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vi Notation

Notation
• signature of the metric : (−,+,+, · · · ).

• Mm : m dimensional Riemannian manifold.

• T a
b(Mm) : tensor field as p ∈ Mm. T 1

0 (Mm) is tangent space, T 0
1 (Mm) is cotangent

space and T 0
0 (Mm) is scalar field.

• nµ : normal vector on T 1
0(Mm+1)

• gµν , γµν : metric on Mm+1 and Mm, respectively.

• g, γ : determinant of gµν and γµν , respectively.

• Pµ
ν : projection operator from T a

b (Mm+1) to T a
b (Mm) which is explicitly written as

Pµ
ν ≡ δµν −

1

ϵ
nµnν , (1)

where ϵ express the direction of nµ.

• ∇µ : covariant derivative operator associated with gµν .

• Dµ : covariant derivative operator associated with γµν . The relation between ∇µ and Dµ

is ∀Tµ1µ2···
ν1ν2··· ∈ T a

b (Mm),

DλT
µ1µ2···

ν1ν2··· ≡ Pω
λP

µ1
α1P

µ2
α2 · · ·P β1

ν1P
β2

ν2 · · ·∇ωT
α1α2···

β1β2···. (2)

• (m)Rµνλω : m dimensional Riemann tensor. The definition is given as ∀Tω ∈ T 0
1 (Mm),

(m)Rω
λµνTω ≡ 2D[νDµ]Tλ (3)

= (∂µ
(m)Γω

λν − ∂ν
(m)Γω

λµ + (m)Γω
µρ

(m)Γρ
λν − (m)Γω

νρ
(m)Γρ

λµ)Tω, (4)

where (m)Γλ
µν is the Levi-Civita connection on Mm+1.

(m)Rλ
ωµνT

ω = 2D[µDν]T
λ (5)

• Lξ(V
µ1µ2···

ν1ν2···) : Lie derivative of V µ1µ2···
ν1ν2··· ∈ T a

b associated with
ξλ ∈ T 1

0 (Mm+1). The expression with ∇µ is

Lξ(V
µ1µ2···

ν1ν2···) = ξλ∇λ(V
µ1µ2···

ν1ν2···) + V λµ2···
ν1ν2···(∇λξ

µ1)

+ V µ1λ···
ν1ν2···(∇λξ

µ2) + · · · − V µ1µ2···
λν2···(∇ν1ξ

λ)

− V µ1µ2···
ν1λ···(∇ν2ξ

λ)− · · · . (6)

• Kµν : extrinsic curvature of Mm. The definition is given by

Kµν ≡ −1

2
Ln(γµν) (7)

where n is the normal vector on Tp(Mm) and γµν is the metric of Mm.

• α : lapse function in T 0
0 (Mm).

• βµ : shift vector in T 1
0 (Mm).

• Λ : cosmological constant.
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Chapter 1

Introduction and Definition

In this chapter, we state the abstract of the Numerical Relativity and the definitions in this
paper. Currently, there are many references about General Relativity and the Numerical Rela-
tivity, we mainly refer to [1–3] and [4–7], respectively.

1.1 Introduction

When solving the Einstein equations numerically, the standard way is to split spacetime into
space and time. Arnowitt, Deser and Misner (ADM) were first formulated the decomposition
of Einstein equations (we call this formulation the original ADM formulation) [8]. Smarr and
York [9, 10] were re-formulated the original ADM formulation (we call this the standard ADM
formulation). However, it is well known that in long-term evolutions in strong gravitational
fields such as the coalescences of binary neutron stars and/or black holes, simulations with the
ADM formulation are unstable and are often interrupted before producing physically interesting
results. Finding more robust and stable formulations is known to the formulation problem in
numerical relativity [4, 11,12].

Many formulations have been proposed in the last two decades. The most commonly used
sets of evolution equations among numerical relativists are the so-called Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation [13, 14], the generalized harmonic (GH) formulation
[15, 16], the Kidder-Scheel-Teukolsky (KST) formulation [17], and the Z4 formulation [18, 19]
(as references of their numerical application, we here cite only well-known articles; [20, 21] for
the BSSN formulation, [22] for the GH formulation, [23] for the KST formulation, and [24] for
the Z4 formulation).

All of the above modern formulations include the technique of constraint damping, which
attempts to control the violations of constraints by adding the constraint terms to their evolution
equations. Using this technique, more stable and accurate systems are obtained (see e.g. [25,26]).
This technique can be described as adjustment of the original system.

In [27–29], Yoneda and Shinkai systematically investigated how the adjusted terms change
the original systems by calculating the constraint propagation equations (dynamical equations of
constraints). They suggested some effective adjustments for the ADM and BSSN formulations
under the name adjusted ADM formulation and adjusted BSSN formulation, respectively [27,28].
The actual constraint-damping effect was confirmed by numerical tests [30–33].

Fiske proposed a method of adjusting the original evolution system using the norm of the
constraints, C2, [34], which we call a C2-adjusted system. The new evolution equations force the
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1.2. DEFINITION OF GEOMETRICAL VALUES 3

constraints to evolve toward their decay if the coefficient parameters of the adjusted terms are
set as appropriate positive values. Fiske reported the damping effect of the constraint violations
for the Maxwell system [34] and for the linearized ADM and BSSN formulations [35]. He also
reported the limitation of the magnitude of the coefficient parameters of the adjusted terms.

In [31], we applied the C2-adjusted system to the (full) ADM formulation and calculated
the Constraint Amplification Factors (CAFs), we confirmed that this system has numerical
stability. Besides, we presented some numerical tests, the violations of the constraints are less
than those in the original system. In addition, for comparing with the numerical stability of the
C2-adjusted ADM formulation, we performed some simulations with the Detweiler system [40],
and confirmed the constraint violations with the C2-adjusted ADM formulation are damped
down in comparison with the Detweiler system. We also reported the differences of the effective
range of the coefficient of the adjusted terms.

In [32], we applied the C2-adjusted system to the (full) BSSN formulation and derived the
constraint propagation equations in the flat space. We performed some numerical tests and
compare them with three other types of BSSN formulations: the standard BSSN formulation,
the Ã-adjusted BSSN formulation [27, 30], and the C2-adjusted BSSN formulation. We used
the gauge-wave and polarized Gowdy wave testbeds, which are the test problems as is known to
apples-with-apples testbeds for comparing evolution systems [41]. Since the models are precisely
fixed up to the gauge conditions, boundary conditions, and technical parameters, the testbeds
are widely used for comparisons [30,42,43].

The structure of this article is as follows. In part I, we derive 3+ 1 formulations of Einstein
equations inm dimension not only four dimension. We introduce the standard ADM formulation
in chapter 2. In chapter 3, we introduce the BSSN formulation. In Part II, we review some
tools for analyzing the numerical stability and introduce the C2-adjusted ADM and BSSN
formulations. In chapter 4, we introduce the constraint propagation equations. We review the
ideas of the adjusted systems, the CAFs and the C2-adjusted systems in chapter 5. In chapter
6, we introduce the C2-adjusted system to the ADM formulation, and the C2-adjusted BSSN
formulation is introduced in chapter 7. In part III, we perform the simulations and summarize
this article. In chapter 8, we set the numerical conditions and parameters of the simulations.
We perform the simulations with the C2-adjusted ADM and BSSN formulations in chapter 9
and 10, respectively, In chapter 11, we summarize this paper.

1.2 Definition of Geometrical Values

1.2.1 Projection

For a Mm+1, we set the hypersurface Mm which is satisfied that a global (m+ 1 dimensional)
curve ξ is constant. Hence the unit normal vector nµ on the tangent space Tp(Mm) can be
expressed as

nµ = ϵN∇νξ, (1.1)

where ϵ express the direction of nµ and N is the positive function such that the norm of nµ

make a unit. For gµν , the inner product of nµ is satisfied that

nµnνg
µν = ϵ, (1.2)
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where ϵ is

ϵ =

{
1 : if nµ is spacelike,
−1 : if nµ is timelike.

(1.3)

The positive function N is expressed as

N = {ϵgµν(∇µξ)(∇νξ)}−1/2 . (1.4)

In addition, nµ is satisfied nµ(∇νn
µ) = 0 because

nµ(∇νn
µ) = ∇ν(n

µnν)− (∇νnµ)n
µ (1.5)

= −(∇νn
µ)nµ (1.6)

∴ nµ(∇νn
µ) = 0. (1.7)

On the other hand, nλ∇λnµ is

nλ∇λnµ = nλ∇λ(ϵN∇µξ) (1.8)

= ϵnλ(∇λN)(∇µξ) + ϵnλN(∇λ∇µξ) (1.9)

=
1

N
nλ(∇λN)nµ + ϵnλN(∇µ∇λξ) (1.10)

= nλnµ(∇λ logN) + ϵ∇µ(n
λN∇λξ)− ϵ∇µ(n

λN)(∇λξ) (1.11)

= nλnµ(∇λ logN) + (∇µϵ)−
ϵ

N
(∇µN) (1.12)

= (∇λ logN)(nλnµ − ϵδλµ) (1.13)

= −ϵ(∇λ logN)

(
δλµ − 1

ϵ
nλnµ

)
(1.14)

= −ϵDµ logN. (1.15)

Now we define the projection operator. For a Pµ
ν ∈ T 1

1 (Mm+1), if Pµ
ν satisfies the two

conditions:

• Pµ
νn

ν = Pµ
νnµ = 0, and

• ∀V µ1µ2···
ν1ν2··· ∈ T a

b (Mm),

V µ1µ2···
ν1ν2···P

λ1
µ1P

λ2
µ2 · · ·P ν1

ω1P
ν2

ω2 · · · = V λ1λ2···
ω1ω2··· ∈ T a

b (Mm).

then Pµ
ν is projection operator from T a

b (Mm+1) to T a
b (Mm). For the metric gµν on Mm+1

and normal vector nµ on Tp(Mm), Pµ
ν is explicitly written as

Pµ
ν = δµν −

1

ϵ
nµnν , (1.16)

because,

• Pµ
νn

ν = Pµ
νnµ = 0, and

• ∀V µ1µ2···
ν1ν2··· ∈ T a

b (Mm),

V µ1µ2···
ν1ν2···P

λ1
µ1P

λ2
µ2 · · ·P ν1

ω1P
ν2

ω2 · · ·
=V µ1µ2···

ν1ν2···δ
λ1

µ1δ
λ2

µ2 · · ·P ν1
ω1δ

ν2
ω2 · · ·

=V λ1λ2···
ω1ω2··· ∈ T a

b (Mm).
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Now we express the basis in T ∗
p (Mm+1) as (dx1, · · · , dxm, dxm+1), and that in T ∗

p (Mm) as
(dX1, · · · , dXm). The line element ds2 can be expressed as

ds2 = gµνdx
µdxν (1.17)

= (gµνP
µ
αP

ν
β)dX

αdXβ (1.18)

≡ γαβdX
αdXβ, (1.19)

therefore γµν is the metric on Mm. In addition, γµν is consistent with Pµν because

Pµν = gµνP
λ
ν (1.20)

= gµν

(
δλν −

1

ϵ
nλnν

)
(1.21)

= gµν −
1

ϵ
nµnν , (1.22)

γµν = gαβP
α
µP

β
ν (1.23)

=

(
Pαβ +

1

ϵ
nαnβ

)
Pα

µP
β
ν (1.24)

= Pµν . (1.25)

1.2.2 Lie Derivative

The Lie derivative associated with vµ ∈ Tp(Mm+1) for Tµ1µ2···
ν1ν2··· ∈ T a

b can be expressed as

Lv(Tµ1µ2···
ν1ν2···) = vλ∇λ(Tµ1µ2···

ν1ν2···) + Tλµ2···
ν1ν2···(∇µ1v

λ) + Tµ1λ···
ν1ν2···(∇µ2v

λ)

− Tµ1µ2···
λν2···(∇λv

ν1)− Tµ1µ2···
ν1λ···(∇λv

ν2) · · · , (1.26)

and ∀S ∈ R, the Lie derivative is Lv(S) = vλ(∇vS).
∀vµ ∈ Tp(Mm+1), Lv(δ

µ
ν) = 0 because

Lv(δ
µ
ν) = vλ∇λδ

µ
ν − δλν∇λv

µ + δµλ∇νv
λ (1.27)

= 0. (1.28)

Hence, we can get the relation of

0 = Lv(γ
µλγλν) (1.29)

= Lv(γ
µλ)γλν + γµλLv(γλν), (1.30)

∴ Lv(γ
µν) = −γµλγνωLv(γλω). (1.31)

For the Lie derivative of ∀Tµ1µ2···µm ∈ T 0
a (Mm) associated with nµ on Tp(Mm) is in T 0

a (Mm)
because

nµiLn(Tµ1µ2···µm) = nµi

{
nλ(∇λTµ1µ2···µm) + Tλµ2···µm(∇µ1n

λ) + · · ·+ Tµ1µ2···λ(∇µmn
λ)
}
(1.32)

= nµinλ(∇λTµ1µ2···µm) + nµiTµ1µ2··· λ︸︷︷︸
i

···µm(∇µin
λ) (1.33)

= −(∇λn
µi)nλTµ1µ2···µm + nµiTµ1µ2··· λ︸︷︷︸

i

···µm(∇µin
λ) (1.34)

= 0. (1.35)
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∀N ∈ R, ∀Tµν ∈ T 0
2 (Mm) and normal vector nµ on Tp(Mm), the Lie derivative of Tµν

associated with Nnµ is

LNn(Tµν) = Nnλ∇λ(Tµν) + Tλν(∇µNnλ) + Tµλ(∇νNnλ) (1.36)

= Nnλ∇λ(Tµν) + TλνN(∇µn
λ) + TµλN(∇νn

λ) (∵ nλTλµ = 0) (1.37)

= N
{
nλ∇λ(Tµν) + Tλν(∇µn

λ) + Tµλ(∇νn
λ)
}

(1.38)

= NLn(Tµν). (1.39)

1.2.3 Extrinsic Curvature

The extrinsic curvature of Mm is defined as

Kµν ≡ −1

2
Ln(γµν), (1.40)

where γµν is the metric on the Mm and nλ is the unit normal on Tp(Mm). The right-hand-side
of (1.40) is

−1

2
Ln(γµν) = −1

2
nλ(∇λγµν)−

1

2
γµλ(∇νn

λ)− 1

2
γνλ(∇µn

λ) (1.41)

=
1

2ϵ
nλ∇λ(nµnν)−

1

2
(∇νnµ)−

1

2
(∇µnν) (1.42)

=
1

2ϵ
nλnν(∇λnµ) +

1

2ϵ
nλnµ(∇λnν)−

1

2
(∇νnµ)−

1

2
(∇µnν) (1.43)

= −1

2
(P λ

ν − δλν)(∇λnµ)−
1

2
(P λ

µ − δλµ)(∇λnν)−
1

2
(∇νnµ)−

1

2
(∇µnν) (1.44)

= −1

2
P λ

ν(∇λnµ)−
1

2
P λ

µ(∇λnν), (1.45)

then

P λ
µ(∇λnν) = P λ

µP
ω
ν(∇λnω) (1.46)

= P λ
µP

ω
ν∇λ(ϵN∇ωξ) (1.47)

= P λ
µP

ω
ν {ϵ(∇λN)(∇ωξ) + ϵN(∇λ∇ωξ)} (1.48)

= P λ
µP

ω
ν

{
1

N
(∇λN)nω + ϵN(∇λ∇ωξ)

}
(1.49)

= P λ
µP

ω
νϵN(∇ω∇λξ), (1.50)

therefore P λ
[µ(∇|λ|nν]) = 0. The extrinsic curvature can be expressed as

Kµν = −P λ
µ(∇λnν). (1.51)



Chapter 2

Geometrical Decomposition of
Einstein Equations

2.1 Riemann Tensor Decomposition

In this section, we introduce the component of the decomposition of the m + 1 dimensional
Riemann tensor onto T a

b (Mm). The two of them are known as the Gauss-Codazzi equation
and the Codazzi-Mainardi equation. Since these calculations are complicated, we write them in
details at Appendix A.

We split (m+1)Rµανβ to the components onto T a
b (Mm). With Pµ

ν and nλ, (m+1)Rµανβ can
be decomposed to the three parts:

• Pµ
αP

λ
ρP

ν
βP

ω
γ
(m+1)Rµλνω,

• P λ
ρP

ν
βP

ω
γn

µ (m+1)Rµλνω, and

• P λ
αP

ω
βn

νnµ(m+1)Rµλνω.

The other parts such as Pµ
αn

λnνnω (m+1)Rµλνω are identically zero because of the characters
of the Riemann tensor.

2.1.1 Gauss-Codazzi Equation

The projection of (m+1)Rµλνω with four Pµ
νs to the components on Mm is known as the Gauss-

Codazzi equation:

The relation between (m+1)Rµνλω and (m)Rµνλω is given by

Pµ
αP

λ
ρP

ν
βP

ω
γ
(m+1)Rµλνω =(m)Rαρβγ −

1

ϵ
(KβαKγρ −KγαKβρ). (2.1)

where ϵ is the direction of nµ.

2.1.2 Codazzi-Mainardi Equation

The projection of (m+1)Rµλνω with three Pµ
νs and one nµ is known as the Codazzi-Mainardi

equation:

7
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The projection of (m+1)Rµνλω with three Pµ
νs and one nµ to the components onto T a

b (Mm)
is given by

Pµ
αP

ν
βP

λ
ωn

ρ (m+1)Rρµνλ = −DωKβα +DβKωα. (2.2)

2.1.3 The Last Part of the Decompositions

The projection with two Pµ
νs and two nµs is below:

The projection of (m+1)Rµνλω with two Pµ
νs and two nµs to the components onto T a

b (Mm)
is given by

Pµ
αP

ν
βn

λnω (m+1)Rωµλν =Kβ
λKλα − ϵ

N
DβDαN +

1

N
LNn(Kαβ). (2.3)

2.2 Ricci Tensor Decomposition

Next, we split (m+1)Rµν to the components onto T a
b (Mm). In general, the second-order tensor

Vµν ∈ T 0
2 (Mm+1) can be decomposed to the components u ∈ T 0

0 (Mm), vµ ∈ T 0
1 (Mm), wµν ∈

T 0
2 (Mm) such that

Vµν = unµnν + 2n(µvµ) + wµν . (2.4)

Then, (m+1)Rµν is decoupled to the components which are

• parallel to nµnν ,

• parallel to Pµ
αP

ν
β, and

• parallel to nµP ν
α.

2.2.1 The Component paralleled with Normal Vectors

The component of the projection of (2.3) with Pαβ is

nµnν (m+1)Rµν = KµνK
µν − ϵ

N
DµDµN +

1

N
γµνLNn(Kµν). (2.5)

Now we calculate the last term of the right-hand-side of the above equation:

1

N
γµνLNn(Kµν) = γµνLn(Kµν) (2.6)

= Ln(K)− Ln(γ
µν)Kµν (2.7)

= Ln(K) + Ln(γµν)K
µν (2.8)

=
1

N
LNn(K)− 2KµνK

µν . (2.9)

Therefore,

The component of (m+1)Rµν paralleled with nµnν is

nµnν (m+1)Rµν = −KµνK
µν − ϵ

N
DµDµN +

1

N
LNn(K). (2.10)
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2.2.2 The Component paralleled with Projection Operators

We project (2.1) with P ργ ;

Pµ
αP

ν
β

(m+1)Rµν −
1

ϵ
Pµ

αP
ν
βn

λnω (m+1)Rµλνω = (m)Rαβ − 1

ϵ
(KβαK −KγαKβ

γ). (2.11)

With (2.3), (2.11) is

Pµ
αP

ν
β

(m+1)Rµν =
1

ϵ
Kβ

λKλα − 1

N
DβDαN +

1

ϵN
LNn(Kαβ) +

(m)Rαβ

− 1

ϵ
(KβαK −KγαKβ

γ) (2.12)

= (m)Rαβ − 1

ϵ
(KβαK − 2KγαKβ

γ)− 1

N
DβDαN +

1

ϵN
LNn(Kαβ). (2.13)

The component of (m+1)Rµν paralleled with Pµ
αP

ν
β is

Pµ
αP

ν
β

(m+1)Rµν = (m)Rαβ − 1

ϵ
KKαβ +

2

ϵ
KλβKα

λ − 1

N
DβDαN +

1

Nϵ
LNn(Kαβ).

(2.14)

2.2.3 The Last Component of the Decomposition of Ricci Tensor

We project (2.2) with Pαω,

P ν
βn

ρ (m+1)Rρν = −DωKβ
ω +DβK. (2.15)

The component of (m+1)Rµν paralleled with Pµ
αn

ν is

Pµ
αn

ν (m+1)Rµν = −DµKα
µ +DαK. (2.16)

2.3 Scalar Curvature

The projection of the left-hand-side of (2.13) with Pαβ is

Pαβ
(
Pµ

αP
ν
β

(m+1)Rµν

)
= Pµν (m+1)Rµν (2.17)

= (m+1)R− 1

ϵ
nµnν (m+1)Rµν (2.18)

= (m+1)R+
1

ϵ
KµνK

µν +
1

N
DµDµN − 1

ϵN
LNn(K). (2.19)

and the right-hand-side is

Pαβ

{
(m)Rαβ − 1

ϵ
(KβαK − 2KγαKβ

γ)− 1

N
DβDαN +

1

ϵN
LNn(Kαβ)

}
(2.20)

=(m)R− 1

ϵ
(K2 − 2KµνK

µν)− 1

N
DµDµN +

1

ϵN
γαβLNn(Kαβ) (2.21)

=(m)R− 1

ϵ
K2 − 1

N
DµDµN +

1

ϵN
LNn(K), (2.22)



10 CHAPTER 2. GEOMETRICAL DECOMPOSITION OF EINSTEIN EQUATIONS

therefore, the relation between (m+1)R and (m)R is

(m+1)R = (m)R− 1

ϵ
K2 − 1

ϵ
KµνK

µν − 2

N
DµDµN +

2

ϵN
LNn(K). (2.23)

The relation between (m+1)R and (m)R is

(m+1)R = (m)R− 1

ϵ
K2 − 1

ϵ
KµνK

µν − 2

N
DµDµN +

2

ϵN
LNn(K). (2.24)

2.4 Einstein Tensor Decomposition

The m+ 1 dimensional Einstein tensor, (m+1)Gµν , is defined as

(m+1)Gµν ≡ (m+1)Rµν −
1

2
(m+1)Rgµν + Λgµν . (2.25)

The Einstein tensor can be decomposed to the three parts which parallel to nµnν , Pµ
αP

ν
β, and

Pµ
αn

ν .

2.4.1 The Component paralleled with Normal Vectors

The component of (m+1)Gµν paralleled with nµnν is

nµnν (m+1)Gµν = nµnν (m+1)Rµν −
1

2
ϵ (m+1)R+ Λϵ (2.26)

= −KµνK
µν − ϵ

N
DµDµN +

1

N
LNn(K)

− 1

2
ϵ

{
(m)R− 1

ϵ
K2 − 1

ϵ
KµνK

µν − 2

N
DµDµN +

2

ϵN
LNn(K)

}
+ Λϵ (2.27)

=
1

2

(
−ϵ (m)R+K2 −KµνK

µν
)
+ Λϵ. (2.28)

The component of (m+1)Gµν perpendicular to T (Mm) is

nµnν (m+1)Gµν =
1

2

(
−ϵ (m)R+K2 −KµνK

µν
)
+ Λϵ. (2.29)
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2.4.2 The Component paralleled with Projection Operators

The component of (m+1)Gµν paralleled with Pµ
αP

ν
β is

Pµ
αP

ν
β

(m+1)Gµν = Pµ
αP

ν
β

(
(m+1)Rµν −

1

2
(m+1)Rgµν + Λgµν

)
(2.30)

= Pµ
αP

ν
β

(m+1)Rµν −
1

2
(m+1)Rγµν + Λγµν (2.31)

= (m)Rαβ − 1

ϵ
KKαβ +

2

ϵ
KλβK

λ
α − 1

N
DβDαN +

1

Nϵ
LNn(Kαβ)

− 1

2
γαβ

{
(m)R− 1

ϵ
K2 − 1

ϵ
KµνK

µν − 2

N
DµDµN +

2

ϵN
LNn(K)

}
+ Λγαβ (2.32)

= (m)Rαβ − 1

ϵ
KKαβ +

2

ϵ
KλβK

λ
α − 1

N
DβDαN +

1

Nϵ
LNn(Kαβ)

+
1

ϵ
γαβ

{
1

2

(
−ϵ (m)R+K2 −KµνK

µν
)
+ Λϵ

}
+ γαβ

(
1

N
DµDµN − 1

Nϵ
LNn(K) +

1

ϵ
KµνK

µν

)
. (2.33)

The component of (m+1)Gµν paralleled with Pµ
αP

ν
β is

Pµ
αP

ν
β
(m+1)Gµν = (m)Rαβ − 1

ϵ
KKαβ +

2

ϵ
KλβK

λ
α − 1

N
DβDαN +

1

Nϵ
LNn(Kαβ)

+
1

ϵ
γαβ

{
1

2

(
−ϵ (m)R+K2 −KµνK

µν
)
+ Λϵ

}
+ γαβ

(
1

N
DµDµN − 1

Nϵ
LNn(K) +

1

ϵ
KµνK

µν

)
. (2.34)

2.4.3 The Last Component of Einstein Tensor

The component of (m+1)Gµν paralleled with Pµ
αn

ν is

Pµ
αn

ν (m+1)Gµν = Pµ
αn

ν (m+1)Rµν (2.35)

= −DωK
ω
α +DαK. (2.36)

The component of (m+1)Gµν paralleled with Pµ
αn

ν is

Pµ
αn

ν (m+1)Gµν = −DµK
µ
α +DαK. (2.37)

2.5 Energy Momentum Tensor Decomposition

Before decoupled the Einstein equations, we split the energy momentum tensor. The energy-
momentum tensor Tµν ∈ T 0

2 (Mm+1) can be expressed as

Tµν = ρHnµnν + 2J(µnν) + Sµν , (2.38)
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where ρH ∈ T 0
0 (Mm), Jµ ∈ T 0

1 (Mm), Sµν ∈ T 0
2 (Mm).

