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Notation

Notation

signature of the metric : (—, 4,4+, ).
M™ . m dimensional Riemannian manifold.

T%(M™) : tensor field as p € M™. TH(M™) is tangent space, T°(M™) is cotangent
space and T (M™) is scalar field.

n, : normal vector on T to(M™TL)
Guvs Y © Metric on M™HL and M™, respectively.

g,7 : determinant of g,, and y,,, respectively.

P#,, : projection operator from 7,%(M™T1) to T,*(M™) which is explicitly written as
1
Pt =6, — —nfn,, (1)
€

where € express the direction of n,.
V. : covariant derivative operator associated with g, .

D,, : covariant derivative operator associated with v,,,. The relation between V, and D,
is vz, € TH(M™),

DyTHW#2™, = P\PM, PH2, ... PP, PPz g ooz o (2)

(m)RW Aw : m dimensional Riemann tensor. The definition is given as VT, € T°(M™),
(") R\ T = 2Dy, Dy T (3)
= (8, ™1¥y, — 8, MYy, + (T, (e, — (mpe mpe, T (4)
where (MTA wv 18 the Levi-Civita connection on ML
(") R, T% = 2Dy, D, T (5)
Le(VHk2, ,..) « Lie derivative of V#1#2™, € T%, associated with
&* € T¢(M™FL). The expression with V,, is
Le(VHbr, ) = EVA(VI2T, L, ) 4 VAR, (VA€M
F VI (VAER2) 4 - = VI (V0 EY)
A (V&) = (6)

K, : extrinsic curvature of M™. The definition is given by

_ yramke

Ky = =5 £a () (7
where n is the normal vector on 7,(M™) and 7y, is the metric of M™.
a : lapse function in 7 (M™).
B @ shift vector in Tt (M™).

A : cosmological constant.
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Chapter 1

Introduction and Definition

In this chapter, we state the abstract of the Numerical Relativity and the definitions in this
paper. Currently, there are many references about General Relativity and the Numerical Rela-
tivity, we mainly refer to [1-3] and [@-7], respectively.

1.1 Introduction

When solving the Einstein equations numerically, the standard way is to split spacetime into
space and time. Arnowitt, Deser and Misner (ADM) were first formulated the decomposition
of Einstein equations (we call this formulation the original ADM formulation) [8]. Smarr and
York [9,00] were re-formulated the original ADM formulation (we call this the standard ADM
formulation). However, it is well known that in long-term evolutions in strong gravitational
fields such as the coalescences of binary neutron stars and/or black holes, simulations with the
ADM formulation are unstable and are often interrupted before producing physically interesting
results. Finding more robust and stable formulations is known to the formulation problem in
numerical relativity [@, 11, 12].

Many formulations have been proposed in the last two decades. The most commonly used
sets of evolution equations among numerical relativists are the so-called Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation [I3,14], the generalized harmonic (GH) formulation
[T5,06], the Kidder-Scheel-Teukolsky (KST) formulation [I7], and the Z4 formulation [I8,19]
(as references of their numerical application, we here cite only well-known articles; [20, 1] for
the BSSN formulation, [22] for the GH formulation, [23] for the KST formulation, and [24] for
the Z4 formulation).

All of the above modern formulations include the technique of constraint damping, which
attempts to control the violations of constraints by adding the constraint terms to their evolution
equations. Using this technique, more stable and accurate systems are obtained (see e.g. [25,286]).
This technique can be described as adjustment of the original system.

In [27-29], Yoneda and Shinkai systematically investigated how the adjusted terms change
the original systems by calculating the constraint propagation equations (dynamical equations of
constraints). They suggested some effective adjustments for the ADM and BSSN formulations
under the name adjusted ADM formulation and adjusted BSSN formulation, respectively [21,28].
The actual constraint-damping effect was confirmed by numerical tests [B0-33].

Fiske proposed a method of adjusting the original evolution system using the norm of the
constraints, C?, [34], which we call a C2-adjusted system. The new evolution equations force the

2



1.2. DEFINITION OF GEOMETRICAL VALUES 3

constraints to evolve toward their decay if the coefficient parameters of the adjusted terms are
set as appropriate positive values. Fiske reported the damping effect of the constraint violations
for the Maxwell system [34] and for the linearized ADM and BSSN formulations [35]. He also
reported the limitation of the magnitude of the coefficient parameters of the adjusted terms.

In [31], we applied the C2-adjusted system to the (full) ADM formulation and calculated
the Constraint Amplification Factors (CAFs), we confirmed that this system has numerical
stability. Besides, we presented some numerical tests, the violations of the constraints are less
than those in the original system. In addition, for comparing with the numerical stability of the
C?-adjusted ADM formulation, we performed some simulations with the Detweiler system [A0],
and confirmed the constraint violations with the C?-adjusted ADM formulation are damped
down in comparison with the Detweiler system. We also reported the differences of the effective
range of the coefficient of the adjusted terms.

In [32], we applied the C2-adjusted system to the (full) BSSN formulation and derived the
constraint propagation equations in the flat space. We performed some numerical tests and
compare them with three other types of BSSN formulations: the standard BSSN formulation,
the /T—adjusted BSSN formulation [27,30], and the C2-adjusted BSSN formulation. We used
the gauge-wave and polarized Gowdy wave testbeds, which are the test problems as is known to
apples-with-apples testbeds for comparing evolution systems [41]. Since the models are precisely
fixed up to the gauge conditions, boundary conditions, and technical parameters, the testbeds
are widely used for comparisons [30, 42, 43].

The structure of this article is as follows. In part [, we derive 3 4+ 1 formulations of Einstein
equations in m dimension not only four dimension. We introduce the standard ADM formulation
in chapter B. In chapter B, we introduce the BSSN formulation. In Part [, we review some
tools for analyzing the numerical stability and introduce the C?-adjusted ADM and BSSN
formulations. In chapter B, we introduce the constraint propagation equations. We review the
ideas of the adjusted systems, the CAFs and the C?-adjusted systems in chapter B. In chapter
B, we introduce the C?-adjusted system to the ADM formulation, and the C?-adjusted BSSN
formulation is introduced in chapter [. In part [, we perform the simulations and summarize
this article. In chapter B, we set the numerical conditions and parameters of the simulations.
We perform the simulations with the C?-adjusted ADM and BSSN formulations in chapter @
and [, respectively, In chapter [, we summarize this paper.

1.2 Definition of Geometrical Values

1.2.1 Projection

For a M™*1 we set the hypersurface M™ which is satisfied that a global (m + 1 dimensional)
curve  is constant. Hence the unit normal vector n, on the tangent space 7,(M™) can be
expressed as

n, = eNV,E, (1.1)

where € express the direction of n, and N is the positive function such that the norm of n,
make a unit. For g, the inner product of n, is satisfied that

nunugh’ = e, (1.2)



4 CHAPTER 1. INTRODUCTION AND DEFINITION

where € is

. 1 :if n, is spacelike,
| -1 :if n, is timelike.

The positive function N is expressed as
N = {eg" (V&) (V)12 (1.4)
In addition, n, is satisfied n,(V,n*) = 0 because

n,(Vynt) =V, (n'n,) — (Vyn,)n

= —(V,nf)n, .
n,(V,nt) = 0. (1.7)
On the other hand, n)‘V,\nH is
n*Vyn, = n*Vy(eNV,.€) (1.8)
= en (VAN)(V,i) + en* N(VAV 1) (1.9)
1

= Nn)‘(VAN)nM +en*N(V,VE) (1.10)
= n*n,(Valog N) 4 eV, (n*NV,€) — eV, (n*N)(V5€) (1.11)
= n*nu(Valog N) + (V,e) — %(VMN) (1.12)
= (Valog N)(n*n, — e5*,) (1.13)

1
= —€(VylogN) <5>‘u — n)‘nu) (1.14)

€
= —eD,log N. (1.15)

Now we define the projection operator. For a PF, € TH(M™TL) if PH, satisfies the two
conditions:

o PHyn” = PF,n, =0, and
o YK i € TEHM™),

A A Az
| o Y i Py P, P2y = V2T e € Ty (M™).

then P¥, is projection operator from T,%(M™1) to T,*(M™). For the metric g, on M™*1
and normal vector n,, on T,(M™), P, is explicitly written as

PH, =6, — %n“ny, (1.16)
because,
o Ptyn” =Pt/ n, =0, and
o YVHIK2 i € TEHM™),
vinze PML PP P

A A 1% 1%
=/ H1H2 V1V2"'5 11“5 2#2 ... P 1w15 sz .

VA € TAM™).
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Now we express the basis in 7,5 (M™1) as (da!,--- ,dz™, dz™"), and that in T (M™) as

(dX?!, ... dX™). The line element ds? can be expressed as

ds* = g, datdz” (1.17)
= (g P"o P’ 5)dXdX" (1.18)
= Yapd X dXP, (1.19)

therefore v, is the metric on M™. In addition, v,, is consistent with P, because
P;,Ll/ = guVP/\V (120)

1
= G (5% — 6nkny> (1.21)
1

= Guv — gnunua (1.22)
Yar = Gap Py PP, (1.23)
= (Paﬂ + nan5> pe,P?, (1.24)
=P (1.25)

1.2.2 Lie Derivative
The Lie derivative associated with v € T,(M™FL) for T),, ,,.."17>" € T can be expressed as
Lo(Tpy a7 = VA (Tpgpn"" ) + Ty (Vg 0?) + Tppan 727 (Vo0

Ty M2 (Va0"Y) = Ty P (Va072) - - (1.26)
and VS € R, the Lie derivative is £,(S) = v*(V,9).
Vol € Ty(M™FY) £,(6%,) = 0 because
Lo(6%) = 0¥V 01, — 02, Vvl + 64,V 0 (1.27)
= 0. (1.28)
Hence, we can get the relation of
0= Ls(v" 1) (1.2
= Lo(v" ) + Y Lo(1a0), (1.30
Lo(¥") = =9 Lo(Vrw)- (1.3

For the Lie derivative of YT}, iy, € T2 (M™) associated with n# on T,(M™) is in T2 (M™
because

0 Loy (T o) = 10 {n’\(VATMM...Hm) + Ty (Vi 2) 4+« Ty )\(Vumn)‘)}

(1.32)
= nuin)\(VATumeum) + 0 gy ~--um(vmn/\) (1.33)
~
= —(V/\nm)n)\Tmm---um 0 g 5 pm (Vuin/\) (1.34)
<~

i

= 0. (1.35)
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VN € R, VT, € T3 (M™) and normal vector n* on T,(M™), the Lie derivative of T,
associated with Nn# is

Lan(Tw) = No*VaA(Tw) + Tan(VNn?) + Tpn(V,Nn) (1.36)
= N0V (Tw) + T N(Vun?) + TN (Vond) (0T, = 0) (1.37)
_N {n’\V,\(TW) + To (V) + T#A(V,,n)‘)} (1.38)
= NL,(Tpw). (1.39)
1.2.3 Extrinsic Curvature
The extrinsic curvature of M™ is defined as
1
K;w = _iﬁn('}//w)a (1'40)

where 7, is the metric on the M™ and n? is the unit normal on Tp(M™). The right-hand-side
of (ZT) is

1 1 1 1
_iﬁn('ﬂw) = _§n>\(v)\'yuv) - §7u>\(vl/n>\) - 5’71/)\(an>\) (1'41)
1 1 1
=5 Va(nuny) §(V,,nu) - i(Vun,,) (1.42)
1 1 1 1
=5 nu(Van,) + —n"nu,(Van,) §(V,,nu) §(Vun,,) (1.43)
1 1 1 1
= _i(P)\v - 5)\V)(v>\”u) - Q(P)\u - 6)\M)(v>\nV) - i(vunu) - §(vun1/) (1.44)
1 1
= —iP)‘V(VAnH) - §PA#(VAnI,), (1.45)
then
P*,(Van,) = P}, P¥,(Vn,) (1.46)
= P}, P“,Va(eNV,€) (1.47)
= P}, PY, {e(VAN)(Vi€) + eN(VaV,€)} (1.48)
1
=P (N + N (9,90 (1.49)
= P}, P*,eN(V,V,6), (1.50)

therefore P)‘[M(V‘ A7) = 0. The extrinsic curvature can be expressed as

K = =P (Van,). (1.51)



Chapter 2

Geometrical Decomposition of
Einstein Equations

2.1 Riemann Tensor Decomposition

In this section, we introduce the component of the decomposition of the m + 1 dimensional
Riemann tensor onto 7,*(M™). The two of them are known as the Gauss-Codazzi equation
and the Codazzi-Mainardi equation. Since these calculations are complicated, we write them in
details at Appendix [Al

We split (mH)Rmyﬁ to the components onto 7,*(M™). With P*, and n?, (mH)RHMﬁ can
be decomposed to the three parts:

o P P, P3P (MR 1\,
o PA,PVsPY nt (MR ., and
o P ,PYsn’nt(mTOR .

The other parts such as P*on*n’n® (m“)RM »ww are identically zero because of the characters

of the Riemann tensor.

2.1.1 Gauss-Codazzi Equation

The projection of (m“)RMW with four P#,s to the components on M™ is known as the Gauss-
Codazzi equation:

The relation between (mH)RW \ and (m) R,ux 18 given by

w m m 1
p#ap/\ppVBp 7( +1)Ru>\vw = )Rocpﬁv - E(KBaKvp — Ky Kgp). (2.1)

where € is the direction of n*.

2.1.2 Codazzi-Mainardi Equation

The projection of (mH)RMW with three P*,s and one n* is known as the Codazzi-Mainardi
equation:
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The projection of (MTV R\, with three P#,s and one n* to the components onto 7,2 (M™)
is given by

PuaPVﬁPAwnp (m+l)RPHV>‘ = _DMKIBQ —|— D,BKwa- (22)

2.1.3 The Last Part of the Decompositions

The projection with two P¥,s and two n#s is below:

The projection of (mH)RWM with two P#,s and two n*'s to the components onto 7,*(M™)
is given by

€ 1
P”QPVﬂnAnw (m+1)Rw;t)\V :KQAKAQ — NDﬁDaN + N»CNH(K&B)' (2.3)

2.2 Ricci Tensor Decomposition

Next, we split (m“)RW to the components onto 7,*(M™). In general, the second-order tensor
Vi € T2 (M™H1) can be decomposed to the components u € TP(M™), v, € TOX(M™),w,, €
T2 (M™) such that

Vi = unyny, + 20,0,y + Wy (2.4)
Then, (mH)RW is decoupled to the components which are
e parallel to n*n”,
e parallel to P*,P"g, and

e parallel to n*P",,.

2.2.1 The Component paralleled with Normal Vectors
The component of the projection of (223) with P*? is

1 v

ntn? (DR, = K, KM — %D“DMN + %VWLNH(KW). (2.5)
Now we calculate the last term of the right-hand-side of the above equation:
AL (o) = 7 LK) (2.6)
— La(K) = La(7") Ky (2.7)
— La(K) + L) K™ (2.8)
(2.9)

Therefore,

The component of (mH)RW paralleled with n#n" is

1
nknY (m+1)RMV — _KMVK/“’ — %D“DMN + N»CNn(K)
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2.2.2 The Component paralleled with Projection Operators
We project (1) with P*7;
1 1
PO Py (DR — Z PR PY e n® HOR = MR — Z(KpaK — Ko Kg").  (2.11)
€ €
With (E33), (210) is
Pt PV (MHUR = EK,BAKA - iDﬂD N+iﬁN (Kap) + ™ Rap
« Ny c @ N « eN n o «
1
- 7(K,30cK - K’yaKﬁ’y) (2.12)
€

1 1 1
= MRz — ~(KpaK = 2K,0Kp") = =DgDaN + —Lyn(Kag). (2.13)

The component of (m+1) R,,, paralleled with P¥,P"g is

1

1 2
pr Py MR, = (MR 5 — —K Ko+ EKWKQA -

1
DBDQN + FeENn(Kaﬁ).
(2.14)

2.2.3 The Last Component of the Decomposition of Ricci Tensor
We project (£2) with P,

PYgn? MTUR,, = —D,Kg* + DsK. (2.15)

The component of (mH)RW paralleled with P¥,n" is

PH n" (m+1)RNV — _DMKQ# + D, K.

2.3 Scalar Curvature

The projection of the left-hand-side of (ZI3) with P is

PP (Propy DR, ) = PR DR, (2.17)
1
= MmtDR _ “pupv (DR (2.18)
€
1 1 1
_ (m+1) - (R T -
R+ Ky K" + = D'"DN = —Lya(K).  (2.19)

and the right-hand-side is

1 1 1
P Ry = (o = 2aks") = DN+ nlBas) | (220
€ €
(m) Lo Lo 1 op
=R = Z(K? = 2K, K") = = D*DuN + —" L (K o) (2.21)
6 E

1 1 1
_mp_tg2_Lpu L
R~ —K* = ZD'DuN + —=Ln(K), (2.22)
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therefore, the relation between (M) R and (™R is

1 1 2 2
miDp = (MR - “K? - “K,, K" — D' DulN + - Ln(K). (2.23)
€ € €

The relation between TR and (MR is

1 1 2 2
(mip = (MR ZK? — “K,, K" — D DulN + o Ln(K). (2.24)
€ € €

2.4 Einstein Tensor Decomposition

The m + 1 dimensional Einstein tensor, )@ uv is defined as
1
(m+1)GW = (m+1)RW — §(m+1)RgW + Aguw. (2.25)

The Einstein tensor can be decomposed to the three parts which parallel to n#n”, P¥,P"g, and
PHon”.

2.4.1 The Component paralleled with Normal Vectors
The component of (m“)GW paralleled with n#n” is

n“n”(m+1)G#y _ nMnV(m‘H)RPW _ %6 (m+1)R + Ae (226)

1
= K, KM — %D“DHN + Ln(K)

1 1 1 2 2
S MR TR DK KM 2 DED N 4 S LK) Y+ Ae (2.2
26{ = e N DI DulN + g ennlK) o+ e (227)
1
= (_6 (MR 4 K2~ KWK‘“’) + Ae. (2.28)

The component of TG, perpendicular to T(M™) is

n”n”(mH)GW = % (—e MR+ K? - KWKW) + Ae. (2.29)
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2.4.2 The Component paralleled with Projection Operators

The component of (MTVG ,, paralleled with P#,P?g is
1
pMaPV/B (m—&-l)ij — P,UaPVB <(m+1)ij -3 (m+1)Rguy 4 Agw/> (2.30)

1
= PPy MRy, L Ry A 231)
1

1
NDﬂDaN + 7ENn(Ko¢B)

1 2
= MR — “KKap+ ~KygK*, —
af € af € AP Ne

1 1 1 2 2
_Z mp_ 12 1 wo_ 2 pu £
2%5{ R——K? = K K" — =D"DyN + —=Lyn(K)
+ Mg (2.32)
— R YR+ 2K K e — — DDl + —— Lan(Kos)
= o c af B B « N B Ne Nn afs
1 1
1, 1 1 w
+%p | D DulN — 57 Ln(K) + —Kuw K™ ). (2.33)

The component of (m+1) G paralleled with P#,P"g is

1 2 1 1
Pr PV MG, = (MR 5 — “KKag + EK,\BKAQ — 5 D8DaN + 5 Lvn(Kap)
1 1
+ ;’Yaﬁ {2 (—6 (m)R+ K?— KMVK“W> + AE}
1 H 1 1 uv
g | D DulV = o Lnn(K) + —Kuw K™ ). (2.34)

2.4.3 The Last Component of Einstein Tensor

The component of (mH)GW paralleled with P¥,n" is

Pty MG = Py (MHUR (2.35)
= —D K%, + D, K. (2.36)

The component of (m+1)GW paralleled with P*,n" is

PF m? (m—s-l)GW = -D,K", + D,K.

