
Backup Route Design for Reliable and
Sustainable Packet Networks

高信頼パケットネットワークのための予備経路

設計法の研究

March 2013

Graduate School of Global Information and

Telecommunication Studies

Waseda University

Distributed Computing System II

Shohei Kamamura

鎌村　星平

Abstract

The goal of this study is to improve reliability and sustainability of back-
bone network. Concretely, we study the carrier-grade IP fast rerouting, and a
dynamic path protection for MPLS network. IP fast rerouting was developed for
the Internet, and was expected to realize sub-50ms restoration. For applying car-
rier networks, however, requirements for IP fast rerouting is not only recovering
within sub-50ms, but also having scalability and handling multiple failures. This
paper mainly studies scalability issue in Chapter 2 and extension of restoration
range in Chapter 3 respectively. In terms of implementation, IP fast rerouting
requires the specific forwarding implementation for a router. This prevents the IP
fast rerouting to becoming widespread. In Chapter 4, we also study the imple-
mentation issue, which utilizes OpenFlow and minimizes the impact to existing
hardware. Finally, Chapter 5 studies a relaxation of maintenance time for MPLS
path protection network.

i

Acknowledgments

This dissertation completes my achievements of research activities at Graduate
School of Global Information and Telecommunication Studies, Waseda University,
Japan, under the supervision of Prof. Hidenori Nakazato. I would like to express
my gratitude to Prof. Nakazato for his guidance and encouragement.

I also would like to appreciate Prof. Toshitaka Tsuda, Prof. Yong-Jin Park and
Prof. Yoshiaki Tanaka for their supervision for this dissertation. Prof. Tanaka
indirectly coaches my studies through domestic and international academic con-
ferences.

My work presented in this dissertation was also supported by NTT Network
Service Systems Laboratories. I would like to appreciate my supervisors, Mr.
Hedehiro Arimitsu, Dr. Koji Sasayama, Dr. Yoshihiko Uematsu, Mr. Takashi
Miyamura, and Mr. Daisaku Shimazaki. I also would like to appreciate my for-
mer supervisors, Mr. Atsushi Hirmatsu and Dr. Kohei Shiomoto. They gave
me an opportunity to get Ph.D while working for NTT Network Service System
Laboratories.

I would like to express my sincere appreciation to my mother Kuniko for her
support and encouragement that I received since my birth. I would not be where
I am today without them. My brother Ippei also played an important role for my
campus life when I was a scholarship student.

Finally, I would like to express my thanks and my love to my wife Mikako and
my daughter Hinako. Their smiles give me energy and bravery.

ii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Taxonomy of Reliable Network Design 2
1.3 Objectives of This Dissertation . 3
1.4 Dissertation Outline . 5

1.4.1 IP Fast Rerouting Using Spanning Tree-Based Backup Topolo-
gies . 5

1.4.2 Loop-free IP Fast Rerouting considering Double Link Failures 6
1.4.3 Implementation Design of IP Fast Rerouting using OpenFlow 7
1.4.4 Relaxed Maintenance Network using Dynamic 1+1 Path Pro-

tection . 7

2 IP Fast Rerouting Using Spanning Tree-Based Backup Topologies 9
2.1 Introduction . 9
2.2 Overview of IP Fast Rerouting . 10

2.2.1 Overview of Backup Topologies 11
2.2.2 IP Fast Reroute using Backup Topologies 11
2.2.3 Related Works . 12
2.2.4 Problem Statement . 13

2.3 Scalable Backup Topologies Creation 14
2.3.1 Overview of Our Algorithm 15
2.3.2 Algorithm . 15
2.3.3 Complexity of Our Algorithm 18

2.4 Performance Evaluation . 19
2.4.1 Simulation Conditions . 19
2.4.2 Minimum Number of Backup Topologies 20
2.4.3 Applicability to Actual Condition 21
2.4.4 Characteristics of Backup Routes 22

2.5 Conclusion . 24

3 Loop-free IP Fast Rerouting considering Double Link Failures 26
3.1 Introduction . 26
3.2 Forwarding Loop Problem and Problem Statement 27

3.2.1 Forwarding Loop Problem on Double-Link Failures 27
3.2.2 Problem Statement . 29

3.3 Packet Forwarding Algorithm without Failure Notification 30

iii

3.4 Backup Topology Design for Protection against Double Failures . . 32
3.4.1 Similarity Computation Based on Eigenvector of Adjacency

Matrix . 33
3.4.2 Topology Design Algorithm 34
3.4.3 Qualitative Characteristics of Algorithm 35

3.5 Performance Evaluation . 35
3.5.1 Effectiveness of Packet Forwarding Algorithm 35
3.5.2 Effectiveness of Backup Topologies Design Algorithm 37
3.5.3 Validity of Backup Topology Design Based on Similarity

Comparison . 38
3.6 Conclusion . 40

4 Implementation Design of IP Fast Rerouting using OpenFlow 41
4.1 Introduction . 41
4.2 Autonomous IP Fast Rerouting using OpenFlow 42

4.2.1 Network Model . 42
4.2.2 IP Fast Rerouting using OpenFlow 44
4.2.3 Discussion of Implementation Feasibility 46
4.2.4 Formulation of Restoration Time with Current IP and IP

Fast Rerouting . 46
4.3 Flow Table Compression with Shared Flow Entries 47

4.3.1 Shared Backup Forwarding Table Creation Algorithm 48
4.3.2 Forwarding Architecture using Shared Backup Forwarding

Table . 50
4.4 Performance Evaluation . 50

4.4.1 Simulation Conditions . 50
4.4.2 Restoration Time . 51
4.4.3 Compression Effect . 52

4.5 Conclusion . 54

5 Relaxed Maintenance Network using Dynamic 1+1 Path Protec-
tion 55
5.1 Introduction . 55
5.2 Related Works and Problem Statement 56

5.2.1 Related Works . 56
5.2.2 Problem Statement . 56

5.3 Network Architecture and Algorithm for Dynamic 1+1 Path Pro-
tection . 57
5.3.1 Network Architecture . 57
5.3.2 Algorithm for Dynamic Disjoint Path Discovery 59
5.3.3 Bandwidth Design for Dynamic Disjoint Path Discovery . . 61

5.4 Formulation for Maintenance Time 62
5.5 Performance Evaluation . 63

5.5.1 Effectiveness under the Network Design Problem 65
5.5.2 Effectiveness in Operating Network 67

5.6 Conclusion . 70

iv

6 Conclusions 71

Bibliography 73

Research Achievements 78

v

List of Figures

1.1 Taxonomy of reliable network design 2
1.2 Improving IP resilience . 3
1.3 Objectives and overview of this dissertation 4

2.1 Overview of backup topologies . 10
2.2 Key idea of our algorithm. Spanning tree is created from topology.

Backup topology is created from spanning tree. Links removed to
create spanning tree become protected links. Links connected to leaf
node become restricted links. Leaf nodes become protected nodes. . 14

2.3 Flowchart of scalable backup topology design algorithm 16
2.4 Example of our algorithm. (a) Processes in lines 29–30 of Table 2.2.

(b) Processes in lines 31–32 of Table 2.2. 19
2.5 Number of backup topologies in Waxman model. Average node

degree is 2. 21
2.6 Number of backup topologies in Barabasi-Albert (BA) model. Av-

erage node degree is 2. 22
2.7 Fast recovery ratio in BA model. Average node degree is 2. |V (G)|

is number of nodes. 23
2.8 Number of hops of flows that are affected by the failure (40-node

BA model). 24
2.9 Number of hops of all flows. (40-node BA model). 25
2.10 Worst-case link loads of all links (40-node BA model). Link ID is

sorted by link loads of conventional algorithm. 25

3.1 Overview of backup topologies. Each backup topologies are created
by spanning tree-based algorithm 27

3.2 Examples of forwarding loops when double failure occurs. In each
cases (i)-(iii), the node that detects failure x is noted as i, and the
node that detects failure y is noted as j. The link metric of each
link is assumed to be 1 for shortest path computation. 28

3.3 Loop-free condition providing protection from double-link failure. . 29
3.4 Example of failure point estimation. 31
3.5 Similarity comparison-based backup topology design algorithm . . . 32
3.6 Loop probability with minimal number of backup topologies. Num-

bers of backup topologies from 20 - 100 nodes resulted from span-
ning tree-based algorithm are 5, 7, 9, 11, 12 respectively. 36

vi

3.7 Required number of bit field for information notification. Existing
algorithm, benchmarks, and our proposal uses forwarding table ID
notification. Only optimal forwarding uses explicit failure notification. 36

3.8 Required number of backup topologies. Objective value of the loop
probability is set to 10−3. 37

3.9 Loop probability of cost239 model (11 nodes 25 links). 38
3.10 Similarity of cost239 model (11 nodes 25 links). 39
3.11 Loop probability of power-law (20 nodes 50 links). 39
3.12 Similarity of power-law (20 nodes 50 links). 40

4.1 Our network model. Each forwarding hardware has a dedicated sub
controller, and it performs the local control. 43

4.2 Forwarding architecture for IP fast rerouting using OpenFlow frame-
work. Table #0 corresponds to a primary forwarding table, and ta-
ble #1 corresponds to a backup forwarding table, which stores the
backup routes. 44

4.3 Example of flow table modification processes, and forwarding using
backup forwarding table. Only one flow is illustrated for simplification. 45

4.4 Relationship between backup topologies and backup routing tables,
and an overview of flow table compression. 48

4.5 Shared backup table creation algorithm. 49
4.6 Structure of matrix nextHop[P][M]. 49
4.7 Forwarding sequence using shared backup table. 50
4.8 Restoration Time with optimal OSPF(full/partial), and IP fast

rerouting. 52
4.9 Effectiveness of compression algorithm on Power-law network. . . . 53

5.1 Dynamic path reconfiguration architecture. 57
5.2 Control sequence of dynamic path reconfiguration and reversion. . . 59
5.3 Simulation topologies and traffic matrix for COST239 model. 64
5.4 Average blocking probability of the dynamic path reconfiguration

and three-path predesign design method. The number in brackets
means the sparse node ratio. 66

5.5 Simulation Scenario for failure repair. The maintenance time of (a),
and (b) is over 48 hour and 24 hour respectively. 67

5.6 Blocking probability with different dynamic path protection algo-
rithms on cost239 model. 68

5.7 Figure shows the cumulative distribution function (CDF) of main-
tenance time when maximum link utilization is 0.5 on COST239
topology model. 69

vii

List of Tables

2.1 Notation for scalable backup topology design 17
2.2 Algorithm for scalable backup topology design 18

3.1 Notation of Algorithm1 . 30
3.2 Algorithm1: packet forwarding without failure notification. Above

figure illustrates the BTS table creation for node n. 30
3.3 Algorithm2:Topology adding algorithm. Input information is origi-

nal topology and current set of backup topologies. 34

5.1 Notation for W-CSPF Algorithm. 60
5.2 W-CSPF Algorithm. 61
5.3 Total amount of required resources and path lengths on cost239

model. 65

viii

Chapter 1

Introduction

1.1 Background and Motivation

Internet Protocol (IP) became a core technology for not only the Internet but also
some of carrier networks such as next generation network (NGN) [1]. The most
peculiar point of IP is adaptability to network environment changes. In IP net-
work, alternative packet routes are autonomously provided by each IP router when
network state changes because of periodical maintenance or failures [2]. That is,
reachability among any routers is assured as long as physical network connectivity
is maintained. On the other hand, this autonomous property requires the reactive
actions after network changes: collecting the updated network topology informa-
tion, recomputing the alternative routes, and updating the database in router,
which stores the route information. These reactive actions should be also synchro-
nized among all routers. The total time for the above-mentioned reaction, which
also mean restoration time from a failure, becomes over several tens of seconds in
a worst case. During this time, the packets which do not have alternative routes
are dropped. Long restoration time is a barrier to achieving carrier-grade service
level agreement (SLA).

As an alternative, multi-protocol label switching (MPLS) technology, which
provides connection-oriented paths, was also proposed for a backbone network
[3]. Recently, MPLS transport profile (MPLS-TP) [4], which extended operations,
administration and management (OAM) functions for MPLS, was also proposed.
These technologies enable network operators to establish explicit paths among
nodes, and network is operated in accordance with the operator’s proactive network
design. MPLS provides fast restoration against a failure by 1+1 path protection
mechanism. The 1+1 path protection provides primary and backup paths, which
are link- or node-disjoint paths. Traffic data is transmitted on both paths, and
the receiver node switches receiving data; therefore, it can achieve lossless data
transmission even on the failure of the one of the paths. On the other hand, unlike
IP, MPLS cannot flexibly handle unexpected network changes because paths are
statically designed.

The goal of this study is to provide reliable and sustainable network design by
enhancing both IP and MPLS respectively. Because each technology has different
domain of applicability, enhancement of each technologies is required; upper layer

1

Figure 1.1: Taxonomy of reliable network design

IP restoration is generally superior to MPLS in terms of cost-effective restoration,
and MPLS provides a potential for traffic engineering to network operators. To
complement drawbacks of both technologies, we study an IP fast rerouting, which
can also handle carrier-grade requirements, and a dynamic path protection for
MPLS network.

In this chapter, we first describe taxonomy of existing reliable network designs
in Section 1.2. Section 1.3 provides objectives of this dissertation. The outline of
this dissertation is shown in Section 1.4

1.2 Taxonomy of Reliable Network Design

As shown in Fig. 1.1, technologies for reliable network design are classified roughly
into 2 classes: proactive protection and dynamic restoration [5]. In the protection
technology, backup routes are precomputed and preconfigured. Fast restoration
against a failure is realized by skipping some reactive recovery actions. On the
other hand, reactive restoration technology computes and configures backup routes
after a failure. This means that though the restoration time increases compared
to the protection technology, backup routes are optimized in accordance with the
changed network topology. The proactive protection is realized by explicit path
configuration with MPLS, and the dynamic restoration is realized by IP routing
protocol such as open shortest path first (OSPF) [2] and/or border gateway proto-
col (BGP) [13]. OSPF is used for controlling single domain routing. In an OSPF
network, each router has the whole network topology information, and it is syn-
chronized among routers. A route from a source router to a destination router is
computed based on a link metric, which is assigned to each link in the network.
The shortest path, whose summation of link metrics is minimal, is provided as
the route. BGP is used for exchanging route information between multiple net-
work domains. BGP distributes routing information with some attributes, and it
indirectly determines the intra-domain and/or inter-domain routes.

For the IP reactive restoration, a main issue in terms of improving IP re-
silience is its long restoration time. As shown in Fig. 1.2, there are some methods
to shorten the restoration time. As reactive-approaches, the full flooding and
limited flooding were proposed. The former is classified as the fast convergence
and the efficient resource management. For the fast convergence, minimization of

2

Figure 1.2: Improving IP resilience

the convergence time [6, 14, 15] and the computation time [7] for OSPF or BGP
were proposed. For the efficient management, routes are preliminary optimized by
assuming possible network changes [8–11]. For example, heuristic algorithms for
the link metric design under the OSPF network to minimize the maximum link
utilization was proposed [8, 10]. Wang et al. proposed the link metric optimiza-
tion method using mathematical programming under unequal splitting of OSPF
environment [9]. Fortz and Thorup also proposed the link metric design, which
considered the operation overhead by limiting the number of metric changes [11].
In the limited flooding, convergence time is shortened by limiting notification area
of OSPF flooding [12].

Recently, IP fast rerouting, which embeds the concept of MPLS proactive
protection to IP, have been proposed. There are technologies for intra-domain
control [24–37], and for inter-domains control [16–23]. The basic strategy of IP
fast rerouting is precomputing backup routes like MPLS path protection, and
switching primary routes to backup routes after a failure occurrence. In pure
IP network, because there are no schemes to maintain the precomputed backup
routes, IP fast rerouting technologies require extension of the current IP frame-
work. For example, backup topology-based approach [24–29] has multiple routing
tables in a router, and uses them in accordance with network status. Loop-free
alternate approach [30] preliminary stores the alternative next hop information
against failure occurrences, and not-via approach [31] indirectly has next hop in-
formation, which is realized by encapsulation of IP addresses. For other IP fast
rerouting [32–37], though the mechanism of failure detection and packet forwarding
are different, basic strategy is preparing backup tables, which store precomputed
backup routes. For BGP networks, similar method is applied: storing precom-
puted backup routes [16–21], using precomputed tunnel [22], and having multiple
control planes for BGP [23].

1.3 Objectives of This Dissertation

As shown in Fig. 1.3, IP and MPLS are used for realizing reactive restoration and
proactive protection respectively in terms of reliable and sustainable packet net-

3

Figure 1.3: Objectives and overview of this dissertation

work design. As a result, the main disadvantage of IP is the longer restoration time
though it can handle unexpected network changes by its autonomous and reactive
property. Inversely, the main disadvantage of MPLS is low adaptability to network
changes though its proactive restoration mechanism can achieve fast restoration.
Though there were many studies for shortening IP restoration time based on IP
reactive property, their restoration time did not reach the level of MPLS proactive
protection. For example, the goal of [6,7,12,14,15] is minimizing convergence time:
convergence time does not become zero. The goal of predesign approaches [8–11] is
producing the total optimization solution by assuming multiple network changes:
routes are not necessarily optimized for each network configuration. Against these
technologies, IP fast rerouting [16–37] is based on the concept of path protection,
which prepares the precomputed routes. It can provide short restoration time,
which is equivalent to MPLS path protection. That is, IP fast rerouting is a
typical case in which a technology is improved by deriving an idea from an alter-
native technology: we believe that this research acts as a catalyst for technical
breakthrough.

Because IP and MPLS respectively have different domain of applicability, en-
hancement of each technologies is required. For example, IP restoration is gener-
ally superior to MPLS in terms of cost-effective restoration because it could handle
both the under layer failures (e.g., fiber-cut) and upper layer failures (e.g., router
interface down). On the other hand, MPLS has potential for traffic engineering
by utilizing its explicit route design framework.

From the above observation, the goal of this study is to improve reliability
and sustainability of backbone networks by enhancing both technologies: IP and
MPLS. Concretely, we study the carrier-grade IP fast rerouting and the dynamic
path protection for MPLS network (Fig. 1.3). Noted that this study focused on
control of the intra domain network, which is operated by a single carrier. Study
for BGP network is outside the scope of this paper.

Followings are issues covered in this paper.

Enhancement of IP Fast Rerouting

Firstly, we study the IP fast rerouting, which satisfies the carrier-grade require-
ments. Carrier-grade requirements for the failure restoration are as follows.

1. fast restoration (sub-50ms)

4

2. scalability for the large-scale network

3. handling multiple failures

Basically, IP fast rerouting was developed for the Internet. Then, requirements
(2) and (3) were not specifically considered. Therefore, this paper mainly studies
scalability issue and extension of restoration range.

Secondly, we also tackle the implementation issue of IP fast rerouting. As
previously described, IP fast rerouting requires the specific forwarding mechanism.
This prevents the IP fast rerouting to becoming widespread. In this paper, we
challenge to realize the implementation method which minimizes the modification
of existing hardware.

Enhancement of MPLS Path Protection

For enhancement of MPLS path protection network, we challenge to the problem
for relaxing the maintenance time for 1+1 path protection environment.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows. Chapter 2 addresses the
scalability improvement of IP fast rerouting. Noted that most part of Chapter
2 consists of my previous works before the doctoral program. However, it pro-
vides a key concept of IP fast rerouting and guidance of deep understanding for
the following chapters. Therefore, in this chapter, we present our previous study
in detail. Chapter 3 addresses the IP fast restoration problem from concurrent
double failures. Chapter 4 presents an implementation of IP fast rerouting with-
out hardware modification. Chapter 5 addresses relaxed maintenance for MPLS
path protection network. Finally, Chapter 6 concludes the dissertation. Below we
present an outline for each chapter.