The energy momentum tensor Tµν is expressed with the components on Mm such as

ρH ≡ nµnνTµν , (2.39)

Jα ≡ 1

ϵ
Pµ

αn
νTµν , (2.40)

Sαβ ≡ Pµ
αP

ν
βTµν . (2.41)

The trace part of the energy momentum tensor can be expressed with the components on
Mm,

T ≡ gµνTµν (2.42)

=

(
Pµν +

1

ϵ
nµnν

)
Tµν (2.43)

= PαβPµ
αP

ν
βTµν +

1

ϵ
nµnνTµν (2.44)

= S +
1

ϵ
ρH , (2.45)

where S ≡ γµνSµν .

2.6 Einstein Equations Decomposition

The m+ 1 dimensional Einstein equations are

(m+1)Gµν = κTµν . (2.46)

The relation between of the (m+1)R and (m+1)T is

κT = κgµνTµν (2.47)

= gµν (m+1)Gµν (2.48)

= gµν
(

(m+1)Rµν −
1

2
(m+1)Rgµν + Λgµν

)
(2.49)

= (m+1)R− m+ 1

2
(m+1)R+ (m+ 1)Λ (2.50)

= −m− 1

2
(m+1)R+ (m+ 1)Λ, (2.51)

∴ (m+1)R = 2

(
1 +

2

m− 1

)
Λ− 2κ

m− 1

(
S +

1

ϵ
ρH

)
. (2.52)

The m+ 1 dimensional Einstein equations can be expressed as

(m+1)Rµν −
2

m− 1
Λgµν = κ

{
Tµν −

1

m− 1
gµν

(
S +

1

ϵ
ρH

)}
. (2.53)

Now we set the second-order (covariant) tensor (m+1)Eµν ∈ T 0
2 (Mm+1) such that

(m+1)Eµν ≡ (m+1)Rµν −
2

m− 1
Λgµν − κ

{
Tµν −

1

m− 1
gµν

(
S +

1

ϵ
ρH

)}
, (2.54)
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and with (m+1)Gµν , (2.54) can be expressed as

(m+1)Eµν = (m+1)Gµν − κTµν −
1

m− 1
gµνg

λω((m+1)Gλω − κTλω). (2.55)

Since (m+1)Eµν is the second-order tensor, we split this tensor with H ∈ T 0
0 (Mm), Mµ ∈

T 0
1 (Mm) and (m)Eµν ∈ T 0

2 (Mm) such that

(m+1)Eµν = Hnµnν + 2M(µnν) +
(m)Eµν . (2.56)

2.6.1 The Component paralleled with Normal Vectors

The component of the Einstein equations paralleled with nµnν is

H = nµnν (m+1)Eµν (2.57)

= nµnν
(
(m+1)Gµν − κTµν

)
− 1

m− 1
ϵgλω

(
(m+1)Gλω − κTλω

)
(2.58)

=
m− 2

2(m− 1)

(
−ϵ (m)R+K2 −KµνK

µν + 2Λϵ− 2κρH

)
− 1

m− 1
ϵP λω

(
(m+1)Gλω − κTλω

)
. (2.59)

The component of the Einstein equations paralleled with normal vectors is

H ≡ m− 2

2(m− 1)

(
−ϵ (m)R+K2 −KµνK

µν + 2Λϵ− 2κρH

)
− 1

m− 1
ϵP λω

(
(m+1)Gλω − κTλω

)
. (2.60)

2.6.2 The Component paralleled with Projection Operators

The component of the Einstein equations paralleled with Pµ
αP

ν
β is

Pµ
αP

ν
β
(m+1)Eµν = Pµ

αP
ν
β

[
(m+1)Rµν −

2

m− 1
Λgµν

− κ

{
Tµν −

1

m− 1
gµν

(
S +

1

ϵ
ρH

)}]
(2.61)

= (m)Rαβ − 1

ϵ
(KβαK − 2KγαKβ

γ)− 1

N
DβDαN +

1

ϵN
LNn(Kαβ)

− 2

m− 1
Λγαβ − κ

{
Sαβ − 1

m− 1

(
S +

1

ϵ
ρH

)
γαβ

}
. (2.62)

The component of the Einstein equations paralleled with Pµ
αP

ν
β is expressed as

(m)Eαβ = (m)Rαβ − 1

ϵ
(KβαK − 2KγαKβ

γ)− 1

N
DβDαN +

1

ϵN
LNn(Kαβ)

− 2

m− 1
Λγαβ − κ

{
Sαβ − 1

m− 1

(
S +

1

ϵ
ρH

)
γαβ

}
. (2.63)
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2.6.3 Last Part of the Decomposition

The component of the Einstein equations paralleled with Pµ
αn

ν is

Mα =
1

ϵ
Pµ

αn
ν (m+1)Eµν (2.64)

=
1

ϵ
Pµ

αn
ν
(
(m+1)Gµν − κTµν

)
(2.65)

=
1

ϵ
(−DµK

µ
α +DαK)− κJα. (2.66)

The component of the Einstein equations paralleled with Pµ
αn

ν is

Mα ≡ 1

ϵ
(−DµK

µ
α +DαK)− κJα. (2.67)

2.7 Standard ADM Formulation

In this section, we introduce the m dimensional standard ADM formulation. We adopt the
normal vector as timelike, that is ϵ = −1, and we set ξ as time line t. In addition, we express
N as α.

2.7.1 Lie Derivative along with αnµ

In general, αnλ and ∂t are not parallel. α mean the distance between M(t) and M(t+ dt), it
is called the lapse function. Hence, the difference between αnλ and ∂t is expressed as

βµ ≡ ∂t − αnµ, (2.68)

where βµ is called the shift vector. Since the Lie derivative operator associated with ∂t is
consistent with ∂t, ∀Tµ1µ2···

ν1ν2··· ∈ T a
b , the Lie derivative along with αnµ can be expressed as

Lαn(T
µ1µ2···

ν1ν2···) = ∂tT
µ1µ2···

ν1ν2··· − Lβ(T
µ1µ2···

ν1ν2···). (2.69)

Figure 2.1: Decomposition of spacetime.
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2.7.2 Metric

Let be Mm which is satisfied that the time line is constant. For ∀p ∈ Mm(t), the line element
between p and ∀q ∈ Mm(t+ dt) is

ds2 = −(αdt)2 + γµν(β
µdt+ dxµ)(βνdt+ dxν). (2.70)

(The concept of (2.70) is drawn as Fig. 2.1) Hence the metric gµν ∈ Mm+1 can be written as

gµν =

(
−α2 + βµβµ βµ

βν γµν

)
. (2.71)

2.7.3 Constraint Equations

First, we introduce the constraint equations of the ADM formulation. For (2.60), the last term
is corresponding to zero, we adopt the constraint equations in the ADM formulation as below;

The m dimensional Hamiltonian constraint equation of the ADM formulation is

H ≡ (m)R+K2 −KµνK
µν − 2Λ− 2κρH , (2.72)

and the m dimensional momentum constraint equations of the ADM formulation are

Mµ ≡ DνK
ν
µ −DµK − κJµ. (2.73)

2.7.4 Dynamical Equations

If we set ξ as time-line, the equations of (1.40) and (2.63) denote the dynamics of the spacetime.
Therefore these equations express dynamical equations in the standard ADM formulation.

The dynamical equations of the standard ADM formulation are

∂tγµν = −2αKµν + Lβ(γµν), (2.74)

∂tKµν = α (m)Rµν + α(KµνK − 2KλµKν
λ)−DµDνα+ Lβ(Kµν)

− 2Λ

m− 1
αγµν − κα

{
Sµν −

1

m− 1
(S − ρH) γµν

}
. (2.75)



Chapter 3

Baumgarte-Shapiro-Shibata-
Nakamura Formulation

In current numerical simulations such as the binary neutron mergers and/or black hole mergers,
the ADM formulation is not used, the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion is widely used. The BSSN formulation was suggested by Shibata and Nakamura [13]. After
that, this formulation was re-formulated by Baumgarte and Shapiro, they showed that this
formulation is better than the ADM formulation with some simulations [14]. In this chapter,
we derive the conformal and traceless transformation of the ADM formulation. Next, the BSSN
formulation is derived.

3.1 Connection

First, we calculate the relation between (m)Γλ
µν and (m)Γ̄λ

µν . The conformal metric is defined
by

γ̄µν ≡ ϕ−2γµν , (3.1)

where ϕ is an arbitrary function. The contravariant expression of the conformal metric is

γ̄µν = ϕ2γµν , (3.2)

and it is satisfied the condition that γ̄µν γ̄
νλ = δλµ.

The connection in the conformal space is

(m)Γ̄ω
µν ≡ 1

2
γ̄ωλ(∂ν γ̄λµ + ∂µγ̄λν − ∂λγ̄µν). (3.3)

16
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Then the relation between (m)Γ̄λ
µν and (m)Γλ

µν is

(m)Γ̄ω
µν =

1

2
ϕ2γωλ

{
−2ϕ−3(∂νϕ)γλµ + ϕ−2(∂νγλµ)− 2ϕ−3(∂µϕ)γλν + ϕ−2(∂µγλν)

+ 2ϕ−3(∂λϕ)γµν − ϕ−2(∂λγµν)

}
(3.4)

= −ϕ−1
{
(∂νϕ)δ

ω
µ + (∂µϕ)δ

ω
ν − (∂λϕ)γ

ωλγµν

}
+ (m)Γω

µν (3.5)

= −
{
δωµ(∂ν log ϕ) + δων(∂µ log ϕ)− γωλγµν(∂λ log ϕ)

}
+ (m)Γω

µν . (3.6)

The relation between the connection, (m)Γλ
µν , and the conformal connection, (m)Γ̄λ

µν , is

(m)Γω
µν = (m)Γ̄ω

µν + δωµ(D̄ν log ϕ) + δων(D̄µ log ϕ)− γ̄ωλγ̄µν(D̄λ log ϕ), (3.7)

where D̄ is the covariant derivative operator associated with γ̄µν .

3.2 Riemann Tensor

Now we calculate the relation between the conformal and standard Riemann tensor.

The relation between the Riemann tensor, (m)Rλ
µων , and the conformal Riemann tensor,

(m)R̄λ
µων , can be expressed as

(m)Rλ
µων = (m)R̄λ

µων + δλν(D̄ωD̄µ log ϕ)− γ̄µν(D̄ωD̄
λ log ϕ)− δλω(D̄νD̄µ log ϕ)

+ γ̄µω(D̄νD̄
λ log ϕ) + δλω(D̄µ log ϕ)(D̄ν log ϕ)

− δλωγ̄µν(D̄
ρ log ϕ)(D̄ρ log ϕ)− γ̄ωµ(D̄ν log ϕ)(D̄

λ log ϕ)

− δλν(D̄ω log ϕ)(D̄µ log ϕ) + δλν γ̄µω(D̄
ζ log ϕ)(D̄ζ log ϕ)

+ γ̄νµ(D̄
λ log ϕ)(D̄ω log ϕ). (3.8)

The derivation of the above equation is expressed in Appendix B.3.

3.3 Ricci Tensor

Next, we compute the relation of the conformal and standard Ricci tensor. For (3.8), we set
ω = λ, then

(m)Rµν = (m)R̄µν + D̄νD̄µ log ϕ− γ̄µν(D̄λD̄
λ log ϕ)−m(D̄νD̄µ log ϕ)

+ D̄νD̄µ log ϕ+m(D̄µ log ϕ)(D̄ν log ϕ)−mγ̄µν(D̄
ρ log ϕ)(D̄ρ log ϕ)

− (D̄ν log ϕ)(D̄µ log ϕ)− (D̄ν log ϕ)(D̄µ log ϕ)

+ γ̄µν(D̄
ζ log ϕ)(D̄ζ log ϕ) + γ̄νµ(D̄

λ log ϕ)(D̄λ log ϕ) (3.9)

= (m)R̄µν + (2−m)D̄νD̄µ log ϕ− γ̄µν(D̄λD̄
λ log ϕ)

+ (m− 2)(D̄µ log ϕ)(D̄ν log ϕ) + (2−m)γ̄µν(D̄
ρ log ϕ)(D̄ρ log ϕ). (3.10)
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The relation between the Ricci tensor, (m)Rµν ≡ (m)Rλ
µλν , and the conformal Ricci tensor,

(m)R̄µν ≡ (m)R̄λ
µλν , can be expressed as

(m)Rµν = (m)R̄µν +
(m)Rϕ

µν , (3.11)

where (m)Rϕ
µν ≡ (2−m)D̄νD̄µ log ϕ− γ̄µν(D̄λD̄

λ log ϕ)

+ (m− 2)(D̄µ log ϕ)(D̄ν log ϕ) + (2−m)γ̄µν(D̄
ρ log ϕ)(D̄ρ log ϕ).

(3.12)

3.4 Scalar Curvature

Next, we compute the relation of the conformal and standard scalar curvature. For (3.12), the
trace part of the (m)Rµν is

(m)R = γµν((m)R̄µν +
(m)Rϕ

µν) (3.13)

= γµν
{

(m)R̄µν + (2−m)D̄νD̄µ log ϕ− γ̄µν(D̄λD̄
λ log ϕ)

+ (m− 2)(D̄µ log ϕ)(D̄ν log ϕ) + (2−m)γ̄µν(D̄
ρ log ϕ)(D̄ρ log ϕ)

}
(3.14)

= ϕ−2

{
(m)R̄− 2(m− 1)(D̄λD̄

λ log ϕ)− (m− 2)(m− 1)(D̄ρ log ϕ)(D̄ρ log ϕ)

}
. (3.15)

The relation between the scalar curvature, (m)R ≡ γµν (m)Rµν , and conformal scalar cur-
vature, (m)R̄ ≡ γ̄µν (m)R̄µν , can be expressed as

(m)R = ϕ−2((m)R̄+ (m)Rϕ), (3.16)

where (m)Rϕ ≡ γ̄µνRϕ
µν .

3.5 Trace-Free Part of Conformal Value

We first define the traceless decomposition. ∀Vµν ∈ T 0
2 (Mm), the trace-free part of Vµν is

defined as

V TF
µν ≡ Vµν −

1

m
V γµν , (3.17)

where V ≡ γµνVµν and V TF
µν ∈ T 0

2 (Mm) because of V TF
µν nµ = 0.

The trace-free part of the conformal value V̄µν ≡ ϕ−2Vµν is defined as

V̄ TF
µν ≡ V̄µν −

1

m
V̄ γ̄µν , (3.18)

where V̄ ≡ V̄µν γ̄
µν . The relation between V TF

µν and V̄ TF
µν is

V̄ TF
µν = V̄µν −

1

m
V̄ γ̄µν (3.19)

= ϕ−2Vµν −
1

m
(ϕ−2Vωλ)(ϕ

2γωλ)ϕ−2γµν (3.20)

= ϕ−2V TF
µν . (3.21)
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We now calculate the relation between (m)RTF
µν and (m)R̄TF

µν ;

(m)RTF
µν = (m)Rµν −

1

m
(m)Rγµν (3.22)

= ((m)R̄µν +
(m)Rϕ

µν)−
1

m
ϕ−2((m)R̄+ (m)Rϕ)γµν (3.23)

= ((m)R̄µν +
(m)Rϕ

µν)
TF. (3.24)

Next, we calculate the relation between (DµDνα)
TF and (D̄µD̄να)

TF. First, we compute
DµDνα;

DµDν = D̄µDνα− (D̄ν log ϕ)(Dµα)− (D̄µ log ϕ)(Dνα) + γ̄µν(D̄
λ log ϕ)(Dλα) (3.25)

= D̄µD̄να− (D̄ν log ϕ)(D̄µα)− (D̄µ log ϕ)(D̄να) + γ̄µν(D̄
λ log ϕ)(D̄λα), (3.26)

then,

DµD
µα = γµνDµDνα (3.27)

= ϕ−2γ̄µν
{
D̄µD̄να− (D̄ν log ϕ)(D̄µα)− (D̄µ log ϕ)(D̄να) + γ̄µν(D̄

λ log ϕ)(D̄λα)

}
(3.28)

= ϕ−2

{
D̄µD̄

µα+ (m− 2)(D̄µ log ϕ)(D̄µα)

}
, (3.29)

therefore

(DµDνα)
TF = DµDνα− 1

m
(DλD

λα)γµν (3.30)

= D̄µD̄να− (D̄ν log ϕ)(D̄µα)− (D̄µ log ϕ)(D̄να) + γ̄µν(D̄
λ log ϕ)(D̄λα)

− 1

m
γ̄µν

{
D̄λD̄

λα+ (m− 2)(D̄λ log ϕ)(D̄λα)

}
(3.31)

= (D̄µD̄να)
TF −

{
(D̄ν log ϕ)(D̄µα)

}TF −
{
(D̄µ log ϕ)(D̄να)

}TF
. (3.32)

3.6 Conformal Traceless Formulation

We now introduce the conformal traceless formulation for the standard ADM formulation. We
adopt the dynamical variables (γ̄µν , ϕ,K, Āµν) instead of (γµν ,Kµν). Since the conformal factor
ϕ is arbitrary, we must set the relation between ϕ and the ADM dynamical variables (γµν ,Kµν).
If ϕ = ϕ(Kµν), the conformal metric γ̄µν include the character of the normal vector. Therefore,
the conformal factor ϕ is constructed with the function of γµν . Since there is a degree of the
freedom of ϕ, we adopt the determinant of the conformal metric, γ̄, as a positive constant value.

3.6.1 Dynamical Variables

The new dynamical variables are defined as

ϕ ≡ pγ
1

2m , (3.33)

γ̄µν ≡ ϕ−2γµν , (3.34)

K ≡ γµνKµν , (3.35)

Āµν ≡ ϕ−2

(
Kµν −

1

m
Kγµν

)
, (3.36)
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where p = γ̄−
1

2m . Note that (3.36) is given by multiplying ϕ−2. This is because Ãµν is raised
and lowered indexes with γ̄µν .

3.6.2 Constraint Equations

With new variables (3.33)-(3.36), the Hamiltonian constraint equation (2.72) can be expressed
as

H = (m)R+K2 −KµνK
µν − 2Λ− 2κρH (3.37)

= ϕ−2

{
(m)R̄− 2(m− 1)(D̄λD̄

λ log ϕ)− (m− 2)(m− 1)(D̄ρ log ϕ)(D̄ρ log ϕ)

}
+K2 −

(
Āµν +

1

m
Kγ̄µν

)(
Āµν +

1

m
Kγ̄µν

)
− 2Λ− 2κρH (3.38)

= ϕ−2

{
(m)R̄− 2(m− 1)(D̄λD̄

λ log ϕ)− (m− 2)(m− 1)(D̄ρ log ϕ)(D̄ρ log ϕ)

}
+

m− 1

m
K2 − ĀµνĀ

µν − 2

m
KĀµν γ̄

µν − 2Λ− 2κρH , (3.39)

and the momentum constraint equations (2.73) can be expressed as

Mµ = DνK
ν
µ −DµK − κJµ (3.40)

= γνλ
{
D̄νKλµ − (D̄λ log ϕ)Kνµ − (D̄ν log ϕ)Kλµ + γ̄νλ(D̄

ω log ϕ)Kωµ − (D̄µ log ϕ)Kνλ

− (D̄ν log ϕ)Kµλ + γ̄µλ(D̄
ω log ϕ)Kων

}
− D̄µK − κJµ (3.41)

= ϕ−2γ̄νλ
[
D̄ν

{
ϕ2

(
Āλµ +

1

m
Kγ̄λµ

)}
−ϕ2(D̄λ log ϕ)

(
Āνµ +

1

m
Kγ̄νµ

)

−ϕ2(D̄ν log ϕ)

(
Āλµ +

1

m
Kγ̄λµ

)
+ ϕ2γ̄νλ(D̄

ω log ϕ)

(
Āωµ +

1

m
Kγ̄ωµ

)

− ϕ2(D̄µ log ϕ)

(
Āνλ +

1

m
Kγ̄νλ

)
−ϕ2(D̄ν log ϕ)

(
Āµλ +

1

m
Kγ̄µλ

)

+ϕ2γ̄µλ(D̄
ω log ϕ)

(
Āων +

1

m
Kγ̄ων

) }
− D̄µK − κJµ (3.42)

= ϕ−2D̄ν

{
ϕ2

(
Āν

µ +
1

m
Kδνµ

)}
+(m− 2)(D̄λ log ϕ)

(
Āλ

µ +
1

m
Kδλµ

)
− (D̄µ log ϕ)

(
Āµν γ̄

µν +K
)
− D̄µK − κJµ (3.43)

= m(D̄λ log ϕ)

(
Āλ

µ +
1

m
Kδλµ

)
+ (D̄νĀ

ν
µ) +

1

m
(D̄µK)

− (D̄µ log ϕ)
(
Āµν γ̄

µν +K
)
− D̄µK − κJµ (3.44)

= D̄νĀ
ν
µ +m(D̄λ log ϕ)Ā

λ
µ − m− 1

m
D̄µK − (D̄µ log ϕ)Āµν γ̄

µν − κJµ. (3.45)
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In this conformal transformation, the number of the dynamical variables is two more than the
ADM formulation. We should add two constraints to this formulation because of the consistent
of the degree of the dynamical variables of the ADM formulation. We define two constraint
such as

S̄ ≡ γ̄−
1

2m − p, (3.46)

Ā ≡ γ̄µνĀµν . (3.47)

The constraint equations of the conformal traceless formulation are

H̄ ≡ ϕ−2

{
(m)R̄− 2(m− 1)(D̄λD̄

λ log ϕ)− (m− 2)(m− 1)(D̄ρ log ϕ)(D̄ρ log ϕ)

}
+

m− 1

m
K2 − ĀµνĀ

µν − 2

m
KĀµν γ̄

µν − 2Λ− 2κρH , (3.48)

M̄µ ≡ D̄νĀ
ν
µ +m(D̄λ log ϕ)Ā

λ
µ − m− 1

m
D̄µK − (D̄µ log ϕ)Āµν γ̄

µν − κJµ, (3.49)

S̄ ≡ γ̄−
1

2m − p, (3.50)

Ā ≡ γ̄µνĀµν . (3.51)

3.6.3 Dynamical Equations

Next, we calculate the dynamical equations of the conformal traceless formulation. The dy-
namical equations of the standard ADM formulation with the conformal traceless values can be
written as

∂tγµν = −2αϕ2Āµν −
2

m
αKϕ2γ̄µν + ϕ2L̄β(γ̄µν) + 2ϕ2γ̄µνL̄β(log ϕ), (3.52)

∂tKµν = α (m)R̄µν + α (m)Rϕ
µν + αϕ2

(
−2ĀµλĀ

λ
ν +

m− 4

m
KĀµν +

m− 2

m2
K2γ̄µν

)
−DµDνα+ ϕ2L̄β(Āµν) +

1

m
ϕ2γ̄µνL̄β(K) +

1

m
ϕ2KL̄β(γ̄µν) + 2ϕ2ĀµνL̄β(log ϕ)

+
2

m
ϕ2Kγ̄µνL̄β(log ϕ)−

2Λ

m− 1
αϕ2γ̄µν − κα

{
Sµν −

1

m− 1
(S − ρH)ϕ2γ̄µν

}
. (3.53)

With these equations (3.52)-(3.53), we compute the dynamical equations.

