
An Adaptive User Navigation Mechanism and its Evaluation

Jeongwon Baeg Atsushi Hirahara Yoshiaki Fukazawa
Dept. of Electrical Engineering Dept. of Software Engineering Dept. of Information & Computer Science

Waseda University Software Engineering Division, Canon Inc. Waseda University
3-4-1 Okubo, Shinjuku-ku, 890-12 Kashimada, Saiwai-ku, 3-4-1 Okubo, Shinjuku-ku,

Tokyo 169, Japan Kawasaki 211, Japan Tokyo 169, Japan
baeg@fuka.info.waseda.ac.jp hirahara@ccc.canon .co .jp fukazawa@cfi.waseda.ac .jp

Abstract

Recently, there have been many on-line help systems
that provide usage, explanations for applications. How-
ever, it is dificult to find out necessary information in
help contents and to understand how to obtain com-
plete information. A navigation mechanism which can
provide a user with essential information and guide
the user so that he can achieve intended actions is
indispensable In this paper, we propose an adaptive
navigation system which does not display navigation
information on decisions that a user has already made.
by reflecting the current state of an application. In
this research, in order to describe the structure of an
application, Petri nets which are suitable for modeling
event-driven systems are used. The application system
is constructed based on these Petri nets. By communi-
cating between the application system and its naviga-
tion system through these Petri nets, user navigation
system reflecting the execution state of the application
can be realized.

1 Introduction

At present, there are many on-line help systems
that provide usage explanations for applications, some
of which are based on hypertext. On-line help systems
have the following advantages over paper manuals:

e They can be referenced easily during execution of

e Inquired information can be retrieved quickly.
application software.

On the other hand, recent on-line help systems also
have some problems, such as:

e Both desired and undesired information are in-
cluded in the explanation when a user requests
help on an action.

e It is difficult to obtain the procedure of inquiry for
finding complete information on how to use the
application in order to carry out intended tasks.

At this point, we tried to review contents of several
kinds of on-line help systems, and as a result we found
out they could be subdivided as follows:

e a summary on an inquired function with its
method of designation,

e explanations on optional functions with their
methods of designation,

e designation of pre-conditions for executing a func-
tion in an application.

In this paper, we focus on the third contents in the
above. Here, several terms are defined: “Navigation”
refers to leading a user so that he can carry out his
intended actions rapidly and correctly by referring
to pre-conditions to be executed before an action is
taken. This is different from the common meaning of
navigation which is designation of actions to follow.
Explanation for its navigation is called “navigation
message.” “Navigation system” means the system of
displaying these navigation messages.

In this paper, we propose a mechanism for navi-
gation system which can present suitable navigation
messages with a user to solve the above problems.
Specially we assumed that a user has enough informa-
tion on the decisions that have already been made for
the application. By this assumption, the application’s
current state can be understood to reflect user’s un-
derstanding at that time. We built a model of user’s
understanding based on this assumption. Based on
this model, our navigation system can produce navi-
gation messages without unnecessary and redundant
contents when a user requests. By considering the
application’s current state, this system can support
adaptive navigation both in the case where users dif-
fer and in the case where the individual user’s tasks,

29
0-8186-6960-8/94 $04.00 0 1994 IEEE

mailto:baeg@fuka.info.waseda.ac.jp

needs, and knowledge change. Adaptive user naviga-
tion can make complex systems more usable, present
the user with what he needs and wants to see, as well
as speed up and simplify interactions.

Our main target is to realize an adaptive naviga-
tion system for event-driven systems. In this paper,
as a typical example of event-driven systems, GUI-
based application system is used For developers of
GUI-based applications, methods to support the de-
velopment of GUI applications are required as it is
very difficult to develop complex GUI applications.

