
 
 

 
 
 
 

QueueLinker: A Framework for 
Parallel Distributed Data-Stream Processing 

 

QueueLinker: 
 

 
 
 
 
 
 
 
 

March 2013 

Waseda University 
Graduate School of Fundamental Science and Engineering, 

Major in Computer Science and Engineering, 
Research on Parallel and Distributed Architecture 

 

 

 

 

 

 

Takanori UEDA 

  



 
 

 
 
 
 
 
 
 



i 
 

Acknowledgements 
Firstly, I would like to express my immense gratitude toward my supervisor, Prof.  

Hayato Yamana, of the Faculty of Science and Engineering at Waseda University. This 
research started as part of a big project led by him. Without the help and guidance of 
Prof. Yamana, the completion of this research would have been a far more difficult task. 
The state-of-the-art computer resources in our laboratory, which were essential for 
carrying out my research, are a result of his dedicated efforts. Prof. Yamana also 
encouraged me to give many conference presentations and conduct a variety of 
academic activities, and these gave me the opportunity to harness my skills and create 
personal connections. 

I would also like to express my gratitude to Prof. YYoichi Muraoka and Prof. 
Tatsuo Nakajima, both of the Faculty of Science and Engineering, Waseda University, 
and Dr. SSayaka Akioka, of the Information Technology Research Organization,  Waseda 
University. I received a great deal of advice for this doctor thesis from them. Their deep 
knowledge of operating systems and parallel distributed computing led to enlightening 
discussions that helped me to better understand my subject. In addition, international 
conferences and business trips with them provided many valuable experiences of 
foreign societies. 

Dr. AAndrew Sohn, associate professor at the New Jersey Institute of Technology, 
gave much-appreciated advice for my research. In addition to him, my research career 
has been supported by many people outside Waseda University. Dr. HHideyuki 
Kawashima, assistant professor at Tsukuba University, gave me a great deal of support 
and many academic opportunities. Drinking parties with him are always interesting. 
Prof. HHiroyuki Kitagawa, also of Tsukuba University, provided some immensely 
important advice for my research. Without their invaluable discussions, I could not have 
completed the key research of this thesis, and would not have attained the best paper 
award at DEIM 2012. Dr. YYui Makoto, of the National Institute of Advanced Industrial 
Science and Technology, provided many opportunities for my research career. A big 
project on distributed computing with him deeply affected my research. 

During my internship at IBM Research Tokyo, I was supported by Dr. TToshio 
Nakatani, Dr. MMoriyoshi Ohara, and Dr.  Hiroshi Horii. This experience with actual 
products provided me with great experience that could not have been achieved in my 
university. Moreover, the intern experience gave me an understanding of the 
importance of database systems. 

Here, I would also like to thank all of the members of Prof. Yamana’s laboratory. 



ii 
 

In particular, I would like to thank Mr. KKousuke Morimoto and Mr. KKenji Uchida, who 
have graduated from the laboratory, and Mr. KKou Satoh, who is currently my junior 
colleague. It would not have been possible to develop the Web crawler without their help. 
In addition, Mr. HHiroaki Asai provided me with valuable Web data, including the 
Twitter streams that were indispensable in developing and testing my framework. Mr. 
Daichi Suzuki and Mr YYusuke Yamamoto helped my research and managed the large 
number of servers. Mr. HHiromasa Takei has a deep knowledge of mathematics, and 
discussions with him provided many interesting research ideas. 

I would also like to thank the alumni of Prof. Yamana’s laboratory. First of all, I 
would like to thank my old senior colleague, Dr. YYu Hirate. His attitude toward research 
work and leadership qualities have always inspired me. He has consistently offered help 
wholeheartedly and been a friend to me during challenging times. Mr. TTakashi Tashiro, 
who provided me with the opportunity to join Prof. Yamana’s laboratory, had a positive 
effect on my research when I was a master’s course student. I would also particularly 
like to thank Mr. HHiroaki Katase for his assistance. The all-night server-maintenance 
on which we worked together stands out in my memory as a pleasant experience. Mr. 
Nobuyuki Kubota and Mr. NNaoyoshi Aikawa have also had a positive effect on my 
attitude towards research. I cannot mention all of their names, but I would like to thank 
each and every person working in Prof. Yamana’s laboratory. 

