
A Dialog-oriented User Interface Generation Mechanism

Jeongwon Baeg Yoshiaki Fukazawa
Dept. of Electrical Engineering Dept.of Information & Computer Science

Waseda University
3-4-1 Okubo, Shinjuku-ku,

Tokyo 169, Japan
baeg @fuka.info. waseda.ac.j p

Abstract

Nowadays, for GUI application development, a
number of interface builders make possible for the user
to create user interfaces easily and UIMSs help to spec-
i f y and design user interfaces. However, interface
builders lack support of selecting appropriate interac-
tion items for a specific application and UIMSs have
little support of low-cost implementation technique be-
cause they have concentmted on the description tech-
nique.

To solve these problems, in this paper we describe
an approach to support both design and implementa-
tion activities on GUI application development by gen-
erating a default interface from described dialog and by
customizing the generated interface interactively using
an interface builder. I t enables to decrease develop-
ment costs by supporting GUI development from the
early stage and by excluding the necessity of specifying
and preparing design rules for presentation style.

1. Introduction

For GUI(Graphica1 User Interface) application de-
velopment, a number of researches on user interface
builders [l] [2] and UIMSs(user interface management
system) [3] [4] have been advanced in the last years.
Compared to traditional programming with GUI toolk-
its, interface builders make possible for the user to cre-
ate user interfaces easily and quickly by dragging onto
the work surface and arranging with direct manipula-
tion. Also, many UIMSs have been suggested to help
to specify and design user interfaces effectively.

However, despite many available tools, the devel-
opment of GUI applications is still a time-consuming
activity because there are few effective methods to sup-
port their whole development process. For example,

Waseda University
3-4-1 Okubo, Shinjuku-ku,

Tokyo 169, Japan
fukazawa@fuka.info. waseda.ac.jp

in case of interface builders, little or no support is
provided to select appropriate interaction items and
to enumerate interaction items according to dialog se-
quence for a specific application [5] ~

UIMSs based on the traditional Seeheim structure,
on the other hand, because they stress dialog descrip-
tion technique (such as dialog control models [6]) rather
than implementation technique, lack adequate imple-
mentation support. There are UIMSs with implemen-
tation support [5] [8], however, even they suggested
complex mechanism for determining presentation style.

To solve described problems in the above, in this
paper we describe an approach to easily and quickly
build a GUI application by automatic interface gener-
ation from simple dialog description and by interactive
customization using an interface builder according to
desired presentation style.

Some features of our approach follow:

By supporting dialog description and generating
a default interface from it, our approach supports
GUI application software throughout the devel-
opment process, from the specification phase to
the run-time phase.

By generating a default interface and by
customizing it interactively with an interface
builder, our approach supports rapid prototyp-
ing and decreases development costs It enables
developers to construct GUI applications with-
out having to specify and prepare design rules
for presentation style.

0 Unlike other approaches, ours requires neither a
particular dialog description model nor a partic-
ular interface builders.

3 10
0-8186-7638-8/96 $05.00 0 1996 IEEE

http://waseda.ac.jp

2. Related Work

Dialogue .- Application
interface Presentation '- Control I

There are several studies that discuss automatic
user interface generation from the dialog description

In GENIUS [5] and ITS [8], constraints and design
rules are used to achieve their desired presentation
style. However, the rules concerning formats and lo-
cations of interaction items are themselves difficult to
write, and it is also difficult to completely meet any
desired configuration by adjusting those rules. Our ap-
proach, however, avoid those difficulties by generating
a default interface and allowing the interface designer
to realize his desired configuration through direct ma-
nipulation using an interface builder generated.

Some other studies tried to generate interaction
items from application program code [9] or from ap-
plication specifications [lo]. In case of [lo], they have
no dialog specification stage, they lack the support to
review how to control the dynamic behavior of visual
context. Our approach solves this problem by adopting
interface generation technique based on dialog descrip-
tion to be able to control visual context.

[9] takes similar approach with us on the aspect that
interactive customizing of the generated interfaces for
the desired presentation style without style rules, how-
ever, that approach needs specific libraries and com-
plex mechanisms for customization as well as efforts to
learn specific libraries at development process. Com-
pared with that, we requires no particular libraries and
learning efforts.

In summary, then, in comparison with existing sys-
tems of automatic user interface generation, our ap-
proach provides a simpler description technique and
easier construction of GUI-based software via methods
that require neither large time investments nor GUI
programming experience.

[51 PI [91 [io].

