

- A symbolic execution facility is adopted to inves-
tigate relationships of variables[4].

An irregular style recognized by the tool is an at-
tribute detectable at the syntactic level. Therefore, it
does not recognize the following rules:

- A rule not detectable on a parsing tree, such as a
suitable comment or a program indentation.

- A rule not recognizable by the source program,
for example, whether or not the name of a variable
represents its intrinsic meaning faithfully.

These are explained in the following section. We
have selected Pascal as our prototype language be-
cause it facilitates description of the syntax of a model
and can be used conveniently for the description of a
model of an irregular style.

3 Definition of an irregular style

An irregular style is defined in two ways: a condi-
tion satisfied by a portion of a program and its relative
positioning in a program control structure. They are
called the condition description and structure descrip-
tion, respectively. Fig.1 shows the structure of the
irregular style.

maded oi an irregular rtyle:

F I ntroi-nmiei pari

title descrlptbn -Et:-
hiersrchy-model part cture description

condftbn description ----.--condltkn part

Fig.1 The structure of an irregular style

The title description consists of a title part and a
message part. The name of an irregular style is speci-

fied in the title part. The message in the message part
is issued when an irregular style is detected.

A structure description is specified when an irregu-
lar style has a relationship to the control structure or
when relative positions, in which conditions are satis-
fied, muc G be specified. The structure of a program can
be speciried by a hierarchy module structure, and/or
by three basic control structures: sequence, branch
and iteration. These structures are specified in the hi-
erarchymodel part and in the controlmodel part, re-
spectively. The specification of the structure is based
on graphical representation because it is easy to un-
derstand.

In the hierarchy-model part, a node represents a
procedure or a function (the generalized term “mod-
ule” is utsed hereafter) while an arc represents its rela-
tionship. Node numbers, distinction codes of a mod-
ule, and Arcs to lower modules are specified in the
hierarchy-model.

In the controlmodel part, a node represents a con-
trol structure such as a branch, a specific position such
as an entry or an exit of a program, or a portion of
a program in which conditions are satisfied. If there
exists a control flow from one portion of a program
to another, the existence of a path between them is
assumed. An arc represents such a path.

In the condition description part, a condition is
specified which must be satisfied at each node in the
structurt: description part or must be satisfied inde-
pendently of the structure description. A predicate
expression is used to represent the condition because
it is easy to understand. The predicate used in this
part is called a model predicade, and the variable used
as its argument is a model variable. The behavior of
a model variable is similar to that of a variable in
Prolog. A condition is described by model predicates.
Model predicates are categorized into two types: one
expresses behavior such as “substitution” or “refer-
ence” , and the other represents static attributes of ar-
guments such as “type”. The condition is satisfied if
the model predicate matches the specific pattern of a
parsing tree or if the value of a variable in the predi-
cate satisfies a logical relationship in the program. Al-
though general model predicates are prepared in the
tool, the user can add new model predicates if neces
sary.

3.1 Examples of irregular styles

Examples of irregular styles are shQwn in Figs.2-4.
Fig.2 shows the model of an irregular style in which
there exists a variable reassigned after an assignment
which is not referenced thereafter. In this model, it

274

is not necessary to describe the hierarchymodel part
since the model is independent of hierarchical rela-
tionships of modules. The specification in the con-
t r o h o d e l part indicates that there are two arbitrary
nodes in a program and a path between them. These
nodes are node 1 and node 2. The condition part in-
dicates that the same variable is assigned at node 1
and node 2, and that the variable is not referenced
between these nodes. The model predicate ”assign”
is satisfied in an assignment statement, and returns a
variable as its first argument and an expression as its
second argument. The predicate ”varref’ is satisfied
for a variable reference, and a variable is returned as
its argument. ”#a” is a model variable, while ”#-” is
an anonymous variable as in Prolog.

title : reassign-without-reference
message : ’reassign some value to a variable before

hierarchymodel :
referencing it’

(
1

controlmodel :
(1 : free

2 : free
1

condition :
((, 1 : assign(#a,#,)) and

(, 1-2 : noexist varref(#a)) and
(3 2 : assign(#a,#-))