Finally, I would like to express my gratitude towards my parents, HHirozo and 
Saeko Ueda. They provided unconditional emotional support whenever it was needed, 
and this enabled me to complete these difficult research activities. I thank them from 
the bottom of my heart. 
 

March 2013 
Takanori Ueda 

 
 
 
 
 



iii 
 

Abstract 
Data stream analysis is required in a variety of situations. In particular, 

high-speed data stream analysis demands the use of parallel and distributed processing 
capability; however, implementing the necessary concurrency control and network 
communication to do so represents a challenge to developers. Some data stream 
applications such as algorithmic trading can benefit from the reduction of processing 
latency by even a few microseconds, and to support developers in realizing their 
requirements, a framework for parallel-distributed data-stream processing is 
indispensable. 

The proposed QueueLinker framework enables the building of data-stream 
applications by implementing modules using a producer–consumer model and by 
specifying a logical directed graph representing the data-flow connection between 
modules. As QueueLinker executes modules in a parallel-distributed environment and 
performs data transfer between modules according to a logical directed graph, data 
streams can be processed in real-time. 

One important application of QueueLinker is the execution of continuous queries. 
To cope with the latency requirements, in this thesis a low-latency parallelization 
technique for executing continuous queries in a multi-core environment is proposed. 
The proposed method attempts to assign the operators used in a query to threads in 
such a way that latency owing to inter-thread communication can be reduced, and it 
incorporates a dynamic operator reallocation mechanism that does not require that the 
framework stop processing the stream during operator reallocation. 

QueueLinker can also be used to execute continuous queries within a commodity 
cluster environment. Chase Execution is a proposed backup method for reducing the 
latency of a query in an environment in which an operator must be replicated over 
multiple computers in order to cope with computational node failures. The proposed 
method attempts to reduce processing latency and manage changes in data stream 
speed by executing a secondary using set of operator deployments differing from those of 
the primary; correspondingly, query results are generated using the fastest tuples 
outputted by the respective deployments.  

QueueLinker is useful for more than low latency data stream processing: a 
high-speed parallel-distributed Web crawler can be implemented using QueueLinker. 
Because each of its modules is implemented with data structures that are temporally 
and spatially efficient, this crawler would be able to crawl the Web on a large scale 
while conserving resources with improved load balancing and memory utilization 
between computers as compared to traditional site-based Web crawlers. 
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Chapter 1. Introduction 

With the internet now a common component of our infrastructure and the 
connection of many mobile devices to the network, our lifestyles have changed 
dramatically. A constant stream of information is now posted to social network services 
with 400 million Twitter tweets generated worldwide per day1 and the number of 
digital sensors generating ‘data streams’ that contain valuable information has 
increased considerably. The analysis of data streams in real-time is important in many 
applications including—among others—social analysis, stock market predicting, and 
healthcare monitoring. Several data stream applications are even affected by processing 
latency on the order of microseconds. Reducing latency in stock trading algorithms 
provides an advantage over trading competitors, as a trading order that reaches the 
central trading server first will be processed prior to those from other companies, and 
Wall Street algorithms will reportedly be uncompetitive if they experience a 5μs 
processing delay.2  

Advances in information technology have corresponded to an increase in the 
number of mobile devices and sensors, which in turn has resulted in the generation of 
large numbers of data streams, and processing numerous large streams requires 
parallel-distributed computing. Recent advancements in commodity computer 
hardware have made parallel-distributed computing available for everyone. As CPU 
manufacturers have decided to increase the number of cores on a CPU instead of 
increasing individual core frequency, the resulting plummet in personal computer prices 
has allowed for the ownership of shared-nothing clusters at a low cost. In order to take 
full advantage of recent computer hardware performance, developers must now become 
familiar with parallel-distributed computing; however, most developers want to avoid 
implementing concurrency control and network communication procedures, as these 
have proven difficult to program. 