:core
A-

3. Development Process with Our Sys-
t em

'I i i
i ".-!.."." " _............ " Ii

Figure 1. Seeheim model for UlMS architecture

Our system architecture is based on the most widely
known Seeheim model [4] as shown Figure 1. Accord-
ing to this model, GUI application system consists of
three layers. The primary component is the dialog con-
trol which is receives inputs, determines what should
be done about them, and requests services from the
application. The functional code is accessed via some
application interface, which is also called the semantic
interface. The presentation consisted of all those issues
that control the visual appearance and physical device
selection of the actual interface.

We tried to automatically generate the presentation,
dialog manager, the partial functional core from the
dialog control according to this data display facet of
the model.

Our main idea does not need any particular dialog
description model [ll] [12] [13] and interface builder
tool compared to [5] [8] [lo] [9]. However, at least our
approach requires to build a suitable system according
to the chosen dialog model and interface builder. For
our approach, we selected state diagrams as a dialog
description model because the concept of moving from
state to state upon given inputs is not difficult to teach
to non-programmers. Also, we selected XF tool as an
interface builder [14]. XF tool is a user interface builder
based upon Tcl and Tk , which is used to arrange and
configure a generated default GUI.

We assumed separate tasks are undertaken by dia-
log designers, graphics designers, and application pro-
grammers during the development process. The devel-
opment process of a GUI application by our approach
consists of the following stages based on our system
structure as shown in Figure 2.

1. The dialog designer specifies when logical inputs

2

are acceptable, what semantic actions to invoke.
and how to control the dynamic behavior of vi-
sual context (including, for example, how the
interface shifts between windows in response to
user needs.) To offer support to designers at this
stage, we built a state diagram editor so that the
dialog designer can describe the state transition
model in both graphical and textual form.

Our code generator produces default interaction
items such as buttons, scrolling lists, pull-down
menus, new windows, a dialog manager program,
which defines the dialog interaction sequence,
and an application skeleton. (All are generated
from described state transition diagrams.) We
call the interface containing these default items
the pre-customized GUI. Our dialog manager
program includes a dialog control part, and our
application skeleton includes a header part, as

311

well as some condition clauses in a procedure to
be invoked by user’s inputs. All generated code
is written in Tcl/Tk script.

The graphics designer can modify and refine the
generated pre-customized GUI interactively with
an interface builder such as XF tool. The output
of our code generator is a Tcl/Tk script, there-
fore, the code can be loaded and modified directly
on the XF tool.

The application programmer writes the internal
details of the procedure to be invoked by the
user’s input action and completes a GUI applica-
tion system by adding them to application skele-
ton generated in the second step.

Dialog
Designer State Transition

Diagram Editor 2-
Code Generator

Graphics
Designer

XF tool

Text Editor

t
2

Application
programmer

Figure 2. System structure

4. State Transition Diagram for Dialog
Control

The state transition model can represent the mean-
ing of the user’s inputs based on the current state of the
dialog. The meaning of a given input is determined by
where it occurs in the sequence of inputs. To represent
dialog control, our state transition diagram consists of

. . .” 1 ”..
,. .. ., ...

Figure 3. An example of a state transition dia-
gram

current states, user’s inputs, execution condition, and
actions to be invoked.

The Figure 3 is a part of our state transition model
describing dialog of a state transition diagram editor
which we built. As shown in Figure 3, circles represent
states, and texts on arcs represent the designation of in-
teraction items, the user’s events, execution condition,
and actions to be invoked. One example in Figure 3
illustrates partially dialog description of our state tran-
sition dialog editor. This figure shows that one menu
button and five buttons are displayed at one window
and when an user event is occurred on the menu but-
ton “Button Press” and the user selects “New” in the
menu items , “Createsheet” action will be performed.

Some notations and rules are defined to describe the
dialog with the state transition diagram. In the follow-
ing section, each part of Figure 3 will be described.
Present our system should be improved on the aspect
of dialog description definition because the current sys-
tem was made only for validation of effectiveness of our
met hod.

4.1. States

The states of an application are changed into the
next states based on the current state and the current
user’s event. In our system, the state starts from state
“1” and finishes to state “E’’ of one thread of a dialog.
For example, an arc drawn from 1 in a circle to 2 in
a circle means moving from one state to next state se-
quentially. The numbers represent sequence of change
of its states in an application.

Every state can be divided into several sub-dialog
description. Each sub-dialog can be defined depending

3 12

[Blbuttonl] : Create a button widget, “buttonl”

Blbuttonl : Create a button nidaet. “buttonl”
in a main nindow.

