A Resolution Method from Predicate Logic Specification into
Executable Code

K. Onot S. Kawanott

T School of Science and Engineering
Waseda University
Tokyo, Japan

Abstract

We present a resolution method from a first order
predicate logic formula F(z,y) into a function f as
its executable code which computes y from x regarding
z as the inputs and y as the outputs. A resolution
process of the form ¥z G(x,y,z) is argued in particu-
lar. This method can be regarded as a theorem proving
method for first order predicate logic formulae. From
the point of view, the resolution would be the theorem
proving of the form “Yx Iy V= G(x,y,z)”. The func-
tion f is generated by means of the application of the
pre-defined rules. These rules can be classified into
two groups; transformation rules and resolution rules.
The former rules transform a logic formula wtself, and
the latter rules resolve a function and/or « function
definition. In our method, the latter rules are applied
first of possible. If no latter rules can be applied, then
the former transformation rules are applied. This pa-
per briefly describes some example of the resolution
process and verification of its partial correctness.

1 Introduction

A predicate logic based language is promising as
a formal specification language [1]. Specification in
such language defines characteristics and functions of
a given computation system as relations among the
elements of the system. Predicate expression is unam-
biguous, so that specification in such language can be
defined unvaguely and exactly.

Most of such languages are based on the first or-
dered predicate logic(FOPL) [2]. In FOPL, the com-
pleteness between formal proof and model theoretical
proof is proved, so the formal semantics of such lan-
guages can be defined completely. FOPL is powerful
enough to represent many computation system.

0073-1129-1/92 $3.00 © 1992 IEEE

480

Y. Fukazawat T. Kadokurat

Tt Yamato Laboratory
IBM Japan Ltd.
Tokyo, Japan

Although any requirement can be expressed in
FOPL exactly and fully, it is difficult for any other
developers and users to read it in the design phase
and the verification phase. To overcome this disad-
vantage, many tools to support specification definition
are studied. Among them, direct execution of a given
specification is promising for specification understand-
ing.

But, it is impossible to transform mechanically any
specification in FOPL into an executable code. There-
fore the restricted FOPL formulae can be dealt as
the object. The proposed methods are Green’s res-
olution method [3], First Order Compiler [4], a reso-
lution method with constructive proof [5] and so on.
Green’s method resolves functions by theorem prov-
ing method. This method proves the restricted form
“Vz Jy F(x,y)”, and resolves the function f which de-
notes the correspondence between the input z and the
output y as the result. In this method, firstly a specifi-
cation(FOPL formulae) as axioms is transformed into
Skolem’s standard form, secondly F(z,y) is proved
with Robinson’s resolution principle [6], and lastly the
substituted term for the variable y is obtained as the
required function f.

FOPL formula F(z, y) is assumed to be a quantified
form “Vz G(x,y,z)" or “Iz G(z,y,:)". The formula
Vo Jy 3z G(z,y,z) is similar as V2 3y'G'(x,7'), so
that we discuss only the form Yz 3y V- G(z,y, 2).
Green’s method cannot resolve function f from this
form, because that cannot obtain the empty clause in
spite of selection of correct axiom.

We present a resolution method which applies rules
manifoldly. The rules can be classified into two groups;
transformation rules and resolution rules. The former
rules transform a FOPL formula itself, and the latter
rules resolve a functional form and/or a function defi-
nition. Firstly, the latter rules are tried to be applied.
If no latter rules can be applied, then the former rules

State Machine
(computer sys

Figure 1: State Machine Model

are applied.

2 Resolution method

2.1 Representation of computation sys-
tem

We adopted a state machine model as our computa-
tion system model (Figure 1). In this model, the prop-
erty of a computation system is regarded as the invari-
ant relation among elements of the system. And also
the function of the computation system is regarded as
the relation among the elements and inputs/outputs
of the system. An action(computation) of a given sys-
tem is defined as a state transition (Figure 2); when
the internal state of the system is S, the invoked func-
tion with inputs Z derives outputs O and makes the
internal state S’.