1.4.1 IP Fast Rerouting Using Spanning Tree-Based Backup
Topologies

Chapter 2 introduces the basic concept of IP fast rerouting using backup topology.
In this framework, backup routes are precomputed based on the backup topologies.
An arbitrary single failure is protected in at least one backup topology. When a
packet encounters a failure, a backup topology ID is attached to the packet header.
There are backup forwarding tables associated with backup topologies. Then, the
packet is sent to the backup next hop designated by the backup forwarding table
by referring to the backup topology ID. These precomputation-based forwarding
mechanisms prune away the reactive actions such as global failure notification and
recomputation of backup routes, and then fast restoration is realized.

In this chapter, we first introduce the existing works for IP fast rerouting.
Then, we introduce our fundamental backup topology design algorithm, which
minimizes the number of backup topologies. In IP fast rerouting framework using

5

backup topologies, the number of forwarding tables is proportional to the number
of backup topologies. In addition, length of available packet header field (e.g.,
ToS) is limited. Then, minimization of the number of backup topologies becomes
an important issue. In our proposal, each backup topology is made such that the
available links and nodes in each backup topology consists spanning tree: this
strategy maximizes the number of protections in each backup topology, and then
the number of backup topology is reduced. We showed that the number of backup
topologies is reduced up to 60% compared to the existing design algorithm.

1.4.2 Loop-free IP Fast Rerouting considering Double Link
Failures

Chapter 3 proposes an IP fast rerouting whose restoration range is extended from
a single failure to double failures. In particular, we tackle the suppression of the
forwarding loop while keeping the number of backup topologies.

We propose a novel forwarding algorithm which avoids forwarding loop while
using only the backup topology ID contained in the packet header. To avoid the
forwarding loop, failure detecting router only has to notify the explicit failed point.
However, available IP header field is finite (e.g. 8 bit), and then applicability of
this approach is restricted up to 80 nodes network. Our algorithm estimates the
first failure point from the backup topology ID: this algorithm could reduce the
occurrence of forwarding loops while it does not limit applicable network size for
practical use.

We also propose a backup topology design algorithm considering double link
failures while suppressing the number of backup topologies. When the restoration
target is extended from single-link failures to double-link failures, the number of
failure patterns becomes the combination of two-links. A sufficient condition for
achieving loop-free restorations is that arbitrary two-links are protected on one of
the backup topologies, and then the required number of backup topologies is large.
In this chapter, we focus on the fact that the above condition is not necessary and
causes redundant backup topologies because the backup route could be constructed
by a combination of backup topologies. Concretely, our backup topology design
algorithm increases the diversity of backup routes by raising the frequency of ap-
pearance of links, which have high betweenness centrality, on backup topologies.
The betweenness centrality is a measure of appearance of a link in paths, and
it equals to the number of shortest paths from all vertices to all others that pass
through that link. We express the characteristic of a topology by betweenness cen-
trality of links. We derive the set of backup topologies whose aggregated number
of links is proportional to the betweenness centrality of the original topology. We
express both the betweenness centrality in the original topology and the number of
links connecting the same adjacent nodes in the network where backup topologies
are superimposed as adjacency matrices. Then we calculate the principal eigen-
vectors of both matrices. In this way, their similarity can be easily observed by
computing the cosine similarity of eigenvectors.

Our packet forwarding algorithm can reduce the average loop probability from

6

10−2 order to 10−3 order compared to the existing algorithm. For the backup
topologies design, our algorithm can reduce the number of backup topologies about
35-50% compared to the simple benchmark algorithm, where arbitrary two-link
pairs are protected on one of the backup topologies.

1.4.3 Implementation Design of IP Fast Rerouting using
OpenFlow

Chapter 4 proposes an implementation design for IP fast rerouting using Open-
Flow. As previously described, many algorithms for backup topology design were
proposed. In addition, a framework, which constructs multiple forwarding tables
in a router, was standardized by IETF. However, there were few discussions for
implementation and there was no implementation for commercial routers. This
is because that IP fast rerouting requires the coordination of specific forwarding
functions to a forwarding hardware, and then its implementation becomes more
complicated. In this chapter, we focus on the OpenFlow protocol, which phys-
ically separates control functions from forwarding hardware, and places them in
software controllers. To store multiple forwarding tables, we utilize the pipeline
processing with multiple flow tables defined in OpenFlow switch specification 1.1.
Then, forwarding functions, which are specifically required for IP fast rerouting,
are implemented in the programmable controller. That is, we could achieve IP fast
rerouting without any extension of current forwarding hardware. On the contrary,
increase of backup routes becomes main overhead of our proposal. We also embed
the compression mechanism of backup routes using shared memory to our IP fast
rerouting implementation design.

This chapter provides validity of our implementation design for IP fast rerout-
ing through computer simulation. Firstly, we showed that our proposal could
achieve sub-50ms restoration without any extension of current forwarding hard-
ware. In addition, our flow table compression mechanism can reduce the size of
flow table up to 50% compared to the existing algorithm.

1.4.4 Relaxed Maintenance Network using Dynamic 1+1
Path Protection

Chapter 5 presents the dynamic path reconfiguration method in 1+1 path protec-
tion network for relaxing the restriction in terms of the maintenance time. The
1+1 path protection provides fast restoration by preliminary establishing both
primary and backup paths. In terms of network operation, when network equip-
ment (physical link or node) failed, network operator should rapidly repair the
failed equipment to satisfy the certain level of availability (e.g., 99.9999%). How-
ever, repairing physical failure such as fiber-cut requires long time which includes
equipment procurement. In addition, failure occurrence at night needs expensive
human resources. In this chapter, we propose a network architecture and path
computation algorithm to maintain 1+1 path protection as much as possible af-
ter a single failure by dynamically assigning new backup path. Establishing new

7

backup path in a few seconds realize both the minimization of the duration in
which the target availability is not satisfied, and relaxing of the restriction in
terms of the maintenance time.

In this chapter, we evaluated our proposal in two perspectives: network design
problem and network sustainability problem. From the network design perspective,
we evaluated total equipment cost, path length, and blocking probability of our
proposed dynamic approach and a static design approach on various forms of
networks. The static design approach we used is the one which establishes three
independent paths in advance. The number of sparse-node becomes the main factor
of an increase of blocking probability. Our dynamic path protection, which behaves
like a link protection mechanism, could maximally avoided the influence of sparse-
node existence, and then reduce blocking probability about 53% compared to the
static design. From the network sustainability perspective, our algorithm, which
utilizes available resources as much as possible, could reduce blocking probability
about 10%-20% compared to simple benchmark algorithms. It also results in
increase of allocatable maintenance time. Using our method, the portion of failures
which allow more than 100-hour repair time increases 10%.

8

Chapter 2

IP Fast Rerouting Using
Spanning Tree-Based Backup
Topologies

2.1 Introduction

Link-state routing protocols, such as Open Shortest Path First (OSPF) [2], are
being widely used for intra-domain routing resolution, but finding alternate routes
requires a few seconds after a failure occurs [24]. This recovery time is too long
to achieve robustness for the increasing number of multimedia applications. IP
fast rerouting techniques have been studied to achieve recovery within just a few
milliseconds [24–37]. The basic idea of IP fast rerouting is to reduce recovery time
after a failure by precomputing backup routes. The multiple routing configurations
(MRC) method has been proposed for IP Fast Rerouting [24]. The MRC method
prepares backup topologies, which are precomputed and used for finding a detour
route after a failure. In a backup topology, some links are assigned a higher
metric value. A metric is integral value, and represents the cost of the link for
path computation. Such links are called protected links and the backup topology
provides detour routes on the failures of those links. Every link is required to be
a protected link in at least one backup topology. In this way, we can achieve fast
recovery against any single failure by using backup topologies.

We define the backup topology-creation problem tackled here as minimizing
the number of backup topologies for ensuring network scalability and applicability
to real networks. The total number of backup topologies is an important factor.
Requiring too many backup topologies consumes a large share of router resources.
This is because the sizes of the routing table kept in a router is proportional
to the number of backup topologies. Moreover, if the required number of backup
topologies exceeds the available number which is restricted by router configuration,
fast recovery cannot take place for some failures because not-necessarily all backup
topologies can be installed in every router. Therefore, minimization of the number
of backup topologies is the main issue for achieving scalable and applicable IP fast
rerouting.

9

Figure 2.1: Overview of backup topologies

We propose a backup-topology-creation algorithm for minimizing the number
of backup topologies. The key point of our algorithm is that each backup topology
is made such that the topology, excluding the protected links, forms a spanning
tree. A spanning tree of a given topology is a minimal set of links that connects
all nodes. Therefore, this process maximizes the number of protected links in
one backup topologies. The next sub-problem is how to generate the minimal
set of spanning trees that protects all the links. We solve this sub-problem by
link-weight manipulation considering link properties. The evaluation results show
that our algorithm achieves fast restoration of all traffic with only a few backup
topologies.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the
overview of IP fast rerouting, related works, and our problem statement. In Section
2.3, our new backup topology-creation algorithm is presented. Our evaluation
results are shown in Section 2.4. Finally, we conclude our discussion in Section
2.5.

2.2 Overview of IP Fast Rerouting

In this section, we describe the characteristics of backup topologies used with the
MRC method and introduce IP Fast Rerouting using backup topologies. We also
provides related works, and then we state our problem.

10

2.2.1 Overview of Backup Topologies

The characteristics of backup topologies defined by Kvalbein et al. [24] are as
follows (Fig. 2.1). A backup topology consists of normal links, protected links,
restricted links, and normal and protected nodes. A protected link is a link that
may fail and is protected by the backup topology, and a restricted link is a link that
can be used only as the first or last hop for packets that use the backup topology.
A link failure is protected by using protected link, and a node failure is protected
by using protected node. The metric of a protected link is set to the maximum
value provided by the link-state routing protocol, and the metric of a restricted
link is set to a large value, although it is not the maximum value [24]. A protected
node is a node that is only connected to protected and restricted links. That is,
protected links and nodes are the resources protected by backup topologies. They
are not used to forward traffic when a resource fails.

Backup topologies should satisfy the following characteristics for protecting not
only any single link failure but any node failure.

1. Each backup topology is a connected graph that does not contain protected
links.

2. The union of the protected nodes and links of all backup topologies corre-
sponds to the original topology.

3. Among the links that are connected to a protected node, at least one is a
restricted link, and the others are protected links. The opposing node of a
restricted link must not be a protected node in the same backup topology.

If backup topologies satisfy the above conditions, an arbitrary link is a protected
link in at least one backup topology. That is, any single link failure can be pro-
tected. In addition, backup topology can handle any single node failure. Handling
a node failure means that it provides a detour route which does not use links which
connect failed node except when the failed node is the destination node. Failure-
detecting node detects a link failure even if a link failure is caused by a node failure.
Then failure-detecting node selects backup topology whose node connected with
failed link is protected node. In packet forwarding process by using above backup
topology, the links that are connected with the failed node are not used except
when the failed node is the destination node. This is because the failed node is the
protected node: it is only connected to protected and restricted links. Therefore,
the detour route determined by the backup topology avoids the protected node.
Thus, for each single failure, there is a backup topology that avoids the failed
resources.

2.2.2 IP Fast Reroute using Backup Topologies

IP fast rerouting can be achieved by using backup topologies [24]. Each backup
topology is precomputed and installed in routers. Backup topologies are used to
define different topologies, which employ different metrics. Each router computes

11

the shortest path and then creates the routing entries (relationship between desti-
nation IP address and next hop node) based on the original topology, and for each
backup topology. If the router detects a link failure, it searches for the backup
topology that protects the failed resource. Next, the identifier of the selected
backup topology is marked in the type of service (ToS) field of the IP header. Af-
ter this marking, the failure-detecting router forwards the packets to the next hop
node according to the routing entry of the selected backup topology. Other routers
can forward the IP packets according to the same backup topology by referring to
the ToS field. We explain the example using Fig. 2.1. If node 1 detects the link
1-3 failure when the packets whose destination addresses are node 3 arrive at node
1, node 1 selects backup topology #1 because the failed link (1-3) is protected.
Then, these packets are forwarded to nodes 6, 5, 4, 2, and 3 according to backup
topology #1 by referral to the ToS field. Protocol extensions called multi topology
routing [39] is being standardized for realizing IP fast rerouting.

While the current IP restoration requires long time for restoration, it could
provide globally optimized backup routes through global convergence. Then, the
IP fast rerouting scheme can also work with the current IP restoration mecha-
nism. In parallel with the recovery process of IP fast rerouting, updated link
state advertisements (LSA) are flooded to each router, and new routes are com-
puted. As previously described, this global convergence requires long time, and
then packet forwarding based on the IP fast rerouting are performed until the
current IP restoration is resumed. That is, IP fast rerouting can also play a role
as supplement of the current IP restoration.

2.2.3 Related Works

Motivation of IP fast rerouting is realizing millisecond-order recover time without
alternate packet forwarding techniques such as MPLS [3]. In this section, we
introduce existing IP fast rerouting techniques [24–37], and qualitatively evaluate
them.

Many algorithms for backup topology design have been proposed [24–29]: these
involve basic design [24], minimizing the number of backup topologies [25, 26],
load-balancing of backup routes [28,29], and considering multiple failures [27]. In
addition, a framework, which constructs multiple routing tables, is standardized
by IETF [39].

A loop-free alternate (LFA) [30], which does not require extensions to existing
link-state routing protocols to set the proper link metrics, has been proposed. The
node that detects a failure forwards the IP packets to the node called the LFA,
which is not the original next hop. The link metrics are set so that the route from
the LFA to the destination node does not include the node detecting the failure.
Therefore, routing loops are avoided. This technique was standardized by IETF.
However, the drawback of this technique is lack of flexibility: it cannot handle
single failures in arbitrary topologies because routes based on link metrics depend
on the topology [38].

A not-via address approach has also been proposed [31]. The key idea of not-
via address is tunneling: IP packets are encapsulated and a header is added to

12

the packets. This header contains the not-via address. The encapsulated packets
detour around failure points because the route for a not-via address is precomputed
to avoid the failure points. This header with the not-via address is removed at
nodes located downstream of the failure points, and the IP packets are forwarded
according to the original destination address. Generally, the drawback of the
tunneling approach may give less optimal backup paths, and less flexibility with
regards to post failure load balancing.

Nelakuditi et al. [32] proposed an IP fast rerouting technique called failure
insensitive routing (FIR). The key point of FIR is that a failure point is estimated
from the relationship between the destination IP address of an incoming packet
and incoming interface. If packets are received on an irregular interface, which
is connected with the next hop node on the shortest path to the destination, the
router interprets that as a failure having occurred on the shortest path. The
advantage of this estimating approach is that there is no need to advertise the
failure point. FIR is extended to handle node failure [33] and to work on an inter-
domain environment [34]. However, it cannot handle multiple failures, and it needs
extension of commercial routers.

Xi. et al proposed their IP fast rerouting called ESCAP [35]. Their algorithm
define the bypass port called backup port, and it is used for rerouting. Their
scheme and FIR [32] share similar ideas. The difference is that they develop a
different algorithm that does not have any assumptions on the primary paths: the
primary paths can be either shortest or non-shortest. They also proposed an IP
fast rerouting scheme for IP multicast inspired by the ring protection mechanism
[36], and an IP fast rerouting considering SRLG failure [37]. However, like FIR
algorithm [32–34], it also requires their own extension.

Our attention in deploying the IP fast rerouting is its flexibility and applica-
bility to actual networks. For the flexibility such as backup path optimization and
recovering from various failures, MRC approach [24–29], FIR approach [32–34],
and ESCAP [35–37] frameworks are good solutions. On the other hand, for the
applicability to actual networks, standardization is a good indication, and MRC,
LFA [30], and not-via address [31] frameworks are suitable. Therefore, we believe
that MRC framework, which has both the flexibility and applicability, is promis-
ing technology for extending the current IP network to more resilient and reliable
network.

2.2.4 Problem Statement

Minimizing the number of backup topologies [25, 26] is the most important issue
for ensuring network scalability and applicability to actual condition.

For the network scalability, memory size of routers is the main issue. This
is because the size of the routing table kept on a router is proportional to the
number of backup topologies. An example is shown in Fig. 2.1. While the routing
table with OSPF is only based on the original topology, this table with MRC
is based on the original topology and on all backup topologies. In Fig. 2.1,
only router IDs are registered on routing tables for intuitive understanding of
relationship between backup topology and routing table. Therefore, the number

13

Figure 2.2: Key idea of our algorithm. Spanning tree is created from topology.
Backup topology is created from spanning tree. Links removed to create spanning
tree become protected links. Links connected to leaf node become restricted links.
Leaf nodes become protected nodes.

of entries on one table seems to be proportional to the number of nodes in the
network. On the other hand, in an actual network, each router should maintain
route prefix for router interfaces and external routes as destination IP address.
There are typically many routing prefixes in the range of several thousand [40]. In
IP fast reroute techniques, a large table is required with its size proportional to the
number of backup topologies, and then required memory size of routers becomes
huge. Minimizing the number of backup topologies is therefore required to ensure
scalability.

For the applicability to actual network, limitation of packet header size is the
main issue. In IP fast reroute techniques, the identifier of the selected backup
topology is transmitted by a field, such as ToS field, in IP header. However,
the field size is finite, and operator would like to restrict the use of its space
for differentiated services codepoint [41]. The available number of bits in an IP
header is determined in an actual network. If the required number of backup
topologies exceeds the number that can be expressed with the available bits, fast
recovery cannot be implemented. Minimizing the number of backup topologies is
also required in this sense.

From the above observation, the problem we want to first solve is to minimize
the number of backup topologies for ensuring network scalability and applicability
to actual condition. Cicic et al. [25] proposed an algorithm to reduce the number
of backup topologies. However, their algorithm requires addition of another in-
formation table, called a last-hop recovery table, for fast recovery. It is therefore
not suitable for the current multiple topology routing architecture [39]. In this
chapter, we introduce our previous work [26] that minimize the number of backup
topologies only by improving backup topologies design algorithm.

2.3 Scalable Backup Topologies Creation

In this section, we present an overview of our algorithm, and then describe it in
detail.

14

2.3.1 Overview of Our Algorithm

The key idea of our algorithm is that each backup topology is made so that the
topology, excluding the protected links, becomes a spanning tree (Fig.2.2). The
spanning tree of a given topology is a minimal set of links that connects all nodes.
We use a spanning-tree-based approach for the following reason. To reduce the
number of backup topologies necessary, each backup topology should protect as
many links as possible. Therefore, a backup topology should be a spanning tree,
and a spanning-tree-based topology can maximize the number of protected links
in one topology.

The next sub-problem is how to generate the minimal set of spanning trees
that protects all links. To solve this sub-problem, overlapping of protected links in
each backup topology should be minimal. Therefore, we prioritize the protection of
non-protected links by link-weight manipulation. We create a minimum spanning
tree by the Kruskal algorithm [42]. A minimum spanning tree is a spanning tree
whose summation of the link weights is minimal. Therefore, the weights of non-
protected links are set to a higher value. The links with higher weights then tend
to be removed at the time the spanning tree is created. Therefore, the links with
higher weights tend to be protected with priority.