The time derivative of ϕ is

∂tϕ =
1

2m
ϕγµν(∂tγµν) (3.54)

=
1

2m
ϕ−1γ̄µν

{
−2αϕ2

(
Āµν +

1

m
Kγ̄µν

)
+ ϕ2L̄β(γ̄µν) + 2ϕL̄β(ϕ)γ̄µν

}
(3.55)

= − 1

m
αϕĀ − 1

m
αϕK +

1

m
ϕ(D̄λβ

λ) + L̄β(ϕ). (3.56)
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The time derivative of γ̄µν is

∂tγ̄µν = −2ϕ−1γ̄µν(∂tϕ) + ϕ−2(∂tγµν) (3.57)

= −2ϕ−1γ̄µν

{
− 1

m
αϕĀ − 1

m
αϕK +

1

m
ϕ(D̄λβ

λ) + L̄β(ϕ)

}
+ ϕ−2

{
−2αϕ2

(
Āµν +

1

m
Kγ̄µν

)
+ ϕ2L̄β(γ̄µν) + 2ϕL̄β(ϕ)γ̄µν

}
(3.58)

=
2

m
αĀγ̄µν − 2αĀµν −

2

m
(D̄λβ

λ)γ̄µν + L̄β(γ̄µν). (3.59)

The time derivative of K is

∂tK = −(∂tγµν)K
µν + γµν(∂tKµν) (3.60)

= −
(
Āµν +

1

m
Kγ̄µν

){
−2αĀµν −

2

m
αKγ̄µν + L̄β(γ̄µν) + 2γ̄µνL̄β(log ϕ)

}
+ ϕ−2γ̄µν

[
α (m)R̄µν + α (m)Rϕ

µν + αϕ2

(
−2ĀµλĀ

λ
ν +

m− 4

m
KĀµν +

m− 2

m2
K2γ̄µν

)
−DµDνα+ ϕ2L̄β(Āµν) +

1

m
ϕ2γ̄µνL̄β(K) +

1

m
ϕ2KL̄β(γ̄µν) + 2ϕ2ĀµνL̄β(log ϕ)

+
2

m
ϕ2Kγ̄µνL̄β(log ϕ)−

2Λ

m− 1
αϕ2γ̄µν − κα

{
Sµν −

1

m− 1
(S − ρH)ϕ2γ̄µν

}]
(3.61)

= αϕ−2 (m)R̄+ αϕ−2 (m)Rϕ + αK2 −DλD
λα+ L̄β(K)− 2mΛ

m− 1
α

+
κ

m− 1
α(S −mρH) + αKĀ+ L̄β(Ā). (3.62)
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The time derivative of Āµν is

∂tĀµν = −2ϕ−1Āµν(∂tϕ) + ϕ−2(∂tKµν)−
1

m
ϕ−2γµν(∂tK)− 1

m
ϕ−2K(∂tγµν) (3.63)

= −2ϕ−1Āµν

{
− 1

m
αϕĀ − 1

m
αϕK +

1

m
ϕ(D̄λβ

λ) +L̄β(ϕ)

}
+ ϕ−2

[
α (m)R̄µν + α (m)Rϕ

µν +αϕ2

(
−2ĀµλĀ

λ
ν +

m− 4

m
KĀµν +

m− 2

m2
K2γ̄µν

)
−DµDνα +ϕ2L̄β(Āµν) +

1

m
ϕ2γ̄µνL̄β(K)+

1

m
ϕ2KL̄β(γ̄µν)+2ϕ2ĀµνL̄β(log ϕ)

+
2

m
ϕ2Kγ̄µνL̄β(log ϕ)−

2Λ

m− 1
αϕ2γ̄µν −κα

{
Sµν −

1

m− 1
(S − ρH)ϕ2γ̄µν

} ]
− 1

m
γ̄µν

{
αϕ−2 (m)R̄+ αϕ−2 (m)Rϕ +αK2 −DλD

λα +L̄β(K)− 2mΛ

m− 1
α

+
κ

m− 1
α(S −mρH) + αKĀ+ L̄β(Ā)

}
− 1

m
ϕ−2K

{
−2αϕ2Āµν −

2

m
αKϕ2γ̄µν +ϕ2L̄β(γ̄µν)+2ϕ2γ̄µνL̄β(log ϕ)

}
(3.64)

= αϕ−2((m)R̄µν +
(m)Rϕ

µν)
TF −2αĀµλA

λ
ν + αKĀµν +

2

m
αĀµνĀ

−ϕ−2(DµDνα)
TF − 2

m
(D̄λβ

λ)Āµν + L̄β(Āµν) −κα(ϕ−2Sµν)
TF − 1

m
αKĀγ̄µν

− 1

m
L̄β(Ā)γ̄µν . (3.65)

The dynamical equations of the conformal traceless formulation are

∂tϕ = − 1

m
αϕK +

1

m
ϕ(D̄λβ

λ) + L̄β(ϕ)−
1

m
αϕĀ, (3.66)

∂tγ̄µν = −2αĀµν −
2

m
(D̄λβ

λ)γ̄µν + L̄β(γ̄µν) +
2

m
αĀγ̄µν , (3.67)

∂tK = αϕ−2((m)R̄+ (m)Rϕ) + αK2 −DλD
λα+ L̄β(K)− 2mΛ

m− 1
α

+
κ

m− 1
α(S −mρH) + αKĀ+ L̄β(Ā), (3.68)

∂tĀµν = αϕ−2((m)R̄µν +
(m)Rϕ

µν)
TF − 2αĀµλA

λ
ν + αKĀµν − ϕ−2(DµDνα)

TF

− 2

m
(D̄λβ

λ)Āµν + L̄β(Āµν)− κα(ϕ−2Sµν)
TF − 1

m
αKγ̄µνĀ+

2

m
αĀµνĀ

− 1

m
γ̄µνL̄β(Ā). (3.69)
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3.7 Baumgarte-Shapiro-Shibata-Nakamura Formulation

3.7.1 Dynamical Variables

In the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation, the determinant of γ̃µν is
set as unity and the conformal factor ϕ is adopted as e2φ [13, 14]. Therefore, we use φ instead
of ϕ as the dynamical variable.

The divergence term such as ∂µγ
µν would make increasing the numerical error. Thus, in the

BSSN formulation, a new dynamical variable, Γ̃µ, is added to that of the conformal traceless
formulation, (3.33)-(3.36). In original paper [13], this variable was adopted as ∂ν γ̃

µν . In this
article, however, we follow [14] and use Γ̃µ = −∂νγ

µν as the new variable.

The dynamical variables of the BSSN formulation are

φ =
1

4m
log(γ), (3.70)

γ̃µν = e−4φγµν , (3.71)

K = γµνKµν , (3.72)

Ãµν = e−4φ

(
Kµν −

1

m
Kγµν

)
, (3.73)

Γ̃λ = Γ̃λ
µν γ̃

µν . (3.74)

3.7.2 Geometrical Values

For (3.7), (3.12) and (3.16), we set ϕ as e2φ, then the connection, the Ricci tensor and the scalar
curvature of BSSN formulation become below:
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The relation between the connection of the ADM and that of the BSSN formulation can
be written as

(m)Γω
µν = (m)Γ̃ω

µν + 2δωµ(D̃νφ) + 2δων(D̃µφ)− 2γ̃ωλγ̃µν(D̃λφ). (3.75)

The Ricci tensor is

(m)Rµν = (m)R̃µν +
(m)Rφ

µν , (3.76)

where,

(m)R̃µν = γ̃ω(µ∂ν)Γ̃
ω + (m)Γ̃(µν)ωΓ̃

ω − 1

2
γ̃λω∂λ∂ωγ̃µν +

(m)Γ̃λω
ν
(m)Γ̃λωµ

+ 2 (m)Γ̃λω
(µ

(m)Γ̃ν)λω, (3.77)

(m)Rφ
µν = −2(m− 2)(D̃νD̃µφ)− 2(D̃λD̃

λφ)γ̃µν + 4(m− 2)(D̃µφ)(D̃νφ)

− 4(m− 2)(D̃λφ)(D̃λφ)γ̃µν , (3.78)

and D̃µ is the covariant derivative associated with γ̃µν .
The scalar curvature is

(m)R = e−4φ((m)R̃+ (m)Rφ) (3.79)

where (m)R̃ ≡ γ̃µν (m)R̃µν and (m)Rφ ≡ γ̃µν (m)Rφ
µν .

∀Vµν ∈ T 0
2 (Mm) and Ṽµν ≡ e−4φVµν , the Lie derivative associated with βλ is

L̃β(Ṽµν) ≡ βλ(D̃λṼµν) + Ṽλν(D̃µβ
λ) + Ṽµλ(D̃νβ

λ) (3.80)

= −4(D̃λφ)β
λṼµν + e−4φLβ(Vµν). (3.81)

3.7.3 Constraint Equations

The constraint equations of the BSSN formulation are consistent with (3.48)-(3.51) replaced ϕ
with e2φ. In addition, the constraint, G̃λ, is added to the formulation because of the consistent
of the degree of the freedom of the ADM formulation.

The constraint equations of the conformal traceless formulation are

H̃ ≡ e−4φ((m)R̃+ (m)Rφ) +
m− 1

m
K2 − ÃµνÃ

µν − 2

m
KÃ − 2Λ− 2κρH , (3.82)

M̃µ ≡ D̃νÃ
ν
µ + 2m(D̃λφ)Ã

λ
µ − m− 1

m
D̃µK − 2(D̃µφ)Ã − κJµ, (3.83)

S̃ ≡ γ̃ − 1, (3.84)

Ã ≡ γ̃µνÃµν , (3.85)

G̃λ ≡ Γ̃λ − Γ̃λ
µν γ̃

µν . (3.86)
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3.7.4 Dynamical Equations

The time derivatives of φ, γ̃µν , K and Ãµν can get from (3.66)-(3.69). More precisely, the time

derivative of φ can get from the relation of ∂tφ =
δφ

δϕ
∂tϕ. Besides, the Hamiltonian constraint

equations are added to (3.68) for elimination of (m)R̃ since there is the divergence term of γ̃µν
in the scalar curvature [14].

∂tK = αe−4φ((m)R̃+ (m)Rφ) + αK2 −DλD
λα+ L̃β(K)− 2mΛ

m− 1
α+

κ

m− 1
α(S −mρH)

+ αKÃ+ L̃β(Ã)− αH̃ (3.87)

= αe−4φ((m)R̃+ (m)Rφ) +αK2 −DλD
λα+ L̃β(K) − 2mΛ

m− 1
α +

κ

m− 1
α(S −mρH)

+αKÃ + L̃β(Ã)−αe−4φ((m)R̃+ (m)Rφ) −m− 1

m
αK2 + αÃµνÃ

µν +
2

m
αKÃ

+2αΛ +2καρH (3.88)

= αÃµνÃ
µν +

m+ 2

m
αKÃ +

1

m
αK2 −DλDλα+ L̃β(K) + L̃β(Ã) − 2

m− 1
αΛ

+
κ

m− 1
α{S + (m− 2)ρH} . (3.89)

Next, we compute the time derivative of the new variable, Γ̃λ. We first calculate the time
derivative of (m)Γ̃λµν is

∂t
(m)Γ̃λµν =

1

2
{∂ν(∂tγ̃λµ) + ∂µ(∂tγ̃λν)− ∂λ(∂tγ̃µν)} (3.90)

=
1

2

{
D̃ν(∂tγ̃λµ) + D̃µ(∂tγ̃λν)− D̃λ(∂tγ̃µν)

}
+ (m)Γ̃ω

µν(∂tγ̃λω). (3.91)

For the time derivative of γ̃µν , we adopt

∂tγ̃µν = −2αÃµν −
2

m
(D̃ρβ

ρ)γ̃µν + L̃β(γ̃µν) +
1

mγ̃
βρ(D̃ρS̃)γ̃µν , (3.92)
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so as not to include the constraint terms if this equation is expressed with partial derivative
operator. Then, the dynamical equation of Γ̃λ is

∂tΓ̃
λ = −γ̃λµ (m)Γ̃νω

ω(∂tγ̃µν)− (m)Γ̃λµν(∂tγ̃µν) + γ̃λωγ̃µν(∂t
(m)Γ̃ωµν) (3.93)

= −γ̃λµ (m)Γ̃νω
ω(∂tγ̃µν)− (m)Γ̃λµν(∂tγ̃µν)

+
1

2
γ̃λωγ̃µν

{
D̃ν(∂tγ̃ωµ) + D̃µ(∂tγ̃ων) − D̃ω(∂tγ̃µν)

}
+(m)Γ̃ρµ

µγ̃
λω(∂tγ̃ωρ) (3.94)

= −(m)Γ̃λµν

{
−2αÃµν −

2

m
(D̃ρβ

ρ)γ̃µν + L̃β(γ̃µν) +
1

mγ̃
βρ(D̃ρS̃)γ̃µν

}
+γ̃λωγ̃µνD̃ν

{
−2αÃωµ − 2

m
(D̃ρβ

ρ)γ̃ωµ + L̃β(γ̃ωµ) +
1

mγ̃
βρ(D̃ρS̃)γ̃ωµ

}
− 1

2
γ̃λωγ̃µνD̃ω

{
−2αÃµν −

2

m
(D̃ρβ

ρ)γ̃µν + L̃β(γ̃µν) +
1

mγ̃
βρ(D̃ρS̃)γ̃µν

}
(3.95)

= −2(D̃µα)Ã
λµ − 2α(D̃µÃ

λµ) + 2α (m)Γ̃λµνÃµν + D̃λ(αÃ)

− 2

m
D̃λD̃ρβ

ρ + D̃ρD̃
λβρ + D̃µD̃

µβλ +
2

m
(D̃ρβ

ρ) (m)Γ̃λµ
µ − 2(D̃µβ

ρ) (m)Γ̃λµ
ρ

− 1

mγ̃
βρ (m)Γ̃λµ

µ(D̃ρS̃)−
1

mγ̃2
βρ(D̃λS̃)(D̃ρS̃) +

2−m

2mγ̃
(D̃λβρ)(D̃ρS̃)

+
2−m

2mγ̃
βρ(D̃λD̃ρS̃). (3.96)

In the BSSN formulation, the momentum constraint equations add to the dynamical equation
of Γ̃λ so that the divergence term, D̃νÃ

λν , is eliminated [13]:

∂tΓ̃
λ = (3.96) + 2αM̃λ (3.97)

= −2(D̃µα)Ã
λµ + 2α (m)Γ̃λµνÃµν + D̃λ(αÃ) + 4mα(D̃µφ)Ã

µλ − 2(m− 1)

m
αD̃λK

− 4α(D̃λφ)Ã − 2καγ̃λµJµ − 2

m
D̃λD̃ρβ

ρ + D̃ρD̃
λβρ + D̃µD̃

µβλ

+
2

m
(D̃ρβ

ρ) (m)Γ̃λµ
µ − 2 (m)Γ̃λν

ω(D̃νβ
ω)− 1

mγ̃
βρ (m)Γ̃λµ

µ(D̃ρS̃)

− 1

mγ̃2
βρ(D̃λS̃)(D̃ρS̃) +

2−m

2mγ̃
(D̃λβρ)(D̃ρS̃) +

2−m

2mγ̃
βρ(D̃λD̃ρS̃). (3.98)
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The calculation of the shift terms of (3.98) are

− 2

m
(D̃νD̃ρβ

ρ)γ̃λν +γ̃λωD̃νD̃ωβ
ν +γ̃µνD̃µD̃νβ

λ +
2

m
(D̃ρβ

ρ) (m)Γ̃λµ
µ

−2 (m)Γ̃λµ
ωD̃µβ

ω − 1

mγ̃
βρ (m)Γ̃λµ

µ(D̃ρS̃)−
1

mγ̃2
βρ(D̃λS̃)(D̃ρS̃)

+
2−m

2mγ̃
(D̃λβρ)(D̃ρS̃) +

2−m

2mγ̃
βρ(D̃λD̃ρS̃) (3.99)

= − 2

m
γ̃λν(∂ν∂ρβ

ρ) +
1

mγ̃2
βω(D̃λS̃)(D̃ωS̃)−

1

mγ̃
βω(D̃λD̃ωS̃)−

1

mγ̃
(D̃λβω)(D̃ωS̃)

+γ̃λω(∂ν∂ωβ
ν) +γ̃λω(∂ν

(m)Γ̃ν
ωρ)β

ρ − (m)Γ̃ρλ
ν
(m)Γ̃ν

ρσβ
σ +

1

2γ̃
(D̃λβρ)(D̃ρS̃)

+γ̃µν(∂µ∂νβ
λ) +γ̃µν(∂µ

(m)Γ̃λ
νω)β

ω +2 (m)Γ̃λµ
ω(∂µβ

ω)− (m)Γ̃ωµ
µ(∂ωβ

λ)

−(m)Γ̃ωµ
µ
(m)Γ̃λ

ωρβ
ρ + (m)Γ̃λν

ω
(m)Γ̃ω

νρβ
ρ

+
2

m
(∂ρβ

ρ) (m)Γ̃λµ
µ+

1

mγ̃
βω (m)Γ̃λµ

µ(D̃ωS̃) −2(∂µβ
ω) (m)Γ̃λµ

ω −2βρ (m)Γ̃λµ
ω
(m)Γ̃ω

µρ

− 1

mγ̃
βρ (m)Γ̃λµ

µ(D̃ρS̃)−
1

mγ̃2
βρ(D̃λS̃)(D̃ρS̃)+

2−m

2mγ̃
(D̃λβρ)(D̃ρS̃)

+
2−m

2mγ̃
βρ(D̃λD̃ρS̃) (3.100)

=

(
1− 2

m

)
γ̃λν(∂ν∂ρβ

ρ) +βρ(∂ρΓ̃
λ)− βρ(∂ρG̃λ) +

1

γ̃2
βρ(D̃ρS̃)(D̃λS̃) + 1

γ̃
βρ(D̃ρD̃

λS̃)

− 1

2γ̃
βω (m)Γ̃λν

ω(D̃ν S̃) + γ̃µν(∂µ∂νβ
λ)− (∂ωβ

λ)Γ̃ω + (∂ωβ
λ)G̃ω +

2

m
(∂ρβ

ρ)Γ̃λ

− 2

m
(∂ρβ

ρ)G̃λ − 1

2γ̃
βρ(D̃λD̃ρS̃) (3.101)

=

(
1− 2

m

)
γ̃λν(∂ν∂ρβ

ρ) + βρ(∂ρΓ̃
λ) + γ̃µν(∂µ∂νβ

λ)− (∂ωβ
λ)Γ̃ω +

2

m
(∂ρβ

ρ)Γ̃λ

+
1

γ̃2
βω(D̃λS̃)(D̃ωS̃)− βρ(D̃ρG̃λ) +

1

2γ̃
βρ(D̃ρD̃

λS̃)− 1

2γ̃
βω (m)Γ̃λν

ω(D̃ν S̃) + (D̃ωβ
λ)G̃ω

− 2

m
(D̃ρβ

ρ)G̃λ +
1

mγ̃
βωG̃λ(D̃ωS̃). (3.102)

We add or eliminate the constraint terms so as not to include the constraint terms in the
dynamical equations which are expressed with the partial derivative operators. We call this
formulation as the standard BSSN formulation:
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The dynamical equations of the standard BSSN formulation are

∂tφ = − 1

2m
αK +

1

2m
(D̃λβ

λ) + L̃β(φ)−
1

mγ̃
βλ(D̃λS̃) (3.103)

= − 1

2m
αK +

1

2m
(∂λβ

λ) + βλ(∂λφ), (3.104)

∂tγ̃µν = −2αÃµν −
2

m
(D̃λβ

λ)γ̃µν + L̃β(γ̃µν) +
1

mγ̃
βλ(D̃λS̃)γ̃µν (3.105)

= −2αÃµν −
2

m
(∂λβ

λ)γ̃µν + βλ(∂λγ̃µν) + (∂µβ
λ)γ̃λν + (∂νβ

λ)γ̃λµ, (3.106)

∂tK = αÃµνÃ
µν +

1

m
αK2 −DλDλα+ L̃β(K)− 2

m− 1
αΛ

+
κ

m− 1
α{S + (m− 2)ρH} (3.107)

= αÃµνÃ
µν +

1

m
αK2 −DλDλα+ βλ(∂λK)− 2

m− 1
αΛ

+
κ

m− 1
α{S + (m− 2)ρH}, (3.108)

∂tÃµν = αe−4φ( (m)R̃µν +
(m)Rφ

µν)
TF + αKÃµν − 2αÃµλÃ

λ
ν − e−4φ(DµDνα)

TF

− 2

m
(D̃λβ

λ)Ãµν + L̃β(Ãµν)− κα(e−4φSµν)
TF +

1

mγ̃
βλ(D̃λS̃)Ãµν (3.109)

= αe−4φ( (m)R̃µν +
(m)Rφ

µν)
TF + αKÃµν − 2αÃµλÃ

λ
ν − e−4φ(DµDνα)

TF

− 2

m
(∂λβ

λ)Ãµν + βλ(∂λÃµν) + (∂µβ
λ)Ãλν + (∂νβ

λ)Ãλµ − κα(e−4φSµν)
TF,

(3.110)

∂tΓ̃
λ = −2(D̃να)Ã

λν + 2α (m)ΓλµνÃµν + 4mα(D̃µφ)Ã
µλ − 2(m− 1)

m
αD̃λK

− 2

m
D̃λD̃ρβ

ρ + D̃ρD̃
λβρ + D̃µD̃

µβλ +
2

m
(D̃ρβ

ρ)Γ̃λ − 2 (m)Γ̃λν
ω(D̃νβ

ω)

− 2καJµγ̃
λµ − 1

γ̃2
βω(D̃λS̃)(D̃ωS̃) + βρ(D̃ρG̃λ)− 1

2γ̃
βρ(D̃ρD̃

λS̃)

+
1

2γ̃
βω (m)Γ̃λν

ω(D̃ν S̃)− (D̃ωβ
λ)G̃ω +

2

m
(D̃ρβ

ρ)G̃λ − 1

mγ̃
βωG̃λ(D̃ωS̃) (3.111)

= −2(∂να)Ã
λν + 2α (m)ΓλµνÃµν + 4mα(∂µφ)Ã

µλ − 2(m− 1)

m
αγ̃λω∂ωK

+

(
1− 2

m

)
γ̃λν(∂ν∂ρβ

ρ) + γ̃µν(∂µ∂νβ
λ)− (∂ρβ

λ)Γ̃ρ +
2

m
(∂ρβ

ρ)Γ̃λ

+ βρ(∂ρΓ̃
λ)− 2καJµγ̃

λµ. (3.112)

3.8 Why BSSN formulation is better than ADM formulation?

Now we discuss the reason of the BSSN formulation is better than the ADM formulation. From
the view point of the derivation of the BSSN formulation, some ideas are used for making the
formulation. We show the modifications from the standard ADM formulation;

• the metric is decomposed to conformal factor and conformal metric,
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• the extrinsic curvature is decomposed to trace part and trace-free part,

• new variable is added, and

• constraint equations are added to the dynamical equations.

The decompositions of the metric and extrinsic curvature would be suitable to the simulations of
the coalescences of the black hole and the gravitational waves. However, these technique would
be not always suitable for simulations. We can see the influence of adding the new variables by
the changing of the expression of the Ricci tensor;

(m)R̃ij =
1

2
γ̃mn{(∂n∂j γ̃mi) + (∂m∂iγ̃nj)− (∂m∂nγ̃ij)− (∂i∂j γ̃mn)}+ (m)Γ̃mn

i
(m)Γ̃mnj

− (m)Γ̃mij
(m)Γ̃m

abγ̃
ab (3.113)

= γℓ(i∂j)Γ̃
ℓ + (m)Γ̃(ij)ℓΓ̃

ℓ−1

2
γ̃mn(∂m∂nγ̃ij) +

(m)Γ̃ℓm
i
(m)Γ̃ℓmj + 2(m)Γℓm

(i
(m)Γj)ℓm.

(3.114)

We can see the highest order derivative terms (second order derivative terms) are clearly ex-
pressed with the wave operator, this would be the reason of the stability of the simulations.
However, this is effective in the flat space. Therefore, the reason of the stability is the adding
the constraint equations to the dynamical equations. After this chapter, we construct the
formulations by adding the constraint equations.





Part II

Numerical Stability and C2-adjusted
Formulations
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Chapter 4

Constraint Propagation Equations

To investigate the numerical stability of the numerical relativity, the one of the most important
tools is the constraint propagation equation which are the dynamical equation of constraint.
With the constraint propagation equation, we can predict that the simulations with the formu-
lation are running well or not. After this chapter, we use only three dimension and the vacuum
case. The indexes are adopted the Latin (i, j, k, · · · ) instead of the Greek (µ, ν, λ, · · · ).

4.1 Idea of Constraint Propagation

We review the general procedure of rewriting the evolution equations which we call adjusted
systems [27–29, 36]. Suppose we have dynamical variables ui which evolve along with the
evolution equations,

∂tu
i = f(ui, ∂ju

i, . . . ), (4.1)

and suppose also that the system has the (first class) constraint equations,

Ca(ua, ∂ju
a, . . . ) ≈ 0. (4.2)

We propose to study the properties of the evolution equation of Ca (which we call the constraint
propagation),

∂tC
a = g(Ca, ∂iC

a, . . . ), (4.3)

for predicting the violation behavior of constraints, Ca, in time evolution. Equation (4.3) is
theoretically weakly zero, i.e. ∂tC

a ≈ 0, since the system is supposed to be the first class.
However, the free numerical evolution with the discretized grids introduces constraint violation
at least the level of truncation error, which sometimes grows to stop the simulations. The set
of the ADM formulation has such a disastrous feature even in the Schwarzschild spacetime, as
was shown in [29].

4.2 Constraint Propagation of Standard ADM formulation

The divergence of Einstein equations are given by ∇µ(3)Eµν = 0 where (3)Eij is explicitly in
(2.54). The constraint propagation equations can get by decomposition of ∇µ(3)Eµν = 0. From
Appendix C, we can get the relations with (3)Eij = 0;

33
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The constraint propagation equations of the standard ADM formulation are

∂tH = Lβ(H) + 2αKH− 2α(DiMi)− 4(Diα)Mi, (4.4)

∂tMi = Lβ(Mi)− (Diα)H+ αKMi −
1

2
α(DiH). (4.5)

4.3 Constraint Propagation of BSSN Formulation

Since the introduction of the constraint propagation equations of the BSSN formulation are
complex, the calculations are expressed in Appendix C.4.

