
A Study on Source Code

Reengineering Frameworks Supporting

Multiple Programming Languages

複数のプログラミング言語に対応する

ソースコードリエンジニアリング

フレームワークに関する研究

by

Kazunori Sakamoto

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree

of
Doctor of Engineering

Graduate School of Science and Engineering
Waseda University

March 2013

A Study on Source Code Reengineering Frameworks

Supporting Multiple Programming Languages

by

Kazunori Sakamoto

Submitted to the Department of Computer Science and Engineering
on February 18, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Engineering

Abstract

Program source code reengineering is one of key technologies in software develop-
ment for improving software quality with low costs. For example, software metrics
are important indicators for assessing software quality which are acquired by ana-
lyzing source code, test coverage is also an important indicator for assessing test
quality which is acquired by transforming source code to store execution logs and an
AOP (aspect-oriented programming) processor makes source code high modularity by
weaving aspects into source code. Such means are based on source code reengineering
and many kinds of reengineering tools exist.

Programming languages have become more diversified. There are many paradigms
of programming languages: statically-typed / dynamically-typed, imperative / declar-
ative, functional / logic and object-oriented / aspect-oriented / context-oriented.
Software development using multiple programming languages is required because each
programming language has an area of specialty and programmers choose suitable pro-
gramming languages for each project. In particular, web applications are based on the
client-server model and usually use three programming languages: HTML, JavaScript
and another programming language. The development of web applications has been
more and more frequent with the popularization of the Internet. The tools therefore
are required to support multiple programming languages for such development.

However, there are two problems in existing tools. (1) It requires high costs to
develop tools supporting multiple programming languages due to the variety of pro-
gramming languages. Many tools thus support few programming languages and the
users receive only little benefits from the tools. (2) There are differences between tools
supporting different programming languages because each tool is developed for spe-
cific programming languages and supports few programming languages. For example,
measurement tools of test coverage, Cobertura supports only Java and Coverage.py
supports only Python. However, there is no tool which measures test coverage for
TypeScript, thus, programmers cannot measure test coverage for TypeScript. More-
over, whereas Cobertura supports statement coverage and decision coverage, State-
ment coverage for Python supports only statement coverage. It is difficult to measure

decision coverage for web applications using Java and Python. Therefore, means
are required to reduce development costs of tools supporting multiple programming
languages and to reduce inconsistency between tools.

To solve the problems, this thesis proposes a novel two frameworks called OCCF
(Open Code Coverage Framework) and UNICOEN (Unified Code Reengineering Frame-
work). OCCF is a consistent, flexible and complete framework for measuring test
coverage supporting multiple programming languages. UNICOEN is a framework
developed by generalizing OCCF for reengineering source code supporting multiple
programming languages.

The thesis consists of 6 chapters.
Chapter 1 “Introduction” states the objective this research with research back-

ground. This chapter also defines the research area of the thesis by referring related
works.

Chapter 2 “Software Development Using Multiple Programming Languages” de-
scribes the situation where software development using multiple programming lan-
guages is required. This chapter summarizes programming language paradigms and
shows the relation of application types and suitable programming languages. The
chapter also describes the importance of researches to overcome the variety of pro-
gramming languages.

Chapter 3 “OCCF (Open Code Coverage Framework): A Consistent and Flexible
Framework for Measuring Test Coverage Supporting Multiple Programming Lan-
guages” describes the proposed framework called OCCF. Existing measurement tools
have four problems. (1) Developing measurement tools supporting multiple program-
ming languages requires high costs. There is no free measurement tool for legacy
and new programming languages such as COBOL and Kotlin. Such situation makes
it difficult to maintain and introduce legacy and new programming languages. (2)
Existing tools, which support different programming languages, measure also differ-
ent coverage criteria. The difference makes it difficult to introduce test coverage for
software using multiple programming languages such as web applications. (3) It is
difficult customize existing measurement tools for utilizing special coverage criteria.
The effort to add new coverage criteria in the tools is significant. (4) Some existing
tools insert measurement code into compiled binary file to measure test coverage.
However, this way misses dead code because the compiler optimization removes any
dead code. Users therefore cannot notice dead code from the result of test cover-
age. To overcome the problems, OCCF reduces development costs of measurement
tools by providing reusable architecture and code. The reusable architecture and
code help users to implement tools supporting consistent coverage criteria: statement
coverage, decision coverage, condition coverage, condition/decision coverage. OCCF
also provides hot spots to customize coverage criteria. Moreover, OCCF inserts the
measurement code into source code and allows user to notice the existence of dead
code. The effectiveness of OCCF is evaluated by experiments in the chapter. As a
result of the experiments and the application, OCCF alleviates problems.

Chapter 4 “An Application of OCCF for Minimizing Test Cases Based on Test
Coverage” describes a tool developed with OCCF. The tool minimizes test cases by
judging whether a test case is duplicated with other test cases based on test coverage.

The tool considers that the test case which executes the same elements of production
code executed by other test cases is duplicated in terms of suitable test coverage
to measure such elements. This chapter also describes the evaluation of the tool
through applications in existing open source software. As a result of the application
development, this chapter shows the effectiveness of OCCF.

Chapter 5 “UNICOEN (Unified Code Reengineering Framework): UNICOEN: A
Unified Framework for Code Reengineering Supporting Multiple Programming Lan-
guages” describes the proposed framework called UNICOEN. UNICOEN generalizes
OCCF to support not only tools for measuring test coverage and also tools for ana-
lyzing and transforming source code. Existing tools have two problems. (1) Although
some previous works propose frameworks for developing tools which reengineers source
code, there is no framework which provides common language model with API of both
analysis and transform and which allows users to extend supports of programming
languages. Therefore, some programming languages have no tool for analyzing or
transforming. For example, Lint, JSLint and Pyklint are static analyzers for finding
bugs. They support C, JavaScript and Python respectively. However, no tool sup-
ports Ruby. (2) Many programmers use many programming languages. In particular,
most developers of open source software use more than three programming languages.
However, there are differences between existing tools, which supports different pro-
gramming languages. For example, AspectJ supporting Java and AOJS supporting
JavaScript are AOP language processors. AspectJ and AOJS support different join
points and provide different grammars for writing aspects. Users therefore should
learn the both grammars to introduce AOP in development of web applications using
Java and JavaScript. To solve the problems, UNICOEN provides common language
model, called UCM (Unified Code Model). UCM is developed by adding elements of
seven programming languages: C, C#, Java, Visual Basic, JavaScript, Python and
Ruby. UCM thus can represent source code of the seven programming languages in
common model similarly. UNICOEN defines UCM in terms of syntaxes. UNICOEN
assumes that similar syntax have similar semantics between different programming
languages. Although UNICOEN cannot interpret semantics of all elements from syn-
tax completely, most elements can be distinguished and can be interpreted because
the assumption is valid for most cases. This feature dramatically reduces costs for
adding new supports of programming languages compared to other frameworks which
interpret semantics. UNICOEN provides two kinds of API for adding supports of pro-
gramming languages in UNICOEN and for developing tools for reengineering source
code. The API provides reusable code and useful methods similar to LINQ in .NET
framework. UNICOEN therefore reduces costs for developing tools by providing such
API for reengineering source code. The chapter also describes measurement tool of
cyclomatic complexity with UNICOEN for evaluating UNICOEN. In comparison to
a similar tool for Ruby, the tool with UNICOEN has less lines of code and supports
more programming languages. Moreover, the chapter describes evaluations in com-
parison to programming languages processors and other frameworks. The evaluations
indicate that UNICOEN reduces costs to add new programming language supports
and to develop tools supporting multiple programming languages. As a result, OCCF
alleviates problems.

Chapter 6 “An Application of UNICOEN for Aspect-Oriented Programming Pro-
cessors” describes a tool developed with UNICOEN. The tool is an AOP processor
supporting seven programming languages supported by UNICOEN, called UniAspect.
UniAspect provides four join points for supported programming languages similarly:
call, execution, get and set. UniAspect also provides aspects which contain language-
independent pointcuts and a set of advices written in each programming languages
to weave. UniAspect language-independently weaves the aspects into source code by
modifying objects on UCM. As a result of UniAspect development, this chapter shows
the effectiveness of UNICOEN.

Chapter 7 “Conclusions” concludes the thesis and explains future works.

Acknowledgments

To finish the work presented in this thesis, I owe much to a lot of persons. First,

I would like to thank Assoc. Prof. Hironori Washizaki for his supervisor and sup-

port on my research. This thesis was accomplished with the help of Prof. Yoshiaki

Fukazawa, Prof. Kazunori Ueda, Assoc. Prof. Kazuyuki Shudo as sub-examiners, and

other professors of the Department of Computer Science and Engineering, Waseda

University.

I also show sincere thanks to Assoc. Prof. Takashi Kobayashi (Department of

Computer Science, Tokyo Institute of Technology), Prof. Katsuhiko Kakehi (Depart-

ment of Computer Science and Engineering, Waseda University), Dr. Atsuto Kubo,

Mr. Daigo Hamura (Google Japan Inc.), Mr. Kaizu Tomohiro (Google Japan Inc.),

Mr. Daichi Ota (ACCESS CO., LTD.), Mr. Akira Ohashi (Sony Corporation), Mr.

Iwasawa Hiroki (Yahoo Japan Corporation) and Mr. Kazuki Eguchi (Yahoo Japan

Corporation). Plenty of discussions and advice have simulated and deepened my

research analysis.

A part of this thesis was accomplished with the help of the member in Washizaki

Laboratory, Fukazawa Laboratory and Ueda Laboratory, Waseda University. I would

like to thank Mr. Satoru Uchiyama, Mr. Yuki Shiroma, Mr. Yutaro Nomoto, Mr.

Akihiko Syoyama, Mr. Yuto Nakamura, Mr. Masaya Shimizu, Mr. Syuhei Takahashi,

Mr. Shinichi Murakami, Ms. Reisha Humaria, Mr. Kiyofumi Shimojo, Mr. Ryushi

Shiohama, Mr. Tomoyuki Kamiya, Mr. Masahiko Wada, Mr. Satoshi Arai, Mr.

Shohei Aoi, Mr. Seiji Sato, Mr. Fumiya Kato, Mr. Ryohei Takasawa, Mr. Koichi

Takano and Mr. Naoki Yaguchi. I am also thankful to all staffs and members in

Washizaki Laboratory and Fukazawa Laboratory.

This thesis has been partially supported by the funds of IPA Mitou-youth project,

ROHM Co., Ltd., Benesse Corporation and The Foundation of Ando Laboratory.

Also, many (anonymous) referees contributed to the improvement of this thesis via

conferences and paper submissions.

Finally, I would like to thank my wife, Keiko, and my family for their support.

7

Contents

Cover page 1

Abstract 3

Acknowledgments 7

Contents 9

List of Figures 15

List of Tables 19

1 Introduction 21

1.1 Background . 21

1.2 Programming languages . 22

1.3 Current state of source code reengineering 23

1.3.1 Test coverage . 23

1.3.2 Software metrics . 28

1.3.3 Aspect-oriented programming 32

2 Software Development Using Multiple Programming Languages 33

2.1 Distributed system which components run on different environments . 34

2.2 Applications across different problem areas 35

2.3 Execution environment supporting multiple programming languages . 36

9

3 Open Code Coverage Framework: A Framework for Consistent,

Flexible and Complete Measurement of Test Coverage Supporting

Multiple Programming Languages 39

3.1 Introduction of this chapter . 39

3.2 Existing tools and conventional measurement approaches 42

3.3 Problems with conventional measurement approaches 43

3.3.1 P1: Cost of new development . 43

3.3.2 P2: Cost of maintenance . 43

3.3.3 P3: Inconsistency in measurement 44

3.3.4 P4: Inflexibility in measurement 45

3.3.5 P5: Incompleteness in measurement 45

3.4 Framework for measuring coverage supporting multiple programming

languages . 46

3.4.1 Measurement approach of OCCF 46

3.4.2 Overview of OCCF . 48

3.5 Implementation of OCCF . 50

3.5.1 Code-insertion subsystem . 50

3.5.2 Code-execution subsystem . 58

3.5.3 Coverage-display subsystem . 58

3.6 Evaluation . 60

3.6.1 Reduced cost of new developments 62

3.6.2 Reduced maintenance cost . 65

3.6.3 Consistency in measurement . 67

3.6.4 Flexibility in measurement . 68

3.6.5 Completeness in measurement 68

3.6.6 Time efficiency . 69

3.7 Limitations . 69

3.8 Related work . 70

3.9 Conclusion of this chapter . 71

10

4 Case study of OCCF: A Tool Detecting Duplicated Test Code Based

On Test Coverage Supporting Multiple Programming Languages 73

4.1 Introduction of this chapter . 73

4.2 Problem with existing detection techniques 75

4.2.1 P1: Detection technique based on syntax 75

4.2.2 P2: Detection technique that can not adjust detection criteria . 76

4.2.3 P3: Inconsistent detection technique by writing test code 76

4.2.4 P4: Support only of one programming language 77

4.2.5 P5: High computational complexity 77

4.3 Detection of duplicated test code based on coverage 77

4.3.1 Kind of coverage . 78

4.3.2 Definition of duplicated test code 79

4.3.3 Inclusion relation of test code based on coverage 81

4.3.4 Implementation of tool for detecting duplicated test code . . . 83

4.4 Detection experiment on duplicated test code with detection tool . . . 87

4.4.1 Application to illustrated production code and test code 87

4.4.2 Application to open source software 89

4.5 Evaluation . 90

4.5.1 S1: Detection technique based on semantics 90

4.5.2 S2: Detection technique that can adjust detection criteria . . . 90

4.5.3 S3: Consistent detection technique with writing test code . . . 91

4.5.4 S4: Support of multiple programming languages 91

4.5.5 S5: Low computational complexity 91

4.6 Limitations . 92

4.7 Related work . 92

4.8 Conclusion of this chapter . 93

5 UNICOEN: A Unified Framework for Code Reengineering Support-

ing Multiple Programming Languages 95

5.1 Introduction of this chapter . 95

11

5.2 Problems of existing tools . 97

5.2.1 P1: Enormous development costs 97

5.2.2 P2: Differences between tools 98

5.3 Overview of UNICOEN . 99

5.4 Implementation of UNICOEN . 101

5.4.1 Unified code model . 101

5.4.2 API for adding extensions for supporting new programming

language . 104

5.4.3 API for developing tools . 107

5.5 Evaluation . 109

5.5.1 Implementation of extensions for supporting programming lan-

guages . 109

5.5.2 Tool development with UNICOEN 110

5.6 Related works . 114

5.7 Conclusion of this chapter . 115

6 Case Study of UNICOEN: A Language-Independent Aspect-Oriented

Programming Framework 125

6.1 Introduction of this chapter . 125

6.2 Background . 127

6.3 Overview of UniAspect . 128

6.4 Unified Code Object . 130

6.5 Joinpoint Model . 131

6.5.1 Sample Program . 133

6.5.2 Pointcut . 134

6.5.3 Advice . 135

6.5.4 Intertype Declaration . 136

6.5.5 Association of Aspects and Source Code 137

6.6 Implementation . 137

6.6.1 Aspect Analyzer . 137

12

6.6.2 UCO Generator . 139

6.6.3 Weaver . 139

6.7 Case Study . 142

6.8 Related Work . 150

6.9 Conclusion of this chapter . 151

7 Conclusion 153

7.1 Summary . 153

7.2 Future Work . 154

Bibliography 157

List of Publications 169

13

List of Figures

2-1 Sample Xtend code for generating a getter and a setter 35

2-2 IronPython script for calculating suspiciousness scores using James et

al.’s metrics . 36

2-3 Screen shot of Game Software for JavaChallenge 2012 37

3-1 Simplification of connection between languages and coverage 40

3-2 Sample code of dead code in Java . 46

3-3 Overview of OCCF . 47

3-4 Overview of relation between user code, common code and external

program . 47

3-5 Sample code written in C prior to inserting the instrumentation code . 47

3-6 Sample code written in C after inserting the instrumentation code . . 48

3-7 Class diagram of AST-generation component in OCCF 52

3-8 PythonAstGenerator.cs . 52

3-9 CLackingBlockSelector.cs . 53

3-10 Class diagram of selector in OCCF . 54

3-11 ConditionalTermSelector.cs . 55

3-12 PythonConditionalTermSelector.cs . 56

3-13 Class diagram of code-generator component in OCCF 57

3-14 PythonCodeGenerator.cs . 58

3-15 GUI Reporter in coverage-display subsystem 59

3-16 LOCs for five different tools . 63

15

4-1 Inclusion relation between set of defects that can be found by dupli-

cated test code . 80

4-2 Production code of FizzBuzz problem written in Java 80

4-3 Test code of FizzBuzz problem written in JUnit4 81

4-4 Inclusion of test code . 82

4-5 Composition of detection tool . 83

4-6 Production code of FizzBuzz problem where measurement code was

inserted . 85

4-7 Test code of FizzBuzz problem where identification code was inserted . 86

4-8 Screen shot of detection tool for duplicated test code 87

5-1 Logging code for executing methods in AspectJ and AOJS 99

5-2 Overview of UNICOEN . 100

5-3 Illustration of selecting common elements 103

5-4 Part of unified code model in ASDL . 104

5-5 Process of conversion and reverse conversion between source code and

unified code objects . 105

5-6 C# Code to inter-convert between source code and unified code objects

with UNICOEN . 105

5-7 Class diagram of the unified code model and the API for tool developers107

5-8 C# code to enumerate “if” elements and enumerate unified code ob-

jects of “if” statement . 108

5-9 C# Code to count statements with UNICOEN 108

5-10 The number of statements for developing tools whose size is similar to

the size of Saikuro . 113

5-11 The number of statements for developing tools whose size is similar to

the size of PMCS . 113

5-12 Full definition of unified code model in extended ASDL (Part1) 122

5-13 Full definition of unified code model in extended ASDL (Part2) 123

5-14 Full definition of unified code model in extended ASDL (Part3) 124

16

6-1 Aspects for Web application . 128

6-2 Aspect example in AOJS . 128

6-3 Aspect example in AspectJ . 129

6-4 Aspect weaving by UniAspect . 130

6-5 Overview of UniAspect . 131

6-6 Example of unified code object . 132

6-7 Set of elements in unified code model 132

6-8 Example of aspect in UniAspect . 133

6-9 BNF for aspect in UniAspect . 138

6-10 Algorithm of weaving into execution joinpoint 140

6-11 Process of execution weaving . 140

6-12 BNF for Java . 141

6-13 BNF for JavaScript . 142

6-14 Function contains return statements . 142

6-15 Aspect using in case study . 143

6-16 Fragment of Java program in JsUnit before weaving aspect 145

6-17 Fragment of Java program in JsUnit after weaving aspect 146

6-18 Fragment of JavaScript program in JsUnit before weaving aspect . . . 147

6-19 Fragment of JavaScript program in JsUnit after weaving aspect 148

6-20 Result of server side logs . 149

6-21 Result of client side logs . 149

17

List of Tables

1.1 Classification of programming languages in terms of paradigms 24

1.2 Classification of programming languages in terms of functional features 25

1.3 Classification of programming languages which can work with other

languages (mainly Java) . 26

1.4 Classification of programming languages which can work with other

languages (mainly .NET) . 26

1.5 Classification of programming languages which can work with other

languages (mainly JavaScript) . 27

1.6 Comparison of coverage-measurement tools in terms of features 29

1.7 Comparison of coverage-measurement tools in terms of coverage criteria 30

1.8 Comparison of coverage-measurement tools in terms of supported pro-

gramming languages . 31

3.1 Summary of comparison . 59

3.2 Comparison of measurement results . 60

3.3 Number of people who implemented a coverage tool successfully and

average time required to implement . 64

3.4 Execution time on the millisecond time scale during software testing . 70

4.1 Inclusion relation of test code for FizzBuzz problem 88

4.2 Detection experiment on duplicated test code in open source software . 89

4.3 The score of mutation testing (N. detected mutations, org is original

test code) . 89

19

20

5.1 Comparison of the number of statements between OC mappers and

existing programming language processors: GCC, GCJ, Mono, Rhino,

IronPython, IronRuby . 110

5.2 Comparisons of the supported languages and the number of statements

between Saikuro and UniMetrics . 111

5.3 Comparisons of the supported languages and the number of statements

between PMCS and UniCodeWorld . 111

5.4 Elements in the unified code model for measuring McCabe complexity

and languages (L1:C, L2:Java, L3:C# and Visual Basic, L4:JavaScript,

L5:Ruby, L6:Python) . 112

5.5 Elements in the unified code model for generating the measurement

result for CodeCity complexity and languages (L1:C, L2:Java, L3:C#

and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python) 112

5.6 Comparison of UNICOEN with existing tools and frameworks 114

5.7 Elements in the unified code model and languages (Part 1) (L1:C,

L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python) 117

5.8 Elements in the unified code model and languages (Part 2) (L1:C,

L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python) 118

5.9 Elements in the unified code model and languages (Part 3) (L1:C,

L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python) 119

5.10 Elements in the unified code model and languages (Part 4) (L1:C,

L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python) 120

5.11 Elements in the unified code model and languages (Part 5) (L1:C,

L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python) 121

6.1 Relationship between languages and main elements in the unified code

object . 134

6.2 List of specifiable joinpoints . 134

6.3 Numbers of woven aspect . 144

6.4 Comparison of scattered log codes . 145

Chapter 1

Introduction

1.1 Background

Program-source-code reengineering, which is transforming source code by analyzing

the source code, is one of key technologies in software development for improving

software quality with low costs. Source-code reengineering provides various techniques

such as measuring test coverage [86], measuring software metrics [23, 52, 55] and

aspect-oriented programming (AOP) [20, 46, 48]. Test coverage is an important

indicator for assessing test quality which is acquired by transforming source code

to store execution logs. Software metrics are also important indicators for assessing

software quality which are acquired mainly by analyzing source code. AOP makes

source code high modularity by weaving aspects into source code to achieve separation

Of concerns. To put these techniques into practical use, many kinds of reengineering

tools were developed.

Source-code reengineering treats source code, which can be written in various

programming languages. The diversity of programming languages makes the structure

and contests of source code different. These differences cause the differences between

tools for reengineering source code. Consequently, the differences cause important

problems.

In this chapter, I describe the current problematic state of reengineering tools

after explaining the current state of programming languages.

22 CHAPTER 1. INTRODUCTION

1.2 Programming languages

Programming languages have become so diversified that 2500 programming languages

at least have been developed [50]. Tables 1.1 and 1.2 show the classification of major

programming languages with the following aspects: whether procedural or declara-

tive, whether statically typed or dynamically typed, whether object-oriented or not

and whether functional or not. Note that JavaScript supports prototype instead of

class and inheritance (* in Table 1.1) and C99 supports a pointer, which can be

considered as a parameter and a return value, instead of a function (* in Table 1.2).

Most programming languages developed recently have functional features. For

example, C++11, which was approved by ISO in 2011, have functional features such

as lambda functions and expressions to create anonymous functions. Scala, which

is being developed to replace Java, is a multi-paradigm programming language as it

supports functional, object-oriented and imperative programming. Although C++11

and Scala have new features, they have also traditional language features such as if

statements. In this way, programming languages has been evolving maintaining these

features.

As another trend of the times, numerous programming languages which work

with other programming languages are being developed. In particular, most of new

programming languages work with Java, .NET languages or JavaScript. Tables 1.3

and 1.4 show the lists of programming languages which work on Java virtual machines

and .NET Framework, respectively. Note that Java can work on .NET Framework

with IKVM.NET 1 which is an implementation of Java for .NET Framework (* in

Table 1.3), Java is partially convertible to JavaScript with Google Web Toolkit 2 (**

in Table 1.3) and C# is partially convertible to JavaScript with converters such as

SharpKit 3 and Script# 4 (* in Table 1.4. Java and .NET languages such as C# work

on virtual machines beyond operating systems. The virtual machines are developed

with Java and .NET languages. However, other programming languages are developed

1http://www.ikvm.net/
2https://developers.google.com/web-toolkit/
3http://sharpkit.net/
4http://scriptsharp.com/

1.3. CURRENT STATE OF SOURCE CODE REENGINEERING 23

for the virtual machines such that they run on various environments as well as Java

and .NET languages. Obviously, these programming languages are compatible with

Java or .NET languages through virtual machines. For example, Scala, which works

on the Java virtual machine, can invoke methods written in Java.

Table 1.5 shows the list of programming languages which are convertible to JavaScript.

Note that Haxe is convertible to many other programming languages such as C++,

PHP and C# (* in Table 1.5). JavaScript does not use virtual machines, while most

web browsers support JavaScript. Because numerous web browsers work on various

operating systems, JavaScrip also work on various operating systems. JavaScript is

widely used for implementing client applications which have GUI due to spread of

web applications and the growing popularity of smartphones and tablet PCs. How-

ever, JavaScript is prototype-based so that JavaScript is different with other popular

programming languages such as C++ and Java. Thus, programming languages which

are convertible to JavaScript are being developed. For example, CoffeeScript; which

is inspired by Python, Ruby and Haskell; is convertible to JavaScript program. In

this way, the programming languages in Tables 1.3, 1.4 and 1.5 aid developers to use

multiple programming languages.

1.3 Current state of source code reengineering

This section describes the current state of source code reengineering highlighting test

coverage.

1.3.1 Test coverage

Test coverage (also known as code coverage), which provides quantitative values for

assessing test adequacy, has various criteria such as statement coverage, decision cov-

erage, condition coverage, and condition/decision coverage. For example, statement

coverage is the ratio of statements that have been executed at least once from all

the statements. Based on the purpose of software testing, the developer selects the

suitable criterion [14].

24 CHAPTER 1. INTRODUCTION

Table 1.1: Classification of programming languages in terms of paradigms

Programming language Procedural / Type system Class and

Declarative inheritance

Pascal Procedural Statically typed No

COBOL85 Procedural Statically typed No

Fortan90 Procedural Statically typed No

C99 Procedural Statically typed No

C++11 Procedural Statically typed Yes

C# 4.0 Procedural Statically typed Yes

D 2.0 Procedural Statically typed Yes

Objective-C 2.0 Procedural Statically typed Yes

Java 7 Procedural Statically typed Yes

JavaScript Procedural Dynamically typed Yes(*)

CoffeeScript Procedural Dynamically typed Yes

TypeScript Procedural Statically typed Yes

Perl Procedural Dynamically typed Yes

PHP 5.3 Procedural Dynamically typed Yes

Python Procedural Dynamically typed Yes

Ruby Procedural Dynamically typed Yes

Lua Procedural Dynamically typed No

Groovy Procedural Dynamically typed Yes

Lisp Procedural Dynamically typed No

Scheme Procedural Dynamically typed No

ML Procedural Statically typed No

Scala Procedural Statically typed Yes

Kotlin Procedural Statically typed Yes

Nemerle Procedural Statically typed Yes

Haskell Declarative Statically typed No

SQL Declarative Statically typed No

Prolog Declarative Dynamically typed No

1.3. CURRENT STATE OF SOURCE CODE REENGINEERING 25

Table 1.2: Classification of programming languages in terms of functional features

Programming language Function as parameter Function as return value Closure

Pascal No Yes No

COBOL85 No No No

Fortan90 Yes Yes No

C99 Yes(*) Yes(*) No

C++11 Yes Yes Yes

C# 4.0 Yes Yes Yes

D 2.0 Yes Yes Yes

Objective-C 2.0 Yes Yes Yes

Java 7 No No No

JavaScript Yes Yes Yes

CoffeeScript Yes Yes Yes

TypeScript Yes Yes Yes

Perl Yes Yes Yes

PHP 5.3 Yes Yes Yes

Python Yes Yes Yes

Ruby Yes Yes Yes

Lua Yes Yes Yes

Groovy Yes Yes Yes

Lisp Yes Yes Yes

Scheme Yes Yes Yes

ML Yes Yes Yes

Scala Yes Yes Yes

Kotlin Yes Yes Yes

Nemerle Yes Yes Yes

Haskell Yes Yes Yes

SQL No No No

Prolog No No No

26 CHAPTER 1. INTRODUCTION

Table 1.3: Classification of programming languages which can work with other
languages (mainly Java)

Programming on JVM on .NET convertible to Other compatible

language Framework JavaScript languages

Java Yes Yes(*) Yes(**)

Scala Yes Yes No

Kotlin Yes Planned Yes

Xtend Yes No No

Ceylon Yes No Yes

Fantom Yes Yes Yes

Gosu Yes No No

Clojure Yes No No Lisp

Jython Yes No No Python

JRuby Yes No No Ruby

Table 1.4: Classification of programming languages which can work with other
languages (mainly .NET)

Programming on JVM on .NET convertible to Other compatible

language Framework JavaScript languages

C# No Yes Yes(*)

F# No Yes No

Visual Basic No Yes No

C++/CLI No Yes No

Nemerle No Yes Yes

IronPython No Yes No Python

IronRuby No Yes No Ruby

IronScheme No Yes No Scheme

Produire No Yes No

Kurogane No Yes No

1.3. CURRENT STATE OF SOURCE CODE REENGINEERING 27

Table 1.5: Classification of programming languages which can work with other
languages (mainly JavaScript)

Programming on JVM on .NET convertible to Other compatible

language Framework JavaScript languages

CoffeeScript No No Yes

TypeScript No No Yes

Dart No No Yes

Haxe(*) Yes Yes Yes ActionScript

JSX No No Yes

Although there are many programming languages and coverage criteria, most

coverage-measurement tools support limited programming languages and coverage

criteria. Consequently, many tools exist to span the various programming languages,

which leads to differences between existing tools [83, 84]. These differences prevent

testers from accurately measuring coverage because the tools support different cover-

age criteria and are implemented with different ways, resulting in different values for

the same criteria.