Figure 2.3 shows an overview of our algorithm. The processes in steps 1 and
2 are the key points shown in Fig. 2.2. The process in step 3 checks the end
condition. If all nodes and links are protected or number of backup topologies
becomes maximum number, a set of backup topologies is produced. The process
in step 4 determines the set of weights for creating the next optimal spanning
tree. This process needs L iterations. For a performance gain, M iterations can be
applied to our algorithm in step 5. In the next section, we describe our algorithm
in detail.

2.3.2 Algorithm

Our algorithm automatically creates backup topologies from an undirected weighted
graph, G, and the maximum number of backup topologies N . N is used when the
available number of backup topologies is restricted. The details of our algorithm
are shown in Table 2.2, using the notation shown in Table 2.1. The following pro-
cess is continued until the set of backup topologies that satisfy the characteristics
shown in Section 2.2.1 is created or the number of backup topologies exceeds N .

In step 1, parameters are initialized (lines 1–5), and a set of initial link weights
are determined (line 4). Our algorithm randomizes the initial weight value for
the iteration occurring in step 5. It should be noted that the set of weights for
creating the spanning tree is different from the set of metrics configured in the
backup topologies.

In step 2, the spanning tree is created on the basis of a set of given weights,
and then one backup topology is created from this spanning tree (lines 7–16). We
create a minimum spanning tree with the Kruskal algorithm. A minimum spanning
tree is a spanning tree whose summation of link weights is minimal. Therefore, the
links with higher weights tend to be removed. The leaf nodes in the spanning tree

15

Figure 2.3: Flowchart of scalable backup topology design algorithm

then become protected nodes (lines 8–10). The links that are removed to create
the spanning tree become the protected links (lines 11–13). The links that are
connected to the leaf nodes in the spanning tree become the restricted links (lines
14–16).

In step 3, the end of our algorithm is evaluated (lines 20–24). Our algorithm
maintains a graph, G’, which consists of non-protected links and nodes. If G’
is empty, our algorithm goes to line 38 (line 21). If a backup topology whose
protected nodes and links are all elements in G’ can be created, our algorithm
creates such a backup topology and goes to line 38 (line 24). If the available
number of backup topologies is restricted by N and the current number of backup
topologies equals N , our algorithm should stop generating next backup topologies,
even if all nodes and links are not protected, and goes to line 38.

In step 4, as mentioned earlier, we solve the sub-problem of discovering the
minimal set of spanning trees that protects all links by link weight manipulation
(lines 26–36). First, K sets of weights are created. With each new set of weights,
we prioritize the isolation of nodes and links that have not been protected. The
weights of the non-protected links in the previous backup topology are increased
by a random value (line 30). This process protects non-protected links. Next, the
weight of one link connected to a non-protected node is set to a lower value, and
the weights of other links connected to it are set to a higher value (line 32). This
process ensures that the non-protected node becomes a leaf node in the spanning
tree. Figure 2.4 shows examples of these processes. The best set, i.e., the set with
the most new protected nodes and links, is selected (lines 34–36), and then the
process starts again from the creation of a backup topology (step 2). This iteration

16

Table 2.1: Notation for scalable backup topology design

p identifier of backup topologies

m index number for M iteration

n index number for selecting best set

M maximum number for M interation

K maximum number for iteration for selecting
best set

G graph

V (G) set of all vertices in G

E(G) set of all edges in G

Worg(e) original metric of link e in graph G

W (p, e) metric of link e in backup topology p

W n
mst(p, e) weight of link e for creating spanning tree in

p

Wr metric of restricted links (high value)

MST n(p) minimum spanning tree of G based on
W n

mst(p, e)

RAND() returns random value from Wmin to Wmax

COPY(X) returns a copy of X

DEL ELEMENT(x,X) deletes element x from set X

NEW PROTECTED(T) number of new protected node (link) by tree
T

process from step 4 to step 2 is performed L times. If maximum number of backup
topology N does not be given, final value of L becomes maximum number of while
loops, that is described in section 2.3.3. If maximum number of backup topology
N is given, final value of L becomes N − 1 because n times iteration produces
n+ 1 backup topologies.

In step 5, we iterate our algorithm (lines 38–44). In our algorithm, the form
of the first spanning tree is determined by a fixed set of weights. This set of
weights affects the generation of subsequent spanning trees that protect the non-
protected components. However, sometimes this first set may not be appropriate
for generating the subsequent set. Therefore, we iterate our algorithm M times
with different initial sets of weights (lines 38-41). Then, the best combination
of backup topologies, i.e., the combination with minimal backup topologies, is
selected (line 43).

17

Table 2.2: Algorithm for scalable backup topology design
1 p ⇐ 0, optid ⇐ 0 /* optid is ID of optimal weights set */

m ⇐ 0 /* index number for M iteration */

2 for all e ∈ E(G) do
3 W (p, e) ⇐ Worg(e)
4 W optid

mst (p, e) ⇐ RAND()
5 G′=COPY(G)
6 while (1) {
7 T ⇐ MST optid(p)
8 for all v ∈ V (T) do
9 if (v is leafnode) then /* search protected node */

10 DEL ELEMENT(v, V (G′))
11 for all e ∈ E(G) ∩ E(T) do /* search protected link */

12 W (p, e) ⇐ ∞
13 DEL ELEMENT(e, E(G′))
14 for all e ∈ E(T) do /* search restricted link */

15 if (e is connected with leaf node) then
16 W (p, e) ⇐ Wr
17 p++
18 for all e ∈ E(G) do /* initialize next metrics */

19 W (p, e) ⇐ Worg(e)
20 if (G′ == Ø) then
21 goto line 38
22 if (G′ satisfy backup topology condition) then
23 create W (p, e) based on G′

(all members of G’ are protected)
24 goto line 38
25 else /* create K sets of weights, then select best set */

26 for (n = 0, newoptid = 0;n < K;n++) do
27 for all e ∈ E(G) do
28 W n

mst(p, e) ⇐ W optid
mst (p− 1, e)

29 if (W (p− 1, e) ̸= ∞) then
30 W n

mst(p, e)+ = RAND()
31 for all e connected with node v ∈ V (G′) do
32 weight of one link is set to low value, and

weights of other links are set to a high value

33 T n ⇐ MST n(p)
34 if (n ≥ 1 and (NEW PROTECTED(T n)

≥ NEW PROTECTED(Tnewoptid)))

35 newoptid ⇐ n
36 optid ⇐ newoptid
37 }
38 if (m < M) then
39 save current combination of backup topologies
40 m++
41 goto line 2
42 else
43 select the best combination of backup topologies

44 end

2.3.3 Complexity of Our Algorithm

If the available number of backup topologies is infinity, our algorithm continues
until all nodes and links are protected in at least one backup topology. Because
of the processes of lines 30 and 32 in Table 2, at each step of a while loop, at

18

Figure 2.4: Example of our algorithm. (a) Processes in lines 29–30 of Table 2.2.
(b) Processes in lines 31–32 of Table 2.2.

least one link or node is protected. Thus, the maximum number of while loops
(L iterations) is |V (G)|+ |E(G)|. The computational complexity of Kruskal algo-
rithm is |E(G)|log(|V (G)|) [42], therefore the worst computational complexity of
our algorithm is (|E(G)| + |V (G)|)K|E(G)|log(|V (G)|). Computation simplified
under the assumption of |E(G)| ≃ |V (G)|, with other parameters aggregated as a
constant α, is described as O(α|V (G)|2log(|V (G)|)). The computation of the con-
ventional algorithm [24] under the same assumption is described as O(α|V (G)|2).
Our algorithm is relatively complex compared to the conventional one. However,
it is reasonable to suggest that the computational time of our algorithm, which
should be computed offline, is acceptable for practical use.

2.4 Performance Evaluation

In this section, we demonstrate the effectiveness, applicability, and overhead of
our algorithm through extensive simulation. First we describe the simulation con-
ditions in section 2.4.1, then we show the minimum number of backup topologies
compared to the conventional algorithm [24] for various types of topologies and
numbers of nodes in section 2.4.2. Then we discuss the applicability of our algo-
rithm to an actual condition in section 2.4.3. We assume that the available number
of backup topologies is restricted for that actual condition. For example, the ToS
field size for propagating the ID of a backup topology is finite, and the size of
the router memory is also finite. Therefore, we evaluate the ratio of the number
of flows that are rapidly recovered under the limited number of backup topolo-
gies. Finally, in section 2.4.4, we evaluate the characteristics of backup routes for
clarifying the overhead of our algorithm.

2.4.1 Simulation Conditions

In our evaluation, we mainly use two different topology models in terms of node
degree variance. The node degree expresses the number of links connected to a
node. One model is the Waxman model, whose node degree is relatively uniform

19

on each node. The other model is the Barabasi-Albert (BA) model, whose node
degree follows a power-law. In a power-law network, most nodes have a small
number of links, while a small portion of nodes have a large number of links. We
created 20 instances of topologies for each of these two models using the BRITE
topology generation tool [43]. Our evaluation conditions assume point-of-presence
(POP) level networks. Therefore, the average node degree da is set to two (nodes
have four links on average) and is calculated as follows;

da = |E(G)|/|V (G)| (2.1)

|V (G)| is the total number of nodes, and |E(G)| is the total number of edges.
The evaluation index in section 2.4.2 is the minimum number of backup topolo-

gies. We also evaluate the effectiveness where available number of backup topolo-
gies is limited in section 2.4.3. This situation may occur when other application
such as Diffserv also uses ToS field [41]. We define the fast recovery ratio (FR) as
an index. FR is calculated as follows;

FR =
∑

e∈Eprotected(G)

T (e)/
∑

e∈E(G)

T (e), (2.2)

where T (e) is the number of traffic flows on link e, E(G) is the set of all links, and
Eprotected(G) is the set of all protected links in each backup topology. For example,
the FR value increases if the number of protected traffic flows increases. If all links
are protected, the FR value becomes 1.

Other simulation conditions are as follows. The parameters of our algorithm
were set such that there are 20 iterations (M=20) and K=5 (Table 2, line 26). In
section 2.4.4, a traffic matrix is required for evaluating the link loads. We use the
gravity traffic model [46], whose weight is proportional to the node degree.

2.4.2 Minimum Number of Backup Topologies

Figure 2.5 shows the results for the Waxman model, and Fig. 2.6 shows the results
for the BA model. These results suggest that the number of backup topologies
obtained with our algorithm will never exceed that obtained with the conventional
algorithm [24]. There was a reduction of up to 56% for the BA model with 200
nodes, while there was a reduction of up to 28% for the Waxman model with 200
nodes.

Our algorithm is more effective with large power-law networks (BA model).
This is because the BA model has more nodes with a low node degree. To briefly
explain, the conventional algorithm [24] selects the target node and maximally
protects the links that connect to the target node within the range where the
connectivity is kept. If the node degree of a target node is low, the number of
links that can be protected decreases. Therefore, if the ratio of nodes with low
node degree increases, the number of backup topologies increases because the total
number of protected links in one backup topology decreases. By contrast, in our
algorithm, dependency on the distribution of the node degree is low because it
creates backup topologies one at a time by using the spanning tree. Therefore, a

20

Figure 2.5: Number of backup topologies in Waxman model. Average node degree
is 2.

fixed number of links is always protected. If the number of nodes increases, the
ratio of nodes with low node degree also increases. Therefore, the effectiveness of
our algorithm increases by the same reason.

From these results, we believe our algorithm will be effective on an actual
network. This is because the maximum number of nodes in an intra-domain is
assumed to be about 200 [44]. Moreover, Medina et al. [43] reported that net-
work topologies of major ISPs often show a power-law tendency. Therefore, our
evaluation shows the effectiveness on a large actual network though the results for
real-life network could not be reproduced here for proprietary reasons.

2.4.3 Applicability to Actual Condition

Figure 2.7 shows the fast recovery ratio for the BA model under a limited available
number of backup topologies. In all conditions, our algorithm requires only 3
backup topologies to achieve FR = 1.0, while the conventional algorithm [24]
requires from 6 (20 nodes) to 12 (80 nodes) backup topologies. In addition, even
if the available number of backup topologies is limited to up to two, the recovery
ratio with our algorithm remains at more than 0.9, while with the conventional
algorithm, it decreases to 0.17 in the worst case (80 nodes). The results for the
Waxman model have almost the same tendency [26].

The results also suggest that there is low dependency between the required
number of backup topologies for achieving FR = 1.0 and the number of nodes. This
is because the ratio of protected links in one backup topology does not depend on
the number of nodes. The set of links Er(G), which is removed from the connected

21

Figure 2.6: Number of backup topologies in Barabasi-Albert (BA) model. Average
node degree is 2.

graph to create the spanning tree, is described as follows [45]:

|Er(G)| = |E(G)| − |V (G)|+ 1. (2.3)

Therefore, the ratio of non-protected links to all links in one backup topology is
described as follows;

|E(G)| − |Er(G)|
|E(G)|

=
1

da

(
1− 1

|V (G)|

)
. (2.4)

By (2.4), we found that the value of da is dominant. If V (G) becomes infinity,
(2.4) converges on the reciprocal of da. Therefore, the number of protected links
mainly depends on da.

2.4.4 Characteristics of Backup Routes

In this section, we discuss the characteristics of backup routes in terms of number
of hops and link loads. Our algorithm aggregates protected links in one backup
topology to reduce the number of backup topologies. Therefore, the number of
links that are used as backup routes decreases. This may cause high link loads
on certain links or an increase of the hop count of backup routes. Therefore, we
quantitatively clarify the characteristics of backup routes. For the BA model whose
reduction effect on the number of backup topologies is high, the number of hops
and the link load adversely increase more than for the Waxman model. Therefore,
we evaluate on the BA model in order to clarify the disadvantage. Although we

22

Figure 2.7: Fast recovery ratio in BA model. Average node degree is 2. |V (G)| is
number of nodes.

only show the results of a 40-node topology, the results for other numbers of nodes
had almost the same tendency.

Figure 2.8 shows the distribution of the hop counts of flows that are affected by
the failure, and Fig. 2.9 shows the distribution of the hop counts of all flows. When
we focus on the flows that are affected by the failure, the hop counts averagely
increase, and the maximum hop count of the backup routes increases by three
hops. In contrast, the distribution of the hops of all flows is almost the same as in
the conventional algorithm [24].

Figure 2.10 shows the link loads of all links in the worst case. From this result,
we can calculate the required link bandwidth for avoiding congestion by adding all
the link loads. When the required link bandwidth of the conventional algorithm
is standardized by 1.00, that of our algorithm becomes 1.04. That is, the total
bandwidth remains almost the same, but with a slight increase.

Although the number of hops or link loads of our algorithm increases compared
to that of the conventional one, our results show that these impacts are relatively
low. This is because the backup routes, which are calculated with the backup
topologies, are used only for traffic crossing a failed resource. The traffic that does
not use the failed resource is forwarded in accordance with the original topology.
In our evaluation, only about 3.6 % of traffic flows was affected by the failures.

23

Figure 2.8: Number of hops of flows that are affected by the failure (40-node BA
model).

Other traffic flows were not affected. Moreover, these backup routes are only used
until the new backup routes are calculated by the link-state protocol. Therefore,
we believe these adverse characteristics of backup routes are not as important as
the number of backup topologies required.

2.5 Conclusion

We argued that minimizing the number of backup topologies for IP fast rerout-
ing is required to improve network scalability and applicability. We presented a
new backup topology computation algorithm that reduces the number of backup
topologies. Our algorithm has high feasibility for the existing IP fast rerouting
framework in terms of the memory consumption, and we demonstrated its ef-
fectiveness through an extensive simulation study. The results showed that our
algorithm reduced the number of backup topologies by about 56% on power-law
networks, and the effectiveness increases as the number of nodes increases. Our
algorithm is more effective on actual networks than the conventional algorithm.

24

Figure 2.9: Number of hops of all flows. (40-node BA model).

Figure 2.10: Worst-case link loads of all links (40-node BA model). Link ID is
sorted by link loads of conventional algorithm.

25

Chapter 3

Loop-free IP Fast Rerouting
considering Double Link Failures

3.1 Introduction

In this chapter, we tackle the IP fast restoration problem from concurrent double
failures. The main issue in IP fast rerouting considering multiple failures is avoid-
ing forwarding loops. In the original MRC method and related works [24–26,28,29]
considering single failure, forwarding loops occur essentially because the set of
backup topologies is created only to protect a single node or a single link failure.
Hansen et al. proposed a forwarding algorithm and backup topology design al-
gorithm for double failures [27]. However, its forwarding algorithm allows finite
loops to occur. Even if a loop period is finite, it consumes the network resources,
and packets are dropped if its time to live (TTL) is expired.

From the above observation, we propose novel packet forwarding algorithm and
backup topologies design algorithm that avoids the forwarding loops including
finite loops as much as possible in the event of concurrent double failures. For
avoiding the forwarding loops, the second failure detecting node should know the
first failure point. However, explicit notification of the failure point decreases
the scalability of IP fast rerouting. Our key idea is estimating the first failure
point from the packet header information. We also present a backup topology
design algorithm with less number of backup topologies. We focus on the fact that
backup routes can be provided by combining routes from two backup topologies:
design restriction, which requires protecting arbitrary two-link pairs on one of the
backup topologies, is relaxed. Then, by adding the backup topologies, whose relay
links (non-protected links) has a high betweenness centrality, we can maximize the
diversity of backup routes.

Our packet forwarding algorithm can reduce the average loop probability from
10−2 to 10−3 compared to the existing algorithm [27]. Though the optimal solution,
which can notify the explicit failure point, can achieve much more reduction of
loop probability, its applicability is up to about 60 nodes because of the bit field
limitation. For the backup topologies design, our algorithm can reduce the number
of backup topologies about 35-50% compared to the loose lower bound solution.

26

Figure 3.1: Overview of backup topologies. Each backup topologies are created
by spanning tree-based algorithm

In addition, a required number of backup topologies for achieving target value of
the loop probability decreases as the number of nodes increases: our algorithm has
high scalability.

The rest of this chapter is organized as follows. In Section 3.2, we introduce
an overview of the IP fast rerouting, related works and our problem statement.
Section 3.3 presents our packet forwarding algorithm that does not require explicit
failure notification. In Section 3.4, our backup topology design algorithm is pre-
sented. Our evaluation results are shown in Section 3.5, and then we conclude our
discussion in Section 3.6.

3.2 Forwarding Loop Problem and Problem State-

ment

In this section, we describe the forwarding loop problem when double failures
occur. Then, our problem statement and formulation of the loop-free conditions
against double failures is presented.

3.2.1 Forwarding Loop Problem on Double-Link Failures

In this section, we focus on forwarding loop problem when double-link failures
occur. If we deploy the existing IP fast rerouting algorithms [24–26, 28, 29] for
recovering from double-link failure, forwarding loops stochastically occur. Figure
3.2 illustrates examples based on backup topologies in Fig. 3.1. We assume that
link x and link y simultaneously fail when packets are forwarded from node src to
node dst in each case ((i) - (iii)). In the case (i), node i selects backup topology
#1 because it protects link x, and then tries to forward the packets to nodes
7-4-6. Then, node j detects failure y, and selects backup topology #2, which
protects link y. The route destined for node dst from node j is 4-2-3-8-7-6, and
it includes link x. A node i also selects backup topology #1 and then forwards
packets to node j. A forwarding loop including nodes i and j therefore results.

27

Figure 3.2: Examples of forwarding loops when double failure occurs. In each cases
(i)-(iii), the node that detects failure x is noted as i, and the node that detects
failure y is noted as j. The link metric of each link is assumed to be 1 for shortest
path computation.