1
Fig.2 A model description of the irregular style
” reassigewithout -reference”

Fig.3 shows an irregular style in which a value is
assigned to a global variable in a module. The hier-
archymodel part indicates that the type of module is
arbitrary. Since a condition must be satisfied within
the same module, there is no description for a lower
hierarchy. “Mstart” and ”mend” in the controhodel
part are the entry and exit of the module, respectively.
The model predicate ”varao” is satided for each vari-
able, and returns the variable number. The variable
number is a serial number assigned to each variable
in a program. ”Var-def’ and ”fpara-def” are model
predicates which are satisfied in a variable definition
and in an argument definition, respectively, and return
variable numbers as their second arguments. The con-
dition description indicates that a value is assigned to
either an undeclared variable or a variable not in an
argument, in the module.

title : assign-global-variable
message : ’assign to global variable in submodule’

275

hierarcbymodel :
(1 : (free)
1

controlmodel :
(1 : mstart

2 : free
3 : mend

1
condition :

((1 , 2 : assign(#a,#-) and
var-no(#a,#no)) and

(1 , 1-3 : noexist (var-def(#-,#no,#-) or I

fpara-def(#-,#no,#-,#-))
1

Fig.3 A model description of the irregular style
” assign-global-variable”

Fig.4 shows an irregular style in which two expres-
sions ham the same value for any input value. The
predicate ”relation” is a model predicate and it is de-
termined as a result of symbolic execution. The predi-
cate has an expression which contains model variables
as an argument, and is satisfied if the expression sat-
isfies a specified relationship. Moreover, the model
predicate is qualified by the quantifier ”forany-input”
which restricts two expressions to same value for any
input value.

title : same-condition
message : ’inappropriate branch structure’
hierarchyaodel :

(
1

controlmodel :
(1 : branch()

2 : branch()

1
condition :

((, 1 : br-cond(#a)) and
(, 2 : br-cond(#b)) and
(, - : relation(#a = #b) foranyinput)

1

Fig.4 A model description of the irregular style
same-condition”

4 Detection of an irregular style target program if necessary and determines its success
or failure of the predicate “relation”.

br-cond(1)
extent(target) :

An outline of the detection mechanism of the tool
is described. First, for each node in the controlmodel
part, the portion of a program which satides a con- ;c et-1

A L & U q

l(1) : exp
2 : free
3 : free

dition is searched and evaluated to see if it satisfies a
positional relationship with other nodes. Next, a con-
dition which is independently specified to a node in the
controlmodel part or a condition as to whether or not \

it satisfies a structure in a hierarchymodel is evalu-
ated. Fig.5 shows the general flow of the tool. The
following is an explanation of execution of a model
predicate, symbolic execution and the result of execu-
tion.

I

w
Fig.5 Outline of the tool

4.1 Execution of a model predicate

Fig.6 shows an example that indicates a correspon-
dence between a model predicate and the specific pat-
tern of a parsing tree in which the model predicate
is satisfied. The result of the parsing is represented
in tree format, in which each syntactic element is its
node. A model predicate corresponds to the pattern
of a parsing tree by describing what syntactic element
has a child node. In Fig.G(a), the model predicate
” br-cond” always holds in ”if statement”, ”while state-
ment” or ”repeat statement”, and returns an expres
sion to the first argument of the model predicate. In
Fig.G(b), part of the model predicate ”var” holds if a
unique variable is used in the expression. In Fig.G(c),
the model predicate ”varref” is satisfied for each vari-
able contained in an expression, and returns the vari-
able to the first argument.