For example, EMMA [69] supports statement coverage for Java, while Cover-

age.py supports both statement coverage and decision coverage for Python. Al-

though a combination of EMMA and Coverage.py can measure statement cover-

age of a web application using Java and Python, the combination cannot measure

decision coverage. Moreover, EMMA divides a ternary expression (condition ?

true-expression : false-expression) into two statements and can de-

termine whether both branches of the ternary expression have been executed. On the

other hand, Coverage.py cannot determine whether both branches have been executed

because it does not divide ternary expressions.

Tables 1.6, 1.7 and 1.8 compare existing coverage-measurement tools by features

and supported programming languages. An ’X’ in the tables indicates the tool has

the feature to support a criterion or programming language. ’Binary’ and ’Code’

indicate the way to modify compiled binary file or source code to instrument code,

respectively. ’Processor’ indicates the way to monitor execution logs with a processor.

28 CHAPTER 1. INTRODUCTION

’Compiler’ indicates the way to insert instrument code with a compiler.

As the tables show, there are many tools. These tools support different program-

ming languages owing to their implementations. To the best of my knowledge, no

free tool supports the four coverage criteria. Few tools support the scripting lan-

guages such as JavaScript, Python, Ruby and Lua. Consequently, these languages

have poor features and support few coverage criteria. Although undercover is a free

tool, which supports more than one programming language, undercover targets only

programming languages working on Java Virtual Machine (Java VM). Non-free tools,

except Clover and Semantic Designs, support only C/C++, C# and Java because

these programming languages are most common. Therefore, accurately measuring

coverage for web applications using scripting languages is difficult.

A new mechanism to reuse common code between various programming languages

beyond platforms such as Java VM and .NET Framework must be developed to pro-

vide appropriate tools with rich features that support many programming languages.

However, programming languages have different grammars and features. In par-

ticular, compilers and processors are developed in various ways. Thus, extending

compilers or processors is a very language-dependent approach.

1.3.2 Software metrics

Software metrics provide quantitative values for assessing software quality. Software

has various aspects and properties, and thus various software metrics are required

to measure them. For example, McCabe proposed a complexity metric for general

programming languages [59]. Chidamber and Kemerer, Li and Henry also proposed

metrics suites for object-oriented programming languages [10, 11, 56].

As well as test coverage, there are many metrics measurement tools so that the

diversity of the tools causes problematic differences. Lincke et al. [57] studied met-

rics measurement tools and found existing tools result different measurement values.

Moreover, they calculated maintainability by combining measurement values of OOP

metrics. As a result, they also found the differences in existing tools led to different

conclusions by comparing the ranking of the classes according maintainability.

1.3. CURRENT STATE OF SOURCE CODE REENGINEERING 29

Table 1.6: Comparison of coverage-measurement tools in terms of features

Tool Instrumentation Minimal targets Free

Cobertura Binary Function Yes

EMMA Binary Function Yes

JCover Code Function No

Clover Code Function No

Agitar Binary Function No

OpenCover Processor Function Yes

NCover Source Function No

dotCover Binary Function No

gcov Compiler File Yes

COVTOOL Code File Yes

BullseyeCoverage Code Function No

Intel Code Coverage Tool Compiler Function No

Squish Coco Code Function No

TCAT Code Function No

Parasoft Test Code Function No

PurifyPlus Binary Function No

Semantic Designs Code Function No

CoverageValidator Code Function No

ScriptCover Code File Yes

Coverage.py Processor Module Yes

rcov Processor Function Yes

SimpleCov Processor Function Yes

Devel::Cover Processor Function Yes

xdebug Code Function Yes

LuaCov Processor File Yes

30 CHAPTER 1. INTRODUCTION

Table 1.7: Comparison of coverage-measurement tools in terms of coverage criteria

Tool
Coverage criteria

Statement Dicision Condition Condition/Decision

Cobertura Yes Yes No No

EMMA Yes Yes No No

JCover Yes Yes No No

Clover Yes Yes No No

Agitar Yes Yes No No

OpenCover Yes Yes No No

NCover Yes Yes No No

dotCover Yes No No No

gcov Yes Yes No No

COVTOOL Yes No No No

BullseyeCoverage Yes Yes Yes Yes

Intel Code Coverage Tool Yes No No No

Squish Coco Yes Yes Yes Yes

TCAT No Yes No No

Parasoft Test Yes Yes Yes Yes

PurifyPlus Yes Yes Yes Yes

Semantic Designs Yes Yes No No

CoverageValidator Yes Yes No No

ScriptCover Yes No No No

Coverage.py Yes Yes No No

rcov Yes No No No

SimpleCov Yes No No No

Devel::Cover Yes Yes Yes No

xdebug Yes No No No

LuaCov Yes No No No

1.3. CURRENT STATE OF SOURCE CODE REENGINEERING 31

Table 1.8: Comparison of coverage-measurement tools in terms of supported pro-
gramming languages

Tool Languages

C/C++ C# Java JavaScript Python Ruby Perl PHP Lua

Cobertura X

EMMA X

JCover X

Clover X

Agitar X

OpenCover X

NCover X

dotCover X

gcov X

COVTOOL X

BullseyeCoverage X

Intel Code X

Coverage Tool

Squish Coco X

TCAT X X

Parasoft Test X X X

PurifyPlus X X X

Semantic Designs X X X

CoverageValidator X X X

ScriptCover X

Coverage.py X

rcov X

SimpleCov X

Devel::Cover X

xdebug X

LuaCov X

32 CHAPTER 1. INTRODUCTION

1.3.3 Aspect-oriented programming

AOP is a new programming paradigm using an aspect for modularizing cross-cutting

concerns to achieve separation of concerns. AOP does not replace object-oriented

programming (OOP) but supplements OOP. Thus, most AOP languages extend ex-

isting OOP languages. For example, AspectJ [49], AspectC++ [78], AOJS [80] and

AspectR [9] are a AOP languages which extends Java, C++, JavaScript and Ruby,

respectively.

There are AOP language processors as well as test coverage. Although each AOP

language has similar features using same paradigm, they provides different grammars

for expressing aspects. For example, AspectJ defines a grammar based on Java, while

AOJS defines a grammar based on XML. Therefore, programmers should learn various

grammars when using AOP for multiple programming languages.

Chapter 2

Software Development Using

Multiple Programming Languages

Recently, software development using multiple programming languages has been in-

creasing.

Jones [40] reported most applications used between 2 and 15 programming lan-

guages. He explained that the reasons were because there were most applications

across multiple problem areas of software applications and because these problem

areas were larger than solution areas of programming languages. He also listed 10

problem areas of critical software such as mathematical calculations. He claimed that

most applications contain four areas at least and that most programming languages

were optimized for between 1 and 3 areas. However, an increase in the number of

using programming languages makes it difficult to develop applications. He described

how both development and maintenance costs increased as the number of languages in

an application increased. For example, development and maintenance costs increase

by 13% and 20%, respectively, when the number of programming languages in an

application is 4.

Karus et al. [44] studied 22 open source software (OSS) repositories over 12 years.

They found developers worked with more than 4 different languages including make

and XML in a project on average. They showed which programming languages were

used together by each developer such as a C/C++ developer and a Java developer. For

34 CHAPTER 2. SOFTWARE DEVELOPMENT USING MULTIPLE PROGRAMMING LANGUAGES

example, a total of 79%, 30% and 23% of Java developers worked on XML, JavaScript

and Groovy files, respectively, while a total of 18%, 2% and 2% of C/C++ developers

worked on XML, JavaScript and Groovy files, respectively. They also found distinct

dependencies between languages or artifact types commonly edited together.

In the following sections, I describe three examples of software development us-

ing multiple programming languages explaining my experiences. The examples are

classified as development of distributed system which components run on different en-

vironments, of software across different problem areas and of execution environment

supporting multiple programming languages.

2.1 Distributed system which components run on

different environments

Web applications, which are based on a client-server computing model, are represen-

tative of distributed systems. While the kinds of executable programming languages

on client side (i.e. on web browsers) are very few such as JavaScript, ones on server

side are not limited by execution environments and thus very various.

For example, I developed a web application to hold my programming contest in

the orientation for the 2nd year degree students on Waseda University. The web

application shows predefined problems which include problem statements, inputs and

expected outputs. Users can submit output files which can be calculated from problem

statements and inputs to solve problems. The web application only requires output

files. Thus, users can solve problems in diverse ways such as writing programs to

generate output files or writing output files by hand. I developed the web applications

with Ruby on rails. The web application uses Ruby on server side and JavaScript on

client side.

2.2. APPLICATIONS ACROSS DIFFERENT PROBLEM AREAS 35

2.2 Applications across different problem areas

As previously stated, most applications exist across different problem areas although

most programming languages focus on few problem areas. Thus, such applications

require to use multiple programming languages.

For example, I developed a tool, called POGen, for generating skeleton test code

with accessor methods for template variables, which are dynamic parts in HTML

files. POGen has two features: analyzing HTML template files and generating test

code, which exist in different problem areas. I developed both features in Java at

first. However, Java has little support for building strings including test code. I

re-implemented the generation feature in Xtend to improve the readability of my

source code. Xtend supports template expressions that allow string literals containing

expressions. Figure 2-1 shows sample Xtend code for generating a getter and a setter

of Java.

1 def generateGetterAndSetter(String capitalizedName) ’’’
2 public int get<<capitalizedName>>() {
3 return <<capitalizedName>>;
4 }
5 public void set<<capitalizedName>>(int <<capitalizedName>>) {
6 this.<<capitalizedName>> = <<capitalizedName>>;
7 }
8 ’’’

Figure 2-1: Sample Xtend code for generating a getter and a setter

Another example is utilizing a script language for customizing software settings.

I developed a fault localization tool with my framework for measuring coverage. My

framework is implemented using C#, and thus, my fault localization tool is also

implemented using C#. I also utilizes IronPython to customize metrics for calculating

suspiciousness scores of statements. Although C# requires compiling, ironPython is

a script language and does not require compiling. Thus, users can easily customize

metrics by changing the IronPython script. Figure 2-2 shows an IronPython script

for calculating suspiciousness scores using James et al.’s metrics [41].

36 CHAPTER 2. SOFTWARE DEVELOPMENT USING MULTIPLE PROGRAMMING LANGUAGES

1 def CalculateMetric(executedAndPassedCnt, passedCnt, executedAndFailedCnt, failedCnt):
2 if passedCnt == 0 and failedCnt == 0:
3 return [float("nan"), float("nan"), float("nan")]
4 if passedCnt == 0:
5 return [1.0, float("nan"), executedAndFailedCnt / failedCnt]
6 if failedCnt == 0:
7 return [0.0, executedAndPassedCnt / passedCnt, float("nan")]
8

9 p = executedAndPassedCnt / passedCnt
10 f = executedAndFailedCnt / failedCnt
11

12 if (p + f) == 0:
13 return [float("nan"), p, f]
14

15 return [f / (p + f), p, f]

Figure 2-2: IronPython script for calculating suspiciousness scores using James et
al.’s metrics

2.3 Execution environment supporting multiple pro-

gramming languages

As a special case, I show an example of an execution environment for multiple pro-

gramming languages. Such environment are usually developed using multiple pro-

gramming languages.

I and my developer team developed platforms to hold programming contests with

AI programs on my game software. JavaChallenge, which is held in conjunction with

the ACM International Collegiate Programming Contest (ICPC), is one of famous

programming contests using game AI programs. To hold JavaChallenge in conjunc-

tion with ICPC Asia Regional Contest 2012 in Tokyo, I and my developer team

developed a game platform in Scala and Java to implement game software and to

provide API for developing API. Figure 2-3 shows a screen shot of the game software

for JavaChallenge 2012. My game, which was inspired by “The Settlers of Catan” 1

and “Galcon” 2, was based on turn-based strategy. I designed my game platform for

game software to have the state of the game as an immutable object. Scala is suit-

able for implementing immutable objects rather than Java. However, JavaChallenge

is a Java programming contest as the name suggests. Obviously, Java is suitable for

1http://www.catan.com/
2http://www.galcon.com/

2.3. EXECUTION ENVIRONMENT SUPPORTING MULTIPLE PROGRAMMING LANGUAGES 37

providing Java API rather than Scala. In this way, I used both Java and Scala to

develop my game platform.

Figure 2-3: Screen shot of Game Software for JavaChallenge 2012

Chapter 3

Open Code Coverage Framework:

A Framework for Consistent,

Flexible and Complete

Measurement of Test Coverage

Supporting Multiple Programming

Languages

3.1 Introduction of this chapter

Test coverage or code coverage, which I refer to as just coverage from here on, is

an important measure used in software testing. It refers to the degree to which

the source code of a program has been tested and indicates whether a software has

been sufficiently tested or not. There are multiple criteria in a coverage, such as the

statement and decision coverage. For instance, statement coverage is the ratio of

the statements that have been executed at least once from all the statements. The

developers select a suitable criterion according to the purpose of their software testing

40

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

[14].

Test coverage measurement tools, which will be referred to as just tools from here

on, are necessary to accurately measure the kinds of coverage necessary for various

programs, and these tools have become widely available. Many tools are provided

for major programming languages, which I will refer to as just languages from here

on, such as Java. However, tools for legacy or minor languages such as COBOL

or Squirrel are not readily available or are considerably expensive. Moreover, it is

more difficult to measure the coverage of newly defined languages such as Go and of

existing languages with some changes to their language specifications because each

existing tool is specific to a certain language specification. These types of situations

have driven the need to develop some framework or tool that will correspond to a

variety of languages including new languages in the future.

Other drivers have been under development that support multiple languages. For

instance, in the development of a typical client-server-based enterprise system, the

client and server applications are developed separately in different languages. This

causes fewer problems during unit testing, which separately tests each module, but a

number of problems have arisen during integration testing, which tests the integration

of a set of modules. Therefore, tools are required that can consistently support

multiple languages.

I propose a framework for consistent, flexible, and complete coverage measure-

ment called the Open Code Coverage Framework (OCCF), which supports multiple

languages. The framework has a reusable software architecture and has a generic

design like some similar applications. The application can be implemented by adding

Figure 3-1: Simplification of connection between languages and coverage

3.1. INTRODUCTION OF THIS CHAPTER 41

an application-specific code to the framework [22].

OCCF extracts the commonalities from among multiple languages, disregards the

variability, and lets users focus on only the small differences in languages using a con-

crete syntax tree (CST) or abstract syntax tree (AST) to help with the development

of the tools that can measure the coverage of the new languages.

Figure 3-1 outlines the concept behind the simplification, which is provided by

OCCF. There are many-to-many relationships between languages and their coverage

criteria in the existing tools, and thus all possible combinations must be implemented.

OCCF simplifies the many-to-many relationships into many-to-one relationships

between the languages and OCCF, and the one-to-many relationships between OCCF

and the coverage criteria. OCCF lets users implement additional languages not de-

pending on coverage criteria and also implement the additional coverage criteria that

do not depend on the languages. Such simplification helps users to develop tools

and then helps them to freely select their favorite languages and the suitable cov-

erage criteria. OCCF provides a default implementation of the three languages: C,

Java, and Python; and four coverage criteria: statement coverage, decision coverage,

condition coverage and condition/decision coverage. OCCF lets users add languages

that support the default coverage criteria and add coverage criteria that support the

default languages. Moreover, OCCF provides two methods to flexibly customize the

coverage criteria.

I were able to reduce through experimentation the development and maintenance

costs of tools and to develop sample tools that could consistently and flexibly measure

the various coverage criteria of several languages by using OCCF as a novel framework

for developing tools. In particular, I reduced by approximately 90% the lines of code

(LOCs) required for implementing tools and the time to implement a new coverage

criterion by 80% or more in an experiment comparing OCCF with the conventional

tools that were non-framework based.

OCCF is now freely available via the Internet [71].

42

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

3.2 Existing tools and conventional measurement

approaches

There are roughly three approaches for measuring coverage: extending the programming-

language processors to add a measurement function, and inserting a measurement

code into an executable code or into a source code.

The first approach analyzes both the syntax and semantics of the languages be-

cause it parses the source code, analyzes its semantics, and executes it. This approach

can adjust the behavior of the program measuring coverage because the programming-

language processor decides the program behavior. However, this approach requires a

high development cost and it has few measurement features because the programming-

language processor is a complex system and it is difficult to add measurement func-

tions. Examples of the tools that use this approach include Statement coverage for

Python (SCP) [2], which supports Python, and gcov, which supports the languages

that the GNU Compiler Collection (GCC) [25] supports. The SCP uses a trace

module in the Python standard library. Gcov is a subset of GCC that includes a

measurement code in the object files, and thus, gcov also uses the second approach.

The second approach also analyzes both the syntax and semantics of languages

because it parses the source code to show the users part of the covered source code and

analyzes the executable code in order to insert a measurement code into the executable

code. This approach also requires a large development cost since it requires an analysis

of both the source and executable codes. Moreover, this approach is unable to adjust

well with the program behavior into which the measurement code is inserted because

the behavior of the executable code is influenced by the compilers and execution

environment. Some examples of the tools that use this approach include Cobertura

[21], which supports Java, EMMA [69] for Java, and NCover [30] .NET languages.

These tools include measurement codes in the intermediate language codes.

The last approach analyzes only the syntax because it parses the source code in

order to decide where to insert the measurement code by analyzing the grammar

of the given language. However, this approach cannot adjust the program behavior

3.3. PROBLEMS WITH CONVENTIONAL MEASUREMENT APPROACHES 43

into which the measurement code is inserted as well as the second approach can.

According to my investigations, the tools that use this approach are not widespread

although this approach is known.

There is a narrow commonality in both the first and second approaches among the

measurement features because these approaches strongly depend on each language.

There is also a narrow commonality in the last approach among the measurement

features because this approach uses an ad-hoc processing that focuses on only the

grammar. Moreover, it is difficult for the last approach to measure the coverage

flexibly without having the semantics of the language.

3.3 Problems with conventional measurement ap-

proaches

3.3.1 P1: Cost of new development

Tools are often unavailable for many new, legacy or minor languages due to a lack

of community or non-commercial efforts. However, tools for these languages are

necessary.

There are many combinations of languages and coverage criteria and it is difficult

to implement all the combinations. It is also difficult to extract the commonality in

the conventional approaches as already described. Moreover, it is especially difficult

to implement the flexible tools that are mentioned after this that can change the

measurement range and elements. Therefore, a mechanism that can help to develop

these new tools is required.

3.3.2 P2: Cost of maintenance

Language specifications change according to the paradigm changes and expanded fea-

tures. Large changes cause the varieties of syntax to increase and cause the semantics

to change. For instance, when Java was upgraded to 5.0 from 1.4, new syntax and

semantics, such as a‘ foreach’statement and a generic type, were added to the lan-

44

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

guage specifications. In addition, when Python was upgraded to 3 from 2, a print

statement changed to just a function call.

When taking into consideration the existing tools, the range of the features needing

to be maintained need to be expanded because the existing tools analyze both the

syntax and semantics.

Therefore, a mechanism that can help to maintain new tools is required.

3.3.3 P3: Inconsistency in measurement

Developers measure the coverage of multiple languages during the development of

software involving multiple languages, such as software designed on the basis of the

client-server model. However, when different tools are used together during integra-

tion testing, the measurement results are inconsistent because of the effect of differ-

ences in the measurement criteria. These differences, such as differences of whether

tools do count logical statements or line statements, are not described in the tool

specifications (manual documents). Developers may analyze measurement results er-

roneously and may incorrectly conclude test adequacy owing to the lack of knowledge

about the differences.

Suppose, for instance, developers obtained a measurement result showing 100%

statement coverage for a program written in Java and Python by using EMMA and

SCP, respectively. EMMA and SCP support only statement coverage. EMMA divides

a ternary expression (i.e. condition ? true-expression : false-expression)

into two statements and can determine whether both branches of the ternary expres-

sion have been executed. SCP, on the other hand, does not divide ternary expressions

and cannot determine whether both branches have been executed. When developers

recognize incorrectly that both EMMA and SCP divide ternary expressions into two

statements, they may judge erroneously that all ternary expressions have been well

tested. However, untested ternary expressions may exist in the Python program.

Similarly, there are many differences, such as a difference of whether tools do count

conditional expressions without control-flow statements as conditional branching, in

coverage criteria of existing tools that can mislead developers.

3.3. PROBLEMS WITH CONVENTIONAL MEASUREMENT APPROACHES 45

According to my investigations, except for gcov and NCover, free tools that sup-

port multiple languages do not exist. I will discuss these points in Section 3.6. There-

fore, consistent tools supporting multiple languages are required.

3.3.4 P4: Inflexibility in measurement

Coverage results that are 100% indicate that a piece of software has been sufficiently

tested. However, coverage results that are less than 100% can also indicate software

has been sufficiently tested since this is sufficient if the part deemed necessary by

the developers has been tested. In addition, the time to run software testing has

increased because software-testing techniques, such as test-driven development [4],

have become quite advanced and the number of test cases has increased. From the

perspective of the time efficiency, it is better to limit the measurement range and the

elements, such as those for only a specific method and the elements, such as only

assignment statements.

For instance, Sakata et al. [73] proposed an idea for only measuring the functions

that are needed in the measurements of the coverage for the components. Therefore,

flexible measurements that can limit the measurement range and elements are required

to achieve a 100% sufficient result.

Tools that can freely change the measurement range and elements and that can

measure the user-defined coverage criteria do not exist, according to my investigation.

In addition, many existing tools can only limit the measurement range and only

change the size of the measurement elements, such as the statements and blocks.

Therefore, the flexibility to allow for user-defined coverage criteria is required (with

support for multiple languages).

3.3.5 P5: Incompleteness in measurement

Coverage is measured by using the information on the executed elements obtained

when the software testing is carried out. However, when the coverage is measured

for an executable binary file, the existing measurement elements in the source code

46

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

are often ignored because of the difference in semantics between the source code and

executable binary file. The optimization facility of the compiler often removes the

dead code such as a private method that is not called or an‘ if’statement in which

a conditional expression is always evaluated as false.

Figure 3-2 shows an example of a source code that includes dead code. Cobertura

has a 100% statement coverage for this source code, but the correct measurement

result is only a 50% statement coverage. A dead code is undesirable because the cost of

the maintenance increases when the developers cannot judge whether the description

of a dead code is intentional or not. The measurement results of the coverage should

express the existence of the dead code. Therefore, tools that completely measure the

coverage are required.

1 public class DeadCode {
2 public static void main(String[] args) {
3 System.out.println("main");
4 if (false) {
5 System.out.println("deadcode");
6 }
7 }
8 }

Figure 3-2: Sample code of dead code in Java

3.4 Framework for measuring coverage supporting

multiple programming languages

I propose OCCF to support multiple languages, and which will alleviate the problems

outlined in Section 3.3.

3.4.1 Measurement approach of OCCF

OCCF inserts a measurement code into the source code using AST, and the coverage

is measured by executing the program. My approach analyzes the syntax and the

required part of the semantics because my approach parses the source code to get the

AST and locates the position of the node where the measurement code is inserted.

3.4. FRAMEWORK FOR MEASURING COVERAGE SUPPORTING MULTIPLE PROGRAMMING
LANGUAGES 47

Figure 3-3: Overview of OCCF

Figure 3-4: Overview of relation between user code, common code and external
program

There is wide commonality in my approach among the measurement features because

the insertion processing using the AST in each language is similar.

1 int main() {
2 int a = 0;
3 printf("test");
4 if (a == 0) { puts("a == 0"); }
5 else { puts("a != 0"); }
6 }

Figure 3-5: Sample code written in C prior to inserting the instrumentation code

The source code before it is inserted is outlined in Figure 3-5. The source code after

being inserted is outlined in Figure 3-6. The stmt record and decision record

48

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

1 int main() {
2 int a = stmt_record(0) ? 0 : 0;
3 stmt_record(1); printf("test");
4 if (decision_record(0, a == 0)) {
5 stmt_record(2); puts("a == 0");
6 }
7 else {
8 stmt_record(3); puts("a != 0");
9 }

10 }

Figure 3-6: Sample code written in C after inserting the instrumentation code

subroutines measure the statement coverage and decision coverage in the exam-

ple. The decision record subroutine returns the evaluation value of the orig-

inal conditional expression. OCCF inserts the stmt record into each statement

and each variable initializer to measure statement coverage. OCCF also inserts the

decision record into each conditional expression of the control-flow statement

and inserts the stmt record into each case clause of the switch statement to mea-

sure the decision coverage, condition coverage, and condition/decision coverage.

The measurement code does not have any side effects except for the processing to

collect the coverage information and the changing time behavior. This means that

there is a possibility that the semantics of a program using a thread might change.

However, it seems that this change can be disregarded by the change due to the

execution environment. Therefore, the measurement code has no side effects, and

does not change the semantics of the source code.

3.4.2 Overview of OCCF

An overview of OCCF and the processing flow in shown in Figure 3-3. OCCF adopts

the general architecture of the measurement tool that used the insertion approach

of the measurement code. OCCF consists of three subsystems: the code-insertion,

code-execution, and coverage-display subsystems. Moreover, OCCF reduces the size

of the code-insertion subsystem for reuse. The code-insertion subsystem consists

of three components: the AST-generation, AST-operation, and the code-generation

components.

3.4. FRAMEWORK FOR MEASURING COVERAGE SUPPORTING MULTIPLE PROGRAMMING
LANGUAGES 49

The process for measuring coverage includes six steps for expanding the code-

insertion subsystem.

1. Generation of AST from source code

2. Refinement of AST

3. Insertion of code for measurement on AST

4. Generation of source code from AST

5. Execution of generated source code and collection of measurement information

6. Display of measurement results from coverage

OCCF provides a common code for the language-independent processing that

operates the AST in the similar structures and also provides a design to help user

codes to be written for language-dependent processing. There is a relation between

the common code, user code, and external program listed in Figure 3-4. In this way,

OCCF reduces the cost of development and maintenance in order to solve P1 and

P2. However, OCCF only targets the procedural programming languages and impure

functional programming languages due to its insertion approach.

OCCF supports the measurement of new languages and the coverage criteria by

adding in a user code. Users can implement the AST-generation and code-generation

components, and the part of the AST-operation component for adding new languages.

When they appropriately implement them, they can measure four default coverage

criteria: statement coverage, decision coverage, condition coverage, and condition/de-

cision coverage for the new languages. Users can also implement the part of the AST-

operation component for adding new coverage criteria. When they appropriately

implement them, they can measure the new coverage criteria for default languages

such as C, Java, and Python. I also confirmed that the source code and AST are mu-

tually converted in several languages: Ruby, JavaScript, and Lua by using OCCF in

the same way that it implements default languages. In this way, OCCF consistently

supports multiple languages in order to solve P1 and P3.

50

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

OCCF provides two methods for limiting the measurement range and elements:

the filter condition described by XPath and the adding of new coverage criteria.

OCCF supports the filter condition in which the parent/child/sibling nodes include/ex-

clude the elements that are described by the XPath. OCCF also supports the addition

of new coverage criteria to freely change the measurement range and elements. In

this way, OCCF flexibly measures the coverage in order to solve P4.

Since OCCF inserts the measurement code before the dead code is removed by

the compiler optimization, it recognizes all the measurement elements in the source

code. In this way, OCCF completely measures the coverage in order to solve P5.

3.5 Implementation of OCCF

I implemented OCCF in .NET Framework 4.0. OCCF enabled language-specific

processing to be implemented by adding a user code, such as the assembly files that

ran in .NET Framework 4.0 or older or the script files in the languages supported

by the Dynamic Language Runtime (DLR) [61]. The DLR is a .NET library that

provides language services for several different dynamic languages. Moreover, OCCF

uses the Managed Extensibility Framework (MEF) [62]. The MEF is a .NET library

that automatically creates an instance of the class that implements a specific interface

and it is annotated with an attribute provided by the MEF. Consequently, OCCF

eliminates the need for a user code that explicitly loads the assembly files and script

files and helps to add in the user code.

I will show the implementation of OCCF by dividing the hot spots from the cold

spots and also show the implementation of a sample tool.

3.5.1 Code-insertion subsystem

The code-insertion subsystem consists of the following components: the AST-generation,

AST-refinement, AST-operation, and code-generation components.

3.5. IMPLEMENTATION OF OCCF 51

AST-generation component

converts the obtained source code into an AST as an XML document. This component

has to parse the source code, and the parser can be implemented by using the existing

software, such as the compilers and parser libraries. This component may generate

what kind of syntax tree if the following components operate correctly, and OCCF

does not limit the schema of the syntax tree.

Cold spots: OCCF provides an AstGenerator class that is designed using the

Template Method pattern [27].