A GUI-oriented model is useful to effectively an-
alyze, design and implement complex GUI applica-
tions. State-transition models [l], Petri net models [2],
Message Sequence Chart(MSC) models [3], etc., have
been proposed to model various aspects of GUI ap-
plications. Among these models, Petri nets have the
following superior characteristics:

a describability of event-based asynchronous dialog,

representability of behavioral features of a sys-

0 simulation capability.

tem,

We have adopted the Petri net model for GUI-based
application development in consideration of the above
characteristics. In order to describe the components of
GUI applications, some extended representations have
been added.

Our supporting approach to the application de-
velopment is different from other GUI builder tools
such as Visual Basic and Sun Xview tool. They can
not aim to support analysis and design activities at
the development of application software, but rather
to mainly support implementation activity. However,
our method can support the whole process in the ap-
plication software development including analysis, de-
sign and implementation process.

Our system is constructed with the procedure as
follows: To start with, Petri nets to represent an appli-
cation with GUI are described. Next, from these Petri
nets, program fragments which notify the navigation
system of the state transition from an application sys-
tem are automatically generated. Finally, the whole
application programs are completed by adding the de-
veloper’s hand coding. The navigation system can
produce navigation messages according to the mark-
ing of these Petri nets in which application’s states are
reflected by being notified of their transitions.

This paper focuses on the navigation system can
support adaptive navigation mechanism based on
GUI-based applications, rather development support.

2 Main Features

2.1 Adaptive Navigation Messages

When a user requests navigation on an action, in-
formation on which the user already knew can be
regarded as unnecessary and redundant explanation.
Our navigation system can present explanation to fit
the application’s current state and to be excluded re-
dundancy with the user.

For example, let us assume that for the playback
function of a sound application system, “file selection’’
and “pressing a button” are necessary pre-conditions
in order for “play’’ function to be executed. When a
user inquires navigation about Iplay” function after
only carrying out “file selection,” our navigation sys-
tem adaptively presents only the navigation message
about “pressing a button” with the user. In this sit-
uation, navigation message on “file selection” is con-
sidered to be redundant

2.2 Approach of Reflecting Application
States

In order to realize our adaptive navigation system,
it is necessary that application’s current states is al-
ways notified of the navigation system. By this noti-
fication, navigation system can vary navigation mes-
sages based on the application’s current state.

For this purpose, at the implementation time, a
mechanism to detect state transitions of an application
is incorporated in the application program. Naviga-
tion system has Petri nets whose markings reflect the
application’s state a t all times. Whenever the state
transition of the application is occurred, the markings
of Petri nets in the navigation system is altered and
according to those markings navigation messages are
generated.

2.3 Support of GUI Application Repre-
sentat ion

Several Petri net representations to properly de-
scribe GUI applications are specially introduced in
this paper. Generally many kinds of windows, menus,
and buttons are used in GUI applications, and a suit-
able model is needed to describe those dialog compo-
nents in the development process. Using our extended
representations of Petri nets, some characteristics and
constraints which GUI components have can be de-
scribed easily. For example, after executing a function,
i.e. being selected a menu or a button, its results may

30

have multiple branches. Our extended representation
can be described for that case.

2.4 Support of GUI Application Develop-
ment

The whole process in application software develop-
ment by using Petri net modeling can be supported
by our method.

At the analysis time, the structure of an application
including its states and functions is represented with
Petri nets for describing end-user’s requirements. The
dynamic behaviors of an application based on these
Petri nets can be simulated to clarify any relevant
problems in the analysis phase.

Iterative refinement of already defined Petri nets is
carried on at the design time. The results of the design
are verified through continuing simulation.

Based on Petri nets obtained from the design pro-
cess, the skeleton of program is automatically gener-
ated at the implementation time. In addition to this
generated program, the application functions are writ-
ten and the whole application program is completed.
Automatic generation of program fragments of an ap-
plication from Petri nets contributes to enhancement
of program productivity and a decrease in its develop
ment costs.

3 System Structure with Petri Net
Modeling

3.1 Petri Net Notation

Components of Petri nets are represented as fol-
lows:

Places (conditions) represent states of an appli-
cation.