Processing data streams in real-time presents special programming difficulties 
owing to the fact that applications must handle multiple data sources, wait for data 
arrival, and receive data via the network. In addition, the management of high-speed 
data streams demands parallel-distributed processing and, as described above, many 
applications require low-latency data stream processing. In addition, data stream 

                                                  
1 Twitter hits 400 million tweets per day, mostly mobile, http://news.cnet.com/8301-1023_3-57448
388-93/twitter-hits-400-million-tweets-per-day-mostly-mobile/ 
2 K. Slavin, “How algorithms shape our world,” 
http://www.ted.com/talks/lang/en/kevin_slavin_how_algorithms_shape_our_world.html 
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arrival speed and data content can change under certain conditions. Because it is 
difficult for many programmers to consider all of these factors, it is vital that a 
framework for real-time, parallel-distributed data-stream processing be developed. 

1.1. Research Motivation 
To summarize the issues and circumstances described above, the following are 

the requirements that this thesis attempts to address and the targets to which it tries to 
contribute:  
 
 Requirements of a Framework for Parallel Distributed Data-Stream Processing 

 Analyzing data streams in real-time is required in a variety of situations. 
 To take full advantage of recent computer hardware developments in 

processing data streams, parallel-distributed computing is indispensable. 
 Developers want to be able to easily develop data stream applications without 

necessitating complicated implementations of network communication and 
concurrency controls. 

 Requirements for Parallel Distributed Low Latency Data-Stream Processing 
 Several applications are affected by processing latencies that are now, in some 

case, on the order of microseconds. 
 Speed and content changes by data streams must be considered in order to 

achieve low-latency processing. 
 

Conventional frameworks such as MapReduce [1] are not designed for data 
stream processing. Data stream management systems (DSMSs) [2,3,4,5,6,7] are 
designed to process data streams through continuous query; however, operator 
execution mechanisms such as Chain [8], Eddy [9], and Teddy [10] do not consider 
latency in parallel computing and fail to consider communication latency between 
threads or CPU cores. Operator execution mechanisms for distributed data-stream 
processing such as COLA [11], SODA [12], and RASC [13] assume network 
communication latency to be negligibly small. However, even a small amount of latency 
can seriously affect data stream applications. Recent frameworks such as Twitter 
Storm1, Apache S42, and Esper3 are designed to process data streams. However, they 
are not designed to realize low-latency processing in parallel-distributed computing. 

                                                  
1 Storm, distributed and fault-tolerant realtime computation, http://storm-project.net/ 
2 S4: Distributed Stream Computing Platform, http://incubator.apache.org/s4/ 
3 Esper - Complex Event Processing, http://esper.codehaus.org/ 
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Low-latency processing techniques are closely correlated to framework design. 
Therefore, we must consider both a framework design and low latency processing 
techniques. 

1.2. Contributions 
In this thesis, QueueLinker—a framework for parallel-distributed data-stream 

processing—is proposed. To cope with latency requirements, low-latency techniques for 
processing data streams are proposed. In addition, QueueLinker can also be used to 
execute applications such as Web crawlers. The contributions of this thesis are listed 
below and described in this section. 
 
1. QueueLinker Development (Chapter 3) 

 QueueLinker is a framework for parallel-distributed data-stream processing. 
 The framework provides a producer–consumer programming model for 

data-stream processing. 
 Developers can implement data stream applications without implementing 

network communication and concurrency controls. 
 The framework supports a data parallel model. 

2. Low Latency Processing of Continuous Queries (Chapters 4 and 5) 
 Chapter 4 describes a proposed low-latency, parallel execution method for 

continuous query on a multi-core processor. 
 Chapter 5 describes a proposed backup method for continuous query that 

achieves low-latency processing in a commodity cluster environment. 
3. Application Demonstration (Chapter 6) 

 In addition to low-latency data stream processing, QueueLinker can execute 
practical applications such as Web crawlers. 

 The crawler can be executed using a data parallel model of QueueLinker. 
 The crawler achieves better load-balancing and memory utilization between 

computers than traditional site-based Web crawlers. 