In this case, there is no proper backup topology to detour the failures without
causing a forwarding loop. The case (ii) shows another loop scenario whose failure
points, source and destination are different from case (i). A node i selects backup
topology #2, and node j selects backup topology #1 for avoiding failure links x
and y respectively. In this case, a forwarding loop including nodes i and j also
occurs. On the other hand, if node j selects backup topology #3, which also
protects failure y, the forwarding loop is avoided (case (iii)). That is, for avoiding
forwarding loops, both a proper backup topology design and a backup topology
selection (forwarding) algorithm are required.

Hansen et al. [27] proposed an IP fast rerouting algorithm, which recovers
from double-link failures. It constructs backup topologies where arbitrary two
links are protected on one of the backup topologies. If a backup topology is prop-
erly selected, arbitrary double-link failure can be avoided by the selected backup
topology. On the other hand, failure detecting node does not know the first fail-
ure point because only the forwarding table ID is notified to each node. Their
algorithm therefore repeats backup topology selection until proper backup topol-
ogy is found: the algorithm allows finite loops to occur. Even if a loop period is
finite, it consumes the network resources, and packets are dropped if their time to

28

Figure 3.3: Loop-free condition providing protection from double-link failure.

live (TTL) is expired. In addition, protecting against a double-link failure by one
backup topology is a redundant approach in terms of the number of backup topolo-
gies. As shown in Fig. 3.2 (iii), a loop-free route is provided by the combination
of backup topologies.

3.2.2 Problem Statement

From the above observations, our goal is to minimize the loop occurrences as
much as possible in the case of double-link failures. As shown in Fig. 3.2 (ii),
inadequate packet forwarding causes a loop even if a set of backup topologies has
backup route against double failures. Then, our challenge compared to the existing
works [27] is establishing a novel forwarding algorithm, which deterministically
avoids forwarding loops including finite loops. As another loop scenario, there
is possibility that any combination of backup topologies cannot provide backup
route which avoids forwarding loop (Fig. 3.2 (i)). Then, we also define the backup
topologies design problem with less number of backup topologies.

For the deep analysis, we formulated the loop-free condition that provides
protection against double-link failures. A network is given as a directed graph
G = (V,E). Here, V is a set of nodes, and E is a set of links. The set of backup
topologies defined in [24] is denoted as SG = (SG1, SG2, ..., SGk), SGk = (V,Ek).
We also define the set of non-protected links as Enp

k ∈ Ek. That is, E
np
k is composed

of the links for packet forwarding. The source node is denoted as s ∈ V , and the
destination node is denoted as d ∈ V . The first failure is x ∈ E, and the second
failure is y ∈ E \ x. Note that the first failure x occurs at either of the links
that composes the original shortest path. If we define time T (x) as the time when
packets encounter failure x, T (x) < T (y) is always satisfied. Nodes i ∈ V and
j ∈ V respectively detect failures x and y. The backup topology that protects
link x is denoted as SGx = (V,Ex) = {SGk ∈ SG : x /∈ Enp

k }, and the subset of
Ex that composes the route from node a to node b is denoted as SEx

(a,b) ⊂ Ex.
Then, if the following condition is satisfied for the arbitrary (s, d, x, y), the given
G and SG can provide the loop-free backup routes that provide protection from
arbitrary double-link failures (Fig. 3.3).

y /∈ SEx
(i,d) ∨ x /∈ SEy

(j,d) (3.1)

29

Table 3.1: Notation of Algorithm1

.

G = (V,E) : Graph with nodes V and undirected links E

SG = (SG1, ..., SGk) : A set of backup topologies

nextF ib(s, d, y, fin) : Pointer to fout, which is for given (s, d, y, fin) tuple

sPathLinks(n, d,G) : Return a set of links, which composes shortest path

from s to d in G

pLinks(SGi) : Return a set of protected links in SGi

Table 3.2: Algorithm1: packet forwarding without failure notification. Above
figure illustrates the BTS table creation for node n.

.

1 For all (s, d, y) tuple in node n

2 nextF ib(s, d, y, 0) := i, y is protected in SGi &&

(|sPathLinks(n, d, SGi)| == minimum)

3 E1 := sPathLinks(s, d,G)

4 For (k=1; k ≤ |SG|; k++)

5 E2 := pLinks(SGk)

6 E3 := E1 ∩ E2

7 If (E3 == ∅)
8 continue

9 nextF ib(s, d, y, k) := i, y is protected in SGi &&

|sPathLinks(n, d, SGi) ∩ E3| == minimum

3.3 Packet Forwarding Algorithm without Fail-

ure Notification

This section presents a packet forwarding algorithm, which avoids forwarding loop
without explicit failure notification. To realize the loop-free backup route against
double failures, the second failure-detecting node should be able to detect the
first failure. However, with the standard protocol using backup topologies [39],
there is a restriction in the failure notification: the failure-detecting node only
provides information on the backup topology ID. That is, it cannot directly provide
information on the failure link or node.

We propose a packet forwarding algorithm, which estimates the first failure
point from the packet header information, and avoid it as much as possible. We
prepare the backup topology selection (BTS) table in each node for selecting the
proper backup topology when a node detects a failure. The failure detecting node
refers to its BTS table and selects one of backup topologies for rerouting. Then,
by properly designing the BTS table, we can control the loop occurrences.

The details of our BTS table creation algorithm are shown in Table 3.2, using

30

Figure 3.4: Example of failure point estimation.

the notation shown in Table 3.1. This algorithm outputs the backup topology
ID fout for rerouting when second failure y, source IP address s, destination IP
address d, and input backup topology ID fin, which is designated in ToS field, are
inputted on a node n. The backup topology ID is defined as a sequence number
which is from 0 to 255. The ID of packets, which do not encounter the failure, is
marked as 0.

Algorithm iteratively performs the following processes for each (s, d, y) tuple
(line 1). Firstly, it determines fout for the packet which do not encounter the
failure (fin = 0). The backup topology i, whose route can avoid failed link y and
provides shortest path from n to d is minimal, is selected, and nextF ib(s, d, y, 0)
is set as i (line 2). The shortest path provides the routes, whose probability to
encounter the other failure is minimal. Then, we compute the original shortest
path from s to d, and extract the links that constitute the original shortest path
as E1 (line 3). Our algorithm, then, assumes the possible incoming of fin, and
performs the following processes (line 4). It extracts the links that are protected
on the backup topology SGk as E2(line 5). Through logical multiplication of E1
and E2, we get the assumed failed links as E3 (line 6). If E3 is empty set, this
entry creation is skipped because such a routing scenario does not exist (line 7, 8).
Otherwise, the backup topology i, whose route can avoid failed link y and have
less inclusion of E3, is selected, and nextF ib(s, d, y, k) is set as i (line 9). When
|E3| equals to one, failure point is uniquely identified. Thus, forwarding loop is
avoided if proper backup topology exists. For the case of Fig. 3.4, we can identify
the failed link as link 4-7, and then we only have to select the backup topology
that does not use the second failed port and the first failed link 4-7.

Noted that the BTS table is created offline, so computation of the above al-
gorithm does not affect the real-time rerouting [47]. The size of BTS table is
proportional to the number of (s, d) pairs. Thus, this paper does not discuss the
size of BTS table because compression of BTS tables depends on the IP addresses
aggregation.

31

Figure 3.5: Similarity comparison-based backup topology design algorithm

Existing forwarding mechanism [27] uses backup topology ID-order random
selection. In addition to the existing forwarding mechanism, the following algo-
rithms are used to compare the performance of our algorithm. The performance
comparison is presented in Section 3.5.

1. Shortest & Random: To reduce the probability of encountering the next
failure, it selects the backup topology that protects the failed port and pro-
vides the shortest path at the first failure detection. And a backup topology
is randomly selected at the second failure detection.

2. Shortest & Shortest: Its selection scheme is the same as First Shortest at the
first failure detection, and it also selects the backup topology that provides
the shortest path at the second failure detection.

3.4 Backup Topology Design for Protection against

Double Failures

In this section, we propose a backup topology design algorithm to reduce the
loop probability against the arbitrary double link failure. As described in Sec.
II.B, there is possibility that any combination of backup topologies cannot provide
backup route which avoids forwarding loop. Our approach is adding the backup
topologies to the minimal set of them [26].

A sufficient condition for achieving the loop-free condition is that arbitrary
two links are protected on one of the backup topologies, and Ref. [27] adopted
such an approach. However, this condition is not necessary and causes redundant
backup topologies because the backup route may be constructed by a combination
of backup topologies as shown in Fig. 3.2(iii).

32

From this observation, we focus on increasing the diversity of backup routes
that consist of a combination of various backup topologies. To increase the di-
versity, we add the backup topologies, whose relay links (non-protected links) has
a high betweenness centrality. The link betweenness centrality is a measure of a
link centrality in a network, and it equals to the number of shortest paths from all
vertices to all others that pass through that link. That is, by adding the backup
topology, whose relay links (non-protected links) has a high betweenness centrality,
the diversity of backup routes with backup topologies increases.

Hereafter, we propose the similarity comparison-based algorithm. Firstly, we
extract the betweenness centrality as a characteristic of the original topology.
Then, the number of relay links of backup topologies is extracted as a character-
istic of the set of backup topologies. Then, by maximizing the similarity between
them, we could get the backup topologies, whose relay links has a high betweenness
centrality (Fig. 3.5).

3.4.1 Similarity Computation Based on Eigenvector of Ad-
jacency Matrix

We describe the computation of similarity S(G,SG) when the original topology
G = (V,E) and backup topologies SG = (SG1, SG2, ..., SGk), SGk = (V,Ek)
are given. First we compute the original topology metrics based on the between-
ness centrality of original topology. We denote the link between node i and j as
(i, j) ∈ E, and the betweenness centrality of link (i, j) as B(i, j). Then, link metric
Worg(i, j) of link (i, j)is denoted as follows;

Worg(i, j) =

(
B(i, j)/

∑
(k,l)∈E

B(k, l)

)
/

(∑
(m,n)

{B(m,n)/
∑

(k,l)∈E
B(k, l)}

)
(3.2)

In (3.2), The links, whose betweenness centrality is high, has high value, and
each link metric is normalized by sum of link metrics. Then we generate the
adjacency matrix Gorg, and it has above value (3.2) on existing links, and values
of other elements are zero. After that, we calculate the principal eigenvector Vorg

of Gorg, which has the largest eigenvalue. This strategy that regards the principal
eigenvector (spectrum) as character of network topology is mature method [48],
and the element of this vector is known as an eigenvector centrality that indicates
the relative importance of the node in the graph.

Then, we compute the eigenvector based on the set of backup topologies SG.
We assign the following binary value to the link (i, j) ∈ El that exists on backup
topology SGl.

RLl(i, j) =

{
1 if link (i,j) is relay link
0 otherwise

(3.3)

Then, link metric Wcum(i, j) of cumulated topology derived by superimposing
backup topologies is computed as follows;

Wcum(i, j) =
∑

SGl∈SG
RLl(i, j) (3.4)

33

Table 3.3: Algorithm2:Topology adding algorithm. Input information is original
topology and current set of backup topologies.

.

1 compute S(G,SG) ⇒ Sopt

2 for (k = 1; k ≤ kth; k ++)

3 generate SGk

4 SG′ := SG ∪ SGk

5 compute S(G,SG′) ⇒ Sk

6 if (Sopt < Sk)

7 Sopt := Sk

8 index := k

9 return SGindex

After that, we generate the adjacency matrix Gcum, and it has above value (3.4)
on existing links, and values of other elements are zero, and compute principal
eigenvector Vcum from Gcum.

Finally we compute the similarity S(G,SG) from the two eigenvectors Vorg and
Vcum. We compute the cosine similarity as follows;

S(G,SG) =
Vorg · Vcum

|Vorg||Vcum|
(3.5)

For example, if the link whose betweenness centrality is high on original topology
frequently becomes the relay link on backup topologies, similarity increases. This
is match with our design.

3.4.2 Topology Design Algorithm

Table 3.3 shows our proposed pseudo code of the backup topology adding al-
gorithm. The input information is an original topology G and a set of backup
topologies SG. First the similarity Sopt is computed from G and SG. Then a can-
didate backup topology that increases the similarity is discovered in kth iterations.
In line 3, candidate topology SGk based on a random link cost is generated, and
a new set of backup topologies SG′, which is composed of SG and SGk, is created
(line 4). Then the similarity Sk is computed from G and SG′ (line 5). If Sk is
larger than Sopt, Sopt is updated by Sk, and the index of the candidate that has the
optimal value is saved (lines 7,8). After finishing the kth iteration, the candidate
topology that provides the largest similarity is output as the new backup topology
(line 9).

Note that Table 3.3 only illustrates the basic design of our algorithm, and an
approach with stronger optimization such as the metaheuristics approach [49] can
easily be applied. For example, the SGk generation in line 3 may be based on
previous information SGk−1: SGk inherits the good points of SGk−1. In addition,
diversification can also be applied in line 3 to avoid the local optimal situation.

34

3.4.3 Qualitative Characteristics of Algorithm

The computation of similarity is lightweight. Counting out the link metric is
dominant, and the computation is O(|E|). If we directly deploy the loop proba-
bility as an objective function, we should compute routes that provide protection
against arbitrary double failure O(|E|2) for every node pair O(|V |2). Therefore,
for the topology adding algorithm, O(|V |2|E|2) computation is required for every
k iteration, and this is not practical.

3.5 Performance Evaluation

Our evaluation objectives are showing the effectiveness of (1) our packet forwarding
algorithm and (2) our backup topology design algorithm. Evaluation indexes are
(1) loop probability and (2) required number of backup topologies for achieving
the objective loop probability. Hence, we introduce the calculation method of
the average loop probability. First, we fix the source and destination nodes pair
(s, d)and first failure link x. The first failure link x is selected from the links that
compose the original shortest path for (s, d). Then we generate the second failure
y at other existing links, and obtain the loop probability against (s, d, x)tuple. By
evaluating the possible (s, d, x) tuple, we can compute the average loop probability.

For the first evaluation (1), we evaluate our algorithm compared to the ex-
isting algorithm [27], benchmarks (Shortest & Random and Shortest & Shortest)
described in Sec. 3.3, and optimal forwarding. With the optimal forwarding, we
assume that first failure point is explicitly notified. For the second evaluation
(2), we generate enough number of multiple backup topologies by iteratively per-
forming our design algorithm. Then the minimum needed to achieve the objective
loop probability with optimal forwarding and our estimation-based forwarding is
selected respectively. A loose lower bound solution is also compared to our algo-
rithm. The loose lower bound solution satisfies the following condition: arbitrary
two-link pairs are protected on one of the backup topologies.

Network topology is a Barabasi-Albert model [43], whose node degree follows
power-law, and average node degree is set to two. The number of nodes changes
from 20 nodes to 100 nodes. The set of initial backup topologies are computed as
a minimal set with our existing work [26] described in chapter 2. We also assume
that the double failures do not segment the network.

3.5.1 Effectiveness of Packet Forwarding Algorithm

Figure 3.6 illustrates the loop probability with different packet forwarding algo-
rithms on a minimal set of backup topologies. The average loop probability de-
creases as the number of nodes increases, and our algorithm can reduce the average
loop ratio from 10−2 to 10−3 on 100 nodes network compared to the existing al-
gorithm [27]. The reason the loop probability decreases is that the number of
available backup topologies increases as the number of nodes increases. Then, op-
portunity of proper backup topologies selection also increases. Other interesting

35

Figure 3.6: Loop probability with minimal number of backup topologies. Num-
bers of backup topologies from 20 - 100 nodes resulted from spanning tree-based
algorithm are 5, 7, 9, 11, 12 respectively.

Figure 3.7: Required number of bit field for information notification. Existing
algorithm, benchmarks, and our proposal uses forwarding table ID notification.
Only optimal forwarding uses explicit failure notification.

result is that Shortest & Random algorithm outperforms Shortest & Shortest algo-

36

Figure 3.8: Required number of backup topologies. Objective value of the loop
probability is set to 10−3.

rithm. If we select the shortest path at the second failure detection, its path tends
to include the links on the original shortest path. As a result, it also includes first
failure, which is also on the original shortest path.

Though the optimal solution, which can notify the explicit failure point, can
achieve further reduction of loop probability, it does not have scalability. Figure
3.7 illustrates the required number of bit field for notifying information. Existing
algorithm, benchmarks, and our proposal only notify the ID of backup topolo-
gies. Because the maximum number of backup topologies is 12 on 100 nodes
network, maximum required number of bit is four. On the other hand, optimal
solution should designate the explicit failed link. Then, the amount of information
is proportional to the number of links. If we use the ToS field for information
notification, applicability of optimal forwarding is limited up to about 60 nodes
with our simulation conditions.

3.5.2 Effectiveness of Backup Topologies Design Algorithm

We show the effectiveness of our backup topologies design algorithm in Fig. 3.8.
By comparing the loose lower bound solution (left bar) and our backup topologies
design (center bar) under the optimal forwarding conditions, we can directly ob-
serve the effectiveness of our backup topology design algorithm: it can reduce the
number of backup topologies about 35-50% compared to the loose lower bound
solution. Noted that objective value of the loop probability is set to 10−3, there
is no addition of backup topologies from 60 nodes to 100nodes network. It also
suggests that two-link protections is not necessary condition.

37

Figure 3.9: Loop probability of cost239 model (11 nodes 25 links).

Though the required number of backup topologies are slightly increases by
combining our packet forwarding algorithm (right bar), its impact is relatively
low. Especially, a required number of backup topologies for achieving objecitve
value of the loop ratio decreases as the number of nodes increases: our algorithm
has high scalability. We also evaluate the required number of backup topologies
with the existing algorithm and benchmarks. They are probabilistic approach, and
then reduction effect of the loop probability is low even if we prepare the enough
number of the backup topologies (e.g., over the 50 number of backup topologies):
the loop probability with existing algorithm, Shortest & Random, and Shortest &
Shortest becomes 2.0%, 0.6%, and 1.2% respectively .

3.5.3 Validity of Backup Topology Design Based on Simi-
larity Comparison

In this subsection, we evaluated the validity of our algorithm based on similarity
compared to a simple benchmark without similarity consideration algorithm. This
algorithm does not consider the similarity with the original topology. It computes
a new backup topology based on the number of relay links in the existing backup
topologies. That is, it fairly adds the relay link to each link independent of the
node degree of the original topology. Figures 3.9 and 3.10 respectively illustrate
the results of the average loop probability and similarity for the cost239 model, and
Figs. 3.11 and 3.12 illustrate the results for the 40 nodes power-law model. Noted
that the reason the absolute value of the loop probability of power-law model was
less than that of cost239 is that the power-law model is larger than the cost239
model: the ratio of failures that do not affect the forwarding loop also increase
with the size of networks. From these results, we get the interesting findings about

38

Figure 3.10: Similarity of cost239 model (11 nodes 25 links).