2.5 Energy Momentum Tensor Decomposition

Before decoupled the Einstein equations, we split the energy momentum tensor. The energy-
momentum tensor 7}, € T3 (M™F1) can be expressed as

Ty = puanuny + 2J,ny) + S, (2.38)
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where py € T (M™), Ju € T(M™), Su € T3 (M™).

The energy momentum tensor 7}, is expressed with the components on M™ such as
pa =nFn"T),,, (2.39)
Jo = %P“an”Tw, (2.40)
Sap = PloaPYgT. (2.41)

The trace part of the energy momentum tensor can be expressed with the components on

M,

T =g"T,, (2.42)
= (P‘“’ + in“n”) T (2.43)
= PPPr, P 4T, + %n“n”Tw (2.44)
=S5+ %pH, (2.45)

where § = +#¥S,,.

2.6 Einstein Equations Decomposition
The m 4 1 dimensional Einstein equations are
MG, = KT, (2.46)

The relation between of the (m+tY R and (MU ig

KT = kg"' Ty (2.47)

_ gm/ (m+1)G,LLI/ (248)

_ g;w <(m+1)RlW _ %(m+1)RguV + Ag;w) (249)
_(mtyp_MTL +1 MR 4+ (m+ 1A (2.50)

-1
_ _mT (MO R+ (m + 1)A, (2.51)
(Mt R — 9 (1 b2 ) R <S + 1PH) : (2.52)
m—1 m—1 €

The m + 1 dimensional Einstein equations can be expressed as

2 1 1
(m+1) e _ - -
R, p— 1Agm, K {Tuv p— T 9uw (S’ + 6pH> } ) (2.53)

Now we set the second-order (covariant) tensor MV E,, € T2(M™+1) such that

. . 2 1 1
( +1)EUV = ( +1)RNV — mAg’uV — K {TNV - mguy (S + €pH> } 5 (254)



2.6. EINSTEIN EQUATIONS DECOMPOSITION 13

and with M*Y @G, (E534) can be expressed as

1
(m+1)EMV = (m—H)Guzx - K/T/LZ/ - mguug)\w((nL+l)G>\w - KTAw)- (2'55)

Since (mH)EW is the second-order tensor, we split this tensor with H € T (M™), M, €
To(M™) and "WE,, € TP (M™) such that

(M E,, = Hnyn, + 2Mn,) + ™E,,. (2.56)

2.6.1 The Component paralleled with Normal Vectors

The component of the Einstein equations paralleled with n#n" is

H=ntp ™MVE (2.57)
= n*n” <(m+1)GW — KTW) — ml_ 169” ((m'H)G)\w — /@TM) (2.58)

- M (—e ™R+ K? — Ky K" + 20e = 26pp )
- ml_ P ((m“)GM - IQT)\LU) . (2.59)

The component of the Einstein equations paralleled with normal vectors is

m — 2
_ m=2 [ (m 2 " ~
H= 50 (—e"™ R+ K? — KW K™ + 20 - 25pp )
1 Aw [(m+1)
— P ( G, I{T)\w) . (2.60)

2.6.2 The Component paralleled with Projection Operators

The component of the Einstein equations paralleled with P#,P" g is

—H{T S <S+1pH> H (2.61)
e — 1 P
:(m)Rg—l(Kﬁ K —2K KV)—iDDNJrLE (Kag)
as — (Kpa 1als?) = 7 DsDaN + —Ln(Kag
2 Ay {Saﬂ S (S + 1pH> W} . (2.62)
m—1 m—1 €

The component of the Einstein equations paralleled with P#,P" 3 is expressed as

1 1 1
(™) Bop = ™ Ryp — ~(KpaK = 2K0K3") = - D3DaN + —Ln(Kap)

2 1
m—1

1
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2.6.3 Last Part of the Decomposition
The component of the Einstein equations paralleled with P*,n" is

1

Mo = —P"on” (mHe,, (2.64)
1 v m
— Ep#an (( @, — “Tw’> (2.65)
1
= = (=DuK" + Do K) — KJy. (2.66)

€

The component of the Einstein equations paralleled with P*,n" is

1
My, = - (-D,K"y + DyK) — kJ,. (2.67)
€

2.7 Standard ADM Formulation

In this section, we introduce the m dimensional standard ADM formulation. We adopt the
normal vector as timelike, that is € = —1, and we set £ as time line ¢. In addition, we express
N as a.

2.7.1 Lie Derivative along with an*

In general, an* and 9; are not parallel. a mean the distance between M (t) and M(t + dt), it
is called the lapse function. Hence, the difference between an* and 0, is expressed as

Bt = 0y — ant, (2.68)

where (* is called the shift vector. Since the Lie derivative operator associated with 0, is
consistent with 0y, VI'*"#2, ... € T,*, the Lie derivative along with an* can be expressed as

Lan(THH27 ), ) = O THH2T o — Lg(THH27 0,0, (2.69)

/
gt + dt, z¥ + dav)

M™(t+ dt)

Figure 2.1: Decomposition of spacetime.
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2.7.2 Metric

Let be M™ which is satisfied that the time line is constant. For Vp € M™(t), the line element
between p and Vg € M™(t + dt) is

ds® = —(adt)? + . (B"dt + dz")(5"dt + da”). (2.70)

The concept of (E270) is drawn as Fig. E71) Hence the metric g, € M™1! can be written as
( p g I

. —a? +5u6u ﬁu >
Juv = ( 8, Y . (2.71)

2.7.3 Constraint Equations

First, we introduce the constraint equations of the ADM formulation. For (260), the last term
is corresponding to zero, we adopt the constraint equations in the ADM formulation as below;
The m dimensional Hamiltonian constraint equation of the ADM formulation is

’HE(m)RjLKQfKNVK“V—QAfQKpH, (2.72)

and the m dimensional momentum constraint equations of the ADM formulation are

M, = D,K", — D, K — k.J,. (2.73)

2.7.4 Dynamical Equations

If we set € as time-line, the equations of (IZ0) and (Z63) denote the dynamics of the spacetime.
Therefore these equations express dynamical equations in the standard ADM formulation.
The dynamical equations of the standard ADM formulation are

at%w = _QOZK;W + EB ('Y,uz/)v (2'74)
WKy =a ™R, + (KK — 2K\, K, ) — DyDya+ Ls(K,)

1
QY — Ko {SW — (S —pm) ’y,w} . (2.75)

2A

m—1




Chapter 3

Baumgarte-Shapiro-Shibata-
Nakamura Formulation

In current numerical simulations such as the binary neutron mergers and/or black hole mergers,
the ADM formulation is not used, the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion is widely used. The BSSN formulation was suggested by Shibata and Nakamura [T3]. After
that, this formulation was re-formulated by Baumgarte and Shapiro, they showed that this
formulation is better than the ADM formulation with some simulations [I4]. In this chapter,
we derive the conformal and traceless transformation of the ADM formulation. Next, the BSSN
formulation is derived.

3.1 Connection

First, we calculate the relation between (m)pA v and (m)f“,w. The conformal metric is defined
by

’7#1/ = ¢_27uu> (3'1)
where ¢ is an arbitrary function. The contravariant expression of the conformal metric is
= g, (32

and it is satisfied the condition that 7,5} = §* ..

The connection in the conformal space is

(m) e M0 + O — OrTuw)- (3.3)

nv

DN =

16
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Then the relation between (m)f)‘w and (m)F)‘W is

e, = Ly w*{—w—g(auasm+¢—2<amu>—2¢- (0401w + 6 2(0nn)

2673006 — W@W} (3.4)
= —67 {000, + (9u0)5*, — (Ord)y* 3 } + T, (3:5)
= - {6%(@ log ¢) + 6“1, (9 log ¢) — ¥ 7, (9x log <z>>} + T, (3.6)

The relation between the connection, (™ T uv» and the conformal connection, (m)pA s 18

(mipw , = (W%, + 6% ,(D, log ¢) + 6%, (D, log ¢) — 7 3, (Dy log ¢), (3.7)

where D is the covariant derivative operator associated with V-

3.2 Riemann Tensor

Now we calculate the relation between the conformal and standard Riemann tensor.
The relation between the Riemann tensor, (™ R* uwvs and the conformal Riemann tensor,
(m) R)‘W,,, can be expressed as

(MR ow = "R 1 + 6%, (D Dy log ¢) — 3 (DD log ¢) — 6%,(D,, D, log ¢)
+ Yo (Dy DX log ¢) + 6%, (D, log ¢) (D, log ¢)
— 6% (D” log ¢)(Dy log ¢) — Yy (D, log ¢)(D* log ¢)
— 6%, (D, log ¢)(Dy,log ¢) + 6, A (DC log ¢) (D¢ log ¢)
+ Juu (DM og ¢) (D, log ¢). (3.8)

The derivation of the above equation is expressed in Appendix B=3.

3.3 Ricci Tensor

Next, we compute the relation of the conformal and standard Ricci tensor. For (BR), we set
w = A, then

" Ry = " Ry, + D,Dylog ¢ — 3y (DaD*log ¢) — m(D, Dy, log )
+ D, D, log ¢ +m(D, log ¢)(D, log ¢) — m¥,,(D” log ¢)(D, log ¢)
— (Dy log ¢)(Dy,1og ¢) — (D, log ¢)(D,, log ¢)
+ %y (D log ¢) (D¢ log @) + 7y, (D* log ¢) (D log ¢) (3.9)
= "R, + (2 = m)D,Dylog ¢ — 5y (DrD* log ¢)
+ (m — 2)(Dylog ¢) (D, log ¢) + (2 — m)¥,, (D log ¢) (D, log ¢). (3.10)
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The relation between the Ricci tensor, (m)RW = (m)gA s and the conformal Ricci tensor,
(m)RW = (m)RA,M,,, can be expressed as

(MR, = VR, + (MRS,

where (m)RZ’V = (2 —m)D, D, log ¢ — 7, (DxD*log ¢)

+ (m — 2)(Du log ¢) (DV log¢) + (2 — m):Yul/(Dp log ¢)(Dp log ¢).
(3.12)

(3.11)

3.4 Scalar Curvature

Next, we compute the relation of the conformal and standard scalar curvature. For (B12), the
trace part of the (™) R, is

(MR =4 (MR,, +™R2) (3.13)

= ’y"”{(m)RW +(2- m)Dl,Du log ¢ — f’yW(DAD/\ log ¢)
+ (m— 2)([)# log ¢)(D, log ¢) + (2 — m)’_ylw(D” log (b)(Dp log ¢)} (3.14)

_ ¢,—2{<m> R~ 2(m — 1)(DxD*log ¢) — (m — 2)(m — 1)(D”log 6)(D, log <z>>}. (3.15)

The relation between the scalar curvature, ™R = o land (m)RW, and conformal scalar cur-
vature, (MR = land (m)RW7 can be expressed as

where (M R¢ = ﬁu”Rﬂy.

3.5 Trace-Free Part of Conformal Value

We first define the traceless decomposition. VYV, € T2 (M™), the trace-free part of Vi is
defined as

1
Vo =V — —V (3.17)

where V' = 4"V, and V“TZ,F € TX(M™) because of VﬁFn“ = 0.
The trace-free part of the conformal value V,, = ¢_2VW is defined as

_ _ 1.
Vi = Vw = — Vi, (3.18)
where V = V,,,7*”. The relation between VEVF and VMTVF is
_ _ 1 _
Vi = Vi — VA (3.19)

= 67— (V) (N0 (320)
= ¢ 2V,E (3.21)
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We now calculate the relation between (") REE and (™ RTF.

v
(mRIE _(mp,, % ™) Ry (3.22)
= ("R, + "R, - *¢ 2R+ Ry (3.23)
_ (R, + Rﬁ»y)TF' (3.24)

Next, we calculate the relation between (D, D,a)™" and (D,D,a)t¥. First, we compute
D,D,«;

DD, = DDy — (D, log ¢)(Dya) — (Dylog ¢)(Dye) + Fyu (D log ¢) (Dacy) (3.25)
= DyDya — (D, log ¢)(Dua) — (Dylog ¢)(Dya) + (D log )(Daar),  (3.26)
then,
D,D"'a =~""D,D,«a (3.27)
= ¢ {DuDya — (Dylog ¢)(Dyex) — (D, log ¢)(Dyr) + 3 (D log ¢) (D) }
(3.28)
= ¢_2{D#D“a + (m — 2)(D*log qb)(DHa)}, (3.29)
therefore
(D,D,a)™ = D,D,a — %(DAD )Y (3.30)
= D#Dya (D, log ¢)( a) — (D log ¢)(D, ) —l—”yﬂ,,(D log ¢)(Dya)
- %% {D D o+ (m — 2)(D*log ¢)(Dw)} (3.31)
— (DuD,a)™ — {(D,log ¢)(Dua)}'" — {(D,log ¢)(Dya)} ' . (3.32)

3.6 Conformal Traceless Formulation

We now introduce the conformal traceless formulation for the standard ADM formulation. We
adopt the dynamical variables (7., ¢, K, A,,) instead of (7, K,,,). Since the conformal factor
¢ is arbitrary, we must set the relation between ¢ and the ADM dynamical variables (v, Ku).
If $ = ¢(K 1), the conformal metric 7, include the character of the normal vector. Therefore,
the conformal factor ¢ is constructed with the function of v,,. Since there is a degree of the
freedom of ¢, we adopt the determinant of the conformal metric, 7, as a positive constant value.

3.6.1 Dynamical Variables

The new dynamical variables are defined as

1
¢ =pyam, (3.33)
Vi = 6 Yy, (3.34)
K=+"K,,, (3.35)
_ _ 1
Ap=¢ 2 (K/w — mK’m,,) , (3.36)
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where p = ﬁfﬁ. Note that (8238) is given by multiplying ¢~2. This is because EW is raised
and lowered indexes with 7,,.

3.6.2 Constraint Equations

With new variables (B=33)-(8230), the Hamiltonian constraint equation (2-72) can be expressed
as

H="R4 K> K, K" — 2\ — 25py (3.37)

— o7 { R~ 2(0m — 1)(DrD o 6) ~ m — D) — 1)(D og 6)(D, o) |
_ 1 - 1
+ K? — (AW + meyW> (A“” + mK’y‘“’) — 2\ — 2kpy (3.38)
=7 MR 2(m — (DD 05 ) — (m - D ~ 1)(D*og ) (D, og )
1 o 2
+ SR A, A — ZKALAM — 2N — 2%py, (3.39)
m m
and the momentum constraint equations (2-Z3) can be expressed as
M, =D,K",—D,K — KkJ, (3.40)

= 7V>\{D1/K/\,u - (DA log ¢)Ku,u - (DV log (b)K)\u + ’_)/VA(DW log (b)Kw# - (Du log ¢)KVA

— (Dy log ¢) K ux + Fur(D¥ log gi))Kw,,} - D,K — kJ, (3.41)

= ¢—27yu>\ [DV {¢2 <A/\u + ;K%\u>} _¢2(D>\ log ¢) (fll,u + ;K%ju>

_ _ 1 _ _ 1
—¢*(D, log ¢) <Aw + K m) + $*3,, (D log ¢) (Aw + K m)

= (Dy10g0) (At 0K ) =Dy log0) (A + oK)

_ _ 1 _
+¢*7,0(D* log ¢) (AW + K m) } — DK — KkJ, (3.42)

= 72D, {¢2 (A”u + ;Ka'fM) } +(m — 2)(Dylog ¢) ([ﬁu + ;K(m)

— (Dylog ¢) (Awd" + K) — DK — kJ), (3.43)
_ _ 1 _ 1, -
= m(D, log ¢) (A)‘M + mK(V‘u) + (D, A”,) + %(D,JK)
— (Dylog ¢) (Awd" + K) — DK — kJ), (3.44)

m—1

= D, A", +m(Dylog ) A*, — ———DuK — (Dylog ) A" = k. (3.45)
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In this conformal transformation, the number of the dynamical variables is two more than the
ADM formulation. We should add two constraints to this formulation because of the consistent
of the degree of the dynamical variables of the ADM formulation. We define two constraint
such as

S=5"m —p, (3.46)

AL (3.47)

/-]

i |
2l

The constraint equations of the conformal traceless formulation are

H= ¢_2{(m)R —2(m — 1)(DxD*log ¢) — (m — 2)(m — 1)(D” log ¢)(D, log ¢)}

_ 2
+ TKQ — A A — — KA 3" = 2\ = 2kpp, (3.48)

m—1

M, = D, A", +m(Dylog p)A*, — TDMK — (Dylog ¢) A A" — Ky, (3.49)

3.6.3 Dynamical Equations
Next, we calculate the dynamical equations of the conformal traceless formulation. The dy-

namical equations of the standard ADM formulation with the conformal traceless values can be
written as

_ 2 3 _ B _
8t'7uu = _2a¢2A;u/ - EQK¢27;¢V + ¢2£ﬂ(7;u/) + 2¢2’7;w£ﬂ(10g ¢)> (3'52)
m) 5 m - m—4 - m-—2_ o
K = a ™Ry, +a™RS, + ag? <—2AMA*V KA+ ="K %W)

o 1 _ 1 ~ o
- D;LDVOC + ¢2£,8(A/u/) + E¢2:Ym/£,3(K) + E¢2K£,3(;Y,uu) + 2¢2Auuﬁﬁ(log ¢)

A 1
ap*qu — Ko {SW - m(s - pH)gb?ﬁW} . (3.53)

2 2 _ =
+ E?b Kvw,ﬁg(logqb) - m—1

With these equations (B52)-(B153), we compute the dynamical equations.