“ 7

in a child window.
[mblfile] : Create a menu button widget, “file”

in a main window.

in the menu button

-
menuINew ; Create a menu, “New”

Figure 4. Examples of description for interac-
tion items

on every state. The overall structure of the dialog can
be built by assembling all sub-dialog descriptions.

4.2. Transitions

Arcs are drawn to represent transitions from one
state to other state. Texts written on arcs consist of de-
scription for interaction items to be occurred the user’s
event, the user’s inputs, procedures to be invoked, and
description for condition.

4.2.1. Description for Interaction Items

4.2.2. Description for Events

We expressed the notations of events similarly to
the Tcl/Tk script. For example, “ShZft-B~tt~nl~’ repre-
sents the event the first button of the mouse is pressed
while shift key is pressed as the Tcl/Tk script.

The following explanation shows the detail event
type to be specified according to our description no-
tations partially. There are three event types based on
the user’s input action in the interaction aspects, and
some events can be represents by combination of these
events.

Mouse event : <Button-I> is an event that the

0 Key event : <Keypress-a> means that the input

Event in windows : <FocusIn> expresses that

first button of a mouse is pressed once.

of key “a”is received.

the focus moved into a window.

4.2.3. Description for Procedures

When the logical event is received at the current
state, the action will be triggered and after the action
is executed the state transfers the next state.

In our state diagram, for example, “:PopFaleLisf’
represents “PopFileList” procedure to be called as an
action by the user’s input event. The actions are sur-
rounded by “{” and “}”.

The internal details of a given action to be triggered
by the events are not described. The name of the ac-

In our system, 15 kinds of interaction items can be
described based on the graphics library of XF tool,
which is similar to the standard graphics components
of other interface builders.

The following shows a part of description for inter-
action items defined by our system.

tion is only noted. However, in case that the window
is pop-uped by the event, i.e., in case that the interac-
tion items are required to newly generate by the user’s
inDut. we determined to describe some kind of those

0 “B” represents a button widget, which is associ-
that invokes an action ated with Tcl

in the application.

“menu” represents a pop-up menu widget which
is posted in response to a keystroke or other event
in the application.

0 “Top” represents the widget of toplevel, which
is a building block for widget layout and it is
created as a new main window. This definition is
used to create a new window to control the dialog
of a visual context.

Interaction items to be generated on the main
window are used with “[,, and “I” and interaction
items in the child window are written without ‘‘P
and “y.
‘‘I” is the split representation to discriminate the
name and the kind of widgets.

Some examples in the Figure 4 are described accord-
ing to the above notations.

A I

actions differently from the above procedure because
some events occurred from the child windows. The
actions of those cases are represented with “0’ and
“)”. For example, (Can I windowl) represent new can-
vas named “ windowl” will be generated when a user’s
action occurs. This kind of description can be simply
written by a menu-driven system shown as an inner
panel of Figure 5 .

4.2.4. Description for Condition

Some procedures of an application will be acted on
under some condition of the current state of an appli-
cation. For example, under the situation which other
event is received or some conditions to perform an ac-
tion are satisfied, when the button is pressed, a pro-
cedure may be invoked. For that situation, we deter-
mined some notation to describe condition in a state

313

transition diagram because a state transitim diagram
does not have enough description power to represent
some conditions before one state transfers the next
state under certain input.

As our definition, a condition is described between
“(” and “)” , the name of interaction items to be acted
on is described at right hand side of “(” “)”.

Some examples described with several conditions are
shown as follows.

4.3.

(destroy)top2

When the toplevel window “top2” is only de-
stroyed, the designated procedure from a certain
widget will be performed.

(f ocusIn) widget I

When certain widget is focused in itself, the des-
ignated procedure will be performed.

State Transition Diagram Editor

We built a state transition diagram editor which has
several facilities. They will be explained at the follow-
ing sections in more detail.

4.3.1. Tracing the State Transition

The dialog designer can trace states in an applica-
tion, detect the wrong definition of a dialog and re-
build the diagrams repetitively. Graphically written
state transition diagram is recorded textually in a cer-
tain file. The designer can select necessary transitions
and trace application states.

4.3.2. Menu-driven dialog description

A user interface as shown Figure 5 was built to sup-
port easy description, which allows the dialog designer
to edit with both textual way and a menu-driven way.
In the case of menu-driven editing, by selecting just
necessary menus, the dialog designer can describe the
dialog simply and easily without knowledge on the de-
tail description notations and rules.

Each interface for both textual editing and menu-
driven editing is explained as follows.

1. Description for interaction items

The first entry box in a window of the right side
of Figure 5 is prepared so that the dialog desimer
can define interaction items to be generated ac-
cording to the rules as explained in section 4.2.