Figure 3.11: Loop probability of power-law (20 nodes 50 links).

similarity.
Our finding is that there is a correlation between the loop probability and the

similarity, and to achieve loop-free forwarding on an arbitrary topology, it is essen-
tial to consider the similarity. On the cost239 model, the benchmark method also
achieved loop-free forwarding, while it required about 60% more backup topologies
compared to proposed (Fig. 3.9). The similarity of the benchmark method also in-
creased although it had some randomness because cost239 model has uniform node

39

Figure 3.12: Similarity of power-law (20 nodes 50 links).

degree (Fig. 3.10). In contrast, on the power-law model, the benchmark method
could not achieve loop-free forwarding even with as many as 40 backup topologies.
On the contrary, the loop probability with 40 topologies increased compared to
some cases with fewer topologies (Fig. 3.11). The similarity of power-law model
peaks out, and it remains in the range from 0.97 to 0.975 (Fig. 3.12). From these
observations, we assume that there is a correlation between the loop probability
and the similarity. In addition, the benchmark method could not increase the sim-
ilarity on the power-law model: our proposal, which takes the similarity with the
original topology into account, can absorb the effect of variance of node degree,
and has high applicability to the arbitrary form of network topologies.

3.6 Conclusion

In this chapter, we tackled the minimization of the loop probability of the IP fast
rerouting on concurrent double failures. Our forwarding algorithm, which does not
require explicit failure notification, can reduce the loop probability from 10−2 to
10−3 compared to existing algorithms. To achieve the objective loop probability on
an arbitrary size network, our algorithm can reduce the required number of backup
topologies about 35-50% compared to the loose lower bound solutions, where ar-
bitrary two-link pairs are protected on one of the backup topologies. Because our
algorithm can avoid explicit failure notification, and the increase in the number of
backup topologies as network size grows is slower than existing algorithms, it has
high scalability.

40

Chapter 4

Implementation Design of IP Fast
Rerouting using OpenFlow

4.1 Introduction

This chapter presents an implementation design for IP fast rerouting. While there
are many algorithms for backup topology design [24–29], implementation of fast
rerouting is not very common: it requires adaptation of commercial hardware to
the forwarding function. A framework to accommodate multiple routing tables
was standardized by IETF [39], and some vendors implemented it [50]. However,
implementation for the fast rerouting using backup topologies is still undeveloped.
Though extension for software nodes [51,52] is relatively easy, modifying hardware
nodes is hard and may become proprietary technology.

Recently, as one of a novel clean slate network [53], OpenFlow [54] has been
proposed to provide high programmability and manageability to network. It phys-
ically separates control functions from forwarding hardware, and places them in
software controllers. The forwarding table, called flow table on a forwarding hard-
ware can be programmed through a controller: control of network does not depend
on a hardware implementation.

In this chapter, we propose an autonomous IP fast rerouting method using
OpenFlow. In our proposal, a dedicated controller is assigned to each forwarding
element, and it locally performs restoration processes against a failure. A key point
for realizing the autonomous fast rerouting is utilizing the pipeline processing with
multiple flow tables defined in OpenFlow switch specification [55]. We prepare the
second flow table as backup forwarding table, which stores backup routes. Before
a failure occurrence, entry on a primary flow table indicates the regular output
interface. If a failure is detected by the local controller, it modifies the entry of the
primary flow table so that it indicates the backup forwarding table. Hot standby
backup routes are preliminary stored in the backup forwarding table, and then
autonomous fast rerouting is performed without global route update.

On the other hand, these preliminary stored backup routes require more mem-
ory resources. Then, we embed the backup routes compression mechanism to our
IP fast rerouting method. We prepare the third flow table as a shared backup

41

forwarding table. The routing entries on the backup forwarding table, whose des-
tination addresses and next hop interfaces are identical, are aggregated as shared
flow entries and share the same memory space on the shared backup forwarding
table. Thus the size of flow table can be scaled down.

As the main contribution of this chapter is realizing IP fast rerouting by uti-
lizing OpenFlow. By only having capability of OpenFlow, a network can realize
sub-50ms autonomous fast rerouting without any extension of current forwarding
hardware. In addition, we embed the flow table compression mechanism to re-
duce the memory consumption. It cut the table size into about half on 200 nodes
network compared to the existing method [24–29]. The memory consumption
generally increases as the number of backup routes increases, and the number of
primary routes and backup routes are proportional to the number of flows. Then,
the memory reduction by our compression mechanism increases the feasibility on
actual network, which should have a large amount of flows.

The rest of this chapter is organized as follows. Section 4.2 presents our au-
tonomous IP fast rerouting using OpenFlow, and Section 4.3 presents an algorithm
for creating the shared backup forwarding table. The performance evaluation re-
sults are shown in Section 4.4. Finally, we conclude our discussion in Section
4.5.

4.2 Autonomous IP Fast Rerouting using Open-

Flow

In this section, we present an IP fast rerouting using OpenFlow framework. A key
idea is utilizing the pipeline processing with multiple flow tables, and switching
them in accordance with the network state. Firstly, we introduce our network
model, and then present the forwarding architecture for IP fast rerouting. We
also present the models of restoration time with current IP [2] and our IP fast
rerouting.

4.2.1 Network Model

Firstly, we describe a basic forwarding model using OpenFlow [54]. Forward-
ing architecture consists of OpenFlow controller and OpenFlow switches (OFSs).
The controller computes the routes for OFSs, and each OFS should only forward
data packets. There are two variations as the trigger for the route configuration:
configuration after a flow occurrence, and preliminary configuration before a flow
occurrence. We assume the latter case in this paper.

Each OFS has a forwarding table called flow table, and the flow table consists of
match fields, Instructions, and Counters [55]. As one of extensions of OpenFlow 1.1
[55], a switch can have multiple flow tables. When a switch receives the packets, the
switch looks up the proper flow entry whose match fields correspond to the header
information of input packets. If such a flow entry exists, the switch can determine
the output interface, and then forward the packets through it. Otherwise, the

42

Figure 4.1: Our network model. Each forwarding hardware has a dedicated sub
controller, and it performs the local control.

switch forwards the packets to the controller, or looks up the next flow table if it
exists.

Our network model is illustrated in Fig. 4.1. There are two types of controllers:
a central controller, which controls the whole network, and a sub controller, which
controls each OFS to ignore the propagation delay. A dedicated sub controller is
assigned to each OFS, and we regard the set of a sub controller and its OFS as one
node (router). The central controller computes the route information, and sends
it to each sub controller. Each sub controller configures the flow table of its own
OFS, and performs some online processes. As software and hardware requirements
of OFS, it should support OpenFlow 1.1 [55]. By the OpenFlow 1.1 specification,
it supports one or more flow tables. In our network, each OFS could have three
flow tables to implement our proposal as described later.

Routes are repaired by the combination of local and global repairing. Sub
controllers perform simple restoration for short restoration time, and they do not
depend on the state of central one. On the other hand, frequent occurrences of
local restoration decrease utilization of network resources. In addition, local repair
cannot handle complicated failures such as disaster. In such cases, the central
controller performs global repair to optimize the entire network. In this paper, we
focus on the local rerouting performed by the sub controllers and OFSs. Control
by the central controller will be considered in the future.

43

Figure 4.2: Forwarding architecture for IP fast rerouting using OpenFlow frame-
work. Table #0 corresponds to a primary forwarding table, and table #1 corre-
sponds to a backup forwarding table, which stores the backup routes.

4.2.2 IP Fast Rerouting using OpenFlow

This section describes the detailed mechanism of our IP fast rerouting using Open-
Flow. Figure 4.2 illustrates the forwarding architecture. The interface between a
sub controller and its OFS is OpenFlow. OFS has two flow tables: one is the pri-
mary forwarding table (Table #0), which contains primary routes, and another is a
backup forwarding table (Table #1), which holds backup routes. In the framework
of our IP fast rerouting, each node has multiple logical backup routing tables [24].
With our architecture, backup routes on the logical backup routing tables are
stored in one backup forwarding table, and they are distinguished by ToS value
on the match fields for simplification.

A key idea in our IP fast rerouting mechanism is utilizing the pipeline process-
ing with multiple flow tables. Before a failure occurrence, entries in the primary
flow table indicate the output interface. If a sub controller detects a failure, it
modifies the corresponding entry in the primary flow table so that it indicates the
backup forwarding table. Backup routes are stored in backup forwarding table in
advance, and then autonomous fast rerouting is performed without global route
update.

We explain the sequence of our fast rerouting using Fig. 4.3. We assume that a
packet, whose destination address is 10.0.0.1, arrived at an OFS. Without failure,
the packet matches the first entry of Table #0, and then it forward to interface #1.
If interface #1 fails, port-status message is notified to the sub controller, and it
knows the down of interface #1. Then, the sub controller updates the instructions
fields of the entry on Table #0 through modify-state message. In the update, it
adds the instruction for changing the ToS fields of incoming packet for avoiding the
failed interface, and the instruction for looking up Table #1 instead of outgoing the

44

Figure 4.3: Example of flow table modification processes, and forwarding using
backup forwarding table. Only one flow is illustrated for simplification.

failed interface. After the configuration by the sub controller, pipeline processing
is performed for packets that match the first entry on Table #0. That is, such
packets determine the output interface by referring to Table #1. On Table #1,
output interface is determined by looking up it with a key composed of ToS value
and destination address.

Relaying nodes, which is on the backup route, should also forward the packets
using a backup forwarding table if ToS value of the packets is marked. This
forwarding is realized by preparing the pointer to backup forwarding table on Table
#0. In Fig. 4.3, the tail of Table #0 is the pointer to backup forwarding table.
If the packets, whose ToS value is marked, arrive at relaying node, they do not
match the primary entries because marked ToS does not match the primary entries.
Then, they match the pointer to backup forwarding table, and are forwarded in
accordance with instructions on the backup forwarding table. By preparing the
pointer to the backup forwarding table, rerouting processes using the sub controller
are only performed at the node that detects a failure, and rerouting processes of
other relaying nodes are only performed in the OFS. Please note that OpenFlow
1.1 [55] allows the bit mask matching. By setting match fields of destination
address as wild card, entries for the pointer to backup routes therefore only have
to be prepared for the number of backup topologies.

While ToS value of IP header has 8 bits, OpenFlow 1.1 specified that only
upper 6 bits should be used. With this restriction, maximum number of backup
topologies is limited to 63. Our previous work [26], which minimized the number
of backup topologies, showed that the required number of backup topologies was
under 20 for 200 nodes network. The restriction is not too restrictive in this sense.

45

4.2.3 Discussion of Implementation Feasibility

In terms of implementation feasibility, the most important advantage of our pro-
posal, which uses OpenFlow, compared to the one which uses commercial router
is its transparency of forwarding control functions. There are two key functions to
realize IP fast rerouting. One is a multi-table forwarding function, which stores
multiple backup tables and forwards a packet in accordance with the proper backup
table by referring to ToS value. Another is a forwarding control function at the
failure detecting node, which modifies the ToS value and changes over from a
primary route to a backup route.

For the multi-table forwarding function, our proposal should support OpenFlow
1.1 specification and have at least three flow tables. With the commercial router,
it should support MT-OSPF [39] specification, which allows the router to have
multiple routing tables. Then, implementation difficulty is roughly equal because
both implementations require similar extension.

For the forwarding control function, on the other hand, programmability is
completely dissimilar. Forwarding control functions of IP commercial router are
coordinated to its internal unit: hardware modification is required to achieve IP
fast rerouting. In addition, the forwarding control function depends on vendor’s
implementation, and then the extension in accordance with specific implemen-
tation is required. On the contrary, OpenFlow physically separates its control
functions from the node, and they are provided as programmable area to user
(e.g., carrier or service provider). As a result, our proposal realizes the user-driven
and common implementation for IP fast rerouting without any extension of OFS.

Noted that we use the OpenFlow framework as a way of an IP fast rerouting
implementation: we only refer to IP layer fields of incoming packets. The Openflow
could provide flow-based routing scheme, which realizes granular traffic control.
However, flow-based routing is beyond the IP philosophy, and may cause other
study issues such as scalability and controller complexity. In this study, therefore,
we only utilize one of characteristics of OpenFlow: transparency of forwarding
control functions.

4.2.4 Formulation of Restoration Time with Current IP
and IP Fast Rerouting

In this section, we formulate the restoration time with current IP rerouting using
OSPF [2] and our IP fast rerouting architecture.

The restoration time using OSPF Tospf consists of (i) failure detection, (ii)
global convergence of network condition, and (iii) recomputing and updating backup
routes, and it is formulated as follows.

Tospf = Tdetect + Tlsao + Tflooding + Tspf−delay + Tspf−calc + Tupdate (4.1)

(i) For the failure detection, detection time (Tdetect) was about sub-20ms in the
packet over SDH/SONET (POS) network [56]. (ii) The global convergence pro-
cesses consist of link state advertisements (LSAs) origination and their flooding.
Let us use Tlsao and Tflooding to express their time, respectively. LSA origination

46

processes take fixed time about 12ms [57]. Before the flooding, the router that
originates LSA wait 33ms [58], which is called pacing timer. Then, LSAs are noti-
fied to routers by flooding mechanism [2]. Noted that flooding processes and route
recomputation processes on relaying nodes are independent, and then relaying
nodes do not cause the timer delay. In a precise sense, packet transmission delays
on links and routers occur in proportional to the distance between the source node
and destination node. Ref. [57] reported that such delays are negligible because
of the current high performance hardware and the huge-bandwidth transmission
technologies. Then, Tflooding also becomes fixed value about sub-33ms. (iii) The
backup routes recomputation and updating processes consist of computation de-
lay time Tspf−delay, backup routes computation time Tspf−calc, and forwarding table
update time Tupdate. The range of Tspf−delay is 50ms to 8000ms, and one of ven-
dor’s default value is 200ms [59]. This time is needed for the stable backup route
computation against coinstantaneous LSAs advertisements. For Tspf−calc, Dijk-
stra algorithm is performed [2], and its time complexity is O(N2). For Tupdate,
it depends on the number of entries on the forwarding table, and it takes about
146µs per entry on average [57]. Relaying routers also requires the processes for
Tspf−delay, Tspf−calc, and Tupdate. These processes are performed in parallel, and
then regarding the total restoration time as Eqn. 4.1 is reasonable when packet
transmission delays are negligible.

Then we formulate the restoration time of IP fast rerouting Tfrr using above
notation. IP fast rerouting process requires the failure detection and forward-
ing table update on a failure detecting router. There are no overheads for the
restoration time on the relaying routers . Then, Tfrris formulated as follows.

Tfrr = Tdetect + Tupdate (4.2)

There are two types of forwarding table update: the full update and the partial up-
date. The partial update only updates the entries which are impacted by a failure
while the full update updates all entries. While the table update becomes partial
update with our architecture, with the OSPF rerouting, it is implementation mat-
ter if partial update is supported or not [57]. When the size of forwarding table of
router R, the total number of flows, and the number of flows which are included
on failed link l, are denoted as T (R), Fall, and F (l), the number of entries, which
are updated in the partial update environment, is denoted as T (R)× (F (l)/Fall).
That is, the number of updated entries is proportional to the ratio of the failed
flows.

4.3 Flow Table Compression with Shared Flow

Entries

As mentioned in Sec. 4.2, fundamental IP fast rerouting is realized by utilizing
OpenFlow. On the other hand, this method increases the memory consumption.
In this section, we embed the compression mechanism to our IP fast rerouting
by using shared backup forwarding tables. Firstly we provide the algorithm for
shared backup table creation, and then provide forwarding architecture using it.

47

Figure 4.4: Relationship between backup topologies and backup routing tables,
and an overview of flow table compression.

4.3.1 Shared Backup Forwarding Table Creation Algorithm

In existing study [24–29], backup topology and backup routing table match one-
to-one as shown in Fig. 4.4 (a) and (b). The number of flow entries therefore
increases in proportion to the number of backup topologies. On the other hand,
while backup topologies are mutually unique, flow entries for certain nodes in
backup routing tables are not necessarily unique. That is, redundant entries exist.
Figure 4.4 shows an example. Flow entries whose destination addresses are 2 or
3 in backup routing table #1 corresponds to entries in backup routing table #3.
Flow entry whose destination address is 4 in backup routing table #1 corresponds
to the entry in backup routing table #2. Therefore, we can aggregate them as
a shared flow entry, and store the shared flow entries to one common backup
forwarding table called shared backup forwarding table.

Key point of shared backup forwarding table creation algorithm is registering
the only flow entries with the maximum number of sharing, if there are multi-
ple candidates. That is, we prohibit duplicated entries with the same destination
address in the shared backup forwarding table. If we allow the duplicative registra-
tion, there are no effect of sharing because each entry on shared backup forwarding
table should be distinguished the key composed of forwarding table ID and des-
tination address. Here is an example. The set of routing table ID, destination
address and next hop interface is denoted as (rID,DA,NH). We assumed that
there are backup routing tables #1, #2, which have the same destination address
DA1 and next hop interface NH1, and there are other backup routing tables #3,
#4, #5, which have the same destination address DA2 and next hop interface
NH2. If we register the above entries to the shared backup forwarding table, the
number of entries becomes five: (#1, DA1, NH1), (#2, DA1, NH1), (#3, DA2,
NH2), (#4, DA2, NH2), (#5, DA2, NH2). Then, if we only register them for #3,
#4, #5, it becomes one because wild card is allowed: (any,DA2, NH2).

Figure 4.5 illustrates our algorithm. The input to the algorithm is all backup

48

Figure 4.5: Shared backup table creation algorithm.

Figure 4.6: Structure of matrix nextHop[P][M].

routing tables, and its output is updated backup routing tables and a shared
backup forwarding table. Firstly, we create the nextHop matrix (line 1), and it is
illustrated in Fig. 4.6. The number of sharing is stored in sharedNum vector, and
it is initialized in line 2. Then, following processes are repeatedly performed for
each destination prefix on nextHop matrix (line 3-9). The number of sharings is
counted for destination prefix p, and it is stored in sharedNum vector (line 4-5).
For example, sharedNum[”20.0.10.1”] is three, and sharedNum[”30.0.10.1”] is two
for destination prefix 100.16.10.0/24 in Fig. 4.6. Then, our algorithm selects the
next hop interface, whose shared number is the maximum, and save it to maxValue
variable (line 6). With this example, ”20.0.10.1” is stored in maxValue for the
destination prefix 100.16.10.0/24. Then, the set of destination prefix p and next
hop interface maxValue is registered in shared backup forwarding table (line 7),
and removed from backup routing tables, which has the corresponding entry (line
8). Finally, sharedNum vector is initialized (line 9), and the algorithm continues
above processes for next destination prefixes. When all destination prefixes are
scanned, our algorithm finishes (line 10). For example in Fig. 4.6, underlined next
hop interfaces are registered in the shared backup forwarding table.

Finally, we discuss the computation of our algorithm. The computation time
of processes on line 4-5, and line 8 becomes O(M). The search processes on line
6 depends on the size of address type (e.g., 32 bits for IP address), and does not

49

Figure 4.7: Forwarding sequence using shared backup table.

depend on the size of input information. A process on line 7 does not depend on it.
Above processes are performed P times (line 3), and then computation complexity
becomes O(PM).

4.3.2 Forwarding Architecture using Shared Backup For-
warding Table

Packet forwarding using the shared backup forwarding table is also realized using
pipeline processing. We prepare the flow table #2 as a shared backup forwarding
table (Fig. 4.7). Entries aggregated to the shared backup forwarding table do not
appear in the backup forwarding table (Table #1). Therefore, the result of looking
up such entries in Table #1 is unmatched. OpenFlow 1.1 has the function that
unmatched packet causes look up of the next flow table. The unmatched packet
lookups at Table #1 results in looking up at the shared backup forwarding table.
In the shared backup forwarding table, we set the match fields of ToS value as wild
card, and then output interface is determined by only using destination address
fields.