According to the above definition, when the com-
putation system is specified in FOPL, property and
function of the system would be represented by re-
garding relations as predicates.

2.1.1 Property of system: In order to describe
the property, we classified these FOPL formulae for
the property into two classes; predicate definition and
invariant relation.

Predicate definition This definition names a par-
ticular relation as a predicate.

example: a relation that “a person z is senzor to
another person y” will be defined as a for-

481

Figure 2: State Transition Model

mula which represents that “the age of x is
greater than the age of y”. This relation is
represented in predicate form “senior(z,y)”
and “greater(age(z), age(y))”.

The definition has the following form:

Vi, -

[p(zy,--
e Fa(ry,---

sTn
'9‘Tn)

+@n)] (1)

In (1), the symbol “—” is used as an equivalent
symbol, p as a predicate symbol, 2; as a quantified
variable, and Fy(x1,--+,2,) as a FOPL formula
including variables 1, -+, Zn.

The example is represented in the following.

Vz,y
[senior(z,y)

— greater(age(z),age(y))] (2)

Invariant relation This invariant relation means a
constraint for an internal state of a computation
system. A state must satisfy a relation at all
times.

example: “the number of books in the library
stack will be never over 10000,” i.e., “the
number of books in the library stack is al-
ways less than 10000.”
The invariant formula has the following
form:

@3)

In (3), s; is used as a state variable which repre-
sents the internal state of the computation system
at pre-transition.

The example is represented in the following on
the assumption that the state variable books ex-
presses a set of book.

size(books) < 10000 (4)

2.1.2 Function of system: The function of com-
putation system is defined as a relation among its in-
ternal states and inputs/outputs of the system. This
is represented as a following closed FOPL formula.

example: a function that “a person p check out a
book bk from the library” will be defined as a
formula which represents that “for all book bk,
person p, book’s status st, and borrowers list b,
bk must be returned, st will be changed to bk
s checked out, and record p has borrowed bk to
bl

The definition has the following form:

. . / '
vslw"'asnwllv"'aloasl » 9 8n 301,00, 04
! 1
[Ff(81y 58,81, 5 8n,
iy i0, 01,0 ,00)] (5)

In (5), s;’ is a state variable which represents the
internal state of the computation system at post-
transition, i;/0; are input/output variables for com-
putation system respectively.

The example is represented in the following.

Yok, p, st, bl 3st’, bl’
[(bk,returned) € st
A st' = st @ { (bk, checked_out) }

A bl'=bla&{ (bk,p)} 1(6)

In (6), “(z,y)” is used as an ordered pair, the sym-
bol “@” as relational override.

482

2.1.3 Action of system: The specification should
be represented as the set of equations (1), (3), and (5),
and then the action of the system at states s;,---, s,
is considered to prove the following theorem (7).

Vxla"'axn [p(‘l'lw"'vlfn)HFd(‘Tls""‘En)]
|-v,'1,...’i0331’,...’311"01,...’01
[Fi(s1,--+,sp)
— F,(51,...’57“31’7...,5"/’
IR T TN)
A Fi(sy',--,80") 1(7)

The evaluated value and state transition by execu-
tion of the function f resolved by our method satisfy
the consequence of (7) (i.e. following equation (8)).

N . ’ 1
vzl""vloasl s s 8n 01,00, 0

[Fi(s1,-++,8n)
i Ff(sl,--',sn,sl',---,s,,’,
ils"'aioﬂolw"'sot)

A Fi(st',---,8,") 1(8)

The purpose of our method is to resolve the follow-
ing function definition (9) from this consequence.