The time derivative of ¢ is
1 "
at¢ = %¢7 (at'}’;w> (354)
1 _. - 1 —— - _
= 67 {200 (A b B ) + P Lo + 2080 ) (359

= g~ agK + G(D:B) + Ls(0). (3.56)
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The time derivative of 7, is

O = =207 G (010) + & Doy (3:57)
= 20719 {100 A - a0k + 10D\ + £5(6) )
#072{ 200" (At 2K ) + P Lol 4 26L(00 ) (359)

2 _ 2 - _—
— EQA:W — 204, — E(D,\ﬁA)ny + Ls(Fw)- (3.59)

The time derivative of K is

K = =0y ) K" 4+ 4" (01 K ) (3.60)
- 1 _ 2 _ _
- <AW + mK’VW) {_20“4/“/ - EO‘K:YHV + 5/3(%11) + 2’_YW£,8(108§ ¢)}
+ ¢ 2HH [ MR +a ™R, + ag? (QAM,\AA + —KA,W + = K%,,)
m

_ 1 _ _ _
— DyDya+ ¢*La(Au) + E&%LB(K) + E&KLB(%) + 2¢2chﬁ(log )

2 - A _ 1 _
+ E¢2K%w£6(10g ¢) — — 10@27,” - Ka {SMV - m(s - PH)¢27uV}] (3.61)

_ . 2mA
= ap 2R 4 ap 2 (MR? - aK? — Dy\D*a + Ls(K) — L_l

a(S —mpy) + aKA+ Lg(A). (3.62)
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The time derivative of /L“, is

61514#1/ == _2¢_1Auy<8t¢) + ¢_2(8tK;w) - %(ﬁ_QV#V(atK) - %(b_zK(at%ul/) (363)

= —2¢_1AW{ —%O«M - %Ozdﬂ( +%¢(D/\6A) +L ;(0)}

+¢—2[a<m>RW+a(m>Rjjy +a¢>2< 24, A%, +TKAW+m K%,W)

\—Dﬂpya +¢2Lp(AL) +E¢2KZS(ﬁ/uy)JrQozj/,,/Zj(1()g )

2 ~
+%¢2Kﬁuuﬁﬁ(log ¢)*

9 1 _
- 10@27’W —KQ {SW - m(s - PH)¢2'VW} ]

_ 2mA
— 17,“,{ ad 2MPR 4+ ap 2 (MR | aK? —D,\D/\a‘ T2 o
m — m— 1
—i—m —a(S —mpp) + aKA+ Eg(ﬂ)}
1 - - 2 _ 25 _ A
- E¢ QK{ _QO“Z)QA;W - EQK¢2’)’W} +(/)2£;6(’7’/11/)+2¢27m/£,3(10g ¢)} (3'64)
- _ _ 2
= a¢ 2("™ Ry + ™R )T | —204,0 AN, + aK Ay, + —adu,A
2 - - - 1 _
—~¢~ (D, Dya) " —E(DA@)AW + Ls(Aw) | —ra(¢28,) T — — K A,
1 -
= V- 3.65
m£6<~'4>7# (3.65)
The dynamical equations of the conformal traceless formulation are
1 | N _ 1 _
Ohp = ——agK + —¢(DrS") + Ls(¢) — —agA, (3.66)
m m m
_ 2 - 2 -
8t7yuu = _20414;“/ - 7(D>\/8)\)7Y/U/ + ['B(i)/;w) + EOZA’?MVJ (367)
~ 2mA
— ¢ 2((MR + M R?) + aK? — D\D*a + Ls(K) — L_l
— a(S —mpy) + KA+ Lz(A), (3.68)
A = a2 ("™ Ry + ™R )T — 204,047, + aKAW — ¢~ 2(D,D a)TF
2 - - 5 T _
— E(DAB)\)AIW + Lg(Au) — ka(o 2S,W) — —aK’y,W.A + aAW.A

1 _

- L), (3.60
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3.7 Baumgarte-Shapiro-Shibata-Nakamura Formulation

3.7.1 Dynamical Variables

In the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation, the determinant of 7, is
set as unity and the conformal factor ¢ is adopted as €% [I3,14]. Therefore, we use ¢ instead
of ¢ as the dynamical variable.

The divergence term such as 9,v*" would make increasing the numerical error. Thus, in the
BSSN formulation, a new dynamical variable, f“, is added to that of the conformal traceless
formulation, (8233)-(8230). In original paper [I3], this variable was adopted as 9,7*”. In this
article, however, we follow [14] and use I'* = —8,7"" as the new variable.

The dynamical variables of the BSSN formulation are

1
= 1] .

p = log(v), (3.70)

;?,ul/ = 674@7}11/) (371)

K = ’YW’K;Wa (3.72)
~ 1

Ay =e <KW — mK%,,> , (3.73)

=1, 7. (3.74)

3.7.2 Geometrical Values

For (B7), (B12) and (BI8), we set ¢ as e*#, then the connection, the Ricci tensor and the scalar
curvature of BSSN formulation become below:
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The relation between the connection of the ADM and that of the BSSN formulation can
be written as

(T, = (T, + 269, (Dyp) + 26, (Dutp) — 2723, (Dap). (3.75)

The Riccl tensor is

(MR, = ™R, +™RE, (3.76)
where,
53 ~ Tw m)T ~w Lo ~ m)TAw  (m)p
(m)ij = ’Yw(,uaz/)r + ( )P(,uu)wr - 57)\ 8)\aw7uu + ( )F)\ u( )F)\w,u
+ 2 (m)f)\w (1 (m)fy))\wv (377)
(MR, = =2(m = 2)(DyDyp) — 2(DAD @)y + 4(m — 2)(Dyup)(Dop)
—4(m — 2)(D)\30)(D>\90):Y/w/7 (3.78)
and IN)M is the covariant derivative associated with 7,,,.
The scalar curvature is
(MR = =4 ((M R 4 (M) R#) (3.79)
where (MR = Fuv (m) PLW and (M) R¥ = Fmv (m) Rf,.
VWV € T (M™) and V,, = e=*V,,,, the Lie derivative associated with 5 is
L5(Viw) = BNDAViw) + Vau (D) + Voa (D, ) (3.80)
= —4(Dp) BV + e L3 (V). (3.81)

3.7.3 Constraint Equations

The constraint equations of the BSSN formulation are consistent with (B2S)-(B35d) replaced ¢
with e??. In addition, the constraint, Q~>‘, is added to the formulation because of the consistent
of the degree of the freedom of the ADM formulation.

The constraint equations of the conformal traceless formulation are

~ 1 SO 92 -
H=e ¥ (MR+mpey+ D24, AW — ZKA— 92\ —2kpy,  (3.82)
m m

— S -~ 1~ - ~
M, = DAY, + 2m(Dyp) A, — mTD”K — 2(Dup) A — K, (3.83)
S=7-1, (3.84)
A=3"A4,, (3.85)
GN=T* T, 3" (3.86)
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3.7.4 Dynamical Equations

The time derivatives of ¢, ¥, K and gu,, can get from (BMH)-(BH). More precisely, the time

derivative of ¢ can get from the relation of d;p = %8@ Besides, the Hamiltonian constraint
equations are added to (8BR) for elimination of (™ ™) R since there is the divergence term of 7,
in the scalar curvature [I4].

2mA K

K = ae” (MR 4+ MWR?) 4 oK% — DyD o + L(K) — ———a+ —a(S —mpn)
+aKA+ Lz(A) — aH (3.87)
, ~ ~ 2mA K
_ —4p (m) (m) pe 2| A o o
ae” ("™ R4+ R +aK Dy\D*a+ L3(K) — +m_1a(S Mo )
AT R s wet B T DD
m m
+2aA (3.88)
= A, A s 20K A +%aK2 — D*Dya+ Ls(K) + Ls(A) — 2_ Cad
K
—i—m — 1a{S + (m—2)pp} (3.89)

Next, we compute the time derivative of the new variable, I'*. We first calculate the time
derivative of (™T Auv 18

(8{}//\#) + 0, (8757)\1/) a)\(atﬁuu)} (390)

F)\,uu - {
{ (OAn) + D) — ﬁA(aﬁuu)} + (T ()- (3.91)

[\')M—‘[\D\l—‘

For the time derivative of 7, we adopt

- ~ 2~ - ~ 1 ~ o~
at’Y;w = *QOZA;W - E(Dpﬁp)%w + L,@’(’mu) + ﬁﬁp(DpS)Vuua (3-92)
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so as not to include the constraint terms if this equation is expressed with partial derivative
operator. Then, the dynamical equation of I'* is

O = M T (9F,) — TN (0F,) + A (3 ™ o) (3.93)
= = T (0 ) — T (0 )
1. WY ) v D ~ D 5 PR (D3,
+ 57)\ ,yu { Dy(atfyw“) + D#(atfywy) — Dw(aww,)} +( ’)Fp/ ;ﬁ/)\ (at%m) (3-94)

- D S 1~
——mEed 902, — 25,65+ Laliu) + (D, |

v e 2~ ~ 5 o~ 1 ~ ~
+AFH D, {—2ozAw — E(Dpﬁp)'ywu + Ls(Yoop) + Mﬁ”(DpS)m}

1y = ~ 2~ 1 05 &s
~ 57T B 208 = 2D i+ Lol + o BpSf  (3)
= —2(D,0) AM — 20( D, AM) 4 2ax (m)f)““’g + DMNaA
H H
2~ ~ ~ ~ ~ ~ ~ ~
— —D'Dyf" + D,D*B° + D, D" + — 2 (D7) MM, _o(D,pe) MFM,

L (D3)(D,S)

m~y my 2m§

BP(D*D,S). (3.96)

In the BSSN formulation, the momentum constraint equations add to the dynamical equation
of T so that the divergence term, D, A, is eliminated [I3]:

g, = (B98) + 2aM* (3.97)
—2(5,@4)/?‘“ + 2« (m)f)"“’ﬁw + DMaA) + 4ma(5ug0)g“)‘ — Maﬁ)‘ff
m
— 4a(D o)A - 2607, — 35@ B + D,D*3° + D, D"
+ (D) "N, = 2TV (D, 5) = — (D)
i~~~ 2 _ o~ ~
_ P( D> DA 3P P(DA ) ]
ma?ﬁ (D*S)(D,S) + 2m§ 2(DA67)(D,S) + e ' 3°(DD,,S) (3.98)
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The calculation of the shift terms of (BUR) are

2 - ~
—=(DyD,B" 7Y
m( pBPY |+

7D, D,3" +3"D,D, 3>

9 - ~
+7(Dp5p) (M)p/\uu

—2 (MM, D, 3% |~ 7/% T, (D,8) — —@O(D*S)(D S)
2—m =~ o 2 — ol TNTS
T (D*B°)(D,S) + e 2 °(DD,S) (3.99)
_z"*)\y 14 LwNANNN_iw'V)\'V ~71'&/\ w7 <
~F(0,0,5") ﬂwﬂ (D*S8)(D,,S) i (D*Du)~—= (D) (D)
0,0,8%) |47 (0, TV, — R, (F, Bf’v%(b*,f”><b,,5>
7 (00, 8") A7 (D ") B 2 TN (9,57) — T (0,8Y)
‘ (m)l—\wu (m) 1")\ l8p+(m I‘)\V (m /Bp
( Bp) F)\,u pt— 3w 171)1‘/\pﬂ<[)w§> ( Bu,) m 1—‘)\;1 —28° (m)f)\uw (m)fwup
my
- 1 ~y o~ o~ D
- p(m) I = aAp(DA App
— —f u(DpS) Mgﬁ (DS)(DpS)+- o " (D*8°)(D,S)
2—m =\~
P DA
+ o B°(D*D,S) (3.100)
2 ~Av o P9 TA o A\ 0 nA S P(D nA g
== (00,8°) | +8°(0,1) — B7(8,G7) + ~25 (D,S)(DXS) + /3 (D,D*S)
~ ~ o~ | ~ ~ 2 ~
—ﬁﬁ‘” MTA (D,S) | + 7" (0,0,8") — (0,BMTY + (8.6)G* + a(ap/ﬁp)ﬂ
2 SO RO
_ = PYCA _ = pp(DA
—(0,8")G i (D*D,S) (3.101)
2\ . v ™ ~uv Tw 2 -
= (1= 2) 7008 + O +7(0,0,8) ~ QN + 2 (0,00
1 o~~~ ~ ~ ~ o~ ~ ~ ~ ~ ~ ~
+ gﬁw(DAS)(DwS) — B°(D,G*) + 2%5p(DpDAS) - %ﬂ“’ (M (D,S) + (D, MG
2~ 1 s~ =
_“ 1AYe2d - pweoA
=~ (D,8)G* + mﬁﬁ GMND,S). (3.102)

We add or eliminate the constraint terms so as not to include the constraint terms in the

dynamical equations which are expressed with the partial derivative operators. We call this
formulation as the standard BSSN formulation:
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The dynamical equations of the standard BSSN formulation are

__ 1 L DN 4 Falo) — 4 BNDS
Oup = =50k + 5 (DAY + L(9) = = 0N(DrS) (3.103)
1 1 U
=g oK+ %(axﬂ )+ B7(0rp), (3.104)
N ~ 2~ s 1y~ =~
OV = —2a Ay — E(D/\B)\)'YHV + ﬁb’(%ﬂ/) + mi;?ﬁA(DAS)'ﬂw (3.105)
~ 2 " . " .
= =204 = — (0N + B2 (O\Tw) + (0B i + (008" oy (3-106)
K = aA,, A" + L ok? — D*Dya + L3(K) — al
m m—1
+ mi —a{S + (m = 2)pu} (3.107)
o 2
= ad, A" + —aK? — D*Dya + BMNO\K) — al
m m —
+ mila{s+(m—2)pH}, (3.108)
A = ae” (™R, + MRE )T + aKA,, — 20A,,A%, — e *°(D,Dya)™
2 - ~ o~ o~ ~ o~ ~
— 2 (Dr8) A + LA — roe™5,)™ + n;y,ﬁA(D@AW (3.109)

= oze_w( (m)ﬁw + (m)Rﬁy)TF + aKgW — 20411#)\2)‘1, — 6_4"(D#Dyo¢)TF

(OABM) Ay + B (OrAw) + (8,8Y) Axy + (8,8Y) Ay, — k(e *28) ™,
(3.110)

2
m

2(m —1)

(9151:)‘ = —Q(Eyoé)/?)‘y + 2« (m)FAW}g/w + 4ma(ﬁ#gp)gﬂ)‘ - aD K

~ 2D, + DD + DD+ (D) - 2D, )
T ;ﬁW(ﬁ*@(D’wg) + 8°(D,3) - %ﬁp(ﬁpﬁﬁ)
1 B I P R PO
= pw (m)Ar - MNpow | < AT pwoA
+256 ', (D,S) — (D,p")G +m(Dpﬁp)g mﬁﬁ GND,S) (3.111)
2(m—1)
m

T (1 - i) PV (0,0,8) + 7 (0,008") — (0,807 + = (0,67) 1

m

= —2(8,0) AN + 20 (m)l“)““’glw + 4ma(8ug0)g“’\ — a0, K

+ BP(8,17) — 2ma A (3.112)

3.8 Why BSSN formulation is better than ADM formulation?

Now we discuss the reason of the BSSN formulation is better than the ADM formulation. From
the view point of the derivation of the BSSN formulation, some ideas are used for making the
formulation. We show the modifications from the standard ADM formulation;

e the metric is decomposed to conformal factor and conformal metric,
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e the extrinsic curvature is decomposed to trace part and trace-free part,
e new variable is added, and
e constraint equations are added to the dynamical equations.

The decompositions of the metric and extrinsic curvature would be suitable to the simulations of
the coalescences of the black hole and the gravitational waves. However, these technique would
be not always suitable for simulations. We can see the influence of adding the new variables by
the changing of the expression of the Ricci tensor;

D 1~mn ~ ~ ~ ~ m)mn_ (m)p
MR, = 57 {(920j3mi) + (Om®iAn;) — (OmOnTij) — (00;Fmn)} + T, (WD,

_ (™, mm b (3.113)

’f\ mf ~F 1~mn =~ m'f\m m'f\ olm)pbm (m)
= ’yg(iaj) ¢ + (m) (i5)¢ e—*27 ((9man h‘j) + (m)p* z( ) Imj + (m)p (4 (m) J)m:-

We can see the highest order derivative terms (second order derivative terms) are clearly ex-
pressed with the wave operator, this would be the reason of the stability of the simulations.
However, this is effective in the flat space. Therefore, the reason of the stability is the adding
the constraint equations to the dynamical equations. After this chapter, we construct the
formulations by adding the constraint equations.






Part 11

Numerical Stability and C“-adjusted
Formulations
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Chapter 4

Constraint Propagation Equations

To investigate the numerical stability of the numerical relativity, the one of the most important
tools is the constraint propagation equation which are the dynamical equation of constraint.
With the constraint propagation equation, we can predict that the simulations with the formu-
lation are running well or not. After this chapter, we use only three dimension and the vacuum
case. The indexes are adopted the Latin (i, j, k,- - -) instead of the Greek (u,v, A, -+ ).

4.1 Idea of Constraint Propagation

We review the general procedure of rewriting the evolution equations which we call adjusted
systems [Z7-29,B6]. Suppose we have dynamical variables u’ which evolve along with the
evolution equations,

o' = f(u', 05t ...), (4.1)
and suppose also that the system has the (first class) constraint equations,
C%u®, 0ju,...) =~ 0. (4.2)

We propose to study the properties of the evolution equation of C* (which we call the constraint
propagation),

8,0 = g(C,8;C", . ..), (4.3)

for predicting the violation behavior of constraints, C, in time evolution. Equation (A=3) is
theoretically weakly zero, i.e. 0;C® = 0, since the system is supposed to be the first class.
However, the free numerical evolution with the discretized grids introduces constraint violation
at least the level of truncation error, which sometimes grows to stop the simulations. The set
of the ADM formulation has such a disastrous feature even in the Schwarzschild spacetime, as
was shown in [29].

4.2 Constraint Propagation of Standard ADM formulation
The divergence of Einstein equations are given by V“(3)EW = 0 where (S)Eij is explicitly in
(252). The constraint propagation equations can get by decomposition of vH) E,, = 0. From

Appendix O, we can get the relations with (3)Eij =0;

33
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The constraint propagation equations of the standard ADM formulation are

OH = Ls(H) + 2aKH — 2a(D;M") — 4(D;jc) M, (4.4)

8t/\/l = Eﬁ(./\/l ) (Dloz)/H + OéKMi - %O&(D{H) (4.5)

4.3 Constraint Propagation of BSSN Formulation

Since the introduction of the constraint propagation equations of the BSSN formulation are
complex, the calculations are expressed in Appendix 4.