4.4 Performance Evaluation

The goal of our evaluation is showing validity of our IP fast rerouting which uses
OpenFlow framework. The main requirement of IP fast rerouting is to achieve sub-
50ms recovery [24]. Therefore, we evaluate whether our proposal, which needs the
online table updating, can achieve sub-50ms recovery. In addition, we also compare
our proposal to the current IP rerouting (OSPF) [2] for showing the superiority
of IP fast rerouting itself. This is because that existing works [24–29] focused on
the backup topology design algorithm, and there were no detailed implementation
and evaluations in terms of restoration time.

As previously described, main overhead of our IP fast rerouting is increase of
memory consumption caused by the preliminary stored backup routes. We also
clarify this overhead compared to OSPF [2].

4.4.1 Simulation Conditions

Firstly, we show the effectiveness in terms of the restoration time of IP fast rerout-
ing compared to OSPF [2] using our formulation described in Sec. 4.2. For the

50

variables Tspf−calc and Tupdate, we measure them by computer simulation. Tspf−calc

is equal to the Dijkstra shortest-path calculation time, whose computation in-
creases as the square of the number of nodes. For the Tupdate, we count the number
of entries in the forwarding table for each router, and it is multiplied by 146µs.
For the partial update, we compute the worst case where the link, which has the
most number of flows, fails. Above simulations are performed in the system with
CentOS 5.5, quad-core Xeon 1.86GHz, and 32GByte memories. For the fixed value
Tdetect, Tlsao, Tflooding, and Tspf−delay are set to fixed values 20ms, 12ms, 33ms and
200ms, respectively.

For the overhead evaluation, we evaluate our IP fast rerouting compared to the
existing IP fast rerouting methods [24–29] and OSPF [2]. Note that existing IP fast
rerouting methods [24–29] assumed that the number of backup forwarding table
was proportional to the number of backup topologies such as Fig. 4.4 (c). As an
indicator of the effectiveness, we use the total number of flow entries on primary,
backup, and shared backup forwarding tables. Note that there are multiple nodes
on a network, and then we compute the average number of total flow entries among
all the nodes.

As the destination addresses in the forwarding tables, the routers and their
interfaces in the system are assumed. Also we assume that no routes aggregation
is performed. Network topology is power-law model [43]. In the power-law model,
most nodes have a small number of links, while a small portion of nodes have a
large number of links. This model is often used as a representation of the actual
Internet [43]. The number of nodes is varied from 20 to 200 nodes, and node-degree
is set to two: each node has four links on average.

4.4.2 Restoration Time

Figure 4.8 shows the restoration time with OSPF and IP fast rerouting when the
number of nodes changes. Our IP fast rerouting can achieve sub-50ms restoration
on our conditions. Though our IP fast rerouting architecture requires the partial
update process for the restoration, it is negligible. Therefore, even if we deploy
an alternative IP fast rerouting method, which can change over to backup routes
as node-internal processes, restoration time is assumed to be almost same. In this
evaluation, we only consider the internal routes for routers and interfaces addresses.
Even if the external routes exist, we can curb the increase of table update time by
using hierarchical forwarding information base (FIB) technology [60].

From these results, though the OSPF cannot achieve sub-50ms restoration, it
achieves sub-second restoration and it seems to be faster than expected. Noted
that this restoration time is the optimal situation. If all LSAs caused by a single
failure cannot be received within the computation delay (200ms), computation
hold time for backup routes computation results, and it is 5sec by default [59].
These gaps in the expected speed of LSAs are caused by the sequential failures,
and difference of router equipment or the failure detection technologies. Therefore,
OSPF even allows the longer computation delay (e.g., 8sec). Then, the finding of
this paper is that computation delay for the stable global convergence is main
factor of restoration time, and dynamic processes such as Dijkstra computation

51

Figure 4.8: Restoration Time with optimal OSPF(full/partial), and IP fast rerout-
ing.

and partial update are negligible on the practical network size [2]. On the other
hand, our IP fast rerouting, which performs local rerouting, does not require the
global advertisement. Then it always achieves the sub-50ms restoration.

4.4.3 Compression Effect

Figure 4.9 illustrates results for the total number of flow entries. Though the
increase of the total number of flow entries with IP fast rerouting methods is
inevitable, our IP fast rerouting, which compress the backup forwarding table,
mitigates the impact of increase. With the existing method, the additional num-
ber of flow entries is approximately the number of backup topologies times the
number of flow entries for OSPF. For example, it is 6 times the number of flow
entries for OSPF on 20-node network. By using our compression algorithm, the
reduction compared to the existing method is about 30% on 20-node networks.
In addition, the reduction is higher for larger networks (e.g., 45% reduction on
200-node networks).

The reason reduction effect increases as the number of nodes increases is as
follows. If network becomes large, the number of links that should be protected
increases, and then the required number of backup topologies also increases. Be-
cause the number of backup routing tables increases in proportion to the number
of backup topologies, the number of flow entries before compression increases. On
the other hand, the frequency of sharing also stochastically increases as the number
of backup routing tables increases. This is more noticeable for the nodes whose
node-degree is low because its available links is limited, and then a probability
to use same link increases. In addition, in large networks, backup routing tables,

52

Figure 4.9: Effectiveness of compression algorithm on Power-law network.

which have redundant entries, tend to be made. For example, even if the property
(protected or not) of links with node A, which is separately-located with node
B, changes, it does not affect the backup routing tables of node B. Such situa-
tion is possibly to occur as network becomes large. Therefore, compression effect
increases as network become large. By contrast, increase of reduction effect is grad-
ual when the number of nodes increases. We suppose this is because of prohibition
of duplicated registration for the same destination addresses in the shared backup
forwarding table. The number of entries that is identical each other increases as
the number of nodes increases because of above reasons. However, there is no
guarantee that each entry has the same next hop interface, and then reduction
effect becomes gradual.

Finally, we discuss the effectiveness of compression when each node has external
user routes. If each node uniformly has the external user routes, the same results
as shown in Fig. 4.9 are expected: external user routes, which belong to the
sharable destination prefix, are also sharable. Then, we assume that external user
routes on each node are unevenly-distributed. As actual model, the nodes, whose
node-degree is high, are commonly central nodes, and they have a large number
of external user routes. Therefore, we assume that the number of external user
routes is proportional to the node-degree of each node. With this model, there
is inversely proportional relationship between the number of links (node-degree)
at a node and the registered entries on the node’s flow tables. For example, the
nodes, whose node-degree is low, stochastically connect to the nodes, which have
a large number of links. Then the number of registered flow entries for such nodes
increase. As previously mentioned, for the nodes whose node-degree is low, sharing
effect is high. That is, the nodes, whose node-degree is low, have a large number
of flow entries but their compression effect becomes high. On the contrary, the

53

nodes, whose node-degree is high, have a low number of flow entries but their
compression effect becomes low. As a result, compression effect is proportional to
the size of flow tables, and then compression effect close to results on Fig. 4.9 is
expected for the unevenly-distributed external user routes.

4.5 Conclusion

We proposed the autonomous IP fast rerouting method using OpenFlow. By
utilizing OpenFlow, we can achieve sub-50ms restoration without any extension of
current forwarding hardware. In addition, our flow table compression algorithm
can reduce the size of flow table about 45% compared to existing algorithms.
This compression effect also increases the feasibility of IP fast rerouting on actual
networks.

54

Chapter 5

Relaxed Maintenance Network
using Dynamic 1+1 Path
Protection

5.1 Introduction

As an alternative to IP, MPLS [3] technology, which provides connection-oriented
paths, was also proposed for backbone network control. This technology enables
network operators to establish explicit paths among nodes, and a network is oper-
ated in accordance with its operator’s proactive network design. MPLS provides
fast restoration against a failure by 1+1 path protection mechanism [5]. The
1+1 path protection provides primary and backup paths, which are link- or node-
disjoint paths. Traffic data is transmitted on both paths, and the receiver node
switches receiving data: it can achieve lossless data transmission.

In terms of operation and maintenance, on the other hand, if the primary or
backup path becomes unavailable because of failure or planned maintenance, the
network operator is required to quickly repair the failed component to maintain
the availability specified in the customer contracts. Repairing physical failures
such as fiber-cut [61] sometimes requires a long time which includes equipment
procurement. In addition, failure occurrence at night incurs extra cost on human
resources.

In this chapter, we propose the network architecture and path computation
algorithm to maintain 1+1 path protection even after a single failure by dynami-
cally assigning a new backup path to allow long repair time. Establishing a new
backup path in a few seconds minimizes the violation of the availability specified
customer contracts, and prolongs the allowable maintenance time.

We evaluated our proposal in two perspectives: network design problem and
network sustainability problem. From the network design perspective, we evalu-
ated total equipment cost, path length, and blocking probability of our proposed
dynamic approach and a static design approach on various forms of networks. The
static design approach we used is the one which establishes three independent paths
in advance. We showed that our dynamic path protection could maximally avoid

55

the influence of sparse-node existence. From the network sustainability perspec-
tive, we showed that our algorithm could reduce blocking probability and allowed
long maintenance time for repairing compared to simple benchmark algorithms.

The rest of this chapter is organized as follows. In Section 5.2, we introduce
related works and our problem statement. Section 5.3 presents our network ar-
chitecture and path computation algorithm. Section 5.4 provides formulation of
maintenance time based on blocking probability. Our evaluation results are shown
in Section 5.5. Finally, we conclude our discussion in Section 5.6.

5.2 Related Works and Problem Statement

5.2.1 Related Works

Path protection technologies are classified into 2 classes: 1+1 path protection
where traffic data is transmitted on both paths [5], and 1:1 path protection where
primary and backup paths are established but traffic data is transmitted only on
primary path. The 1:1 path protection allows shared path protection where band-
width for backup path is shared among different source and destination pairs [62].
This bandwidth share is effective in terms of the total equipment cost reduction.
On the other hand, reliability degrades compared to the 1+1 path protection be-
cause online switching from the primary path to backup path is required when
failure occurs. In addition, if two paths, which share the same links as their
backup paths, simultaneously fail, one path cannot be recovered.

The basic policy of 1+1 path protection [5] is that the source node is allowed
to split the traffic, and the destination node is allowed to switch between traffics.
The intermediate nodes are restricted to only transmitting the traffic. Primary and
backup paths are computed as disjoint paths, which do not share the same links or
nodes. Disjoint paths are computed by suurballe method [63] in polynomial time.
The suurballe method can also produce N-disjoint paths if a network topology has
N-edge connectivity.

Recently, as generalized concept of 1+1 path protection, integer generalized
dedicated protection (IGDP) problem [64, 65] and multi path protection (MPP)
problem [66] were studied. In IGDP problem, arbitrary nodes are allowed to split
the traffic or switch between traffics. The number of backup routes increases
as split points increases. Then, it can handle multiple failures such as shared
risk link group (SRLG) failures though required bandwidth increases. The IGDP
problem belongs to NP complete problem, and it can be formulated as an integer
linear programming (ILP) [65]. In MPP problem [66], integer constraint of IGDP
problem is relaxed to real number constraint, and then it is formulated as a linear
programming.

5.2.2 Problem Statement

The 1+1 path protection is a promising technology to realize reliable networks.
In terms of network operation, however, rapid repairing of failed equipment is

56

Figure 5.1: Dynamic path reconfiguration architecture.

also important. As previously described, there are many studies for 1+1 path
protection [64–66]. These studies mainly focused on path-design algorithm, and
there were few discussions for the maintenance time.

From the above observation, our problem is establishing network architecture
to maintain 1+1 path protection as much as possible and as a consequence relaxing
of the restriction in terms of the maintenance time.

5.3 Network Architecture and Algorithm for Dy-

namic 1+1 Path Protection

For maintaining 1+1 path protection even on a failure, an alternative backup path
should be rapidly prepared after the failure occurrence. In this section, we present
the network architecture, path computation algorithm, and bandwidth calculation
method for our dynamic path reconfiguration system.

5.3.1 Network Architecture

Our dynamic path reconfiguration architecture consists of a network and a central
route server (Fig. 5.1). A central route server has control interface which collects
network state and configures paths, control function, and route computation func-
tion. Each node on the network connects with the central route server through
the control interface. When the central route server detects a failure, it config-
ures backup routes and transmits their information to nodes on the routes, and
alternative backup paths are dynamically established. We illustrate an example to
establish a backup path between node 0 and 6 using Fig. 5.1. When the link 1-3
fails and the current primary path 0-1-3-6 becomes down, the backup path 0-2-5-6
behaves as a new primary path. At this time, failure information is also notified

57

to the central route server, and it configures a new backup path 0-1-4-3-6, which
does not includes the failed link and links on new primary paths (0-2-5-6): 1+1
path protection state is immediately recovered. Hereafter, we describe the basic
architecture and the implementation method of the dynamic path reconfiguration
in detail.

Basic Design

Before the operation of the dynamic protection, the network topology, which in-
cludes the information of nodes, links and their bandwidths, and paths are stored
to the databases of central route server. In this chapter, the database of network
topology is described as traffic engineering database (TED) [67]. In the case that
the network is already operated as a 1+1 path protected network, utilization of
links is also stored to the central route server. In the route computation functions,
dynamic protection paths are computed based on TED by assuming single failure.
The route computation algorithm is described in 5.3.2 later. One dynamic protec-
tion path consists of a source node, a destination node, a failed link or node, an
explicit route object (ERO) of failed path and ERO of dynamic path. ERO means
the route of a path represented by a sequence of node IDs [68]. ERO of failed path
is used for storing failed path information, and its value is initialized as empty.
Then, this dynamic path information against possible single failure is stored to
backup path database. Primary and backup path information is also stored in
path database. The columns of path database consists of source node, destination
node, identifier of path (primary or backup), and ERO of the path (Fig. 5.2).

When network state changes in the operation phase with our dynamic protec-
tion, the central route server detects network change and dynamically configures
new paths. Figure 5.2 illustrates the sequence for the recovery process on failure
and for the reversion process on repair. When the control interface detects a fail-
ure, the control function searches a proper backup path entry from the backup
path database with a failed link or node as the key. Then, the path specified by
the dynamic path ERO in a matched entry is configured through the control inter-
face. Then, a failed path ERO is also searched from the path database with a key
composed of source node, destination node, and failed link or node on the backup
path entry. The EROs of faulty paths in the path database are registered as failed
path EROs. When the control interface detects repairing of failed equipment,
the control function searches the reversioning path entry from the backup path
database with repairing equipment as the key. The failed path ERO in the backup
path database corresponds to its reversioning path. Then, the path for reversion
is established, and the former established dynamic path is removed through the
control interface.

Implementation Method

Recently, centralized control approaches such as path computation element (PCE)
for Generalized-MPLS (GMPLS) network [70] and OpenFlow protocol [54] has
appeared. In this section, we introduce two types of implementations for dynamic

58

Figure 5.2: Control sequence of dynamic path reconfiguration and reversion.

path reconfiguration: control plane-based and management plane-based.
In the control plane-based approach, OSPF-TE protocol [67] can be used for

collecting network state as TED: it could collect the relation of connection, band-
width of links, and utilization ratio of links. The failed point is detected by com-
paring the initial TED and the latest TED. For the path configuration, signaling
protocol like RSVP-TE [68] can be used. In this situation, the central route server
notifies the proper ERO to the source node of the path thorough path computation
element protocol (PCEP) [69]. Then, ERO is transmitted along to the path by
the signaling protocol.

In the management plane-based approach, the central route server directly con-
figures forwarding table called forwarding information base (FIB) of each node. As
ways of direct configuration of FIB, ForCES [71] and OpenFlow [54] was proposed.
Link layer discovery protocol (LLDP) can be utilized for collecting TED [72].
OpenFlow protocol is also used for detecting failed point or collecting traffic in-
formation.

5.3.2 Algorithm for Dynamic Disjoint Path Discovery

In this section, we propose weighted-constrained shortest path first (W-CSPF)
algorithm, which utilizes available resources to establish efficient dynamic paths.
With the current constrained shortest path first (CSPF) algorithm [73], the links,

59

Table 5.1: Notation for W-CSPF Algorithm.

G = (V,E) Graph with nodes V and undirected links E, ei,j ∈ E

wij weight of link ei,j

Dk traffic demand of flow k

Bi,j available bandwidth of link ei,j

Xk
i,j 1 if working path k use link ei,j, otherwise 0

Y k
i,j 1 if backup path k use link ei,j, otherwise 0

s(k) source node of flow k

d(k) destination node of flow k

SPT (s, d,G) shortest path from s to d on graph G

which do not satisfy the bandwidth request of paths, is removed from the original
topology. Then, shortest paths are computed based on the filtered topology. As
long as the filtered topology has connectivity, path between an arbitrary source
and destination node is established. On the other hand, link utilization on the
filtered topology depends on the shortest path first (SPF) algorithm, and then
provided paths by CSPF has potential to result in inefficient link utilization. To
be more precise, we assume the situation of dynamic path configuration when a
link failure occurs. Because each link ordinarily accommodates multiple primary
or backup paths, multiple dynamic paths should be configured against a single
failure. If we use the CSPF algorithm for dynamic path computation, bias of link
utilization and congestion may occur due to above SPF mechanism: as paths are
sequentially configured, links, which do not have enough bandwidth, increase. As
a result, connectivity between an arbitrary source and destination node could be
lost. Compared to the CSPF algorithm, our W-CSPF algorithm not only filters
out the unsatisfied links, but also considers the link utilization of links on the
filtered topology: it weights links in accordance with their available resources.

Inputs to our algorithm are a physical topology and a traffic matrix. Traf-
fic matrix expresses the amount of data traffic between every pair of network
ingress/egrress points [74]. For example, the size of a traffic matrix is |V |2 when
the number of nodes is denoted as |V |. The primary and backup paths are pre-
computed using the Suurballe method [63], which computes two link-disjoint paths
between source and destination nodes. We assume link failure occurs on the pri-
mary or backup path and compute a dynamic disjoint path as the new backup
path. The details of our algorithm are shown in Table 5.2, using the notations
listed in Table 5.1.

In a directed graph, G = (V,E), we assume link eab ∈ E failed. Then we apply
the following processes to flow k (primary or backup path) included in link eab. If
flow k is the primary path, a set of links E1 is created (line 2,3). E1 is a set of
links that compose a backup path. If flow k is the backup path, a set of links E1
is created (line 4,5). In this instance, E1 is a set of links that compose a primary
path. Then, a set of links E2 is created (line 6). E2 contains links whose available

60

Table 5.2: W-CSPF Algorithm.

.

1 for all k {k | Xk
ab = 1 || Y k

ab = 1} do

2 if (Xk
ab = 1) then

3 E1 := {ei,j|Y k
ij = 1} i, j ∈ V

4 if (Y k
ab = 1) then

5 E1 := {ei,j|Xk
ij = 1} i, j ∈ V

6 E2 := {ei,j|Bi,j < Dk} i, j ∈ V

7 E3 := E\{E1 ∪ E2 ∪ ea,b}
8 forall ei,j ∈ E3 do

9 wi,j := int{maxel,m∈E3(Bl,m)/Bi,j}
10 G′ := (V,E3)

11 return SPT (s(k), d(k), G′)

12 end

bandwidth do not satisfy the required bandwidth of flow k in graph G. Then, a
new set of links E3 is created(line 7). E3 is composed of E, except for E1, E2, and
failed link eab. At this point, a set of links E3 that is available for accommodating
flow k is prepared. Then, link weight that is inversely proportional to available
resources is assigned to each link in E3 (line 8,9). Dynamic path are computed
as minimum cost path based on link weights. Therefore, by this process, the links
with enough available resources are preferentially used for flow accommodation.
Finally, the shortest path from s(k) to d(k) is computed on graph G′. As well,
simple shortest paths (SPF) are computed by skipping the processes in line 6, 8,
and 9, and CSPF paths are computed by skipping the processes in line 8 and 9.

