BARHRF RSB AP L5078

g2
L
Vi

a3 BE =

m X & H

A Study on Source Code Reengineering
Frameworks Supporting Multiple
Programming Languages

b= ({1[1

BEOTa 7T I T EEICINT S Y — A
a— R P=T VT T —AT—7|Z

ES Y v
R
EN —

Kazunori SAKAMOTO

17 SRR T2 R
EEEY 7 U =7 LT
2012 % 12 A
(ZHEBFESTL2HB LB EFEAZRLAN)

Program source code reengineering is one of key technologies in software development for
improving software quality with low costs. For example, software metrics are important
indicators for assessing software quality which are acquired by analyzing source code, test
coverage is also an important indicator for assessing test quality which is acquired by
transforming source code to store execution logs and an AOP (aspect-oriented programming)
processor makes source code high modularity by weaving aspects into source code. Such means
are based on source code reengineering and many kinds of reengineering tools exist.

Programming languages have become more diversified. There are many paradigms of
programming languages: statically-typed / dynamically-typed, imperative / declarative, functional
/ logic and object-oriented / aspect-oriented / context-oriented. Software development using
multiple programming languages is required because each programming language has an area of
specialty and programmers choose suitable programming languages for each project. In particular,
web applications are based on the client-server model and usually use three programming
languages: HTML, JavaScript and another programming language. The development of web
applications has been more and more frequent with the popularization of the Internet. The tools
therefore are required to support multiple programming languages for such development.

However, there are two problems in existing tools. (1) It requires high costs to develop tools
supporting multiple programming languages due to the variety of programming languages. Many
tools thus support few programming languages and the users receive only little benefits from the
tools. (2) There are differences between tools supporting different programming languages
because each tool is developed for specific programming languages and supports few
programming languages. For example, measurement tools of test coverage, Cobertura supports
only Java and Coverage.py supports only Python. However, there is no tool which measures test
coverage for TypeScript, thus, programmers cannot measure test coverage for TypeScript.
Moreover, whereas Cobertura supports statement coverage and decision coverage, Statement
coverage for Python supports only statement coverage. It is difficult to measure decision coverage
for web applications using Java and Python. Therefore, means are required to reduce
development costs of tools supporting multiple programming languages and to reduce
inconsistency between tools.

To solve the problems, this thesis proposes a novel two frameworks called OCCF (Open Code
Coverage Framework) and UNICOEN (Unified Code Reengineering Framework). OCCF is a
consistent, flexible and complete framework for measuring test coverage supporting multiple
programming languages. UNICOEN is a framework developed by generalizing OCCF for
reengineering source code supporting multiple programming languages.

The thesis consists of 6 chapters.

Chapter 1 “Introduction” states the objective this research with research background. This
chapter also defines the research area of the thesis by referring related works.

No.1

Chapter 2 “Software Development Using Multiple Programming Languages” describes the
situation where software development using multiple programming languages is required. This
chapter summarizes programming language paradigms and shows the relation of application
types and suitable programming languages. The chapter also describes the importance of
researches to overcome the variety of programming languages.

Chapter 3 “OCCF (Open Code Coverage Framework): A Consistent and Flexible Framework for
Measuring Test Coverage Supporting Multiple Programming Languages” describes the proposed
framework called OCCF. Existing measurement tools have four problems. (1) Developing
measurement tools supporting multiple programming languages requires high costs. There is no
free measurement tool for legacy and new programming languages such as COBOL and Kotlin.
Such situation makes it difficult to maintain and introduce legacy and new programming
languages. (2) Existing tools, which support different programming languages, measure also
different coverage criteria. The difference makes it difficult to introduce test coverage for software
using multiple programming languages such as web applications. (3) It is difficult customize
existing measurement tools for utilizing special coverage criteria. The effort to add new coverage
criteria in the tools is significant. (4) Some existing tools insert measurement code into compiled
binary file to measure test coverage. However, this way misses dead code because the compiler
optimization removes any dead code. Users therefore cannot notice dead code from the result of
test coverage. To overcome the problems, OCCF reduces development costs of measurement tools
by providing reusable architecture and code. The reusable architecture and code help users to
implement tools supporting consistent coverage criteria: statement coverage, decision coverage,
condition coverage, condition/decision coverage. OCCF also provides hot spots to customize
coverage criteria. Moreover, OCCF inserts the measurement code into source code and allows user
to notice the existence of dead code. The effectiveness of OCCF is evaluated by experiments in the
chapter. As a result of the experiments and the application, OCCF alleviates problems.