The constraint propagation equations of the standard BSSN formulation are
~ 2 - o~ ~ — ~
O = ZoH + Ls(H) - 2(D*a)e ™ M, — dae™ ¥ (Dyp) M

4 ~ ~ = w2 ~ ~

+ §OzK2A + 5ae” (D Dy A) — gae*4"”((3)R + O R"HA

+ (Dya)e™%GH A — ae 9GP (D, A) + (DyD a)e % A + 2(Dya)e 4 (D A)

~ ~ ~ ~ i~ 2 o~~~ 9 ~

+4(D*a)e ¥ (Dyp) A + 8ae (D) (D A) — 3O A AN A~ §ﬁﬁ(K)A

2

- %Kz/g(j) — 2ae_4¢g“”(ﬁ gu) - 26_4@(51/5@91))5)\

+ 2(DuDaB)e G 4 = ( WB)e™ 9 (Dyp)G” — (DrDuM)e G

CJ-.')\[\DOJ \V]

(DAD,B°)e 4G + (Dpﬁf’)e*w(DAgA) + 3P~ 49(D\D,G)

— ﬁﬂ“’e*‘**ﬂ(ﬁw(?)(ﬁxg“) + ;6490((3)}? + @ RYYBND,S)

— 2 (D) (D, D°8) + 5= (Dag) T (D, )