Fdd—_e-fpsl’,---,sn’,ol,---,ot ASTy s Smyils -2 i
[Fi(s1,-+,8n)
= Fp(810, 8m.81 s e 50y
jl’...vl’mo]’...,ot)
AN Fi(s',--+,5.") 1(9)

2.2 Input/output and procedural inter-
pretation of formula

According to the meaning of (8), the inputs and
outputs of (8) are defined as the A bound variables and
the p bound variables of (9), respectively. Therefore,
the inputs of (8) are the universally bound variables,
which are the inputs 4, -, i,, and the free variables,
which are the internal states sj,---, s, of the compu-
tation system. Similarly, the outputs of (8) are the
existentially bound variables, which are the outputs
01, -+, 0 or the internal states s1’, -+, s, of the com-
putation system.

Moreover, the procedural interpretation of (8) gives
the computation which substitutes arbitrary values for

the inputs and calculates the output values. This com-
putation is similar to the execution of predicates in (8)
as the procedures in an appropriate order. This proce-
dure means to calculate the values of arguments from
the others. Some execution orders and some procedu-
ral interpretations of a consequence (8) may be con-
sidered.

The input and output of a predicate in (8) are de-
fined in the following. A procedural interpretation of
each predicate appeared in (8) is procedurally inter-
preted by adoption of a procedural interpretation of
the consequence. The inputs of the predicate are de-
fined as the arguments referred by the procedure, and
the outputs of the predicate are defined as the argu-
ments which the procedure calculates as the values.

The inputs and outputs of formula Fg in the pred-
icate definition (1) are equal to the inputs and out-
puts of the predicate p. The inputs and outputs of
the predicate p is determined by procedural interpre-
tation of formulae using p. Therefore, when the speci-
fication has some formulae using p, the attributions of
arguments in p(the inputs or outputs) may have some
varieties.

2.3 Function resolution from FOPL for-
mula

2.3.1 Tree structured standardization: As the
pre-process, the consequence in (8) is transformed as
follows in order to make it easily applicable for the
rules.

A given formula is transformed into a tree struc-
ture by regarding a literal as a node, a conjunction
as a sequential connection of nodes, and a disjunction
as a parallel connection of nodes. It is supposed that
each literal is an atomic formula with at most one
negation symbol (“=") on the top. Moreover, a quan-
tified formula is regarded as a atomic formula. We re-
fer to such formula as Tree Structured Standard Form,
and to such transformation method as Tree Structured
Standardization.

An example of Tree Structured Standardization is
shown in Figure 3. In that, the symbols 4,..., G are
literals. Figure 4 is a graphically represented result of
Figure 3. _

When a node(literal) in the Tree Structured Stan-
dard Form has some children, the node is called as a
branching point. The branching points of Figure 4 are
G, Band C. Moreover, a conjunction of literals from
the root to the first branching point of a tree is re-
ferred as a head of the tree. The head of Figure 4 is
AADAG. A tree may have an empty head, XVY'AZ
for example.

483

(AABVAAC)ADA(EVF)AG

i
(AN(BVC)ADA(EVF)AG

l
AADAGA(BVC)A(EVF)
)
AADAGA(BA(EVF)VCA(EVF))

Figure 3: Example of Tree Structured Standardization

A——D———GiBiE
F
C‘<E

F

Figure 4: Graphical Representation of Tree Structured
Standard Form

The procedural interpretation of Tree Structured
Standard Form is that the computation continues the
same state until the branching point, and the compu-
tation switches the state at that point for each subtree.

2.3.2 Rules: As an executable code, a set of
function definitions is generated by finitely applying
rules to transform a element of Tree Structure Stan-
dard Form into a functional form. The elements of
Tree Structure Standard Form are logical connectives,
quantifiers, primitives, and user-defined predicates.
Rules to generate an executable code are classified into
each group for these elements. The rules are applied
according to the priority for these groups.

The rules in each group are classified moreover by
the objects for application. For example, a group of
rules for logical connectives consists of rules for con-
junction and rules for disjunction.

Most of the rules are coupled as a pair of a rule to re-
solve functional form and a rule to transform formula.
Resolution rules are given preferences over transforma-
tion rules. Figure 5 shows the classification of rules.