Chapter 4 “An Application of OCCF for Minimizing Test Cases Based on Test Coverage”
describes a tool developed with OCCF. The tool minimizes test cases by judging whether a test
case is duplicated with other test cases based on test coverage. The tool considers that the test
case which executes the same elements of production code executed by other test cases is
duplicated in terms of suitable test coverage to measure such elements. This chapter also
describes the evaluation of the tool through applications in existing open source software. As a
result of the application development, this chapter shows the effectiveness of OCCF.

Chapter 5 “UNICOEN (Unified Code Reengineering Framework): A Unified Framework for
Code Reengineering Supporting Multiple Programming Languages” describes the proposed
framework called UNICOEN. UNICOEN generalizes OCCF to support not only tools for
measuring test coverage and also tools for analyzing and transforming source code. Existing tools
have two problems. (1) Although some previous works propose frameworks for developing tools
which reengineers source code, there is no framework which provides common language model

No.2

with API of both analysis and transform and which allows users to extend supports of
programming languages. Therefore, some programming languages have no tool for analyzing or
transforming. For example, Lint, JSLint and Pyklint are static analyzers for finding bugs. They
support C, JavaScript and Python respectively. However, no tool supports Ruby. (2) Many
programmers use many programming languages. In particular, most developers of open source
software use more than three programming languages. However, there are differences between
existing tools, which supports different programming languages. For example, Aspectd supporting
Java and AOJS supporting JavaScript are AOP language processors. Aspectd and AOJS support
different join points and provide different grammars for writing aspects. Users therefore should
learn the both grammars to introduce AOP in development of web applications using Java and
JavaScript. To solve the problems, UNICOEN provides common language model, called UCM
(Unified Code Model). UCM is developed by adding elements of seven programming languages: C,
C#, Java, Visual Basic, JavaScript, Python and Ruby. UCM thus can represent source code of the
seven programming languages in common model similarly. UNICOEN defines UCM in terms of
syntaxes. UNICOEN assumes that similar syntax have similar semantics between different
programming languages. Although UNICOEN cannot interpret semantics of all elements from
syntax completely, most elements can be distinguished and can be interpreted because the
assumption is valid for most cases. This feature dramatically reduces costs for adding new
supports of programming languages compared to other frameworks which interpret semantics.
UNICOEN provides two kinds of API for adding supports of programming languages in
UNICOEN and for developing tools for reengineering source code. The API provides reusable code
and useful methods similar to LINQ in .NET framework. UNICOEN therefore reduces costs for
developing tools by providing such API for reengineering source code. The chapter also describes
measurement tool of cyclomatic complexity with UNICOEN for evaluating UNICOEN. In
comparison to a similar tool for Ruby, the tool with UNICOEN has less lines of code and supports
more programming languages. Moreover, the chapter describes evaluations in comparison to
programming languages processors and other frameworks. The evaluations indicate that
UNICOEN reduces costs to add new programming language supports and to develop tools
supporting multiple programming languages. As a result, OCCF alleviates problems.

Chapter 6 “An Application of UNICOEN for Aspect-Oriented Programming Processors”
describes a tool developed with UNICOEN. The tool is an AOP processor supporting seven
programming languages supported by UNICOEN, called UniAspect. UniAspect provides four join
points for supported programming languages similarly: call, execution, get and set. UniAspect
also provides aspects which contain language-independent pointcuts and a set of advices written
in each programming languages to weave. UniAspect language-independently weaves the aspects
into source code by modifying objects on UCM. As a result of UniAspect development, this chapter
shows the effectiveness of UNICOEN.

Chapter 7 “Conclusions” concludes the thesis and explains future works.

No.3

No.

BEmEXRE #t (TF) ZFUHFE REEE

K 4

WA —3& EL

(2012 4E 11 H BifE)

il

A A - FATHHHRGE FEIR - FATHA . wHE (REEEET)

1.
(1)
O

(2)
O

(3)

(4)

2. HTH
(EBR 8

(1)

(2)

(3)

(4)

(5)

(6)

WAR—&, KGN, KB, BIESLE, EER®E, "UNICOEN: 7 n /oI 075
FEX DY — A a— FUFL 7 L— AU —7 7 [P S5 CEE, 54-2, 15 pages,
2013. (Fg#E)

WA—, KIEW, BIRILE, RERE, "a ta—F LAY —D7Fa T MEKRE
BLTHWEY Y —L7 Ty N7+ —L20OREXETH 7 L—LTU—7 " EIEHRE
252 #50EE, Vol. J95-D, No. 3, pp.412-424, March 2012.