A place is defined as an application’s state. In-
put places are preconditions required to execute
a function, and output places are postconditions
which describe the states resulting from the exe-
cution of the function.

Transitions (actions) represent functions of an ap-
plication or its interactive components.

A transition is defined as an application’s func-
tion which is fired (executed) if its pre-conditions
are satisfied. Events issued by the user are also
represented as transitions. For example, “press-
ing a button” is an event.

An arc between a place and a transition defines
cause and effect relation.
Markings represent application’s states at a time.

Markings are changed by actions executed in the
application.

I

Figure 1 illustrates a Petri net a part of the record-
ing function of a sound application system. In this
example, “Record” function is executed after “Set
A l e name” and “Set record time” functions being
executed. By the marking of this Petri net the appli-
cation’s current state is “Record panel is pop-uped”
and “File name is set.”

Figure 1: Example of a Petri net

3.2 Navigation Message Derivation
Mechanism

The markings of the Petri nets in our navigation
system reflect the application’s state at all times.
Whenever the transition of application’s states is oc-
curred by a user, the marking of the corresponding
Petri net is altered. When a user requests navigation,
the navigation system selects the appropriate naviga-
tion messages from the current markings of Petri nets
and presents them with the user.

For example, let us assume that a user wants to
read navigation messages for function “Record ” in
Figure 1. This navigation system checks whether the
input places of function “Record”, i.e. “Limit time
is set” and “File name is set”, have a token or not.
A token in place “File name is set” means that func-
tion “Set file name” has already executed. Function
%et record time” has not yet executed because place
“Limit time is set” has no token. Therefore, only the

31

message “change the state of “Limit time is set ” us-
ing function “Set record time” is presented with the
user. In this situation, a navigation message for func-
tion “Set file name” is considered to be redundant
and is not presented. If the user doesn’t know how
to execute function “Set record time” the same pro-
cess is repeated for investigating the previous states.
Thus, our system displays only necessary information
by selecting arcs which should be traced back from the
current state.

In the case where “File name is set” has no token
in Figure 1, two paths from function “Record ” can
be traced. The user can trace back through either arc,
and when enough information has been obtained, can
return to the branch point and select another arc by
requesting navigation on function “Record ”again.

3.3 System Structure

The structure for realizing our proposal is illus-
trated in Figure 2. The upper part of Figure 2 con-
sists of two systems: the GUI-based application and
the navigation system which we suppose. The lower
part illustrates the Petri net editor.

Figure 2: Software structure

Interactive GUI components, application functions
and application states are represented in Petri nets.
State transitions of the application system by user’s
actions are informed of the navigat,ion system. Nav-
igation system generates requested navigation mes-
sages in accordance with the marking of Petri nets
modified by an application system.

This navigation system has a graphical user inter-
face independent of that of the application system.
The interface includes a browser on which a user can

Figure 3: GUI of navigation system

designate function names and a window in which nav-
igation messages are displayed. The GUI of the navi-
gation system is illustrated in Figure 3. The left hand
side of this figure displays the browser. Two windows
in the middle of this figure illustrate GUI of a sound
application system. The right hand side of this figure
displays navigation messages presented according to
user’s requests.

4 Application Development Support

4.1 Extended Representations of Petri
Nets

In addition to Petri nets described in section 3.1,
representations of Petri nets are extended in our sys-
tem. These extensions contain frequently appearing
patterns found in many GUI applications, and can de-
crease the cost required to construct Petri nets.

a) inhibitor arc b) arc holding a token
place losing a token

Figure 4: Extended arcs and places

(1) Inhibitor arc inhibiting a transition’s firing.

When a user presses a but,ton to to open a pop-up
window, if the pop-up window has already been
opened, button pressing action has to be can-
celed. Also, before pop-down action is designated,
the corresponding window must be pop-uped, i.e.
the state of being pop-uped disables button press-
ing action and enables pop-down action.

There are many such cases where one state en-
ables the firing of one transition while disabling
the firing of another one. Therefore, we intro-
duce an inhibitor arc which disables firing when
an input place has a token.