The Template Method pattern reorganizes the processing steps between the coarse-

grained process flow and fine-grained concrete processing steps. The former is placed

in the superclass method and the latter is placed in the subclass methods. The latter

is triggered by the former by calling on the superclass abstract methods that are

actually implemented in the subclasses.

A class diagram of a UML [32] that is related to this component is shown in Figure

3-7. The AstGenerator and AntlrAstGenerator are an abstract class that is

provided by OCCF and designed using the Template Method pattern.

The AstGenerator calls the parser with a specified command, inputs the result

using a standard input/output and outputs the AST as an XML document to help

the users to use the parser of the external program. The AntlrAstGenerator

calls the parser, which is generated by ANTLR [66], and outputs the AST as an

XML document to help the users to use ANTLR. Therefore, the users only have to

implement the parser and the caller of the parser by using the existing software.

Hot spots: Users can implement this component by using the existing software

and the inheritance of the AstGenerator class by giving the command to call the

parser.

The sample tool uses ANTLR for a Java and C parser, and the parser module in

the Python standard library for a Python parser. A sample of the user code of this

component for Python is outlined in Figure 3-8.

52

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

Figure 3-7: Class diagram of AST-generation component in OCCF

1 [Export(typeof(IAstGenerator))]
2 public class PythonAstGenerator : AstGenerator {
3 private static readonly string[] _arguments = new[] { "ParserScripts/st2xml.py" };
4

5 protected override string ProcessorPath {
6 get {
7 return "C:/Python31/python.exe";
8 }
9 }

10 protected override string[] Arguments {
11 get {
12 return _arguments;
13 }
14 }
15 }

Figure 3-8: PythonAstGenerator.cs

AST-refinement component

changes structure of AST in order to more easily operate it. For instance, this com-

ponent converts single-line‘ if ’statements into multi-line‘ if ’statements. Users

have to implement this component for languages that have such grammar structures

by using the AST-operation component.

3.5. IMPLEMENTATION OF OCCF 53

Cold spots: OCCF provides the BlockInserter class that creates a new block.

The users only have to pass the block symbols to it.

Hot spots: Users have to implement this component for languages such as C and

Java because the measurement code is not easily inserted into some of the statements,

such as single-line‘ if ’statements. However, this component is not required for

Python because the statement can be inserted before any statement. Users can easily

implement this component for C and Java because all‘ if’statements can be added to

a new block without changing the semantics. The sample user code of this component

for C is provided in Figure 3-9.

1 [Export(typeof(ISelector))]
2 public class CLackingBlockSelector : ISelector {
3 private static readonly string[] ParentNames = {
4 "selection_statement", "iteration_statement"
5 };
6 private static readonly string[] StatementNames = { "statement" };
7

8 protected override IEnumerable<XElement> SelectContainingNull(XElement root) {
9 return root.Descendants().Where(e => ParentNames.Contains(e.Name.LocalName))

10 .Select(e => e.Elements().FirstOrDefault(e2 =>
11 StatementNames.Contains(e2.Name.LocalName)));
12 }
13 }

Figure 3-9: CLackingBlockSelector.cs

AST-operation component

This component has roughly four functions: the selector, generator, inserter, and

tagger. The selector finds the corresponding node on the AST for each language to

locate the position in which the measurement code has been inserted. The generator

generates the subtrees corresponding to the measurement code. The inserters insert

the subtrees of the measurement code into the source code on the AST. The tagger

provides the place information of the measurement element in the source code as a

tag.

Cold spots: A class diagram of the selector is shown in Figure 3-10. OCCF provides

the ISelector interface to show the function necessary for the selector. OCCF

provides some classes to help users to implement the ISelector interface. The

54

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

ConditionalTermSelector class is outlined in Figure 3-11 is designed by using

the Template Method pattern. OCCF lets users extend it in order to implement the

selector for locating the position of all the atomic logical terms in the conditional

expressions. The SelectorUnion class integrates some of the selection results.

The SelectorPipe class selects the subtrees from other selection results. These

two classes are designed as Macro Commands by using the Command pattern [27].

The Command pattern is a design pattern that encapsulates a request and the

parameters in an object. A command object that is combined with certain other

command objects is called a Macro Command.

In addition, OCCF provides a FilteredSelector class, which limits the mea-

surement range and element by using the filter condition described by XPath.

Figure 3-10: Class diagram of selector in OCCF

OCCF provides an INodeGenerator interface to show the function necessary

for the generator.

OCCF completely provides the CoverageInserter class as a common code

for the inserter. Users pass the instance that implements the ISelector and the

3.5. IMPLEMENTATION OF OCCF 55

1 public abstract class ConditionalTermSelector : ISelector {
2 protected abstract bool IsConditionalTerm(XElement e);
3 protected abstract bool IsAllowableParent(XElement e);
4

5 public IEnumerable<XElement> Select(XElement root) {
6 var targetParents = root.Descendants()
7 .Where(IsConditionalTerm)
8 .Where(e => e.Elements().Count() >= 3)
9 .Where(e => e.ParentsWhile(root)

10 .All(IsAllowableParent));
11 var targets = targetParents
12 .SelectMany(e => e.Elements().OddIndexElements());
13 // a == b&&(a == c||a == d) => a == b,a == c,a == d
14 var atomicTargets = targets.Independents().ToList();
15 atomicTargets.Sort((e1,e2)=>e1.IsBefore(e2) ? -1:1);
16 return atomicTargets;
17 }
18 }

Figure 3-11: ConditionalTermSelector.cs

INodeGenerator to the Insert method of these classes to Insert the measurement

code. OCCF provides this class to support the default coverage criteria as guidelines

for implementing the coverage criteria.

OCCF provides an ITagger interface to show the function necessary for the

tagger.

Hot spots: Users have to implement the ISelector interface for the selector to

select the statements, the conditional expressions in control-flow statements such as

‘ if’,‘ for’,‘while’statements and ternary expressions, and the atomic logical term

in the conditional expressions in the control-flow statements. Users can implement

the selector by using the reusable classes that are provided.

For example, the selector for the condition coverage selects the atomic logical term

elements in the conditional expressions of the control-flow statements, such as the

and test and not test nonterminal symbols, that have more than three brothers

and is not a descendant of the trailer in the Python grammar. There is a sample

user code of the selector for the atomic logical term elements of Python is outlined

in Figure 3-12.

Users have to implement both the callee and caller of the measurement code for

the generator. The callee in C/C++ is provided by OCCF so that the users can

use SWIG [13] to implement it. Users only have to learn to use SWIG or manually

56

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

1 [Export(typeof(ISelector))]
2 public class PythonConditionalTermSelector : ConditionalTermSelector {
3 private static string[] TargetNames = { "or_test", "and_test" };
4 private static string[] ParentNames = { "trailer" };
5

6 protected override bool IsConditionalTerm(XElement e) {
7 return TargetNames.Contains(e.Name.LocalName);
8 }
9 protected override bool IsAllowableParent(XElement e) {

10 return !ParentNames.Contains(e.Name.LocalName);
11 }
12 }

Figure 3-12: PythonConditionalTermSelector.cs

port the C/C++ code to the code of the target language. The caller is the code that

calls the callee and the users simply implement the processing that describes the caller

code as a token element in the AST. Users have to implement the INodeGenerator

interface as the caller of the measurement code.

Users can implement all the AST-generation, Code-generation, and AST-operation

component except for the inserter to add new languages. Users can also implement

the inserter that uses the existing selectors for languages to add new coverage crite-

ria. At present, OCCF provides only the necessary selector for the default coverage

criteria. For example, when users modify an inserter to measure the modified con-

dition/decision coverage (MCDC), they have to implement the selectors that locate

the terms of the logical disjunction and logical production separately for each lan-

guage. OCCF simplifies the many-to-many relationships between the languages and

the coverage criteria because the inserter does not depend on the other components.

Users can implement the tagger to narrow down the measurement results by using

the tag. For example, the user code gets the class and method names of the measure-

ment elements by scanning the parent nodes of the measurement elements in the AST.

Users can narrow down the measurement results for the GUI when implementing the

tagger although the users may not implement the tagger.

Code-generation component

converts the obtained AST into a source code. When the AST has memorized almost

all the tokens for the corresponding text in the source code, this component can be

3.5. IMPLEMENTATION OF OCCF 57

simply implemented by adding the user code that outputs the tokens as they are

without exceptions. This means that the AST-generation component has to add

sufficient text information from the source code into the AST to restore the source

code with the code-generation component.

Cold spots: A class diagram of the code-generator component is shown in Figure 3-

13. OCCF provides a CodeGenerator class that is designed by using the Template

Method pattern and scans the AST and outputs the memorized tokens.

Figure 3-13: Class diagram of code-generator component in OCCF

Hot spots: Users can easily implement this component by using the CodeGenerator

class provided by OCCF when the AST has memorized almost all the tokens for the

corresponding text in the source code. Thus, users should design the AST-generation

component to take the AST memorization into account. For example, all the tokens

except for the linefeed and indent are memorized in the AST for Python. Conse-

quently, users only have to implement the processing that outputs the linefeed and

indent to the corresponding terminal nodes for Python. A sample user code of this

component for Python is outlined in Figure 3-14.

58

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

1 [Export(typeof(ICodeGenerator))]
2 public class PythonCodeGenerator : CodeGenerator {
3 protected override bool TerminalSymbol(XElement e) {
4 switch (e.Name.LocalName) {
5 case "NEWLINE": WriteLine(); return true;
6 case "INDENT": Depth++; return true;
7 case "DEDENT": Depth--; return true;
8 default: return false;
9 }

10 }
11 }

Figure 3-14: PythonCodeGenerator.cs

3.5.2 Code-execution subsystem

The code-execution subsystem executes the program in which the measurement code

has been inserted. By executing the program, this subsystem sends the coverage

information to the coverage-display subsystem. OCCF supports communications us-

ing TCP/IP, the shared memory, and the file output as the sending mechanisms.

Although OCCF does not provide this subsystem, users can use any runtime sys-

tem for the corresponding language. Therefore, they do not need to implement this

subsystem.

3.5.3 Coverage-display subsystem

The coverage-display subsystem presents the measurement results by analyzing the

information received from the code execution subsystem.

The information contains the position and tags. The position expresses the line

and column number of the measurement element in the original source code. The tag

is a character string that expresses the layered structure. OCCF filters the results

of the coverage with the package hierarchy, the class hierarchy, and other hierarchies

with the tags.

There is a sample window of the coverage-display subsystem shown in Figure 3-15.

The upper progress bar indicates the coverage ratio. The central text box indicates

whether the measurement element was executed during software testing and also

shows the position.

3.5. IMPLEMENTATION OF OCCF 59

Figure 3-15: GUI Reporter in coverage-display subsystem

A sample can output the results as a csv and an XML file. Therefore, users can

customize this subsystem to change the display for all the supported languages and

can process the output files using other tools. OCCF provides this entire subsystem

as a common code.

Table 3.1: Summary of comparison

OCCF Cobertura EMMA SCP gcov NCover

N. coverage criteria 4 2 1 1 3 3

Adding language yes no no no yes no

Adding criteria yes no no no no no

Multiple languages yes no no no yes yes

Flexibility yes yes no no no no

OCCF:Completeness yes no no yes no yes

Non-commercial yes yes yes yes yes no

60

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

Table 3.2: Comparison of measurement results

statement statement of condition condition of

of OCCF tools of OCCF tools

BTree (C) 57%(92/162) 55%(80/145) 55%(45/82) 55%(45/82)

LZ (C) 95%(161/169) 97%(114/117) 92%(79/86) 92%(79/86)

BoyerMoore(C) 57%(20/35) 67%(20/30) 47%(14/30) 47%(14/30)

All (C) 81%(29/36) 81%(29/36) 70%(14/20) 70%(14/20)

BTree (Java) 63%(102/162) 62%(78/124) 54%(45/84) 52%(45/86)

LZ (Java) 97%(181/186) 100%(113/113) 92%(79/86) 92%(79/86)

BoyerMoore (Java) 64%(29/45) 66%(24/36) 53%(15/28) 53%(15/28)

All (Java) 86%(38/44) 86%(38/44) 69%(18/26) 69%(18/26)

BTree (Python) 66%(114/173) 65%(99/152) 46%(25/54) -

LZ (Python) 99%(140/141) 100%(130/130) 93%(39/42) -

BoyerMoore (Python) 78%(42/54) 78%(35/45) 41%(9/22) -

All (Python) 81%(29/36) 81%(29/36) 50%(4/8) -

3.6 Evaluation

I evaluated OCCF by comparing implemented samples that were developed by using

OCCF with standard tools that are used as described in Section 3.3. There are two

main types of standard tools, those that extend the programming-language processors

and those that insert a measurement code into the intermediate language code. Table

3.1 provides a comparison between OCCF and the other tools.

Experiment 1: I obtained measurement results for statement coverage and condition

coverage using OCCF and the state-of-the-art tools to confirm that OCCF measures

coverage as accurately as the state-of-the-art tools. I targeted three Java programs

presented in a book [34] that use typical programming constructors and algorithms.

I translated these Java programs into C and Python.

Table 3.2 lists the measurement results for each program. The columns with the

headings “statement” and “condition” indicate the measurement results for statement

coverage and condition coverage, respectively. The measurement results are described

as “XX%(YY/ZZ)”. XX, YY, and ZZ indicate measurement results as a percentage,

and numbers of executed measurement elements and total executable measurement

3.6. EVALUATION 61

elements, respectively. I adopted gcov as the state-of-the-art tool for C, Cobertura

as the state-of-the-art tool for Java and SCP as the state-of-the-art tool for Python

because these are well accepted. “-” in Table 3.2 indicates the tools can not measure

condition coverage and.

The measurement results cannot be directly compared. There are three differences

between OCCF and the state-of-the-art tools.

First, OCCF measures statement coverage with respect to each logical statement,

whereas the state-of-the-art tools measure statement coverage with respect to each

line. However, I think that the statement coverage where the number of lines does

not influence is more accurate than the statement coverage where the number of lines

influences.

Second, OCCF does not count conditional expressions without control-flow state-

ments as conditional branching, whereas Cobertura does count all conditional expres-

sions such as “cond = a > 1”. However, I think that the condition coverage which

does not count these conditional expressions is more accurate than the condition cov-

erage which does count these conditional expressions because conditional expressions

without control-flow statements are not conditional branching in a narrow sense.

Last, OCCF does not count abbreviated default constructors as a statement,

whereas Cobertura does count abbreviated default constructors. There are two ideas.

I can think that abbreviated default constructors are not statements because ab-

breviated default constructors do not appear in source code. I can also think that

abbreviated default constructors are statements because abbreviated default construc-

tors are executed by programming-language processors. Moreover, OCCF, gcov and

Cobertura can measure condition coverage, whereas SCP cannot measure condition

coverage.

However, OCCF can obtain the same measurement results by adding a user code

that measures statement coverage with respect to each line, a user code that does

count all conditional expressions, and a user code that supplements default construc-

tors and inserts the measurement code. I actually obtained the same measurement

results.

62

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

Measurement tools have to do count the following measurement elements for C to

measure statement coverage accurately: expression, goto, continue, break, return, if,

switch, while, do-while and for statements. They also have to do count the following

measurement elements for Java: expression, continue, break, return, assert, throw,

if, switch, while, do-while, for, enhanced for, try and synchronized statements. They

also have to do count the following measurement elements for Python: expression, as-

signment, assert, pass, del, print, yield, with, function-definition and class-definition

statements. Moreover, OCCF and the state-of-the-art tools do count variable initializ-

ers as statements because variable initializers can contain instruments as expressions.

Measurement tools have to do count the following measurement elements for C to

measure condition coverage accurately: conditional terms that are separated logical

operators in if, while, do-while, for statements and ternary expressions; and case

clauses in switch statements. They also have to do count additionally the following

measurement elements for Java and Python: enhanced for statements. Moreover,

Python does not have switch, for and do-while statements.

The rows with the headings “All” indicate the measurement results of source code

that contains all the above-mentioned measurement elements and that is written by

us. OCCF and the state-of-the-art tools obtained the same measurement results.

Therefore, I confirmed that OCCF measures coverage accurately.

3.6.1 Reduced cost of new developments

I evaluated the cost of new developments by comparing the LOCs of the program that

inserted the measurement code, by measuring the time to implement two coverage

criteria and by counting the number of supported coverage criteria.

Experiment 2: I obtained the LOCs of the program that inserted the measurement

code to evaluate the cost of new developments. The results of the comparison of the

LOCs are given in Figure 3-16 To implement the sample for Java, 1056 LOCs were

required for Cobertura, 2031 LOCs were required for EMMA, and 125 LOCs were

required for OCCF. Cobertura uses BCEL [24] to insert the measurement code into

the Java bytecode. BCEL is a library that provides users with the convenient feature

3.6. EVALUATION 63

to analyze, create, and manipulate the Java bytecode. EMMA does not use such

a library. However, the samples were implemented without using a library with the

exception of my simple helper methods and the .NET standard library. To implement

the sample for Python, 131 LOCs were required for SCP and 93 LOCs were required

for OCCF. SCP uses only the Python standard library. In addition, 221 LOCs were

required for the language independent and reusable parts in the framework. It was

difficult to obtain the LOCs of the extension tools; however, the cost of development

was clearly high. In addition, I did not find any insertion tools for the source code

level. By using simple insertion in the source code level, OCCF can support new

languages at a lower cost than that required to develop new tools.

Figure 3-16: LOCs for five different tools

Experiment 3: I carried out an experiment on the implementation of statement

coverage and decision coverage for C because C is a major and practical language. I

evaluated the cost of developing two coverage criteria.

I tested five master’s degree students studying computer science, who are able to

read and write C and Java code. I explained my framework to them in 50 min and

then provided them with the AST-generation and the AST-refinement components

for C, which I implemented for them in 40 min. Table 3.3 lists the number of people

who implemented the coverage tools for C within 300 min. The average time required

to implement the statement coverage tool for C using OCCF was 24.8 min, and the

time required to implement the decision coverage tool for C using OCCF was 53.4

64

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

Table 3.3: Number of people who implemented a coverage tool successfully and
average time required to implement

N. people average time

Statement coverage for C with OCCF 5 24.8 min

Decision coverage for C with OCCF 5 53.4 min

Statement coverage for C with GCC 0 -

Decision coverage for C with GCC 0 -

New decision coverage for Java with OCCF 5 34.2 min

New decision coverage for Java with Cobertura 0 -

New coverage for Python 2 with OCCF 4 13.5 min

Change in upgrade to Python 3 with OCCF 4 47.5 min

New coverage for Python 2 with SCP 0 (Nobody) -

Change in upgrade to Python 3 with SCP 0 (Nobody) -

min. The examinees attempted to extend GCC to measure the two coverage criteria.

However, nobody completed this task within 300 min. “-” in Table 3.3 indicates these

task were not completed and they required more than 300 min.

Existing compiler frameworks such as GCC provide features to add support for

new languages. However, there are differences between these compiler frameworks

and OCCF regarding cold spots and hot spots. The compiler frameworks provide

fewer cold spots to measure coverage than OCCF because they do not specialize in the

development of coverage tools and they require developers to consider how to measure

coverage. For example, OCCF provides cold spots to insert measurement code into

the location selected by the selector. Thus GCC requires more hot spots than OCCF.

For example, GCC requires both a semantic analyzer and a syntax analyzer to add

a new language. OCCF, on the other hand, requires a syntax analyzer and only the

part of a semantic analyzer related to measurement elements. Moreover, OCCF can

reuse an existing parser such as the frontends of GCC as AST-generation component.

Experiment 3 indicated that a developer can develop a coverage tool using the OCCF

more easily than using GCC.

The implementation of samples using OCCF supports the measurement of the

statement coverage, decision coverage, condition coverage, and condition/decision

3.6. EVALUATION 65

coverage. However, the number of coverage criteria that the other tools support was

less than that of OCCF according to Table 3.1; thus, the same functionality was

implemented with fewer LOCs.

Therefore, I succeeded in alleviating the problem (P1) of the high cost of new

developments for a given language.

3.6.2 Reduced maintenance cost

I evaluated the maintenance cost by measuring the times required to extend existing

decision coverage for Java, to implement special coverage for Python version 2, and to

update special coverage from Python version 2 to Python version 3, and by assessing

the changes to the language specifications.

Experiment 4: I carried out an experiment on the implementation of a new coverage

criterion for Java that was a special decision coverage that takes try statements for

exception handlers in Java as conditional branching. This special decision coverage

is required to judge a catch block that has no statement was executed. However, the

existing tools cannot measure decision coverage in consideration of try statements. I

evaluated the cost of maintenance required to extend the existing decision coverage.

I tested five master’s degree students as those in experiment 3. I provided the

source code of the sample tool that supports decision coverage and then explained

the existing decision coverage to them in 15 min. Table 3.3 lists the number of people

who extended the tool for Java to support the special decision coverage within 180

min. The average time required to extend the tool for Java using OCCF was 34.2

min. The examinees attempted to modify Cobertura to measure the special decision

coverage. However, nobody completed this task within 180 min.

Experiment 5: I carried out an experiment on the implementation of a new cov-

erage criterion for Python that was a special statement coverage limited to print

statements. Moreover, I investigated the maintenance required for an upgrade from

Python version 2 to Python version 3 because Python version 3 does not have back-

ward compatibility to version 2. I evaluated the cost of developing a new coverage

criterion and the cost of the maintenance required to change the language specifica-

66

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

tions.

I tested four first year master’s degree students studying computer science, who

were not the examinees in experiment 4. I explained my framework to them in

30 min and then provided them with the AST-generation component for Python 3,

which I implemented for them in 25 min. Table 3.3 lists the number of people who

implemented a tool for Python 2 and responded to the upgrade to Python version 3

within a total of 240 min. The average time required to implement a tool for Python

2 using the OCCF was 13.5 min, and the time to respond to the upgrade to Python 3

using the OCCF was 47.5 min. The examinees attempted to modify SCP to measure

the print statement coverage. However, nobody completed this task within 240

min.

The reason why I gained the above results in experiments 4 and 5 is that the

numerous tools that exist are not highly modularized, making it difficult to find the

part of the code that has to be modified in order to extend the tool. OCCF, on

the other hand, is highly modularized and the examinees could easily extend and

update tools, i.e., they only implemented and modified the ISelector interface in

experiments 4 and 5.

For the standard tools, both the syntax analyzer and the semantics analyzer have

to be maintained. However, only the code insertion subsystem has to be maintained in

tools using OCCF. The AST-generation component can be updated by using existing

software. The code-generation component does not need to be changed because the

tokens there are not memorized in the AST are not often changed. The inserter of

the AST-operation component also does not need to be changed because the inserter

does not depend on specific languages. Moreover, the selector, generator, and tagger

of the AST-operation component do not need to be changed as long as the syntax

corresponding to the semantics that are focused on does not change. As OCCF only

focuses on the syntax, only limited maintenance is required.

For example, when Java is upgraded from 1.4 to 5.0, OCCF would only be required

to locate the enhanced for statement. Cobertura and EMMA, on the other hand,

would also be required to respond to the generic types. Moreover, experiments 4 and

3.6. EVALUATION 67

5 indicate that it is easier to modify tools using OCCF than with Cobertura and SCP.

Therefore, I succeeded in alleviating the problem (P2) of the high cost of mainte-

nance for a given language and AST that the four components can easily operate.

3.6.3 Consistency in measurement

I evaluated the consistency of measurement by assessing the developments with mul-

tiple languages.

I measured the coverage for the software that was developed in Java and Python

as an example. When the software was tested using integration testing, the coverage

was measured by using Cobertura and SCP. Cobertura could measure the statement

coverage and decision coverage, but SCP could only measure the statement coverage.

In this case, coverage with a different criterion or the same statement coverage was

measured. Therefore, there is a possibility that only coverage that is ineffective can

be obtained as an indicator of the software testing.

However, OCCF could measure the coverage with the same criterion, such as the

decision coverage, for all languages. Thus, the effective coverage as an indicator of

the software testing could be obtained.

Gcov and NCover can also measure the coverage for many languages. However,

gcov only runs under GCC, e.g., it does not run under Visual C++ [63]. It is difficult

to add new languages because gcov requires users to implement compilers in GCC.

NCover only supports languages that run under the .NET Framework.

OCCF can measure the coverage in any environment where the inserted code is

running because it does not depend on a specified language processor. Moreover,

OCCF lets users add new coverage criteria and languages more easily than gcov and

NCover because it is not just a tool but a framework.

Therefore, I solved the problem (P3) with the inconsistency in measurement.

68

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

3.6.4 Flexibility in measurement

I evaluated the flexibility of measurement by assessing the change in the measurement

range.

The existing tools do not flexibly change the measurement range or elements.

EMMA and NCover could change the measurement range according to only the hier-

archy of the package, the class, and the method. EMMA could also change the size of

the measurement elements such as the lines, blocks, methods, and classes. Cobertura

could change the measurement elements by using regular expressions.

OCCF, on the other hand, could freely change the measurement range and ele-

ments based on the conditions set by XPath and the customized coverage criteria. For

example, OCCF could limit the measurement range to the methods that contained

‘ while ’statements based on the conditions set by XPath. Moreover, OCCF could

limit the measurement elements to the statements that called on a specific method

set by the customized coverage criteria in order to measure the special statement

coverage that were limited to only the statements that called a specific method. This

coverage could be used in library testing. Moreover, I confirmed that developers can

add new coverage criteria in the experiment 4 and 5.

Therefore, I solved the problem (P4) of inflexibility in measurement.

3.6.5 Completeness in measurement

I evaluated the degree of completeness in measurement by assessing the measurement

of dead code.

Cobertura inserts the measurement code into a Java bytecode. However, it does

not measure the coverage of dead code because the compiler optimization facility

removes the dead code from the bytecode.

However, OCCF inserts the measurement code into the source code before the

compiler optimization facility removes the dead code. Therefore, OCCF can be de-

tected at a part where the dead code has not been tested because the information

that was inserted there remains. For instance, OCCF had 50% statement coverage

3.7. LIMITATIONS 69

as shown in Figure 3-2 in Section 3.3.

Note that exception handlers are not dead code because they are not always ex-

ecuted. Both the existing tools and OCCF measure coverage for exception handlers.

However, sometimes developers want to ignore exception handlers so that they obtain

100% coverage as already mentioned in Section 3.3.3 by executing only all statements

except for exception handlers. OCCF can exclude exception handlers from the mea-

surement elements by adding an exclusion condition described by XPath to user code.

Therefore, I have solved the problem (P5) of incompleteness in measurement.

3.6.6 Time efficiency

I evaluated the time efficiency by using the time to execute three Java programs

presented in a book [34]. This evaluation provided good results compared with the

existing tools although I are not referring to the problem corresponding to this eval-

uation.

Experiment 6: I measured the time to execute three Java programs presented in

a book. Measuring the coverage decreased the time efficiency for the test because

it inserted measurement code into the source code. The execution time when using

OCCF was suppressed from 2 to about 10 times the execution time by using a TCP/IP

communication compared with the former source code, as shown in Table 3.4. OCCF

is about 10 times faster than Cobertura.

However, it is more than 1000 times slower than the original source code when

used with the file output, and it is 10 to 30 times slower than Cobertura. The TCP/IP

communication is overwhelmingly faster than a simple file output.

Therefore, I confirmed that there were no problems with the decrease in execution

efficiency of the test when using OCCF with a TCP/IP communication.

3.7 Limitations

Supportable programming languages: The approach of inserting instrumen-

tation code into source code cannot be applied to several non-procedure-oriented

70

CHAPTER 3. OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR CONSISTENT,
FLEXIBLE AND COMPLETE MEASUREMENT OF TEST COVERAGE SUPPORTING MULTIPLE

PROGRAMMING LANGUAGES

Table 3.4: Execution time on the millisecond time scale during software testing

original code Cobertura OCCF(TCP/IP) OCCF(file)

Huffman 60 2473 317 17691

Hash 17 283 28 8910

QuickSort 1 194 14 5350

languages. When OCCF cannot insert instrumentation code into a location where

the instrumentation code is executed just before executing target program elements,

OCCF cannot support such programming languages. Moreover, OCCF cannot sup-

port programming languages which have no feature to save execution traces (e.g.

whitespace). However, OCCF can support major programming languages because

most of programming languages is not under these constraints.

Measurement environment: OCCF requires source code to measure test

coverage. In particular, source code where instrumentation code is inserted must be

compiled and executed to measure test coverage. Moreover, OCCF is implemented

using .NET Framework such that users of OCCF and developers of extensions for

OCCF must use a .NET environment such as .NET Framework and Mono. However,

test coverage is usually utilized in white-box testing, and thus, testers can easily

acquire source code and the development environments. Moreover, we can freely

install .NET Framework and Mono on Windows, Mac OS and Linux.

3.8 Related work

Kiri et al. [51] and Rajan et al. [67] among others had similar ideas and I will now

refer to their study results, and my approach bares a resemblance to the following

existing techniques.

Kiri et al. proposed the idea of developing a tool that inserts measurement code

into a source code. Their idea was to measure the statement coverage, decision cov-

erage, and a special coverage called RC0. RC0 is a special statement coverage for

only revised statements. However, their idea was to measure only the statement cov-

erage and decision coverage because they measured the coverage by simply inserting

3.9. CONCLUSION OF THIS CHAPTER 71

a simple statement. Moreover, even though their idea could be used to measure the

coverage of four languages, including Java, C/C++, Visual Basic, and ABAP/4, it

did not support any other languages. Conversely, OCCF does not measure RC0.