1.2.1. QueueLinker Development (Chapter 3) 
The proposed framework, QueueLinker, will enable developers to build data 

stream applications by implementing JAVA modules that utilize a producer–consumer 
model and by specifying a logical directed graph representing the data-flow connection 
between modules. Each module is automatically instantiated and executed within a 
parallel-distributed environment, and data are automatically serialized and transferred 
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to other modules, even if these are running on other computers. Programmers do not 
need to implement multi-threaded program and network communication procedures. 
QueueLinker also provides an application programming interface (API) to realize data 
parallel computation. By using this data parallel model, developers can easily scale-up 
applications. 

1.2.2. Low Latency Execution of Continuous Query (Chapters 4 and 5) 
The mechanism of QueueLinker supports the implementation of useful 

applications, including “continuous query [14],” which has been studied in the field of 
database science since the early 2000s. A relational continuous query can usually be 
described using an SQL-like language [15] and compiled to a plan tree consisting of 
relational algebra operators. When a tuple arrives to the system, the tuple is pushed 
into a leaf of the plan tree and the plan tree generates the result of the query. 

Continuous query is useful in data stream processing. Previously, data stream 
management systems (DSMSs) [2,3,4,5,6,7] had been developed to process data streams 
using continuous query, as DSMSs have scheduling algorithms for operator execution. 
However, operator execution mechanisms such as Chain [8], Eddy [9], Teddy [10], COLA 
[11], SODA [12], and RASC [13] do not take into account the communication latency 
associated with parallel-distributed computing. 

QueueLinker can also be used to execute continuous query by implementing a 
relational algebra operator as a module, and the corresponding plan tree can be 
described using a logical directed graph. Thus, QueueLinker is useful in executing 
continuous query in a parallel-distributed environment; however, as the method of 
operator execution is quite relevant to the reduction in query latency, the following two 
methods are proposed in this thesis: 
 

 Low-latency execution of a continuous query on a multi-core processor (Chapter 4) 
 A low-latency parallel execution method of continuous query on a multi-core 

CPU is proposed that attempts to assign threads to query operators in such a 
way that the latency of inter-thread communication is reduced. This thesis 
proposes a definition of the tuple latency of continuous query in parallel 
processing and proposes a dynamic programming algorithm that finds thread 
assignments for operators. In addition, a dynamic operator reallocation 
technique that does not require the framework to stop processing a stream 
during reallocation is proposed. 
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 Chase Execution – a backup method using latency reduction in a distributed 
environment (Chapter 5) 

 Chase Execution is a proposed backup method for achieving low-latency 
processing of continuous queries in a commodity cluster environment where 
operators must be replicated within multiple computers in order to cope with 
computation node failures. In this proposed method, a secondary is executed by 
a set of operator deployments that differs from those of the primary, and query 
results are generated from the fastest tuples outputted by the deployments. 
This method aims to reduce the processing latency while managing changes in 
data streams speed. 

 

1.2.3. Parallel-distributed Web Crawler (Chapter 6) 
In addition to its usefulness in low-latency data stream processing, QueueLinker 

can be used to implement a high-speed, parallel-distributed Web crawler. As Web 
crawlers must collect Web data while performing tasks such as the detection of crawled 
URLs and the prevention of consecutive access to a certain Web server, parallel and 
distributed crawling is necessary in achieving high-speed crawling of the extremely 
high number of URLs that exist on the Web. 

The proposed Web crawler consists of fine-grained QueueLinker modules, all of 
which can be executed using the data parallel model. Because of this, the crawler can 
achieve improved load balancing and memory utilization between computers as 
compared to traditional site-based Web crawlers [16,17,18]. Moreover, because each 
module is implemented by data structures that are temporally and spatially efficient, 
crawling of the Web on a large scale while conserving resources is enabled. This crawler 
thus demonstrates that the data parallel model provided by QueueLinker is effective in 
the development of Web crawlers. 