“Arc A” in Figure 4a) is an inhibitor arc. When
place “a” in Figure 4a) has a token, any token
cannot be moved through “arc A.” As a result,
a token in place “a” disables firing of “sink
and enables’ firing of “T1.” Zero test (a test
of whether a place has a token or not) can be
achieved using this inhibitor arc[5][6].

(2) Arcs through which tokens are not moved despite
of the firing of a transition.

Several GUI components hold their own states.
In the case where transitions are fired from these
states, it is often convenient not to move tokens
from an input place. For example, the state of
a toggle button is kept, although a transition is
fired. An arc is introduced through which tokens
of each input place are not moved despite the fir-
ing of a transition(‘‘arc B” in Figure 4 b)). By
using this arc, the arc from TI'^ of Figure 4 a)
to place “a” can be omitted.

(3) A place removing a token in the case where tran-
sitions can not be fired.

Many GUI components such as buttons are al-
ways available to the user. However, some GUI
components are available only when other condi-
tions are satisfied, e.g. a save button of an editor
is accessible only in editing stmate.

In order to represent such GUI components natu-
rally, a place from which a token can be removed
in the case where no transition is to be fired is in-
troduced (place “b” in Figure 4 b)). By adopting
this place, a transition “sink” with its two input
arcs, as shown in Figure 4a), can be omitted.

(4) State transition with multiple outputs.

Generally, the state transition caused by a proce-
dure call is not uniquely determined. As an ex-
ample, in a file opening procedure, the function’s
output state consists of two possible alternatives:

“The file has successfully opened.” and “Open-
ing the file has failed.” Extended representation
is introduced to describe branches of outputs in
a transition as shown in Figure 5. This extended
representation is available because specifying in
detain all possible state makes the description of
Petri nets be complicated. Also this representa-
tion would be especially suitable for representing
the branches of a pull-down menu resulted from
a user’s selection.

r$ i I . :. f,
i.

a) former b) extended
representation representation

Figure 5: Extended Petri nets for multiple outputs

(5) OR Representation.

w
a) former b) extended

representation representation

Figure 6: Representation of OR

In GUIs, there are various kinds of operations
used to execute a function. Short-cut keys and
confirmation function at the file selection (press-
ing the OK button or double clicking) are their
good examples. Generally, the firing condition
for a transition is AND type, i.e. all input places
must have tokens (except for an inhibitor arc,
whose input place has no token). In Figure 6
a), transition “T1” is enabled if either or both of

33

4.2

places “a” and “b” have a token and place “c”
gains a token. In this situation, the description of
normal OR type condition becomes complicated.
Figure 6 b) shows simplified description of OR
type condition.

Petri Net Editor

A graphical editor is provided to construct Petri
nets, as shown in Figure 7. A developer edits naviga-
tion messages and Petri nets to represent an applica-
tion using this editor. This editor was developed using
X Window System Ver. X11 R5.

Petri.net Editor -
-“

I ! .i i I

Figure 7: Output of the Petri net editor

This editor has several functions:

0 graphical editing of Petri nets,
0 editing of navigation messages,
0 simulation of constructed Petri nets,
0 automatic generation of application program

0 generation of Petri net descriptions used by the
fragments,

navigation system.

Figure 7 illustrates the output of this Petri net ed-
itor and the flow of information between the various
parts. The automatic generation for application pro-
gram fragments and control mechanism of application
programs are in detail described in section 5.

As an example, our method was applied to a sound
application system. Figure 8 illustrates the Petri nets
representing the playback function. These Petri nets
were constructed using this Petri net editor. An ex-
ample of the Petri net editor’s GUI is illustrated in
Figure 9.

Figure 8: Petri nets for the playback function.

4.2.1 Stepwise Refinement of Petri Nets

When application systems are described with Petri
nets, it is sufficient to determine the necessary in-
put places (preconditions) and output places (post-
conditions) for each function(transition). However, it
is very difficult to describe a large-scale system with
one Petri net graph. Therefore, a top-down technique,
similar to the concept of stepwise program develop-
ment, is applied in order to decompose Petri nets from
high-level descriptions into more detailed structures.