Our approach can also be applied to node failure. The primary and the backup
paths are computed also using the Suurballe method, which computes two node-
disjoint paths between source and destination nodes. Then, we slightly extend our
dynamic disjoint path discovery algorithm. When we denote failed node f , failed
links becomes eif , i ∈ V . Then we use our algorithm for flows Xk

if , i ∈ V and
Y k
if , i ∈ V against link failures .
As for the computation time, shortest path computation (line 11) is dominant,

and computation time of the shortest path calculation is O(|V |2); therefore, the
computation of our algorithm is O(|k||V |2) with the number of flows |k| on link
eab.

5.3.3 Bandwidth Design for Dynamic Disjoint Path Dis-
covery

If we know the traffic matrix, we can compute the reserved bandwidth, which
are required resources for links. We propose a reserved bandwidth-computation
method for reliable network design. First the volume of traffic flows that occur at

61

all source and destination node pairs, is allocated to each link of the primary and
backup paths. At this point, the reserved bandwidth for the primary and backup
paths is computed.

Next, we compute the reserved bandwidth of the dynamic path Bw(e), e ∈
E. First, dynamic paths are computed by assuming link i failure. Then, the
volume of traffic flows that are required by the dynamic paths is allocated to each
link e ∈ E as reserved bandwidth Bw(e, i). We perform the path computation
algorithm against each link failure. At this time, the required bandwidth of each
link Bw(e, i), e, i ∈ E is independent in each pattern of link failure i. Therefore,
reserved bandwidth can be shared. That is, only the maximum value of required
bandwidth maxi∈EBw(e, i) is allocated as the reserved bandwidth Bw(e). Then,
we avoid unnecessary bandwidth allocation by sharing the reserved bandwidth.

5.4 Formulation for Maintenance Time

In this section, we formulate maintenance time. Maintenance time means that
which could be assigned for repairing of failed components. A network is denoted
as a directed graph G = (V,E) with nodes V and links E. The set of flows
(source and destination pairs) that are included in link x ∈ E is denoted as Fx.
For flow f ∈ Fx, the set of links that compose primary path, backup path, and
dynamic path are denoted as EP (f), EB(f), and ED(f) respectively. The dynamic
path does not always exist for flow f : if the minimum cut between source node
and destination node is less than three, we cannot recover the link failure that is
composed of the minimum cut. Therefore, we define the blocking probability βx

that are fraction of flows that have no own dynamic path, and are included in link
x. The mean time between failure (MTBF) of link e is denoted as MTBF (e),
and the mean time to repair (MTTR) is denoted as MTTR(e). For simplification,
MTTR(e) is assumed to be the same value among all links. Availability of 1+1
path protection after the link x failure is denoted as A1+1(x) and availability with
our proposal is denoted as Ad(x).

Availability α(e) of link e ∈ E is denoted as follows.

α(e) =
MTBF (e)

MTBF (e) +MTTR(e)
(5.1)

Using Eq. 5.1, availabilities of primary path AP , backup path AB, and dynamic
path AD can be defined as follows;

AP =
∏

e∈EP (f)

α(e) (5.2)

AB =
∏

e∈EB(f)

α(e) (5.3)

AD =
∏

e∈ED(f)

α(e) (5.4)

The 1+1 path protection has two redundant paths, and our dynamic architecture
on an ideal network topology (e.g. 3-edge connected graph) has three redundant

62

paths; hence, the availability of 1+1 path protection A1+1(x) and availability with
our proposal on an ideal environment Aideal

d (x) are given as follows;

A1+1(x) =

(∑
f∈Fx

{1− (1− AP)(1− AB)}
)
/|Fx| (5.5)

Aideal
d (x) =

(∑
f∈Fx

{1− (1− AP)(1− AB)(1− AD)}
)
/|Fx| (5.6)

Networks do not necessarily have three disjoint path. Availability Ad(x) can be
defind as follows using Eq. 5.5 and Eq. 5.5 with blocking probability βx.

Ad(x) = (1− βx)× Aideal
d (x) + βx × A1+1(x) (5.7)

Maintenance time on link x failure can be calculated as follows. First we
compute the blocking probability βx by computing dynamic paths for flows in
failed link x. Then, we define constant MTBF value and give variable MTTR
value m. At this point, the availability function when link x fails is denoted as
Ad(x,m) with parameters x and m. Maintenance time for achieving availability
Ad(x,m) is corresponds to m. Therefore, when our objective availability (e.g.,
99.9999%) is given as Aobj, maximum value m whose Ad(x,m) does not fall below
Aobj becomes maintenance time, and it is given as follows;

MT (x) = maxAobj≤Ad(x,m)(m) (5.8)

5.5 Performance Evaluation

We show the effectiveness of our dynamic path reconfiguration through computer
simulations. We evaluate our proposal considering two scenarios: (i) network
design problem and (ii) re-design problem for operating network. The network
design problem (i) outputs routes for each path and required bandwidth for each
link when the physical topology and traffic matrix are given. We evaluate our
proposal compared to the three-path predesign approach, which constructs disjoint
three paths using Suurballe algorithm [63]. The network re-design problem for
operating network (ii), available bandwidth of each link was also given because
upper bound of link bandwidth was defined, and primary and backup paths were
established. In this problem, Suurballe algorithm cannot be applied because it
computes N-disjoint path at once. Then, we evaluate our W-CSPF algorithm
compared to benchmarks: SPF and CSPF described in Sec. 5.3.2.

This evaluation assumes possible single link failure occurrence. The blocking
probability of new backup paths after a link x fails is given as follows.

βx = 1− |F ′
x|

|Fx|
(5.9)

|Fx| is a number of paths included on link x, and |F ′
x| is a number of paths, which

can provide the third path. The third path means the third backup path for the

63

Figure 5.3: Simulation topologies and traffic matrix for COST239 model.

existing three-path predesign, and the dynamic path for our dynamic reconfigura-
tion. For the parameters for computing maintenance time, MTBF is set to three
years, and Aobj is set to 99.9999% availability.

Evaluation topologies and traffic matrix are illustrated in Fig. 5.3. Distribution
of traffic matrix is according to gravity model [74] whose distribution is propor-
tional to weight of nodes. We assume that blocking probability of path is severely
dependent on the distribution of node-degree. Then, evaluation is performed on six
different topologies whose average node-degrees are over three. For both the dy-
namic path configuration and pre-design method, another path (dynamic path or
third path) is additionally established to the current 1+1 path protection. There-
fore, the ratio of nodes whose node-degree is under three becomes main factor of
performance. Then, we define the node whose node-degree is under three as sparse
node. For the evaluation of equipment cost and path length for the network de-
sign problem (i), we evaluate them only on (c) COST239 model, whose minimum
cut is over three, to ignore the effect of blocking probability. In addition, for the
re-design problem (ii), we evaluate blocking probability on (c) COST239 model
for clarifying the difference in performance caused by the different path compu-
tation algorithms. Our proposal is assumed to be applied to the electric MPLS
network [3]. Each path can request the bandwidth with an arbitrary granularity.
In each physical link, only an upper bound of link capacity is given: we do not
deal the wavelength constraints [75] for optical network.

64

Table 5.3: Total amount of required resources and path lengths on cost239 model.

Total Bandwidth Average Path Length

1st 2nd 3rd/Dynamic 1st 2nd 3rd/Dynamic

Dedicated Protection 1 1.235 1.802 1 1.349 1.872

Shared Protection 1 1.235 1.383 1 1.349 1.872

Proposed Protection 0.9980 1.233 1.439 0.9964 1.343 1.730

5.5.1 Effectiveness under the Network Design Problem

In this section, we evaluate total equipment cost, path length, and dependency to
the form of network topology for the network design problem.

Equipment Cost and Path Length

Table 5.3 shows the total bandwidth and path length required for primary paths,
backup paths, and third paths for the existing three-path predesign and proposed
dynamic protection respectively. The total bandwidth means the summation of
bandwidth of each link. The total bandwidth and path length are normalized so
that those of the dedicated protection method become one. There are two types
of the three-path predesign method in terms of bandwidth design: the dedicated
protection whose third paths occupy their required bandwidth, and the shared
protection whose third paths, which have different source and destination node
pair, share the bandwidth each other.

From the table 5.3, we can find the trade-off between the total bandwidth and
the path length: the total bandwidth of our dynamic protection increases about
4.0% compared to the shared protection, and the path length is shortened about
3.6%. The reason of the total bandwidth increase is because of path spreading:
because our dynamic protection behaves as the link protection mechanism, the
dynamic paths are provided as different routes in accordance with the failed point
even if those paths have same source and destination node. On the other hand, the
three-path predesign method provides the third path, which does not share links
or nodes with primary and backup path, between the same source and destination
node. That is, with three-path predesign, the third path for the same source and
destination does not change in accordance with the failed point. As a result, the
required bandwidth of our dynamic protection slightly increases compared to the
three-path predesign.

Concerning the path length, our dynamic protection can shorten the length
of primary path, backup path, and third path compared to them of three-path
predesign method. In the three-path predesign method, a primary path, a backup
path, and a third path are computed as disjoint paths each other. With our
dynamic protection, only a primary path and a backup path are computed as
disjoint paths. A dynamic path is computed as disjoint path against the new
primary path, and failed link or node. As a result, the restriction for establishing
the primary path, the backup path, and the dynamic path is relaxed, and this

65

Figure 5.4: Average blocking probability of the dynamic path reconfiguration and
three-path predesign design method. The number in brackets means the sparse
node ratio.

result in shortening each path compared to the three-path predesign. This effect
can also reduce the required bandwidth in the partial protection environment,
which only protects a part of links or nodes.

Blocking Probability

Figure 5.4 illustrates the blocking probability of our dynamic path reconfiguration
and three-path predesign under the different topologies. In this evaluation, we
measure the average blocking probability when a possible single link failure occurs.

While the blocking probability with the three-path predesign increases as the
ratio of sparse nodes increases, our dynamic protection suppresses the increase of
blocking probability. For example, on (f) COST266 model and (e) GTC model,
blocking probability with ours is reduced about 53% compared to the three-path
predesign. This is because that our dynamic protection maximally avoids the
influence of sparse node existence by dynamically discovering the third path. The
three-path predesign method could not provide a third path if the primary or
backup path between a source node and destination node include at least one
sparse node: Even if a failure occurs on a link which does not connect the sparse
node, the third path could not be provided. On the other hand, our dynamic
protection, which behaves like a link protection, could provide the third path
excepting the case where the link connected with the sparse node fails.

The blocking probability also depends on the number of nodes, and suppressing
effect increases as the number of nodes increases. For example, on (a) 14-nodes

66

Figure 5.5: Simulation Scenario for failure repair. The maintenance time of (a),
and (b) is over 48 hour and 24 hour respectively.

NSFNET model and (f) 26-nodes COST266 model, while both the ratios of sparse
nodes are in the same range (14-15%), suppression effect of (f) COST266 is larger
than it of (a) NSFNET. The suppression effect of (f) COST 266 is about 53%, and
is equivalent to it of (e) GTC model, whose ratio of sparse node is about 41%.
Because the total numbers of links and nodes of (f) COST266 model is greater than
them of (a) NSFNET, the number of intermediate nodes of (f) COST266 is also
greater than them of (a) NSFNET. That is, with three-path predesign method,
the number of failure patterns, which could not provide third path, increases even
if the ratio of sparse node is almost same. On the other hand, blocking probability
with our dynamic protection is affected by only the ratio of sparse node because
of its link protection behavior. As a result, in our dynamic protection, increase
of intermediate nodes has no relevance to the increase of blocking probability,
and then suppression effect, which also means the relative effect to the three-path
predesign, increases as the number of nodes increases.

5.5.2 Effectiveness in Operating Network

In this section, we evaluate the effectiveness of our W-CSPF algorithm under
the re-design scenario for operating networks compared to benchmarks: CSPF
and SPF. Evaluation indexes are blocking probability and maintenance time. For
discussing the right and wrong of maintenance time, we consider specific scenarios
shown in Fig. 5.5. Figure 5.5 (a) illustrates a failure repair scenario that has over
48 hours for maintenance, and Fig. 5.5 (b) illustrates it that only has 24 hours.

67

Figure 5.6: Blocking probability with different dynamic path protection algorithms
on cost239 model.

In these scenarios, we assume that it takes 14 hours to arrange new equipment
and to go off to failed place, and 7 hours to repair the failure. In addition, we
assume that a failure occurs and is notified to network operator after office hours
(22:30 P.M.). If allowed maintenance time is 48 hours (Fig. 5.5 (a)), we can repair
the failure without working at late-evening. On the other hand, if the allowed
maintenance time is 24 hours (Fig. 5.5 (b)), we should rapidly go to the failed
equipment with late-evening work. We therefore consider allowing 48-hour repair
time is preferable over 24-hour one.

Blocking Probability with different algorithms

Figure 5.6 illustrates blocking probability with different dynamic path protection
algorithms. Blocking probability is computed as an average when a possible single
link failure occurs. In this evaluation, we changed maximum link utilization as
variable to evaluate relationship between dynamic path computation algorithms
and the available resources. First, we accommodate traffic demands (Fig. 5.3) on
primary and backup paths, which are computed by Suurballe algorithm. Then, link
bandwidth of each link is adjusted to satisfy the given maximum link utilization.

The reduction effect of blocking probability with our W-CSPF compared to
CSPF and SPF becomes high when network is moderately-loaded: the reduction
effect is about 20% compared to SPF, and is about 10% compared to CSPF when
maximum link utilization is between 0.5 and 0.7. When the link utilization is low,
there are enough available resources. Then, effect of taking available resources
into consideration is low. For example, SPF algorithm also realizes zero blocking
when maximum link utilization is 0.1. When maximum link utilization is between
0.2 and 0.3, while the path blocking arises with SPF, CSPF algorithm, which only
eliminates unsatisfied links, can still realize zero blocking. When maximum link

68

Figure 5.7: Figure shows the cumulative distribution function (CDF) of mainte-
nance time when maximum link utilization is 0.5 on COST239 topology model.

utilization is between 0.4 and 0.7, on the other hand, available resources gradually
decrease, and then performance difference between CSPF and W-CSPF appears.
This is caused by the consideration of available resources: while CSPF algorithm
only eliminates the unsatisfied links, W-CSPF not only eliminates the unsatisfied
links, but also utilizes available links by weight assignment. Finally, when the
maximum link utilization is between 0.8 and 1.0, there are few available resources
in the network. Most of links have no available resources, and then available
links for dynamic path accumulation is restricted. As a result, dynamic paths
computed by CSPF and W-CSPF algorithms are stochastically the same routes.
Then, performance difference between CSPF and W-CSPF is small.

Because the main factor for determining the performance of each algorithm is
the amount of available resources, dependency to traffic distribution is assumed
to be small. Even if traffic distribution affects the amount of available resources,
performance difference, which has roots in the mechanism of available resources
consideration, does not change. Then, the trend of the results will not change even
though we evaluate performance under different traffic distribution models.

Relaxation of Maintenance Time

The cumulative distribution function (CDF) of maintenance time based on the
blocking probability of each algorithm when maximum link utilization is 0.5 is
illustrated in Fig. 5.7. This graph suggests that the path computation algorithm
with low blocking probability also decreases the ratio of failures that have short
maintenance time. For example, while the ratio of failures whose maintenance
time is under 48 hours is about 70% with SPF based algorithm, it becomes about

69

20% with CSPF based one, and it becomes 10% with W-CSPF based one. The
cumulative value of each algorithm increases when maintenance time is around
20-40 hours, and 100-140 hours. The former increasing is for the case that the
dynamic path cannot be established, and the latter is for the case that the dynamic
path is established. With W-CSPF algorithm, the cumulative value increases
around 100 hours. This also suggests that maintenance time over 100 hours is
assigned to 90% of failures. The tendency of CSPF and W-CSPF is resemblant,
and cumulative value of W-CSPF temporarily exceeds it of CSPF around about
120 hours. This is because that the length of dynamic path with W-CSPF, that
considers efficient utilization but not considers path length, becomes slightly long
compared to the CSPF at this point. However, this temporal exceeding is not so
important compared to the advantage of W-CSPF: it can decrease the ratio of
failures with short maintenance time about 10% compared to the CSPF based.

5.6 Conclusion

In this chapter, we proposed the network architecture and path computation algo-
rithm to maintain 1+1 path protection even after a single failure by dynamically
assigning a new backup path. In terms of path quality, there was the trade-off
between the equipment cost and the path length: the equipment cost increased
about 4.0%, and the path length was shortened about 3.6% compared to the ex-
isting static design. Our dynamic path protection, which maximally avoided the
influence of sparse-node existence, could reduce blocking probability about 53%
compared to the static design. In the re-design scenario for operating networks,
our algorithm called W-CSPF could reduce blocking probability about 10%-20%
compared to simple benchmark algorithms. In addition, we formulated the relation
between maintenance time and blocking probability. We showed the effectiveness
in terms of relaxation of maintenance time: ratio of failures, whose maintenance
time could be assigned over 100 hours, increased about 10%.

70

Chapter 6

Conclusions

This study provided reliable and sustainable network design for IP and MPLS
network. In particular, we studied carrier grade IP fast rerouting and a scheme to
relax repair-time constraint for MPLS network.

In Chapter 2, we argued that minimizing the number of backup topologies for
IP fast rerouting is required to improve network scalability and applicability. We
presented a new backup topology computation algorithm that reduces the number
of backup topologies. Our algorithm has high feasibility for the existing IP fast
rerouting framework in terms of the memory consumption, and we demonstrated
its effectiveness through an extensive simulation study. The results showed that
our algorithm reduced the number of backup topologies by about 56% on power-
law networks, and the effectiveness increases as the number of nodes increases. Our
algorithm is more effective on actual networks than the conventional algorithm.

In Chapter 3, we tackled the minimization of the loop probability of the IP fast
rerouting on concurrent double failures. Our forwarding algorithm, which does not
require explicit failure notification, can reduce the loop probability from 10−2 to
10−3 compared to existing algorithms. To achieve the objective loop probability on
an arbitrary size network, our algorithm can reduce the required number of backup
topologies about 35-50% compared to the loose lower bound solutions, where ar-
bitrary two-link pairs are protected on one of the backup topologies. Because our
algorithm can avoid explicit failure notification, and the increase in the number of
backup topologies as network size grows is slower than existing algorithms, it has
high scalability.

In Chapter 4, we proposed the autonomous IP fast rerouting method using
OpenFlow. By utilizing OpenFlow, we can achieve sub-50ms restoration with-
out any extension of current forwarding hardware. In addition, our flow table
compression algorithm can reduce the size of flow table about 45% compared to
existing algorithms. This compression effect also increases the feasibility of IP fast
rerouting on actual networks.

In Chapter 5, we proposed the network architecture and path computation
algorithm to maintain 1+1 path protection as much as possible after a single failure
by dynamically assigning a new backup path. In terms of path quality, there was
the trade-off between the equipment cost and the path length: the equipment cost
increased about 4.0%, and the path length was shortened about 3.6% compared

71

to the existing static design. Our dynamic path protection, which maximally
avoided the influence of sparse-node existence, could reduce blocking probability
about 53% compared to the static design. In the re-design scenario for operating
networks, our algorithm called W-CSPF could reduce blocking probability about
10%-20% compared to simple benchmark algorithms. In addition, we formulated
the relation between maintenance time and blocking probability. We showed the
effectiveness in terms of relaxation of maintenance time: ratio of failures, whose
maintenance time could be assigned over 100 hours, increased about 10%.