However, it can easily support new coverages like RC0 by adding a user code.

Rajan et al. proposed the idea of specifying the measuring elements using a

description style of pointcut that is used in Aspect-oriented programming languages.

They demonstrated a tool that supported C#. Measuring the elements, such as the

method calls,‘ if ’ statements, exception handlers, and variable writes could be

specified. However, the description style that specified the measurement elements

was specialized for only C#. Therefore, the description style could not be used for

other languages that had different paradigms to C#. However, OCCF can measure

this coverage with a modified description style that is language independent by easily

adding user code.

3.9 Conclusion of this chapter

I proposed OCCF, reduced development and maintenance costs, made flexible mea-

surement, and made complete measurements by extracting the commonalities from

multiple languages using an AST.

Chapter 4

Case study of OCCF: A Tool

Detecting Duplicated Test Code

Based On Test Coverage

Supporting Multiple Programming

Languages

4.1 Introduction of this chapter

Software testing (or simply testing in what follows) is used to find defects that have

been mixed into software during its development. The importance of software in soci-

ety has increased, and software that is free of defects is urgently required. Therefore,

testing is crucial in the development process. Production code is source code that is

described as released software and test code is source code that is designed to test

the production code.

Testing technology is discussed in the following, which has developed along with

the increased importance of testing.

Test Driven-Development (TDD) [4] is one practice in eXtream Programming

74
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

[5], which is a kind of agile method of developing software. Developers repeat five

procedures in TDD: 1) add failing test code, 2) run all tests and checking whether

a new will one fail, 3) write various production codes, 4) run automated tests and

check whether they have succeeded, and 5) re-factor production code. Therefore, the

developer can develop test code by maintaining its state.

Test code came to be written to enforce testing as such test technologies developed.

However, examples where duplicated test codes were written increased. For instance,

it has been reported that there was 83.3% duplication in a test code in WinMerge

open source software [74].

Duplication of source code generally deteriorates the quality of software, especially

decreasing its reliability and increasing maintenance [64]. Test code is not included

in the packages released to users unlike production code. However, duplicated test

code also causes a decrease in the quality of software because implementation and

maintenance are necessary for the test code as well as the production code.

Duplicated test code also causes a decrease in the quality of software because im-

plementation and maintenance are necessary for the test code as well as the production

code. Duplicated test code represents “a smell” in refactoring, and recommendations

have been made to remove duplication [18] [60]. Moreover, the principle of “Don ’

t repeat yourself” has been recommended to avoid duplication in software including

documents [37].

Duplication in test code is not only based on syntax but semantics is also a prob-

lem. One duplicated test code is redundant when two test codes detect defects that

are completely identical. However, it is difficult to analyze what influence removing

test code will have or to detect duplicated test code based on semantics. There-

fore, no techniques have yet been established except for manually reading test code.

Duplicated test code based on semantics is defined in Section 4.3.2.

Duplicated test code based on semantics causes two problems because of the extra

test code.

• Decrease in execution efficiency of testing

The execution efficiency of testing decreases in proportion to the amount of

4.2. PROBLEM WITH EXISTING DETECTION TECHNIQUES 75

test code. Therefore, the execution of testing become difficult because of the

increased execution time. The increase in the execution time of testing, espe-

cially in TDD or refactoring, is directly connected to the decrease in efficiency

of the implementation process because testing needs to be executed frequently

with the description of the production code.

• Decrease in maintenance by testing

The time spent in understanding the test code increases in proportion to how

much of it there is. Moreover, it becomes difficult to determine the range

of the test code after it has been modified. Therefore, there is a decrease

in maintenance, especially that in analyzing and changing the quality of sub-

characteristics.

To solve above problems, there are the minimization techniques for test case [6]

[82]. Those technique select required test cases by using various metrics: test coverage,

the score of mutation testing, etc. However the method of constructing the a detection

tool that considers the extendability has not been established: how to expand the

supported programming languages or how to expand the supported detection criteria.

I therefore propose a technique of detecting duplicated test code based on cover-

age supporting multiple programming languages. My technique enables duplicated

test code to be detected without the influence of measured results in the coverage. I

implemented a detection tool with my technique by using OCCF. I discuss an exper-

iment on implementing a tool that mechanically detects duplicated test code using

my technique. Finally, I discuss my evaluation of the benefits and limitations of my

technique.

4.2 Problem with existing detection techniques

4.2.1 P1: Detection technique based on syntax

There are existing tools that can detect duplicated code such as CCFinderX [42].

These tools detect similar or matching parts in the source code such as copy and

76
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

paste, called code clones, based on syntax. These tools cannot detect duplicated test

code based on semantics. However, duplicated test code based on semantics that can

find similar or matching defects causes problems.

Therefore, a detection technique based on semantics is necessary to detect dupli-

cated test code that is redundant.

4.2.2 P2: Detection technique that can not adjust detection

criteria

No technique of adjusting the detection criteria used to detect duplicated test code

has yet been established. However, it is necessary to adjust the detection criteria to

determine the policy for detection. For example, when developers only want to detect

duplicated test code that is obviously redundant, they only have to detect it through

strict detection criteria. When developers want to detect as much duplicated test

code as possible, they only have to detect it with gradual detection criteria.

Therefore, it is necessary to adjust the detection criteria according to the developer

policies.

4.2.3 P3: Inconsistent detection technique by writing test

code

Developers can determine whether software has been tested sufficiently by using cov-

erage. When developers maintain software, they can use coverage as well as write

test code. When removing duplicated test code influences the measured results of

coverage, sufficient testing guarantees coverage when writing is lost. Consequently,

it is difficult to maintain test code. However, existing techniques of detection cannot

detect duplicated test code taking coverage into consideration.

Therefore, it is necessary to detect duplicated test code consistently while writing

test code so that the measured results of coverage will not be influenced.

4.3. DETECTION OF DUPLICATED TEST CODE BASED ON COVERAGE 77

4.2.4 P4: Support only of one programming language

Existing detection tools support only one programming language. They does not

have the extendability to add the support of programming languages. To support a

new language, enormous development cost is required. Therefore, it is difficult to use

these tools in the project where developers use multiple programming languages.

Therefore, it is necessary to support multiple programming language and have the

extendability to add the support of programming languages.

4.2.5 P5: High computational complexity

Some existing detection techniques require high computational complexity. For ex-

ample, the techniques that use the score of mutation testing have very high compu-

tational complexity because mutation testing performs testing whenever a mutation

is added. Such techniques rather decrease the execution efficiency of testing because

they take too much time to detect duplicated test code.

Therefore, it is necessary to have low computational complexity.

4.3 Detection of duplicated test code based on cov-

erage

I propose a technique of detecting duplicated test code based on coverage.

I define the inclusion relation of test code by the part that the test code covers

based on coverage. My technique calculates test code that is included based on its

definition and it mechanically detects duplicated test code. Moreover, my technique

detects duplicated test code taking into consideration the semantics of the test code

by basing it on coverage. Therefore, I alleviate or solve problem P1.

My technique detects duplicated test code that does not influence the measured

results of coverage. Therefore, I alleviate or solve problem P3. Developers can adjust

the detection criteria by changing coverage according to developer policies. Therefore,

I alleviate or solve problem P2. My technique can be applied to any language as long

78
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

as coverage can be measured. Moreover, I implement the detection tool by using

OCCF which measures various coverage supporting multiple programming languages.

Therefore, I alleviate or solve problem P4. My technique does the easy calculation

based on the set theory for the measurement result of coverage to detect duplicated

test code. Therefore, I alleviate or solve problem P5.

4.3.1 Kind of coverage

I explain coverage that can be used to detect duplicated test code in this section.

• Statement coverage(C0)

C0 is the ratio of statements that have been executed at least once from all

statements. The measurement element in C0 is a statement.

• Decision coverage(C1)

C1 is the ratio of conditional branching in which all branches have been executed

at least once from all conditional branching. The measurement element in C1

is a conditional branching.

• Condition coverage(C2)

C2 is the ratio of conditional branching in which all logical terms have been

evaluated both as values of true and false from all conditional branching. The

measurement element in C2 is a logical term that composes a conditional branch-

ing.

• Condition/Decision coverage(C1&2)

C1&2 is the ratio of the conditional branching in which all branches have been

executed at least once and in which all logical terms have been evaluated both

as values of true and false from all the conditional branching. The measurement

element in C1&2 is a conditional branching and a logical term that composes a

conditional branching.

• Path coverage(C∞)

4.3. DETECTION OF DUPLICATED TEST CODE BASED ON COVERAGE 79

C∞ is the ratio of the execution paths that have been executed at least once

from all execution paths. The measurement element in C∞ is an execution path.

4.3.2 Definition of duplicated test code

I define duplicated test code in this section.

Definition 1: When all defects that can be found by a certain test code can be

found by another test code, the defect that can be found in testing does not change

even if the test code is removed. Let us call this test code a duplicated test code

based on semantics.

It is difficult to prove test code can find all defects because it is possible for

innumerable software defects to exist. This causes problems with how much test code

is necessary. Therefore, coverage is used as an index to determine whether testing

has been completed. It is also similarly difficult to prove whether defects found by

several test codes are equal.

Definition 2: Focusing on only the measurement elements of coverage, let us

call the part of the production code that is executed by a certain test code in testing

the part that the test code covers. When the part that a certain test code covers is

covered by another test code, removing the test code does not change the measured

results of coverage. Therefore, defects that can be found in testing guaranteed by the

measured results of coverage do not change. Let us call this test code a duplicated

test code based on coverage.

When the parts that two test codes cover are different, no defects in the part

not mutually covered can generally be found. However, when the parts that two

test codes cover are equal, it is not possible to discover defects equally for elements

other than the measurement element of coverage even though it is possible to find

defects equally for the measurement element of coverage. Therefore, the detection

of duplicated test code based on coverage is the approximate detection of duplicated

test code based on semantics.

Developers can only detect duplicated test code near duplicated test code based

on semantics by basing it on strict coverage. For example, duplicated test code based

80
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

on C∞ includes duplicated test code based on C0. This inclusion originates in the

inclusion relation of the measurement element of coverage so that test code that covers

production code by 100% based on C∞ consistently covers production code by 100%

based on C0. There is an inclusion relation between the set of defects that can be

found by duplicated test code in Figure 4-1.

Figure 4-1: Inclusion relation between set of defects that can be found by duplicated
test code

1 String fizzBuzz(int x) {
2 String str = x + ":";
3 if (x % 3 == 0) {
4 str += "Fizz";
5 }
6 if (x % 5 == 0) {
7 str += "Buzz";
8 }
9 return str;

10 }

Figure 4-2: Production code of FizzBuzz problem written in Java

For example, there are production and test codes for the FizzBuzz problem written

in the Java and JUnit4 programming languages of the testing framework in Figures

4-2 and 4-3. The FizzBuzz problem requires a program that outputs ”Fizz” when

the input is a multiple of 3, it outputs ”Buzz” when the input is a multiple of 5, it

outputs ”FizzBuzz” when the input is a multiple of 15, and it outputs nothing when

there is no correspondence to any case. The method that has @Test annotation is

4.3. DETECTION OF DUPLICATED TEST CODE BASED ON COVERAGE 81

1 @Test public void T1_Input1_Output1() {
2 assertThat(fizzBuzz(1), is("1:"));
3 }
4 @Test public void T2_Input2_Output2() {
5 assertThat(fizzBuzz(2), is("2:"));
6 }
7 @Test public void T3_Input3_Output3Fizz() {
8 assertThat(fizzBuzz(3), is("3:Fizz"));
9 }

10 @Test public void T4_Input5_Output5Buzz() {
11 assertThat(fizzBuzz(5), is("5:Buzz"));
12 }
13 @Test public void T5_Input15_Output15FizzBuzz() {
14 assertThat(fizzBuzz(15), is("15:FizzBuzz"));
15 }
16 @Test public void T6_Input1and15_IsNoProblem() {
17 assertThat(fizzBuzz(1), is("1:"));
18 assertThat(fizzBuzz(15), is("15:FizzBuzz"));
19 }

Figure 4-3: Test code of FizzBuzz problem written in JUnit4

test code and I call the test code the head two characters of the method name in the

following so that I call the test code of T1 Input1 Output1 method T1.

The technique based on syntax cannot detect duplicated test code in the test code

as shown in Figure 4-3. However, both T1 and T2 cover the statements of the 2nd and

9th lines. The measured results of C0 do not change even if T2 is removed Therefore,

T2 is duplicated test code.

4.3.3 Inclusion relation of test code based on coverage

I define the inclusion relation of test code based on coverage in this section.

Definition 3: Let us call the set of measurement elements in production code

covered based on coverage C when certain test code A is executed EC(A). Moreover,

the inclusion relation between test code is defined equal to the inclusion relation

between set EC(A). For example, for the inclusion relation between test codes A and

B are based on C0, if EC0(A) ⊂ EC0(B), test code B includes A.

Definition4: I define the inclusion relation for the relation of the combination

of two or more test code. When combination A of the test code is composed of test

codes A1, A2, . . . , and An, let ECC(A) = EC(A1) ∪ EC(A2) ∪ . . . ∪ EC(An). Moreover,

the inclusion relation between the combination of test code is defined as being equal

82
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

to the inclusion relation between sets EC(A).

The number of measurement elements that one test code has based on coverage

other than what C∞ covers is 0 or more. However, the number of measurement

elements that one test code based on C∞ covers is always one because the measurement

element based on C∞ is an execution path.

Definition 5: I define C ′∞ that is more gradual than the detection criterion of

C∞. When the execution path of a certain test code is the partial row of the execution

path of another test code, the two test codes are not equal based on C∞. However,

the definition of C ′∞ means that the partial row is already covered and the two test

codes are equal based on C ′∞. I only adopt C ′∞ as the detection criterion.

Figure 4-4: Inclusion of test code

For example, there are production code and test code of FizzBuzz problem in

Figures 4-2 and 4-3.

Based on C0, both T1 and T2 cover the statements of the 2nd and 9th lines and

T3 covers the statements of the of 2nd, 4th and 9th lines. Thus, T3 includes T1

and T2. Moreover, T4 covers the statements of the of 2nd, 7th and 9th lines and T5

covers the statements of the of 2nd, 4th, 7th and 9th lines. Thus, the combination of

T3 and T4 includes T5. Therefore, the measured results of C0 do not change even if

T1, T2, and T5 are removed and T3 and T4 are left. There is an image related to

the inclusion of test code based on C0 in Figure 4-4.

Based on C∞, T1 covers the path of 2 → 9 and T6 covers the path of 2 → 9 →

4.3. DETECTION OF DUPLICATED TEST CODE BASED ON COVERAGE 83

2 → 4 → 7 → 9. Therefore, neither T1 nor T6 are in the inclusion relation.

The part where test code in the inclusion relation covers production code based

on coverage is duplicated and the test code is duplicated test code.

4.3.4 Implementation of tool for detecting duplicated test

code

I implemented a tool for detecting duplicated test code by using OCCF. The detection

tool detects test code that is in the inclusion relation as duplicated test code by

obtaining sets of covered measurement elements based on coverage when the coverage

of the test code is measured.

Figure 4-5: Composition of detection tool

The composition of the detection tool is outlined in Figure 4-5. It consists of five

components: the measurement-code-insertion, the identification-code-insertion, the

testing-execution, the inclusion-relation-calculation, and the detection-result-display

components. The measurement-code-insertion component uses OCCF and the testing-

84
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

execution-component is constructed with an existing testing framework. The remain-

ing three components are original implementations.

The detection procedure for duplicated test code with the detection tool involves

five steps.

1. Insertion of coverage-measurement code

The detection tool inserts special code to measure coverage (called measurement

code in what follows) in the production code by using OCCF.

2. Insertion of identification code for test code

The detection tool inserts special code to identify the test code to which the

covered measurement element corresponds (called identification code in what

follows) into the test code.

3. Obtaining sets of measurement elements that test code covers

The detection tool obtains sets of measurement elements that each test code

covers based on arbitrary coverage through the execution of testing.

4. Calculation of inclusion relation of test code

The detection tool calculates the inclusion relation of the test code by using the

sets that are obtained.

5. Detection of duplicated test code

The detection tool shows the test code included to another test code as the

detection results.

OCCF measures coverage by inserting the measurement code into the production

code and executing the production code in testing.

For example, OCCF inserts the measurement code in the production as shown

in Figure 4-6. OCCF inserts the statement coverage method just before each

statement and memorizes the identifier uniquely related to each statement. OCCF

also inserts the decision coverage method into each conditional branching and

each logical term and memorizes the identifier uniquely related to each measurement

4.3. DETECTION OF DUPLICATED TEST CODE BASED ON COVERAGE 85

1 String fizzBuzz(int x) {
2 String str = x + ":";
3 if (decision_coverage(3, x % 3 == 0)) {
4 statement_coverage(0); str += "Fizz";
5 }
6 if (decision_coverage(4, x % 5 == 0)) {
7 statement_coverage(1); str += "Buzz";
8 }
9 statement_coverage(2); return str;

10 }

Figure 4-6: Production code of FizzBuzz problem where measurement code was
inserted

element. The decision coverage method obtains the original expression and

returns the evaluated value of the argument so that the behavior of the production

code is not changed. Thus, OCCF assesses whether each measurement element was

covered by a memorized identifier to measure coverage. OCCF can measure four kinds

of coverage of C0, C1, C2, and C1&2 by default. OCCF can obtain an execution pass,

which is the measurement element of C∞, by using the measurement code inserted for

measuring C0 even though OCCF can not measure C∞. Therefore, the detection tool

can calculate the inclusion relation of the test code based on five kinds of coverage of

C0, C1, C2, C1&2 and C∞ by using OCCF.

OCCF inserts the measurement code in the production code which write various

programming languages through Abstract Syntax Tree (AST). OCCF can measure

coverage as long as the measurement code can be inserted in the source code. More-

over, OCCF provides common code to support multiple programming languages be-

cause AST of any language almost has the same structure. OCCF currently supports

three programming languages: Java, C and Python. Therefore, the detection tool

supports multiple programming by using OCCF.

The detection tool also inserts the identification code in the test code to identify

the measurement element that each test code covered.

For example, the detection tool inserts the identification code in the test code as

shown in List 4-7. The start coverage and end coverage methods memorize

the identifier uniquely related to each test code. The detection tool recognizes the

test code enclosed by the start coverage and end coverage methods as one

86
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

1 @Test public void T1_Input1_Output1() {
2 start_coverage(0);
3 assertThat(fizzBuzz(1), is("1:"));
4 end_coverage(0);
5 }
6 @Test public void T2_Input2_Output2() {
7 start_coverage(1);
8 assertThat(fizzBuzz(2), is("2:"));
9 end_coverage(1);

10 }

Figure 4-7: Test code of FizzBuzz problem where identification code was inserted

test code. The detection tool calculates the inclusion relation of the test code based

on coverage according to set theory. The detection tool detects duplicated test code

by giving a combination of test codes as one test code taking into consideration the

combination. The detection tool assumes the test method described by using JUnit

to be one test code and automatically inserts the identification code. The detection

tool can flexibly adjust units of test code by changing how the identification code is

inserted.

The inclusion-relation-calculation component obtains the measurement result of

coverage. Then, this component calculates the inclusion relation of test code accord-

ing to whether the measurement result of coverage is a set of measurement elements

or a path of measurement elements. Therefore, this component does not depend on

the kind of languages and coverage. And also, The calculation of this component has

low computational complexity and the overhead of identification code is small.

There is the screen shot of the detection tool in Figure 4-8. There is a list of the

test code at the left and a list of the duplicate test code at the right. The detection

tool helps to remove redundant test code by revealing duplicated test code. When

the test code is removed from the list at the left, the list of duplicated test code at

the right is updated. Thus, developers can simulate removing test code.

Developers can remove duplicated test code by using this tool with two methods.

First method removes the duplicated test code when duplicated test code is included

by the other one test code. On the other hand, second method removes the duplicated

test code when duplicated test code is included by the combination of the other test

code. My technique greedily removes the duplicated test code. This means that my

4.4. DETECTION EXPERIMENT ON DUPLICATED TEST CODE WITH DETECTION TOOL 87

Figure 4-8: Screen shot of detection tool for duplicated test code

technique remove the duplicated test code whenever duplicated test code that can be

removed is found.

4.4 Detection experiment on duplicated test code

with detection tool

I experimented on the detection of duplicated test code with the detection tool.

4.4.1 Application to illustrated production code and test code

There are production and test codes of the FizzBuzz problem in Figures 4-2 and 4-3.

This program implemented with TDD and test code has redundant duplication, e.g.,

T1 and T2 test code for numbers that are neither multiples of three nor multiples

of five. Thus, the execution paths for these test codes are equal. The development

88
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

Table 4.1: Inclusion relation of test code for FizzBuzz problem

T1 T2 T3 T4 T5 T6

T1 C0,C1,C∞ C0 C0 C0 C0,C1

T2 C0,C1,C∞ C0 C0 C0 C0,C1

T3 C0 C0,C1

T4 C0 C0,C1

T5 C0,C1

T6 C0

procedure for TDD is to minimize the repeated writing of test code in which a test

has failed and minimize the writing of production code that has passes the test. Thus,

it is easy for the duplicated test code to be written in TDD. It is not only TDD that

has a problem with duplicated test code. This problem is caused by various factors

like the case where test code written in integration testing includes test code written

in unit testing.

The inclusion relations of all test codes are listed in Table 4.1. The items at the

far left of the table are the test codes of targets for the detection of duplicates and

the items at the very top of the table are test codes where duplicated test code is

included. C0, C1 and C∞ in the table indicate that duplication was detected based

on C0, C1, and C∞.
For example, T3 is duplicated with T5 and T6 based on C0 and T3 is duplicated

with T6 based on C1. The measurement result of C0 and C1 does not change even if

test code other than T6 is removed. Moreover, T1 and T2 are duplicated mutually

based on C∞. The measurement result of C∞ does not change even if either of T1 or

T2 is removed.

The detection results for C0 and C1 contain all the detection results for C∞. Thus,
the detection results can be limited by basing them on the coverage of a stricter

criterion. For example, when developers write test code based on 100% coverage of

C0, the measurement results do not change even if the duplicated test code that is

detected based on C0 is removed. However, developers only have to detect duplicated

test code based on C∞ to leave the test code from the viewpoint of C∞. The developer

4.4. DETECTION EXPERIMENT ON DUPLICATED TEST CODE WITH DETECTION TOOL 89

Table 4.2: Detection experiment on duplicated test code in open source software

N. test code C0 C1 C ′∞ C∞ C ′
0 C ′

1

exp 34 3 4 1 0 32 33

task 42 8 3 2 2 27 25

tfs 190 7 8 6 5 179 183

Table 4.3: The score of mutation testing (N. detected mutations, org is original test
code)

N. mutations org C0 C1 C ′∞ C∞ C ′
0 C ′

1

exp 389 150 139 148 140 148 3 3

task 113 46 44 46 46 46 25 29

tfs 444 283 281 280 283 283 51 202

only has to determine the coverage of the detection criterion according to the policy

taking into consideration the trade-off in the problem that an increase in the test

code causes and the sufficiency of testing.

4.4.2 Application to open source software

The results for the detection experiment on duplicated test code in open source soft-

ware with the detection tool are listed in Table 4.2. And also, The results for mutation

testing on minimized test code in open source software with the detection tool are

listed in Table 4.3. The items at the far left of the table are the open source soft-

ware of the targets for detecting duplicates. The open source software used in this

experiment contained all Hudson plug-ins and was a continuous integration tool. The

exp indicates Testability Explorer Plug-in [45], task indicates Task Scanner Plug-in

[33] and tfs indicates Hudson Team Foundation Server Plug-in [76]. The items at

the very top of the table indicate the number of test codes and the number of times

duplicated test code was detected based on C0, C1, C ′∞, and C∞. And also C0 and

C1 indicate the tool removes the duplicated test code when duplicated test code is

included by the other one test code. The C ′
0 and C ′

1 indicate the tool removes the

duplicated test code when duplicated test code is included by the combination of the

other test code.

90
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

There is little duplicated test code based on C∞ in any of the software. However,

duplicated test code based on C0 is detected even in software with a small amount

of test code. When developers have a policy of only covering 100% of C0, developers

can detect and remove a great deal of duplicated test code.

Basically, the more the number of test code decreases, the more the result of

mutation testing worsens. However, the result of mutation testing of C1 is better than

C0 though the number of test code of C1 is lesser than C0. The result of mutation

testing of C1 is almost the same C ′∞ and C∞ because decision coverage is more like

path coverage than statement coverage. C ′
0 and C ′

1 detect duplicated test code too

much. Developers can select the detection criteria in consideration of this result.

4.5 Evaluation

I evaluated my technique by referring to the problems in Section 4.2.

4.5.1 S1: Detection technique based on semantics

My technique obtained parts where the test code covered the production code based

on coverage, calculated the inclusion relation of test code by using the covered parts

that were obtained, and detected duplicated test code. My technique used dynamic

information obtained by executing testing as well as the measurement of coverage.

Thus, it could detect duplicated test code based on dynamic aspects of test code, i.e.,

semantics.

Therefore, I solved the problem with the detection technique based on syntax

pointed out in P1.

4.5.2 S2: Detection technique that can adjust detection cri-

teria

I demonstrated that my technique could adjust detection criteria by changing the

kind of coverage used in detecting duplicated test code taking into consideration the

4.5. EVALUATION 91

trade-off in the problem that an increase in the test code causes and the sufficiency of

testing. Moreover, I revealed the relation between the kind of coverage and detected

duplicated test code with the implemented detection tool and my technique could

limit the detection results by adjusting detection criteria.

Therefore, I solved the problem with the detection technique that could not adjust

detection criteria pointed out in P2.

4.5.3 S3: Consistent detection technique with writing test

code

I demonstrated that my technique could detect duplicated test code that did not

influence the measured results of coverage by using the same coverage that was used

in writing the test code in the detection criteria.

Therefore, I solved the problem with inconsistent detection with the writing test

code pointed out in P3.

4.5.4 S4: Support of multiple programming languages

I implemented the detection tool by using OCCF. OCCF measures coverage sup-

porting multiple programming languages, so the detection tool also supports multiple

programming languages. My technique and the detection tool can use in the project

where developers use multiple programming languages.

Therefore, I solved the problem with support only of one programming language

with the writing test code pointed out in P4.

4.5.5 S5: Low computational complexity

My technique has low computational complexity because the calculation with the set

theory is simple and can do it in parallel with the measurement of coverage. Actually,

the time of measuring coverage and performing testing is about a minute, on the other

hand, the time of calculating the inclusion and detecting duplicated test code is about

a second in the experiment.

92
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

Therefore, I solved the problem with high computational complexity with the

writing test code pointed out in P5.

4.6 Limitations

I will now explain two limitations with my technique.

• Difficulty of application to black box testing

My technique can only detect duplicated test code from the viewpoint of white-

box testing because it detects duplicated test code based on coverage. Even if

test code is duplicated from the viewpoint of white-box testing, the defects that

the test code can detect might differ because black-box testing does not focus

on production code and developers write test code based on the specifications

used in black-box testing. This problem is essentially equal to the problem

where a possibility of leakage is caused in testing even if the measured result of

coverage is 100%. However, my technique is useful for limiting the candidates

of duplicated test code because it is possible to manually evaluate duplication

from the viewpoint of black-box testing.

• Non-corresponding duplication of test code and redundancy

The duplicated test code that my technique detected was not always redundant

because even if the part that the test code covered was duplicated, the defects

that could be found in the testing might have differed. This problem is essen-

tially equal to that where the measured results of coverage do not guarantee

sufficient testing. However, my technique is useful in limiting the number of

candidates in redundant duplicated test code.

4.7 Related work

Kamiya et al. [43] proposed efficient technique of detecting code clones and imple-

mented a tool to detect them, called CCFinder. They kept on developing it and

4.8. CONCLUSION OF THIS CHAPTER 93

now have a detection tool called CCFinderX. Support for multiple programming lan-

guages, support for interactive analysis, and improved performance were added to

CCFinderX. Theirs is similar to my technique from the viewpoint that it solves the

problem with duplicated code. Their technique detects code clones based on syntax.

My technique, on the other hand, detects duplicated test code based on coverage that

has a dynamic aspect. Therefore, my technique has benefits from the viewpoint of

detection of duplicated test code.

Deursen et al. [18] cataloged the refactoring of test code and proposed duplicated

test code as a smell that became the motivation for refactoring. They especially

discussed not only duplication based on syntax such as code clones but also dupli-

cation, which means the part of the production code that is covered by test code is

equal. Moreover, they recommended changing the part of the production code that

was covered by test code by refactoring the test code. My technique similarly focuses

on the part of the production code that is covered by test code because my technique

detects duplicated test code based on coverage. Therefore, my technique supplements

refactoring from the viewpoint of automatically detecting the smell of duplicated test

code.

Black et al. [6] propose the technique that detects by using all-uses coverage and

calculates the set of the best minimum test case. Moreover, they show the number

of defects actually found at each set of the obtained test case in the experiment.