This Petri net editor makes possible hierarchical
editing to refine Petri nets, as shown in Figure 10.
Coarse structures of a system are first described as
high-level nets, and next a series of gradual refinement
steps is followed to describe lower level of nets while
both the inputs and outputs of higher level of nets are
consistent with those of lower level.

Figure 10 illustrates an example of the stepwise re-
finement process for Petri nets. While Figure 10 a)
represents only the overall “Load” function, in Fig-
ure 10 b) this function is refined so that the “Con-
firm” function is also realized. The input and output
places of b) are made to be consistent with those of
a) , as shown this figure.

34

http://Petri.net

Figure 9: GUI of the Petri net editor

5 Structure of an Application

5.1 Control Mechanism in Application
Programs

By checking pre-conditions before firing and post-
conditions after firing of Petri nets, some control mech-
anism of an application can be incorporated at the
implementation time. For’that support, its program
fragments can be automatically generated.

Figure 11 illustrates the internal structure of an ap-
plication constructed by our method. Each procedure,
“proc” in Figure 11, corresponds to each transition of
a Petri net. Program fragments which cause the state
to change can be automatically generated in each pro-
cedure.

In this figure, the parts drawn with dotted lines are
application bodies to be completed by hand coding.

The State Manger (Petri net engine) controls pro-
cedures to be called subsequently by checking whether
each input place of a transition has a token or not. It
is generated automatically from the given Petri net.

5.2 Automatic Generation of Procedures

Figure 12 illustrates an example of automatically
Functions such as generated program fragments.

Figure 10: Hierarchy of Petri nets

“Changestate(...)” in Figure 12 are state transition
procedures. It is not necessary for developers to write
program fragments concerning the state transitions.
This makes developers free to write complicated con-
trol codes. Developers write the application’s body in
“Manufacturing part.”

5.3 Automatic Generation of State Man-
ager

When each input place of a transition gains a to-

Navigation System

I Application

Figure 11:
matically generated parts.

Structure of an application and its auto-

35

File is selectcd Play button is pressed

total
(lines) Cases int state;

/* Manufacturingpart *l
if(state=OK)(I' State OK ' I

Changestate(Playing);
I e l M P State Fail ' I

Changestate(Enableg);
I

I b) generated procedure

generated parts(1ines)

code skeleton I State Manager

Figure 12: A Petri net and its generated code

case A
case B
case C

(State (File-is-loaded) bo State (Play-Button)) {
Trans-SET [trans-num++l=Set-Play-proc :

(State(P1ay-Break) I I State(Play-Stop-Button)){
Trans-SET[trans-num++]=Play-Break-proc;

(State (Play-Open-Fail)) {
Trans-SET[trans_num++]=Play-Open-Error-proc;

-
4500 500 300

13000 1600 950
8900 1050 720

Figure 13: Example of a part of the State Manager

ken, i.e. pre-conditions of each function are satisfied,
the transition can be fired, i.e. registered procedure
in application program is called. In our system, the
State Manager controls the flow of application's pro-
cesses. The State Manager monitors state transitions
and make a transition fire if every input place of that
transition has at least one token.

The State Manager includes if-then style expres-
sions that are automatically translated from every in-
put place of each transition, and repeatly monitors
these conditions during execution. Figure 13 illus-
trates an example of automatically generated State
Manager .

6 Evaluation

6.1 Evaluation of the Development Activ-
ities

To evaluate our system, several examples were used.
Our system and these test cases were implemented
under SunOS 4.1.3 + Xl lR5 on SUN SPARCstation

Table 1: Effectiveness of extended Petri nets.

Table 2: Scale of trial svstems.