B SLE, SR, KEEM th 74, "THA R F = DY T N 2T TR
DERA, T A Ea—% YT by =T, Vol.29, No.1, pp.130-146, January 2012.

Kazunori Sakamoto, Fuyuki Ishikawa, Hironori Washizaki, and Yoshiaki Fukazawa,
“Open Code Coverage Framework: A Framework for Consistent, Flexible and Complete
Measurement of Test Coverage Supporting Multiple Programming Languages,” IEICE
Transactions on Information and Systems, Vol.E94-D, No. 12, pp.2418-2430, December
2011.

Ryushi Shiohama, Hironori Washizaki, Shin Kuboaki, Kazunori Sakamoto, and Yoshiaki
Fukazawa, “Estimate of the appropriate iteration length in agile development by
conducting simulation,” pp.41-50, Agile, August 2012.

Reisha Humaira, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa,
"Towards a Unified Source Code Measurement Framework Supporting Multiple
Programming Languages, ” The 24th International Conference on Software Engineering
and Knowledge Engineering, pp.480-485, July 2012.

Akira Ohashi, Kazunori Sakamoto, Tomoyuki Kamiya et al. (4 other authors),
“UniAspect: A Language—Independent Aspect—Oriented Programming Framework, ” The 2nd
Workshop on Modularity in Systems Software, pp.39-44, March 2012.

Yuto Nakamura, Kazunori Sakamoto, Kiyohisa Inoue, Hironori Washizaki, and Yoshiaki
Fukazawa, “Evaluation of Understandability of UML Class Diagrams by Using Word
Similarity,” The 6th International Conference on Software Process and Product
Measurement, pp.178-187, November 2011.

Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa, “Open Code Coverage
Framework: A Consistent and Flexible Framework for Measuring Test Coverage
Supporting Multiple Programming Languages,” 10th International Conference on
Quality Software, pp.262-269, July 2010.

Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa, “Reporting the

4

Implementation of a Framework for Measuring Test Coverage based on Design Patterns, ”
3rd International Workshop on Software Patterns and Quality, pp.16-20, 2009.

No.

BEmEXRE #t (TF) ZFUHFE REEE

il

A K - FATHRGES FEIR - FATHA . wHHE (FEEEET)

2. RV
(R
UL
(1) O

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

WA —&, W, WATRME, BRAE, EERE, "Web 77V O@AFHZIZER L
2T Vv—Ry IV ARET AN T T L — NEEI ALy VORE,” F19E V7 Y
=7 LHRORMT — 7 g v 7505, 8 pages, December 2012. (¥8##~7E. IEEE CS
Japan Chapter Young Researcher Award)

FHAY, WA—E, BRILE, RERE, "DePol: Web 77U r—i a7 A MBI
HF A Na— RHBVERT AT 4o 77 —2U—27 " § 198 VY7 =7 LS5O
Mo —7 v g v TitE, 8 pages, December 2012. (3E#HE)

PWAR—&, KIEW, KERKH, BRLE, FEERE®E, "UNICOEN: 7 /oI 075
FEXHSD Y — A a— N7 L — AT —7 ")T N 2T =T TR Y Y
2 2012 G SCEE, pp. 1-8, August 2012.

Reisha Humaira, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa, “A
Unified Source Code Measurement Tool Supporting Multiple Programming Languages, ”
T4 H—T—T g w7 2012, pp. 56, January 2012.

MRETT, WA—FE, KEWR, BEILE, WERY, "Hkoon 7 7 I v 7 EiElcks
TAYERRERY 7y 0 2V TV, U B —T— 7 gy 2012,
pp. 2324, January 2012.

Kazunori Sakamoto, Akira Ohashi, Masaya Shimizu, Shuhei Takahashi, Shinich
Murakami, Hironori Washizaki, and Yoshiaki Fukazawa, “A Pattern Language for
Programming Contest through Fight between Computer Players,” 2nd Asian Conference
on Pattern Languages of Programs, pp.1-18, October 2011.

WAR—%&, BBEG, M w1, BEIREA, BAART, KUiE— 24, "Web 77
r—oa VEIRICBIT ABEEAEEB LT X MEBEEO ABVERTFIE LR 2k 2
WEORR,” V7 N2 T B R Y A 2011 #CE, pp. 1-8, September 2011.