- }(ﬁme—‘*@@ﬁ) + 20 (D S)(DrS) (D)
~~~~~ + G2 #(DrS)(D,DS)

+ ﬁfspe—w(z)w,)DAS) - Tﬁ‘“e““” BT, (DAS)(D,S)
! 217B e (D) TV (DuS) + 5 B“’ BT, (DAD,S)
P W= w ,—4p A N q
+ g8 (DAS)(DwS) — ﬁﬁ e~ GN(DAD,S)
1~ ~ o~ 1 ~o
_— JAPS 2 a1 % __ po, —dppw
T 55 (Do) ™I (D,8) = 5=387¢7 G (D) (DoS)

1 oy, = 1 e = o= 1 e = = =
+ﬁ6”e e (D,,D,,S)—k?ae 12 A2 (DA\S)(D,S) — =ae 2 AN (Dy\D,,S)
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Lo te OFw,, 1D, 38) - 6%5/)6—4@ BT (5,8)(D,8)
Y

- ?’%506—@ B OF,, (D,8) - %(ﬁ“ﬁwﬁ”)e_‘w(ﬁa@
- ;@wﬂa)ew@wﬁ@ ~ = (B, (D, 8)

= O (D,D,8) + = (D7) T, (D,S)
+ 07 (D D) (DrS) + ﬁﬁ GE (D) (D)

8 iy R U P
+@e 42 (DV D, B*)(D»S) — 372(1) fMe (D, S)(DrS)
16 5v My et D D) — 8e—4(D L ot D. 3 - LgeeND &
+ 35 (DY) (D,DrS) — 8 49(Dp)| 3=BTA(D,S) — =GN (D)
L (D28)(D,8) — = 8/(D*D,8) b + 7 1(D%) (Dusip) (DS
+ =507 (DAS)(D,S) = 3=B"(DD,S) ¢ + 37" (D*0)(Dust) (DrS)
4 ~ e~ P N VT PR U
+ 2 (Duf)e H(D0)(DrS) = e 4" (D,8)(D,8)
T ;ae—w@v@uﬁ@ + 20 O, 1(D,S),
OM; = (D' a)e *(D(,G,) -

(4.6)
1~ .~ 1~ ~ —~ 1~ ~
g(Duoz)’H — g(Dua)KA +aK M, + EO‘(DM%)

+2(m — 2)ae (Do) (D(,Gy)) + %(ﬁﬂK)Z + éaK(EWZ) + %a(ﬁﬂK)Z

— (D) A%, A — a A (D, A) + = BWAAM(EAS‘)(E@

- = (DB A (D.S) - 3 ﬁw (DADS) — 555N (D,S)(DAS)A

+ %(ﬁuﬁk)(ﬁﬁ)z + ﬁBA(DMDAS)A + Eg(/\/l#), (@7)
8,G" = 2aM* — (D a) A — a(D A) + 4a(D ) A + ;iﬁpﬁ(f)pg) - ;ﬁﬂ@(ﬁpg)

o~ o~ o~ 1 ~ ~ ~ 1 ~y o~ ~ ~ ~
- TQBP<DA8><D,38> - WD%P)(DP@ - %BP(DAD;»S) + B°(D,G*)

~ ~ ~ ~ 2 ~ ~
Nﬁw IV (DuS) — (DG + 5(D,B)G",
@j_aKA+A

0iS = =207 A+ L3(S).




Chapter 5

Tools for Investigation of Numerical
Stability

5.1 Adjusted Systems

Such features of the constraint propagation equations, (B=3), will be changed when we modify
the original evolution equations. Suppose we add the constraint terms to the right-hand side of
(BD) as

o' = f(u',0u’,...) + F(C*0;,C%,...), (5.1)
where F(C?,...) = 0 in principle but not exactly zero in numerical evolutions, then (E=3) will
also be modified as

0C* = g(C*, 0;,C ...)+ G(C* 9;,C ...). (5.2)

Therefore we are able to control 9;C® by an appropriate adjustment F(C*,9;C%,...) in (B).
There exist various combinations of F'(C?, 0;C?,...) in (B), and all the alternative formula-
tions are using this technique. Therefore, our goal is to find out a better way of adjusting the
evolution equations which realizes 0,C* < 0.

5.2 Constraint Amplification Factors

There are many efforts of re-formulation of the Einstein equations which make the evolution
equations in an explicit first-order hyperbolic form (e.g. [I74, IR, 44, @5]). This is motivated by
the expectations that the symmetric hyperbolic system has well-posed properties in its Cauchy
treatment in many systems and that the boundary treatment can be improved if we know the
characteristic speed of the system. The advantage of the standard ADM system [9,[0] (compared
with the original ADM system [R]) is reported by Frittelli [46] from the point of the hyperbolicity
of the constraint propagation equations. However, the classification of hyperbolicity(weakly,
strongly or symmetric hyperbolic) only uses the characteristic part of evolution equations and
ignore the rest. Several numerical experiments [l 47] reported that such a classification is not
enough to predict the stability of the evolution system, especially for highly non-linear system
like the Einstein equations.

In order to investigate the stability structure of (52), the authors [28] proposed the con-
straint amplification factors(CAFs). The CAFs are the eigenvalues of the coefficient matrix,
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M®, (below), which is the Fourier-transformed components of the constraint propagation equa-
tions, 9;C®. That is,

0,C* = g(C*) = M*C",

where C%(z,t) = /C’(kz,t)a exp(ik - z)d>k. (5.3)

CAFs include all the contributions of the terms, and enable us to check the eigenvalues. If CAF's
have negative real-part, the constraints are forced to be diminished. Therefore, we expect more
stable evolution than a system which has CAFs with positive real-part. If CAFs have non-zero
imaginary-part, the constraints are supposed to propagate away. Therefore, we expect more
stable evolution than a system which has CAFs with zero imaginary-part. The discussion and
examples are shown in [I1, B6], where several adjusted-ADM systems [[] and adjusted-BSSN
systems [27] are proposed.

5.3 (C*-adjusted System

Fiske [B4] proposed an adjustment of the evolution equations in the way of
i i i ij (9C?
o' = f(u',05u’,...) — kY | — |, (5.4)

where k¥ is positive-definite constant coefficient, and C? is the norm of constraints which is
defined as C? = /CaC’adgzL". The term (6C?/6u) is the functional derivative of C? with u/.

We call the set of (54) with (B2) as “CZ-adjusted formulation”. The associated constraint
propagation equation becomes

2 - 2
9,C? = h(C*,9;,C%,...) — /d% @i > K (50 ) : (5.5)

Sul

If we set k% so as the second term in the RHS of (559) becomes dominant than the first term,
then 0;C? becomes negative, which indicates that constraint violations are expected to decay
to zero. Fiske presented some numerical examples in the Maxwell system, and concluded that
this method actually reduces the constraint violations. He also reported that the coefficient s
has a practical upper limit in order not to crash simulations.



Chapter 6

C2-adjusted ADM Formulation

6.1 Formulation

6.1.1 Standard ADM Formulation

We start by presenting the standard ADM formulation of the Einstein equations. The standard
ADM evolution equations in three dimension are written as

Ovij = —20K;5 + D;fj + D;f3;, (6.1)
O Kij = a(®Rij + KKy — 2Ky KY) — DiDjoc+ KuD;8 + Koy Dif + BDeKy,  (6.2)
The constraint equations are
H=CR+K? K K=, (6.3)
M; =D;K’; — D;K = 0.

6.1.2 (C?-adjusted ADM Formulation

Now we apply C%-adjustment to the ADM formulation, which can be written as

5C?

Ovij = (B) — Kyijmn <6’y) ; (6.5)
5C?

8tK—z'j = (B:Z) — RKijmn <(H(> ) (6'6)

where C? is the norm of the constraints, which we set
C? = / (H? + v MM, P, (6.7)

and both coefficients of Kijmn, KKijmn are supposed to be positive definite. The additional
terms in (633) and (686) are

5C?
o 2H ™M — 2(0Hy ™Y — 2Hy™ (9yH) + 2(0,0, H3™ ) H
+ 4(8£H3mnk€>(6k7_[) + 2H3mnk€(akaerH> + 2M1imn./\/li _ Q(a[MQimng)Mi
— 2Mo ™™ (9 M?) — M M™, (6.8)
5C? , : .
K — 2H4mnrH + 2M3iman o 2(8€M4imn€)Mz o 2]\442,7717%(ag-/\/lz)7 (69)
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where
H"™ = —2R™ 4 GO — Gpmed@)pn,, — 9K K™ 4 2K™ K™, (6.10)
Hémn — _,yfm(3):[m _ ,yén(3)1-\m + ,}/mn(S)Ff + (3)an€ + (3)1—\mn€ _ (3)Iw€nm’ (611)
Hécfmn _ %,Ymﬁ,ynk + %Vkm,ynﬁ _ ,Ykﬁ,ymn’ (612)
H™ = 2y™ K — 9K™", (6.13)
1 , 1 , 1 1
]\4{7171Z _ _iKéi,j’Y]m'Yén o 5 a’j,)/]n,yém + 5(3)1-\71Kml + §(S)FmKnl + (S)FamnKm
_ lec nb L lKnc mb 4K, AOm bn (6 14)
2 Y Vbe,i 9 Y Vbeyi + abi” Y .
M2€mn_717nZKm717m€Kn+17mnKZ+lKnm5€ (6 15)
1T 7y iT 5 ity ity i .
Mgnn _ _}(3)Pm6n _ 1(3)Fn5m + l,yna,ymb,y b (6 16)
1T 7y iT 5 ity ab,is .
1 1
]\44{77@71Z — §,Y€m5nl + 5,.)/6715771Z o ,ymn(sfiy (617)

Hn i ™ M M M, M3 are the same with the appendix of [29]
if (m,n) = (n,m).

6.2 Constraint Propagation with C?-adjusted ADM formulation

In this subsection, we discuss the constraint propagation of the C2-adjusted ADM formulation,
by giving the CAFs on flat background metric. We show CAFs are negative real numbers or
complex numbers with negative real-part.

The constraint propagation equations, (84) and (£3), are changed due to C?-adjusted terms.

O = HiH + Ho%(0,H) + Hs® (0,05 H) + Hy®(8,0,0.H) + Hs24(8,0,0.04H) + HeaM®
+ H?ab(abMa) + HSabc(abacMa) + HQade(abacadMa)v (6'18)

where
Hy = 20K — 26nmni; {Hlm”H{j — H\"™"™(8.Ha") + H,"™"(030.H3"%) + Hy™™ (9, H, ")
— Hy™(0p0.Ho"%) + Hy™"* (0,040 Hy *) + Hy™"* (040, H1™)
— H3™"™ (9,040, Ha"¢) + H3mnké(5kaeadacH3iij)}
— 2(Ovkymnij) {HzmngHij — Ho™(0.Ho"¢) 4+ Hy™™(930.H3"%)
+ 2H3™ (0 Hy ) — 2H™* (0,0, Hy¢) + 2H3m"fk(akadacﬂgjd0)}

_ 2(aka€’€7mnij){H3mnMHij _ Hgmnké(acHQijc) + H3mnk£(adaCH3iij)}

— 26 i Ha " HL Y (6.19)
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H2a — Ba _ 2/€ymnz’j{_H1mnH2ija + 2H1mn(8CH3ijac) + HZmnaHlij _ H2mna(8cH2ijc)

o H2mn£(aéH2ija) +H2mna(adacH3iij) +2H2mn€(8€acﬂ3ija0)
—i—HgmnaZ(angij) + Hgmnka(akHlij) _ Hgmna€(6€86H2ijc)
_ Hgmnka(akacHzijC) _ Hgmnké(akagl_—&z'ja) + Hgmnaé(azadacHéij)

+ Hs™"* (04040, Hs" ™) + 2H3™™* (akagacHgijaC)}
- 2(3£’fvmmj){—H2mn€H2ija + 2H,""™ (0 H37) + 2H3™™* Hy 7
— 2H3"™ (9. Hy7) — 2Hy ™" (8}, Hy"%) + 2H3 ™™ (9,0, H3 )
+ 4H3mn€k(8kacH3z‘jaC) }
- 2(8kam,ymmj){—Hgm"’ffﬂgija + 2H"H (acHgijaC)}, (6.20)
H3"" = —2K+mnij {Hlmnﬂgijab — Hy™""Hy"® + 2H,""(0,Hs"*) + Hy™" (9, H3"")

+ H3mnabH1ij _ H3mnab(acH2ijc) _ Hgmnaz(agHgijb) _ Hgmnka(angijb)
+ H3mnab(adaCH3ijdc) + 2H3mna€(8zacH3ijbC) + 2H3mnka(8kacH3'ijbC)

+ Hgmnké(akaeHgijab)}
. 2(8£5'ymnij){H2mneH3ijab . 2H§nn£aH2ijb + 4H§nn€a(8CH3ijbC)
+ 2H§nn€k<8kH3ijab)} — Q(akagli,ymnij)HgmnkéHgijab, (621)
H4abc _ _2/€'ymnij {HZmnaHgijbc _ HanabH2ijc + 2H3mnab(aeH3ijce) + Hgmnaf(aeHBijbc)
+ Hgmnka(akﬂgijb(:)} . 4(ak’€'ymnij)H3mnkaH3ijbcy (622)
H5abcd _ _Qﬁ'ymninanabH?)ijCCl? (623)
Heo = —2a3T0,, — dary — /Q,ymmj{QHlm"Mlaij — 2H, ™03 M2, 74y — Hy™ M),
+ 2Hy™ (9 M1,7) — 2Hy™™(9y0g Moo %) + 2H3™ (8, 0y M14")
- 2H3m”k£(8k8g8dM2aijd)}
_ (aéﬁ'ymnij){QHaneMlaij o QHang(adMgaijd) - HzmneM(i(sj)a
+ 4H3mn€k<akM1az’j> o 4H3mn€k (akadMZQijd)}
_ <8kaf"€vmm'j> {2H3mnk£M1aij - 2H3mnk[<adM2aijd) o HgmnkZM(iéj)a}

— KKmmj{QHsznM:aaU - 2H4mn(3eM4aij£)}7 (6.24)
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Hy," = —2ad%, — nymnij{_2H1mnM2aijb + 2Hy™ My, — 2Hy ™™ (03 Ma,"1?)

o 2H2ng(BZM2aijb) o Hzmnijéia o Hansz'(sja + 2H3mnb€(8ZM1aij)
+ 2H3mnkb(8kM1aij) _ 2H3mnbé(a€adM2aijd) _ 2H3mnk:b(akadM2aijd)

o 2H3mnk€(ak8£M2aijb) - Hgmnbl(aéM(i)éj)a o HSmnbE(aeM(j)(si)a}
_ <8€K7mnij){_2H2mn£M2aijb + 4H3mn€bM1aij _ 4H3mn€b(adM2aijd)

_ 4H3mn€k(8kM2aijb) _ 2H3mn€ij5ia _ 2H3mn€bMi6ja}
+ 2(8ka€/€'ymnij)HSmnk£M2aijb + 2ﬁKmnij-[{4mn]\44aijba (625)

Hgabc = —Koymnij { _2H2mnbM2aijc + 2H3mnbcM1aij _ 2H3mnbc(adM2aijd)

. 2H3mnb£(a€M2aijC) . 2H3mnk‘b(8kM2aijC) . Hsmnbchéia . H3mnbcMi6ja}

+ 4(OpoForymmij ) H3 ™™ My, ¢, (6.26)

HQade = 2“7mnin3mnbcM2aijd- (627)

The propagation equation of the momentum constraint with C?-adjusted ADM formulation can
be written as

MMy = MyaH + Moo (9yH) + M3, (9p0:H) + Mo (8,0.04H) + Mgy M°
+ Migap® (0eMP) + My (0:0aMP), (6.28)

where

Mla - _8aa - Q/ivmnij{MlamnHlij - Mlamn(acHQijC) + Mlamn(adacHSijdc)
+ Mgamné(angij) _ Mgamné(ﬁgacHgijC) + MQané(azadacHgijdc)}
_ 2(a€”7mnij){M2amneH1ij _ MQang(acHzijc) + MQanZ(adacHBiij)}

- QRKmmj{Msam"H4ij + M4amne(3eﬂ4ij)} — 2(O¢k Kmnij) Mo Hy", (6.29)
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1 .. .. ..
M2ab = —§Q5ab - 2H'ymnij{_M1amnH2Ub + 2M1amn(8cH3”bc) + M2aman1w
o MQanb(acHQijC) . M2amn2(8eH2ijb) + M2amnb(adacH3iij)

+ 2Mp, ™" (8580}[3"3"’6)}
_ 2(8m7mm-j) { —MQamanZijb + 2M2amn€(acH3ijbc) } _ ZHKmnijM4aman4ij, (6.30)
MSabc = _2l€fymnij {Mlamnﬂgijbc — M2aman2ijc + 2M2amnb(8dH3ide)

+ MQamM(a@Hgijbc)} — 2(0phrymmij) Mag ™™ H3'9% (6.31)
M4ab0d = _2/{'ymnijM2amNbH3ide7 (632)

Msap = YmbB™ a0 + BYabe + K Yab — iz 3 2M1a™" M1y — 2M71,™"(9q Moy, 7)
: ymnij
— My™" MYy 20, ™ (9 M) — 2M2am"f<8eadM2b“d)}
- (aﬁﬁvmnij){2M2amneM1bij — 2M, ™™ (93 Moy — M2amn£M(j5i)b}
— 2K Kmnij {MsamnMs,bij — M3, (9 Mup7) 4+ My ™" (8 M3y )
— M4amn€(8€8dM4bijd)}
— 2(0ek Kmnij) {M4amn€M3bij - M4amné(3dM4bijd)}, (6.33)
Meap” = B“Vap — fiymm‘j{—2M1am"M2bijc + 2Mo ™™ M1y — 2Mo, ™ (03 Mgy,
o 2M2amn€(a£M2bijc) _ M2amnch6ib _ M2amncMi5jb}
+ 2(8Z’€'ymnij)M2amn€M2bijc
- QHKmnij{—MmmnM%ijc + My ™™ Mgy — My, (0g Mgy 7%
- M4amn€(8€M4bijc)} + 2(aéll’<VKmnij)]\4'4amn£]\44171']16, (634)

M7 = 26ymnij Moo ™ Moy + 26 i j Mg ™™ My 9. (6.35)

If we fix the background is flat spacetime, (a = 1, ' = 0,7;; = ds5, K;j = 0), then CAFs are
easily derived. For simplicity, we also set Kijmn = KKijmn = K0im0jn, Where & is positive. The
Fourier-transformed equations of the constraint propagation equations are

# 4l ~2iky (o)
(A = o 6.36
t( M, > ( —(1/2)iki (= [k[*0i5 — 3kik;) ) M; "
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The eigenvalues, A, of the coefficient matrix of (E238) are given by solving
(A + &[k[)2(AV2 + AN+ B) =0,

where A = 4x|k|?(|k|? + 1) and B = |k|? + 16x2|k|® (The Mathematica code for solving (E=38)
is Appendix H). Therefore, the four eigenvalues are

(—r|k|?, —rlk|% A, A), (6.37)
where
At = —26[k|2(JK|? + 1) & |k|/—1 + 4r2|E[2(|E]2 — 1)2. (6.38)
From the relation of the coefficients with solutions,
A +A=-A4<0, and A A_=DB>0, (6.39)

we find both the real parts of A, and A_ are negative. Therefore, we see all four eigenvalues
are complex numbers with negative real-part or negative real numbers.

On the other hand, the CAFs of the standard ADM formulation on flat background [x = 0
in (B337)] are reduced to

(0,0, %i[&]), (6.40)

where the real-part of all of the CAFs are zero. Therefore the introduction of the C2-adjusted
terms to the evolution equations changes the constraint propagation equations to a self-decay
system.

More precisely, CAFs depend to |k|? if K # 0. This indicates that adjusted terms affect
to reduce high frequency error-growing modes. Since we intend not to change the original
evolution equations drastically by adding adjusted terms, we consider only small k. This limits
the robustness of the system to the low frequency error-growing modes. Therefore the system
may stop due to the low frequency modes, but the longer evolutions are expected to be obtained.

6.3 Detweiler’s ADM Formulation

We review Detweiler’'s ADM formulation [20] for a comparison with the C?-adjusted ADM
formulation and the standard ADM formulation. Detweiler proposed an evolution system in
order to ensure the decay of the norm of constraints, 9;C? < 0. His system can be treated as
one of the adjusted ADM systems and the set of evolution equations can be written as

6t%-j = (B3) + LD.;j, (6.41)
8tKij = (E]) + LDKija (642)
where Doij = —a’yH, (6.43)

DKij = a3(Kij — (1/3)[("}/7,])7'[
+a?[3(90)6% 5y — (D) iy y ™ IMy, + &P[6% ;6 5y — (1/3)7i7" | DM,
(6.44)

where L is a constant. He found that with this particular combination of adjustments, the
evolution of the norm constraints, C?, can be negative definite when we apply the maximal
slicing condition, K = 0, for fixing the lapse function, a. Note that the effectiveness with
other gauge conditions is remain unknown. The numerical demonstrations with Detweiler’s
ADM formulation are presented in [I2,28], and there we can see the drastic improvements for
stability.



Chapter 7

C?-adjusted BSSN Formulation

7.1 Formulation

7.1.1 Standard BSSN Formulation

We work with the widely used notation of the BSSN system. That is, the dynamical variables
(o, K, %ij, Aij, I'") as the replacement of the variables of the ADM formulation, (735, Kij), where

1
= i log (), (7.1)
K= 'Y”Kijy (72)
Yij = e v, (7.3)
~ 1
Aij = 6_490 (Kz] - 3’)/1][() y and (74)
Il =3 (7.5)
The BSSN evolution equations are, then,
Opp = —EOJK + 6(3zﬂ )+ B°(0ip), (7.6)
~ o~ 1 . .

O K = OzAZ'jA” + §QK2 — D;D'a + 51(8,K), (77)

~ ~ 2 ~ ~ ~
OYij = —2a Ay — g%‘j(aeﬁﬁ) +750(0:8°) +7ie(9;8°) + B (975), (7.8)

Ay = aK Ajj — 20 A A + ae ¥R — (D Do) TY — gﬁij(aﬁ)
+(0:85 Ay + (9;8°) Aig + B (D0 A), (7.9)
" =20 {0(0,) 19+ e = 259(0,66) | — 200,047 + ST0,) + 177(00,8)
+ B40eL") = TV (9;8) + 77 (008", (7.10)

where TF denotes the trace-free part. The Ricci tensor in the BSSN system is normally calculated
as
Rij = Eij + R? (7.11)

5
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where
~ _ ~ ~ ~ ~ ~ 1_ _ o~
Rij = Fn0p " +7" (2 OT% 16 O jypn + Ol OT ) — 57" (D) + T T iy
(7.12)
Rf, = —2DiDjp + 4(Dig)(Dj) — 275 Dn D™ — iy (D™ 0)(Dyp). (7.13)
The BSSN system has five constraint equations. The kinematic constraint equations, which
are the Hamiltonian constraint equation and the momentum constraint equations (#H-constraint
and M-constraint, hereafter), are expressed in terms of the BSSN basic variables as
- - - - - 2 e 2
H=e*R -8 *(D;D'p+ (D"p)(Dmy)) + §K2 — Ay A7 = SAK ~ 0, (7.14)
— 9~ ~ . ~ o~ ~ o~

respectively, where 5, is the covariant derivative associated with 7;; and R = 54 Ew Because
of the introduction of new variables, there are additional algebraic constraint equations:

G =T -7"'Cr, ~0, (7.16)
S=7-1~0, (7.18)

which we call the 5—, .Z—, and g—constraints, respectively, hereafter. If the algebraic constraint
equations, (I8)-(ZIX), are not satisfied, the BSSN formulation and ADM formulation are not
equivalent mathematically.

7.1.2 (C?-adjusted BSSN Formulation

The C2-adjusted BSSN evolution equations are formally written as

Orp = (D) — A, (‘fj) , (7.19)
0K = (T2) — A (fgj) : (7.20)
OVij = () — Nijmn ((;CZ) ; (7.21)

0 Ai; = (T9) = AZ (55?) , (7.22)

0T = (rIm) — AY (g) , (7.23)

where all the coefficients Ay, Ax, A5ijmn, A fijmn, and )\%j are positive definite. C? is a function

of the constraints 7:2, ./\7@-, @‘, .Z, and g, which we set as

C~'2 = /(’};2 + ’YijMviMj + cG%]@@j + CA./ZQ + 65§2)d3x, (7.24)
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where, ¢, ¢4, and cg are Boolean parameters (0 or 1). These three parameters are introduced
to prove the necessity of the algebraic constraint terms in (—24).
The adjusted terms are

5C? - _ ~
E =2HH — 2(0,1H§)7—[ —2H$0, H+ 2(0,0pH. )7—[ +2(0,HS )81,7-[ + 2(0p HS )(%’H
+ 205 0,05H — 2(0a M%) e 7Y M + 8M1,% 4% (0,0)79 M,
— 2M;% (8,77 ) M — 2M ;% 97T 9, M — 439 e MM
+4cqe*7,;,G'G7 (7.25)
3C? 7 A7 T4y —dpxii v o 0 —4 ~ij Ao £ —4 ~ii\ AA
5K = 2H4H — 2(0, My )e P M + 8Ma;" e (0pp) VY M — 2Moi e " (0p7" ) M,
_ 2]\7[21-%_4“"5’78@/‘/12, (7.26)
552 [ymngy [rimn [rimn zjmn zjmn v
+ 20, HZ™™OH + 2HZ " 0,0, H + zMgim”e—%ﬁjﬂj - 2((90]\*441-07””)@—4%”%
+ SM cmn 490( )NWM N 2M4 cmn 4<p( ~ij).//\>l/j _ 2M4,cmn _4¢Wijacﬂj
4g0 m ]nM M + QCGszne4go,yzjgj . 200(8@szn8)€4¢71 g]
— 80@G’2m"£64¢(8g<p)%jg — ZCGGgm”Ee“@(amj)g — 20@G§m"€e4“@%jﬁg§j
+ cqe GG + 2e 4 AT A + 2c55TS, (7.27)
~2 ~ .. — —_~ — .. T~
5(}0 = 2?]?"7—[ + 2 PR Ms,"" M — 2(8CM6icm")e*4“"§”Mj
+ 8M6icmn€_4<p(3c50)7j/\7j - 2M6¢cmn€_4w(3ﬁij)/qj — 2Mﬁicmn€_4w?ij3c/\7j
20,4 A (7.28)
3C? 717 b\ b Y i Ao~ 5j
where
Hy = —4e %R + 32 %*{D'Dyp + (D;)(D'¢)}, (7.30)
HY = 8e ™ *(FUT%; — 2D%), (7.31)
HSb = —8e~ o9l (7.32)
Hy = (4/3)K (2/3)~1 ijs (7.33)

HI'™ = —¢ % R™ 4 =4 (9,17 — 2e=4¢Tkm Tin _ 9= 4eTillmpm)
_ e—d¢Tamif n _ ~Aefmiln, % 47, W FIFF 4 e DD
— 8¢~ (D)™ 7 4 8¢ 1P (D™ ) (D" p)
+24M A", 4 (2/3)A™K, (7.34)