The constraint propagation equations of the standard BSSN formulation are

∂tH̃ =
2

3
αH̃+ L̃β(H̃)− 2(D̃µα)e−4φM̃µ − 4αe−4φ(D̃λφ)M̃λ

+
4

9
αK2Ã+ 5αe−4φ(D̃λD̃λÃ)− 2

3
αe−4φ((3)R̃+ (3)Rφ)Ã

+ (D̃µα)e
−4φG̃µÃ − αe−4φG̃ρ(D̃ρÃ) + (D̃λD̃

λα)e−4φÃ+ 2(D̃λα)e
−4φ(D̃λÃ)

+ 4(D̃λα)e−4φ(D̃λφ)Ã+ 8αe−4φ(D̃λφ)(D̃
λÃ)− 2

3
αÃµνÃ

µνÃ − 2

3
L̃β(K)Ã

− 2

m
KL̃β(Ã)− 2αe−4φÃµν(D̃ν G̃µ)− 2e−4φ(D̃νD̃(λG̃ν))β

λ

+
2

3
(D̃µD̃σβ

σ)e−4φG̃µ +
16

3
(D̃µβ

µ)e−4φ(D̃ρφ)G̃ρ − (D̃λD̃ωβ
λ)e−4φG̃ω

+
2

3
(D̃λD̃ρβ

ρ)e−4φG̃λ +
2

3
(D̃ρβ

ρ)e−4φ(D̃λG̃λ) + βρe−4φ(D̃λD̃ρG̃λ)

− 1

3γ̃
βωe−4φ(D̃ωS)(D̃λG̃λ) +

4

3γ̃
e−4φ((3)R̃+ (3)Rφ)βλ(D̃λS)

− 1

2γ̃
(D̃λβ

ρ)e−4φ(D̃ρD̃
λS̃) + 1

2γ̃
(D̃λβ

ω) (3)Γ̃λν
ωe

−4φ(D̃ν S̃)

− 1

3γ̃
(D̃λβ

ω)e−4φG̃λ(D̃ωS̃) +
37

6γ̃3
βωe−4φ(D̃λS̃)(D̃λS̃)(D̃ωS̃)

+
−17

6γ̃2
βωe−4φ(D̃λD̃

λS̃)(D̃ωS̃) +
61

6γ̃2
βρe−4φ(D̃λS̃)(D̃ρD̃

λS̃)

+
5

3γ̃
βρe−4φ(D̃λD̃ρD̃

λS̃)− 1

2γ̃2
βωe−4φ (3)Γ̃λν

ω(D̃λS̃)(D̃ν S̃)

+
1

2γ̃
βωe−4φ(D̃λ

(3)Γ̃λν
ω)(D̃ν S̃) +

1

2γ̃
βωe−4φ (3)Γ̃λν

ω(D̃λD̃ν S̃)

+
1

3γ̃2
βωe−4φG̃λ(D̃λS̃)(D̃ωS̃)−

1

3γ̃
βωe−4φG̃λ(D̃λD̃ωS̃)

+
1

2γ̃
(D̃νβ

ρ)e−4φΓ̃ν(D̃ρS̃)−
1

2γ̃2
βσe−4φG̃ω(D̃ωS̃)(D̃σS̃)

+
1

2γ̃
βρe−4φΓ̃ν(D̃νD̃ρS̃) +

1

γ̃2
αe−4φÃλω(D̃λS̃)(D̃ωS̃)−

1

γ̃
αe−4φÃλω(D̃λD̃ωS̃)
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− 1

γ̃
αe−4φ (3)Γ̃µ

λωÃ
λω(D̃µS̃)−

1

6γ̃2
βρe−4φ (3)Γ̃µλ

λ(D̃µS̃)(D̃ρS̃)

− 1

3γ̃
βσe−4φ (3)Γ̃λρν (3)Γ̃νλρ(D̃σS̃)−

1

2γ̃
(D̃ωD̃ωβ

σ)e−4φ(D̃σS̃)

− 1

γ̃
(D̃ωβ

σ)e−4φ(D̃ωD̃σS̃)−
1

2γ̃
(D̃ρβ

σ)e−4φ (3)Γ̃ρλ
λ(D̃σS̃)

− 1

6γ̃
βσe−4φ (3)Γ̃ρλ

λ(D̃ρD̃σS̃) +
1

3γ̃
(D̃µβ

σ)e−4φ (3)Γ̃µν
ν(D̃σS̃)

+
8

3γ̃
βσe−4φ(D̃λD̃λφ)(D̃σS) +

8

3γ̃
βσe−4φ (3)Γ̃ρλ

λ(D̃ρφ)(D̃σS̃)

+
8

3γ̃
e−4φ(D̃νD̃νβ

λ)(D̃λS̃)−
16

3γ̃2
(D̃νβλ)e−4φ(D̃ν S̃)(D̃λS̃)

+
16

3γ̃
(D̃νβλ)e−4φ(D̃νD̃λS̃)− 8e−4φ(D̃λφ)

{
1

3γ̃
βρΓ̃λ(D̃ρS̃)−

1

3γ̃
βρG̃λ(D̃ρS̃)

+
1

γ̃2
βρ(D̃λS̃)(D̃ρS̃)−

1

2γ̃
βρ(D̃λD̃ρS̃)

}
+

8

3γ̃
βσe−4φ(D̃ωφ)(D̃ωφ)(D̃σS̃)

+
4

γ̃
(D̃µβ

λ)e−4φ(D̃µφ)(D̃λS̃)−
1

γ̃2
αe−4φÃµν(D̃µS̃)(D̃ν S̃)

+
1

γ̃
αe−4φÃµν(D̃µD̃ν S̃) +

1

γ̃
αe−4φ (3)Γ̃ρ

νµÃ
µν(D̃ρS̃), (4.6)

∂tM̃i = (D̃να)e−4φ(D̃(µG̃ν))−
1

3
(D̃µα)H̃ − 1

3
(D̃µα)KÃ+ αKM̃µ +

1

6
α(D̃µH̃)

+ 2(m− 2)αe−4φ(D̃λφ)(D̃(µG̃λ)) +
1

2
(D̃µK)Ã+

1

9
αK(D̃µÃ) +

1

9
α(D̃µK)Ã

− (D̃ωα)Ã
ω
µÃ − αÃω

µ(D̃ωÃ) +
3

2γ̃2
βωÃλ

µ(D̃λS̃)(D̃ωS̃)

− 3

2γ̃
(D̃λβ

ω)Ãλ
µ(D̃ωS̃)−

3

2γ̃
βωÃλ

µ(D̃λD̃ωS̃)−
1

2γ̃2
βλ(D̃µS̃)(D̃λS̃)Ã

+
1

2γ̃
(D̃µβ

λ)(D̃λS̃)Ã+
3

2γ̃
βλ(D̃µD̃λS̃)Ã+ L̃β(M̃µ), (4.7)

∂tG̃i = 2αM̃λ − (D̃λα)Ã − α(D̃λÃ) + 4α(D̃λφ)Ã+
1

3γ̃
βρΓ̃λ(D̃ρS̃)−

2

3γ̃
βρG̃λ(D̃ρS̃)

− 2

3γ̃2
βρ(D̃λS̃)(D̃ρS̃)−

1

6γ̃
(D̃λβρ)(D̃ρS̃)−

1

3γ̃
βρ(D̃λD̃ρS̃) + βρ(D̃ρG̃λ)

+
1

2γ̃
βω (3)Γ̃λν

ω(D̃ν S̃)− (D̃ωβ
λ)G̃ω +

2

3
(D̃ρβ

ρ)G̃λ, (4.8)

∂tÃ = αKÃ+ Ã, (4.9)

∂tS̃ = −2αγ̃Ã+ L̃β(S). (4.10)



Chapter 5

Tools for Investigation of Numerical
Stability

5.1 Adjusted Systems

Such features of the constraint propagation equations, (4.3), will be changed when we modify
the original evolution equations. Suppose we add the constraint terms to the right-hand side of
(4.1) as

∂tu
i = f(ui, ∂ju

i, . . . ) + F (Ca, ∂jC
a, . . . ), (5.1)

where F (Ca, . . . ) ≈ 0 in principle but not exactly zero in numerical evolutions, then (4.3) will
also be modified as

∂tC
a = g(Ca, ∂iC

a, . . . ) +G(Ca, ∂iC
a, . . . ). (5.2)

Therefore we are able to control ∂tC
a by an appropriate adjustment F (Ca, ∂jC

a, . . . ) in (5.1).
There exist various combinations of F (Ca, ∂jC

a, . . . ) in (5.1), and all the alternative formula-
tions are using this technique. Therefore, our goal is to find out a better way of adjusting the
evolution equations which realizes ∂tC

a ≤ 0.

5.2 Constraint Amplification Factors

There are many efforts of re-formulation of the Einstein equations which make the evolution
equations in an explicit first-order hyperbolic form (e.g. [17, 18, 44, 45]). This is motivated by
the expectations that the symmetric hyperbolic system has well-posed properties in its Cauchy
treatment in many systems and that the boundary treatment can be improved if we know the
characteristic speed of the system. The advantage of the standard ADM system [9,10] (compared
with the original ADM system [8]) is reported by Frittelli [46] from the point of the hyperbolicity
of the constraint propagation equations. However, the classification of hyperbolicity(weakly,
strongly or symmetric hyperbolic) only uses the characteristic part of evolution equations and
ignore the rest. Several numerical experiments [11,47] reported that such a classification is not
enough to predict the stability of the evolution system, especially for highly non-linear system
like the Einstein equations.

In order to investigate the stability structure of (5.2), the authors [28] proposed the con-
straint amplification factors(CAFs). The CAFs are the eigenvalues of the coefficient matrix,

36



5.3. C2-ADJUSTED SYSTEM 37

Ma
b (below), which is the Fourier-transformed components of the constraint propagation equa-

tions, ∂tĈ
a. That is,

∂tĈ
a = g(Ĉa) = Ma

bĈ
b,

where Ca(x, t) =

∫
Ĉ(k, t)a exp(ik · x)d3k. (5.3)

CAFs include all the contributions of the terms, and enable us to check the eigenvalues. If CAFs
have negative real-part, the constraints are forced to be diminished. Therefore, we expect more
stable evolution than a system which has CAFs with positive real-part. If CAFs have non-zero
imaginary-part, the constraints are supposed to propagate away. Therefore, we expect more
stable evolution than a system which has CAFs with zero imaginary-part. The discussion and
examples are shown in [11, 36], where several adjusted-ADM systems [11] and adjusted-BSSN
systems [27] are proposed.

5.3 C2-adjusted System

Fiske [34] proposed an adjustment of the evolution equations in the way of

∂tu
i = f(ui, ∂ju

i, . . . )− κij
(
δC2

δuj

)
, (5.4)

where κij is positive-definite constant coefficient, and C2 is the norm of constraints which is

defined as C2 ≡
∫

CaC
ad3x. The term (δC2/δuj) is the functional derivative of C2 with uj .

We call the set of (5.4) with (4.2) as “C2-adjusted formulation”. The associated constraint
propagation equation becomes

∂tC
2 = h(Ca, ∂iC

a, . . . )−
∫

d3x

(
δC2

δui

)
κij
(
δC2

δuj

)
. (5.5)

If we set κij so as the second term in the RHS of (5.5) becomes dominant than the first term,
then ∂tC

2 becomes negative, which indicates that constraint violations are expected to decay
to zero. Fiske presented some numerical examples in the Maxwell system, and concluded that
this method actually reduces the constraint violations. He also reported that the coefficient κij

has a practical upper limit in order not to crash simulations.



Chapter 6

C2-adjusted ADM Formulation

6.1 Formulation

6.1.1 Standard ADM Formulation

We start by presenting the standard ADM formulation of the Einstein equations. The standard
ADM evolution equations in three dimension are written as

∂tγij = −2αKij +Diβj +Djβi, (6.1)

∂tKij = α((3)Rij +KKij − 2KiℓK
ℓ
j)−DiDjα+KℓiDjβ

ℓ +KℓjDiβ
ℓ + βℓDℓKij , (6.2)

The constraint equations are

H ≡ (3)R+K2 −KijK
ij ≈ 0, (6.3)

Mi ≡ DjK
j
i −DiK ≈ 0. (6.4)

6.1.2 C2-adjusted ADM Formulation

Now we apply C2-adjustment to the ADM formulation, which can be written as

∂tγij = (6.1)− κγijmn

(
δC2

δγmn

)
, (6.5)

∂tKij = (6.2)− κKijmn

(
δC2

δKmn

)
, (6.6)

where C2 is the norm of the constraints, which we set

C2 ≡
∫

(H2 + γijMiMj)d
3x, (6.7)

and both coefficients of κγijmn, κKijmn are supposed to be positive definite. The additional
terms in (6.5) and (6.6) are

δC2

δγmn
= 2H1

mnH− 2(∂ℓH2
mnℓ)H− 2H2

mnℓ(∂ℓH) + 2(∂k∂ℓH3
mnkℓ)H

+ 4(∂ℓH3
mnkℓ)(∂kH) + 2H3

mnkℓ(∂k∂ℓH) + 2M1i
mnMi − 2(∂ℓM2i

mnℓ)Mi

− 2M2i
mnℓ(∂ℓMi)−MmMn, (6.8)

δC2

δKmn
= 2H4

mnH+ 2M3i
mnMi − 2(∂ℓM4i

mnℓ)Mi − 2M4i
mnℓ(∂ℓMi), (6.9)
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where

Hmn
1 = −2Rmn + (3)Γm(3)Γn − (3)Γmeb(3)Γn

eb − 2KKmn + 2Km
jK

nj , (6.10)

Hℓmn
2 = −γℓm(3)Γn − γℓn(3)Γm + γmn(3)Γℓ + (3)Γnmℓ + (3)Γmnℓ − (3)Γℓnm, (6.11)

Hkℓmn
3 =

1

2
γmℓγnk +

1

2
γkmγnℓ − γkℓγmn, (6.12)

Hmn
4 = 2γmnK − 2Kmn, (6.13)

Mmn
1 i = −1

2
Kℓi,jγ

jmγℓn − 1

2
Kℓi,jγ

jnγℓm +
1

2
(3)ΓnKm

i +
1

2
(3)ΓmKn

i +
(3)ΓamnKai

− 1

2
Kmcγnbγbc,i −

1

2
Kncγmbγbc,i +Kab,iγ

amγbn, (6.14)

M ℓmn
2 i = −1

2
γnℓKm

i −
1

2
γmℓKn

i +
1

2
γmnKℓ

i +
1

2
Knmδℓi, (6.15)

Mmn
3 i = −1

2
(3)Γmδni −

1

2
(3)Γnδmi +

1

2
γnaγmbγab,i, (6.16)

M ℓmn
4 i =

1

2
γℓmδni +

1

2
γℓnδmi − γmnδℓi, (6.17)

Hmn
1 , H imn

2 , H ijmn
3 , Hmn

4 , Mmn
1 i, M

jmn
2 i, M

mn
3 i, M

jmn
4 i are the same with the appendix of [29]

if (m,n) = (n,m).

6.2 Constraint Propagation with C2-adjusted ADM formulation

In this subsection, we discuss the constraint propagation of the C2-adjusted ADM formulation,
by giving the CAFs on flat background metric. We show CAFs are negative real numbers or
complex numbers with negative real-part.

The constraint propagation equations, (4.4) and (4.5), are changed due to C2-adjusted terms.

∂tH = H1H+H2
a(∂aH) +H3

ab(∂a∂bH) +H4
abc(∂a∂b∂cH) +H5

abcd(∂a∂b∂c∂dH) +H6aMa

+H7a
b(∂bMa) +H8a

bc(∂b∂cMa) +H9a
bcd(∂b∂c∂dMa), (6.18)

where

H1 = 2αK − 2κγmnij

{
H1

mnH ij
1 −H1

mn(∂cH2
ijc) +H1

mn(∂d∂cH3
ijdc) +H2

mnℓ(∂ℓH1
ij)

−H2
mnℓ(∂ℓ∂cH2

ijc) +H2
mnℓ(∂ℓ∂d∂cH

ijdc
3 ) +H3

mnkℓ(∂k∂ℓH1
ij)

−H3
mnkℓ(∂k∂ℓ∂cH2

ijc) +H3
mnkℓ(∂k∂ℓ∂d∂cH3

ijdc)

}
− 2(∂ℓκγmnij)

{
H2

mnℓH ij
1 −H2

mnℓ(∂cH2
ijc) +H2

mnℓ(∂d∂cH3
ijdc)

+ 2H3
mnℓk(∂kH1

ij)− 2H3
mnℓk(∂k∂cH2

ijc) + 2H3
mnℓk(∂k∂d∂cH

ijdc
3 )

}
− 2(∂k∂ℓκγmnij)

{
H3

mnkℓH ij
1 −H3

mnkℓ(∂cH2
ijc) +H3

mnkℓ(∂d∂cH3
ijdc)

}
− 2κKmnijH4

mnH4
ij , (6.19)
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H2
a = βa − 2κγmnij

{
−H1

mnH2
ija + 2H1

mn(∂cH3
ijac) +H2

mnaH1
ij −H2

mna(∂cH2
ijc)

−H2
mnℓ(∂ℓH2

ija) +H2
mna(∂d∂cH3

ijdc) + 2H2
mnℓ(∂ℓ∂cH3

ijac)

+H3
mnaℓ(∂ℓH1

ij) +H3
mnka(∂kH1

ij)−H3
mnaℓ(∂ℓ∂cH2

ijc)

−H3
mnka(∂k∂cH2

ijc)−H3
mnkℓ(∂k∂ℓH2

ija) +H3
mnaℓ(∂ℓ∂d∂cH

ijdc
3 )

+H3
mnka(∂k∂d∂cH3

ijdc) + 2H3
mnkℓ(∂k∂ℓ∂cH3

ijac)

}
− 2(∂ℓκγmnij)

{
−H2

mnℓH2
ija + 2H2

mnℓ(∂cH3
ijac) + 2H3

mnℓaH1
ij

− 2H3
mnℓa(∂cH2

ijc)− 2H3
mnℓk(∂kH2

ija) + 2H3
mnℓa(∂d∂cH3

ijdc)

+ 4H3
mnℓk(∂k∂cH3

ijac)

}
− 2(∂k∂ℓκγmnij)

{
−H3

mnkℓH2
ija + 2H3

mnkℓ(∂cH3
ijac)

}
, (6.20)

H3
ab = −2κγmnij

{
H1

mnH3
ijab −H2

mnaH2
ijb + 2H2

mna(∂cH3
ijbc) +H2

mnℓ(∂ℓH3
ijab)

+H3
mnabH1

ij −H3
mnab(∂cH2

ijc)−H3
mnaℓ(∂ℓH2

ijb)−H3
mnka(∂kH2

ijb)

+H3
mnab(∂d∂cH3

ijdc) + 2H3
mnaℓ(∂ℓ∂cH3

ijbc) + 2H3
mnka(∂k∂cH3

ijbc)

+H3
mnkℓ(∂k∂ℓH3

ijab)

}
− 2(∂ℓκγmnij)

{
H2

mnℓH3
ijab − 2Hmnℓa

3 H2
ijb + 4Hmnℓa

3 (∂cH3
ijbc)

+ 2Hmnℓk
3 (∂kH3

ijab)

}
− 2(∂k∂ℓκγmnij)H3

mnkℓH3
ijab, (6.21)

H4
abc = −2κγmnij

{
H2

mnaH3
ijbc −H3

mnabH2
ijc + 2H3

mnab(∂eH3
ijce) +H3

mnaℓ(∂ℓH3
ijbc)

+H3
mnka(∂kH3

ijbc)

}
− 4(∂kκγmnij)H3

mnkaH3
ijbc, (6.22)

H5
abcd = −2κγmnijH3

mnabH3
ijcd, (6.23)

H6a = −2α(3)Γb
ba − 4α,a − κγmnij

{
2H1

mnM1a
ij − 2H1

mn(∂dM2a
ijd)−H1

mnM(iδj)a

+ 2H2
mnℓ(∂ℓM1a

ij)− 2H2
mnℓ(∂ℓ∂dM2a

ijd) + 2H3
mnkℓ(∂k∂ℓM1a

ij)

− 2H3
mnkℓ(∂k∂ℓ∂dM2a

ijd)

}
− (∂ℓκγmnij)

{
2H2

mnℓM1a
ij − 2H2

mnℓ(∂dM2a
ijd)−H2

mnℓM(iδj)a

+ 4H3
mnℓk(∂kM1a

ij)− 4H3
mnℓk(∂k∂dM2a

ijd)

}
− (∂k∂ℓκγmnij)

{
2H3

mnkℓM1a
ij − 2H3

mnkℓ(∂dM2a
ijd)−H3

mnkℓM(iδj)a

}
− κKmnij

{
2H4

mnM3a
ij − 2H4

mn(∂ℓM4a
ijℓ)

}
, (6.24)
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H7a
b = −2αδba − κγmnij

{
−2H1

mnM2a
ijb + 2H2

mnbM1a
ij − 2H2

mnb(∂dM2a
ijd)

− 2H2
mnℓ(∂ℓM2a

ijb)−H2
mnbMjδia −H2

mnbMiδja + 2H3
mnbℓ(∂ℓM1a

ij)

+ 2H3
mnkb(∂kM1a

ij)− 2H3
mnbℓ(∂ℓ∂dM2a

ijd)− 2H3
mnkb(∂k∂dM2a

ijd)

− 2H3
mnkℓ(∂k∂ℓM2a

ijb)−H3
mnbℓ(∂ℓM(i)δj)a −H3

mnbℓ(∂ℓM(j)δi)a

}
− (∂ℓκγmnij)

{
−2H2

mnℓM2a
ijb + 4H3

mnℓbM1a
ij − 4H3

mnℓb(∂dM2a
ijd)

− 4H3
mnℓk(∂kM2a

ijb)− 2H3
mnℓbMjδia − 2H3

mnℓbMiδja

}
+ 2(∂k∂ℓκγmnij)H3

mnkℓM2a
ijb + 2κKmnijH4

mnM4a
ijb, (6.25)

H8a
bc = −κγmnij

{
−2H2

mnbM2a
ijc + 2H3

mnbcM1a
ij − 2H3

mnbc(∂dM2a
ijd)

− 2H3
mnbℓ(∂ℓM2a

ijc)− 2H3
mnkb(∂kM2a

ijc)−H3
mnbcMjδia −H3

mnbcMiδja

}
+ 4(∂kκγmnij)H3

mnkbM2a
ijc, (6.26)

H9a
bcd = 2κγmnijH3

mnbcM2a
ijd. (6.27)

The propagation equation of the momentum constraint with C2-adjusted ADM formulation can
be written as

∂tMa = M1aH+M2a
b(∂bH) +M3a

bc(∂b∂cH) +M4a
bcd(∂b∂c∂dH) +M5abMb

+M6ab
c(∂cMb) +M7ab

cd(∂c∂dMb), (6.28)

where

M1a = −∂aα− 2κγmnij

{
M1a

mnH1
ij −M1a

mn(∂cH2
ijc) +M1a

mn(∂d∂cH3
ijdc)

+M2a
mnℓ(∂ℓH1

ij)−M2a
mnℓ(∂ℓ∂cH2

ijc) +M2a
mnℓ(∂ℓ∂d∂cH3

ijdc)

}
− 2(∂ℓκγmnij)

{
M2a

mnℓH1
ij −M2a

mnℓ(∂cH2
ijc) +M2a

mnℓ(∂d∂cH3
ijdc)

}
− 2κKmnij

{
M3a

mnH4
ij +M4a

mnℓ(∂ℓH4
ij)

}
− 2(∂ℓκKmnij)M4a

mnℓH4
ij , (6.29)
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M2a
b = −1

2
αδa

b − 2κγmnij

{
−M1a

mnH2
ijb + 2M1a

mn(∂cH3
ijbc) +M2a

mnbH1
ij

−M2a
mnb(∂cH2

ijc)−M2a
mnℓ(∂ℓH2

ijb) +M2a
mnb(∂d∂cH3

ijdc)

+ 2M2a
mnℓ(∂ℓ∂cH3

ijbc)

}
− 2(∂ℓκγmnij)

{
−M2a

mnℓH2
ijb + 2M2a

mnℓ(∂cH3
ijbc)

}
− 2κKmnijM4a

mnbH4
ij , (6.30)

M3a
bc = −2κγmnij

{
M1a

mnH3
ijbc −M2a

mnbH2
ijc + 2M2a

mnb(∂dH3
ijcd)

+M2a
mnℓ(∂ℓH3

ijbc)

}
− 2(∂ℓκγmnij)M2a

mnℓH3
ijbc, (6.31)

M4a
bcd = −2κγmnijM2a

mnbH3
ijcd, (6.32)

M5ab = γmbβ
m

,a + βℓγab,ℓ + αKγab − κγmnij

{
2M1a

mnM1b
ij − 2M1a

mn(∂dM2b
ijd)

−M1a
mnM(jδi)b + 2M2a

mnℓ(∂ℓM1b
ij)− 2M2a

mnℓ(∂ℓ∂dM2b
ijd)

}
− (∂ℓκγmnij)

{
2M2a

mnℓM1b
ij − 2M2a

mnℓ(∂dM2b
ijd)−M2a

mnℓM(jδi)b

}
− 2κKmnij

{
M3a

mnM3b
ij −M3a

mn(∂ℓM4b
ijℓ) +M4a

mnℓ(∂ℓM3b
ij)

−M4a
mnℓ(∂ℓ∂dM4b

ijd)

}
− 2(∂ℓκKmnij)

{
M4a

mnℓM3b
ij −M4a

mnℓ(∂dM4b
ijd)

}
, (6.33)

M6ab
c = βcγab − κγmnij

{
−2M1a

mnM2b
ijc + 2M2a

mncM1b
ij − 2M2a

mnc(∂dM2b
ijd)

− 2M2a
mnℓ(∂ℓM2b

ijc)−M2a
mncMjδib −M2a

mncMiδjb

}
+ 2(∂ℓκγmnij)M2a

mnℓM2b
ijc

− 2κKmnij

{
−M3a

mnM4b
ijc +M4a

mncM3b
ij −M4a

mnc(∂dM4b
ijd)

−M4a
mnℓ(∂ℓM4b

ijc)

}
+ 2(∂ℓκKmnij)M4a

mnℓM4b
ijc, (6.34)

M7ab
cd = 2κγmnijM2a

mncM2b
ijd + 2κKmnijM4a

mncM4b
ijd. (6.35)

If we fix the background is flat spacetime, (α = 1, βi = 0, γij = δij ,Kij = 0), then CAFs are
easily derived. For simplicity, we also set κγijmn = κKijmn = κδimδjn, where κ is positive. The
Fourier-transformed equations of the constraint propagation equations are

∂t

(
Ĥ
M̂i

)
=

(
−4κ|⃗k|4 −2ikj
−(1/2)iki κ(−|⃗k|2δij − 3kikj)

)(
Ĥ
M̂j

)
. (6.36)
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The eigenvalues, λ, of the coefficient matrix of (6.36) are given by solving

(λ+ κ|k|2)2(λ2 +Aλ+B) = 0,

where A ≡ 4κ|k|2(|k|2 + 1) and B ≡ |k|2 + 16κ2|k|6 (The Mathematica code for solving (6.36)
is Appendix E). Therefore, the four eigenvalues are

(−κ|k|2,−κ|k|2, λ+, λ−), (6.37)

where

λ± = −2κ|k|2(|k|2 + 1)± |k|
√

−1 + 4κ2|k|2(|k|2 − 1)2. (6.38)

From the relation of the coefficients with solutions,

λ+ + λ− = −A < 0, and λ+λ− = B > 0, (6.39)

we find both the real parts of λ+ and λ− are negative. Therefore, we see all four eigenvalues
are complex numbers with negative real-part or negative real numbers.