Currently, my detection tool does not support data flow coverage such as all-uses

coverage. However, my technique can support data flow coverage as well as C∞.
Therefore, my technique supplements their technique from the viewpoint that my

technique can use their technique.

4.8 Conclusion of this chapter

I defined the inclusion relation of test code based on coverage and proposed a tech-

nique of detecting duplicated test code. Moreover, I implemented a detection tool that

mechanically detected duplicated test code and did an experiment on applying it to

94
CHAPTER 4. CASE STUDY OF OCCF: A TOOL DETECTING DUPLICATED TEST CODE BASED ON

TEST COVERAGE SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

an illustrated program and open source software. I demonstrated my technique could

detect duplicated test code based on coverage taking into consideration the semantics

of test code. In addition, I showed that my technique was consistent in writing test

code by detecting duplicated test code that did not influence the measured results

and I established my technique could change freely the detection criteria by chang-

ing the coverage that was used by detection. Moreover, the detection tool has low

computational complexity and supports three languages: Java, C and Python.

Chapter 5

UNICOEN: A Unified Framework

for Code Reengineering Supporting

Multiple Programming Languages

5.1 Introduction of this chapter

Many programming languages are developed and became diversified. For example,

C language is a historic and widespread language which was developed in 1972. In

contrast, new programming languages are being developed such as Kotlin and Xtend.

There are many source-code processing tools as well as programming languages.

The tools are roughly classified into two types: source code analyzers and source code

transformers. For example, software metrics measurement tools and static code an-

alyzers belong to source code analyzers. Source-code formatters and aspect-oriented

programming language processors belong to source code transformers. These tools

have became popular because they have important features to improve software qual-

ity with low costs [85].

Currently, many tools are developed with respect to each programming languages.

For example, FindBugs [36] and JSLint [16] are static code analyzers which support

only Java and only JavaScript, respectively. Moreover, AspectJ [49] and AOJS [80]

96
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

are aspect-oriented programming language processors which support only Java and

only JavaScript, respectively. In this way, the many-to-many relation exists between

programming languages and tools have .

Common processing can be extracted from the source code analysis and transfor-

mation. However, existing frameworks provide insufficient support for reusing com-

mon code across different programming languages. Thus, the many-to-many relation

causes problems as follows. P1) Implementing tools supporting many programming

languages requires enormous costs. P2) Each tool which provides same features with

respect to each different programming language differs. Therefore, users of several

programming languages cannot benefit from tools owing to the lack of tool support

for such programming languages.

In this chapter, I propose a framework for reengineering source code support-

ing multiple programming languages, called UNified code reENgineering framework

(UNICOEN). S1) UNICOEN provides a common model called a unified code model

for representing source code in supported programming languages. S2) UNICOEN

also provides a feature for inter-converting source code and objects on the unified

code model. To develop source code analyzers and transformers, users can implement

analysis and transformation processing with operations on the unified code model.

S3) To develop tools and add extensions for supporting new programming languages,

UNICOEN provides two APIs as common code on the unified code model. In this

way, UNICOEN reduces development costs of tools supporting multiple programming

languages to alleviate P1. Moreover, the unified code model prevents tools from dif-

fering by reusing source code processing in all programming ed by UNICOEN to

alleviate P2.

We developed extensions for supporting seven programming languages and three

source-code-processing tools. We compared costs for developing tools and adding

extensions for new programming languages between UNICOEN and existing tools.

As a results, we found that the developed tools with UNICOEN have less differences

with lower costs. Thus, we confirmed that UNICOEN successfully alleviates P1 and

P2.

5.2. PROBLEMS OF EXISTING TOOLS 97

The contributions of this chapter are as follows:

• I designed the unified code model by analyzing specifications of seven program-

ming languages, structuring same and different features and generating a union

of the language features.

• I and my developer team developed UNICOEN including two APIs for adding

extensions for new programming languages and developing tools.

• I and my developer team implemented extensions for seven programming lan-

guages and developed sample tools with UNICOEN.

5.2 Problems of existing tools

5.2.1 P1: Enormous development costs

It requires enormous costs to develop tools or tool sets such that almost programming

languages are supported by tools and users of almost programming languages can

benefit from such tools.

Importing the tool for the other programming languages requires long time often

after a tool is developed for a specific programming language. Or no tool for several

programming languages is imported. Therefore, tool developers consume significant

efforts to support many programming languages as far as possible. Tool users can-

not apply tools to software development or they must select limited programming

languages for developing software owing to the lack of the programming language

support.

For example, Lint[39] which is a static analyzer for only C was released in 1977,

JSLint supporting only JavaScript was released in 2002 and Pylint supporting only

Python was also released in 2004. Note that JavaScript and Python were released in

1995 and 1990, respectively. However, no tool supporting Ruby exists as we investi-

gated. This example indicates that tool users benefit from only tools corresponding

98
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

to limited programming languages and that spanning of supported programming lan-

guages requires long time.

5.2.2 P2: Differences between tools

Recently, software development using multiple programming languages has been in-

creasing. Karus et al. [44] reported developers worked with more than 4 different

languages including make and XML in a project on average. Most of tools support

one programming languages. Combining tools is sometimes required to apply tools

to a project using multiple programming languages. However, differences between

tools prevent developers from benefiting from tools or additional costs are required

to combine tools. Moreover, developers use many programming languages across

projects because they can select many programming languages which have different

optimized areas. Developers sometimes cannot use the tool which is used in old

projects in new projects owing to differences of supported programming languages

between tools. Developers must consume efforts to learn how to use them in such

case because developers must use the other tools in new projects. Such learning costs

also prevent developers from benefiting from tools.

For example, EMMA [69] of a coverage measurement tool supports only Java and

Coverage.py [2] of a coverage measurement tool supports only Python. EMMA mea-

sures statement coverage by a statement unit, while Coverage.py measures statement

coverage by a line unit. It is difficult to measure consistently statement coverage ow-

ing to the unit difference between EMMA and Coverage.py when we targets software

which consists of Java in server side and Python in client side with the client-sever

model.

Moreover, AspectJ and AOJS of AOP processors for only Java and only JavaScript,

respectively, We should write aspects for AspectJ and AOP separately when we tar-

gets software which consists of Java in server side and Python in client side similarly.

This separation decreases modularity and increases learning costs of AOP processors

because AspectJ and AOJS have different language specifications. Aspects for logging

execution of each method is shown in Figure 5-1. The lines 1-4 and 6-9 indicate as-

5.3. OVERVIEW OF UNICOEN 99

pects in AspectJ and AOJS, respectively. Although both aspects have same features,

they have different code.

1 public aspect Logger {
2 pointcut all() : execution(* *.*());
3 before() : all() { System.out.println(thisJoinPoint.getSignature() + " is executed."); }
4 }
5

6 <?xml version="1.0" ?>
7 <aspectsetting><function functionname="/*" pointcut="execution">
8 <before><![CDATA[console .log (__name__ + " is executed .");]]></before>
9 </function></aspectsetting>

Figure 5-1: Logging code for executing methods in AspectJ and AOJS

5.3 Overview of UNICOEN

Figure 5-2 shows an overview of UNICOEN. UNICOEN provides the unified code

model (UCM) as a core component and both the API for adding extensions for sup-

porting new programming languages and the API for developing tools as reusable

code. UNICOEN aids users to develop tools for analyzing and transforming source

code through abstract syntax trees (AST). In particular, UNICOEN aids to develop

tools which mainly utilize syntax analysis instead of semantic analysis because UNI-

COEN structures source code on UCM by syntax analysis and a part of semantic

analysis.

UNICOEN is developed in C# 4.0, thus, runs on .NET Framework and Mono.

UNICOEN is a open source licensed by Apache 2.0 and is available on Github[70]

S1) UNICOEN provides UCM as a specification of a common AST for supported

programming languages. Common objects on UCM for supported programming lan-

guages are called unified code objects. UNICOEN provides the API for developing

tools which is similar to DOM standardized by W3C and LINQ developed by Mi-

crosoft. In particular, the API provides a feature for inter-converting between source

code and objects on UCM in a same programming languages, and basic operations

of a extraction, addition, replacement and deletion for analyzing and transforming

code. Operations for objects on UCM aids to commonalize soure-code processing

100
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

Figure 5-2: Overview of UNICOEN

for common elements between supported programming languages. Commonalizing

source-code decrease differences between tools. Therefore, UNICOEN alleviates P2)

the differences between tools supporting different programming languages.

UNICOEN also provides the API for adding extensions for supporting new pro-

gramming language, which requires users to implement a mapper between source code

an objects on UCM called a object-code mapper with respect to each programming

languages. To aid to implement extensions, UNICOEN provides reusable code for

implementing object-code mappers as the API. S2) UNICOEN provides the inter-

conversion between source code and objects on UCM and S3) provides the two APIs

as common processing to reduce costs of development tools and extensions for sup-

porting new programming languages to reduce both costs of developing tools and

extensions. Therefore, UNICOEN alleviates P1) enormous costs to implement tools

supporting many programming languages.

UNICOEN users are classified into two types: tool developers which develop tools

with the API for developing tools and extension developers which add extensions for

supporting new programming languages in UNICOEN with the API for adding ex-

tensions for supporting new programming language. The tool developers can avoid

implementing syntax analysis and a part of semantic analysis by implementing code

5.4. IMPLEMENTATION OF UNICOEN 101

processing on UCM. Moreover, the tool developers can develop any tools with the

same API by using UCM and the API for developing tools. Whereas, the exten-

sion developers can extend UNICOEN to support more programming languages by

implementing object-code mappers.

5.4 Implementation of UNICOEN

This section describes UCM, the API for adding extensions for supporting new pro-

gramming language and the API for developing tools, respectively.

5.4.1 Unified code model

UCM is defined with classes in C#. Objects on UCM, which are instances of the

classes, have recursive tree structure. For example, an object for representing a class

has children objects for representing methods and the children have children objects

such as a parameter and a block. The objects also have position information on source

code (a line and a row number).

UCM structures source code as objects mainly based on syntax analysis and UNI-

COEN does not requires full semantic analysis. For example, UNICOEN recognizes

a syntax of a binary expression, on the other hand, it does not interpret a meaning of

a binary expression. Thus, UNICOEN is different from compiler frameworks such as

GCC, LLVM and virtual machines, which executes intermediate code, such as Java

VM and .NET Framework. Note that Section 5.6 describes these tools.

I designed UCM which have the capability to represent source code of C, Java,

C#, Visual Basic, JavaaScript, Python and Ruby by integrating language features and

grammars of these programming languages. I consider elements of these programming

languages which have similar syntax and meaning as common elements on UCM. I

structured UCM by calculating the union of the common elements and others.

For example, a while statement in most of programming languages has a condi-

tion whether a loop continues and a imperative block in the loop. However, a while

statement in Python has an else-clause which has a imperative block which is exe-

102
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

cuted when the condition is false and the loop terminates. To represent both while

statements, UCM has a while statement which has the three elements: a condition,

a imperative block and an else-clause. UCM considers a package declaration in Java

and a namespace declaration in C# as a same element because they have similar

meanings although a package declaration in Java and a namespace declaration in

C# have different notation styles. Moreover, UCM considers a package declaration,

a namespace declaration, a class declaration including an interface as a similar ele-

ments because some programming languages allow namespaces to contain fields and

methods directly as well as a class declaration.

I judged whether elements of these programming languages are common or not

from similarities of names, structures, meanings and positions. Steps to find candi-

dates of common elements for constructing UCM from programming language A and

B is described as follows.

1. Finding the most abstract non-terminal symbol in programming language A

2. Comparing non-terminal symbols which are not candidates in programming lan-

guage B with the found symbol with breadth-first search (BFS) to find elements

which meet the following requirements. Note that the search starts from the

child symbols of the candidate when the parent symbol of the found symbol has

a candidate of common elements.

• The names of the non-terminal symbol are similar.

• The child symbols of the non-terminal symbol are similar and the struc-

tures of the non-terminal symbol are similar.

• The meanings and positions of the non-terminal symbol are similar.

3. The pair of non-terminal symbols are considered as a candidate of common

elements when the elements which meet either of requirements are found.

4. The step 2 are repeatedly applied to the child symbols in programming language

A with BFS. Terminating the steps when no child symbol is found.

5.4. IMPLEMENTATION OF UNICOEN 103

Figure 5-3: Illustration of selecting common elements

Figure 5-3 shows an example for extracting common elements from programming

languages A and B, which have five and four non-terminal symbols, respectively.

Black circles indicate non-terminal symbols and white circles indicate terminal sym-

bols. Pairs of T1 and T1’, of T2 and T2’, of T4 and T4’ and of T5 and T5’ are

candidates of common elements. First, finding a candidate of common elements for

T1 starts, then, T1’ is found. Second, finding a candidate of common elements for T2

starts. T2’ is found first because T1 is the parent symbol of T2 and T1 is similar to

T1’. Although T5’ and T4’ are compared with T3, a candidate of common elements

for T3 is not found. Then, T4’ is found first as a candidate of common elements for

T4 because T2 is the parent symbol of T4 and T4 is similar to T4’. Finally, T5’ is

104
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

found first as a candidate of common elements for T5.

Figure 5-4 shows the partial definition of UCM written in extended Abstract

Syntax Description Language (ASDL). Figures 5-12, 5-13 and 5-14 also shows the

full definition of UCM written in extended ASDL. Tables 5.7, 5.8, 5.9, 5.10 and

5.11 show the relation between elements on UCM and programming languages. “x”

indicates a programming languages has a element.

Most of procedural programming languages distinguish expressions and state-

ments by judging whether they return values. However, most of elements in Ruby

are expressions and Ruby has few statements which has no return values. For ex-

ample, six programming languages other than Ruby have an if statement, a while

statement and a function declaration, which are statements while ones in Ruby are

expressions. Thus, UCM considers a statement as a special case of expressions, that

is, UCM considers both statements and expressions as expressions In this way, UNI-

COEN represents source code as objects on the same model (UCM) and provides

same operations with the API for objects on UCM which is designed to represent

source code of the seven programming languages.

1 Expression = If(Expression condition, Block body, Block elseBody)
2 | While(Expression condition, Block body, Block elseBody)
3 | DoWhile(Expression condition, Block body)
4 | For(Expression initializer, Expression condition, Expression step,
5 Block body, Block elseBody)
6 | FunctionDefinition(ModifierCollection modifiers, Type returnType,
7 Identifier name, ParameterCollection parameters, Block body)

Figure 5-4: Part of unified code model in ASDL

5.4.2 API for adding extensions for supporting new program-

ming language

UNICOEN provides two features as the API for adding extensions for supporting new

programming language to reduce costs of extensions for supporting new programming

languages: a feature to convert parse results from ANTLR into XML element objects

on .NET Framework and a feature to scan the XML trees. The extension develop-

5.4. IMPLEMENTATION OF UNICOEN 105

ers must implement object-code mappers which consists in syntax analyzers, object

generators and code generators with the API to add extensions for supporting new

programming language. To implement object-code mappers, the extension developers

must create classes to implement interfaces provided by UNICOEN. Figures 5-5 and

5-6 show an inter-conversion between source code and objects on UCM as a usage

example of object-code mappers.

Figure 5-5: Process of conversion and reverse conversion between source code and
unified code objects

1 var filePath = "code.java";
2 var ext = Path.GetExtension(filePath);
3 var progGen = UnifiedGenerators.GetProgramGeneratorByExtension(ext);
4 var uco = progGen.GenerateFromFile(filePath);
5 // Write transformation processing
6 var code = progGen.CodeGenerator.Generate(uco);

Figure 5-6: C# Code to inter-convert between source code and unified code objects
with UNICOEN

UNICOEN makes it possible that objects on UCM generated from source code

of supported programming languages are reconverted into source code of the same

programming language without changing meanings. The extension developers must

implement object-code mappers to achieve this inter-conversion. Moreover, UNI-

COEN provides test cases to judge whether object-code mappers achieve this inter-

conversion. This inter-conversion aids to transform source code on UCM as long as

the scope of the transformation does not extend beyond the expressiveness of the

original programming language. UNICOEN tries to reconvert objects on UCM into

106
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

source code ignoring objects which is beyond the expressiveness by default. Note

that developers can implement an object-code mapper which converts a class object

on UCM into source code in C which represent the class with function pointer and

structure. In this way, the way of the inter-conversion is freely designed by extension

developers.

UNICOEN aids the extension developers to add extensions for supporting new

programming languages with ANTLR or existing parser libraries. UNICOEN also

provides a sub system which aids to utilize ANTLR, called Code2Xml. Code2Xml

modifies parsers generated by ANTLR to be suitable as object-code mappers. More-

over, UNICOEN provides reusable code to scan XML trees and analyze expressions

as XML elements.

The extension developers can add a extension for supporting a new programming

language with the following steps. 1) They investigate the specification of the pro-

gramming language and design the model to structure source code. 2) They compare

the designed model with UCM to find differences. 3) They extend UCM with a step

a), a step b) or both steps. 3.a) When the element does not exist in UCM, they add

classes for representing the element in UCM. For example, currently UCM has no

element for representing aspects, thus, they can add classes for aspects. 3.b) When

the element exists in UCM but some properties are not represented on UCM, they

extend existing classes adding properties. For example, they can add a new property

of the else-clause in the class of a for statement if a for statement has an else-clause

of a while statement in Python.

Existing object-code mappers and tools with UNICOEN are not affected when

UCM is extended. When new classes are added to UCM, the objects of the classes

cannot be generated and it is impossible to judge whether the objects does not appear

in the source code or the programming languages has no feature and grammar for the

objects. Similarly, when new properties are added in classes of UCM, the property

is initialized to null and it is also impossible to judge whether the property does not

appear in the source code or the programming languages has no feature and grammar

for the property.

5.4. IMPLEMENTATION OF UNICOEN 107

5.4.3 API for developing tools

UNICOEN provides two features as the API for developing tools to reduce develop-

ment cost of tools supporting multiple programming languages: a feature to inter-

convert between source code and objects on UCM and a feature to provide operations

for objects on UCM such as an extraction, addition, replacement and deletion. The

features are achieved by object-code mappers which the extension developers develop.

Figure 5-7 shows a class diagram of the unified code model and the API for developing

tools.

Figure 5-7: Class diagram of the unified code model and the API for tool developers

The analysis and transformation features for objects on UCM are provided by the

API which is similar to LINQ to XML. Thus, the API can be combined with opera-

tions in LINQ. For example, source code which counts the XML element whose name is

if with LINQ to XML shown in Lines 1-3 Figure 5-8 and source code which counts if

statements with UNICOEN shown in Lines 5-7 Figure 5-8 are very similar. The types

of the ifElements and ifs in Figure 5-8 are The IEnumerable<XElement> and

the IEnumerable<IUnifiedElement>, respectively. The XElement represents

an XML element and the IUnifiedElement represents objects on UCM. Both

types provide the Count() extension method of LINQ because both types are the

108
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

IEnumerable.

1 var xml = XDocument.Load("code.xml");
2 var es = xml.Descendants("if");
3 Console.WriteLine("#if elements: " + es.Count());
4

5 var uco = UnifiedGenerators.GenerateProgramFromFile("code.java");
6 var ifs = uco.Descendants<UnifiedIf>();
7 Console.WriteLine("#ifs: " + ifs.Count());

Figure 5-8: C# code to enumerate “if” elements and enumerate unified code objects
of “if” statement

To develop analysis tools with UNICOEN, the developers can write analysis pro-

cessing after conversion processing from source code into objects on UCM. In contrast,

to develop transformation tools with UNICOEN, the developers can write reconver-

sion processing from objects on UCM into source code after transformation processing

of objects on UCM. For example, to measure the number of statements, developers

can write source code which enumerates all blocks and counts child elements of the

blocks because child elements of blocks on UCM indicate statements. Figure 5-9

shows sample code to measure the number of statements.

1 var uco = UnifiedGenerators.GenerateProgramFromFile("code.java");
2 var count = uco.Descendants<UnifiedBlock>().Sum(e => e.Count);
3 Console.WriteLine("#statements: " + count);

Figure 5-9: C# Code to count statements with UNICOEN

In this way, the tool developers can write program to count any element through

enumerations of specific objects on UCM with the API for developing tools. More-

over, UNICOEN makes it easy to add method declarations, change operations of

expressions and delete any statement by providing mutable properties, the Add and

Remove methods. Therefore, UNICOEN reduces development costs of tools support-

ing multiple programming languages.

5.5. EVALUATION 109

5.5 Evaluation

This sections describes evaluations through my case study to confirm the effective-

ness of UNICOEN. I and my developer team implemented OC-mappers for seven

programming languages and then developed two metrics measurement tools. I con-

firm UNICOEN reduces development costs to alleviate P1 by comparing the number

of statements which are required to develop tools between the metrics measurement

tools and existing tools. I also confirm UNICOEN reduces differences between tools

to alleviate P2 by checking whether the metrics measurement tools provides same

features for all supported programming languages.

5.5.1 Implementation of extensions for supporting program-

ming languages

We developed object-code mappers for C, Java, C#, Visual Basic, JavaScript, Python

and Ruby. The comparison of the number of statements between implemented object-

code mappers and existing programming language processors is shown in Table 5.1.

The column of object-code mapper indicates the number of statements of the object

generator implemented by hand. The column of existing programming language pro-

cessors indicates the number of statements for the compilation processing of GCC for

C, GCJ for Java, Mono MCS for C#, Rhino which is a JavaScript processor on Java

VM, IronPython which is a Python processor on .NET Framework and IronRuby

which is a Ruby processor on .NET Framework. Note that the number of statements

for the processors other than Rhino excludes one for the common processing of frame-

works and includes only the conversion processing between source code and machine

code/intermediate code. However, the value for Rhino indicates the number of state-

ments for the entire processor because Rhino does not use any framework and it is

difficult to extract the compilation processing. Moreover, Table 5.1 does not include

Visual Basic because no processor for Visual Basic provides source code.

The implementation uses ANTLR for C, Java and JavaScript and existing parser

libraries for other languages. UNICOEN reduce code from one twenty to one fifty

110
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

Table 5.1: Comparison of the number of statements between OC mappers and
existing programming language processors: GCC, GCJ, Mono, Rhino, IronPython,
IronRuby

Programming language C Java C# JavaScript Python Ruby

Object-code mapper 727 1,003 399 626 636 501

Existing processor 14,949 12,782 36,988 38,277 15,411 14,353

comparing with existing processors by utilizing existing software and providing the

API for adding extensions for supporting new programming languages. Therefore, we

confirm UNICOEN alleviates P1.

5.5.2 Tool development with UNICOEN

We developed UniMetrics which measure McCabe’s complexity and result values

which can be visualized as a city by CodeCity[81].

There are some existing tools for measuring McCabe’s complexity: Sonar[77] for

Java and Saikuro[7] for Ruby. However, the measurement tools have different for

foreach statements and it requires additional efforts to merge measurement results.

This situation makes evaluation of entire software written in Java and Ruby with

McCabe’s complexity hard. In contrast, UniMetrics can measure McCabe’s complex-

ity with same criteria for all supported programming languages and show the results

in one graph. Moreover, CodeCity has metrics measurement tools for Java, C++

and C#, while CodeCity cannot integrate measurement results for software written

in multiple programming languages to visualize several results as one city. In con-

trast, UniCodeWorld can generate one measurement result, and thus, CodeCity can

visualize it as one city.

The comparison of the number of statements for measuring McCabe’s complexity

between Saikuro and UniMetrics is shown in Table 5.2. The comparison of the number

of statements for generating measurement results for CodeCity between PMCS[19] for

C# and UniCodeWorld is shown in Table 5.3. Moreover, Tables 5.4 and 5.5 show the

elements which are used for measuring McCabe’s complexity and generating results

for CodeCity by my tools. “x” indicates a programming languages has a element.

5.5. EVALUATION 111

Table 5.2: Comparisons of the supported languages and the number of statements
between Saikuro and UniMetrics

Supported programming languages Statements

Saikuro Ruby 321

UniMetrics C，Java，C#，Visual Basic，JavaScript，Python，Ruby 3

Table 5.3: Comparisons of the supported languages and the number of statements
between PMCS and UniCodeWorld

Supported programming languages Statements

PMCS C# 1478

UniCodeWorld C，Java，C#，Visual Basic，JavaScript，Python，Ruby 203

Both Saikuro and PMCS have processing for syntax analysis and they measures

metrics in analyzing syntax. On the other hand, tools with UNICOEN can measure

metrics without their own syntax analysis because UNICOEN provides reusable code

to convert source code into UCOs. As shown in Tables 5.4 and 5.5, the tools with

UNICOEN successfully reuse language-independent code by manipulating common

elements across multiple programming languages on UCM. As a result, UNICOEN

reduces development costs as shown in Tables 5.2 and 5.3.

Therefore, we confirm UNICOEN alleviate P2 by decreases differences between

tools for other programming languages and alleviate P1 by reducing development

costs of tools for multiple programming languages.

The number of statements which I and my developer team implemented for UNI-

COEN including OC-mappers without libraries and automatically generated code is

14796. Figure 5-10 and 5-11 shows graphs the number of required statements to

implement tools with UNICOEN similar to Saikuro and PMCS, respectively. The

horizontal axis indicates the number of combinations of programming languages and

tools. Thus, this value increases when adding a new supported programming lan-

guage. Note that the number of required statement are calculated on the basis of

Tables 5.2 and 5.3.

Traditional tool development develops tool with respect to each programming lan-

guages without reusing code across different programming languages. Thus, I assume

112
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

Table 5.4: Elements in the unified code model for measuring McCabe complexity
and languages (L1:C, L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby,
L6:Python)

Programming language

Element L1 L2 L3 L4 L5 L6

If x x x x x x

For x x x x

Foreach x x x x x

While x x x x x x

DoWhile x x x x x

Case x x x x x

Table 5.5: Elements in the unified code model for generating the measurement
result for CodeCity complexity and languages (L1:C, L2:Java, L3:C# and Visual
Basic, L4:JavaScript, L5:Ruby, L6:Python)

Programming language

Element L1 L2 L3 L4 L5 L6

NamespaceDefinition x x

ClassDefinition x x x x

FunctionDefinition x x x x x x

VariableIdentifier x x x x x x

Modifier x x x x x x

that the required statements when adding a new supported programming language

and when developing a new tool are same. I show two cases for UNICON where tools

support seven programming languages and support only one programming language.

An increase in required statements occurs when developing seven combinations in the

case where tools support seven programming languages with UNICOEN. On the other

hand, an increase in required statements occurs when developing one combination in

the case where tools support only one programming languages with UNICOEN.

As shown in the graphs, developers are required to develop 47 combinations for

tools similar to Saikuro to overcome required statements to develop UNICOEN. On

the other hand, developers are required to develop 12 combinations for tools similar to

PMCS to overcome required statements to develop UNICOEN. Therefore, developers

5.5. EVALUATION 113

Figure 5-10: The number of statements for developing tools whose size is similar to
the size of Saikuro

Figure 5-11: The number of statements for developing tools whose size is similar to
the size of PMCS

benefit from a framework such as UNICOEN when developers develop UNICON and

50 combinations at least.

114
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

Table 5.6: Comparison of UNICOEN with existing tools and frameworks

Framework Adding new languages Common model Analysis Transformation

UNICOEN x x x x

LLVM x x x x

MASU x x

Sapid x x

srcML x x x

DMS x x x

TXL x x

Stratego x x

5.6 Related works

Table 5.6 shows a comparison of UNICOEN with existing tools and frameworks.

“Adding new languages” indicates whether a tool or framework supports to add ex-

tensions for supporting new programming languages. “Common model” indicates

whether a tool or framework has a common language model. “Analysis” and “Trans-

formation” indicates whether a tool or framework supports analysis and transforma-

tion, respectively.

Lattner et al. [54] proposed a compile framework, called LLVM. In addition, a

similar target for comparison with UNICOEN is a platform for running intermediate

languages such as Java VM and .NET Framework. Because such software analyze

semantics completely and generate intermediate code, it requires enormous costs to

add extensions for supporting new programming languages. Moreover, intermediate

languages are similar to machine languages and contain little information about syn-

tax. Thus, it is difficult to develop tools needing syntax information such as code

formatter. UNICOEN, in contrast, reduce costs of tool development and extensions

for supporting new programming languages by avoiding full semantic analysis. UNI-

COEN enables developers to develop tools for any supported programming languages

similarly by providing UCM and the API for developing tools. UNICOEN also allows

developer to implement semantic analysis for tools which requires semantic informa-

tion. Therefore, UNICOEN has a significant advantage when developing tools which

5.7. CONCLUSION OF THIS CHAPTER 115

require syntax information mainly.

Higo et al. [35] proposed a framework for measuring metrics supporting multi-

ple programming languages, called MASU. MASU interprets elements required to

measure metrics and constructs language-independent AST. MASU allows users to

implement plug-ins which analyze the language-independent AST to measure soft-

ware metrics for Java, C# and Visual Basic. UNICOEN, in contrast, supports more

programming languages than MASU including not object-oriented programming lan-

guages and dynamic programming languages. Moreover, whereas MASU only pro-

vides language-independent AST, UNICOEN also provides the API for adding exten-

sions for supporting new programming languages. In addition, UNICOEN can and

MASU cannot transform source code.