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Hgmn _ e—4w{f€mn + 2f(nm)€ + (1/2)F€§mn

+ 87" (DM ) — 4™ D},
HP™ = —(1/2)e~*7m"54,
HJ™ = —2A™" — (2/3)7""K,
Hyq = (1/2)e %5754,
ﬂfoa =440,
My = 6A% — 24,,,7""6%,

Mo = —(2/3)87;,

M3;™" = —6(D™p) A™; + 2(Djp) A™" —

+ Ava(nfm)ai + gi(mfn)ﬂ;?jé

My = =7 A™; 4 (1/2) 7™ A% — (1/2) A™™6¢,

MBimn _ 6(5(m@)5n)l . 2(51@)517171 o 5i(mfn)j€§j€

+ (/27 4,
Mﬁ cmn __ ,Yc(m(sn)
Gzia,b _ fiab + :y'i(bfa)mnfy*mn,

Gy = O+ (1/2757,

3] =05
ab Aab
Ach — _ fab
ab ~ab
A5 ,

Stb = (1/2)e9%e"™5,, Ao

Bom A,
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(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)

(7.51)
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7.2 Constraint Propagation Equations

Now we discuss the effect of the algebraic constraints. For simplicity, we set A\5;jmn = A50im0jn,
Aijmn = Mi0im0jn, and )\ij = A0, The constraint propagation equations of the C*-adjusted
BSSN formulation in flat spacetime are

dyH = [Original Terms] + <—128/\¢A2 — ;)\;AQ + 2/\1~,A> H
1 ~ ~
e (—QAﬁAam - 2Afam> G" + 3csA3AS, (7.52)

&M, = [Original Terms| + {SAKébcaaab F A+ A g5bcaaab}/\70 —2c4A 10, A,  (7.53)

8,G* = [Original Terms] + 6°° <;)\7y8bA + 2)\5&;) H

1 . ~

+cq (Aﬁmab + 525000 — 2Afaab> G’ — csA50" DS, (7.54)

9, A = [Original Terms] + 2 ;6% (ainj) - GCA)\A./Z(, (7.55)
;S = [Original Terms] + 3A5AH + caA39,G" — 6c5AsS, (7.56)

From ([C532)-(H8), we see that the constraints affect each others. The constraint prop-
agation equations of the algebraic constraints, (IZ54)-(58), include cq(A5A6%, — 2)\1:5“b)§’7b,
—6caA gﬂ, and —605)\q§ , respectively. These terms contribute to reduce the violations of each
constraint if ¢, c4, and cg are non-zero. Therefore, we adopt cg = c4 = cg = 1 in ([C2A);

Cc? = / (’HQ + YT MM; + 756G + A% + 52) d’x. (7.57)

This discussion is considered only from the viewpoint of the inclusion of the diffusion terms. In
order to validate this decision, we perform some numerical examples in Sec.IT.

7.3 g—adjusted BSSN Formulation

In [27], two of the authors reported some examples of adjusted systems for the BSSN formulation.
The authors investigated the signatures of eigenvalues of the coefficient matrix of the constraint
propagation equations, and concluded three of the examples to be the best candidates for the
adjustment. The actual numerical tests were performed later [30] using the gauge-wave, linear-
wave, and polarized Gowdy wave testbeds. The most robust system among the three examples
for these three testbeds was the A-adjusted BSSN formulation, which replaces (T9) in the
standard BSSN system with

@tﬁij = ([Q) + HAO[E(Z'Mj), (7.58)
where r 4 is a constant. If k4 is set as positive, the violations of the constraints are expected
to be damped in flat spacetime [27]. We also use the A-adjusted BSSN system for comparison
in the following numerical tests.
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The constraint propagation equations of this system are

OyH = [Original Terms], (7.59)
HM; = [Original Terms] + (1/2)HAA./W¢, (7.60)
8,G' = [Original Terms), (7.61)
A = [Original Terms] + /m(Sija@'ﬂj, (7.62)
8,S = [Original Terms], (7.63)

where A is the Laplacian operator in flat space. Original Terms refers to the right-hand side of
the constraint propagation equations for the standard BSSN formulation. Full expressions for
the terms are given in the appendix of [27].
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Chapter 8

Settings

8.1 Gauge-wave Testbed
The metric of the gauge-wave test is
ds? = —Hdt* + Hdz? + dy® + d2?, (8.1)
where
H=1- Asin(2r(z —t)/d), (8.2)

which describes a sinusoidal gauge wave of amplitude A propagating along the x-axis. The
nontrivial extrinsic curvature is

mA cos(%{t/))

d \/1 — Asin ZW(‘Z*t)

Kup = . (8.3)

Following [41], we chose the numerical domain and parameters as follows:
e Gauge-wave parameters: d = 1 and A = 1072,
e Simulation domain: = € [-0.5,0.5], y = z = 0.
e Grid: 2" = —0.5+ (n — 1/2)dz with n =1,---,100, where dx = 1/100.
e Time step: dt = 0.25dx.

e Boundary conditions: Periodic boundary condition in z-direction and planar symmetry
in y- and z-directions.

e Gauge conditions:

da=—a’K, [ =0. (8.4)

e Scheme: second-order iterative Crank-Nicolson.
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8.2 Gowdy-wave Testbed

Metric and Parameters
The metric of the polarized Gowdy wave is given by
ds? = t712eN2(—dt? + da®) + t(eFdy? + e Td2?), (8.5)

where P and A are functions of x and ¢. The forward direction of the time coordinate ¢
corresponds to the expanding universe, and ¢ = 0 corresponds to the cosmological singularity.
For simple forms of the solutions, P and A are given by

P = Jp(2nt) cos(2mz), (8.6)
A = —2ntJo(2mt)Jy (27t) cos® (2mx) + 222 [ I3 (27t)

T TRt — (1/2)4@r)2I3(2m) + J2(2m)]

—2nJo(2m)J1(27)}, (8.7)

where J,, is the Bessel function.
Following [AT], a new time coordinate 7, which satisfies harmonic slicing, is obtained by the
coordinate transformation

t(r) = ke, (8.8)

where k and ¢ are arbitrary constants. We also follow [&1] by setting k, ¢, and the initial time
to as

k ~9.67076981276405, ¢~ 0.002119511921460, (8.9)
to = 9.87532058290982, (8.10)

so that the lapse function in the new time coordinate is unity and ¢ = 7 at the initial time.
We also use the following parameters specified in [AT].

e Simulation domain: = € [-0.5,0.5],y = z = 0.
o Grid: z,, = 0.5+ (n —(1/2))dz, n =1,---,100, where dz = 1/100.
e Time step: dt = 0.25dx.

e Boundary conditions: Periodic boundary condition in z-direction and planar symmetry
in y- and z-directions.

e Gauge conditions: dia = —a?K, ¢ = 0.

e Scheme: second-order iterative Crank-Nicolson.



Chapter 9

Simulations with C?-adjusted ADM
Formulation

9.1 Constraint violations and the damping of the violations

Figure B shows the L2 norm of the Hamiltonian constraint and momentum constraints with
a function of backward time (—¢) in the case of the standard ADM formulation, (E1)-(632).
We see the violations of the momentum constraints are larger than that of the Hamiltonian
constraint at the initial stage, and both grow larger with time. The behavior is well-known,
and the starting point of the formulation problem.

We, then, compare the evolutions with three formulations: (a) the standard ADM formula-
tion (E1)-(62), (b) Detweiler’s formulation (EZ1)-(E22), and (c) the C?-adjusted ADM formu-
lation (63)-(68). We tuned the parameters L in (a), and Kyijmn and Kxijmn in (c¢) within the
expected ranges from the eigenvalue analyses. In the formulation (c), we set Kvyijmn = Ky0im0jn
and Kxijmn = KK0im0;jn for simplicity, and optimized - and kg in their positive ranges. We use
L= —10"9 and (ky, k) = (—107%0,—1073) for the plots, since the violation of constraints
are minimized at ¢ = —1000 for those evolutions. Note that the signatures of (k.,kx) and L
are reversed from the expected one in Sec. b3 and Sec. B33, respectively, since we integrate
time backward.

We plot the L2 norms of C? of these three formulations in Figure B2, We see the constraint
violations of (a)(the standard ADM formulation) and (b)(Detweiler’s formulation) grow larger
with time, while that of (c)(C?-adjusted ADM formulation) almost coincide with (a) until
t = —500, then the violation of (c) begins smaller than (a). The L2 violation level of (c), then,
keeps its magnitude at most O(1073), while those of (a) and (b) monotonically grow larger with
oscillations. Figure B3 shows up to ¢ = —1000, but we confirmed this behavior up to t = —1700.

Figure B3 tells us that the effects of Detweiler’s adjustment appear at the initial stage, while
C?-adjustment contributes at the later stage. The time difference can be seen also from the
magnitudes of adjustment terms in each evolution equations, which we show in Figure B=3. The
lines (b1), (b2), (c1), and (c2) are the norms of D.;; in (643), D;; in (E24), §C?/8v;; in (E3),
and 6C?/6K;; in (64), respectively.

We see that the L2 norms of the adjusted terms of Detweiler’s ADM formulation, D.;; and
Dg;j, decrease, while that of the C?-adjusted ADM formulation increase. If the magnitudes of
the adjusted terms are smaller, the effects of the constraint damping become small. Therefore,
the L2 norm of C? of Detweiler’s ADM formulation are not damped down in the later stage in

o4
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Figure 9.1: The L2 norm of the Hamiltonian and momentum constraints of the Gowdy-wave
evolution using the standard ADM formulation. We see that the violation of the momentum
constraints is larger initially, and both violations are growing with time.

Figure O2.

One possible explanation for the weak effect of Detweiler’s adjustment in the later stage is
the existence of the lapse function, o (and a2, o?), in the adjusted terms in (6Z3)-(624). The
Gowdy-wave testbed is the evolution to the initial singularity of the space-time, and the lapse
function becomes smaller with evolution. Note that in previous works [12,28], we see that the
constraint violations are damped down in the simulation with Detweiler’s ADM formulation,
where the lapse function, «, is adopted by the geodesic condition.

In Figure B4, we plotted the magnitude of the original terms and the adjusted terms of C?-
adjusted ADM formulation; the first and second terms in (63) and (E8@). We find that there
is 0(102)-O(10°) of differences between them. Therefore, we conclude that the adjustments do
not disturb the original ADM formulation, but control the violation of the constraints. We may
understand that higher derivative terms in (6B38) and (63) work as artificial viscosity terms in
numerics.

9.2 Parameter dependence of the C?-adjusted ADM formula-
tion

There are two parameters, s, and K, in the C?-adjusted ADM formulation and we next study
the sensitivity of these two on the damping effect to the constraint violation.

Figure @3 shows the dependences on ky and kg. In Figure 83 (A), we fix kg = 0 and
change k. In Figure O3 (B), we fix k, = 0 and change xx. In Figure @3 (A), we see that
all the simulations stop soon after the damping effect appears. On the other hand, in Figure
g3 (B), we see that the simulations continue with constraint-damping effects. These results
suggest ki 7# 0 or Ky = 0 is essential to keep the constraint-damping effects.

We think the trigger for stopping evolutions in the cases of Figure @3 (A) (when kx = 0)
is the term H;*°Y(9,0,0.04H) which appears in the constraint propagation equation of the
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Figure 9.2: The L2 norm of the constraints, C?, of the polarized Gowdy-wave tests with ADM
and two types of adjusted formulations. The vertical axis is the logarithm of the C? and the
horizontal axis is backward time. The solid line (a) is of the standard ADM formulation. The
dot-dashed line (b) is the evolution with Detweiler’s ADM with L = —107%?. The dotted line
(c) is the C?-adjusted ADM with k., = —107%0 and kx = —1073°>. We see the lines (a) and (c)
almost overlap until ¢ = —500, then the case (c) keeps the L2 norm at the level < 1073, while
the lines of (a) and (b) monotonically grow larger with oscillations. We confirmed this behavior
up to t >~ —1700.

Hamiltonian constraint, (EI8). We evaluated and checked each terms and found that Hjs%¢?
exponentially grows in time and dominates the other terms in (EI8) before the simulation
stops. Since H5%“? is consists of 777" [see (612) and (6223)], the time backward integration
of Gowdy spacetime makes this term disastrous. So that, in this Gowdy testbed, the cases
k~ = 0 reduce this trouble and keep the evolution with constraint-damping effects.

The sudden stops of evolutions in Figure B3 (A) can be interpreted due to a non-linear
growth of “constraint shocks”, since the adjusted terms are highly non-linear™. The robustness
against a constraint-shock is hard to be proved, but the continuous evolution cases in Figure
g3 (B) may show that a remedial example is available by tuning parameters.

! We appreciate the anonymous referee for pointing out this issue.
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Figure 9.3: The magnitudes of the adjusted terms in each equations for the evolutions shown
in Figure B2. The vertical axis is the logarithm of the adjusted terms. The horizontal axis is
backward time. The lines (b1l) and (b2) are the adjusted terms (623) and (644) respectively.
The lines (c1) and (c2) are the adjusted terms (E) and (E9) respectively. We see the ad-
justments in Detweiler-ADM [the lines (b1l) and (b2)] decrease with time, which indicates that
these contributions become less effective.
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Figure 9.4: Comparison of the magnitude of the original terms and the adjusted terms of
the C2-adjusted ADM formulation, (EH)-(E8). The lines (c3) and (c4) are the L2 norm of the
original terms [the evolution equations of g;; and K;;, (60) and (62)], respectively. The lines
(cb) and (c6) are the L2 norm of the adjusted terms, which is the second terms of the right-hand
side of (B3) and (B@), respectively. We see the adjusted terms are “tiny”, compared with the
original terms.
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Figure 9.5: Parameter dependence of the C?-adjusted ADM formulation. The vertical axis
is the logarithm of the C? and the horizontal axis is backward time. The left panel (A) is
the evolutions with kx = 0 and k., = —10720, -10730, —10740, —10750. The right panel (B)
is the cases with k, = 0 and kg = —10716,-10726,—10736, 10746, In (A), we see that
the simulations stop soon after the constraint dumping effect appears. In (B), we see that the
simulations continue with constraint-damping effects.
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Simulations with C?-adjusted BSSN
Formulation

10.1 Gauge wave case

10.1.1 Constraint Violations and their Dampings

Figure 0 shows the violations of five constraint equations ﬁ, Mvi, C;i, JZ(, and S for the gauge-
wave evolution using the standard BSSN formulation. The violation of the M-constraint, line
(A-2), is the largest during the evolution, while the violations of both the A-constraint and
S-constraint are negligible. This is the starting point for improving the BSSN formulation.

Applying the adjustment procedure, the lifetime of the standard BSSN evolution is increased
at least 10-fold. In Fig.IA, we plot the L2 norm of the constraints, (Z31), of three BSSN evo-
lutions: (A) the standard BSSN formulation (Z8)-(ZZIM), (B) the A-adjusted BSSN formulation
(CB)-(R), (1), and (5R), and (C) the C?-adjusted BSSN formulation (ZT9)-(Z3). For
the standard BSSN case, we see the violation of constraint monotonically increases in the ear-
lier stage, while other two adjusted cases keep it smaller. We can say that the C?-adjusted
formulation is the most robust one against the violation of constraints between three.

We plot the norm of each constraint equation in Fig.I3. First, we see that the violation
of the M-constraint for the two adjusted BSSN formulations [the lines (B-2) and (C-2) in
Fig. O3] are less than that of the standard BSSN formulation in Fig. . This behavior would
be explained from the constraint propagation equations, where we see the terms A gAMa and

(1/2)k AAM; in (T13) and ([ZB0), respectively. These terms contribute to reduce the violations
of the M-constraint. This is the main consequence of the two adjusted BSSN formulations.

Second, we also find that the violations of the A-constraint and S-constraint are larger
than those in Fig.0Il. From constraint _propagation equations (53) and (E9), the violation
of the .A constraint is triggered by the M- and A-constraints. The increase in the violations
of the A-constraint is caused by the term 2X 76% (82./\/13). Similarly, in (Z58) and (210), the
violation of the S-constraint is triggered by only the A-constraint since the magnitude of A5 is
negligible. Therefore, the increase in the violation of the S-constraint is due to the violation of
the A-constraint.

From ([CZ3) and ([CZ7), it can be seen that the adjusted terms of the evolution equations
of ¢ and 7;; include second-order derivative terms of the H-constraint. This means that these
evolution equations include fourth-order derivative terms of the dynamical variables. In order to

99
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Figure 10.1: L2 norm of each constraint violation in the gauge-wave evolution using the
standard BSSN formulation. The vertical axis is the logarithm of the L2 norm of the constraints
and the horizontal axis is time. We see the evolution stops at ¢ = 110 due to the growth of
‘H-constraint violation.

investigate the magnitudes of the adjusted terms, we show in Fig.[OI4 the ratio of the adjusted
terms to that of the original terms in each evolution equation. We see that the magnitudes of
the adjusted terms of ¢ and 7;; are reasonably small.

In the simulations with the C2-adjusted BSSN formulation, the largest violation is the S-
constraint. The S-constraint depends only on the dynamical variables 7;;, so that there is no
other choice than setting A5 for controlling S-constraint, as can be seen from (r5B). However,
we must set A5 to a value as small as possible since the adjusted term of 7;; includes higher
derivatives of 7;;. Therefore, it is hard to control the g—constraint, and we have not yet found
an appropriate set of parameters. This will remain as a future problem of this C?-adjusted
BSSN system.

We also investigated the sensitivity of the parameters in the C2-adjusted BSSN evolutions.
We compared evolutions with setting only one of the parameters, (A,, Ak, A5, A 7, Af), nonzero.
Since the key of the damping of the violation of constraints is the M—constraint, and (Ar, A7)

controls the violation of M-constraint directly by (IZ53), we mention here only the dependence
on Ak and Az. We found that constraint-damping feature changes sensitively by both A and

A7, among them setting A 7 is important to control the M-constraint violation. We see the best
controlled evolution with A ; = 1073 than 1072 and 10~

10.1.2 Contribution of Algebraic Constraints in Definition of C?

In Sec.2, we defined C?, (Z&7), including the algebraic constraints. We check this validity
by turning off the algebraic constraints in (C3d) and tested. The result is shown in Fig.IT3,