On the other hand, the CAFs of the standard ADM formulation on flat background [κ = 0
in (6.37)] are reduced to

(0, 0,±i|⃗k|), (6.40)

where the real-part of all of the CAFs are zero. Therefore the introduction of the C2-adjusted
terms to the evolution equations changes the constraint propagation equations to a self-decay
system.

More precisely, CAFs depend to |k|2 if κ ̸= 0. This indicates that adjusted terms affect
to reduce high frequency error-growing modes. Since we intend not to change the original
evolution equations drastically by adding adjusted terms, we consider only small κ. This limits
the robustness of the system to the low frequency error-growing modes. Therefore the system
may stop due to the low frequency modes, but the longer evolutions are expected to be obtained.

6.3 Detweiler’s ADM Formulation

We review Detweiler’s ADM formulation [40] for a comparison with the C2-adjusted ADM
formulation and the standard ADM formulation. Detweiler proposed an evolution system in
order to ensure the decay of the norm of constraints, ∂tC

2 < 0. His system can be treated as
one of the adjusted ADM systems and the set of evolution equations can be written as

∂tγij = (6.1) + LDγij , (6.41)

∂tKij = (6.2) + LDKij , (6.42)

where Dγij ≡ −α3γijH, (6.43)

DKij ≡ α3(Kij − (1/3)Kγij)H
+ α2[3(∂(iα)δ

k
j) − (∂ℓα)γijγ

kℓ]Mk + α3[δk(iδ
ℓ
j) − (1/3)γijγ

kℓ]DkMℓ,

(6.44)

where L is a constant. He found that with this particular combination of adjustments, the
evolution of the norm constraints, C2, can be negative definite when we apply the maximal
slicing condition, K = 0, for fixing the lapse function, α. Note that the effectiveness with
other gauge conditions is remain unknown. The numerical demonstrations with Detweiler’s
ADM formulation are presented in [12, 28], and there we can see the drastic improvements for
stability.



Chapter 7

C2-adjusted BSSN Formulation

7.1 Formulation

7.1.1 Standard BSSN Formulation

We work with the widely used notation of the BSSN system. That is, the dynamical variables
(φ,K, γ̃ij , Ãij , Γ̃

i) as the replacement of the variables of the ADM formulation, (γij ,Kij), where

φ ≡ 1

12
log(γ), (7.1)

K ≡ γijKij , (7.2)

γ̃ij ≡ e−4φγij , (7.3)

Ãij ≡ e−4φ

(
Kij −

1

3
γijK

)
, and (7.4)

Γ̃i ≡ γ̃mnΓ̃i
mn. (7.5)

The BSSN evolution equations are, then,

∂tφ = −1

6
αK +

1

6
(∂iβ

i) + βi(∂iφ), (7.6)

∂tK = αÃijÃ
ij +

1

3
αK2 −DiD

iα+ βi(∂iK), (7.7)

∂tγ̃ij = −2αÃij −
2

3
γ̃ij(∂ℓβ

ℓ) + γ̃jℓ(∂iβ
ℓ) + γ̃iℓ(∂jβ

ℓ) + βℓ(∂ℓγ̃ij), (7.8)

∂tÃij = αKÃij − 2αÃiℓÃ
ℓ
j + αe−4φRij

TF − e−4φ(DiDjα)
TF − 2

3
Ãij(∂ℓβ

ℓ)

+ (∂iβ
ℓ)Ãjℓ + (∂jβ

ℓ)Ãiℓ + βℓ(∂ℓÃij), (7.9)

∂tΓ̃
i = 2α

{
6(∂jφ)Ã

ij + Γ̃i
jℓÃ

jℓ − 2

3
γ̃ij(∂jK)

}
− 2(∂jα)Ã

ij +
2

3
Γ̃i(∂jβ

j) +
1

3
γ̃ij(∂ℓ∂jβ

ℓ)

+ βℓ(∂ℓΓ̃
i)− Γ̃j(∂jβ

i) + γ̃jℓ(∂j∂ℓβ
i), (7.10)

where TF denotes the trace-free part. The Ricci tensor in the BSSN system is normally calculated
as

Rij ≡ R̃ij +Rφ
ij , (7.11)
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where

R̃ij ≡ γ̃n(i∂j)Γ̃
n + γ̃ℓm(2 (3)Γ̃k

ℓ(i
(3)Γ̃j)km + (3)Γ̃nℓj

(3)Γ̃n
im)− 1

2
γ̃mℓ(∂ℓ∂mγ̃ij) + Γ̃n (3)Γ̃(ij)n,

(7.12)

Rφ
ij ≡ −2D̃iD̃jφ+ 4(D̃iφ)(D̃jφ)− 2γ̃ijD̃mD̃mφ− 4γ̃ij(D̃

mφ)(D̃mφ). (7.13)

The BSSN system has five constraint equations. The kinematic constraint equations, which
are the Hamiltonian constraint equation and the momentum constraint equations (H̃-constraint

and M̃-constraint, hereafter), are expressed in terms of the BSSN basic variables as

H̃ ≡ e−4φR̃− 8e−4φ(D̃iD̃
iφ+ (D̃mφ)(D̃mφ)) +

2

3
K2 − ÃijÃ

ij − 2

3
ÃK ≈ 0, (7.14)

M̃i ≡ −2

3
D̃iK + 6(D̃jφ)Ã

j
i + D̃jÃ

j
i − 2(D̃iφ)Ã ≈ 0, (7.15)

respectively, where D̃i is the covariant derivative associated with γ̃ij and R̃ = γ̃ijR̃ij . Because
of the introduction of new variables, there are additional algebraic constraint equations:

G̃i ≡ Γ̃i − γ̃jℓ (3)Γ̃i
jℓ ≈ 0, (7.16)

Ã ≡ Ãij γ̃ij ≈ 0, (7.17)

S̃ ≡ γ̃ − 1 ≈ 0, (7.18)

which we call the G̃-, Ã-, and S̃-constraints, respectively, hereafter. If the algebraic constraint
equations, (7.16)-(7.18), are not satisfied, the BSSN formulation and ADM formulation are not
equivalent mathematically.

7.1.2 C2-adjusted BSSN Formulation

The C2-adjusted BSSN evolution equations are formally written as

∂tφ = (7.6)− λφ

(
δC̃2

δφ

)
, (7.19)

∂tK = (7.7)− λK

(
δC̃2

δK

)
, (7.20)

∂tγ̃ij = (7.8)− λγ̃ijmn

(
δC̃2

δγ̃mn

)
, (7.21)

∂tÃij = (7.9)− λ
Ãijmn

(
δC̃2

δÃmn

)
, (7.22)

∂tΓ̃
i = (7.10)− λij

Γ̃

(
δC̃2

δΓ̃j

)
, (7.23)

where all the coefficients λφ, λK , λγ̃ ijmn, λÃijmn, and λij

Γ̃
are positive definite. C̃2 is a function

of the constraints H̃, M̃i, G̃i, Ã, and S̃, which we set as

C̃2 =

∫
(H̃2 + γijM̃iM̃j + cGγijG̃iG̃j + cAÃ2 + cSS̃2)d3x, (7.24)
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where, cG, cA, and cS are Boolean parameters (0 or 1). These three parameters are introduced
to prove the necessity of the algebraic constraint terms in (7.24).

The adjusted terms are

δC̃2

δφ
= 2H̄1H̃ − 2(∂aH̄

a
2 )H̃ − 2H̄a

2∂aH̃+ 2(∂a∂bH̄
ab
3 )H̃+ 2(∂aH̄

ab
3 )∂bH̃+ 2(∂bH̄

ab
3 )∂aH̃

+ 2H̄ab
3 ∂a∂bH̃ − 2(∂aM̄1i

a)e−4φγ̃ijM̃j + 8M̄1i
ae−4φ(∂aφ)γ̃

ijM̃j

− 2M̄1i
ae−4φ(∂aγ̃

ij)M̃j − 2M̄1i
ae−4φγ̃ij∂aM̃j − 4γ̃ije−4φM̃iM̃j

+ 4cGe
4φγ̃ijG̃iG̃j , (7.25)

δC̃2

δK
= 2H̄4H̃ − 2(∂ℓM̄2i

ℓ)e−4φγ̃ijM̃j + 8M̄2i
ℓe−4φ(∂ℓφ)γ̃

ijM̃j − 2M̄2i
ℓe−4φ(∂ℓγ̃

ij)M̃j

− 2M̄2i
ℓe−4φγ̃ij∂ℓM̃j , (7.26)

δC̃2

δγ̃mn
= 2H̄mn

5 H̃ − 2(∂iH̄
imn
6 )H̃ − 2H̄ imn

6 ∂iH̃+ 2(∂i∂jH̄
ijmn
7 )H̃+ 2(∂iH̄

ijmn
7 )∂jH̃

+ 2(∂jH̄
ijmn
7 )∂iH̃+ 2H̄ ijmn

7 ∂i∂jH̃+ 2M̄3i
mne−4φγ̃ijM̃j − 2(∂cM̄4i

cmn)e−4φγ̃ijM̃j

+ 8M̄4i
cmne−4φ(∂cφ)γ̃

ijM̃j − 2M̄4i
cmne−4φ(∂cγ̃

ij)M̃j − 2M̄4i
cmne−4φγ̃ij∂cM̃j

− e−4φγ̃imγ̃jnM̃iM̃j + 2cGG
imn
1 e4φγ̃ijG̃j − 2cG(∂ℓG

imnℓ
2 )e4φγ̃ijG̃j

− 8cGG
imnℓ
2 e4φ(∂ℓφ)γ̃ijG̃j − 2cGG

imnℓ
2 e4φ(∂ℓγ̃ij)G̃j − 2cGG

imnℓ
2 e4φγ̃ij∂ℓG̃j

+ cGe
4φG̃mG̃n + 2cAA

mn
1 Ã+ 2cSS

mn
1 S̃, (7.27)

δC̃2

δÃmn

= 2H̄mn
8 H̃+ 2e−4φγ̃ijM̄5i

mnM̃j − 2(∂cM̄6i
cmn)e−4φγ̃ijM̃j

+ 8M̄6i
cmne−4φ(∂cφ)γ̃

ijM̃j − 2M̄6i
cmne−4φ(∂cγ̃

ij)M̃j − 2M̄6i
cmne−4φγ̃ij∂cM̃j

+ 2cAA
mn
2 Ã, (7.28)

δC̃2

δΓ̃a
= 2H̄9aH̃ − 2(∂bH̄

b
10a)H̃ − 2H̄b

10a∂bH̃+ 2cGG
i
3ae

4φγ̃ijG̃j , (7.29)

where

H̄1 = −4e−4φR̃+ 32e−4φ{D̃iD̃iφ+ (D̃iφ)(D̃
iφ)}, (7.30)

H̄a
2 = 8e−4φ(γ̃ijΓ̃a

ij − 2D̃aφ), (7.31)

H̄ab
3 = −8e−4φγ̃ab, (7.32)

H̄4 = (4/3)K − (2/3)γ̃ijÃij , (7.33)

H̄mn
5 = −e−4φR̃mn + e−4φ(∂jΓ̃

(m)γ̃n)j − 2e−4φΓ̃km
jΓ̃

jn
k − 2e−4φΓ̃iℓ(mΓ̃n)

ℓi

− e−4φΓ̃amiΓ̃ai
n − e−4φΓ̃miℓΓ̃n

ℓi +
1

2
e−4φγ̃ij,aℓγ̃

ij γ̃amγ̃ℓn + 8e−4φD̃mD̃nφ

− 8e−4φ(D̃(mφ)Γ̃n)
ij γ̃

ij + 8e−4φ(D̃mφ)(D̃nφ)

+ 2ÃmbÃn
b + (2/3)ÃmnK, (7.34)
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H̄ℓmn
6 = e−4φ{Γ̃ℓmn + 2Γ̃(nm)ℓ + (1/2)Γℓγ̃mn

+ 8γ̃ℓ(m(D̃n)φ)− 4γ̃mnD̃ℓφ}, (7.35)

H̄ ijmn
7 = −(1/2)e−4φγ̃mnγ̃ij , (7.36)

H̄mn
8 = −2Ãmn − (2/3)γ̃mnK, (7.37)

H̄9a = (1/2)e−4φγ̃ij γ̃ij,a, (7.38)

H̄b
10a = e−4φδba, (7.39)

M̄1i
a = 6Ãa

i − 2Ãmnγ̃
mnδai, (7.40)

M̄2i
j = −(2/3)δj i, (7.41)

M̄3i
mn = −6(D̃(mφ)Ãn)

i + 2(D̃iφ)Ã
mn − D̃(mÃn)

i

+ Ãa(nΓ̃m)
ai + Ãi

(mΓ̃n)
jℓγ̃

jℓ, (7.42)

M̄4i
cmn = −γ̃c(nÃm)

i + (1/2)γ̃mnÃc
i − (1/2)Ãnmδci, (7.43)

M̄5i
mn = 6(D̃(mφ)δn)i − 2(D̃iφ)γ̃

mn − δi
(mΓ̃n)

jℓγ̃
jℓ

+ (1/2)γ̃mn
,i, (7.44)

M̄6i
cmn = γ̃c(mδn)i, (7.45)

Giab
1 = Γ̃iab + γ̃i(bΓ̃a)

mnγ̃
mn, (7.46)

Giabℓ
2 = −γ̃ℓ(bγ̃a)i + (1/2)γ̃abγ̃iℓ, (7.47)

Gi
3j = δij , (7.48)

Aab
1 = −Ãab, (7.49)

Aab
2 = γ̃ab, (7.50)

Sab
1 = (1/2)εajkεbnℓγ̃jnγ̃kℓ. (7.51)



48 CHAPTER 7. C2-ADJUSTED BSSN FORMULATION

7.2 Constraint Propagation Equations

Now we discuss the effect of the algebraic constraints. For simplicity, we set λγ̃ijmn = λγ̃δimδjn,

λ
Ãijmn

= λ
Ã
δimδjn, and λij

Γ̃
= λ

Γ̃
δij . The constraint propagation equations of the C2-adjusted

BSSN formulation in flat spacetime are

∂tH̃ = [Original Terms] +

(
−128λφ∆

2 − 3

2
λγ̃∆

2 + 2λ
Γ̃
∆

)
H̃

+ cG

(
−1

2
λγ̃∆∂m − 2λ

Γ̃
∂m

)
G̃m + 3cSλγ̃∆S̃, (7.52)

∂tM̃a = [Original Terms] +

{
8

9
λKδbc∂a∂b + λ

Ã
∆δa

c + λ
Ã
δbc∂a∂b

}
M̃c − 2cAλÃ

∂aÃ, (7.53)

∂tG̃a = [Original Terms] + δab
(
1

2
λγ̃∂b∆+ 2λ

Γ̃
∂b

)
H̃

+ cG

(
λγ̃∆δab +

1

2
λγ̃δ

ac∂c∂b − 2λ
Γ̃
δab

)
G̃b − cSλγ̃δ

ab∂bS̃, (7.54)

∂tÃ = [Original Terms] + 2λ
Ã
δij(∂iM̃j)− 6cAλÃ

Ã, (7.55)

∂tS̃ = [Original Terms] + 3λγ̃∆H̃+ cGλγ̃∂ℓG̃ℓ − 6cSλγ̃S̃, (7.56)

From (7.52)-(7.56), we see that the constraints affect each others. The constraint prop-
agation equations of the algebraic constraints, (7.54)-(7.56), include cG(λγ̃∆δab − 2λ

Γ̃
δab)G̃b,

−6cAλÃ
Ã, and −6cSλγ̃S̃, respectively. These terms contribute to reduce the violations of each

constraint if cG, cA, and cS are non-zero. Therefore, we adopt cG = cA = cS = 1 in (7.24);

C2 =

∫ (
H̃2 + γijM̃iM̃j + γijG̃iG̃j + Ã2 + S̃2

)
d3x. (7.57)

This discussion is considered only from the viewpoint of the inclusion of the diffusion terms. In
order to validate this decision, we perform some numerical examples in Sec.10.

7.3 Ã-adjusted BSSN Formulation

In [27], two of the authors reported some examples of adjusted systems for the BSSN formulation.
The authors investigated the signatures of eigenvalues of the coefficient matrix of the constraint
propagation equations, and concluded three of the examples to be the best candidates for the
adjustment. The actual numerical tests were performed later [30] using the gauge-wave, linear-
wave, and polarized Gowdy wave testbeds. The most robust system among the three examples
for these three testbeds was the Ã-adjusted BSSN formulation, which replaces (7.9) in the
standard BSSN system with

∂tÃij = (7.9) + κAαD̃(iM̃j), (7.58)

where κA is a constant. If κA is set as positive, the violations of the constraints are expected
to be damped in flat spacetime [27]. We also use the Ã-adjusted BSSN system for comparison
in the following numerical tests.
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The constraint propagation equations of this system are

∂tH̃ = [Original Terms], (7.59)

∂tM̃i = [Original Terms] + (1/2)κA∆M̃i, (7.60)

∂tG̃i = [Original Terms], (7.61)

∂tÃ = [Original Terms] + κAδ
ij∂iM̃j , (7.62)

∂tS̃ = [Original Terms], (7.63)

where ∆ is the Laplacian operator in flat space. Original Terms refers to the right-hand side of
the constraint propagation equations for the standard BSSN formulation. Full expressions for
the terms are given in the appendix of [27].





Part III

Numerical Simulations
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Chapter 8

Settings

8.1 Gauge-wave Testbed

The metric of the gauge-wave test is

ds2 = −Hdt2 +Hdx2 + dy2 + dz2, (8.1)

where

H = 1−A sin(2π(x− t)/d), (8.2)

which describes a sinusoidal gauge wave of amplitude A propagating along the x-axis. The
nontrivial extrinsic curvature is

Kxx = −πA

d

cos(2π(x−t)
d )√

1−A sin 2π(x−t)
d

. (8.3)

Following [41], we chose the numerical domain and parameters as follows:

• Gauge-wave parameters: d = 1 and A = 10−2.

• Simulation domain: x ∈ [−0.5, 0.5], y = z = 0.

• Grid: xn = −0.5 + (n− 1/2)dx with n = 1, · · · , 100, where dx = 1/100.

• Time step: dt = 0.25dx.

• Boundary conditions: Periodic boundary condition in x-direction and planar symmetry
in y- and z-directions.

• Gauge conditions:

∂tα = −α2K, βi = 0. (8.4)

• Scheme: second-order iterative Crank-Nicolson.
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8.2 Gowdy-wave Testbed

Metric and Parameters

The metric of the polarized Gowdy wave is given by

ds2 = t−1/2eλ/2(−dt2 + dx2) + t(ePdy2 + e−Pdz2), (8.5)

where P and λ are functions of x and t. The forward direction of the time coordinate t
corresponds to the expanding universe, and t = 0 corresponds to the cosmological singularity.

For simple forms of the solutions, P and λ are given by

P = J0(2πt) cos(2πx), (8.6)

λ = −2πtJ0(2πt)J1(2πt) cos
2(2πx) + 2π2t2[J2

0 (2πt)

+ J2
1 (2πt)]− (1/2){(2π)2[J2

0 (2π) + J2
1 (2π)]

− 2πJ0(2π)J1(2π)}, (8.7)

where Jn is the Bessel function.
Following [41], a new time coordinate τ , which satisfies harmonic slicing, is obtained by the

coordinate transformation

t(τ) = kecτ , (8.8)

where k and c are arbitrary constants. We also follow [41] by setting k, c, and the initial time
t0 as

k ∼ 9.67076981276405, c ∼ 0.002119511921460, (8.9)

t0 = 9.87532058290982, (8.10)

so that the lapse function in the new time coordinate is unity and t = τ at the initial time.
We also use the following parameters specified in [41].

• Simulation domain: x ∈ [−0.5, 0.5], y = z = 0.

• Grid: xn = −0.5 + (n− (1/2))dx, n = 1, · · · , 100, where dx = 1/100.

• Time step: dt = 0.25dx.

• Boundary conditions: Periodic boundary condition in x-direction and planar symmetry
in y- and z-directions.

• Gauge conditions: ∂tα = −α2K, βi = 0.

• Scheme: second-order iterative Crank-Nicolson.



Chapter 9

Simulations with C2-adjusted ADM
Formulation

9.1 Constraint violations and the damping of the violations

Figure 9.1 shows the L2 norm of the Hamiltonian constraint and momentum constraints with
a function of backward time (−t) in the case of the standard ADM formulation, (6.1)-(6.2).
We see the violations of the momentum constraints are larger than that of the Hamiltonian
constraint at the initial stage, and both grow larger with time. The behavior is well-known,
and the starting point of the formulation problem.

We, then, compare the evolutions with three formulations: (a) the standard ADM formula-
tion (6.1)-(6.2), (b) Detweiler’s formulation (6.41)-(6.42), and (c) the C2-adjusted ADM formu-
lation (6.5)-(6.6). We tuned the parameters L in (a), and κγijmn and κKijmn in (c) within the
expected ranges from the eigenvalue analyses. In the formulation (c), we set κγijmn = κγδimδjn
and κKijmn = κKδimδjn for simplicity, and optimized κγ and κK in their positive ranges. We use
L = −10+1.9 and (κγ , κk) = (−10−9.0,−10−3.5) for the plots, since the violation of constraints
are minimized at t = −1000 for those evolutions. Note that the signatures of (κγ , κK) and L
are reversed from the expected one in Sec. 5.3 and Sec. 6.3, respectively, since we integrate
time backward.

We plot the L2 norms of C2 of these three formulations in Figure 9.2. We see the constraint
violations of (a)(the standard ADM formulation) and (b)(Detweiler’s formulation) grow larger
with time, while that of (c)(C2-adjusted ADM formulation) almost coincide with (a) until
t = −500, then the violation of (c) begins smaller than (a). The L2 violation level of (c), then,
keeps its magnitude at most O(10−3), while those of (a) and (b) monotonically grow larger with
oscillations. Figure 9.2 shows up to t = −1000, but we confirmed this behavior up to t = −1700.

Figure 9.2 tells us that the effects of Detweiler’s adjustment appear at the initial stage, while
C2-adjustment contributes at the later stage. The time difference can be seen also from the
magnitudes of adjustment terms in each evolution equations, which we show in Figure 9.3. The
lines (b1), (b2), (c1), and (c2) are the norms of Dγij in (6.43), DKij in (6.44), δC2/δγij in (6.8),
and δC2/δKij in (6.9), respectively.

We see that the L2 norms of the adjusted terms of Detweiler’s ADM formulation, Dγij and
DKij , decrease, while that of the C2-adjusted ADM formulation increase. If the magnitudes of
the adjusted terms are smaller, the effects of the constraint damping become small. Therefore,
the L2 norm of C2 of Detweiler’s ADM formulation are not damped down in the later stage in
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Figure 9.1: The L2 norm of the Hamiltonian and momentum constraints of the Gowdy-wave
evolution using the standard ADM formulation. We see that the violation of the momentum
constraints is larger initially, and both violations are growing with time.

Figure 9.2.

One possible explanation for the weak effect of Detweiler’s adjustment in the later stage is
the existence of the lapse function, α (and α2, α3), in the adjusted terms in (6.43)-(6.44). The
Gowdy-wave testbed is the evolution to the initial singularity of the space-time, and the lapse
function becomes smaller with evolution. Note that in previous works [12, 28], we see that the
constraint violations are damped down in the simulation with Detweiler’s ADM formulation,
where the lapse function, α, is adopted by the geodesic condition.

In Figure 9.4, we plotted the magnitude of the original terms and the adjusted terms of C2-
adjusted ADM formulation; the first and second terms in (6.5) and (6.6). We find that there
is O(102)–O(105) of differences between them. Therefore, we conclude that the adjustments do
not disturb the original ADM formulation, but control the violation of the constraints. We may
understand that higher derivative terms in (6.8) and (6.9) work as artificial viscosity terms in
numerics.

9.2 Parameter dependence of the C2-adjusted ADM formula-
tion

There are two parameters, κγ and κK , in the C2-adjusted ADM formulation and we next study
the sensitivity of these two on the damping effect to the constraint violation.