Items in a rule are shown in Figure 6.

For example, the following shows a part of the rules
for a quantified formula.

A quantified formula is transformed by re-
garding it as an atomic formula. Rules are clas-
sified into a group for existentially quantified for-

¢ group of rules for logical connectives

— rules for conjunction

* resolution rule
* transformation rule

— rules for disjunction
ditto.

¢ group of rules for quantifiers

— rule for finite set domain of bound variable

* resolution rule
* transformation rule

— rule for infinite set domain of bound variable
and so on.

¢ groups of rules for primitives

— rule for equality

— rule for set calculation
and so on.

e groups of rules for user-defined predicate

Figure 5: Classification of Rules

Object
element of Tree Structured Standard Form to ap-
ply the rule

Precondition
prior condition when the rule applies

Resolvent
resolved function/function definition,
transformed formula

Action
moreover applying other rules, and so on

Figure 6: Items in a Rule

484

mulae and a group for universally quantified for-
mulae.

rules for existentially quantified formulae

In principle, bound variables for existen-
tial quantifier are regarded as the outputs
of the formula in the quantified domain.
Rules are classified moreover according as
the formula can be interpreted procedu-
rally or not, and as the domain of the
bound variable is finite or not. There
are no transformation rules for existentially
quantified formulae.

The following example shows a resolution
rule which resolves a procedure to enumer-
ate its elements of finite set and test.

Object
existentially quantified formula:
Jdz : S[P(x))
Precondition

the existentially quantified formula
cannot be transformed when the
bound variable = is regarded as the
output of the formula P(z), and the
domain S of the bound variable z is
finite.
Resolvent
pz Ay, S F(z,y,5)
Action
Generate a function definition of F
which is
F ¥ pz Ay, Sy - Sy = {} - false:
Ae-or(Fy(z,y,e),
F(z,y,51 — {e}))
(elm(5S1))
and generate a function definition of
Fy which is

Fy def pzAy,e- P(z,y,e)
The procedure which enumerates an ele-
ment e from a set S and tests e is gen-
erated because the domain of the bound
variable x is S. The function elm(S;) is
a primitive which returns an arbitrary ele-
ment from the set 5.

rules for universally quantified formulae

The following shows a transformation rule
for example which unfolds a quantified for-
mula.
Object

universally quantified formula:

Ve:S [P(x)]

operation definition
Vg : GR 3bk : Books
[at = author(bk) A g = genre(bk) |

input/output declaration
INPUT GR : P(Geres);
OUTPUT at : Authors;

Figure 7: Example of resolution

Precondition
an output variable of P exists in P,
and the domain S of the bound vari-
able z is finite.

Resolvent
de: S5; 51 : P(P)
[sep(S, e, S1)
A P(e)
A Yz :8 [P(z)]]
Action
Nothing

The function sep(S, e, S1) which is a com-
plemental predicate means that a set S is
a union of e as an element of S and S, as a
set which consists of elements of S except
for e.

3 Resolution example

In this section, we will apply our resolution method
to a specification of a library stack management sys-
tem.

Figure 7, which defines an operation, is an exam-
ples of the consequence (8). This definition represents
a computation; when this operation is invoked with
the input GR as a set of genres, an output at as an
author’s name is computed. The relation between GR
and at is that for all genre g in given GR there exists
a work in the library’s stack.

The logical meaning of this operation definition is
the following.

VGR : P(Genres) Jat : Authors
Vg : GR 3bk : Books
[at = author(bk) A g = genre(bk)] (10)

In (10), = : S is a declaration that the domain
of a variable is a set S. Further, P(S) represents
the powerset of a set §. Therefore x : P(S) declares

485

that the value of a variable & is a subset of the set S.
Genres is a set of genres on all publications, Authors
is a set of all authors, and Books is a set of books in
the library’s stack. author is a function which relates
a book to its author, genre is a function which relates
a book to its genre.