where we see the simulation stops at ¢ = 800 due to a sudden increase in the violation of the
constraints. This confirms that the algebraic constraints play an important role of damping of
the violations of constraints.
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Figure 10.2: L2 norm of all the constraints in gauge-wave evolution comparing three BSSN
formulations: (A) standard BSSN formulation (solid line), (B) A-adjusted BSSN formulation
(dotted line), and (C) C?-adjusted BSSN formulation (dot-dashed line). The adopted param-
eters are kg4 = 10756 for (B), and A, = 10785, A\ = 10784, Ay = 10773, A= 1072®, and
Az = 1071 for (C) to minimize C? at t = 1000. The constraint violations of the A-adjusted
BSSN formulation, (B), increase with time and the simulation stops before ¢ = 1300, while
those of the C?-adjusted BSSN formulation, (C), remain at O(107!) until ¢+ = 1300 and the
simulation stops at ¢ = 1350.

10.2 Gowdy wave case

10.2.1 Constraint Violations and Their Dampings

We begin showing the case of the standard BSSN formulation, (Z8)-(Z10). Figure I\ shows
the L2 norm of the violations of the constraints as a function of backward time (—t). We see
that the violation of the M-constraint is the largest at all times and that all the violations
of constraints increase monotonically with time. [Comparing with the result in [30], our code
shows that the H-constraint (A-1) remains at the same level but the M-constraint (A-2) is
smaller.]

Similar to the gauge-wave test, we compare the violations of C? for three types of BSSNs
in Fig.M™. In the case of the g—adjusted BSSN formulation, the violation of the constraints
increases if we set |k 4| larger than 10792, In the case of the C%-adjusted BSSN formulation,
it increases if we set |\ 7| larger than 10712, Note that the signatures of the above k4 and s
are negative, contrary to the predictions in [27] and Sec.1, respectively. This is because these
simulations are performed with backward time.

As shown in Fig.I4, the violations of C? for the standard BSSN formulation and the A-
adjusted BSSN formulation increase monotonically with time, while that for the C?-adjusted
BSSN formulation decreases after ¢ = —200. To investigate the reason of this rapid decay
after t = —200, we plot each constraint violation in Fig.I'8. We see that the violations of
the A-constraint and S-constraint increase with negative time, in contrast to the standard
BSSN formulation, and those of the M constraint and g constraint decrease after t = —200.
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Figure 10.3: L2 norm of each constraint in the gauge-wave evolution using the /T—adjusted
BSSN formulation [panel (a)] and C%-adjusted BSSN formulation [panel (b)]. The parameters
KAs Apy AK, Ay, A, and Ay are the same as those in Fig.IIA. In both panels, we see that the

violations of the #-constraint [the lines (B-1) and (C-1)], the M-constraint [(B-2) and (C-2)],
and the G-constraint [(B-3) and (C-3)] are less than those for the standard BSSN formulation
in Fig.IDl. However, the violations of the A-constraint [(B-4) and (C-4)] and the S-constraint
[(B-5) and (C-5)] are larger. Line (B-5) overlaps with line (B) in Fig.A after ¢ = 100, and
line (C-5) overlaps with line (C) in Fig.M2 after ¢ = 500.

The propagation equation of the Mv—constraint, (13), includes the term —2cgA gaaﬂ, which

contributes to constraint damping. Similarly, the propagation equation of the g-constraini,
(753), includes 6%°{(1/2)A59pA + 2XA:0,}H — csA56°8,S; the decay of the violations of the G-
constraint is caused by these terms. Therefore, these terms are considered to become significant
of approximately t = —200 when the violations of the A, H, and S-constraints become a certain
order of magnitude.

In contrast to the gauge-wave testbed (Fig.d), we prepared Fig.d, which shows the
magnitudes of the ratio of the adjusted terms to the original terms. Since the magnitudes of
the adjusted terms of ¢ and 7;; can be disregarded, the effect of the reduction of the adjusted
terms of ¢ and 7;; is negligible. Therefore, the C?-adjusted BSSN evolution in the Gowdy wave
can be regarded as maintaining its original hyperbolicity.

10.2.2 Contribution of Algebraic Constraints in Definition of C?

In Sec.2, we investigated the effect of the definition of C2. Similar to the gauge-wave tests
in the previous subsection, we show the effect of constraint damping caused by the algebraic
constraints. In Fig.[IIM, we plot the violations of all the constraint with cq¢ = c4 = cg = 0.
We see that all the violations of the constraints are larger than those in Fig.II'S. This result is
consistent with the discussion in Sec.2.
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Figure 10.4: L2 norm of the ratio (adjusted terms)/(original terms) of each evolution equation
of the C%-adjusted BSSN formulation, (ZI9)-(ZZ3), in the gauge-wave test. We see that the
largest ratio is the evolution equation of A;;. The corrections to ¢, K, and 7;; evolution

equations are reasonably small.
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Difference with the definition of C?, (Z353), in the damping of each constraint
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and )\f are the same as

those in Fig.MIA. The simulation stops since the violations of the constraints sudden increase

at ¢ = 800.
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Figure 10.6: L2 norm of each constraint equation in the polarized Gowdy wave evolution
using the standard BSSN formulation. The vertical axis is the logarithm of the L2 norm of the
constraint and the horizontal axis is backward time.

4 T T T

(A) Standard BSSN =~ ———
3 || (B) A-adjusted BSSN s
(C) C%-adjusted BSSN — - —

108‘10(“02”2)

0 200 400 600 800 1000

—Time

Figure 10.7: L2 norm of the constraints, C?, of the polarized Gowdy wave tests for the standard
BSSN and two adjusted formulations. The vertical axis is the logarithm of the L2 norm of C?
and the horizontal axis is backward time. The solid line (A) is the standard BSSN formulation,
the dotted line (B) is the A-adjusted BSSN formulation with x4 = —107%2, and the dot-dashed
line (C) is the C?-adjusted BSSN formulation with A\, = —10719 A\ = —107%6, Ay = —10711,

Ag = —10~%2, and Ap = —10~143, Note that the signatures of k4 and s are negative since the
simulations evolve backward. We see that lines (A) and (C) are identical until ¢ = —200. Line
(C) then decreases and maintains its magnitude under O(1072) after t = —400. We confirm

this behavior until ¢ = —1500.
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Figure 10.8: The same with Fig @ but for the C?-adjusted BSSN formulation. The parame-
ters, (Ay, Ak, A3, A3, Ap), are the same with those for (C) in Fig. 7. We see that the violation

of the M-constraint decreases and becomes the lowest after ¢ = —700.
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Figure 10.9: L2 norm of the ratio (adjusted terms)/(original terms) of each evolution equation
for the C%-adjusted BSSN formulation, (Z19)-(=Z3). We sce that the largest ratio is that for
the evolution of A;;. The corrections to the 7;; and I'* evolution equations are reasonably small.
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Figure 10.10: Difference with the definition of C? with ¢ = ¢4 = ¢g = 0. The coefficient

parameters, Ay, Ak, A5, A7 and Ay, are all the same as those for (C) in Fig.. In comparison
with Fig. IR, all the violations of the constraints are larger.
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Summary

To construct 3 4 1 splitting formulation of the Einstein equations, we introduced the standard
ADM formulation and the BSSN formulation, and derived both of the constraint propagation
equations of these formulations. Next, we proposed new sets of evolution equations, which we
call the C?-adjusted ADM formulation and C?-adjusted BSSN formulation. We applied the
adjusting method suggested by Fiske [34] to the standard ADM and BSSN formulations.

For the C?-adjusted ADM formulation, we obtained the evolution equations as (E=)-(E)
and the constraint propagation equations, (618) and (E28), and also discussed the constraint
propagation of this system. We analyzed the constraint amplification factors (CAFs) on the
flat background, and confirmed that all of the CAFs have negative real-part which indicate the
damping of the constraint violations. We, then, performed numerical tests with the polarized
Gowdy-wave and showed the damping of the constraint violations as expected.

On the other hand, for the C?-adjusted BSSN formulation, we derived evolution equations
as ([19)-(I23) and the constraint propagation equations, (Ch2)-(IZ58), in flat spacetime. We
performed numerical tests in the gauge-wave and Gowdy wave spacetimes and confirmed that
the violations of constraints decrease as expected, and that longer and accurate simulation than
that of the standard BSSN evolution is available.

There are two advantages of the C?-adjusted system. One is that we can uniquely determine
the form of the adjustments. The other is that we can specify the effective signature of the
coefficiencies (Lagrange multipliers) independent on the background. (The term effective means
that the system has the property of the damping constraint violations). In 28], Yoneda and
Shinkai systematically examined several combinations of adjustments to the ADM evolution
equations, and discuss the effective signature of those Lagrange multipliers using CAFs as the
guiding principle. However, the C?-adjusted idea, (54), automatically includes this guiding
principle. We confirm this fact using CAF-analysis on the flat background.

Although, in BSSN, there are two kinetic constraints and three additional algebraic con-
straints compared to the ADM system; thus, the definition of C? is a matter of concern. By
analyzing constraint propagation equations, we concluded that C? should include all the con-
straints. This was also confirmed by numerical tests. The importance of such algebraic con-
straints suggests the similar treatment when we apply this idea to other formulations of the
Einstein equation.

We performed the simulation with the C2-adjusted ADM formulation on the Gowdy-wave
spacetime and confirmed the effect of the constraint dumping. We investigated the parameter
dependencies and found that the constraint-damping effect does not continue due to one of
the adjusted terms. We also found that the Detweiler’s adjustment [40] is not so effective
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against constraint violations on this spacetime. Up to this moment, we do not yet know how
to choose the ranges of parameters which are suitable to damp the constraint violations unless
the simulations are actually performed.

To evaluate the reduction of the violations of the constraints of the C?-adjusted BSSN
formulation, we also compared evolutions with the A-adjusted BSSN formulation proposed
in [27]. We concluded that the C?-adjusted BSSN formulation exhibits superior constraint
damping to both the standard and A-adjusted BSSN formulations. In particular, the lifetimes
of the simulations of the C?-adjusted BSSN formulation in the gauge-wave and Gowdy wave
testbeds are as ten-times and twice as longer than those of the standard BSSN formulation,
respectively.

So far, many trials have been reported to improve BSSN formulation (e.g. [27,4%]). Recently,
for example, a conformal-traceless Z4 formulation was proposed with its test demonstrations
[74]. Among them, Fig.1 of [74] can be compared with our Fig.IM3 [(B-1) and (C-1)] as the same
gauge-wave test. The violation of H-constraint in C?-adjusted BSSN evolution looks smaller
than that of new Z4 evolution, but regarding the blow-up time of simulations, new Z4 system
has advantage.

Fiske reported the applications of the idea of C?-adjustment to linearized ADM and BSSN
formulations in his dissertation [35]. (As he mentioned, his BSSN is not derived from the
standard BSSN equations but from a linearized ADM using a new variable, I'. His set of BSSN
equations also does not include the A- and S-constraints in our notation.). He observed damping
of the constraint violation of five orders of magnitude and the equivalent solution errors in his
numerical evolution tests. Our studies show that the full BSSN set of equations with fully
adjusted terms also produces the desired constraint-damping results (Fig.II2 and Fig.[07),
although apparent improvements are at fewer orders of magnitude.

In the C%-adjusted ADM and BSSN cases, the associated adjustment parameters (La-
grangian multipliers) are sensitive and require fine-tuning. In future, automatic controlling
system such that monitoring the order of constraint violations and maintaining them by tuning
the parameters automatically would be helpful. Applications of control theory in this direction
are being investigated.

The correction terms of the C?-adjusted system include higher-order derivatives and are not
quasi-linear; thus, little is known mathematically about such systems. These additional terms
might effectively act as artificial viscosity terms in fluid simulations, but might also enhance the
violation of errors. To investigate this direction further, the next step is to apply the idea to a
system in which constraints do not include second-order derivatives of dynamical variables. We
are working on the Kidder-Scheel-Teukolsky formulation [[7] as an example of such a system,
which we will report in the near future.



Appendix A

Riemann Tensor Decomposition

A.1 Gauss-Codazzi Equation

First, we define the relation of the covariant derivative operator between m+1 and m dimension.
The covariant derivative operator of M™ is defined as

DyTH#2™, = PY\PM, P2, ...pPY, PP g T02 (A1)

where TH#2, .. € T(M™). The reason that D, is the covariant derivative operator is
because of

Dyy*P = P\ P, PP,V 4" (A.2)
1
= Pw,\PO‘pPﬁgVUJ (gp‘f — 6n”’n”) (A.3)
1
- _EPWAPO‘pPﬁva(nPnU) (A4)
= 0. (A.5)

The calculation of the second-order covariant derivative of VT € T'(M™) is

D,D,Ty = P*,P?,P“\V,DsT, (A.6)
= P2 PP POV (PP LY, T) (A.7)
= P, PP, P°)\(VoP75)(VTs) + P*,P7, P°\(VoP°,)(V,T5)

+ P*,PY,P°)\(VaV,T5) (A.8)

= —%PauPﬁ,,P‘; A (Vang) (V4 T5) — %PQNPV,,P“’ A0 (Vang) (V4 Ts)

+ P*,PY,P°)\(VoV,T5) (A.9)
= %P‘S A K, (VL Ts) + %vanéKuA(v7T5) + P*,P7,P°,\ (VoY T5) (A.10)
= %P‘S AV K, (V4 T5) — %PV,,(VW&)KMT(; + P®,PY,P°,\(V,V,T5) (A.11)
= %P‘; AV K, (VA T5) + %K,ﬁKMT(; + P®,PY,P°,\(VoV,T5), (A.12)
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the relation between MtV R\, and ™R, is

(") R T = 2Dy, D,y Ty

2 2 N
== POAnY K|, (V4 T5) + EK[fKM 2Ts + 2P%, P7,\P°\(Vo V4 T)

2
= E( KK\ — KK )T + 2P, PY, PP \(V o V. T5)

1
— E(Kl/w 'u,)\ _ KwayA)Tw _|_ PQMP,YVP(;)\ (m+1)Rw6'yaTw-

Therefore, the Gauss-Codazzi equation is

P“aP/\pPllﬁPwv (mH)RMw = (m)RaPBV -

1
;(KBaKw — Ky Kgp).

A.2 Codazzi-Mainardi Equation

First, we set a value for convenient,
a, =n"Vyn,.
ay is in T'(M™) because
n*a, = n'n"Vyn,
=n"(n"V,n,)
=0.
The relation between K, and a, is
K,, = —P*,Van,
1
=— (5/\u - n’\nu> Van,
€
1
=-Vun, + M-
The calculation of the second-order covariant derivative of n, is
1
PH,PYgP\,NV\V,n, = P*,P’3P* )V, (—KW + €nl,a#>
1
= —PH,P"sP*(V)K,,) + EPﬂapvﬁpﬁ,w(ny%)
1
= —D,Kp, + EPMQP”ﬁP*w(vw,,)a#
1
=—-D,Kpg, — ;P“aP”BKWaN
1
= _DwKﬁa - g wBlas
the projection of (m“)RwAw by PFoPYgPA,nP is
Pl PYgPAnf DR\ = 2PF PV s PAnP (V AV ,ny)
2
= —2D,Kgja = Klwg)ta
- _QD[WKB}OU

(A.13)
(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)
(A.20)
(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
(A.27)
(A.28)

(A.29)

(A.30)

(A.31)
(A.32)
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therefore, the Codazzi-Mainardi equation is

PR PYsPA P MHDR = Dy Kga + DKoo

A.3 Component paralleled with Normal Vectors
First, we compute the value a,,

a, = n’\VAn“
= n*V(eNV ,.€)
= e (VaN)(V,i€) + en* N(VaV i)
1
= NnA(V,\N)nM +en*N(V,ViE)
=n*n,(Valog N) 4 eV, (n*NV,€) — eV, (n*N)(V5€)
= 1, (Valog N) + (V) — %(VMN)
= (Valog N)(n*n, — ed*,)
1
= —¢(VylogN) (5’\u - n)‘nu>
€
= —eD,log N.

Then, the extrinsic curvature is expressed with (B=23%),

1
K,, = -V, n,+-nua,
€

=—-V,n, —n,D,logN.
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(A.33)

(A.44)

Next, we calculate the the projection of the component of (m)RW \w With two P*, and two n?,

P“aP”ﬁnAnw (m+1)Rwu,\V
=PH,P" 30 (V,Van,) — P*o P’ sn(VAV,n,)
=P",P"sn*V, (—Ky, — nyDylog N) — P*oP" 30V (— K, — n,D,log N)
= — PP NV, Ky,) — P*oPY g0V, (naDy log N) + PHo PV sn* (VA K,,)
+ PH,P"3n*V\(n, D, log N)
=PI, P"5(V,nM Ky, — eP*oP" 5V, (D, log N) + P PY sn N (VAK,,)
+ PH,PY sn*(Van,) (D, log N)

- P“aKﬁ)‘K,\M‘ —eDgDylog N \ + PH o PY 50NV 2K,,,) —€(Dy log N)(Dg log N)

€
= — Kz* Ky, —yPsDalN |+ PF P s (VAKy,).

Then Lie derivative of the K, associated with Nnt is

Lan(Kuw) = NnM(VaKuw) + Ky Vu(Not) + KoV, (Nn)
= NnMNVaK,w) + K\ N(V,n?) + KN (V,nh).

(A.45)
(A.46)
(A.47)

(A.48)

(A.49)
(A.50)

(A51)
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For the projection operator P*,, the Lie derivative associated with Nn? is
Lyn(P*,) = Nn*(VyP*,) — P,V \(Nn*) + P*\V,(Nn) (A.54)
= —%NnA(V)\n“)nV — %NnAn“(VAn,,) — P, (VAN)n* — P2, N(VanH)
+ P*y\(V,N)n* + P*\N(V,n") (A.55)
= f%Nn’\n,,gW(fK,\w —nyDylog N) — %NnAn“(—KA,, —nyD, log N)
— (D,N)n* — P*,Ng"(—Ky, — nyD,log N)

+ P*y\Ng™(-K,,, —n,D,log N) (A.56)
= Nn,(D"log N) + Nn*(D,log N) — (D,N)n* + NK,* — NK,"

— Nn,(D*log N) (A.57)
=0. (A.58)

Therefore, the projection of (A53) with P*,P"g is
P! oPY 5L Ny (K ) = PP o P’ sNnN(VAK ) + PP PY 5Ky, N(V,n")
+ PHLPYs K 2 N(V,nh). (A.59)
& PrOPYsnMN(VaKy) = %P%P”ﬁan(KW) — PHoPY 5Ky, (V,n?)
— PHoPY K5 (Vyn?) (A.60)
- %an(Kaﬁ) LK sKS . (o Lan(PM) =0) (A1)

Therefore, the component is expressed as

€ 1
P PY gntn® MEDR o, = K K — ~DsDaN + NLNR(KQ[;). (A.62)



Appendix B

Conformal Riemann Tensor

B.1 Conformal Covariant Derivative
We calculate the relation between the normal covariant derivative operator D, and the confor-

mal covariant derivative operator D,,.
D,, operate THH2™, .. as

DATMMWVIV2~-~ = 8)\T“1“2"',,1 gore (m)fﬂl)\wTwm"'Vlyzm 4 fmAmewmuluy- + ...
_ fw)\leumz'"wwm _ fw)\ugT'uleulwm — . (B_l)

vT € TO(M™), YT+ € THM™), VT, € TH(M™), VT, € TL(M™),

D,T = D,T, (B.2)