10. The navigation system developed for evaluation
consists of about 2340 lines of C and XllR5 code.
The Petri net editor consists of 7500 lines. Case A
is the whole sound application system as described
in the section 4.2. Case B is similar to case A, but
includes many more complex functions. Case B is a
new version of a system which had already been de-
veloped. This trial is a feasibility study for software
re-engineering. Case Cis a Petri net editor developed
as a part of our project. In case D, the Xarchie tool
which is an XI1 browser interface to the Archie In-
ternet Information System has been described. These
cases were developed by a different individual.

Table 1 illustrates the number of places, transitions
and arcs for each case. The numbers in parenthe-
ses represent extended Petri net features described in
section4.1 From these results, extended elements were
used for about 30% of the places, about 39% of transi-
tions, and about 16% of arcs. These ratios show that
extended features are very effectively used. However,
the description style of Petri nets varies with each de-
veloper, so it is necessary to provide guidelines for
describing Petri nets.

Table 2 illustrates the total number of lines for case
A, case B and case C (not including parts of the nav-
igation system), and the line numbers for automat-
ically generated procedures and the State Manager.
All were implemented in C, and automatically gen-
erated code is included in the totals. The original
version of case B was expressed in about 11000 lines.
After reconstructing case B, the application body was
reduced to about 10450 lines (13000 lines - 1600 lines
- 950 lines). Here, 550 lines in the application body
was decreased (11000 lines - 10450 lines). These de-
creased statements resulted from the fact that the con-
trol structure of procedures are included in the State
Manager. Execution time by this reconstruction be-

previous actions. More researches should be done on

functions initial state
playback 8
recording 7

state A state B
5 1
5 3 Ref er en c es

”
functions
next selection
fast-forward

1989.

came slightly long, however, there was no problem for
practical use of the system

121 J.L. Peterson, Petri Net Theory and the Modeling
of Systems, Prentice Hall, 1981.

initial state state B state C
[l] P.D.Wellner, “Statemaster, A UIMS based on

Statecharts for Prototyping and Target Implemen-
1
1

9 3
9 3

Our method requires some additional cost for the
construction of Petri nets. However, several mer-
its such as the achievement of rapid interaction by
adaptive navigatim, support of development activities
from the requirements analysis phase, and the gener-
ation of high quality programs are also obtained.

6.2 Evaluation of Adaptive Navigation

To evaluate adaptivity for users, we enumerated
the number of navigation messages in several states
of some functions such as playback, recording, selec-
tion of the next music, and fast-forward of case B in
section 6.1. The results are illustrated in Table 3.
The numbers in Table 3 represent the number of mes-
sages displayed by our navigation system. Initial state
means the state of not being acted on by the user at
all. State A refers to the time when a directory was
selected, state B refers to the time when a sound file
was selected, and state C is the playing state.

The number of messages at the initial state is con-
sidered to be equivalent to that of a navigation sys-
tem. which does not vary messages based on applica-
tion’s current state. The average number of messages
in states A , B and C amounts to about 33% of the
messages displayed in the initial state. This reduction
proves that our method is very effective.

7 Conclusion

A navigation mechanism which can generate the
navigation messages controlled by application’s states
was described in this paper. The process for construct-
ing GUI-based application and its navigation system
using Petri nets was also illustrated. Our method can
support the development of user navigation system, as
well as user-friendly GUI-based system.

As a future work, we are planning to build a system
to navigate more effectively using histories of user’s

[3] Working Party X/3, “Draft Recommendation
Z.120-Message Sequence Chart(MSC),” CCITT,
Mar 1992.

[4] M. Ajmone Marsan, et al, “TOPNET: A Tool
Based on Petri Nets for the Simulation of Com-
munication Networks, Tool Description,” In Proc.
PNPM ’91, also in IEEE Joumal on SAC, Vol.
8, NO. 9, pp. 1735-1747, 1990.

[5] K . Jensen and G. Rosenberg (eds.), High-Level
Petri Nets, The0 y and Application, Springer-
Verlag, 1991.

[6] W. Reisig, Petri Nets(A n Introduction), Springer-
Verlag, 1985.

37