Baxter et al. [3] proposed a toolkit which aids to develop analysis and transfor-

mation tools, called DMS. Tool developers can develop tools with DMS and extension

developers also can add new extensions for supporting new programming languages

by adding grammars of new programming languages. However, DMS does not provide

common language model, thus, it is hard to reuse code across different programming

languages and decrease differences between tools for different programming languages.

Sapid [26] and srcML [12] are tools for analyzing and transforming source code.

Although tool developers can utilize these tools for developing tools, extension devel-

opers cannot add extensions for supporting new programming languages.

TXL [15] and Stratego [8] are tools for transforming source code. Although these

tools support adding extensions, developers cannot develop analysis tools with them.

5.7 Conclusion of this chapter

This chapter described UNICOEN for processing source code supporting multiple

programming languages. UNICOEN aids to develop tools which utilize syntax infro-

mation mainly by providing UCM and the two APIs for developing tools and adding

extensions for supporting new programming languages. We added seven programming

languages in UNICOEN: C, Java, C#, Visual Baisc, JavaScript, Python and Ruby,

116
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

and developed UniMetrics and extension of CodeCity. We confirmed UNICOEN

reduces costs of development tool and extensions for supporting new programming

languages and UNICOEN also reduces differences between tools for different pro-

gramming languages. Therefore, UNICOEN alleviate P1 and P2.

5.7. CONCLUSION OF THIS CHAPTER 117

Table 5.7: Elements in the unified code model and languages (Part 1) (L1:C,
L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python)

Language

Element L1 L2 L3 L4 L5 L6

Program x x x x x x

Block x x x x x x

Comment x x x x x x

VariableDefinition x x x x x

VariableDefinitionList x x x x

ClassDefinition x x x x

AnnotationDefinition x

EigenClassDefinition x

EnumDefinition x x x

InterfaceDefinition x x

ModuleDefinition x

NamespaceDefinition x x

StructDefinition x x

UnionDefinition x

EventDefinition x

FunctionDefinition x x x x x x

PropertyDefinition x

PropertyDefinitionPart x

Constructor x x x

InstanceInitializer x

StaticInitializer x x

TypeConstrain x x

SuperConstrain x x

ReferenceConstrain x

ImplementsConstrain x x

ExtendConstrain x x

EigenConstrain x

ConstructorConstrain x

AnnotationCollection x

ArgumentCollection x x x x x x

CaseCollection x x x x

CatchCollection x x x x x

ExpressionCollection x x x x x x

118
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

Table 5.8: Elements in the unified code model and languages (Part 2) (L1:C,
L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python)

Language

Element L1 L2 L3 L4 L5 L6

GenericArgumentCollection x x

GenericParameterCollection x x

IdentifierCollection x x x x x x

ModifierCollection x x x x x x

OrderByKeyCollection x

ParameterCollection x x x x x x

TypeCollection x x x x x

TypeConstrainCollection x x x x x

Modifier x x x x x x

Annotation x x

Parameter x x x x x x

Argument x x x x x x

GenericParameter x x

GenericArgument x x

Call x x x x x x

New x x x x

Property x x x x x x

Indexer x x x x x x

Slice x

Identifier x x x x x x

VariableIdentifier x x x x x x

LabelIdentifier x x

SuperIdentifier x x x

ThisIdentifier x x x

TypeIdentifier x

VaueIdentifier x

Cast x x x

Type x x x x x x

ArrayType x x x

ConstType x

GenericType x x

PointerType x

StructType x x

5.7. CONCLUSION OF THIS CHAPTER 119

Table 5.9: Elements in the unified code model and languages (Part 3) (L1:C,
L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python)

Language

Element L1 L2 L3 L4 L5 L6

UnionType x

VolatileType x

NullLiteral x x x x x x

BooleanLiteral x x x x x

CharLiteral x x x x x

FractionLiteral x x x x x

RegularExpressionLiteral x x

StringLiteral x x x x x x

SymbolLiteral x

IntegerLiteral x x x x x x

ArrayLiteral x x x x x

IterableLiteral x

ListLiteral x x

MapLiteral x x x

SetLiteral x

TupleLiteral x

KeyValue x x x

Range x

BinaryExpression x x x x x x

TernaryExpression x x x x x x

UnaryExpression x x x x x x

BinaryOperator x x x x x x

UnaryOperator x x x x x x

Sizeof x x

Typeof x x

If x x x x x x

For x x x x x

Foreach x x x x x

While x x x x x x

DoWhile x x x x x

Switch x x x x x

Case x x x x x

Label x x x

120
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

Table 5.10: Elements in the unified code model and languages (Part 4) (L1:C,
L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python)

Language

Element L1 L2 L3 L4 L5 L6

Lambda x x x

Proc x

Try x x x x x

Catch x x x x x

Fix x

Synchronized x x

Using x

With x

Break x x x x x x

Continue x x x x x x

Return x x x x x x

Throw x x x x x

Goto x x

Redo x

Retry x

YieldBreak x

YieldReturn x x x

Alias x

Assert x x x

Default x

Defined x

Delete x x x

Exec x

Import x x x

Pass x x

Print x

PrintChevron x

StringConversion x

MapComprehension x

IterableComprehension x

ListComprehension x

SetComprehension x

5.7. CONCLUSION OF THIS CHAPTER 121

Table 5.11: Elements in the unified code model and languages (Part 5) (L1:C,
L2:Java, L3:C# and Visual Basic, L4:JavaScript, L5:Ruby, L6:Python)

Language

Element L1 L2 L3 L4 L5 L6

LinqExpression x

LinqQuery x

FromQuery x

GroupByQuery x

JoinQuery x

LetQuery x

OrderByQuery x

SelectQuery x

WhereQuery x

OrderByKey x

122
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

1 IElement
2 = Element
3 | ElementCollection
4

5 Element
6 = Expression()
7 | Program(Block body)
8 | Parameter(AnnotationCollection annotations, ModifierCollection modifiers,
9 Type type, IdentifierCollection names, IExpression defaultValue,

10 IExpression annotationExpression)
11 | Modifier(string name)
12 | GenericParameter(Type type, TypeConstrainCollection constrains,
13 ModifierCollection modifiers)
14 | GenericArgument(IExpression type, ModifierCollection modifiers,
15 TypeConstrainCollection constrains)
16 | Comment(string comment)
17 | Case(IExpression condtion, Block body)
18 | Argument(IExpression value, Identifier target, ModifierCollection modifiers)
19 | Annotation(IExpression name, ArgumentCollection arguments)
20 | TypeConstrain()
21 | PropertyDefinitionPart(AnnotationCollection annotations, ModifierCollection modifiers,
22 Block body)
23 | VariableDefinition(AnnotationCollection annotations, ModifierCollection modifiers,
24 Type type, Identifier name, IExpression initialValue, ArgumentCollection arguments,
25 IntegerLiteral bitField, Block body)
26 | LinqQuery()
27 | OrderByKey(IExpression expression, bool ascending)
28 | BinaryOperator(string sign, BinaryOperatorKind kind)
29 | UnaryOperator(string sign, UnaryOperatorKind kind)
30

31 TypeConstrain
32 = ValueConstrain(Type type)
33 | SuperConstrain(Type type)
34 | ReferenceConstrain(Type type)
35 | ImplementsConstrain(Type type)
36 | ExtendConstrain(Type type)
37 | EigenConstrain(Type type)
38 | ConstructorConstrain(Type type)
39

40 ElementCollection
41 = AnnotationCollection(IList<Annotation> elements)
42 | ArgumentCollection(IList<Argument> elements)
43 | CaseCollection(IList <Case> elements)
44 | CatchCollection(IList <Catch> elements)
45 | ExpressionCollection(IList<Expression> elements)
46 | GenericArgumentCollection(IList<GenericArgument> elements)
47 | GenericParameterCollection(IList<GenericParameter> elements)
48 | IdentifierCollection(IList<Identifier> elements)
49 | ModifierCollection(IList<Modifier> elements)
50 | OrderByKeyCollection(IList<OrderByKey> elements)
51 | ParameterCollection(IList<Parameter> elements)
52 | TypeCollection(IList <Type> elements)
53 | TypeConstrainCollection(IList<TypeConstrain> elements)
54 ClassLikeDefinition
55 = AnnotationDefinition()
56 | ClassDefinition()
57 | EigenClassDefinition()
58 | EnumDefinition()
59 | InterfaceDefinition()
60 | ModuleDefinition()
61 | NamespaceDefinition()
62 | StructDefinition()
63 | UnionDefinition()

Figure 5-12: Full definition of unified code model in extended ASDL (Part1)

5.7. CONCLUSION OF THIS CHAPTER 123

1 Expression
2 = Call(IExpression target, ArgumentCollection args,
3 GenericArgumentCollection genericArguments, Proc proc)
4 | Cast(Type type, IExpression createExpression)
5 | Indexer(IExpression current, ArgumentCollection create)
6 | KeyValue(IExpression key, IExpression value)
7 | Label(string name)
8 | New(IExpression target, ArgumentCollection arguments,
9 GenericArgumentCollection genericArguments, ArrayLiteral initialValues, Block body)

10 | Property(string delimiter, IExpression owner, IExpression name)
11 | Slice(IExpression initializer, IExpression condition, IExpression step)
12 | Switch(IExpression value, CaseCollection cases)
13 | Catch(TypeCollection types, IExpression assign, Block body,
14 AnnotationCollection annotations, ModifierCollection modifiers)
15 | If(IExpression condition, Block body, Block falseBody)
16 | Lambda(Identifier name, ParameterCollection parameters, Block body)
17 | Proc(ParameterCollection parameters, Block body)
18 | Try(Block body, CatchCollection catches, Block elseBody, Block finallyBody)
19 | ConstructorLike<TSelf>(Block body, AnnotationCollection annotations,
20 ModifierCollection modifiers, ParameterCollection parameters,
21 GenericParameterCollection genericParameters, TypeCollection throws)
22 | DoWhile(IExpression condition, Block body, Block falseBody)
23 | For(IExpression initializer, IExpression condition, IExpression step, Block body)
24 | Foreach(IExpression element, IExpression set, Block body, Block elseBody)
25 | While(IExpression condition, Block body, Block elseBody)
26 | Fix(IExpression value, Block body)
27 | Synchronized(IExpression value, Block body)
28 | Using(ExpressionCollection expressions, Block body)
29 | With(IExpression value, Block body)
30 | ComprehensionBase()
31 | MapComprehension(KeyValue element, ExpressionCollection generator)
32 | ClassLikeDefinition(AnnotationCollection annotations, ModifierCollection modifiers,
33 IExpression name, GenericParameterCollection genericParameters,
34 TypeConstrainCollection constrains, Block body)
35 | EventDefinition(AnnotationCollection annotations, ModifierCollection modifiers,
36 Type type, Identifier name, ParameterCollection parameters,
37 PropertyDefinitionPart adder, PropertyDefinitionPart remover)
38 | FunctionDefinition(AnnotationCollection annotations, ModifierCollection modifiers,
39 Type type, GenericParameterCollection genericParameters,
40 Identifier name, ParameterCollection parameters, TypeCollection throws,
41 Block body, IExpression annotationExpression)
42 | PropertyDefinition(AnnotationCollection annotations, ModifierCollection modifiers,
43 Type type, Identifier name, ParameterCollection parameters,
44 PropertyDefinitionPart getter, PropertyDefinitionPart setter)
45 | Identifier(string name)
46 | Break(IExpression value)
47 | Continue(IExpression value)
48 | Goto(Identifier value)
49 | Redo()
50 | Retry()
51 | Return(IExpression value)
52 | Throw(IExpression value, IExpression data, IExpression trace)
53 | YieldBreak(IExpression value)
54 | YieldReturn(IExpression value)
55 | LinqExpression()
56 | ArrayLiteral()
57 | IterableLiteral()
58 | ListLiteral()
59 | MapLiteral()
60 | SetLiteral()
61 | TupleLiteral()
62 | Literal()
63 | Range(IExpression min, IExpression max)

Figure 5-13: Full definition of unified code model in extended ASDL (Part2)

124
CHAPTER 5. UNICOEN: A UNIFIED FRAMEWORK FOR CODE REENGINEERING SUPPORTING

MULTIPLE PROGRAMMING LANGUAGES

1 | BinaryExpression(IExpression leftHandSide, BinaryOperator binaryOperator,
2 IExpression rightHandSide)
3 | TernaryExpression(IExpression condition, IExpression trueExpression,
4 IExpression falseExpression)
5 | UnaryExpression(IExpression operand, UnaryOperator unaryOperator)
6 | Alias(IExpression value, IExpression alias)
7 | Assert(IExpression value, IExpression message)
8 | Default(Type type)
9 | Defined(IExpression value)

10 | Delete(IExpression value)
11 | Exec(IExpression value)
12 | Import(IExpression name, string alias, IExpression member, ModifierCollection modifiers)
13 | Pass(IExpression value)
14 | Print(IExpression value)
15 | PrintChevron(IExpression value)
16 | Sizeof(IExpression expression)
17 | StringConversion(IExpression value)
18 | Typeof(IExpression type)
19 | Type(IExpression basicExpression)
20 | Block(IList<IUnifiedExpress> elements)
21 | VariableDefinitionList(IList<VariableDefinition> elements)
22

23 ConstructorLike
24 = Constructor() | InstanceInitializer() | StaticInitializer()
25

26 ComprehensionBase
27 = IterableComprehension(IExpression element, ExpressionCollection generator)
28 | ListComprehension(IExpression element, ExpressionCollection generator)
29 | SetComprehension(IExpression element, ExpressionCollection generator)
30

31 Identifier
32 = LabelIdentifier(string name) | SuperIdentifier(string name)
33 | ThisIdentifier(string name) | TypeIdentifier(string name)
34 | VariableIdentifier(string name) | VaueIdentifier(string name)
35

36 LinqQuery
37 = FromQuery(VariableIdentifier receiver, IExpression source, Type receiverType)
38 | GroupByQuery(IExpression element, IExpression key, VariableIdentifier receiver)
39 | JoinQuery(VariableIdentifier receiver, IExpression joinSource,
40 IExpression firstEqualsKey, IExpression secondEqualsKey)
41 | LetQuery(VariableIdentifier variable, IExpression expression)
42 | OrderByQuery(OrderByKeyCollection keys)
43 | SelectQuery(IExpression expression, VariableIdentifier receiver)
44 | WhereQuery(IExpression condition)
45

46 Literal
47 = NullLiteral() | TypedLiteral()
48

49 TypedLiteral
50 = IntegerLiteral(BigInteger value)
51 | BooleanLiteral(bool value) | CharLiteral(string value)
52 | StringLiteral(string value) | SymbolLiteral(string value)
53 | FractionLiteral(double value, FractionLiteralKind kind)
54 | RegularExpressionLiteral(string value, string options)
55

56 IntegerLiteral
57 = BigIntLiteral() | Int16Literal() | Int31Literal() | Int32Literal()
58 | Int64Literal() | Int8Literal() | UInt16Literal() | UInt31Literal()
59 | UInt32Literal() | UInt64Literal() | UInt8Literal()
60

61 Type
62 = BasicType() | WrapType(Type type)
63

64 WrapType
65 = ArrayType() | ConstType() | GenericType() | PointerType()
66 | ReferenceType() | StructType() | UnionType() | VolatileType()

Figure 5-14: Full definition of unified code model in extended ASDL (Part3)

Chapter 6

Case Study of UNICOEN: A

Language-Independent

Aspect-Oriented Programming

Framework

6.1 Introduction of this chapter

In programming, cross-cutting concerns may appear in many modules of software.

Since concerns, such as logs and the caching process, are scattered on many modules

and are interweaved with other core concerns, the outlook of the code will deteriorate

with repeated modification and the oblivescences of modifying or erasing the portions

of concern will increase. This will lead to the reduced maintainability of software.

Thus, the separation of cross-cutting concerns and other core concerns is one of the

challenges in programming.

Aspect-oriented programming (AOP) has been proposed as a means of solving

this problem [47]. In AOP, cross-cutting concerns are written separately from core

concerns, and they are woven into core concerns later. In addition, when there are

multiple cross-cutting concerns, each cross-cutting concern would be modularized

126
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

into different modules. Therefore, since AOP achieves the separation of cross-cutting

concerns, the maintainability of the software does not deteriorate.

Various AOP tools have been proposed. For example, AspectJ [49] is an exten-

sion of Java language, and AOJS [80] supports AOP for JavaScript. Developers can

benefit from AOP in most major languages. However, since most existing AOP tools

are implemented for a specific language, these tools cannot deal with cross-cutting

concerns scattered on many modules implemented in multiple languages. Therefore,

there is a possible that a single concern is not always modularized to a single aspect.

Moreover, the weaving mechanism and the description of the aspect are not unified

among existing AOP tools. It leads to cost in terms of the time required for learning.

In this chapter, I propose a language-independent AOP framework named Uni-

Aspect. I and my developer team developed UniAspect using UNICOEN. UniAspect

achieves language independence by translating programs written in various languages

into a Unified Code Object (UCO), which is my common representation of source

code, and weaving aspects through the UCO.

The Contributions of the chapter are as follows:

• I show cross-cutting concerns that are written in multiple languages and scat-

tered on many modules can be modularized into a single module using Uni-

Aspect.

• I explain the learning cost due to the introduction of AOP for a new language

can be reduced because UniAspect supports AOP in multiple languages.

UniAspect is ongoing project as open-source software, and it can be downloaded

from the UniAspect website [65].

In this chapter, I introduce UniAspect as follows. Section 2 illustrates the prob-

lems in existing AOP tools. Sections 3 and 4 give an overview of UniAspect and

the UCO, respectively. I describe the joinpoint model and the implementation of

UniAspect in Sections 5 and 6, respectively. Section 7 reports a case study. Section

8 refers to related work and Section 9 concludes the chapter.

6.2. BACKGROUND 127

6.2 Background

In this section, I illustrate the problems in existing AOP tools. These are as follows.

P1: Most existing AOP tools cannot deal with cross-cutting concerns,

which are scattered on many modules implemented in two or more lan-

guages.

For example, web applications are usually implemented by using multiple lan-

guages because the client side program and the server side program run on the dif-

ferent platform. To obtain logs of such a web application, it is necessary to use two

AOP tools to support the implementation languages on the client side and server

side (Figure 6-1). In this example, AOJS is used for the client side and AspectJ is

used for the server side. Therefore, the log code must be written as two aspects, as

shown in Figures 6-2 and 6-3, and it is difficult to deal with these aspects as a single

module. As a result, if the module has been modified about a concern, it is necessary

to confirm its extent; how many languages are affected. Incorrect confirmation leads

to misses of the modification.

P2: There is no consistency in the weaving mechanism and the description

of the aspect among existing AOP tools.

Each existing AOP tool has its own mechanism for weaving. Therefore, developers

need to pay a lot of attention to the consistency of weaving among multiple tools.

In addition, the description of the aspect varies depending on the tool: an extended

grammar of the specific language (Figure 6-3), a XML notation (Figure 6-2) and a

function provided by AOP library within specific language’s grammar [79][9]. Thus,

the introduction of a new AOP tool results in a cost in terms of the time required for

learning.

128
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

Java

(Server)

JavaScript

(Client)

・・・・・・

・・・・・・

・・・・・・

・・・・・・

・・・・・・

・・・・・・

・・・・・・

Aspect for AspectJ

(shown in Figure 3)

Aspect for AOJS

(shown in Figure 2)

AOJS AspectJ

Figure 6-1: Aspects for Web application

1 <?xml version="1.0" ?>
2 <aspectsetting>
3 <function functionname="/*"
4 pointcut="execution">
5 <before><![CDATA[
6 console.log(__name__ +
7 " is executed.");]]>
8 </before>
9 </function>

10 </aspectsetting>

Figure 6-2: Aspect example in AOJS

6.3 Overview of UniAspect

In this section, I give an overview of UniAspect. UniAspect translates programs

written in various languages into a UCO and weaves aspects through the UCO. In

particular, UniAspect is designed to deal with only common elements among various

6.3. OVERVIEW OF UNIASPECT 129

1 public aspect Logger {
2 pointcut allMethod() :
3 execution(* *.*());
4

5 before() : allMethod() {
6 System.out.println(
7 thisJoinPoint.getSignature()
8 + " is executed.");
9 }

10 }

Figure 6-3: Aspect example in AspectJ

programming languages such as function call, making it possible to specify the join-

point (particular point in the program) in the unified aspect description, regardless of

the language. This allows developers to implement cross-cutting concerns in multiple

languages as a single aspect (Figure 6-4). In other words, this allows developers to

deal with only a single module when they modify a concern. UniAspect can also be

used as an AOP tool for multiple languages. The details of the UCO will be described,

in section 4.

Figure 6-5 shows an overview of UniAspect. The entire process of the system is

as follows, where numbers correspond to those in the Figure. Each module of the

system will be explained in detail, in section 6.

1. The developer inputs source codes written in supported language and aspect.

2. Weaving information and code fragments from the aspect are extracted in the

aspect analyzer.

3. The UCOs of the input source code and code fragments are generated in the

UCO generator.

4. Code fragments are woven into the input source code in the UCO in the weaver.

5. The source code with aspect is regenerated from the UCO and outputted.

UniAspect regenerates a source code after weaving aspects through the UCO

generated from the input source code. In other words, UniAspect performs weaving

by transformation of the source code on the UCO. Therefore, developers can compile

or execute source code with aspect using any system.

130
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

JavaJavaScript

・・・・・・

・・・・・・

・・・・・・

・・・・・・

・・・・・・

・・・・・・

・・・・・・

UniAspect

aspect Logger {

pointcut init() :

execution(* *.init*());

…

…

Aspect for UniAspect

C#

・・・・・・

・・・・・・

・・・・・・

Figure 6-4: Aspect weaving by UniAspect

6.4 Unified Code Object

UniAspect is based on UNICOEN [72], a source code processing framework for mul-

tiple languages. UNICOEN is a framework for developing source code analysis or

transformation tools, and my research team is developing it as open-source software.

UNICOEN supports the development of language-independent source code processing

tools by supplying a common representation of source code for different programming

languages. The common representation that UNICOEN supplies is called the unified

code model (UCM), and objects generated from the source code according to the

UCM are called UCOs.

For example, an If statement is composed of a conditional expression, a true block

and a false block in all programming languages. Therefore, UNICOEN translates an

If statement as shown in Figure 6-6. UNICOEN also translates elements that appear

in particular languages such as Type and Class into a common object. As a result, a

6.5. JOINPOINT MODEL 131

Weaver

UNICOEN

Source

Code

Aspect

File

Aspect Analyzer

Code

Fragments

UCO

Generator

Weaving

Information

SourceCode

with

Aspect

①

②

③

④

⑤

Figure 6-5: Overview of UniAspect

UCM consists of the sum of a set of elements in programming languages as shown in

Figure 6-7. The latest version of UNICOEN deals with seven programming languages,

C, Java, C#, JavaScript, Ruby, Python and Visual Basic, and a UCM consists from

these seven languages. Developers are also able to implement new languages into

UNICOEN by writing mapping rules for the UCO in UCM.

6.5 Joinpoint Model

In this section, I present an example of an aspect in UniAspect and explain its features.

Before the explanation, I define some terms used in this section.

Aspect: A module that includes a pointcut, advice and an intertype declaration.

Joinpoint: A location that is specified as a weaving point.

Pointcut: A condition for selecting a weaving point from a set of joinpoints.

Advice: A code fragment that will be woven into a specified joinpoint.

132
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

IfStatement

Condition

TrueBlock

FalseBlock

if (a == 0)

puts(“a == 0“);

else

puts(“a != 0“);

if a == 0

puts “a == 0“

else

puts “a != 0“

end

Unified Code Object

Java

Ruby

Figure 6-6: Example of unified code object

Class

Function

Variable

Type Declaration

λ Expression

Java

Ruby JavaScript

Figure 6-7: Set of elements in unified code model

6.5. JOINPOINT MODEL 133

Intertype declaration: A mechanism used to add functions and variables statically

into a target class or file.

6.5.1 Sample Program

Figure 6-8 shows an example of an aspect in UniAspect. It is designed to imitate a

grammar of AspectJ so that a developer using an existing system can understand it

easily. There is a problem that code fragments written in advice and intertype decla-

rations depend on the programming language of the weaving target. Since UNICOEN

does not perform a semantic analysis of the source code, it does not deal with the

feature such as language translation. For example, weaving advice written in Java

into a source code written in C# will result in an error. Therefore, UniAspect does

not support a common description of advice and intertype declarations. As a result,

an aspect in UniAspect has both a language-independent portion and a language-

dependent portion. A process that depends on a particular language is called a

language-dependent block and is described as shown in lines 15 to 17 of Figure 6-8.

A language-dependent block is used to describe advice and intertype declarations.

The remainder of this section explains details of an aspect in UniAspect.

1 aspect Sample {
2 Foo : @Java{
3 private int x = 10;
4 public void __debug() {
5 System.out.println(...);
6 }
7 }end
8

9 pointcut move() :
10 execution(double Foo.hoge());
11 pointcut init() :
12 execution(* *.init*());
13

14 before : init() {
15 @Java {
16 __debug();
17 }end
18 @JavaScript {
19 console.log(JOINPOINT_NAME +
20 " is executed.");
21 }end
22 }
23 }

Figure 6-8: Example of aspect in UniAspect

134
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

6.5.2 Pointcut

To weave an aspect into programs written in supported language, UniAspect is de-

signed to deal with only common elements as joinpoints in a UCO among multiple

languages. Table 6.1 shows the relationship between programming languages and

the main elements in a UCO. ”Yes” indicates that the element appears in the cor-

responding programming language, and ”No” indicates that the element does not

appear.

Table 6.1: Relationship between languages and main elements in the unified code
object

C Java C# JavaScript Ruby Python VisualBasic

Function Declaration Yes Yes Yes Yes Yes Yes Yes

Function Call Yes Yes Yes Yes Yes Yes Yes

Variable Yes Yes Yes Yes Yes Yes Yes

Exception No Yes Yes Yes Yes Yes Yes

Pointer Yes No Yes No No No Yes

Class No Yes Yes No Yes Yes Yes

Typed Variable Declaration Yes Yes Yes No No No Yes

Table 6.1 shows that function declarations, function calls and variables appear in

all programming languages adopted by UNICOEN. Moreover, variables are catego-

rized into two types, assignment and reference variables. Table 6.2 shows specifiable

joinpoints in UniAspect. Using these joinpoints, for example, developers can imple-

ment logs of function performance and variable values as an aspect.

Table 6.2: List of specifiable joinpoints

Joinpoint Type Location in Source Code

call When a function is called

execution When a function is executed

get When a variable is referenced

set When a variable is assigned

6.5. JOINPOINT MODEL 135

A pointcut is declared to use the ”pointcut” identifier shown in lines 9 and 11 of

Figure 6-8, and a developer writes the pointcut name and the conditions for selecting

joinpoints. In the conditions, developers can specify the type of joinpoint, the return

type, the class name and the function/variable name. Developers can specify each

parameter by directly giving a string name and also by using wildcards. Wildcards

match any string in a class name, function name and so forth.

For example, lines 9 and 10 of Figure 6-8 show the declaration of a pointcut that

specifies function execution whose return type is ”double”, whose parent class name

is ”Foo” and whose function name is ”hoge”.

Because UniAspect weaves aspects through a UCO, a pointcut specifies the join-

point from the UCO. Therefore, the description of a pointcut is independent of the

programming language. For example, lines 11 and 12 of Figure 6-8 select function

declarations whose name starts with ”init” as a weaving point regardless of the lan-

guage. However, for example, it is not possible to select a joinpoint by specifying

some parameters in a language that does not have a type and class such as JavaScript.

Therefore, weaving is only performed when using wildcards. A declared pointcut is

referenced from advice such as that in line 14 of Figure 6-8 and is used for identifying

weaving points.

6.5.3 Advice

Developers can specify ”before” and ”after” as advice. For example, to measure the

execution time of a function, developers need to implement a measuring code before

and after appropriate points. Therefore, it is necessary to specify locations before and

after a joinpoint. ”Before advice” will be woven into before a joinpoint, and ”after

advice” will be woven into after a joinpoint.

Advice is declared to use a ”before” or ”after” identifier, as shown in line 14 of

Figure 6-8, and the developer writes the declared pointcut and code fragments. As

already mentioned in the section 5.1, because code fragments depend on the program-

ming language of the target to be woven, developers need to write code fragments in

language-dependent blocks in the appropriate programming language.

136
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

For example, lines 15 to 21 of Figure 6-8 define language-dependent blocks for

Java and JavaScript. If a joinpoint selected from the corresponding pointcut is based

on a Java program, the code shown in line 16 of Figure 6-8 will be woven, and if it is

based on a JavaScript program, the codes shown in lines 19 and 20 of Figure 6-8 will

be woven.

If advice refers to a pointcut that selects multiple joinpoints, developers are re-

quired to obtain information about the selected joinpoints to describe advice flexibly.

For example, when a developer wants to output logs that show which functions have

been executed, it is necessary to obtain the function names. Therefore, UniAspect

is designed to enable developers to refer to joinpoint information. For example, for

lines 19 and 20 of Figure 6-8, if the function name of a joinpoint is ”initRequest”, the

output string will be ”initRequest is executed”.