Kazunori Sakamoto, Takuto Wada, Hironori Washizaki, and Yoshiaki Fukazawa, ”7
ARIRN Ly NCHESILS T A ha— ROFHRK /XX —>,” 1st Asian Conference on
Pattern Languages of Programs, pp.11-15, March 2010.

HiEEE, A&, ARKE, BIFGLE, EEBERE, "7 VYA VERICEIT 5yl
AT VL—ya BB Ial—ya il LA AHE,” VY7 by T =T) Ty
VIRY T A 2011 FwCEE, pp. 1-6, September 2011.

WAR—3F, FIHEAN, BIFLE, WERE, "7 A NIV y VICESSEEHT A ba—
FoBEY —n,” V7 27227)7 RT T A 2010 # SCEE,
pp. 133-138, September 2010. (= ¥ o — & A1 T ZAEBEEENE)

WAR—E, BRLE, WERE, "TAT 477 —AU—J I ZBITHREEEE, " FH
170 V7 " T LREORBU — 7 29 v 750, pp. 193-194, November 2010.

BEmEXE #t (I%)

No.

FALHTE MIRERE

il

A FE# - FEATHRHRGE FEIR - FATHA . wHHE (FEEEET)

(18)
O

2. WA
(WFoEs)
(19)

(20)

(21)

(22)

(23)

(24)
O

(25)
O

(26)

3. HE
(1)

4. FOfh
(RAZ—)
(1)
(Al TE)
(2)

(B F=
7)) (3)

WA &, BRILE, WRRRE, "R E8EBT 077 I IS0 T A ML
Y VRET L— LU — 7'%%8@hﬁﬂ%ﬁm7ﬁ 7 L 3CEE, pp. 103-112, 2009.
(FRHARZ P R="—H T 7V —F v —H)

WWEBLEZL—Ry
=, pp.l 8, May 2012.

WAR—, WSz, 34, "Web 77V 7 —3 9 OERIES
I ARET A NORE, " EWAELTAE 176 0] SE PR FES

PR —7, KRIEME, KHEKH, ”M%E,%EE%,mmmM'@ﬁfmfﬁ‘yfi
Dﬁm@/ Aa— RV 7 L— AT —7 " RS H 88 M7 /T 2 v Ji4ge
HFEA . pp. 46-46, March 2012.

Kazunori Sakamoto, Takuto Wada, Hironori Washizaki, and Yoshiaki Fukazawa, ”“A Tool
For Detecting Duplicated Test Code Based On Test Coverage to Assist TDD,” &
HHBETRY 7 by =T A = AWFFE4, pp. 41-46, June 2011.

ﬁ$#%,%hﬁﬁfmh%”QMKZmeﬂﬁ%%%ﬁitiﬁ_ﬁ?é?zhﬁﬂ
Ly VHIEY =V, BARY 7 b = 7R E 27 81 K4S, pp. 153-158, September 2010.

WA, KB 104, Al Va7 73078 L CEMT 28BS 7S —LY AT
DL 7 2T N =" VT R 2T DONRNE = T =T T F ¥ « TV
A VBHZE, EHAAETS Y 7 Ny = 7 TSRS, pp. 7, August 2010.

WA—F 84, "Al 7u /I 2B LTEMTAHBEMT S —LL AT AL
27 2T T =X T Ty, F—LA%E 3RS, pp. 10-15, March 2010.

WA —%, BIRLE, BERY, "HMBOSEET LV ERWEEE T 7T v T E5E
JoDT A RNy DHETZ L= T =2, HIET A X HE TV AT AT —T Vg
v 7, BRY 7 b =T RS, pp. 167-170, July 2009.

THRIESR, WA —F, BHILE, BEBERE, "7Y'n /7720 EICERLE
Fault-Localization &7 /N 732 4%, 7 {55438k, SS2011-73, pp. 97-102, 2012.

SR MEE—, HEEPHEA, KHEKRH, IKA—F, /N 2%, JHZE:William C. Wake et al.,
”U777&Uyﬁ&myiﬁv—77/7/’t?//mﬁ,mmmwzma

YR —%&, Al 7RI I 7Rl LTBINT 2HE TS — LY AT M LY T
Ny =77 —%727F¥,” CESAT X vy /X—F 75 LA 2010, August 2010.

WAR—E, "THART A N — U ZBIT 5EESTE IO FE] & T3 v DR O BT
m,” HAF 7F7A4_X— ht&IF7—2012F, November 2012.

FHZE, FEBEE, BR5LE, WA th, 477 MEREMBIR AN
Tl T —HEDODAER S X2 T A SCERRE R E, 2000.