The argument of the model predicate ”relation” in
Fig.4 is an expression in which the model variable is
contained. The tool performs symbolic execution for a

)
br-cond(1)
extent(target) :

whilesta(
l(1) : exp
2 : free

1
br-cond(1)
extent(target) :

repeatsta(
1 : free
2 : free
3(1) : exp

1
(a) Deibition of the model predicate ”br-cond”

var (2)
extent(target) :

exP {
1 : simp-exp1 {

1 : term {
1 : factor1 {

l(2) : free
1
2 : =o
3 : free

1
2 : =o
3 : free

1
2 : =o
3 : free
4 : free

1
(b) Definition of the model predicate
”var” (part)

varref(1)
extent(target) :

exp
include(1) : var

1
(c) Definition of the model predicate ”varref”

276

Fig.6 Examples of descriptions of model pred-
icates message : ‘Inepproprlete branch smctum’

4.2 Symbolic execution

Symbolic execution is performed to investigate the
behaviour of a variable and its mutual relationships.
Capabilities of the symbolic executor are as follows :

- executes all paths in branching
- executes zero times or one time for an unpre-

- in an array variable, sets the value of the array to
dictable number of iterations

“undefined” if the subscript value is indefinite.

4.3 Results of execution

hno cno pnth locatlonlngr

free- cnl [SI 3-3 at P,6,3,1,3,7,2,3,1,21

free- cn2 [I 13-13 at [3,7,2,3,4,21

model varlaMe

#a : [exp,[slmp-expl ,[terms[factor3,[exp,[slmp~expl,

[te~nn,[factorl ,[var,4,0,[I 1 I#,[1 LO,[1 1,l I

[rel-oprmall],[rlmp-expl ,[term,[factor2,

[num~r,OI IPS[1 1,OJ 1 I 1 IPJ 1]SO,[1 18,[I,[1 1
#b : [expdslmp-expl ,[tenn,[factor3,[exp,[sl mp-expl ,

[term,[factorl ,[var,l,O,[I 1 IPS[1 I,O,[I 1,1 I

[rel-op,smail],[slmp_expl ,[term,[factor2,

[number,OI IPS1 1 IPJ I I I IPS[1],Os[1],a[1 9 1 1 1

Fig.8 shows the result of execution in which the
irregular style shown in Fig.4 is detected from the tar-
get program shown in Fig.7. Fig.9 shows the corre-
spondence between the target program and its control
structure graph. The current version of the tool pro-
duces the node number of the control structure graph
which corresponds to nodes in the structure descrip
tion. A model variable is also produced as part of the
parsing tree. It may be possible to produce a source
program directly if a control structure graph includes
source information.

program test(input);
var a,b,c : real;

begin
procedure sub(x,y : real);

if (x < 0) then y := x
else y := -x

end;
begin

a := 1;
b := 2;
if (a > b) then sub(a,c) else sub(b,c);
if (a < 0) then c := -c;
c := c*2

end.
Fig.7 Example of target program

Fig.8 Result of execution

h P r o g n m

v Q

Fig.9 Correspondence between a program and

its control structure graph

5 Evaluation

usability
total

5.2 Ease of creating a model description

6
5
4
4
4
4
3
2
0

1 1 1 4 1 3 9

Our method has been evaluated from the view-
points of feasibility, ease of creating and readability
of model description.

#2
7

5.1 Feasibility of model description

ty : of rule which is imDossible to describe
#'I#' corn.

.87 0

Table 1 shows the feasibility of the description of
the rules under general coding styles[5]. Among these
rules, some rules for a specific function, for example,
error handling or initial setting of peripheral devices
such as a printer, cannot be specified. It is difficult to
describe these functions using our current method. As
there is a research to describe these specific functions
on a syntactic level[6], it may be possible to increase
describability if such an attempt is successful. Re-
garding rules for comments, which are independent of
content, it is possible to describe if rules are modified
to reflect positions of comments in parsing trees.

fun.
1
0
2
0
3
2
6
1
2
3
20

In order to show that built-in model predicates are
sufficient, model predicate utilization is listed in Ta-
ble 2. Table 2 shows the types of model predicates
used to describe the rules in Table 1 as models of ir-
regular styles. Since a user-defined model predicate
is not referenced more often than these three irreg-
ular styles, the current built-in model predicates are
sufficient.

mean. others
0
0 redundancy
0
3
0
1 interface rule
0 output format
2 redundancy
2 module
2 output format
10

object of rule
reliability
simplicity

completeness
inconsistency

portability
validity of structure

ease of testing
understandability

servicesability

#1
8
9
8
9
10
12
15
21
16
6

Next, a user-level tester attempted to define a spec-
ified irregular style so as to ensure ease of creating a
description. As the result of the experiment, the fol-
lowing was made clear:

- It is possible to associate the semantics of an ir-
regular style with a model of the irregular style.