6.5.4 Intertype Declaration

If a developer needs a new function or variable in advice, the necessary function or

variable can be defined using an intertype declaration. Lines 2 to 7 of Figure 6-8 define

an intettype declaration by describing a language-dependent block. The developer

specifies the class name by describing an identifier before the language-dependent

block in the case of a language with classes such as Java, or specifies the file name

in the case of a language that does not have declarative classes such as JavaScript.

Then, the corresponding function or variable will be woven into the specified class or

file.

On the other hand, UniAspect does not produce its own scope when weaving

the both advice and intertype declarations. Since UniAspect realizes aspect weaving

by transformation of source code, advice and intertype declarations are woven into

directly specified joinpoints. As a result, the scope depends on the joinpoint used

for weaving. Therefore, it is possible to refer to a function and variable that belong

to the scope of a joinpoint used for weaving. On the other hand, it is possible for a

conflict to arise between variable/function definitions of aspect and those of target

program. Regarding the scope, UniAspect guarantees safe weaving in terms of syntax,

6.6. IMPLEMENTATION 137

as described in section 6.3, but does not guarantee safety in terms of semantics. Thus,

developers need to try to avoid interference between aspects and source code.

6.5.5 Association of Aspects and Source Code

Developers need to specify the aspect file and directory including source codes as

an input. UniAspect recursively searches for files in the specified directory, and

if an appropriate file that is written in a supported programming language is found,

weaving process is performed. The result of weaving is outputted as source codes with

the hierarchy of the original directories, and files that are not subjected to weaving

are outputted without change. Finally, developers can (compile and) execute output

files using any system.

6.6 Implementation

In this section, I provide details of the implementation of UniAspect. UniAspect

consists of three modules, an aspect analyzer, a UCO generator and a weaver, as

shown in Figure 6-5. The UCO generator and weaver are based on UNICOEN and

deal with the processing of UCOs. The remainder of this section provides details of

each module.

6.6.1 Aspect Analyzer

The aspect analyzer receives an aspect file as the input and extracts information on the

pointcut, advice and intertype declarations. This module is based on a parser created

from ANTLR [66], which is a well-known compiler compiler, and parses aspect files in

accordance with the BNF, as shown in Figure 6-9. The result of parsing is expressed

as the syntax tree, and this module obtains weaving information by scanning the tree.

Since the code written within a language-dependent block obeys programming

language rules, the aspect analyzer accepts any string as the content of a language-

dependent block. By doing this, each string within the language-dependent block will

138
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

aspect
: ’aspect’ IDENTIFIER aspectBody

aspectBody
: ’{’ element* ’}’

element
: intertypeDeclaration
| pointcutDeclaration
| adviceDeclaration

languageDependentBlock
: languageDeclaration

’{’ CONTENTS ’}end’

languageDeclaration
: ’@’ languageType

languageType
: ’Java’ | ’JavaScript’ | ’C’ | ’VB’
| ’CSharp’ | ’Ruby’ | ’Python’

intertypeDeclaration
: IDENTIFIER ’:’ languageDependentBlock

pointcutDeclaration
: ’pointcut’ IDENTIFIER ’()’

’:’ pointcutDeclarator ’;’

pointcutDeclarator
: pointcutType ’(’ TYPE

IDENTIFIER ’.’ IDENTIFIER ’()’ ’)’

pointcutType
: ’execution’ | ’call’

| ’get’ | ’set’

adviceDeclaration
: adviceType ’:’

IDENTIFIER ’()’ adviceBody

adviceType
: ’before’ | ’after

adviceBody
: ’{’ languageDependentBlock+ ’}’

Figure 6-9: BNF for aspect in UniAspect

be extracted and sent to the UCO generator. On the other hand, the remainder of

the aspect file will be checked for correct syntax in this module, and when there is a

syntax error, it will be reported. The extracted information about weaving will only

be sent to the next modules when the aspect analyzer can successfully parse the file.

6.6. IMPLEMENTATION 139

6.6.2 UCO Generator

The UCO generator translates the input source code and code fragments extracted

from the previous module into a UCO using UNICOEN.

Languages that UniAspect supports are dependent on that of UNICOEN. As

described in section 4, currently UNICOEN supports seven languages, and there-

fore, UniAspect supports same seven languages for AOP. Moreover, since developers

are able to implement new languages into UNICOEN by writing mapping rules for

the UCO, UniAspect can deal with more languages. Since the weaving process is

performed upon the UCO, additional implementation of the weaver is almost not

necessary if new language have the joinpoint that have been adopted in UniAspect.

When there is syntax error in the extracted code fragments, it will be reported by

this module. The generated UCO is then sent to the weaver.

6.6.3 Weaver

This module weaves a UCO of advice into a UCO of the input source code based on

weaving information received from the aspect analyzer. This module performs three

steps: identification of the joinpoints, the insertion of advice and the replacement of

particular variables. As an example, Figure 6-10 shows the algorithm for weaving into

an execution joinpoint. The details of each step are as follows, using the examples in

Figures 6-10 and 6-11.

(1) Identification of joinpoints

The weaver identifies joinpoints in a UCO based on received information. Since a UCO

forms a tree structure, as shown in Figure 6-11, it is easy to identify specific elements

in a UCO of the input source code. For example, since the execution pointcut selects

function declarations, this module obtains the list of objects of function declarations

(Figure 6-11-1). Line 3 of Figure 6-10 shows how to obtain all function declaration

objects, which can be traced from the root object. Other pointcuts behave similarly:

a call pointcut gathers all call objects, and a set pointcut gathers all assignment

140
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

1 ExecutionWeaveing(pointcut, advice){
2 //(1)Identification of joinpoint
3 var functions = root.getAllElements<Function>();
4 foreach(func : functions) {
5 if(func.name == pointcut.name &&
6 func.type == pointcut.type &&
7 func.Parent.name == pointcut.className) {
8

9 //(2)Insertion of advice
10 func.block.insertFirst(advice);
11

12 //(3)Replacement of particular variables
13 var variables = func.getAllElements<Variable>();
14 foreach(variable : variables) {
15 if(variable.name == "JOINPOINT_NAME") {
16 variable.name = func.name;
17 }
18 }
19 } } }

Figure 6-10: Algorithm of weaving into execution joinpoint

Function

Name

Type

・・・

Function

Name

Type

・・・

Class

Statement

Call expression

expression

Block Block

Block

①Obtain the list of functions

②Check conditions

of pointcut

③Insert advice into

appropriate location

Figure 6-11: Process of execution weaving

expression objects.

Next, this module narrows the list of objects in accordance with the given pa-

rameters of a pointcut. In the case of an execution pointcut, this module obtains

the name, return type and parent name from the linked object, and checks whether

they match the given conditions (Figure 6-11-2). Line 5 of Figure 6-10 shows the

comparison of the function name and specified name, and lines 6 and 7 of Figure 6-10

show the comparison of the type and belonging class. Finally, the objects that satisfy

all given conditions will proceed to the next step.

(2) Insertion of advice

6.6. IMPLEMENTATION 141

In this step, the weaver inserts the UCO of advice into the joinpoint specified in

the previous step. The basic operation is to insert the advice into a block so that it

becomes a previous sibling in the case of before (Figure 6-11-3). Line 10 of Figure 6-10

shows how to add an appropriate object of advice into the head of a function block.

In the UCO generator, the advice is translated into a UCO as a block, and because

the unified code model allows a nesting structure, a block can include another block.

UNICOEN can correctly translate this nesting structure into source code. In fact,

most programming languages have adopted this syntax in which blocks can include

other blocks. For example, Figures 6-12 and 6-13 show examples of nesting Java and

JavaScript, respectively. Thus, UniAspect guarantees safe weaving in terms of syntax

by inserting advice as a block.

However, in the case of weaving after the execution joinpoint, it is necessary to

insert advice in a specific way. For example, if an object is inserted into the end of a

block, as shown in Figure 6-14, it will become dead code and an incorrect result will

be obtained. Therefore, in this case, a list of all return statements in function block

is obtained, and objects are inserted before each return statement. As a result, the

advice will always be performed even if a function is ended by any return statement.

Alternatively, when a return type of function is void, the advice is inserted into the

end of the block depending on the number of return statements in the function.

block
: ’{’ blockStatement* ’}’

blockStatement
: localVariableDeclarationStatement
| classOrInterfaceDeclaration
| statement

statement
: block
| ifStatement
| forStatement
| (omitted)

Figure 6-12: BNF for Java

(3) Replacement of particular variables

142
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

statementBlock
: ’{’ statementList? ’}’

statementList
: statement (statement)*

statement
: statementBlock
| ifStatement
| iterationStatement
| (omitted)

Figure 6-13: BNF for JavaScript

1 int abs(int a) {
2 if(a > 0)
3 return a;
4 else
5 return -a;
6 }

Figure 6-14: Function contains return statements

Finally, this module replaces particular variables with joinpoint information as de-

scribed in section 5.3. Line 13 of Figure 6-10 obtains a list of variables from a UCO

and line 15 checks whether their values match ”JOINPOINT NAME”. Line 16 re-

places each variable with the appropriate joinpoint name, concluding this step. The

weaver repeats these three steps for all pointcuts specified in aspect file. Finally, it

regenerates source code from the UCO as the final process.

6.7 Case Study

In this section, I give an example of implementing logs using UniAspect for JsUnit [75],

which is a client-server-type test framework. The client side of JsUnit is implemented

in Java and the server side is implemented in JavaScript. JsUnit is a system that

performs tests on web browsers and displays the results on the server side. In this

case study, I implement log codes for all functions of JsUnit to determine which

functions are executed on the server side and which are executed on the client side.

The execution environment is as follows.

• CPU: Intel Core i5 M430 2.27GHz

6.7. CASE STUDY 143

• Memory: 4GB

• Server side: Java 1.6.26

• Client Side: Firefox 7.0.1

In this case study, the server program runs on the same machine as the client

program. Therefore, I used one machine. The process in this case study is as follows.

1. Obtain the source code of JsUnit from its Github project page1.

2. Weave the aspect shown in Figure 6-15 into the obtained source code.

3. Compile the woven source code using the supplied Ant build file and execute it.

Figures 6-16 and 6-18 are code fragments of original source code in JsUnit, and

Figures 6-17 and 6-19 are code fragments of source code in JsUnit after weaving

aspect. Figures 6-20 and 6-21 show the result of execution. It shows logs of the

functions executed on both the server side and client side. I can confirm that the

log code has been woven using UniASpect, and as a result, the JOINPOINT NAME

variables shown in Figure 6-15 have been replaced with each function name. I can

confirm that the replacement of particular variables has been performed correctly.

1 aspect Logger {
2 pointcut allMethod() :
3 execution(* *.*());
4

5 before : allMethod() {
6 @Java {
7 System.out.println(
8 JOINPOINT_NAME+" is executed.");
9 }end

10 @JavaScript {
11 console.log(
12 JOINPOINT_NAME+" is executed.");
13 }end
14 }
15 }

Figure 6-15: Aspect using in case study

1https://github.com/pivotal/jsunit

144
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

Next, table 6.3 shows the number of methods, files and lines in JsUnit. Using

UniAspect, 786 log codes have been woven into server-side programs and 43 log codes

have been woven into client-side programs. In addition, functions are scattered in

137 files written in Java and JavaScript. However, it would be a laborious task

to implement these logs one by one, whereas it is possible to effectively implement

cross-cutting concerns such as logs using UniAspect.

Table 6.3: Numbers of woven aspect

Server side Client side

Language Java JavaScript

Lines of Code 7106 2856

Number of Methods 786 43

Number of Files 128 9

Table 6.4 shows the number of set lines of code, i.e., sequential code that contains

no other concerns, and the number of modified files. In the case of using UniAspect,

developers can summarize cross-cutting concerns scattered on multiple files written

in multiple languages as a single aspect. The execution time required to weave the

aspect is 4.71 sec (average of 10 measurements). I consider this time to be acceptable

for practical use.

6.7. CASE STUDY 145

1 public void setResultRepository(
2 BrowserResultRepository rep) {
3 this.browserResultRepository = rep;
4 addTestRunListener(
5 new BrowserResultLogWriter(rep));
6 }
7

8 protected List<String> servletNames() {
9 List<String> result

10 = new ArrayList<String>();
11 result.add("acceptor");
12 result.add("config");
13 result.add("displayer");
14 result.add("runner");
15 return result;
16 }
17

18 public static void registerInstance
19 (JsUnitServer server) {
20 JsUnitServer.instance = server;
21 }

Figure 6-16: Fragment of Java program in JsUnit before weaving aspect

Table 6.4: Comparison of scattered log codes

UniAspect Existing AOP Tools Without AOP Tools

Number of set lines of code 1 2 829

Number of modified files 1 2 137

146
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

1 public void setResultRepository(
2 BrowserResultRepository rep) {
3 {
4 System.out.println(
5 "setResultRepository" +
6 " is executed.");
7 }
8 this.browserResultRepository = rep;
9 addTestRunListener(

10 new BrowserResultLogWriter(rep));
11 }
12

13 protected List<String> servletNames() {
14 {
15 System.out.println(
16 "servletNames" +
17 " is executed.");
18 }
19 List<String> result
20 = new ArrayList<String>();
21 result.add("acceptor");
22 result.add("config");
23 result.add("displayer");
24 result.add("runner");
25 return result;
26 }
27

28 public static void registerInstance
29 (JsUnitServer server) {
30 {
31 System.out.println(
32 "registerInstance" +
33 " is executed.");
34 }
35 JsUnitServer.instance = server;
36 }

Figure 6-17: Fragment of Java program in JsUnit after weaving aspect

The considerations obtained from the results are as follows.

Cross-cutting concerns scattered on many modules implemented in two

or more languages can be summarized. When weaving aspects using UniAspect,

developers do not need to modify existing source codes; they only need to write aspect

files as shown in Figure 6-15. Thus, a developer can summarize cross-cutting concerns

scattered on many modules implemented in two or more languages as a single aspect,

and this shows that UniAspect solve the problem mentioned as P1. On the other hand,

in the case of using existing AOP tools, developers must implement two aspects, for

AspectJ and AOJS for example. Therefore, the number of scattered log code is two

as shown in table 4, and developers have to manage these aspects separately.

6.7. CASE STUDY 147

1 function assert() {
2 JsUnit._validateargs(1, args);
3 var value = JsUnit.
4 _nonCommentArg(1, 1, args);
5 if (typeof(value) != ’boolean’) {
6 throw new JsUnit
7 .AssertionArgumentError(
8 ’Bad argument to’ +
9 ’ assert(boolean)’);

10 }
11 JsUnit._assert(
12 JsUnit._commentArg(1, args),
13 value === true,
14 ’Call to assert(boolean)’ +
15 ’with false’);
16 }
17

18 function assertTrue() {
19 JsUnit.
20 _validateargs(1, args);
21 assert(JsUnit._commentArg(1, args),
22 JsUnit._nonCommentArg(1, 1, args));
23 }
24

25 function assertFalse() {
26 JsUnit._validateargs(1, args);
27 var value = JsUnit.
28 _nonCommentArg(1, 1, args);
29

30 if (typeof(value) != ’boolean’)
31 throw new JsUnit
32 .AssertionArgumentError(
33 ’Bad argument to’ +
34 ’assertFalse(boolean)’);
35 JsUnit._assert(
36 JsUnit._commentArg(1, args),
37 value === false,
38 ’Call to assertFalse(boolean)’ +
39 ’ with true’);
40 }

Figure 6-18: Fragment of JavaScript program in JsUnit before weaving aspect

Unified description of aspect. Imagine that existing AOP tools are used for

implementing the logs in this case study. For example, when developers use AOJS

for JavaScript and AspectJ for Java, the aspect will be described as shown in Figures

6-2 and 6-3, respectively. AspectJ has a similar syntax to Java, but AOJS has a

syntax based on XML. Therefore, the use of multiple AOP tools has a large cost

including a learning cost. On the other hand, when using UniAspect, these is no cost

of introducing an AOP tool to a new language, since the description of the aspect

in UniAspect is unified in the form shown in Figure 6-8 or 6-15. This shows that

UniAspect solve the problem mentioned as P2.

148
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

1 function assert(){
2 {
3 console.log("assert" +
4 " is executed.");
5 }
6 JsUnit._validateargs(1, args);
7 var value = JsUnit.
8 _nonCommentArg(1, 1, args);
9 if (typeof(value) != ’boolean’) {

10 throw new JsUnit
11 .AssertionArgumentError(
12 ’Bad argument to’ +
13 ’ assert(boolean)’);
14 }
15 JsUnit._assert(
16 JsUnit._commentArg(1, args),
17 value === true,
18 ’Call to assert(boolean)’ +
19 ’with false’);
20 }
21

22 function assertTrue(){
23 {
24 console.log("assertTrue" +
25 " is executed.");
26 }
27 JsUnit.
28 _validateargs(1, args);
29 assert(JsUnit._commentArg(1, args),
30 JsUnit._nonCommentArg(1, 1, args));
31 }
32

33 function assertFalse() {
34 {
35 console.log("assertFalse" +
36 " is executed.");
37 }
38 JsUnit._validateargs(1, args);
39 var value = JsUnit.
40 _nonCommentArg(1, 1, args);
41

42 if (typeof(value) != ’boolean’)
43 throw new JsUnit
44 .AssertionArgumentError(
45 ’Bad argument to’ +
46 ’assertFalse(boolean)’);
47 JsUnit._assert(
48 JsUnit._commentArg(1, args),
49 value === false,
50 ’Call to assertFalse(boolean)’ +
51 ’ with true’);
52 }

Figure 6-19: Fragment of JavaScript program in JsUnit after weaving aspect

Transformation of source codes. Since the weaving mechanism of UniAspect

is based on the transformation of source codes, the compilation of source codes after

weaving does not depend on the particular system. On the other hand, existing AOP

tools require a dedicated compiler. Therefore, it is possible that developers cannot

6.7. CASE STUDY 149

Figure 6-20: Result of server side logs

Figure 6-21: Result of client side logs

use an original compiler and the AOP compiler together. However, in the mechanism

of transformation of source codes, there is a problem that the aspect may interfere

150
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

with the source codes as described in section 5.4. Guaranteeing the feasibility of

woven source codes is a future work.

Flexibility of aspects. UniAspect accepts the specifications of a joinpoint name

directly or using wildcards, but the joinpoint cannot be specified in detail. For exam-

ple, control flow pointcut, which is adopted in existing AOP tools, or a new joinpoint

using the characteristic of the UCO should be considered.

6.8 Related Work

Various AOP tools have been proposed as systems depending on specific languages

[49][78][79][9]. These tools provide expressive aspect specification according to the

features of base languages. However, these tools cannot deal with cross-cutting con-

cerns scattered on modules written in multiple languages, which is addressed in this

chapter. And the weaving mechanism and the description of the aspect vary depend-

ing on tools.

On the other hand, several AOP tools for .NET Framework have been proposed

to support multiple languages. SourceWeave.NET [38] is a weaver based on source

code transformation through the CodeDOM; .NET standard for representing source

code as abstract syntax tree. SourceWeave .NET is similar to UniAspect in terms

of performing weaving at the source code level. Weave.NET [53] and AspectDNG

[28] have adopted a other approach for .NET Framework. These tools weave the

aspect into the Common Intermediate Language of the .NET Framework. Although

these tools are similar to UniAspect in terms of using a common representation for

multiple languages, the languages that they support depend on the .NET Framework.

Therefore, because my proposed framework does not depend on a particular platform,

UniAspect can support more languages for weaving aspects.

Compose* [17] is a compilation and execution framework for the Composition

Filters model [1], which supports multiple languages and platform: .NET platform,

Java language and platform and C language. Although Compose* is similar to Uni-

Aspect in terms of creating a common structural language model to specify where

6.9. CONCLUSION OF THIS CHAPTER 151

aspect behavior should be applied, its weaver is implemented depending on a spe-

cific target language. On the other hand, the weaving process of UniAspect is also

performed based on unified code object, which leads unified implementation of the

weaver. However, UniAspect requires language-dependent block to describe advice,

the implementation of the unified description of advice is a future work.

XWeaver [29, 68] is an aspect weaver for C/C++ and Java that is based on source

code transformation techniques. XWeaver translates base source code into XML

format using srcML [58]. The weaving process is then performed on the XML format

and its aspect is written in dedicated language for XWeaver; AspectX. Although

XWeaver is similar to UniAspect in terms of basing on source code transformation

techniques, target languages are limited in C/C++ and Java by srcML. On the other

hand, UniAspect supports more various languages; JavaScript, C# and so forth.

Gray has proposed AOP tools based on DMS[3], an existing source code transfor-

mation system [31]. Because DMS has an analysis system for multiple languages, his

proposed tools make it easy to build AOP tools for multiple languages. However, he

has not proposed a mechanism for dealing with multiple languages uniformly.

6.9 Conclusion of this chapter

In this chapter, I proposed a language-independent AOP framework, UniAspect. Uni-

Aspect achieves language independence by translating programs written in various

languages into a UCO then weaving aspects through the UCO.

As a case study, I gave an example of implementing logs for a system written in

Java and JavaScript. Because developers can summarize cross-cutting concerns scat-

tered on modules in multiple languages as a single aspect, UniAspect will contribute

to the increased maintainability of codes for obtaining execution logs of series of func-

tionality supplied in multiple languages, for example. Because UniAspect is available

as an AOP tool for a single supported language and provides a unified description of

the aspect, it will also contribute to decreasing the learning cost of AOP tools.

Finally, I describe some future works.

152
CHAPTER 6. CASE STUDY OF UNICOEN: A LANGUAGE-INDEPENDENT ASPECT-ORIENTED

PROGRAMMING FRAMEWORK

Language dependence of advice. Although UniAspect provides a unified de-

scription of an aspect, advice is dependent on the language of the joinpoint. To

achieve a language-independent description of advice, I should provide common spec-

ification for describing advice, or programming language translation system for code

fragments on advice, which can be also implemented using UNICOEN.

Guarantee of semantics in weaving. UniAspect guarantees safe weaving in

terms of syntax as described in section 6.3. However, it does not guarantee the

feasibility of the output source code in terms of semantics. It becomes apparent when

it is compiled or executed. I should consider the immediately compilation of output

code and discard output code that cannot be woven.

Flexible description of aspects. Although UniAspect supports basic pointcuts

in its specification, it cannot describe aspect flexibly. For example, UniAspect does

not support several pointcut adopted in existing tools; control flow pointcut, compo-

sition of pointcuts and so forth. I plan to support these pointcuts to make an aspect

more expressive.

Chapter 7

Conclusion

7.1 Summary

Chapter described OCCF, which inserted instrumentation code into source code

through ASTs to measure coverage. OCCF extracted the commonalities from the

insertion implementation by utilizing the structures of ASTs are similar. As the

evaluation, OCCF reduced development and maintenance costs, made flexible mea-

surement, and made complete measurements.

Chapter described a technique of detecting duplicated test code defining the in-

clusion relation of test code based on coverage. This chapter also described a tool

that detected duplicated test code. The tools allow user changing coverage criteria

to adjust the detection strictness. As a case study, the technique was applied to a

sample program and open source software.

Chapter described UNICOEN for manipulating source code supporting multiple

programming languages. UNICOEN provides UCM and the the two APIs for de-

veloping tools and adding the new support of programming languages. As a case

study, this chapter showed UniMetrics and extension of CodeCity. This chapter also

confirmed UNICOEN reduced costs of development tool and programming language

supports and reduced differences between tools for different programming languages.

Chapter described a language-independent AOP framework, called UniAspect.

UniAspect manipulates source code by manipulating a UCO generated by UNICOEN,

154 CHAPTER 7. CONCLUSION

and thus, UniAspect provided language-independent aspects. As a case study, a sam-

ple aspect using UniAspect written in Java and JavaScript for implementing logs for

web applications using Java and JavaScript. UniAspect improved modularity rather

than conventional AOP processors because UniAspect modularized cross-cutting con-

cerns scattered on modules in multiple languages as a single aspect.

7.2 Future Work

I plan to improve OCCF to support non procedure-oriented languages, such as impure

functional programming languages. Moreover, I will construct a technique semi-

automatically generate all the components by using a wizard and the required user

input through the GUI to further reduce the developmental costs.

I will improve the usability of the detection tool by displaying graphically du-

plicated test code and an execution path for duplicated test code in future work.

Moreover, I plan to detect duplicated test code in black-box testing by using formal-

ized specifications such as contracts in design-by-contract programming.

Although UNICOEN and does not support functional programming languages

such as Haskell and OCaml, I plan to add supports of such programming languages

in UNICOEN extending UCM. UNICOEN requires users to implement object-code

mappers and to extend UCM to add new programming language supports by hand.

Although these works require less efforts than expansion for existing programming

language processors, I plan to develop a generator for object-code mappers from a

mapping specification and a generator for UCM from a model specification such as

ASDL.

Although UniAspect provides a unified description of an aspect, advice is depen-

dent on the language of the joinpoint. To achieve a language-independent description

of advice, I will provide common specification for describing advice, or programming

language translation system for code fragments on advice, which can be also imple-

mented using UNICOEN.

In future work, I will develop more applications using OCCF and UNICOEN. I

7.2. FUTURE WORK 155

plan to develop a testing tool using gamification which encourages testers to improve

test quality because conduction testing is sometimes considered as tedious work in

the real word. I also plan to develop a mutation testing tool supporting multiple pro-

gramming languages because existing tools support only few programming languages

such as C and Java.

Bibliography

[1] M. Aksit, L. Bergmans, and S. Vural. An object-oriented language-database

integration model: The composition-filters approach. In Proceedings of the Eu-

ropean Conference on Object-Oriented Programming, ECOOP ’92, pages 372–

395, London, UK, UK, 1992. Springer-Verlag. ISBN 3-540-55668-0. URL

http://dl.acm.org/citation.cfm?id=646150.679210. 150

[2] N. Batchelder. coverage 3.5.3 : Python package index. URL http://pypi.

python.org/pypi/coverage. 42, 98

[3] I. D. Baxter, C. Pidgeon, and M. Mehlich. Dms(r): Program transformations

for practical scalable software evolution. In Proceedings of the 26th International

Conference on Software Engineering, ICSE ’04, pages 625–634, Washington, DC,

USA, 2004. IEEE Computer Society. ISBN 0-7695-2163-0. 115, 151

[4] Beck. Test Driven Development: By Example. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2002. ISBN 0321146530. 45, 73

[5] K. Beck and C. Andres. Extreme Programming Explained: Embrace Change (2nd

Edition). Addison-Wesley Professional, 2004. ISBN 0321278658. 74

[6] J. Black, E. Melachrinoudis, and D. Kaeli. Bi-criteria models for all-uses test

suite reduction. In Proceedings of the 26th International Conference on Software

Engineering, ICSE ’04, pages 106–115, Washington, DC, USA, 2004. IEEE Com-

puter Society. ISBN 0-7695-2163-0. URL http://dl.acm.org/citation.

cfm?id=998675.999417. 75, 93

158 BIBLIOGRAPHY

[7] Z. Blut. Saikuro : A cyclomatic complexity analyzer. URL http://saikuro.

rubyforge.org/. 110

[8] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/xt 0.17.

a language and toolset for program transformation. Sci. Comput. Program., 72

(1-2):52–70, June 2008. ISSN 0167-6423. doi: 10.1016/j.scico.2007.11.003. 115

[9] A. Bryant and R. Feldt. Aspectr readme. URL http://aspectr.

sourceforge.net/. 32, 127, 150

[10] S. R. Chidamber and C. F. Kemerer. Towards a metrics suite for object ori-

ented design. In Conference proceedings on Object-oriented programming sys-

tems, languages, and applications, OOPSLA ’91, pages 197–211, New York, NY,

USA, 1991. ACM. ISBN 0-201-55417-8. doi: 10.1145/117954.117970. URL

http://doi.acm.org/10.1145/117954.117970. 28

[11] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.

IEEE Trans. Softw. Eng., 20(6):476–493, June 1994. ISSN 0098-5589. doi: 10.

1109/32.295895. URL http://dx.doi.org/10.1109/32.295895. 28

[12] M. L. Collard, M. J. Decker, and J. I. Maletic. Lightweight transformation and

fact extraction with the srcml toolkit. In Proceedings of the 2011 IEEE 11th

International Working Conference on Source Code Analysis and Manipulation,

SCAM ’11, pages 173–184, Washington, DC, USA, 2011. IEEE Computer Soci-

ety. ISBN 978-0-7695-4347-5. doi: 10.1109/SCAM.2011.19. 115

[13] S. F. Conservancy. Simplified wrapper and interface generator. URL http:

//www.swig.org/. 55

[14] L. Copeland. A Practitioner’s Guide to Software Test Design. Artech House,

Inc., Norwood, MA, USA, 2003. ISBN 158053791X. 23, 40

[15] J. R. Cordy. The txl source transformation language. Sci. Comput. Program., 61

(3):190–210, Aug. 2006. ISSN 0167-6423. doi: 10.1016/j.scico.2006.04.002. 115

BIBLIOGRAPHY 159

[16] D. Crockford. Jslint,the javascript code quality tool. URL http://www.

jslint.com/. 95

[17] A. R. de, M. Hendriks, W. Havinga, P. Durr, and L. Bergmans. Compose*:

a language- and platform-independent aspect compiler for composition filters.