It is obvious that the formula has the form
Vr 3y Vz G(z,y,z). When this formula is the conse-
quence (8), the formula contained in this consequence,
whose form is Vz G(z, y, z), is as follows.

Vg : GR 3bk : Books

[at = author (bk) A g = genre(bk)] (11)

Our method attempts to apply the rules which gen-
erate a functional form. The required rule is selected
from the group for a universally quantified formula.
According to the inputs/outputs of (11), it becomes
known that the formula

Jbk . Books

[at = author(bk) A g = genre(bk)] (12)

has an output variable bk. Furthermore, according

to the definition of the set S, it becomes known that
S is a finite set. These lead to apply the transforma-
tion rule to unfold a quantified formula, so that (11)
is transformed into the following.

Jg1 : GR;GRO : P(GR)
[sep(GR, g1, GRO)
A 3bk : Books
[at = author(bk)
A gl = genre(bk)]
A Vg:GRO 3bk : Books
[at = author(bk)

A g=genre(bk)]] (13)

Next, a resolution rule is selected from the
group for sequential ezecution of conjunction. Since
“sep(GR, g1, GRO)” is a complement predicate which
is introduced by the above application of the transfor-
mation rule, the rule for primitive/complement pred-
icate is selected and applied. This generates the fol-
lowing function definition.

1 " AGR, Books-

Agl- f2(gl, setdif f(GR, g1), Books)

(elm(GR)) (14)

The function f2 is defined in (16). The resolution
rules are applied moreover. In the quantification of
the remaining formula

Jbk : Books

[at = author(bk) A g1 = genre(bk)) (15)

the predicate “at = author(bk)” cannot be trans-
formed/resolved when the bound variable bk is re-
garded as the output of this predicate. Furthermore,
as Books is a finite set, the resolution rule which gen-
erates an iteration by recursion is applied to (15). This
application resolves the following function definitions.

2% Ag1,GRO, Books - £21(g1,GRO, Books)
f21d§f Agl, GRO, Books - Books = {} — false :
pat Abk - or(and(f2,(g1, bk, at),

f3(GRO, at, g1)),
f21(g91, GRO, Books — {bk}))
(elm{Books))
)"22d§f Agl, bk, at - and(gl = genre(bk),

at = author(bk)) (16)

The resolution rule for sequential execution of con-
Junction is applied next. From (13) the remaining for-
mula

Vg : GRO 3bk : Books

[at = author(bk) A g = genre(bk)] an

has no output in the domain. Moreover, because GR0
is a finite set, the resolution rule which generates an
enumeration and testing by recursion is applied. At
the same time, the rule which generates an iteration
and finding by recursion is applied to the formula in
the domain,

3bk : Books
[at = author(bk) A g = genre(bk)] (18)

These applications lead to the following function def-
initions.

486

3 AGRO,at- £3,(GRO,at)
flhdéf AGRO,at- GRO = {} — true:
Ag - and(f4(Books, at, g),
f31(GRO - {g},at))
(elm(GRO))
f4 &t ABooks,at, g - f4,(Books,at, g)
f41d§f ABooks,at, g - Books = {} — false :
Abk - or(f42(g, bk, at),
f41(Books — {bk}, at, g))
(elm{Books))
fligd-—e-f Ag, bk, at - and(g = genre(bk),

at = author(bk)) (19)

These applications of rules resolve the form
Vo Jy Vz G(z,y,z) into the set of function defini-
tions. The function definitions are executable by suit-
able function evaluator.

4 Evaluation
4.1 Termination of resolution

According to our definition of specification in sec-
tion 2.1, it is obvious that a specification consists of a
finite set of FOPL formulae, and each FOPL formula
consists of a finite set of predicates, logical connec-
tives, and quantifiers.