Figure 5. Menu-driven dialog description

2. Condition information

The second entry box in a window of the right
side of Figure 5 is prepared for defining some con-
ditions under which a user’s event is available.

3. Bind information

A sequence of events from the X window system
such as key press, button press are defined in the
third entry box in a window of the right side of
Figure 5. Also, procedure names to be performed
after binding defined events are written in it.

4. Description for interaction items to be pop-uped

When a child window is created by a user’s event,
interaction items to be placed on a child window
are defined in the forth entry box by selecting
appropriate menu items among menu buttons in
the right-hand window of Figure 5.

5. State transition information

A sequence of start state and next state to be
transferred is defined in the last entry box in a
window of the right side of Figure 5. The de-
scribed sequence corresponds to each state which
is written in a canvas widget already.

4.3.3. Showing code generated from the dialog
description

The application programmer can observe and refer
both the dialog manager and the application skeleton
code generated from the dialog description given by
the dialog designer. The programmer can complete the
whole application system by adding functional core for
a specific application to generated code while editing

3 14

and executing code with a facility which our state tran-
sition diagram editor provides. This function enables
rapid prototyping, which is one stage of a successful
application development process.

0 Simple manipulation such as dragging can be
done using interface builders.

These process can be done not by GUI expert pro-
grammers but by end-users or even graphics designers

Figure 6. Generated code

4.3.4. Executing the generated code

The developers including the dialog designer, graph-
ics designer, and the application programmer can see
and review both the graphics components on the
screen. After reviewing the screen design, state transi-
tion diagram can be rewritten and generated code can
be executed repeatedly. This facility makes it possible
to build rapid prototypes and enables the end-user’s in-
volvement from the beginning of the development pro-
cess.

5. Generation and Customization

Generally the definition of where to place interac-
tion items in the several windows to be pop-uped is
described in dialog control. However, specific layout
such as the size and arrangement is not designated.
Best look and feel of the interface cannot be obtained
from the design on the paper.

In our system, a default interface to be called pre-
customized GUI is generated from the dialog descrip-
tion. The generated GUI covers necessary and satisfac-
tory interaction items, however, specific layout are not
applied yet. Specific layout will be accessed by using
one of interface builders in regard to pre-customized
GUI. The result GUI to be completed by this process
is called post-customized GUI.

Customization will be performed while focusing on
the following aspects.

0 Layout on the size and arrangement can be ap-
plied regardless of the number and kinds of inter-
action items.

with esthetic sense. We can address partition of role as
our approach is an important process from the point of
view of the software development.

5.1. Generation of GUI

The dialog designer discriminates interaction items
will be generated on the main window or child win-
dows and describes according to the rules as described
at section 4. First of all, default items to be placed on
the main window will be generated based on the state
transition description. Next, if the dialog is designated
so that subsequent dialog can move on the child win-
dow according to user’s events and when any user’s
event occurs on an interaction item in the main win-
dow, a child window will be pop-up and some default
interaction items are generated on its child window.

Figure 7. Generated GUI

The Figure 7 represents one example of pre-
customized GUI from the dialog description of Fig-
ure 3. The left side of Figure 7 is the window gen-
erated from dialog description at first, and in this win-
dow when the “script” button is pressed, the right side
window is pop-uped as shown Figure 7.

5.2. Customization of a generated GUI

From the generated interaction items, the graphics
designer can customize the size and arrangement of
them while reviewing the look and feel of the inter-
face from the end user’s perspective interactively using

315

39 I 32
(numbers) I (numbers) I (pieces) I (minutes)

51 I 210

panel button
9 13

scrollbar list box
I I

9 1 8 1 8 1 2 1 1

menubutton menu canvas
2 8 1

label entry text

6. Experience
Figure 8. Post-customized GUI

Our system was implemented under Sun OS 4.1.3 +
XF version 2.3 + Tcl version 7.3 + T k version 3.6 on
SUN SPARCstation 20.

The ~i~~~~ 8 shows 2 menu buttons and 7 buttons
as the result obtained by modifying and refining pre-
customized GUI generated as shown in the Figure 7.
The text strings on the 7 buttons could be replaced
by bitmap images for the look and feel of the graph-
its designer. The XF tool supports to simply insert
other images made by the graphics designer to gener-
ated interaction items such as buttons by designating
the name of image files.

The Figure 9 shows another would-be desired con-
figuration different from Presentation style of Figure 8
by another customization way for Figure 7.

At first, we tried to describe dialog of our state tran-
sition diagram editor which we built.