- Although there is almost no problem with creating
a structure description, it is necessary to have a ba-
sic knowledge of syntax analysis to create a condition
description.

Regarding to the latter, we show an example in
Fig.10. Fig.lO(a) shows that after a variable is as-
signed a value, another variable is assigned the value
of the first variable. In this case, it is necessary to
describe these statuses as in Fig.lO(b). In compari-
son, the tester attempted to define model predicates
as in Fig.lO(c). In a parsing tree, the right-hand side
of an assignment statement is treated as an expression
even if it consists of only a single variable. Therefore,
although an expression is returned as the second argu-
ment of the model predicate "assign", it is often mis-
taken that a variable should be returned to it. The
model predicate "var" takes an expression, a simple
expression, a term or a factor as its first argument
and, if it is a simple variable, it returns the variable as
its second argument. Current efforts to exclude these
mistakes involve illustrating these examples, empha-
sizing the difference between an expression and a vari-
able, and training the tester.

Table 1 Possible model descriptions

.67

.63

.44

.40

.33

.27

.14

.13

. 00

.34

1
1
1
1
1
2
11
5
0
23

not.
0
0
0
1
0
3
0
3
4
0
11

#1 : number of rules
#2 : number of rules which are impossible to describe
com. : a rule for existence and content of a comment
not. : a rule for notation such as indentation

fun. : a rule for a specific function such as error handling or initial setting
mean. : a rule for meaning of a variable

no. of model predicates of irregular styles used 0 1-2 more than 2
no. of model predicates of irregular styles predicted 47 7 14

total 47 15 14
no. of model predicates of irregular styles added 8 0

Table 2 Types of model predicates used
total
68
8
76

nodel : x := y+z;
node2 : U := x;

(a) Part of a program

nodel : assign(#a,#-)
node2 : assign(#-,#b) and var(#b,#a)

nodel : assign(#a,#-)
node2 : assign(#-,#.)

(b) Correct description of a model predicate

(c) Incorrect description of a model predicate
Fig.10 Example of mistakes in condition
description

5.3 Readability of a model description

The degree of correct understanding of an irregular
style is estimated to be about 90 percent from irregu-
lar style models. This is currently sufficient for a de-
scription on the syntactic level even when we do not
attempt to understand the specification and the mean-
ing of the target program. Therefore general users will
find it easy to generate descriptions.

6 Conclusion

The tool automatically detects a violation of rules.
Its other applications are considered to be as follows:

- A debugger representing debugging knowledge ac-
cumulated in a project.

- Usage checker for special syntactic elements for
portability.

- Finder of missing functions or checker of expected
errors when a problem is fixed, if used in program ed-
ucation[‘l] .

279

Finally, the following extensions are expected:
- Obtain an extraction method of an abstract func-

- Include learning facilities which reflect results of

If these functions are incorporated, we will obtain

tion of target program.

previous program analyses.

a tool which is more powerful and easier to use.

References

Y.Mizuno and M.Azuma, ”Standardization of
computer software”, Nihon Keizai Shinbunsha,
1977, in Japanese.

”SDEM : Software Development Engineer’s
Methodology”, FACOM Journal, Vol. 3, No. 12,
pp. 2531, 1977.

KShirai and M.Azuma, ”Administration System
Standard Manual”, Nikkan Kogyo Shinbunsha,
1977, in Japanese.

T.Tamai and Khkunaga , ”Symbolic execution
system”, Information Processing, Vol. 23, No. 1,
pp. 18-28, 1982, in Japanese.

LMiyamoto, *Software engineering” , TBS publish-
ing, 1982, in Japanese.

R.L.Sedlmeyer, ” Knowledge-based Fault Localiza-
tion in Debugging”, Proc. of Software Engineering
Symposium on High-Level Debugging, pp. 2531,
1983.

W .L . Johnson, ” PR0UST:KnowledgeBased P r e
gram Understanding”, IEEE T h i s . on Soft. Eng.,
Vol. SE11, No.3, pp. 267-275, 1985.