The conclusion of this dissertation is that IP and MPLS are both essential
technologies in accordance with network operation policy and/or service quality
requirements, and this study expands the applicability of each technology. Our IP
fast rerouting not only satisfies carrier requirements but also provides cost-effective
restoration, which is originally derived from IP nature. In addition, our MPLS
protection framework is extended for realizing relaxed maintenance requirement
while its potential for traffic engineering is also assured.

Finally, we conclude this dissertation by mentioning future works. For the
algorithms of backup topology design in Chap. 2 and Chap. 3, we will mathemat-
ically analyze them: proof the problem as NP hard and find suboptimal minimum
number of backup topologies. For the IP fast rerouting framework in Chap. 4,
we will implement our IP fast rerouting method for proof of concept, and develop
the recovery optimization framework that uses both local and global repairing as
the situation demands. In Chap. 5, we present one of applications for applying
dynamic nature to path protection scheme. We believe that this new concept will
motivate a rich body of research for the current static carrier network against more
complicated failures such as multiple failures or disaster.

72

Bibliography

[1] T. Murakami, “The NGN - a carrier-grade IP convergence network,” in Proc.
of IEEE/IFIP NOMS Workshops, 2010.

[2] J. Moy, “OSPF Version 2,” IETF RFC 2328, Apr. 1998.

[3] V. Sharma and F. Hellstrand, “Framework for Multi-protocol Label Switching
(MPLS)-based Recovery,” in IETF, RFC 3469, Feb. 2003.

[4] M. Bocci, et al., “A Framework for MPLS in Transport Networks,” in IETF
RFC 5921, Jul. 2010.

[5] S. Ramamurthy and B. Mukherjee, “Survivable WDM Mesh Networks, Part
I - Protection,” in Proc. of IEEE INFOCOM, vol. 2, pp. 744-751, Mar. 1999.

[6] C. Alaettinoglu, V. Jacobson, and H. Yu, “Towards Millisecond IGP Conver-
gence,” in IETF Internet draft 2000.

[7] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Incremental Algo-
rithms for Single-Source Shortest Path Trees,” in Proc. of Foundations of
Software Tech. and Theoretical Comp. Sci., Dec. 1994, pp. 113-24.

[8] Bernard Fortz, Mikkel Thorup, “Internet Traffic Engineering by Optimizing
OSPF Weights,” in Proc. of IEEE INFOCOM 2000.

[9] Yufei Wang, Zheng Wang, Leah Zhang, “Internet Traffic Engineering without
Full Mesh Overlaying,” in Proc. of IEEE INFOCOM 2001.

[10] A. Nucci et al., “IGP Link Weight Assignment for Transient Link Failures,”
in Proc. of Elsevier ITC 18, 2003.

[11] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS Weights in a Changing
World,” in Proc. of IEEE JSAC, vol. 20, no. 4, May 2002, pp. 756-67.

[12] P. Narvaez, “Routing Reconfiguration in IP Networks,” Ph.D. dissertation,
MIT, June 2000.

[13] Y. Rekhter et al., “A Border Gateway Protocol 4 (BGP-4) ,” in IETF
RFC4271.

[14] A. Bremler-Barr, Y. Afek, and S. Schwarz, “Improved BGP convergence via
ghost flushing,” in Proc. of IEEE INFOCOM, March 2003.

73

[15] J. Chandrashekar, Z. Duan, Z. Zhang, and J. Krasky, “Limiting Path Ex-
ploration in BGP,” in Proc. of IEEE INFOCOM 2005, vol.4, pp.2337-2348,
March 2005.

[16] P. Marques, et al., “Advertisement of the best-external route to IBGP,” in
IETF draft-marques-idr-best-external-00.txt, 2008.

[17] P. Mohapatra , et al., “Fast Connectivity Restoration Using BGP Add-path,”
in IETF draft-pmohapat-idr-fast-conn-restore-00.txt 2008.9

[18] D.Walton, et al., “Advertisement of Multiple Paths in BGP,” in IETF draft-
walton-bgp-add-paths-06, 2009.

[19] C. Pelsser et al., “Improving Route Diversity through the Design of iBGP
Topologies,” in Proc. of IEEE ICC 2008.

[20] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs, “R-BGP:Staying
connected in a connected world,” in Proc. of NSDI’07 April 2007.

[21] W. Xu and J. Rexford, “Miro: multi-path interdomain routing,”in Proc. of
ACM SIGCOMM 2006, September 2006.

[22] Masafumi Watari, Yuichiro Hei, Shigehiro Ano,Katsuyuki Yamazaki, “OSPF-
based Fast Reroute for BGP Link Failures,” in Proc. of IEEE globecom 2009.

[23] Ning Wang, Yu Guo, Kin-Hon Ho, Michael Howarth,George Pavlou, “Fast
Network Failure Recovery Using Multiple BGP Routing Planes,” in Proc. of
IEEE globecom 2009.

[24] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast IP
Network Recovery using Multiple Routing Configurations,” in Proc. of IN-
FOCOM, Apr. 2006.

[25] T. Cicic, A. F. Hansen, A. Kvalbein, M. Hartmann, R. Martin, and M. Menth,
“Relaxed Multiple Routing Configurations for IP Fast Reroute,” in Proc. of
IEEE/IFIP Network Operations and Management Symposium 2008.

[26] S. Kamamura, T. Miyamura, C. Pelsser, I. Inoue, and K. Shiomoto, “Mini-
mum Backup Configurations Creation Method for IP Fast Reroute,” in Proc.
of IEEE Globecom, Dec. 2009.

[27] A. F. Hansen, O. Lysne, T. Cicic, and S. Gjessing, “Fast Proactive recovery
from Concurrent Failures,” in Proc. of IEEE International Conference on
Communications, ICC 2007, June 2007.

[28] A. Kvalbein, T. Cicic and S. Gjessing, “Post-Failure Routing Performance
with Multiple Routing Configurations,” in Proc. of INFOCOM, May 2007.

[29] R. Takahashi, S. Tembo, K. Yukimatsu, S. Kamamura, T. Miyamura, and
K. Shiomoto, “Dispersing Hotspot Traffic in Backup Topology for IP Fast
Reroute,” in Proc. of ICC, Jun. 2011.

74

[30] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-free
alternates,” in IETF RFC 5286, Sep. 2008.

[31] S. Bryant, et al., “IP Fast Reroute Using Not-via Addresses,” in IETF draft-
ietf-rtgwg-ipfrr-notvia-addresses-08, Dec. 2011.

[32] S. Nelakuditi et al., “Failure Insensitive Routing for Ensuring Service Avail-
ability,” in Proc. of IW QoS, June 2003.

[33] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah, “Failure
inferencing based fast rerouting for handling transient link and node failures,”
in Proc. of IEEE Global Internet, vol. 4, Mar. 2005.

[34] J. Wang, and S. Nelakuditi, “IP Fast Reroute with Failure Inferencing,” in
Proc. of INM’07, at ACM SIGCOMM, Aug. 2007.

[35] Kang Xi, H. J. C. “ESCAP: Efficient SCan for Alternate Paths to Achieve IP
Fast Rerouting” in Proc. of IEEE Globecom 2007.

[36] A. Tam, K. Xi, and H. J. Chao, “A Fast Reroute Scheme for IP Multicast,”
in Proc. of IEEE Globecom, Dec. 2009.

[37] Kang Xi, C. H. J., C. Guo, “Recovery from Shared Risk Link Group Failures
Using IP Fast Reroute,” in Proc. of IEEE ICCCN Aug. 2010.

[38] M. Gjoka, V. Ram, and Y. Xiaowei, “Evaluation of IP Fast Reroute Propos-
als,” in Proc. of COMSWARE Jan. 2007.

[39] P. Psenak, S. Mirtorabi, A. Roy, L. Nguen, and P. Pillay-Esnault, “MT-OSPF:
Multi topology (MT) routing in OSPF,” in IETF RFC4915, June 2007.

[40] H. Liu, “Routing Table Compaction in Ternary CAM,” in IEEE Micro,
Vol.22,No.1, pp.58-64, Jan./Feb. 2002.

[41] K. Nichols, et al., “Definition of the Differentiated Services Field (DS Field)
in the IPv4 and IPv6 Headers,” in IETF RFC 2474, Dec. 1998.

[42] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Travel-
ing Salesman Problem,” in Proc. of the American Mathematical Society, Vol.
7, No. 1, Feb. 1956, pp. 48–50.

[43] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach to
universal topology generation,” in Proc. of IEEE MASCOTS, Aug. 2001.

[44] J.T. Moy, OSPF: Anatomy of an Internet Routing Protocol, Addison Wesley,
1998.

[45] C. Berge, The Theory of Graphs, New York: Dover Publications, 2001.

[46] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An Information Theoretic
Approach to Traffic Matrix Estimation,” in Proc. of IEEE SIGCOMM 2003.

75

[47] S. Kamamura, T. Miyamura, and K. Shiomoto, “IP Fast Reroute Control
using Centralized Control Plane Architecture,” in Proc. of IEEE CNSM, Oct.
2010.

[48] F. K. R. Chung, “Spectral Graph Theory,” volume 92 of Regional Conference
Series in Mathematics. American Mathematical Society, Providence, RI, 1997.

[49] B. Fortz, “Application of Meta-heuristics to Traffic Engineering in IP Net-
works,” International Transactions in Operational Research, Vol. 18, Issue 2,
pp.131-147, Mar. 2011.

[50] “Multi-Topology routing,” Web site, http://www.juniper.net/
us/en/local/pdf/whitepapers/2000308-en.pdf, access to May 2012.

[51] “Open VSwitch,” Web site, http://openvswitch.org/, access to May 2012.

[52] “GNU Quagga Project,”Web site, http://www.quagga.org/, access to May.
2012.

[53] A. Greenberg, et al., “A Clean Slate 4D Approach to Network Control and
Management,” in Proc. of ACM SIGCOMM Computer Communication Re-
view. 35(5). Oct. 2005.

[54] N. McKeown, et al., “OpenFlow: enabling innovation in campus networks,”
in Proc. of ACM SIGCOMM Computer Communication, 38(2):69-74, April
2008.

[55] “OpenFlow Switch Specification 1.1,” Web site,
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf, access
to May 2012.

[56] J.-P. Vasseur, M. Pickavet, and P. Demeester. “Network Recovery: Protection
and Restoration of Optical, SONET-SDH, and MPLS” Morgan Kaufmann,
2004.

[57] P. Francois et al., “Achieving sub-second IGP convergence in large Ipnet-
works,” in Proc. of ACM SIGCOMM Computer Communication Review Vol-
ume 35 Issue 3, July 2005

[58] D. Oran. “OSI IS-IS intra-domain routing protocol,” in IETF RFC 1142, Feb.
1990.

[59] “Example: Configuring the OSPF Routing Algorithm,” Web site,
http://www.juniper.net/techpubs/en US/junos12.1/topics/topic-map/ospf-
spf-algorithm.html, access to May 2012.

[60] C. Filsfils, P. Mohapatra, J. Bettink, P. Dharwadkar, P. De Vriendt, Y.
Tsier, V. V. D. Schrieck, O. Bonaventure and P. Francois, “BGP Prefix In-
dependent Convergence (PIC) Technical Report,” Tech. Rep. 2011. Web site,
http://www.cisco.com/en/US/prod/collateral/routers/ps5763/
bgp pic technical report.pdf, access to May 2012.

76

[61] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, C. Diot, “Char-
acterization of Failures in an IP Backbone,” in Proc. of IEEE INFOCOM, vol.
4, pp. 2307-2317.Mar. 2004.

[62] P. H. Ho and H. T.Mouftah, “Shared protection in WDM mesh networks,” in
IEEE Commun. Mag., vol. 42, no. 1, pp. 70-76, Jan. 2004.

[63] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, ppp. 125-145,
1974.

[64] P. Soproni, P. Babarczi, J. Tapolcai, T. Cinkler, and P. H. Ho, “A Meta-
Heuristic Approach for Non-Bifurcated Dedicated Protection inWDMOptical
Networks,” in Proc. of Design of Reliable Communication Networks, (DRCN),
2011, pp. 110-117.

[65] P. Babarczi, J. Tapolcai, and P. Ho, “Availability-constrained Dedicated Seg-
ment Protection in circuit switched mesh networks,” in Workshop on Reliable
Networks Design and Modeling, (RNDM), 2009, pp. 1-6.

[66] T. Cinkler and L.Gyarmati, “MPP optimal multi-path routing with protec-
tion,” in Proc. of IEEE ICC 2008, pp. 165-169.

[67] D. Katz, K. Kompella, and D. Yeung, “Traffic engineering (TE) extensions
to OSPF version 2,” in IETF RFC 3630, Sept. 2003.

[68] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, “RSVP
TE : extensions to RSVP for LSP tunnels,” in IETF RFC 3209, Dec. 2001.

[69] J. Vasseur, and J. L. Roux, “Path Computation Element (PCE) Communi-
cation Protocol (PCEP),” in IETF RFC 5440, Mar. 2009.

[70] A. Farrel, et al., “A Path Computation Element (PCE)-Based Architecture,”
in IETF RFC 4655, Aug. 2006.

[71] L. Yang et al, “Forwarding and Control Element Separation (ForCES) Frame-
work,” in IETF RFC 3746 Apr. 2004.

[72] “OpenFlow Discovery Protocol and Link Layer Discovery Protocol,”
http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol, access to
Apr. 2012.

[73] M, KB, “Constrained Shortest Path First,” in IETF internet draft, draft-
manayya-constrained-shortest-path-first-02.txt, Feb. 2010.

[74] Y. Zhang, M. Roughan, N. Duffield and A. Greenberg, “Fast accurate com-
putation of large-scale IP traffic matrices from link loads,” in Proc. of ACM
SIGMETRIC’03, pp.206-217, June 2003.

[75] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee, “Fault Management
in IP-Over-WDM Networks: WDM Protection Versus IP Restoration,” in
IEEE JSAC, Vol. 20, No. 1, Jan. 2002.

77

Research Achievements

Journal Papers

1. Autonomous IP Fast Rerouting with Compressed Backup Flow Entries
using OpenFlow, IEICE Trans. INF. & SYST., Vol.E96-D, No.2, pp.
184-192, February 2013, Shohei Kamamura, Daisaku Shimazaki, At-
sushi Hiramatsu, and Hidenori Nakazato

2. 動的なパス設定制御に基づく 1+1パスプロテクション維持方式の提案，
電子情報通信学会論文誌 (B)，Vol.J96-B, No.2, pp.48-58, February 2013,
鎌村 星平，島崎 大作，平松 淳，中里 秀則

3. Loop-free Fast Rerouting considering Double-link Failures, IEICE Trans.
Commun. Vol.E95-B, No.12, pp.3811-3821, December 2012, Shohei Ka-
mamura, Daisaku Shimazaki, Atsushi Hiramatsu, and Hidenori Nakazato

4. Scalable Backup Configrations Creation for IP Fast Reroute, IEICE
Trans. Commun. Vol.E94-B No.1 pp.109-117, January 2011, Shohei
Kamamura, Takashi Miyamura, Yoshihiko Uematsu, and Kohei Sh-
iomoto

International Conference Papers

1. Minimizing loop occurrences for IP Fast Rerouting considering Double-
link Failures, submitted to International Conference on Communica-
tions (ICC) 2013, Shohei Kamamura, Daisaku Shimazaki, Koji Sasayama,
and Hidenori Nakazato.

2. Relaxed Maintenance Protection Architecture by Dynamic Backup Path
Configuration, in Proc. of Optical Fiber Communication Conference
(OFC) 2011, March 2011, Shohei Kamamura, Takashi Miyamura, and
Kohei Shiomoto

3. Sticky 1+ 1 Path Protection Method by Dynamic Disjoint Path Dis-
covery, in Proc. of Optical Networking Design and Modeling (ONDM)
2011, February 2011, Shohei Kamamura, Tomonori Takeda, Takashi
Miyamura, Yoshihiko Uematsu, and Kohei Shiomoto

4. IP Fast Reroute Control using Centralized Control Plane Architecture,
in Proc. of International Conference on Network and Service Manage-
ment (CNSM) 2010, October 2010, Shohei Kamamura, Takashi Miya-
mura, and Kohei Shiomoto

78

5. Minimum Backup Configuration-Creation Method for IP Fast Reroute,
in Proc. of Global Communications Conference (Globecom) 2009, De-
cember 2009, Shohei Kamamura, Takashi Miyamura, Cristel Pelsser,
Ichiro Inoue, and Kohei Shiomoto

6. ScalableBackup Configurations Creation for IP Fast Reroute , in Proc.
of IEEE Design of Reliable Communications Network (DRCN) 2009,
October 2009, Shohei Kamamura, Takashi Miyamura, Cristel Pelsser,
Ichiro Inoue and Kohei Shiomoto

Domestic and Japanese Conference Papers

1. [奨励講演]二重故障環境下で IP Fast Reroutingを実現する予備トポロ
ジー設計法の提案, 信学技報， Vol. 112, No. 85, pp. 37-42, 2012/6/22,
鎌村 星平，島崎 大作，平松 淳，中里 秀則

2. 多重故障を考慮したループフリー高速迂回方式に関する検討，信学技
報， Vol. 111, No. 232, pp. 7-12, 2011/10/13, 鎌村 星平，島崎 大作，
平松 淳，中里 秀則

3. [奨励講演]IP Fast Reroute制御アーキテクチャの一検討, 信学技報，
Vol. 110, No. 126, pp. 13-16, 2010/7/15, 鎌村 星平, 宮村 崇，植松 芳
彦，塩本 公平

4. 動的パス制御による 1+1パスプロテクション常時化方式の提案, 信学技
報， Vol. 110, No. 93, pp. 1-6, 2010/6/24, 鎌村 星平、武田 知典、宮
村 崇、植松 芳彦、塩本 公平

5. IP Fast Rerouteのためのスケーラブルコンフィグレーション生成アル
ゴリズムの提案, 信学技報， Vol. 109, No. 129, pp. 67-72, 2009/7/17,
鎌村 星平、宮村 崇、ペルサー クリステル、井上 一郎、塩本 公平

6. OpenFlow Extension Framework for Autonomous Fast Recovery, IE-
ICE General Conference Vol. 2012, BS-3-6,2012/3, Shohei Kamamura,
Daisaku Shimazaki, Atsushi Hiramatsu, and Hidenori Nakazato

7. Minimizing Blocking Probability Problem under the Dynamic 1+1 Path
Protection Environment, IEICE General Conference Vol. 2011, BS-4-
39, 2011/3, Shohei Kamamura, Takashi Miyamura, and Kohei Shiomoto

8. Backup FIB Reduction Method using Shared Backup FIB for IP Fast
Reroute，　 IEICE Society Conference Vol. 2010, BS-7-32, 2010/9,
Shohei Kamamura, Takashi Miyamura, Yoshihiko Uematsu, and Kohei
Shiomoto

9. Minimum Backup Configuration-Creation Method for IP Fast Reroute,
IEICE Society Conference Vol. 2009, BS-10-3, 2009/9, Shohei Kama-
mura, Takashi Miyamura, Ichiro Inoue, and Kohei Shiomoto

10. A scalable backup configurations creation for IP-FRR, IEICE General
Conference Vol. 2009, BS-4-5, 2009/3, Shohei Kamamura, Takashi
Miyamura, Ichiro Inoue, and Kohei Shiomoto

79