Figure 9.5 shows the dependences on κγ and κK . In Figure 9.5 (A), we fix κK = 0 and
change κγ . In Figure 9.5 (B), we fix κγ = 0 and change κK . In Figure 9.5 (A), we see that
all the simulations stop soon after the damping effect appears. On the other hand, in Figure
9.5 (B), we see that the simulations continue with constraint-damping effects. These results
suggest κK ̸= 0 or κγ = 0 is essential to keep the constraint-damping effects.

We think the trigger for stopping evolutions in the cases of Figure 9.5 (A) (when κK = 0)
is the term H5

abcd(∂a∂b∂c∂dH) which appears in the constraint propagation equation of the
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Figure 9.2: The L2 norm of the constraints, C2, of the polarized Gowdy-wave tests with ADM
and two types of adjusted formulations. The vertical axis is the logarithm of the C2 and the
horizontal axis is backward time. The solid line (a) is of the standard ADM formulation. The
dot-dashed line (b) is the evolution with Detweiler’s ADM with L = −10+1.9. The dotted line
(c) is the C2-adjusted ADM with κγ = −10−9.0 and κK = −10−3.5. We see the lines (a) and (c)
almost overlap until t = −500, then the case (c) keeps the L2 norm at the level ≤ 10−3, while
the lines of (a) and (b) monotonically grow larger with oscillations. We confirmed this behavior
up to t ≃ −1700.

Hamiltonian constraint, (6.18). We evaluated and checked each terms and found that H5
abcd

exponentially grows in time and dominates the other terms in (6.18) before the simulation
stops. Since H5

abcd is consists of γijγmn [see (6.12) and (6.23)], the time backward integration
of Gowdy spacetime makes this term disastrous. So that, in this Gowdy testbed, the cases
κγ = 0 reduce this trouble and keep the evolution with constraint-damping effects.

The sudden stops of evolutions in Figure 9.5 (A) can be interpreted due to a non-linear
growth of “constraint shocks”, since the adjusted terms are highly non-linear1. The robustness
against a constraint-shock is hard to be proved, but the continuous evolution cases in Figure
9.5 (B) may show that a remedial example is available by tuning parameters.

1 We appreciate the anonymous referee for pointing out this issue.
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Figure 9.3: The magnitudes of the adjusted terms in each equations for the evolutions shown
in Figure 9.2. The vertical axis is the logarithm of the adjusted terms. The horizontal axis is
backward time. The lines (b1) and (b2) are the adjusted terms (6.43) and (6.44) respectively.
The lines (c1) and (c2) are the adjusted terms (6.8) and (6.9) respectively. We see the ad-
justments in Detweiler-ADM [the lines (b1) and (b2)] decrease with time, which indicates that
these contributions become less effective.

Figure 9.4: Comparison of the magnitude of the original terms and the adjusted terms of
the C2-adjusted ADM formulation, (6.5)-(6.6). The lines (c3) and (c4) are the L2 norm of the
original terms [the evolution equations of gij and Kij , (6.1) and (6.2)], respectively. The lines
(c5) and (c6) are the L2 norm of the adjusted terms, which is the second terms of the right-hand
side of (6.5) and (6.6), respectively. We see the adjusted terms are “tiny”, compared with the
original terms.
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Figure 9.5: Parameter dependence of the C2-adjusted ADM formulation. The vertical axis
is the logarithm of the C2 and the horizontal axis is backward time. The left panel (A) is
the evolutions with κK = 0 and κγ = −10−2.0,−10−3.0,−10−4.0,−10−5.0. The right panel (B)
is the cases with κγ = 0 and κK = −10−1.6,−10−2.6,−10−3.6,−10−4.6. In (A), we see that
the simulations stop soon after the constraint dumping effect appears. In (B), we see that the
simulations continue with constraint-damping effects.
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Simulations with C2-adjusted BSSN
Formulation

10.1 Gauge wave case

10.1.1 Constraint Violations and their Dampings

Figure 10.1 shows the violations of five constraint equations H̃, M̃i, G̃i, Ã, and S̃ for the gauge-
wave evolution using the standard BSSN formulation. The violation of the M̃-constraint, line
(A-2), is the largest during the evolution, while the violations of both the Ã-constraint and
S̃-constraint are negligible. This is the starting point for improving the BSSN formulation.

Applying the adjustment procedure, the lifetime of the standard BSSN evolution is increased
at least 10-fold. In Fig.10.2, we plot the L2 norm of the constraints, (7.57), of three BSSN evo-
lutions: (A) the standard BSSN formulation (7.6)-(7.10), (B) the Ã-adjusted BSSN formulation
(7.6)-(7.8), (7.10), and (7.58), and (C) the C2-adjusted BSSN formulation (7.19)-(7.23). For
the standard BSSN case, we see the violation of constraint monotonically increases in the ear-
lier stage, while other two adjusted cases keep it smaller. We can say that the C2-adjusted
formulation is the most robust one against the violation of constraints between three.

We plot the norm of each constraint equation in Fig.10.3. First, we see that the violation
of the M̃-constraint for the two adjusted BSSN formulations [the lines (B-2) and (C-2) in
Fig.10.3] are less than that of the standard BSSN formulation in Fig.10.1. This behavior would

be explained from the constraint propagation equations, where we see the terms λ
Ã
∆M̃a and

(1/2)κA∆M̃i in (7.53) and (7.60), respectively. These terms contribute to reduce the violations

of the M̃-constraint. This is the main consequence of the two adjusted BSSN formulations.

Second, we also find that the violations of the Ã-constraint and S̃-constraint are larger
than those in Fig.10.1. From constraint propagation equations (7.55) and (4.9), the violation

of the Ã-constraint is triggered by the M̃- and Ã-constraints. The increase in the violations
of the Ã-constraint is caused by the term 2λ

Ã
δij(∂iM̃j). Similarly, in (7.56) and (4.10), the

violation of the S̃-constraint is triggered by only the Ã-constraint since the magnitude of λγ̃ is

negligible. Therefore, the increase in the violation of the S̃-constraint is due to the violation of
the Ã-constraint.

From (7.25) and (7.27), it can be seen that the adjusted terms of the evolution equations
of φ and γ̃ij include second-order derivative terms of the H̃-constraint. This means that these
evolution equations include fourth-order derivative terms of the dynamical variables. In order to
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Figure 10.1: L2 norm of each constraint violation in the gauge-wave evolution using the
standard BSSN formulation. The vertical axis is the logarithm of the L2 norm of the constraints
and the horizontal axis is time. We see the evolution stops at t = 110 due to the growth of
H̃-constraint violation.

investigate the magnitudes of the adjusted terms, we show in Fig.10.4 the ratio of the adjusted
terms to that of the original terms in each evolution equation. We see that the magnitudes of
the adjusted terms of φ and γ̃ij are reasonably small.

In the simulations with the C2-adjusted BSSN formulation, the largest violation is the S̃-
constraint. The S̃-constraint depends only on the dynamical variables γ̃ij , so that there is no

other choice than setting λγ̃ for controlling S̃-constraint, as can be seen from (7.56). However,
we must set λγ̃ to a value as small as possible since the adjusted term of γ̃ij includes higher

derivatives of γ̃ij . Therefore, it is hard to control the S̃-constraint, and we have not yet found
an appropriate set of parameters. This will remain as a future problem of this C2-adjusted
BSSN system.

We also investigated the sensitivity of the parameters in the C2-adjusted BSSN evolutions.
We compared evolutions with setting only one of the parameters, (λφ, λK , λγ̃ , λÃ

, λ
Γ̃
), nonzero.

Since the key of the damping of the violation of constraints is the M̃-constraint, and (λK , λ
Ã
)

controls the violation of M̃-constraint directly by (7.53), we mention here only the dependence
on λK and λ

Ã
. We found that constraint-damping feature changes sensitively by both λK and

λ
Ã
, among them setting λ

Ã
is important to control the M̃-constraint violation. We see the best

controlled evolution with λ
Ã
= 10−3 than 10−2 and 10−4.

10.1.2 Contribution of Algebraic Constraints in Definition of C2

In Sec.7.2, we defined C2, (7.57), including the algebraic constraints. We check this validity
by turning off the algebraic constraints in (7.57) and tested. The result is shown in Fig.10.5,
where we see the simulation stops at t = 800 due to a sudden increase in the violation of the
constraints. This confirms that the algebraic constraints play an important role of damping of
the violations of constraints.
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Figure 10.2: L2 norm of all the constraints in gauge-wave evolution comparing three BSSN
formulations: (A) standard BSSN formulation (solid line), (B) Ã-adjusted BSSN formulation
(dotted line), and (C) C2-adjusted BSSN formulation (dot-dashed line). The adopted param-
eters are κA = 10−1.6 for (B), and λφ = 10−8.5, λK = 10−8.4, λγ̃ = 10−7.3, λ

Ã
= 10−2.5, and

λ
Γ̃
= 10−1.8 for (C) to minimize C2 at t = 1000. The constraint violations of the Ã-adjusted

BSSN formulation, (B), increase with time and the simulation stops before t = 1300, while
those of the C2-adjusted BSSN formulation, (C), remain at O(10−1) until t = 1300 and the
simulation stops at t = 1350.

10.2 Gowdy wave case

10.2.1 Constraint Violations and Their Dampings

We begin showing the case of the standard BSSN formulation, (7.6)-(7.10). Figure 10.6 shows
the L2 norm of the violations of the constraints as a function of backward time (−t). We see

that the violation of the M̃-constraint is the largest at all times and that all the violations
of constraints increase monotonically with time. [Comparing with the result in [30], our code

shows that the H̃-constraint (A-1) remains at the same level but the M̃-constraint (A-2) is
smaller.]

Similar to the gauge-wave test, we compare the violations of C2 for three types of BSSNs
in Fig.10.7. In the case of the Ã-adjusted BSSN formulation, the violation of the constraints
increases if we set |κA| larger than 10−0.2. In the case of the C2-adjusted BSSN formulation,
it increases if we set |λ

Ã
| larger than 10−1.2. Note that the signatures of the above κA and λs

are negative, contrary to the predictions in [27] and Sec.7.1, respectively. This is because these
simulations are performed with backward time.

As shown in Fig.10.7, the violations of C2 for the standard BSSN formulation and the Ã-
adjusted BSSN formulation increase monotonically with time, while that for the C2-adjusted
BSSN formulation decreases after t = −200. To investigate the reason of this rapid decay
after t = −200, we plot each constraint violation in Fig.10.8. We see that the violations of
the Ã-constraint and S̃-constraint increase with negative time, in contrast to the standard
BSSN formulation, and those of the M̃-constraint and G̃-constraint decrease after t = −200.
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Figure 10.3: L2 norm of each constraint in the gauge-wave evolution using the Ã-adjusted
BSSN formulation [panel (a)] and C2-adjusted BSSN formulation [panel (b)]. The parameters
κA, λφ, λK , λγ̃ , λÃ

, and λ
Γ̃
are the same as those in Fig.10.2. In both panels, we see that the

violations of the H̃-constraint [the lines (B-1) and (C-1)], the M̃-constraint [(B-2) and (C-2)],
and the G̃-constraint [(B-3) and (C-3)] are less than those for the standard BSSN formulation
in Fig.10.1. However, the violations of the Ã-constraint [(B-4) and (C-4)] and the S̃-constraint
[(B-5) and (C-5)] are larger. Line (B-5) overlaps with line (B) in Fig.10.2 after t = 100, and
line (C-5) overlaps with line (C) in Fig.10.2 after t = 500.

The propagation equation of the M̃-constraint, (7.53), includes the term −2cAλÃ
∂aÃ, which

contributes to constraint damping. Similarly, the propagation equation of the G̃-constraint,
(7.54), includes δab{(1/2)λγ̃∂b∆+ 2λ

Γ̃
∂b}H̃ − cSλγ̃δ

ab∂bS̃; the decay of the violations of the G̃-
constraint is caused by these terms. Therefore, these terms are considered to become significant
of approximately t = −200 when the violations of the Ã, H̃, and S̃-constraints become a certain
order of magnitude.

In contrast to the gauge-wave testbed (Fig.10.4), we prepared Fig.10.9, which shows the
magnitudes of the ratio of the adjusted terms to the original terms. Since the magnitudes of
the adjusted terms of φ and γ̃ij can be disregarded, the effect of the reduction of the adjusted
terms of φ and γ̃ij is negligible. Therefore, the C

2-adjusted BSSN evolution in the Gowdy wave
can be regarded as maintaining its original hyperbolicity.

10.2.2 Contribution of Algebraic Constraints in Definition of C2

In Sec.7.2, we investigated the effect of the definition of C2. Similar to the gauge-wave tests
in the previous subsection, we show the effect of constraint damping caused by the algebraic
constraints. In Fig.10.10, we plot the violations of all the constraint with cG = cA = cS = 0.
We see that all the violations of the constraints are larger than those in Fig.10.8. This result is
consistent with the discussion in Sec.7.2.
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Figure 10.4: L2 norm of the ratio (adjusted terms)/(original terms) of each evolution equation
of the C2-adjusted BSSN formulation, (7.19)-(7.23), in the gauge-wave test. We see that the
largest ratio is the evolution equation of Ãij . The corrections to φ, K, and γ̃ij evolution
equations are reasonably small.

Figure 10.5: Difference with the definition of C2, (7.57), in the damping of each constraint
violation with cG = cA = cS = 0. The parameters λφ, λK , λγ̃ , λÃ

, and λ
Γ̃
are the same as

those in Fig.10.2. The simulation stops since the violations of the constraints sudden increase
at t = 800.
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Figure 10.6: L2 norm of each constraint equation in the polarized Gowdy wave evolution
using the standard BSSN formulation. The vertical axis is the logarithm of the L2 norm of the
constraint and the horizontal axis is backward time.

Figure 10.7: L2 norm of the constraints, C2, of the polarized Gowdy wave tests for the standard
BSSN and two adjusted formulations. The vertical axis is the logarithm of the L2 norm of C2

and the horizontal axis is backward time. The solid line (A) is the standard BSSN formulation,
the dotted line (B) is the Ã-adjusted BSSN formulation with κA = −10−0.2, and the dot-dashed
line (C) is the C2-adjusted BSSN formulation with λφ = −10−10, λK = −10−4.6, λγ̃ = −10−11,
λ
Ã
= −10−1.2, and λ

Γ̃
= −10−14.3. Note that the signatures of κA and λs are negative since the

simulations evolve backward. We see that lines (A) and (C) are identical until t = −200. Line
(C) then decreases and maintains its magnitude under O(10−2) after t = −400. We confirm
this behavior until t = −1500.
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Figure 10.8: The same with Fig.10.6 but for the C2-adjusted BSSN formulation. The parame-
ters, (λφ, λK , λγ̃ , λÃ

, λ
Γ̃
), are the same with those for (C) in Fig.10.7. We see that the violation

of the M̃-constraint decreases and becomes the lowest after t = −700.

Figure 10.9: L2 norm of the ratio (adjusted terms)/(original terms) of each evolution equation
for the C2-adjusted BSSN formulation, (7.19)-(7.23). We see that the largest ratio is that for
the evolution of Ãij . The corrections to the γ̃ij and Γ̃i evolution equations are reasonably small.
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Figure 10.10: Difference with the definition of C2 with cG = cA = cS = 0. The coefficient
parameters, λφ, λK , λγ̃ , λÃ

and λ
Γ̃
, are all the same as those for (C) in Fig.10.7. In comparison

with Fig.10.8, all the violations of the constraints are larger.
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Summary

To construct 3 + 1 splitting formulation of the Einstein equations, we introduced the standard
ADM formulation and the BSSN formulation, and derived both of the constraint propagation
equations of these formulations. Next, we proposed new sets of evolution equations, which we
call the C2-adjusted ADM formulation and C2-adjusted BSSN formulation. We applied the
adjusting method suggested by Fiske [34] to the standard ADM and BSSN formulations.

For the C2-adjusted ADM formulation, we obtained the evolution equations as (6.8)-(6.9)
and the constraint propagation equations, (6.18) and (6.28), and also discussed the constraint
propagation of this system. We analyzed the constraint amplification factors (CAFs) on the
flat background, and confirmed that all of the CAFs have negative real-part which indicate the
damping of the constraint violations. We, then, performed numerical tests with the polarized
Gowdy-wave and showed the damping of the constraint violations as expected.

On the other hand, for the C2-adjusted BSSN formulation, we derived evolution equations
as (7.19)-(7.23) and the constraint propagation equations, (7.52)-(7.56), in flat spacetime. We
performed numerical tests in the gauge-wave and Gowdy wave spacetimes and confirmed that
the violations of constraints decrease as expected, and that longer and accurate simulation than
that of the standard BSSN evolution is available.

There are two advantages of the C2-adjusted system. One is that we can uniquely determine
the form of the adjustments. The other is that we can specify the effective signature of the
coefficiencies (Lagrange multipliers) independent on the background. (The term effective means
that the system has the property of the damping constraint violations). In [28], Yoneda and
Shinkai systematically examined several combinations of adjustments to the ADM evolution
equations, and discuss the effective signature of those Lagrange multipliers using CAFs as the
guiding principle. However, the C2-adjusted idea, (5.4), automatically includes this guiding
principle. We confirm this fact using CAF-analysis on the flat background.

Although, in BSSN, there are two kinetic constraints and three additional algebraic con-
straints compared to the ADM system; thus, the definition of C2 is a matter of concern. By
analyzing constraint propagation equations, we concluded that C2 should include all the con-
straints. This was also confirmed by numerical tests. The importance of such algebraic con-
straints suggests the similar treatment when we apply this idea to other formulations of the
Einstein equation.

We performed the simulation with the C2-adjusted ADM formulation on the Gowdy-wave
spacetime and confirmed the effect of the constraint dumping. We investigated the parameter
dependencies and found that the constraint-damping effect does not continue due to one of
the adjusted terms. We also found that the Detweiler’s adjustment [40] is not so effective
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against constraint violations on this spacetime. Up to this moment, we do not yet know how
to choose the ranges of parameters which are suitable to damp the constraint violations unless
the simulations are actually performed.

To evaluate the reduction of the violations of the constraints of the C2-adjusted BSSN
formulation, we also compared evolutions with the Ã-adjusted BSSN formulation proposed
in [27]. We concluded that the C2-adjusted BSSN formulation exhibits superior constraint
damping to both the standard and Ã-adjusted BSSN formulations. In particular, the lifetimes
of the simulations of the C2-adjusted BSSN formulation in the gauge-wave and Gowdy wave
testbeds are as ten-times and twice as longer than those of the standard BSSN formulation,
respectively.

So far, many trials have been reported to improve BSSN formulation (e.g. [27,48]). Recently,
for example, a conformal-traceless Z4 formulation was proposed with its test demonstrations
[24]. Among them, Fig.1 of [24] can be compared with our Fig.10.3 [(B-1) and (C-1)] as the same
gauge-wave test. The violation of H̃-constraint in C2-adjusted BSSN evolution looks smaller
than that of new Z4 evolution, but regarding the blow-up time of simulations, new Z4 system
has advantage.

Fiske reported the applications of the idea of C2-adjustment to linearized ADM and BSSN
formulations in his dissertation [35]. (As he mentioned, his BSSN is not derived from the
standard BSSN equations but from a linearized ADM using a new variable, Γ. His set of BSSN
equations also does not include the Ã- and S̃-constraints in our notation.). He observed damping
of the constraint violation of five orders of magnitude and the equivalent solution errors in his
numerical evolution tests. Our studies show that the full BSSN set of equations with fully
adjusted terms also produces the desired constraint-damping results (Fig.10.2 and Fig.10.7),
although apparent improvements are at fewer orders of magnitude.

In the C2-adjusted ADM and BSSN cases, the associated adjustment parameters (La-
grangian multipliers) are sensitive and require fine-tuning. In future, automatic controlling
system such that monitoring the order of constraint violations and maintaining them by tuning
the parameters automatically would be helpful. Applications of control theory in this direction
are being investigated.

The correction terms of the C2-adjusted system include higher-order derivatives and are not
quasi-linear; thus, little is known mathematically about such systems. These additional terms
might effectively act as artificial viscosity terms in fluid simulations, but might also enhance the
violation of errors. To investigate this direction further, the next step is to apply the idea to a
system in which constraints do not include second-order derivatives of dynamical variables. We
are working on the Kidder-Scheel-Teukolsky formulation [17] as an example of such a system,
which we will report in the near future.



Appendix A

Riemann Tensor Decomposition

A.1 Gauss-Codazzi Equation

First, we define the relation of the covariant derivative operator betweenm+1 andm dimension.
The covariant derivative operator of Mm is defined as

DλT
µ1µ2···

ν1ν2··· ≡ Pω
λP

µ1
α1P

µ2
α2 · · ·P β1

ν1P
β2

ν2 · · · ∇ωT
α1α2···

β1β2···. (A.1)

where Tµ1µ2···
ν1ν2··· ∈ T (Mm). The reason that Dµ is the covariant derivative operator is

because of

Dλγ
αβ = Pω

λP
α
ρP

β
σ∇ωγ

ρσ (A.2)
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ρP
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σ∇ω

(
gρσ − 1

ϵ
nρnσ

)
(A.3)

= −1

ϵ
Pω
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σ∇ω(n

ρnσ) (A.4)

= 0. (A.5)

The calculation of the second-order covariant derivative of ∀Tλ ∈ T (Mm) is

DµDνTλ = Pα
µP

β
νP

ω
λ∇αDβTω (A.6)
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the relation between (m+1)Rµνλω and (m)Rµνλω is

(m)Rω
λνµTω = 2D[µDν]Tλ (A.13)

=
2

ϵ
P δ

λn
γK[µν](∇γTδ) +

2

ϵ
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γ
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Therefore, the Gauss-Codazzi equation is

Pµ
αP

λ
ρP

ν
βP

ω
γ

(m+1)Rµλνω = (m)Rαρβγ −
1

ϵ
(KβαKγρ −KγαKβρ). (A.17)

A.2 Codazzi-Mainardi Equation

First, we set a value for convenient,

aµ ≡ nν∇νnµ. (A.18)

aµ is in T (Mm) because

nµaµ = nµnν∇νnµ (A.19)

= nν(nµ∇νnµ) (A.20)

= 0. (A.21)

The relation between Kµν and aµ is

Kµν = −P λ
µ∇λnν (A.22)

= −
(
δλµ − 1

ϵ
nλnµ

)
∇λnν (A.23)

= −∇µnν +
1

ϵ
nµaν . (A.24)

The calculation of the second-order covariant derivative of nµ is

Pµ
αP

ν
βP

λ
ω∇λ∇νnµ = Pµ

αP
ν
βP

λ
ω∇λ

(
−Kνµ +

1

ϵ
nνaµ

)
(A.25)

= −Pµ
αP

ν
βP

λ
ω(∇λKνµ) +

1

ϵ
Pµ

αP
ν
βP

λ
ω∇λ(nνaµ) (A.26)

= −DωKβα +
1

ϵ
Pµ

αP
ν
βP

λ
ω(∇λnν)aµ (A.27)

= −DωKβα − 1

ϵ
Pµ

αP
ν
βKωνaµ (A.28)

= −DωKβα − 1

ϵ
Kωβaα, (A.29)

the projection of (m+1)Rµνλω by Pµ
αP

ν
βP

λ
ωn

ρ is

Pµ
αP

ν
βP

λ
ωn

ρ (m+1)Rρµνλ = 2Pµ
αP

ν
βP

λ
ωn

ρ(∇[λ∇ν]nµ) (A.30)

= −2D[ωKβ]α − 2

ϵ
K[ωβ]aα (A.31)

= −2D[ωKβ]α, (A.32)
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therefore, the Codazzi-Mainardi equation is

Pµ
αP

ν
βP

λ
ωn

ρ (m+1)Rρµνλ = −DωKβα +DβKωα. (A.33)

A.3 Component paralleled with Normal Vectors

First, we compute the value aµ,

aµ = nλ∇λnµ (A.34)

= nλ∇λ(ϵN∇µξ) (A.35)

= ϵnλ(∇λN)(∇µξ) + ϵnλN(∇λ∇µξ) (A.36)

=
1

N
nλ(∇λN)nµ + ϵnλN(∇µ∇λξ) (A.37)

= nλnµ(∇λ logN) + ϵ∇µ(n
λN∇λξ)− ϵ∇µ(n

λN)(∇λξ) (A.38)

= nλnµ(∇λ logN) + (∇µϵ)−
ϵ

N
(∇µN) (A.39)

= (∇λ logN)(nλnµ − ϵδλµ) (A.40)

= −ϵ(∇λ logN)

(
δλµ − 1

ϵ
nλnµ

)
(A.41)

= −ϵDµ logN. (A.42)

Then, the extrinsic curvature is expressed with (A.42),

Kµν = −∇µnν +
1

ϵ
nµaν (A.43)

= −∇µnν − nµDν logN. (A.44)

Next, we calculate the the projection of the component of (m)Rµνλω with two Pµ
ν and two nλ,

Pµ
αP

ν
βn

λnω (m+1)Rωµλν (A.45)

=Pµ
αP

ν
βn

λ(∇ν∇λnµ)− Pµ
αP

ν
βn

λ(∇λ∇νnµ) (A.46)

=Pµ
αP

ν
βn

λ∇ν (−Kλµ − nλDµ logN)− Pµ
αP

ν
βn

λ∇λ (−Kνµ − nνDµ logN) (A.47)

=− Pµ
αP

ν
βn

λ(∇νKλµ)− Pµ
αP

ν
βn

λ∇ν(nλDµ logN) + Pµ
αP

ν
βn

λ(∇λKνµ)

+ Pµ
αP

ν
βn

λ∇λ(nνDµ logN) (A.48)

=Pµ
αP

ν
β(∇νn

λ)Kλµ − ϵPµ
αP

ν
β∇ν(Dµ logN) + Pµ

αP
ν
βn

λ(∇λKνµ)

+ Pµ
αP

ν
βn

λ(∇λnν)(Dµ logN) (A.49)

=− Pµ
αKβ

λKλµ −ϵDβDα logN + Pµ
αP

ν
βn

λ(∇λKνµ) −ϵ(Dα logN)(Dβ logN) (A.50)

=−Kβ
λKλα − ϵ

N
DβDαN + Pµ

αP
ν
βn

λ(∇λKνµ). (A.51)

Then Lie derivative of the Kµν associated with Nnµ is

LNn(Kµν) = Nnλ(∇λKµν) +Kλν∇µ(Nnλ) +Kµλ∇ν(Nnλ) (A.52)

= Nnλ(∇λKµν) +KλνN(∇µn
λ) +KµλN(∇νn

λ). (A.53)
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For the projection operator Pµ
ν , the Lie derivative associated with Nnλ is

LNn(P
µ
ν) = Nnλ(∇λP

µ
ν)− P λ

ν∇λ(Nnµ) + Pµ
λ∇ν(Nnλ) (A.54)

= −1

ϵ
Nnλ(∇λn

µ)nν −
1

ϵ
Nnλnµ(∇λnν)− P λ

ν(∇λN)nµ − P λ
νN(∇λn

µ)

+ Pµ
λ(∇νN)nλ + Pµ

λN(∇νn
λ) (A.55)

= −1

ϵ
Nnλnνg

µω(−Kλω − nλDω logN)− 1

ϵ
Nnλnµ(−Kλν − nλDν logN)

− (DνN)nµ − P λ
νNgµω(−Kλω − nλDω logN)

+ Pµ
λNgλω(−Kνω − nνDω logN) (A.56)

= Nnν(D
µ logN) +Nnµ(Dν logN)− (DνN)nµ +NKν

µ −NKν
µ

−Nnν(D
µ logN) (A.57)

= 0. (A.58)

Therefore, the projection of (A.53) with Pµ
αP

ν
β is

Pµ
αP

ν
βLNn(Kµν) = Pµ

αP
ν
βNnλ(∇λKµν) + Pµ

αP
ν
βKλνN(∇µn

λ)

+ Pµ
αP

ν
βKµλN(∇νn

λ). (A.59)

⇔ Pµ
αP

ν
βn

λ(∇λKµν) =
1

N
Pµ

αP
ν
βLNn(Kµν)− Pµ

αP
ν
βKλν(∇µn

λ)

− Pµ
αP

ν
βKµλ(∇νn

λ) (A.60)

=
1

N
LNn(Kαβ) + 2KλβKα

λ. (∵ LNn(P
µ
ν) = 0) (A.61)

Therefore, the component is expressed as

Pµ
αP

ν
βn

λnω (m+1)Rωµλν = Kβ
λKλα − ϵ

N
DβDαN +

1

N
LNn(Kαβ). (A.62)



Appendix B

Conformal Riemann Tensor

B.1 Conformal Covariant Derivative

We calculate the relation between the normal covariant derivative operator Dµ and the confor-
mal covariant derivative operator D̄µ.