In First International Workshop on Advanced Software Development Tools and

Techniques, WASDeTT 2008, Cyprus, July 2008. No publisher. URL http:

//doc.utwente.nl/64984/. 150

[18] A. Deursen, L. M. Moonen, A. Bergh, and G. Kok. Refactoring test code.

Technical report, Amsterdam, The Netherlands, The Netherlands, 2001. 74, 93

[19] E. Doernenburg. erikdoe / pmcs / overview - bitbucket. URL https:

//bitbucket.org/erikdoe/pmcs/. 110

[20] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming: Introduc-

tion. Commun. ACM, 44(10):29–32, Oct. 2001. ISSN 0001-0782. doi: 10.1145/

383845.383853. URL http://doi.acm.org/10.1145/383845.383853.

21

[21] J. Erdfelt, J. Lewis, G. Lukasik, J. Mares, and J. Thomerson. Cobertura. URL

http://cobertura.sourceforge.net/. 42

[22] M. Fayad and D. C. Schmidt. Object-oriented application frameworks. Commun.

ACM, 40(10):32–38, Oct. 1997. ISSN 0001-0782. doi: 10.1145/262793.262798.

URL http://doi.acm.org/10.1145/262793.262798. 41

[23] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical

Approach. PWS Publishing Co., Boston, MA, USA, 2nd edition, 1998. ISBN

0534954251. 21

[24] A. S. Foundation. Apache commons bcel. URL http://jakarta.apache.

org/bcel/. 62

160 BIBLIOGRAPHY

[25] Free Software Foundation, Inc. Gcc, the gnu compiler collection - gnu project -

free software foundation (fsf). URL http://gcc.gnu.org/. 42

[26] N. Fukuyasu, S. Yamamoto, and K. Agusa. Case tool platform sapid based on

a fine grained repository(special issue on parallel processing). IPSJ Journal, 39

(6):1990–1998, 1998-06-15. ISSN 03875806. 115

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Professional, 1995. 51, 54

[28] T. Gil. Aspectdng. URL http://aspectdng.tigris.org/. 150

[29] P. S. GmbH. Xweaver. URL http://www.pnp-software.com/XWeaver/.

151

[30] gnoso. Ncover: .net code coverage for .net developers. URL http://www.

ncover.com/. 42

[31] J. Gray and S. Roychoudhury. A technique for constructing aspect weavers

using a program transformation engine. In Proceedings of the 3rd international

conference on Aspect-oriented software development, AOSD ’04, pages 36–45,

New York, NY, USA, 2004. ACM. ISBN 1-58113-842-3. doi: 10.1145/976270.

976277. URL http://doi.acm.org/10.1145/976270.976277. 151

[32] O. M. Group. Omg unified modeling language (omg uml) infrastructure version

2.3. Technical Report formal/2010-05-03, OMG, 2010. URL http://www.

omg.org/spec/UML/2.3/Infrastructure/PDF. 51

[33] U. Hafner. Task scanner plug-in. URL http://wiki.hudson-ci.org/

display/HUDSON/Task+Scanner+Plugin. 89

[34] K. T. K. S. T. N. Haruhiko Okumura, Houki Satoh. Algorithm cyclopedia in

Java. Gijutsu-Hyohron, 2003. 60, 69

[35] Y. Higo, A. Saitoh, G. Yamada, T. Miyake, S. Kusumoto, and K. Inoue. A plug-

gable tool for measuring software metrics from source code. In Proceedings of

BIBLIOGRAPHY 161

the 2011 Joint Conference of the 21st International Workshop on Software Mea-

surement and the 6th International Conference on Software Process and Product

Measurement, IWSM-MENSURA ’11, pages 3–12, Washington, DC, USA, 2011.

IEEE Computer Society. ISBN 978-0-7695-4565-3. 115

[36] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not., 39:92–106,

December 2004. ISSN 0362-1340. 95

[37] A. Hunt and D. Thomas. The pragmatic programmer: from journeyman to

master. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

ISBN 0-201-61622-X. 74

[38] A. Jackson and S. Clarke. Sourceweave.net: Cross-language aspect-oriented pro-

gramming. In In the Proceedings of Generative Programming and Component

Engineering: Third International Conference (GPCE 2004, pages 24–28, 2004.

150

[39] S. C. Johnson. Lint, a c program checker. In COMP. SCI. TECH. REP, pages

78–1273, 1978. 97

[40] C. Jones. Software assessments, benchmarks, and best practices. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2000. ISBN 0-201-48542-7.

33

[41] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic

fault-localization technique. In Proceedings of the 20th IEEE/ACM interna-

tional Conference on Automated software engineering, ASE ’05, pages 273–282,

New York, NY, USA, 2005. ACM. ISBN 1-58113-993-4. doi: 10.1145/1101908.

1101949. URL http://doi.acm.org/10.1145/1101908.1101949. 35

[42] T. Kamiya. the archive of ccfinder official site. URL http://www.ccfinder.

net/. 75

[43] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based

code clone detection system for large scale source code. IEEE Trans. Softw. Eng.,

162 BIBLIOGRAPHY

28(7):654–670, July 2002. ISSN 0098-5589. doi: 10.1109/TSE.2002.1019480.

URL http://dx.doi.org/10.1109/TSE.2002.1019480. 92

[44] S. Karus and H. Gall. A study of language usage evolution in open source

software. In Proceedings of the 8th Working Conference on Mining Software

Repositories, MSR ’11, pages 13–22, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0574-7. doi: 10.1145/1985441.1985447. 33, 98

[45] E. G. Kent Beck and D. Saff. Reik schatz. URL http://wiki.hudson-ci.

org/display/HUDSON/Testability+Explorer+Plugin. 89

[46] G. Kiczales. Aspect-oriented programming. ACM Comput. Surv., 28(4es), Dec.

1996. ISSN 0360-0300. doi: 10.1145/242224.242420. URL http://doi.acm.

org/10.1145/242224.242420. 21

[47] G. Kiczales and E. Hilsdale. Aspect-oriented programming. In Proceedings of

the 8th European software engineering conference held jointly with 9th ACM

SIGSOFT international symposium on Foundations of software engineering,

ESEC/FSE-9, pages 313–, New York, NY, USA, 2001. ACM. ISBN 1-58113-

390-1. doi: 10.1145/503209.503260. URL http://doi.acm.org/10.1145/

503209.503260. 125

[48] G. Kiczales and E. Hilsdale. Aspect-oriented programming. SIGSOFT Softw.

Eng. Notes, 26(5):313–, Sept. 2001. ISSN 0163-5948. doi: 10.1145/503271.

503260. URL http://doi.acm.org/10.1145/503271.503260. 21

[49] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-

wold. An overview of aspectj. In Proceedings of the 15th European Conference

on Object-Oriented Programming, ECOOP ’01, pages 327–353, London, UK,

UK, 2001. Springer-Verlag. ISBN 3-540-42206-4. URL http://dl.acm.org/

citation.cfm?id=646158.680006. 32, 95, 126, 150

[50] B. Kinnersley. The language list. URL http://people.ku.edu/

˜nkinners/LangList/Extras/langlist.htm. 22

BIBLIOGRAPHY 163

[51] T. Kiri, T. Miyoshi, S. Kishigami, T. Osato, and T. Sonehara. About the source

code insertion type coverage tool. In The 69th Information Processing Society

of Japan National Convention, 2003. 70

[52] B. Kitchenham. What’s up with software metrics? - a preliminary mapping

study. J. Syst. Softw., 83(1):37–51, Jan. 2010. ISSN 0164-1212. doi: 10.1016/j.jss.

2009.06.041. URL http://dx.doi.org/10.1016/j.jss.2009.06.041.

21

[53] D. Lafferty and V. Cahill. Language-independent aspect-oriented programming.

In Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented

programing, systems, languages, and applications, OOPSLA ’03, pages 1–12, New

York, NY, USA, 2003. ACM. ISBN 1-58113-712-5. 150

[54] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the international symposium on

Code generation and optimization: feedback-directed and runtime optimization,

CGO ’04, pages 75–86, Washington, DC, USA, 2004. IEEE Computer Soci-

ety. ISBN 0-7695-2102-9. URL http://dl.acm.org/citation.cfm?id=

977395.977673. 114

[55] H. F. Li and W. K. Cheung. An empirical study of software metrics. IEEE Trans.

Softw. Eng., 13(6):697–708, June 1987. ISSN 0098-5589. doi: 10.1109/TSE.1987.

233475. URL http://dx.doi.org/10.1109/TSE.1987.233475. 21

[56] W. Li and S. Henry. Maintenance metrics for the object oriented paradigm. In

Software Metrics Symposium, 1993. Proceedings., First International, pages 52

–60, may 1993. doi: 10.1109/METRIC.1993.263801. 28

[57] R. Lincke, J. Lundberg, and W. Löwe. Comparing software metrics tools. In

Proceedings of the 2008 international symposium on Software testing and anal-

ysis, ISSTA ’08, pages 131–142, New York, NY, USA, 2008. ACM. ISBN 978-

1-60558-050-0. doi: 10.1145/1390630.1390648. URL http://doi.acm.org/

10.1145/1390630.1390648. 28

164 BIBLIOGRAPHY

[58] J. I. Maletic, M. L. Collard, and A. Marcus. Source code files as structured doc-

uments. In Proceedings of the 10th International Workshop on Program Com-

prehension, IWPC ’02, pages 289–292, Washington, DC, USA, 2002. IEEE Com-

puter Society. ISBN 0-7695-1495-2. URL http://dl.acm.org/citation.

cfm?id=580131.856986. 151

[59] T. J. McCabe. A complexity measure. In Proceedings of the 2nd international

conference on Software engineering, ICSE ’76, pages 407–, Los Alamitos, CA,

USA, 1976. IEEE Computer Society Press. 28

[60] G. Meszaros. XUnit Test Patterns: Refactoring Test Code. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 2006. ISBN 0131495054. 74

[61] Microsoft. Dynamic language runtime, . URL http://dlr.codeplex.com/.

50

[62] Microsoft. Managed extensibility framework, . URL http://www.codeplex.

com/MEF/. 50

[63] Microsoft. Visual c++ resources, . URL http://msdn.microsoft.com/

en-us/vstudio/hh386302.aspx. 67

[64] A. Monden, S. Sato, T. Kamiya, and K. Matsumoto. Analyzing the quality of

legacy software based on code clone. In IPSJ Journal, pages 2178–2188, 2003.

74

[65] A. Ohashi. Uniaspect website in unicoenproject. URL http://www.

unicoen.net/application/uniaspect.html. 126

[66] T. Parr. Antlr parser generator. URL http://www.antlr.org/. 51, 137

[67] H. Rajan and K. Sullivan. Aspect language features for concern coverage pro-

filing. In Proceedings of the 4th international conference on Aspect-oriented

software development, AOSD ’05, pages 181–191, New York, NY, USA, 2005.

BIBLIOGRAPHY 165

ACM. ISBN 1-59593-042-6. doi: 10.1145/1052898.1052914. URL http:

//doi.acm.org/10.1145/1052898.1052914. 70

[68] O. Rohlik, A. Pasetti, P. Chevalley, and I. Birrer. An Aspect Weaver for

Qualifiable Applications. In Data System in Aerospace (DASIA) Conference,

Nice, July 2004. URL http://control.ee.ethz.ch/index.cgi?page=

publications;action=details;id=2129. 151

[69] V. Roubtsov. Emma: a free java code coverage tool. URL http://emma.

sourceforge.net/. 27, 42, 98

[70] K. Sakamoto, A. Ohashi, D. Ota, H. Iwasawa, and T. Kamiya. Unicoenpro-

ject/unicoen - github, . URL https://github.com/UnicoenProject/

UNICOEN. 99

[71] K. Sakamoto, K. Shimojo, and R. Takasawa. Opencodecoverageframework, .

URL https://github.com/exKAZUu/OpenCodeCoverageFramework.

41

[72] K. Sakamoto, A. Ohashi, D. Ota, H. Washizaki, and Y. Fukazawa. Unicoen: A

unified framework for code engineering supporting multiple programming lan-

guages. In IPSJ/SIGSE Software Engineering Symposium, volume 2012, pages

1–8, aug 2012. 130

[73] Y. Sakata, K. Yokoyama, H. Washizaki, and Y. Fukazawa. A precise estimation

technique for test coverage of components in object-oriented frameworks. In

Proceedings of the XIII Asia Pacific Software Engineering Conference, APSEC

’06, pages 11–18, Washington, DC, USA, 2006. IEEE Computer Society. ISBN

0-7695-2685-3. doi: 10.1109/APSEC.2006.11. URL http://dx.doi.org/

10.1109/APSEC.2006.11. 45

[74] Y. Sano, Y. Higo, and S. Kusumoto. Comparison of fixing frequency between

duplicate code and non-duplicate code. In IEICE Tech. Rep., pages 43–48, 2010.

74

166 BIBLIOGRAPHY

[75] J. Schaible. Jsunit: Jsunit. URL http://jsunit.berlios.de/. 142

[76] R. Schatz. Hudson team foundation server plug-in. URL http:

//wiki.hudson-ci.org/display/HUDSON/Team+Foundation+

Server+Plugin. 89

[77] SonarSource. Sonar. URL http://www.sonarsource.org/. 110

[78] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. Aspectc++: an aspect-

oriented extension to the c++ programming language. In Proceedings of the

Fortieth International Conference on Tools Pacific: Objects for internet, mobile

and embedded applications, CRPIT ’02, pages 53–60, Darlinghurst, Australia,

Australia, 2002. Australian Computer Society, Inc. ISBN 0-909925-88-7. URL

http://dl.acm.org/citation.cfm?id=564092.564100. 32, 150

[79] R. Toledo, P. Leger, and E. Tanter. Aspectscript: expressive aspects for the

web. In Proceedings of the 9th International Conference on Aspect-Oriented

Software Development, AOSD ’10, pages 13–24, New York, NY, USA, 2010.

ACM. ISBN 978-1-60558-958-9. doi: 10.1145/1739230.1739233. URL http:

//doi.acm.org/10.1145/1739230.1739233. 127, 150

[80] H. Washizaki, A. Kubo, T. Mizumachi, K. Eguchi, Y. Fukazawa, N. Yoshioka,

H. Kanuka, T. Kodaka, N. Sugimoto, Y. Nagai, and R. Yamamoto. Aojs: aspect-

oriented javascript programming framework for web development. In Proceed-

ings of the 8th workshop on Aspects, components, and patterns for infrastructure

software, ACP4IS ’09, pages 31–36, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-450-8. 32, 95, 126

[81] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: a controlled

experiment. In Proceedings of the 33rd International Conference on Software

Engineering, ICSE ’11, pages 551–560, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0445-0. 110

BIBLIOGRAPHY 167

[82] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting redundant

object-oriented unit tests. In Proceedings of the 19th IEEE international confer-

ence on Automated software engineering, ASE ’04, pages 196–205, Washington,

DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2131-2. doi: 10.1109/

ASE.2004.61. URL http://dx.doi.org/10.1109/ASE.2004.61. 75

[83] Q. Yang, J. J. Li, and D. Weiss. A survey of coverage based testing tools. In

Proceedings of the 2006 international workshop on Automation of software test,

AST ’06, pages 99–103, New York, NY, USA, 2006. ACM. ISBN 1-59593-408-

1. doi: 10.1145/1138929.1138949. URL http://doi.acm.org/10.1145/

1138929.1138949. 27

[84] Q. Yang, J. J. Li, and D. M. Weiss. A survey of coverage-based testing tools.

Comput. J., 52(5):589–597, 2009. 27

[85] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A.

Vouk. On the value of static analysis for fault detection in software. IEEE

Trans. Softw. Eng., 32:240–253, April 2006. ISSN 0098-5589. 95

[86] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and ad-

equacy. ACM Comput. Surv., 29(4):366–427, Dec. 1997. ISSN 0360-0300. doi:

10.1145/267580.267590. URL http://doi.acm.org/10.1145/267580.

267590. 21

169

List of Publications

Journal Papers

○ UNICOEN: A Unified Framework for Code Engineering Supporting

Multiple Programming Languages

Kazunori Sakamoto, Akira Ohashi, Daichi Ota, Hironori Washizaki and Yoshi-

aki Fukazawa

Journal of Information Processing Society of Japan (情報処理学会論文誌),

Vol.54, No.2, 2013. (accepted, in Japanese)

• A Framework for Game Software Which Users Play through Artificial

Intelligence Programming

Kazunori Sakamoto, Akira Ohashi, Hironori Washizaki and Yoshiaki Fukazawa

IEICE Transactions on Information and Systems (電子情報通信学会論文誌),

Vol.J95-D, No.3 pp.412-424, 2012. (in Japanese)

• Software Engineering Approaches for Design Patterns

Hironori Washizaki, Kazunori Sakamoto, Naoki Ohsugi, Katsuhiko Gondow,

Satoshi Hattori, Atsuto Kubo, Takashi Kobayashi, Mika Ohtsuki, Katsuhisa

Maruyama, Akira Sakakibara

Computer Software - JSSST Journal (コンピュータソフトウェア), Vol.29, No.1,

pp.130-146, 2012. (in Japanese)

• Open Code Coverage Framework: A Framework for Consistent, Flex-

ible and Complete Measurement of Test Coverage Supporting Mul-

tiple Programming Languages

Kazunori Sakamoto, Fuyuki Ishikawa, Hironori Washizaki and Yoshiaki Fukazawa

IEICE Transactions on Information and Systems, Vol.E94-D, No.12, pp.2418-

2430, 2011.

International Conference Presentations

170 List of Publications

○ OCCF: A Framework for Developing Test Coverage Measurement

Tools Supporting Multiple Programming Languages

Kazunori Sakamoto, Kiyofumi Shimojo, Ryohei Takasawa, Hironori Washizaki

and Yoshiaki Fukazawa

The 6th IEEE International Conference on Software Testing, Verification and

Validation, 9 pages, 2013. (accepted)

• POGen: A Test Code Generator Based on Template Variable Coverage

in Gray-Box Integration Testing for Web Applications

Kazunori Sakamoto, Tomohiro Kaizu, Daigo Hamura, Hironori Washizaki and

Yoshiaki Fukazawa

The 16th International Conference on Fundamental Approaches to Software

Engineering, pp.343-358, 2013. (accepted)

○ A Framework for Analyzing and Transforming Source Code Support-

ing Multiple Programming Languages

Kazunori Sakamoto

ACM Student Research Competition at the Aspect-Oriented Software Devel-

opment 2013, 2 pages, 2013. (accepted)

• Estimate of the Appropriate Iteration Length in Agile Development by

Conducting Simulation

Ryushi Shiohama, Hironori Washizaki, Shin Kuboaki, Kazunori Sakamoto,

Yoshiaki Fukazawa

Agile2012 Conference, pp.41-50, 2012.

• Towards a Unified Source Code Measurement Framework Supporting

Multiple Programming Languages

Reisha Humaria, Kazunori Sakamoto, Hironori Washizaki and Yoshiaki Fukazawa

The 24th International Conference on Software Engineering and Knowledge

Engineering, pp.480-485, 2012.

• UniAspect: A Languagae-Independent Aspect-Oriented Programming

Framework

Akira Ohashi, Kazunori Sakamoto, Tomoyuki Kamiya, Reisha Humaria, Satoshi

Arai, Hironori Washizaki and Yoshiaki Fukazawa

The 2nd Workshop on Modularity in Systems Software co-located with Aspect-

Oriented Software Development 2013, pp.39-44, 2012.

List of Publications 171

• Evaluation of Understandability of UML Class Diagrams by Using

Word Similarity

Yuto Nakamura, Kazunori Sakamoto, Kiyohisa Inoue, Hironori Washizaki and

Yoshiaki Fukazawa

The Joint Conference of the 21st International Workshop on Software Measure-

ment and the 6th International Conference on Software Process and Product

Measurement, pp.178-187, 2011.

○ A Tool For Detecting Duplicated Test Code Based On Test Coverage

to Assist TDD

Kazunori Sakamoto, Takuto Wada, Hironori Washizaki and Yoshiaki Fukazawa

Joint Workshop on Software Science and Engineering, pp.41-46, 2011.

○ Open Code Coverage Framework: A Consistent and Flexible Frame-

work for Measuring Test Coverage Supporting Multiple Program-

ming Languages

Kazunori Sakamoto, Hironori Washizaki and Yoshiaki Fukazawa

The 10th International Conference on Quality Software, pp.262-269, 2010.

Domestic Conference Presentations

○ Gray-box Integration Testing and Template Variable Coverage for

Web Applications

Kazunori Sakamoto, Tomohiro Kaizu, Daigo Hamura, Hironori Washizaki and

Yoshiaki Fukazawa

JSSST Workshop on the Foundation of Software Engineering (ソフトウェア工
学の基礎ワークショップ), pp.131-140, 2012. (in Japanese)

• DePoT: Testing Framework for Web Application Test

Shohei Aoi, Kazunori Sakamoto, Hironori Washizaki and Yoshiaki Fukazawa

JSSST Workshop on the Foundation of Software Engineering (ソフトウェア工
学の基礎ワークショップ), pp.121-130, 2012. (in Japanese)

○ UNICOEN: A Unified Framework for Code Engineering Supporting

Multiple Programming Languages

Kazunori Sakamoto, Akira Ohashi, Daichi Ota, Hironori Washizaki and Yoshi-

aki Fukazawa

172 List of Publications

IPSJ/SIGSE Software Engineering Symposium (ソフトウェアエンジニアリン
グシンポジウム), pp.1-8, 2012. (in Japanese)

• Topics of the Session on Software Design, Software Patterns and Agile

Development in Winter Workshop 2012

Kazunori Sakamoto, Masanari Motohashi

IPSJ Winter Workshop in Biwako (ウィンターワークショップ・イン・琵琶湖),

pp.1-2, 2012. (in Japanese)

• A Unified Source Code Measurement Tool Supporting Multiple Pro-

gramming Languages

Reisha Humaria, Kazunori Sakamoto, Hironori Washizaki and Yoshiaki Fukazawa

IPSJ Winter Workshop in Biwako (ウィンターワークショップ・イン・琵琶湖),

pp.5-6, 2012.

• Extenable Refactoring Engine for Multi Programming Languages

Tomoyuki Kamiya, Kazunori Sakamoto, Akira Ohashi, Hironori Washizaki and

Yoshiaki Fukazawa

IPSJ Winter Workshop in Biwako (ウィンターワークショップ・イン・琵琶湖),

pp.23-24, 2012. (in Japanese)

○ A Pattern Language for Programming Contest through Fight between

Computer Players

Kazunori Sakamoto, Akira Ohashi, Masaya Shimizu, Syuhei Takahashi, Shinichi

Murakami, Hironori Washizaki and Yoshiaki Fukazawa

The 2nd Asian Conference on Pattern Languages of Programs, pp.1-18, 2011.

(in Japanese)

• A Technique for Generating UI Specifications and Test Specifications

from UI Mock-ups for Web Applications

Kazunori Sakamoto, Masaharu Toukai, Yuko Murakami, Rie Miyahar, Yukiko

Okumura, Koichi Akiyama, Hironori Washizaki, Yoshiaki Fukazawa

Symposium on Software Quality Profession (ソフトウェア品質シンポジウム),

pp.1-8, 2011. (in Japanese)

• Estimating the appropriate iteration term of agile development using

simulation

Ryushi Shiohama, Kazunori Sakamoto, Shin Kuboaki, Hironori Washizaki and

Yoshiaki Fukazawa

List of Publications 173

IPSJ/SIGSE Software Engineering Symposium (ソフトウェアエンジニアリン
グシンポジウム), pp.1-6, 2011. (in Japanese)

• Problem and Consideration in Testing Framework

Kazunori Sakamoto, Hironori Washizaki and Yoshiaki Fukazawa

JSSST Workshop on the Foundation of Software Engineering (ソフトウェア工
学の基礎ワークショップ), pp.193-194, 2010. (in Japanese)

○ A Tool Detecting Redundant Test Code Based On Test Coverage

Kazunori Sakamoto, Takuto Wada, Hironori Washizaki and Yoshiaki Fukazawa

IPSJ/SIGSE Software Engineering Symposium (ソフトウェアエンジニアリン
グシンポジウム), pp.133-138, 2010. (in Japanese)

Annual Convention Presentation

• Suggestion of New Context-Oriented Programming Language Through

Comparative Experiments with Object and Aspect-Oriented Pro-

gramming Languages

Fumiya Kato, Kazunori Sakamoto, Hironori Washizaki and Yosiaki Fukazawa

The 75th National Convention of IPSJ (情報処理学会 第 75回全国大会), 2

pages, 2013. (submitted, in Japanese)

• Suggestion of contribution-based gamified testing tool for education

Ryohei Takasawa, Kazunori Sakamoto, Hironori Washizaki and Yosiaki Fukazawa

The 75th National Convention of IPSJ (情報処理学会 第 75回全国大会), 2

pages, 2013. (submitted, in Japanese)

• Construction of the platform for programming study for female stu-

dents

Koichi Takano, Kazunori Sakamoto, Hironori Washizaki and Yosiaki Fukazawa

The 75th National Convention of IPSJ (情報処理学会 第 75回全国大会), 2

pages, 2013. (submitted, in Japanese)

• Facilitate defect removal based on bug pattern using Gamification

Satoshi Arai, Kazunori Sakamoto, Hironori Washizaki and Yoshiaki Fukazawa

The 75th National Convention of IPSJ (情報処理学会 第 75回全国大会), 2

pages, 2013. (submitted, in Japanese)

• Report on Winter Workshop 2012 in Biwako

Katsuhisa Maruyama, Takayuki Omori, Hiroshi Igaki, Masahide Nakamura,

174 List of Publications

Kyohei Fushida, Masateru Tsunoda, Hiroshi Kazato, Joji Okada, Kozo Okano,

Kazunori Sakamoto, Masanari Motohashi, Tomoji Kishi, Natsuko Noda, Takashi

Kobayashi and Shinpei Hayashi

The 178th Workshop of IPSJ Special Interest Group on Software Engineer-

ing (情報処理学会 第 178回ソフトウェア工学研究発表会), pp.1-8, 2012. (in

Japanese)

• A Proposal of Gray-box Integration Testing for Web Applications

Kazunori Sakamoto, Tomohiro Kaizu, Daigo Hamura, Hironori Washizaki and

Yoshiaki Fukazawa

The 176th Workshop of IPSJ Special Interest Group on Software Engineer-

ing (情報処理学会 第 176回ソフトウェア工学研究発表会), pp.1-8, 2012. (in

Japanese)

○ UNICOEN: A Unified Framework For Code Engineering Supporting

Multiple Programming Languages

Kazunori Sakamoto, Akira Ohashi, Daichi Ota, Hironori Washizaki and Yoshi-

aki Fukazawa

The 88th Workshop of IPSJ Special Interest Group on Programming (情報処
理学会 第 88回プログラミング研究発表会), pp.46, 2012. (in Japanese)

• A Language Independent Aspect-Oriented Programming Framework

Akira Ohashi, Kazunori Sakamoto, Hironori Washizaki and Yoshiaki Fukazawa

The 28th Conference of JSSST (日本ソフトウェア科学会第28回大会), pp.1-12,

2011. (in Japanese)

○ A Tool for Measureing Test Coverage Metric for Programming Lan-

guages with Dynamic Evaluation

Kazunori Sakamoto, Hironori Washizaki and Yoshiaki Fukazawa

The 27th Conference of JSSST (日本ソフトウェア科学会第 27回大会), pp.153-

158, 2010. (in Japanese)

○ Software Patterns for Game in Which Users Participate through AI

Programming

Kazunori Sakamoto, Akira Ohashi, Masaya Shimizu, Syuhei Takahashi, Shinichi

Murakami, Satoru Uchiyama, Yuki Shiroma, Yutaro Nomoto, Akihiko Syoyama,

Yuto Nakamura, Hironori Washizaki and Yoshiaki Fukazawa

Workshop on Software Pattern, Architecture and Agile Development (ソフト

List of Publications 175

ウェアのパターンとアーキテクチャ・アジャイル開発ワークショップ), pp.1, 2010.

(in Japanese)

Other Publications and Presentations

○ AUnit Testing Tool Supporting Multiple Programming Languages

and Emerging Trends on Test Coverage

Kazunori Sakamoto

GAIO Private Seminar 2012 Fall (ガイオ プライベートセミナー 2012秋),

2012. (in Japanese)

• Principles and Patterns on Game AI Programming Contests such

as Samurai Coding

Hironori Washizaki, Kazunori Sakamoto, Masahiko Wada

CESA Developer Conference (CESAデベロッパーカンファレンス), 2012.

(in Japanese)

○ UNICOEN: A Unified Framework for Code Engineering Support-

ing Multiple Programming Languages

Kazunori Sakamoto, Hironori Washizaki

The 2nd NII-PKU International Joint Workshop on Advanced Software

Engineering, 2011.

• A Software Architecture Suitable for Educational Game System of

AI Programming

Kazunori Sakamoto

CESA Developer Conference (CESAデベロッパーカンファレンス), 2010.

(in Japanese)