D,T" = DMT” + 6" (D, log $)T¥ + (Du log $)T" — (DY log ¢) T, (B.3)
D,T, = D,T, — (D, log $)T,, — (D, 1og )T, + ¥y (D* log )T, (B.4)

D)\Ty, = DTy, — (Dylog )Ty — (Dy1og ¢)Txy — 2(Dalog ¢) Ty + au (DY log ¢) T
+ Tw (Dw log ¢)Twu- (B‘E’)

B.2 Conformal Lie Derivative

We express the Lie derivative operator in conformal manifolds as £ in this report. Then,
Vo € TL(M™), VP € TH(M™), YV, € 7’20(./\/{7”)7 and the conformal value Viw = ¢V, we
calculate that the relation between £,(V,,) and L,(V,,) is

Ly(Vi) = N DaVi) + Vau (D) + Via (Do) (B.6)
= v (Vi) + Vau (0,0™) + Vn(0,07) (B.7)
= =200 (O\G) Vi + ¢ 20N O\ Vi) + ¢V (0u0) + ¢ Vr(00Y)  (B.8)
= —20™"V,(Dxlog ¢) + ¢ *Ly(Tjw). (B.9)

Lo(Viw) = ¢*Lo(Viw) + 20V Ly (log ¢). (B.10)
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B.3 Conformal Riemann Tensor
We calculate the relation between (m)R)‘,MV and (™) RAWV ;

(m)RAWV =9, (m)FAW 9, (m)r/\uw + (m)r/\wp (m)FPNV _ (m)r/\yp (m)rp#w (B.11)
=0 "™ +6%,0.(Dy log 6)| +6*,0.,(Dy log ¢) | — (07 )y (D log ¢)
_(6M:Yw/) (D)\ log ¢) _:Y)\pﬁ’uuaw([)p log ¢)

-0, (m)f“)‘w —SAH(‘)V(DM log ¢) —5/\w3u(Du log ¢) —1—(81,7’\’))'7“&)([),) log ¢)

+(0V“_/uw) (D)\ log (/)) +’_}’>\p"_mwau (Dp log ¢)

+(m)f>‘wp (m)Fpu,, +(m)f>‘w“(DV log ¢)+(”’k)]:"\,w,,,(‘D/, log @)

~Auw TN (D¢ log ¢) | +0*, MI?,, (D, log )|+ 67, (Dy log ¢)(Dy, log ¢)
00D log ) (D) log &) — 8% F,w(DP log ¢) (D, log ¢)

+MTA (D, log ¢)+6*,(D, log ¢)(D,, log ¢)

—%w(D* log ¢)(D,, log ¢)

~T 4y (DM og &) = Fuu(Dy log ¢) (D log ¢) 7w (D), 1oz &) (D™ log &)
+%w(D*log ¢)(D,, log ¢)

—(m)fAyp (m)pruw —(m)f/\uﬂ(Dw log @)J"”FAM(D“ log ¢)

—i—(m)f)‘ypfy,w (D*log ¢) —(5)‘1,1_“pr (Dp log ¢)
— 6%, (D, log ¢) (D, log ¢) + 6*,7,(D* log ¢) (D¢ log ¢)

—(MTA (D, log $)—6* (D, log ¢)(D, log ¢)—* (D, log ¢)(D, log ¢)
+¥y (D, log ¢)(D* log ¢)
+UMT,0(DM log ¢) + (D log ¢)(Dyy log ¢)+7,s (D log ¢) (D), 1og ¢)

~Yuo (Dy, log ¢)(D* log ¢) (B.12)
= "R |+, (Do Dy 10g ) | =y (DD log ¢) | =67, (D, Dy, log )

+%u0(DyD*og @) + 6% (D, log ¢)(Dy log ¢) — 64w (D log ¢) (D, log ¢)
- :Ywu(DV log QS)(D)\ log ¢) — 5)\V(Dw log ¢)(Du log ¢)
+ 0% Yo (D¢ log ) (D¢ log ¢) + Fuyu (D log ¢) (D, log ¢). (B.13)




Appendix C

Derivation of Constraint
Propagation

C.1 Decomposition of Divergence of Second-Order Tensor
v My, € TP(M™*+1) such that
MDYV, = ™ Vinun, +2™Vn, + ™V, (C.1)

where MV € TO0(M™), ™V, € TO(M™), ™V, € TP(M™) and n,, is the unit normal on
To-(M™), we decompose the equations;

I,=v Ay, (C.2)
into the components paralleled with n* and with P*,,.

C.1.1 The Component paralleled with Normal Vector

First we compute the component of (C3) paralleled with n#;

n'l, = g“)‘n”VA((m)Vn“ny + (m)VNnV + (m)Vyn# + (m)VH,,) (C.3)
= en NV V) + eg" (V,n,,) ™V 4 eg" (V, ™V,) + 0 n? (V) (M)
+ g (Va ™V,) (C.4)

1 1
= en(Va"™V) 4 ¢ (PW + n“n”) (Vun,) ™V + ¢ <PW + n“n”) (V. ™V,
€ €

+ 0 (V) MV + g" (V) (MY,,) (C.5)
= en NV MV 4 ePP, (V) MV 4 ePHy PY PV, MV,) — 2(Van?)n? MY,
— P} (Van¥) MyH, (C.6)

2
- %LM(W)V) — KMV 4 (D, Mym) 4+ NE(DMN) Mye 4, My (0.7
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C.1.2 The Component paralleled with Projection Operator

Next, we calculate the component of (C2) paralleled with P*,;
PY,I, = vagukv)\ <(m)Vnunu +92 (m)V(;ﬂy) + (m)VW> (C.8)
_ P”wnk(va) (m)y 4 P”wP)‘M(V,\nu) (m)ym 4 wan)‘(v)\ (m)Vy)

1
+ PV P (Van) MV, + PP PH P PP (VM) — ;P”wn)‘(v,\n“) My,

(C.9)
_ _.pv (m) v m)yu . L pv (m) A (m)
= —eP",(Dylog N)"™V — P" K, "V + NP wLnn (V) + K, i
— PY,K ™V, + P°?(D,™V,,) + P",(D"log N) "™V, (C.10)
__€ my o L myy g (m) myr 4 L (m)y/p
N (DuN) OOV = L (V) = KV 4 DAIVA, + = (DuN) OV,
(C.11)
C.2 Decomposition of Energy Momentum Conservation
Now we calculate the decomposition of the energy momentum conservation equation;
vt =0, (C.12)
(mH)TW = panuny + 2J,m) + S, (C.13)

where pg € TY(M™), J, € T2(M™) and S, € T3 (M™). For (C7) and (CI), we adopt
n, as time like (¢ = —1) and NV and N* are expressed as a and (*, respectively. The energy
conservation equation and the momentum conservation equations are

O = aKpg — o(DyJ") — 2(Dya) JH + aK W S* + La(pw), (C.14)
Wy = —(Dpa)py + aKJy, — a(DyS”),) — (Dya)S” ) + L( ), (C.15)

respectively.

C.3 Constraint Propagation of Standard ADM

Now we split the divergence of the Einstein equations into the components paralleled with n,,
and with P*,. The divergence of the Einstein equation is

V(@G — KT,,) = 0. (C.16)
To split the divergence of the Einstein equation in the ADM formulation, we first calculate the
trace part of (Z253);

g (g, = —‘m‘z_*lg“”( DG — KTw), (C.17)

then we can get the relation;

1
(m+1)G/u/ _ K/T;u/ — (m+1)E;,LV _ 5gl“/g)\t.a.) (m+1)E)\w' (018)
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The component of the divergence of (CI8) paralleled with n* is
v (G — KT ) (C.19)
1
:n,uvl/ (m+1)E/u/ _ inl/vl/ (g)\w (m+1)E>\w) (020)

2
Zi/JNn(H) —eKH + e(D,M") + NE(DMN)M“ + K, ™ pr

N
— L/;N (eH+~+" ™E,)
2N w
€ 2e €
=5 Lnn(H) — eKH + e(DyM") + T (DuN)MY + Ky (m) prv _ o L (1" ME,).
(C.21)
The component of the divergence of (CI8) paralleled with P*, is
P (G, — KT, ) (C.22)
1
=PH NV I, — SPLY, (gAw <m+1>EM) (C.23)
=~ S (D,NYH + . (M) — KM, + Dy ™ EA, + i(D N) (™ pr
- %Dw <e7—t + P\ <m+1>Em> . (C.24)

In the standard ADM formulation, n* is timelike and (m)EW = 0. The constraint propaga-
tion equations of the m dimensional standard ADM formulation are

OH = Lg(H) + 2aKH — 2a(Dy M) — 4(Dya) MK, (C.25)
1
oM, = Lg(My) — (Dpa)H + aKM,, — ia(DuH)- (C.26)

C.4 Constraint Propagation of BSSN Formulation

With ZN?M, the energy conservation equation (CI4) and the momentum conservation equations
(CIH) can be written as

O = aKpy — ae_w(ﬁ”JH) —2(m — 2)046_4‘P(l~)“<p)JM - 26_4"9(5“04)JM

- 1 ~

+ae AMS,, + EaKS + Ls(pn), (C.27)
O Jy = —(Dpa)py + K J, — ae™ (D S,,,) + 2a(D,p)S — 2(m — 2)a(D, ) S,
— (Dya)S”, + Ls(J,), (C.28)
respectively. B
The propagation equation of § is
S = 07 (C.29)
=37 (O V) (C.30)
e ~ 2 =~ ~ ~ 1 ~ =

= ’7’7“ <_2aA/W - E(Dz\ﬁ)\)%uu + 'CB(’YMV) + M/BA(DAS)’Y;W> (C'Bl)

= 2054+ Ls(S). (C.32)
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The propagation equation of A s

A = — A" (OF,w) + 3 (04 A ) (C.33)

1 ~ o~
D/\B )7#u + Eﬂ(’)ﬁuu)“‘, NJ))\(D)\‘S)A;/W}

17

~ 2
= — AW —200A,,— (

+ ’y’“’{aKAW—Q(yAH)\A »

2 ~ ~ ~ - 1 ~ o~
_E( AN AL + Lg(A)—ra(e 1*“5)“,)“+m:,JJA(DMS)A,,I,} (C.34)
= | =AM Lo(Fu) |+ KA 43 Lo(Ay) (C.35)
= aKA +Ls(A)|. (C.36)

For the right-hand-side of the propagation equations of the G*, this is just the constraint
term which might be zero in the evolution of the I'*, (BIT2),

9,0 = 20> — (D*) A — a(DMA) + da(D ) A + ;ﬁpfyﬁ 3 - igr@(ﬁ 3)

- mm,yz 8(D*S)(D,5) — 5 ZHD)(D,S) ~ = 0(D*D,8) + 8(D,5")
+35 5w TV, (D,S) — (Dwﬁk)gwr%(ppﬁp)g . (C.37)

The propagation equation of M 1S

M, = (07™)(Dy ) + %“A{@(atﬁm — (0F7) Ty Ay — (0, T ) B2,

- (m) wl/)\ (&tAwu) (6t§wp) (m)fpl/,ug)\w - (81& (m)fpuu)g)\p - (m)fwl/,u(atg)\w)}
+ 2m3A(8t90)A +2m(Drp) (O7) Ay + 2m(D*0) (D Au)

— 2 00(0K) — 20,0004~ 2(Du) (0A) — K(01LT,) (C.38)

. B = o=, w1 B
_(875'71/)\)(DVA/\M) + ’Yy)\ 8V(atA>\,LL) +(8t’7wp) ( )FPVAA w5 8)\(8t7pu)
2

+ay(8t§p)\) - ap(at:?l/)\)};{pu _(m)fwu)\(at-’ziwu) +(at§wp) (m)fpyug)\w

1 =~ =~ ~ Y m)w N
_Q{au(at')’pu) + 8l/(at'7pu) - ap(at’Yuu)}A/\p —(m)T uu(atAAw) }

(C.39)
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+2mDy(3rp) A,

m

1) (002)

— 2m(D*

)(at’YAw)A +2m(Dw )(&Vzwu)
— "2 Du(OK) — 2D,(009) A — 2ADy) (0LA) — (21

+ D9, Ay,)

— DY (8Fw) A%, + ﬂ*ﬁw(aﬁm)zwu

1

1~ ~ \ AV
—5 Du(07p0)A™

+ 2mDy (D) A,

m

—1~
- DK - 2

+1~)A{ aK Ay,

2 _
_E( w/j )A)\/L +£B(A)\u) —Ka(e 4@SAH)TF+

_gwﬂﬁv{zm

1

— 2m(D* @) (0Anw) A% + 2m(D®0) (9 Ausy)

Dyu(9pp) A — 2(D uw)(atA)—/i(atJ)

-~ - 5 _ B
= —(DVAA#) {2“‘1///\_m(D”3p)7’”\

+Ls(F) [+

ﬁ/)<DpS) /1/)\}

fl)’\

204,,A?,

+ae”

(0™ Ry, + MRL)TF | —e~9(DyDya) ™ \

2~ -
lww - (D)\ﬂ)\)'\/’/wu

m

_1;1&@“{

—QQEPV

oK
2ma +2m

1 1

- 2m(ﬁA¢)Zwﬂ{—2aAM“u),}.;ﬂ)sm +L5(Fne)

~ 9~

m

aK

A

L5 (Awp) [-ra(

: 5 (BWSV)*ZL\N}

"‘ZB(:?M/)

P D15V

NI’\

(Duf®)
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T 1 N
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L s, sm}
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(C.41)

—20 A, AP,

+ae

4s0( (m)fgw 4 (m) Rgu)TF

—e % (D,Dya)'

1
+—aKk?
m

| 1 - o~ o~
—dp TF p
e ?Suu) Jrimﬁﬂ (DpS)AwM}

—D*Dya

+La(K) | -

) 4| +L5(A) }

+Ls(p)

+akKJ, ‘—ae‘

+L5(J,.) }

(D¥S,) + 20(D,p)S —

- {ﬁ*(f)ﬁ)}ﬂ
my

2(m — 2)(1(51,99)S”H

(C.42)
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~ (m—1)(m—2) ~ m—1, ~
= —(m)Rp“DpOé +OJKM“+ 7”2 O/K(D,“K)_W(D#CK)KQ
JV’ ))/\(:]\jv‘;]:)/\juu/l) o 5\(]:)\]\7 A“w// JV’ "] f ]\7 \,) o ;‘v“.//(f)/)]\),wﬂ’)+Eﬁ(.//\\/l/u)

= = 1 ~ ~ -1 ~
+H(D a)e (M Ry, + URS) |~ —(Dyo) (H—m K2+ iKA)

m

+2(m — 2)a(D*p)e ("™ Ry, + RS ) + ae ¥ DN Ry, + MRS

(D, K2) + %(ﬁm}j

m — 2 m

a{ﬁuﬁ_ M i, ((m) f 4 (m) oy | L

2 - - ~ o~ ~ o~
— (KA)} +AY (DLD, ") = AL(D,D, ) = (Dya) AY A — aA® (D, A)

m

i/aw;@ (DxS)(D.S) — i(ﬁmw)@“(ﬁwg) _ %gwm@@@

s (D,S)(DrS) A + %( WB)DAS) A+ 5= 6M(D,DAS)A (C.43)
= (D*a)e (DG)) |~ - (Do) — —5(Dya)

+2(m = 2)ae™*?(D*p)(D(,Gx) |+

— 204([)“71)

(D KA+~

—2 e m—2 o~
s—aK(D,A) + WO‘(DMK)A

l\.')\}—t

— (D) A ,A — a A (D, A) + B“AA (DAS)(D,S) — 2‘:( \39) AN (D,S)
- =B RDADLS) - 5 Nmﬁ $)(DA8) A+ 5=(D,8)(5:S) A

+ 2?%5A(5M1~)A§)¢Z+ L3(M,). (C.44)

To calculate the propagation equations of 7:2, we first ™ R and (™ R¥. The conformal scalar
curvature is

D 'R ™ ™ 1~w~l/ ~ m)Auy (m)T m)pAuy (m
(mMp—=9,I" + (m)puuw (m)pw _ §7>\ A (D7D ) + (m)PAuv ( )F/\/w + 2 (M)A ( )Fy/\,“

(C.45)
then, the dynamical equation is
0 ™R = at{ayfv + (mipw, (e — éwﬁw(a@m) + (mpAw (T
Lo (A (m) fw} (C.46)

= D (8:TH) + 0(™TH )T + (8 ™TH )7 (A o)
™ T ~ L e s 7 =~ m)Tp\ =y 1 ~
— (P (T R (9,7,,) — 57 A DyDyy (O ) — 5( TP 3 D (0

+ (m)fm//\[)u(aﬁ/\y)_ (C.47)
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The (™ R? can be expressed as
(MR = —4(m —1)(DuD"p) — 4(m — 1)(m — 2)(D*¢) (Dxg) (C.48)

and the dynamical equation of (™) R? is

o™ 1> = o] ~a(m — D(DrDN) ~ 4l — 2)(m ~ (D) D) | (C.49)

= 4(m — 1)(D*D*¢)(07xw) + 4(m — 1) TP (D,y0) (97
— 4(m — 1)7" DD, (9rp) — 4(m — 1)(Duwp)(3G*) + 4(m — 1)(Deyip) (A1)
+4(m — 2)(m — 1)(D*9)(D*0)(97un) — 8(m — 2)(m — 1)(D") Du(9p). (C.50)

The propagation equation of the Hamiltonian constraint equation is

(9tﬁ = —4674“0((”1)]% + (m)RW)(atSO) + ew{ﬁu(atfu) + 3t((m)fuw)fl/
~ m)Apr (m)T v 1. VI ) ~
+ (a/\ (m)F wﬂ)"}/)\p’)/wg(at’)/pa) _( )I“AP ( )I‘W\“(at’yup) - 5’7“ ’)/)\ D/\Dw(at’)’m/)
1 ™ ~uv -~ m)urA 7 ~
— 5 TNF Dy @) + TV ADmtw)}

+e4@{4<m—1><5A5w><amw>+4< 1) VF (D) ()
4 — 15 BBy (9hg) — A(m — 1)(Dp) () + 4(m — 1) (D) (9T)
T 4(m — 2)(m — 1)(D°¢) (D) (0Fn) — 8(m — 2)(m _1)@%)@(@@}

2(m—1 ~ ~ o~ N 2 ~
+ MK(@K) — 2AM (9 A L) + 241, AN (DA ) — E@(KA) — 2k(0ipm) (C.51)
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+ 2(7”7;1)0[](22_’_ Sae (D Dy A) — %ae_w((m)ﬁ +MRAHA
+ (Dya)e %G1 A — ae™GP(D,A) + (DyD a)e ™ A + 2(Dya)e** (D A)
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— EKE[-}(./ZD — 2()[6*4(;01211#”(5”5“) - 2674@(51/5()\511))&)\
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Appendix D

Some Convenient Relations

In this appendix, we denote the some convenient relations for calculating of this paper.

For the connection,

aug'mj - _(m)r,uw)\gw)\ - g'mj(al/ log \/§)7
guurwuy + (m)l-v\w)\ _ _a}\gw)\

1
(m)r(ﬂl/))\ = 58}\9“”7

CIT iy = —Opugun-

For the Lie derivative operator and covariant derivative,

VT € T (M™), VI € TgH(M™), VT, € TP(M™), VI, € T (M™),

Du(ﬁ (T)) = 'CB(DM )
Dy (Ls(T")) = EB(DMT”) + BNDuDAT") = BMNDAD,TY) — TN(D,DyB"),
Du(Ls(Ty)) = La(DuTy) + BN(DuDAT,) — BNDAD,T,) + Ta(D,D,BY),
DA(Ls(Tyw)) = Ls(DAT, ) + B(DaDuTyw) — B (DuDyTyw) + Tin (DAD,B%)

+ Tw (DADVB )

For the second order partial derivative and the second order covariant derivative,

07T = DAD Ty + 2(0x ™%, )Ty, + 2(DATy,,) ™7, +2 ™17, (e
+2 (m)FpUJ(M (m)FJV)ATPU + ey, (DpTyw) + (m)rpAM(DprV)
+ (M) (D, T,,).

w(p
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For the Riemann tensor and the Ricci tensor,

2Dy, D, DA\T? = Ry, (D,T%) + MW R¥ ., (DT*), (D.10)
(MR, = 9y WA, — 9, MDAy + MDA (e, —TA,, (e (D.11)

=9\ ™I — (00 9)) TN = Gu(u(0,)T)) + (M, (v,
_mpA,, (e (D.12)

=0y (m)r)\ul/ + (a(yg,u)w)(akgu»\ + (m)rwpagpo)
+ gw(,uaz/) (8)\gw)\ + (m)rwpagpa)
_ (8)\gw)\ + (m)]:‘wpagpa) (m)rw/ﬂ/ - (m)F)\wy (m)Fw”)\ (D.l?))

= Gu(u0) ( (m)pwpagprf) +(009,00) (m)pwpagprf _ (m)pwy (m)pwapgop

+0\ (m)FA,uV +(8(1/gu)w)(a>\gw)\) + gw(,uau)a)\gw)\ _(akgwk) (m)rw;w

_mpA,, (e (D.14)

= gw(,ual/)( (m)FwUngp) +(m)r(wj)w (m)l““’gpgap ‘ +g)‘wa/\] (m)rw;w

(0000909 | = (O7Guo) (D) 9°) —(m)FAwu(—(m)FAw‘ +0ugnw ‘)

(D.15)

= Gu(u) (T5pg77) + T, T g7 —%gmaxﬁwguu
 (mipAe My 42 (m)rkw(ury))\w (D.16)
DADyTy — DuDyTyy = "™ RP Ty + ™R nThp. (D.17)

In the BSSN formulation, we use these relations;
D,D,T" — D,D,T" = R, 7" — D(,G, T". (D.18)
(m)éuv = 5(ufv) — D (m)f(w)/\ S N (m)f(w)a + (m)fw(u (m)fV)wU’

(D.19)

(M — B, T¥ — Dy MTRA, _ (mFex (mFr L mFown mF (D)



Appendix E

Mathematica Program of CAFs

We denote the Mathematica code for calculating the CAF's of the C?-adjusted ADM and BSSN
formulation in flat spacetime.

E.1 CAFs of C?-adjusted ADM Formulation

ClearAll["\[<Global ‘*\>"]

kk = klxkl+k2*xk2+k3*k3;

(*ADMx*)

(* A is the original coefficient matrix of Fourier

transformed standard ADM *)

A={{0,-2*%I*k1,-2*%I*k2,-2+I*k3},{-1/2%Ixk1,0,0,0},
{-1/2%I1%k2,0,0,0},{-1/2%I%k3,0,0,0}};

(* B is the coefficient matrix of additional term

by C2-adjustment *)

B={{-4*kk*kk,0,0,0},{0,-kk-3*k1xkl,-3*xk1*k2,-3*k1xk3},
{0, -3*k2xk1,-kk-3*k2xk2, -3xk2*k3},
{0,-3%k3*k1,-3xk2*xk3,-kk-3*k3*k3}};

ev=Simplify[Eigenvalues[A+kappa*B]];

Print[ev];

E.2 CAFs of C?-adjusted BSSN Formulation

ClearAl1["\[<Global ‘*\>"]
k1 =1; k2 = 0; k3 = 0;

kk = ki1xkl + k2%k2 + k3%*k3;
lambdaPhi = lambda;

lambdaK = lambda;
lambdaGamma = lambda;
lambdaA = lambda;
lambdaCGamma = lambda;

hH = 1;

hM = 1;

A = {{0, 0, 0, 0, 0, O, O, -kk, O}, {1/6%Ixk1, O, O, O, -1/2%kk, 0, O,
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0, 0}, {1/6xI*k2, 0, 0, 0, 0, -1/2xkk, O, O, 0}, {1/6%I*k3, 0, O,
o, 0, 0, -1/2*kk, 0, 0}, {0, 2, 0, 0, O, O, O, -Ixk1, O}, {0, O,
2, 0, 0, 0, 0, -I*k2, 0}, {0, O, O, 2, O, O, O, -I*k3, O}, {0, O,
o, o, o, o, 0, 0, 0}, {0, 0, 0, 0, O, O, O, -2, 0}};
B = {{hH*(-128*1ambdaPhix*kk*kk - 3/2*lambdaGammaxkk*kk -
2*lambdaCGamma*kk), 0, 0, O,
hG* (1/2*%I*lambdaGammaxkk*kl — 2*I*lambdaCGammaxkl),
hG* (1/2*I*lambdaGammaxkk*k2 - 2*xI*lambdaCGammax*k2),
hG* (1/2*I*lambdaGammaxkk*k3 — 2*I*lambdaCGammax*k3),
0, —-3*hS*lambdaGammaxkk}, {0,
hM* (-8/9*1ambdaK*k1*kl - lambdaAx*kk - lambdaAxk1xk1),
hM* (-8/9*1ambdaK*k1*k2 - lambdaKxk1*k2),
hM* (-8/9*1ambdaK*k1*k3 - lambdaK*k1*k3), O, O,
0, —-2xIxhA*lambdaAxki, 0}, {0,
hM* (-8/9*1ambdaK*k2*¥k1l - lambdaK*xk2xk1),
hM* (-8/9*1ambdaK*k2*k2 - lambdaA*kk - lambdaKxk2¥k2),
hM* (-8/9*1ambdaK*k2*k3 - lambdaK*k2*k3), 0, O,
0, -2xIxhA*xlambdaAxk2, 0}, {0,
hMx* (-8/9*1ambdaK*k3*k1l - lambdaK*k3xk1),
hM* (-8/9*1ambdaK*k3*k2 - lambdaK*k3*k2),
hM#* (-8/9*1ambdaK*k3*k3 - lambdaA*kk - lambdaK*k3*k3), 0, O,
0, -2*%IxhA*xlambdaA*xk3,
0}, {hH*(-1/2*I*lambdaGamma*kl*kk + 2*xI*lambdaCGammaxkl), 0, 0, O,
hG* (-lambdaGamma*kk - 1/2*lambdaGamma*ki*kl - 2*lambdaCGamma),
hG* (-1/2*]lambdaGammaxk1*k2), hG*(-1/2*lambdaGamma*k1*k3),
0, -I*lambdaGammaxhS*
k1}, {hH*x(-1/2*Ix*lambdaGamma*xk2*kk + 2*I*lambdaCGammaxk2), 0, O,
0, hGx(-1/2*]lambdaGammaxk2*k1),
hG* (-lambdaGamma*kk - 1/2*lambdaGamma*k2*k2 - 2*lambdaGamma),
hG* (-1/2*1ambdaGamma*k2*k3) ,
0, -I*lambdaGammaxhS*
k2}, {hH*(-1/2*I*lambdaGamma*k3*kk + 2*I*lambdaCGammax*k3), 0, O,
0, hG*(-1/2*lambdaGammaxk3*k1), hG*(-1/2*lambdaGammaxk3*k2) ,
hG* (-lambdaGamma*kk - 1/2*lambdaGamma*k3*k3 - 2*xlambdaGamma),
0, -Ix*lambdaGamma*hS*k3}, {0, 2¥hM+lambdaA*Ixk1,
2*¥hM*lambdaA*I*xk2, 2*hM*xlambdaAxI*k3, 0, O, O, -6%hA*xlambdal,
0}, {-3 hH*lambdaGamma*kk, O, 0, 0, hGx*lambdaGamma*I*ki,
hG*lambdaGamma*I*k2, hGxlambdaGammax*xI*k3, O, -6 hS*lambdaGammal}};
ev = Simplify[Eigenvalues[A + Bl];
Print["Change the Coefficient of the G-Constraint"]
gGl = Plot3D[
Relev([[1]] /. {hS -> 1, hA -> 1}], {lambda, O, 1}, {hG, 0, 10}]
gG2 = Plot3D[
Relev([[2]] /. {hS -> 1, hA -> 1}], {lambda, O, 1}, {hG, 0, 10}]
gG3 = P1lot3D[
Relev[[3]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]
gG4 = Plot3D[
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Relev[[4]] /. {hS -> 1, hA -> 1}], {lambda, O, 1}, {hG, O, 10}]
gG5 = Plot3D[

Relev[[5]] /. {hS -> 1, hA -> 1}], {lambda, O, 1}, {hG, O, 10}]
gG6 = Plot3D[

Relev[[6]] /. {hS -> 1, hA -> 1}], {lambda, O, 1}, {hG, O, 10}]
gG7 = Plot3D[

Relev[[7]] /. {hS -> 1, hA -> 1}], {lambda, O, 1}, {hG, O, 10}]
gG8 = Plot3D[

Relev[[8]] /. {hS -> 1, hA —> 1}], {lambda, 0, 1}, {hG, O, 10}]
gG9 = Plot3D[

Relev[[9]] /. {hS -> 1, hA —> 1}], {lambda, 0, 1}, {hG, O, 10}]
Print["Change the Coefficient of the A-Constraint"]
ghl = Plot3D[

Relev[[1]] /. {hS -> 1, hG -> 1}], {lambda, O, 1}, {hA, O, 10}]
gh2 = Plot3D[

Relev[[2]] /. {hS -> 1, hG -> 1}], {lambda, O, 1}, {hA, O, 10}]
gh3 = Plot3D[

Relev[[3]] /. {hS -> 1, hG -> 1}], {lambda, O, 1}, {hA, O, 10}]
ghd = Plot3D[

Relev[[4]] /. {bS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]
gA5 = Plot3D[

Relev[[5]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]
gh6 = Plot3D[

Relev[[6]] /. {hS -> 1, hG -> 1}], {lambda, O, 1}, {hA, 0, 10}]
ghA7 = Plot3D[

Relev[[7]1] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]
gh8 = Plot3D[

Relev[[8]] /. {hS -> 1, hG -> 1}], {lambda, O, 1}, {hA, O, 10}]
gh9 = Plot3D[

Relev[[9]] /. {hS -> 1, hG -> 1}], {lambda, O, 1}, {hA, O, 10}]
Print["Change the Coefficient of the S-Constraint"]
gS1 = Plot3D[

Relev[[1]] /. {hG -> 1, hA —> 1}], {lambda, 0, 1}, {hS, 0, 10}]
gS2 = Plot3D[

Relev[[2]] /. {hG -> 1, hA -> 1}], {lambda, O, 1}, {hS, 0, 10}]
gS3 = Plot3D[

Relev[[3]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]
gS4 = Plot3D[

Relev[[4]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]
gS5 = Plot3D[

Relev[[5]] /. {hG -> 1, hA -> 1}], {lambda, O, 1}, {hS, O, 10}]
gS6 = Plot3D[

Relev[[6]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]
gS7 = Plot3D[

Relev[[7]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]
gS8 = Plot3D[

Relev[[8]] /. {hG -> 1, hA -> 1}], {lambda, O, 1}, {hS, 0, 10}]
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gS9 = Plot3D[
Relev[[9]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]
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