D̄µ operate Tµ1µ2···
ν1ν2··· as

D̄λT
µ1µ2···

ν1ν2··· = ∂λT
µ1µ2···

ν1ν2··· +
(m)Γ̄µ1

λωT
ωµ2···

ν1ν2··· + Γ̄µ2
λωT

µ1ω···
ν1ν2··· + · · ·

− Γ̄ω
λν1T

µ1µ2···
ων2··· − Γ̄ω

λν2T
µ1µ2···

ν1ω··· − · · · . (B.1)

∀T ∈ T 0
0 (Mm), ∀Tµ ∈ T 1

0 (Mm), ∀Tµ ∈ T 0
1 (Mm), ∀Tµν ∈ T 0

2 (Mm),

DµT = D̄µT, (B.2)

DµT
ν = D̄µT

ν + δνµ(D̄ω log ϕ)Tω + (D̄µ log ϕ)T
ν − γ̄µω(D̄

ν log ϕ)Tω, (B.3)

DµTν = D̄µTν − (D̄ν log ϕ)Tµ − (D̄µ log ϕ)Tν + γ̄µν(D̄
λ log ϕ)Tλ, (B.4)

DλTµν = D̄λTµν − (D̄µ log ϕ)Tλν − (D̄ν log ϕ)Tλµ − 2(D̄λ log ϕ)Tµν + γ̄λµ(D̄
ω log ϕ)Tων

+ γ̄λν(D̄
ω log ϕ)Tωµ. (B.5)

B.2 Conformal Lie Derivative

We express the Lie derivative operator in conformal manifolds as L̄ in this report. Then,
∀ϕ ∈ T 0

0 (Mm), ∀vλ ∈ T 1
0 (Mm), ∀Vµν ∈ T 0

2 (Mm) and the conformal value V̄µν ≡ ϕ−2Vµν , we
calculate that the relation between Lv(Vµν) and L̄v(V̄µν) is

L̄v(V̄µν) ≡ vλ(D̄λV̄µν) + V̄λν(D̄µv
λ) + V̄µλ(D̄νv

λ) (B.6)

= vλ(∂λV̄µν) + V̄λν(∂µv
λ) + V̄µλ(∂νv

λ) (B.7)

= −2ϕvλ(∂λϕ)Vµν + ϕ−2vλ(∂λVµν) + ϕ−2Vλν(∂µv
λ) + ϕ−2Vµλ(∂νv

λ) (B.8)

= −2vλV̄µν(D̄λ log ϕ) + ϕ−2Lv(Tµν). (B.9)

∴ Lv(Vµν) = ϕ2L̄v(V̄µν) + 2ϕ2V̄µνL̄v(log ϕ). (B.10)

73



74 APPENDIX B. CONFORMAL RIEMANN TENSOR

B.3 Conformal Riemann Tensor

We calculate the relation between (m)Rλ
µων and (m)R̄λ

µων ;

(m)Rλ
µων = ∂ω

(m)Γλ
µν − ∂ν

(m)Γλ
µω + (m)Γλ

ωρ
(m)Γρ

µν − (m)Γλ
νρ

(m)Γρ
µω (B.11)

= ∂ω
(m)Γ̄λ

µν +δλµ∂ω(D̄ν log ϕ) +δλν∂ω(D̄µ log ϕ) −(∂ωγ̄
λρ)γ̄µν(D̄ρ log ϕ)

−(∂ωγ̄µν)(D̄
λ log ϕ) −γ̄λργ̄µν∂ω(D̄ρ log ϕ)

−∂ν
(m)Γ̄λ

µω −δλµ∂ν(D̄ω log ϕ) −δλω∂ν(D̄µ log ϕ) +(∂ν γ̄
λρ)γ̄µω(D̄ρ log ϕ)

+(∂ν γ̄µω)(D̄
λ log ϕ) +γ̄λργ̄µω∂ν(D̄ρ log ϕ)

+(m)Γ̄λ
ωρ

(m)Γ̄ρ
µν +(m)Γ̄λ

ωµ(D̄ν log ϕ)+
(m)Γ̄λ

ων(D̄µ log ϕ)

−γ̄µν
(m)Γ̄λζ

ω(D̄ζ log ϕ) +δλω
(m)Γ̄ρ

µν(D̄ρ log ϕ) + δλω(D̄µ log ϕ)(D̄ν log ϕ)

+δλω(D̄ν log ϕ)(D̄µ log ϕ)− δλωγ̄µν(D̄
ρ log ϕ)(D̄ρ log ϕ)

+(m)Γ̄λ
µν(D̄ω log ϕ)+δλµ(D̄ν log ϕ)(D̄ω log ϕ)+δλν(D̄ω log ϕ)(D̄µ log ϕ)

−γ̄µν(D̄
λ log ϕ)(D̄ω log ϕ)

−(m)Γ̄ωµν(D̄
λ log ϕ)− γ̄ωµ(D̄ν log ϕ)(D̄

λ log ϕ)−γ̄ων(D̄µ log ϕ)(D̄
λ log ϕ)

+γ̄µν(D̄
λ log ϕ)(D̄ω log ϕ)

−(m)Γ̄λ
νρ

(m)Γ̄ρ
µω −(m)Γ̄λ

νµ(D̄ω log ϕ)−(m)Γ̄λ
νω(D̄µ log ϕ)

+(m)Γ̄λ
νργ̄µω(D̄

ρ log ϕ) −δλνΓ̄
ρ
µω(D̄ρ log ϕ) −δλν(D̄µ log ϕ)(D̄ω log ϕ)

− δλν(D̄ω log ϕ)(D̄µ log ϕ) + δλν γ̄µω(D̄
ζ log ϕ)(D̄ζ log ϕ)

−(m)Γ̄λ
µω(D̄ν log ϕ)−δλµ(D̄ω log ϕ)(D̄ν log ϕ)−δλω(D̄µ log ϕ)(D̄ν log ϕ)

+γ̄µω(D̄ν log ϕ)(D̄
λ log ϕ)

+(m)Γ̄νµω(D̄
λ log ϕ) + γ̄νµ(D̄

λ log ϕ)(D̄ω log ϕ)+γ̄νω(D̄
λ log ϕ)(D̄µ log ϕ)

−γ̄µω(D̄ν log ϕ)(D̄
λ log ϕ) (B.12)

= (m)R̄λ
µων +δλν(D̄ωD̄µ log ϕ) −γ̄µν(D̄ωD̄

λ log ϕ) −δλω(D̄νD̄µ log ϕ)

+γ̄µω(D̄νD̄
λ log ϕ) + δλω(D̄µ log ϕ)(D̄ν log ϕ)− δλωγ̄µν(D̄

ρ log ϕ)(D̄ρ log ϕ)

− γ̄ωµ(D̄ν log ϕ)(D̄
λ log ϕ)− δλν(D̄ω log ϕ)(D̄µ log ϕ)

+ δλν γ̄µω(D̄
ζ log ϕ)(D̄ζ log ϕ) + γ̄νµ(D̄

λ log ϕ)(D̄ω log ϕ). (B.13)



Appendix C

Derivation of Constraint
Propagation

C.1 Decomposition of Divergence of Second-Order Tensor

∀ (m+1)Vµν ∈ T 0
2 (Mm+1) such that

(m+1)Vµν = (m)V nµnν + 2 (m)V(µnν) +
(m)Vµν , (C.1)

where (m)V ∈ T 0
0 (Mm), (m)Vµ ∈ T 0

1 (Mm), (m)Vµν ∈ T 0
2 (Mm) and nµ is the unit normal on

T 1
0 (Mm), we decompose the equations;

Iµ = ∇ν (m+1)Vµν , (C.2)

into the components paralleled with nµ and with Pµ
ν .

C.1.1 The Component paralleled with Normal Vector

First we compute the component of (C.2) paralleled with nµ;

nνIν = gµλnν∇λ(
(m)V nµnν +

(m)Vµnν +
(m)Vνnµ + (m)Vµν) (C.3)

= ϵnλ(∇λ
(m)V ) + ϵgµν(∇µnν)

(m)V + ϵgµν(∇µ
(m)Vν) + nλnν(∇λ

(m)Vν)

+ gµλnν(∇λ
(m)Vµν) (C.4)

= ϵnλ(∇λ
(m)V ) + ϵ

(
Pµν +

1

ϵ
nµnν

)
(∇µnν)

(m)V + ϵ

(
Pµν +

1

ϵ
nµnν

)
(∇µ

(m)Vν)

+ nλnν(∇λ
(m)Vν) + gµλnν(∇λ

(m)Vµν) (C.5)

= ϵnλ(∇λ
(m)V ) + ϵPµ

ν(∇µn
ν) (m)V + ϵPµ

λP
ν
ωP

λω(∇µ
(m)Vν)− 2(∇λn

ν)nλ (m)Vν

− P λ
µ(∇λn

ν) (m)V µ
ν (C.6)

=
ϵ

N
LNn(

(m)V )− ϵK (m)V + ϵ(Dµ
(m)V µ) +

2ϵ

N
(DµN) (m)V µ +Kµν

(m)V µν . (C.7)
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C.1.2 The Component paralleled with Projection Operator

Next, we calculate the component of (C.2) paralleled with Pµ
ν ;

P ν
ωIν = P ν

ωg
µλ∇λ

(
(m)V nµnν + 2 (m)V(µnν) +

(m)Vµν

)
(C.8)

= P ν
ωn

λ(∇λnν)
(m)V + P ν

ωP
λ
µ(∇λnν)

(m)V µ + P ν
ωn

λ(∇λ
(m)Vν)

+ P ν
ωP

λ
µ(∇λn

µ) (m)Vν + P ν
ωP

µ
ρP

λ
σP

ρσ(∇λ
(m)Vµν)−

1

ϵ
P ν

ωn
λ(∇λn

µ) (m)Vµν

(C.9)

= −ϵP ν
ω(Dν logN) (m)V − P ν

ωKµν
(m)V µ +

1

N
P ν

ωLNn(
(m)Vν) +Kω

λ (m)Vλ

− P ν
ωK

(m)Vν + P σρ(Dρ
(m)Vσω) + P ν

ω(D
µ logN) (m)Vµν (C.10)

= − ϵ

N
(DωN) (m)V +

1

N
LNn(

(m)Vω)−K (m)Vω +Dλ
(m)V λ

ω +
1

N
(DµN) (m)V µ

ω.

(C.11)

C.2 Decomposition of Energy Momentum Conservation

Now we calculate the decomposition of the energy momentum conservation equation;

∇µ (m+1)Tµν = 0, (C.12)

(m+1)Tµν ≡ ρHnµnν + 2J(µnν) + Sµν , (C.13)

where ρH ∈ T 0
0 (Mm), Jν ∈ T 0

1 (Mm) and Sµν ∈ T 0
2 (Mm). For (C.7) and (C.11), we adopt

nµ as time like (ϵ = −1) and N and Nµ are expressed as α and βµ, respectively. The energy
conservation equation and the momentum conservation equations are

∂tρH = αKρH − α(DµJ
µ)− 2(Dµα)J

µ + αKµνS
µν + Lβ(ρH), (C.14)

∂tJµ = −(Dµα)ρH + αKJµ − α(DνS
ν
µ)− (Dνα)S

ν
µ + Lβ(Jµ), (C.15)

respectively.

C.3 Constraint Propagation of Standard ADM

Now we split the divergence of the Einstein equations into the components paralleled with nµ

and with Pµ
ν . The divergence of the Einstein equation is

∇µ( (m+1)Gµν − κTµν) = 0. (C.16)

To split the divergence of the Einstein equation in the ADM formulation, we first calculate the
trace part of (2.55);

gµν (m+1)Eµν = − 2

m− 1
gµν( (m+1)Gµν − κTµν), (C.17)

then we can get the relation;

(m+1)Gµν − κTµν = (m+1)Eµν −
1

2
gµνg

λω (m+1)Eλω. (C.18)
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The component of the divergence of (C.18) paralleled with nµ is

nµ∇ν
(

(m+1)Gµν − κTµν

)
(C.19)

=nµ∇ν (m+1)Eµν −
1

2
nν∇ν

(
gλω (m+1)Eλω

)
(C.20)

=
ϵ

N
LNn(H)− ϵKH+ ϵ(DµMµ) +

2ϵ

N
(DµN)Mµ +Kµν

(m)Eµν

− 1

2N
LNn(ϵH+ γµν (m)Eµν)

=
ϵ

2N
LNn(H)− ϵKH+ ϵ(DµMµ) +

2ϵ

N
(DµN)Mµ +Kµν

(m)Eµν − ϵ

2N
LNn(γ

µν (m)Eµν).

(C.21)

The component of the divergence of (C.18) paralleled with Pµ
ν is

Pµ
ω∇ν

(
(m+1)Gµν − κTµν

)
(C.22)

=Pµ
ω∇ν (m+1)Eµν −

1

2
Pµ

ω∇µ

(
gλω (m+1)Eλω

)
(C.23)

=− ϵ

N
(DωN)H+

1

N
LNn(Mω)−KMω +Dλ

(m)Eλ
ω +

1

N
(DµN) (m)Eµ

ω

− 1

2
Dω

(
ϵH+ P λω (m+1)Eλω

)
. (C.24)

In the standard ADM formulation, nµ is timelike and (m)Eµν = 0. The constraint propaga-
tion equations of the m dimensional standard ADM formulation are

∂tH = Lβ(H) + 2αKH− 2α(DµMµ)− 4(Dµα)Mµ, (C.25)

∂tMµ = Lβ(Mµ)− (Dµα)H+ αKMµ − 1

2
α(DµH). (C.26)

C.4 Constraint Propagation of BSSN Formulation

With D̃µ, the energy conservation equation (C.14) and the momentum conservation equations
(C.15) can be written as

∂tρH = αKρH − αe−4φ(D̃µJµ)− 2(m− 2)αe−4φ(D̃µφ)Jµ − 2e−4φ(D̃µα)Jµ

+ αe−4φÃµνSµν +
1

m
αKS + L̃β(ρH), (C.27)

∂tJµ = −(D̃µα)ρH + αKJµ − αe−4φ(D̃ωSωµ) + 2α(D̃µφ)S − 2(m− 2)α(D̃νφ)S
ν
µ

− (D̃να)S
ν
µ + L̃β(Jµ), (C.28)

respectively.
The propagation equation of S̃ is

∂tS̃ = ∂tγ̃ (C.29)

= γ̃γ̃µν(∂tγ̃µν) (C.30)

= γ̃γ̃µν
(
−2αÃµν −

2

m
(D̃λβ

λ)γ̃µν + L̃β(γ̃µν) +
1

mγ̃
βλ(D̃λS̃)γ̃µν

)
(C.31)

= −2αγ̃Ã+ L̃β(S̃). (C.32)
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The propagation equation of Ã is

∂tÃ = −Ãµν(∂tγ̃µν) + γ̃µν(∂tÃµν) (C.33)

= −Ãµν

{
−2αÃµν−

2

m
(D̃λβ

λ)γ̃µν + L̃β(γ̃µν)+
1

mγ̃
βλ(D̃λS̃)γ̃µν

}
+ γ̃µν

{
αKÃµν−2αÃµλÃ

λ
ν+αe−4φ( (m)R̃µν +

(m)Rφ
µν)

TF − e−4φ(DµDνα)
TF

− 2

m
(D̃λβ

λ)Ãµν + L̃β(Ãµν)−κα(e−4φSµν)
TF+

1

mγ̃
βλ(D̃ωS̃)Ãµν

}
(C.34)

= −ÃµνL̃β(γ̃µν) + αKÃ +γ̃µνL̃β(Ãµν) (C.35)

= αKÃ +L̃β(Ã) . (C.36)

For the right-hand-side of the propagation equations of the Gλ, this is just the constraint
term which might be zero in the evolution of the Γλ, (3.112),

∂tG̃λ = 2αM̃λ − (D̃λα)Ã − α(D̃λÃ) + 4α(D̃λφ)Ã+
1

mγ̃
βρΓ̃λ(D̃ρS̃)−

2

mγ̃
βρG̃λ(D̃ρS̃)

− m− 1

mγ̃2
βρ(D̃λS̃)(D̃ρS̃)−

2−m

2mγ̃
(D̃λβρ)(D̃ρS̃)−

1

mγ̃
βρ(D̃λD̃ρS̃) + βρ(D̃ρG̃λ)

+
1

2γ̃
βω (m)Γ̃λν

ω(D̃ν S̃)− (D̃ωβ
λ)G̃ω +

2

m
(D̃ρβ

ρ)G̃λ. (C.37)

The propagation equation of M̃µ is

∂tM̃µ = (∂tγ̃
νλ)(D̃νÃλµ) + γ̃νλ

{
∂ν(∂tÃλµ)− (∂tγ̃

ωρ) (m)Γ̃ρνλÃωµ − (∂t
(m)Γ̃ρνλ)Ã

ρ
µ

− (m)Γ̃ω
νλ(∂tÃωµ)− (∂tγ̃

ωρ) (m)Γ̃ρνµÃλω − (∂t
(m)Γ̃ρνµ)Ãλ

ρ − (m)Γ̃ω
νµ(∂tÃλω)

}
+ 2m∂λ(∂tφ)Ã

λ
µ + 2m(D̃λφ)(∂tγ̃

λω)Ãωµ + 2m(D̃ωφ)(∂tÃωµ)

− m− 1

m
∂µ(∂tK)− 2∂µ(∂tφ)Ã − 2(D̃µφ)(∂tÃ)− κ(∂tJµ) (C.38)

= −(∂tγ̃νλ)(D̃
νÃλ

µ) + γ̃νλ
[
∂ν(∂tÃλµ) +(∂tγ̃ωρ)

(m)Γ̃ρ
νλÃ

ω
µ − 1

2

{
∂λ(∂tγ̃ρν)

+∂ν(∂tγ̃ρλ)− ∂ρ(∂tγ̃νλ)

}
Ãρ

µ −(m)Γ̃ω
νλ(∂tÃωµ) +(∂tγ̃ωρ)

(m)Γ̃ρ
νµÃλ

ω

−1

2

{
∂µ(∂tγ̃ρν) + ∂ν(∂tγ̃ρµ)− ∂ρ(∂tγ̃νµ)

}
Ãλ

ρ −(m)Γ̃ω
νµ(∂tÃλω)

]
(C.39)
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+ 2mD̃λ(∂tφ)Ã
λ
µ − 2m(D̃λφ)(∂tγ̃λω)Ã

ω
µ + 2m(D̃ωφ)(∂tÃωµ)

− m− 1

m
D̃µ(∂tK)− 2D̃µ(∂tφ)Ã − 2(D̃µφ)(∂tÃ)− κ(∂tJµ) (C.40)

= −(D̃νÃλ
µ)(∂tγ̃νλ) +D̃λ(∂tÃλµ) −D̃ν(∂tγ̃ων)Ã

ω
µ +

1

2
γ̃νλD̃ω(∂tγ̃νλ)Ã

ω
µ

−1

2
D̃µ(∂tγ̃ρν)Ã

νρ + 2mD̃λ(∂tφ)Ã
λ
µ − 2m(D̃λφ)(∂tγ̃λω)Ã

ω
µ + 2m(D̃ωφ)(∂tÃωµ)

− m− 1

m
D̃µ(∂tK)− 2D̃µ(∂tφ)Ã − 2(D̃µφ)(∂tÃ)− κ(∂tJµ) (C.41)

= −(D̃νÃλ
µ)

{
−2αÃνλ−

2

m
(D̃ρβ

ρ)γ̃νλ +L̃β(γ̃νλ) +
1

mγ̃
βρ(D̃ρS̃)γ̃νλ

}
+ D̃λ

{
αKÃλµ −2αÃλρÃ

ρ
µ +αe−4φ( (m)R̃λµ + (m)Rφ

λµ)
TF −e−4φ(DλDµα)

TF

− 2

m
(D̃ωβ

ω)Ãλµ +L̃β(Ãλµ) −κα(e−4φSλµ)
TF+

1

mγ̃
βω(D̃ωS̃)Ãλµ

}
− Ãω

µD̃
ν

{
−2αÃων−

2

m
(D̃λβ

λ)γ̃ων +L̃β(γ̃ων) +
1

mγ̃
βλ(D̃λS̃)γ̃ων

}
+

1

2
γ̃νλÃω

µD̃ω

{
−2αÃνλ−

2

m
(D̃ρβ

ρ)γ̃νλ +L̃β(γ̃νλ) +
1

mγ̃
βρ(D̃ρS̃)γ̃νλ

}
− 1

2
ÃνρD̃µ

{
−2αÃρν − 2

m
(D̃λβ

λ)γ̃ρν +L̃β(γ̃ρν) +
1

mγ̃
βλ(D̃λS̃)γ̃ρν

}
+ 2mÃλ

µD̃λ

{
− 1

2m
αK +

1

2m
(D̃ωβ

ω) +L̃β(φ) − 1

mγ̃
βω(D̃ωS̃)

}
− 2m(D̃λφ)Ãω

µ

{
−2αÃλω−

2

m
(D̃ρβ

ρ)γ̃λω +L̃β(γ̃λω) +
1

mγ̃
βρ(D̃ρS̃)γ̃λω

}
+ 2m(D̃ωφ)

{
αKÃωµ −2αÃωρÃ

ρ
µ +αe−4φ( (m)R̃ωµ + (m)Rφ

ωµ)
TF −e−4φ(DωDµα)

TF

− 2

m
(D̃ρβ

ρ)Ãωµ +L̃β(Ãωµ) −κα(e−4φSωµ)
TF+

1

mγ̃
βρ(D̃ρS̃)Ãωµ

}
− m− 1

m
D̃µ

{
αÃλωÃ

λω +
1

m
αK2 −DλDλα +L̃β(K) − 2

m− 1
αΛ

+
κ

m− 1
α{S + (m− 2)ρH }

}
− 2(D̃µφ){ αKÃ +L̃β(Ã) }

− 2D̃µ

{
− 1

2m
αK +

1

2m
(D̃λβ

λ) +L̃β(φ) − 1

mγ̃
βλ(D̃λS̃)

}
Ã

− κ

{
−(D̃µα)ρH +αKJµ −αe−4φ(D̃ωSωµ) + 2α(D̃µφ)S − 2(m− 2)α(D̃νφ)S

ν
µ

−(D̃να)S
ν
µ +L̃β(Jµ)

}
(C.42)
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= −(m)RρµD
ρα +αKM̃µ+