Table 1 shows the results applied to dialog of our ed-
itor. The number of all generated items was 51 pieces,
It took about 190 minutes to describe dialog and 20
minutes to modify generated items according to de-
sired configuration using the XF tool. It takes a time
for a dialog designer to describe the dialog, however,
once interaction items are generated, it can take very
short time until completion of view parts of a GUI ap-
plication. In other words, the application programmer
can be freed from any burden of GUI programming.

Table 2 shows the number and kinds of interaction
items generated from the dialog description.

A Tcl/Tk script consists of one or more commands
and each command consists of one or more words 1151.
Therefore, we evaluated the scale of the whole sys-
tem by counting words of generated code with Tcl/Tk
script. Table 3 shows the scale of generated code, gen-
erated code was about 17 % of total code, which can
help the application programmer to reduce debugging
time for the control flow of interaction and the view
part in a whole system, in comparison ta the case that
he should write all control flow without dialog descrip-
tion and GUI programming as traditional works.

Figure 9. Another post-customized GUI

3 16

Table 3. Scale of nenerated code. 1 generated code(words)
(words
\ 1 procedure I dialog I interaction

1 skeleton 1 manager I items
6257 I 253 I 97 I 689

7. Conclusion

We presented a new idea to make construction of a
GUI application easy and quick by integrating a dialog
controller and an interface builder.

In our prototype system, automatic interface gener-
ation from various types of dialog such as multi-thread
and concurrent dialog is limited because we selected
state transition model. This kind of limitation cannot
be an critical point of our method. In order to eval-
uate the portability of our method, we are currently
working with Petri nets instead of the state transition
diagram.

Our method can generate and customize only stan-
dard interface independent of specific applications. In
the futuer, we will try to handle application depen-
dent interfaces. We are also considering another GUI
application development strategy such as construction
of GUI systems under the distributed environment for
more effective development process.

References

[7] Olsen, D. R., Buxton, W., Ehrich, R., Kasik, D. ,
J . Fihyne, and J.Sibert, “A Context for User Inter-
face Management ,” IEEE Computer Graphics and
Applications, Vol. 4, No. 12, pp. 33-42, 1984.

[8] Wiecha, C., Bennett, W., and Boises, S. Gould, J .
and Greene, S., “ITS: A Tool for Rapidly Develop-
ing Interactive Applications,” A CM Transactions
on Information Systems, Vol. 8, No. 3, pp. 204-236,
1990.

[9] Kitamura, M. and Sugimoto, A., “GhostHouse : A
Class Library for Generating Customizable Graph-
ical User Interfaces,” In Journal of IPSJ ’95, pp.
944957, IPSJ, 1995. (in Japanese)

[lo] de. Barr, D. et.al, “Coupling Application Design
and User Interface Design,” In Proc. CHI’92, pp.
259-266, ACM, 1992.

[ll] Wellner, P.D., “Statemaster, A UIMS based on
Statecharts for Prototyping and Target Implemen-
tation,” In Proc. CHI’89, pp. 177-182, ACM,
1989.

[12] Baeg, J., Hirahara A., Fukazawa, Y., “An Adap-
tive User Navigation Mechanism and its Evalua-
tion,” In Proc. APSEC’94, pp. 29-37, 1994.

[13] Working Party X/3, “Draft Recommendation
Z.120-Message Sequence Chart(MSC),” CCITT,
Mar 1992.

[141 Delmas, S., “XF(xf-2.3~11) ,” ftp.cs.tu- berlin.de.

[15] Welch, B., Practical Programming in Tcl and Tk,
Sun Microsystems, Inc., Open Windows Devel-
oper’s Guide 1.1, Reference Manual, Part No. 800-
5380-10, Revision A, 1990.

Armstrong J.C Jr , “Six GUI Builders Face Off,”
Sun World, December, 1992.

Olsen, D. R. , “User Interface Management Sys-
tems: Models and Algorithms,” Morgan Kaufmann
Publishers, Inc., 1992.

Prentice Hall PTR, 1995.

Szczur, M.R. and Sheppard, S.B. : TAE Plus:
Transportable Applications Environment Plus: A
User Interface Development Environment, A CM
Trans. Info. Syst., Vol. 11, No. 1, pp. 76-101, 1993.

Janssen, C., Weisbecker, A., and Ziegler, J., “Gen-
erating User Interface from Data Models and Dia-
log Net Specification,’’ In Proc. INTERCHI’93, pp.
418-423, ACM, 1993.

Bass, L. and Coutaz, J., Developing Software
for the User Interface, Addison-Wesley Publishing
Company, 1992.

317

http://berlin.de