Tree Structured Standardization always terminates
because it only transforms elements of logic formula
finitely. Furthermore, the applicable rules for one el-
ement of formula are finite. The application of res-
olution rules terminates finitely because one of these
rule for one element resolves a functional form and/or
function definition on each application. It is possi-
ble that a transformation rule is applied to a element
iteratively.

The groups of such rules are the following.

o reordering of conjunction/disjunction

¢ unfolding of universally quantified formulae

According to the definition of the former, it is ob-
vious that the application of these rules terminates
in n-times(n is a number of literals in the conjunc-
tion/disjunction). According to the precondition and

the priority of the latter, it becomes known that the
application of its rule terminates. Termination of our
method was shown.

4.2 Correctness of resolution

Partial correctness of the resolution is verified be-
low. “The resolution is partially correct.”, i.e. “a re-
solved ezecutable code holds partial correctness for the
specification.” means that “when the output of the
erecutable code can be obtained for all possible inputs,
these inputs and outputs satisfy the logic formula given
as the specification.” The followings investigate our
method’s partial correctness as- a relation between a
specification which is a set of FOPL formulae and an
executable code which is a set of function definitions.

The model M of S as a set of FOPL formulae de-
termines the interpretation on the Herbrand universe
H(S) for a predicate which appears in S. In the set F’
of function definitions, the function f which calculates
a FOPL formula Vz 3y [L(x,y)] is

F ¥ e Liz,y) (feF) (20

The meaning that this function f holds partial cor-
rectness for the specification § is
if M(F) [b= fla)

M(S) | L(a.b) (21)

holds in arbitrary Herbrand atomic clause L(a,b) in-
cluding L.

Because the Tree Structured Standardization is the
equivalent transformation of FOPL formula L(z,y),
the Tree Structured Standard Form holds total cor-
rectness. Therefore we discuss correctness of the rules.

The most important resolution rules are those for
quantified formula. The following shows those rules.

1. a rule which generates a searching function by
considering that a bound variable in existentially
quantified formula is a free variable

2. arule which generates a recursion for existentially
quantified formula as an iteration for finding out
a required element

3. a rule for existentially quantified formula whose
domain of a bound variable is an infinite set

4. a rule which generates a recursion for universally
quantified formula as an enumeration for testing
all elements

487

5. a rule for universally quantified formula whose do-
main of a bound variable is an infinite set

The rules 1,2 and 4 hold correctness according to
the logical meaning of quantifiers. However, functions
which are generated by the rules 3 and 5 cannot assure
the termination to execute itself. Consequently, the
resolution is only partially correct because the solution
satisfies L(x, y) when the execution terminates, but it
is incomplete for arbitrary inputs of L(x, y).

5 Conclusion

We have discussed the outline of our resolution
method from the FOPL based specification into func-
tion definitions as an executable code. For a detailed
evaluation, the specification of library’s stack manage-
ment system has been described, which consists of 11
operation definitions/52 predicates. We have applied
this method, so that the whole executable code, which
consists of 25 function definitions, can be generated.

Addition of rules extends the resolvable region,
however, it may make a failure in correctness of the
resolution. Therefore, rules must be carefully added.

References

[1] B. Cohen, W. T. Harwood and M. I. Jackson,
“The Specification of Complex System”, Addison-
Wesley Publishing Company, 1986.

[2]

M. Fitting, “First-Order Logic and Automated
Theorem Proving”, Springer Verlag, 1990.

[3] C. Green, “Application of Theorem Proving to
Problem Solving”, Proc. 1st IJCAI, pp.219-239,

May 1969.

[4] T. Sato and H. Tamaki, “First Order Compiler”,

Computer Software, vol.5, no.2, pp.69-80, 1988.
(5}

S. Goto, “Program Synthesis from Natural Deduc-
tion Proofs”, Proc. 6th IJCAI, pp.339-341, 1979.

6] J. A. Robinson, “A Machine-Oriented Logic Based
[gi

on Resolution Principle”, J. of the Assoc. for Com-
put. Machinery, vol.12, no.1l, pp.23-41, January

1965.