(m− 1)(m− 2)

m2
αK(D̃µK)−m− 1

m2
(D̃µα)K

2

+βλ(D̃ωD̃λÃωµ)− βλ(D̃λD̃
ωÃωµ) + Ãν

λ(D̃νD̃µβ
λ)− Ãω

µ(D̃ρD̃ωβ
ρ) + L̃β(M̃µ)

+(D̃λα)e−4φ((m)R̃λµ + (m)Rφ
λµ) − 1

m
(D̃µα)

(
H̃−m− 1

m
K2 +

3

m
KÃ

)
+2(m− 2)α(D̃λφ)e−4φ((m)R̃λµ + (m)Rφ

λµ) + αe−4φD̃λ((m)R̃λµ + (m)Rφ
λµ)

+
m− 2

2m
α

{
D̃µH̃ − m

m− 2
e−4φD̃µ(

(m)R̃+ (m)Rφ) −m− 1

m
(D̃µK

2) +
m

m− 2
(D̃µK)Ã

+
2

m
D̃µ(KÃ)

}
+Ãω

µ(D̃ωD̃νβ
ν)− Ãω

ρ(D̃µD̃ρβ
ω) − (D̃ωα)Ã

ω
µÃ − αÃω

µ(D̃ωÃ)

+
3

2γ̃2
βωÃλ

µ(D̃λS̃)(D̃ωS̃)−
3

2γ̃
(D̃λβ

ω)Ãλ
µ(D̃ωS̃)−

3

2γ̃
βωÃλ

µ(D̃λD̃ωS̃)

− 3

2mγ̃2
βλ(D̃µS̃)(D̃λS̃)Ã+

3

2mγ̃
(D̃µβ

λ)(D̃λS̃)Ã+
3

2γ̃
βλ(D̃µD̃λS̃)Ã (C.43)

= (D̃να)e−4φ(D̃(µG̃ν)) − 1

m
(D̃µα)H̃ − 3

m2
(D̃µα)KÃ+ αKM̃µ +

m− 2

2m
α(D̃µH̃)

+2(m− 2)αe−4φ(D̃λφ)(D̃(µG̃λ)) +
1

2
(D̃µK)Ã+

m− 2

m2
αK(D̃µÃ) +

m− 2

m2
α(D̃µK)Ã

− (D̃ωα)Ã
ω
µÃ − αÃω

µ(D̃ωÃ) +
3

2γ̃2
βωÃλ

µ(D̃λS̃)(D̃ωS̃)−
3

2γ̃
(D̃λβ

ω)Ãλ
µ(D̃ωS̃)

− 3

2γ̃
βωÃλ

µ(D̃λD̃ωS̃)−
3

2mγ̃2
βλ(D̃µS̃)(D̃λS̃)Ã+

3

2mγ̃
(D̃µβ

λ)(D̃λS̃)Ã

+
3

2γ̃
βλ(D̃µD̃λS̃)Ã+ L̃β(M̃µ). (C.44)

To calculate the propagation equations of H̃, we first (m)R̃ and (m)Rφ. The conformal scalar
curvature is

(m)R̃ = ∂νΓ̃
ν + (m)Γ̃µ

µω
(m)Γ̃ω − 1

2
γ̃λωγ̃µν(∂λ∂ωγ̃µν) +

(m)Γ̃λµν (m)Γ̃λµν + 2 (m)Γ̃λµν (m)Γνλµ,

(C.45)

then, the dynamical equation is

∂t
(m)R̃ = ∂t

{
∂νΓ̃

ν + (m)Γ̃µ
µω

(m)Γ̃ω − 1

2
γ̃λωγ̃µν(∂λ∂ωγ̃µν) +

(m)Γ̃λµν (m)Γ̃λµν

+ 2 (m)Γ̃λµν (m)Γ̃νλµ

}
(C.46)

= D̃µ(∂tΓ̃
µ) + ∂t(

(m)Γ̃µ
µν)Γ̃

ν + (∂λ
(m)Γ̃µ

ωµ)γ̃
λργ̃ωσ(∂tγ̃ρσ)

− (m)Γ̃λρν (m)Γ̃νλ
µ(∂tγ̃µρ)−

1

2
γ̃µν γ̃λωD̃λD̃ω(∂tγ̃µν)−

1

2
(m)Γ̃ρλ

λγ̃
µνD̃ρ(∂tγ̃µν)

+ (m)Γ̃µνλD̃µ(∂tγ̃λν). (C.47)
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The (m)Rφ can be expressed as

(m)Rφ = −4(m− 1)(D̃µD̃
µφ)− 4(m− 1)(m− 2)(D̃λφ)(D̃λφ) (C.48)

and the dynamical equation of (m)Rφ is

∂t
(m)Rφ = ∂t

{
−4(m− 1)(D̃λD̃

λφ)− 4(m− 2)(m− 1)(D̃µφ)(D̃µφ)

}
(C.49)

= 4(m− 1)(D̃λD̃ωφ)(∂tγ̃λω) + 4(m− 1) (m)Γ̃ρλω(D̃ρφ)(∂tγ̃λω)

− 4(m− 1)γ̃µνD̃µD̃ν(∂tφ)− 4(m− 1)(D̃ωφ)(∂tG̃λ) + 4(m− 1)(D̃ωφ)(∂tΓ̃
ω)

+ 4(m− 2)(m− 1)(D̃ωφ)(D̃λφ)(∂tγ̃ωλ)− 8(m− 2)(m− 1)(D̃µφ)D̃µ(∂tφ). (C.50)

The propagation equation of the Hamiltonian constraint equation is

∂tH̃ = −4e−4φ((m)R̃+ (m)Rφ)(∂tφ) + e−4φ

{
D̃µ(∂tΓ̃

µ) + ∂t(
(m)Γ̃µ

µν)Γ̃
ν

+ (∂λ
(m)Γ̃µ

ωµ)γ̃
λργ̃ωσ(∂tγ̃ρσ)− (m)Γ̃λρν (m)Γ̃νλ

µ(∂tγ̃µρ)−
1

2
γ̃µν γ̃λωD̃λD̃ω(∂tγ̃µν)

− 1

2
(m)Γ̃ρλ

λγ̃
µνD̃ρ(∂tγ̃µν) +

(m)Γ̃µνλD̃µ(∂tγ̃λν)

}
+ e−4φ

{
4(m− 1)(D̃λD̃ωφ)(∂tγ̃λω) + 4(m− 1) (m)Γ̃ρλω(D̃ρφ)(∂tγ̃λω)

− 4(m− 1)γ̃µνD̃µD̃ν(∂tφ)− 4(m− 1)(D̃λφ)(∂tG̃λ) + 4(m− 1)(D̃ωφ)(∂tΓ̃
ω)

+ 4(m− 2)(m− 1)(D̃ωφ)(D̃λφ)(∂tγ̃ωλ)− 8(m− 2)(m− 1)(D̃µφ)D̃µ(∂tφ)

}
+

2(m− 1)

m
K(∂tK)− 2Ãµν(∂tÃµν) + 2Ãµ

νÃ
λν(∂tγ̃µλ)−

2

m
∂t(KÃ)− 2κ(∂tρH) (C.51)

=
2

m
αH̃+ L̃β(H̃)− 2(D̃µα)e−4φM̃µ − 4(m− 2)αe−4φ(D̃λφ)M̃λ

+
2(m− 1)

m2
αK2Ã+ 5αe−4φ(D̃λD̃λÃ)− 2

m
αe−4φ((m)R̃+ (m)Rφ)Ã

+ (D̃µα)e
−4φG̃µÃ − αe−4φG̃ρ(D̃ρÃ) + (D̃λD̃

λα)e−4φÃ+ 2(D̃λα)e
−4φ(D̃λÃ)

− 2κ

m
αSÃ+ 4(m− 2)(D̃λα)e−4φ(D̃λφ)Ã+ 4(m− 1)αe−4φ(D̃λφ)(D̃

λÃ)

− 2

m
Ã
{
αÃµνÃ

µν + L̃β(K)− 2

m− 1
αΛ +

κ

m− 1
α{S + (m− 2)ρH}

}
− 2

m
KL̃β(Ã)− 2αe−4φÃµν(D̃ν G̃µ)− 2e−4φ(D̃νD̃(λG̃ν))β

λ

+
2

m
(D̃µD̃σβ

σ)e−4φG̃µ +
8(m− 1)

m
(D̃µβ

µ)e−4φ(D̃ρφ)G̃ρ − (D̃λD̃ωβ
λ)e−4φG̃ω

+
2

m
(D̃λD̃ρβ

ρ)e−4φG̃λ +
2

m
(D̃ρβ

ρ)e−4φ(D̃λG̃λ) + βρe−4φ(D̃λD̃ρG̃λ)

− 1

mγ̃
βωe−4φ(D̃ωS)(D̃λG̃λ) (C.52)
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+
4

mγ̃
e−4φ((m)R̃+ (m)Rφ)βλ(D̃λS)−

1

2γ̃
(D̃λβ

ρ)e−4φ(D̃ρD̃
λS̃)

+
1

2γ̃
(D̃λβ

ω) (m)Γ̃λν
ωe

−4φ(D̃ν S̃)−
1

mγ̃
(D̃λβ

ω)e−4φG̃λ(D̃ωS̃)

+
18m− 17

2mγ̃3
βωe−4φ(D̃λS̃)(D̃λS̃)(D̃ωS̃) +

−9m+ 10

2mγ̃2
βωe−4φ(D̃λD̃

λS̃)(D̃ωS̃)

+
15m+ 16

2mγ̃2
βρe−4φ(D̃λS̃)(D̃ρD̃

λS̃) + 3m− 4

mγ̃
βρe−4φ(D̃λD̃ρD̃

λS̃)

− 1

2γ̃2
βωe−4φ (m)Γ̃λν

ω(D̃λS̃)(D̃ν S̃) +
1

2γ̃
βωe−4φ(D̃λ

(m)Γ̃λν
ω)(D̃ν S̃)

+
1

2γ̃
βωe−4φ (m)Γ̃λν

ω(D̃λD̃ν S̃) +
1

mγ̃2
βωe−4φG̃λ(D̃λS̃)(D̃ωS̃)

− 1

mγ̃
βωe−4φG̃λ(D̃λD̃ωS̃) +

1

2γ̃
(D̃νβ

ρ)e−4φΓ̃ν(D̃ρS̃)−
1

2γ̃2
βσe−4φG̃ω(D̃ωS̃)(D̃σS̃)

+
1

2γ̃
βρe−4φΓ̃ν(D̃νD̃ρS̃) +

1

γ̃2
αe−4φÃλω(D̃λS̃)(D̃ωS̃)−

1

γ̃
αe−4φÃλω(D̃λD̃ωS̃)

− 1

γ̃
αe−4φ (m)Γ̃µ

λωÃ
λω(D̃µS̃)−

1

2mγ̃2
βρe−4φ (m)Γ̃µλ

λ(D̃µS̃)(D̃ρS̃)

− 1

mγ̃
βσe−4φ (m)Γ̃λρν (m)Γ̃νλρ(D̃σS̃)−

1

2γ̃
(D̃ωD̃ωβ

σ)e−4φ(D̃σS̃)

− 1

γ̃
(D̃ωβ

σ)e−4φ(D̃ωD̃σS̃)−
1

2γ̃
(D̃ρβ

σ)e−4φ (m)Γ̃ρλ
λ(D̃σS̃)

− m− 2

2mγ̃
βσe−4φ (m)Γ̃ρλ

λ(D̃ρD̃σS̃) +
1

mγ̃
(D̃µβ

σ)e−4φ (m)Γ̃µν
ν(D̃σS̃)

+
4(m− 1)

mγ̃
βσe−4φ(D̃λD̃λφ)(D̃σS) +

4(m− 1)

mγ̃
βσe−4φ (m)Γ̃ρλ

λ(D̃ρφ)(D̃σS̃)

+
4(m− 1)

mγ̃
e−4φ(D̃νD̃νβ

λ)(D̃λS̃)−
8(m− 1)

mγ̃2
(D̃νβλ)e−4φ(D̃ν S̃)(D̃λS̃)

+
8(m− 1)

mγ̃
(D̃νβλ)e−4φ(D̃νD̃λS̃)− 4(m− 1)e−4φ(D̃λφ)

{
1

mγ̃
βρΓ̃λ(D̃ρS̃)

− 1

mγ̃
βρG̃λ(D̃ρS̃) +

2m− 3

mγ̃2
βρ(D̃λS̃)(D̃ρS̃)−

3(m− 2)

2mγ̃
βρ(D̃λD̃ρS̃)

}
+

4(m− 2)(m− 1)

mγ̃
βσe−4φ(D̃ωφ)(D̃ωφ)(D̃σS̃)

+
6(m− 2)(m− 1)

mγ̃
(D̃µβ

λ)e−4φ(D̃µφ)(D̃λS̃)−
1

γ̃2
αe−4φÃµν(D̃µS̃)(D̃ν S̃)

+
1

γ̃
αe−4φÃµν(D̃µD̃ν S̃) +

1

γ̃
αe−4φ (m)Γ̃ρ

νµÃ
µν(D̃ρS̃). (C.53)



Appendix D

Some Convenient Relations

In this appendix, we denote the some convenient relations for calculating of this paper.

For the connection,

∂νg
µν = −(m)Γµ

ωλg
ωλ − gµν(∂ν log

√
g), (D.1)

gµνΓω
µν +

(m)Γλω
λ = −∂λg

ωλ, (D.2)

(m)Γ(µν)λ =
1

2
∂λgµν , (D.3)

(m)Γ[µν]λ = −∂[µgν]λ. (D.4)

For the Lie derivative operator and covariant derivative,
∀T ∈ T 0

0 (Mm), ∀T ν ∈ T 1
0 (Mm), ∀Tν ∈ T 0

1 (Mm), ∀Tµν ∈ T 0
2 (Mm),

Dµ(Lβ(T )) = Lβ(DµT ), (D.5)

Dµ(Lβ(T
ν)) = Lβ(DµT

ν) + βλ(DµDλT
ν)− βλ(DλDµT

ν)− T λ(DµDλβ
ν), (D.6)

Dµ(Lβ(Tν)) = Lβ(DµTν) + βλ(DµDλTν)− βλ(DλDµTν) + Tλ(DµDνβ
λ), (D.7)

Dλ(Lβ(Tµν)) = Lβ(DλTµν) + βω(DλDωTµν)− βω(DωDλTµν) + Tων(DλDµβ
ω)

+ Tωµ(DλDνβ
ω). (D.8)

For the second order partial derivative and the second order covariant derivative,

∂λ∂ωTµν = DλDωTµν + 2(∂λ
(m)Γρ

ω(µ)Tν)ρ + 2(DλTρ(ν)
(m)Γρ

µ)ω + 2 (m)Γσ
λρ

(m)Γρ
ω(µTν)σ

+ 2 (m)Γρ
ω(µ

(m)Γσ
ν)λTρσ + (m)Γρ

λω(DρTµν) +
(m)Γρ

λµ(DωTρν)

+ (m)Γρ
λν(DωTµρ). (D.9)
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For the Riemann tensor and the Ricci tensor,

2D[µDν]DλT
ω = −(m)Rρ

λµν(DρT
ω) + (m)Rω

ρµν(DλT
ρ), (D.10)

(m)Rµν = ∂λ
(m)Γλ

µν − ∂(ν
(m)Γλ

µ)λ + (m)Γλ
ωλ

(m)Γω
µν − Γλ

ων
(m)Γω

µλ (D.11)

= ∂λ
(m)Γλ

µν − (∂(νgµ)ω)Γ
λω

λ − gω(µ(∂ν)Γ
λω

λ) +
(m)Γλω

λ
(m)Γωµν

− (m)Γλ
ων

(m)Γω
µλ (D.12)

= ∂λ
(m)Γλ

µν + (∂(νgµ)ω)(∂λg
ωλ + (m)Γω

ρσg
ρσ)

+ gω(µ∂ν)(∂λg
ωλ + (m)Γω

ρσg
ρσ)

− (∂λg
ωλ + (m)Γω

ρσg
ρσ) (m)Γωµν − (m)Γλ

ων
(m)Γω

µλ (D.13)

= gω(µ∂ν)(
(m)Γω

ρσg
ρσ) +(∂(νgµ)ω)

(m)Γω
ρσg

ρσ − (m)Γωµν
(m)Γω

σρg
σρ

+∂λ
(m)Γλ

µν +(∂(νgµ)ω)(∂λg
ωλ) + gω(µ∂ν)∂λg

ωλ −(∂λg
ωλ) (m)Γωµν

−(m)Γλ
ων

(m)Γω
µλ (D.14)

= gω(µ∂ν)(
(m)Γω

σρg
σρ) +(m)Γ(µν)ω

(m)Γω
σρg

σρ +gλω∂λ]
(m)Γωµν

−(∂λ∂(νgµ)ω)g
ωλ −(∂λgω(µ)(∂ν)g

ωλ) −(m)Γλω
ν(−(m)Γλωµ +∂µgλω )

(D.15)

= gω(µ∂ν)(
(m)Γω

σρg
σρ) + (m)Γ(µν)ω

(m)Γω
σρg

σρ −1

2
gλω∂λ∂ωgµν

+ (m)Γλω
ν
(m)Γλωµ +2 (m)Γλω

(µΓν)λω (D.16)

DλDωTµν −DωDλTµν = (m)Rρ
µωλTνρ +

(m)Rρ
νωλTµρ. (D.17)

In the BSSN formulation, we use these relations;

D̃µD̃νT
µ − D̃νD̃µT

µ = R̃µνT
µ − D̃(ν G̃µ)T

µ. (D.18)

(m)R̃µν = D̃(µΓ̃ν) − D̃λ
(m)Γ̃(νµ)

λ − (m)Γ̃σλ
λ
(m)Γ̃(νµ)σ + (m)Γ̃σω

(µ
(m)Γ̃ν)ωσ,

(D.19)

(m)R̃ = D̃µΓ̃
µ − D̃λ

(m)Γ̃µλ
µ − (m)Γ̃σλ

λ
(m)Γ̃µ

µσ + (m)Γ̃σωµ (m)Γ̃µωσ. (D.20)



Appendix E

Mathematica Program of CAFs

We denote the Mathematica code for calculating the CAFs of the C2-adjusted ADM and BSSN
formulation in flat spacetime.

E.1 CAFs of C2-adjusted ADM Formulation

ClearAll["\[<Global‘*\>"]

kk = k1*k1+k2*k2+k3*k3;

(*ADM*)

(* A is the original coefficient matrix of Fourier

transformed standard ADM *)

A={{0,-2*I*k1,-2*I*k2,-2*I*k3},{-1/2*I*k1,0,0,0},

{-1/2*I*k2,0,0,0},{-1/2*I*k3,0,0,0}};

(* B is the coefficient matrix of additional term

by C2-adjustment *)

B={{-4*kk*kk,0,0,0},{0,-kk-3*k1*k1,-3*k1*k2,-3*k1*k3},

{0,-3*k2*k1,-kk-3*k2*k2,-3*k2*k3},

{0,-3*k3*k1,-3*k2*k3,-kk-3*k3*k3}};

ev=Simplify[Eigenvalues[A+kappa*B]];

Print[ev];

E.2 CAFs of C2-adjusted BSSN Formulation

ClearAll["\[<Global‘*\>"]

k1 = 1; k2 = 0; k3 = 0;

kk = k1*k1 + k2*k2 + k3*k3;

lambdaPhi = lambda;

lambdaK = lambda;

lambdaGamma = lambda;

lambdaA = lambda;

lambdaCGamma = lambda;

hH = 1;

hM = 1;

A = {{0, 0, 0, 0, 0, 0, 0, -kk, 0}, {1/6*I*k1, 0, 0, 0, -1/2*kk, 0, 0,
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0, 0}, {1/6*I*k2, 0, 0, 0, 0, -1/2*kk, 0, 0, 0}, {1/6*I*k3, 0, 0,

0, 0, 0, -1/2*kk, 0, 0}, {0, 2, 0, 0, 0, 0, 0, -I*k1, 0}, {0, 0,

2, 0, 0, 0, 0, -I*k2, 0}, {0, 0, 0, 2, 0, 0, 0, -I*k3, 0}, {0, 0,

0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, -2, 0}};

B = {{hH*(-128*lambdaPhi*kk*kk - 3/2*lambdaGamma*kk*kk -

2*lambdaCGamma*kk), 0, 0, 0,

hG*(1/2*I*lambdaGamma*kk*k1 - 2*I*lambdaCGamma*k1),

hG*(1/2*I*lambdaGamma*kk*k2 - 2*I*lambdaCGamma*k2),

hG*(1/2*I*lambdaGamma*kk*k3 - 2*I*lambdaCGamma*k3),

0, -3*hS*lambdaGamma*kk}, {0,

hM*(-8/9*lambdaK*k1*k1 - lambdaA*kk - lambdaA*k1*k1),

hM*(-8/9*lambdaK*k1*k2 - lambdaK*k1*k2),

hM*(-8/9*lambdaK*k1*k3 - lambdaK*k1*k3), 0, 0,

0, -2*I*hA*lambdaA*k1, 0}, {0,

hM*(-8/9*lambdaK*k2*k1 - lambdaK*k2*k1),

hM*(-8/9*lambdaK*k2*k2 - lambdaA*kk - lambdaK*k2*k2),

hM*(-8/9*lambdaK*k2*k3 - lambdaK*k2*k3), 0, 0,

0, -2*I*hA*lambdaA*k2, 0}, {0,

hM*(-8/9*lambdaK*k3*k1 - lambdaK*k3*k1),

hM*(-8/9*lambdaK*k3*k2 - lambdaK*k3*k2),

hM*(-8/9*lambdaK*k3*k3 - lambdaA*kk - lambdaK*k3*k3), 0, 0,

0, -2*I*hA*lambdaA*k3,

0}, {hH*(-1/2*I*lambdaGamma*k1*kk + 2*I*lambdaCGamma*k1), 0, 0, 0,

hG*(-lambdaGamma*kk - 1/2*lambdaGamma*k1*k1 - 2*lambdaCGamma),

hG*(-1/2*lambdaGamma*k1*k2), hG*(-1/2*lambdaGamma*k1*k3),

0, -I*lambdaGamma*hS*

k1}, {hH*(-1/2*I*lambdaGamma*k2*kk + 2*I*lambdaCGamma*k2), 0, 0,

0, hG*(-1/2*lambdaGamma*k2*k1),

hG*(-lambdaGamma*kk - 1/2*lambdaGamma*k2*k2 - 2*lambdaGamma),

hG*(-1/2*lambdaGamma*k2*k3),

0, -I*lambdaGamma*hS*

k2}, {hH*(-1/2*I*lambdaGamma*k3*kk + 2*I*lambdaCGamma*k3), 0, 0,

0, hG*(-1/2*lambdaGamma*k3*k1), hG*(-1/2*lambdaGamma*k3*k2),

hG*(-lambdaGamma*kk - 1/2*lambdaGamma*k3*k3 - 2*lambdaGamma),

0, -I*lambdaGamma*hS*k3}, {0, 2*hM*lambdaA*I*k1,

2*hM*lambdaA*I*k2, 2*hM*lambdaA*I*k3, 0, 0, 0, -6*hA*lambdaA,

0}, {-3 hH*lambdaGamma*kk, 0, 0, 0, hG*lambdaGamma*I*k1,

hG*lambdaGamma*I*k2, hG*lambdaGamma*I*k3, 0, -6 hS*lambdaGamma}};

ev = Simplify[Eigenvalues[A + B]];

Print["Change the Coefficient of the G-Constraint"]

gG1 = Plot3D[

Re[ev[[1]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]

gG2 = Plot3D[

Re[ev[[2]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]

gG3 = Plot3D[

Re[ev[[3]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]

gG4 = Plot3D[
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Re[ev[[4]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]

gG5 = Plot3D[

Re[ev[[5]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]

gG6 = Plot3D[

Re[ev[[6]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]

gG7 = Plot3D[

Re[ev[[7]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]

gG8 = Plot3D[

Re[ev[[8]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]

gG9 = Plot3D[

Re[ev[[9]] /. {hS -> 1, hA -> 1}], {lambda, 0, 1}, {hG, 0, 10}]

Print["Change the Coefficient of the A-Constraint"]

gA1 = Plot3D[

Re[ev[[1]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]

gA2 = Plot3D[

Re[ev[[2]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]

gA3 = Plot3D[

Re[ev[[3]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]

gA4 = Plot3D[

Re[ev[[4]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]

gA5 = Plot3D[

Re[ev[[5]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]

gA6 = Plot3D[

Re[ev[[6]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]

gA7 = Plot3D[

Re[ev[[7]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]

gA8 = Plot3D[

Re[ev[[8]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]

gA9 = Plot3D[

Re[ev[[9]] /. {hS -> 1, hG -> 1}], {lambda, 0, 1}, {hA, 0, 10}]

Print["Change the Coefficient of the S-Constraint"]

gS1 = Plot3D[

Re[ev[[1]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]

gS2 = Plot3D[

Re[ev[[2]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]

gS3 = Plot3D[

Re[ev[[3]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]

gS4 = Plot3D[

Re[ev[[4]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]

gS5 = Plot3D[

Re[ev[[5]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]

gS6 = Plot3D[

Re[ev[[6]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]

gS7 = Plot3D[

Re[ev[[7]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]

gS8 = Plot3D[

Re[ev[[8]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]
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gS9 = Plot3D[

Re[ev[[9]] /. {hG -> 1, hA -> 1}], {lambda, 0, 1}, {hS, 0, 10}]
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