1.3. Outline of this Thesis 
The remainder of this thesis is organized as follows: 

 
 Chapter 2 describes data stream processing preliminaries.  
 Chapter 3 describes QueueLinker, the proposed framework for parallel distributed 

data-stream processing. 
 Chapter 4 describes the proposed method for low-latency parallel execution of 

continuous query on a multi-core CPU. 
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 Chapter 5 describes the proposed backup method for achieving low latency 
processing of continuous queries in a commodity cluster environment. 

 Chapter 6 describes the proposed parallel-distributed Web crawler. 
 Chapter 7 concludes this thesis and gives a viewpoint on potential future work. 
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Chapter 2. Preliminaries of Data Stream Processing 

A data stream is a sequence of data items that arrive continuously and 
permanently. Analyzing data streams in real-time is essential to many applications, 
many of which also require very low latency. To fulfill these requirements, it is 
important to consider that the speed at which the data stream arrives, and the 
character of data contained in the stream, can vary widely under certain conditions. 

To clarify the differences between data stream processing and traditional data 
processing, this chapter provides a review of traditional data processing software, such 
as Database Management Systems (DBMSs) and distributed computing frameworks 
like MapReduce [1]. It then provides a review of Data Stream Management Systems 
(DSMSs) [2,3,4,5,6,7] developed especially for executing so-called “continuous queries” 
[14] of data streams in real-time. A continuous query is compiled to a plan tree 
consisting of relational algebra operators. When a tuple arrives, it is pushed into a leaf 
of the plan tree and the result of the query is generated. The execution strategy of 
relational operators affects the latency of the query. This chapter reviews previous 
research about strategies of operator execution in continuous queries, and provides a 
point of reference for the remaining chapters. 

2.1. Data Streams Characteristics 
There are many different types of data streams. Everything from network 

packets and digital sensor outputs to game control events and social message channels 
can be considered data streams, regardless of data format. Even so, there are several 
characteristics that commonly apply to modern data streams: 
 
 Continuousness: A data stream arrives continuously from outside data sources, and 

cannot be controlled or stopped, even when the receiving system has insufficient 
resources to process it. If the system cannot process the data as it arrives, it has to 
discard some part of it, or adopt an approximation technique, such as load shedding 
[19], to reduce computation time. 

 Large Data Size: Advances in information technology have corresponded to an 
increase in the number of mobile devices and sensors, which in turn has resulted in 
the generation of large numbers of data streams, most of which cannot be processed 
outside a parallel-distributed computing context. In addition, as the data stream 
arrives continuously, it is usually impossible to store the data to secondary storage. 
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Thus, a system usually has to process a data stream in memory, in real time. 
 Arrival Rate Change: The rate at which data arrives from the source may vary 

sharply and without notice. The receiving system must respond to rate changes by 
adapting computation resources, like CPU cores and memory, to reduce processing 
latency. In distributed data-stream processing, such adaptation is more difficult 
because internal state must migrate between computers. 

 Importance of Data Arrival Order: A data item is usually represented by a tuple 
with a timestamp or a tuple ID that increases over time. For many applications, 
processing tuples that are not ordered by the time of their arrival will produce 
incorrect results. 

 Multiple Data Sources: Some applications need multiple data sources to generate 
results, and must therefore manage multiple data streams in such a way that 
queries can be executed promptly. 

 
The above characteristics are important to the design of software for processing 

data-streams. The next section provides actual examples of data stream applications. 

2.2. Data Stream Applications and their Characteristics 
Real-time data stream analysis is an essential component of many modern 

systems and platforms. All of the following applications rely on such analysis for their 
core function: 
 
 Financial Applications: Market assets are often traded using algorithms that decide 

when to buy or sell depending on market prices, economic indices, and relevant 
events from newswires. These algorithms have to submit orders to the central 
server in an exchange as soon as possible to avoid arbitrage losses. To illustrate this 
point, the Tokyo Stock Exchange, Inc. states that its “arrownet” access to the core 
trading system can supply data at a delay of less than 32μs one-way1, and 
algorithms on Wall Street are commonly supposed to lose if delayed by more than 
5μs2. Thus, reducing latency in data stream analysis to an absolute minimum is 
crucial to success in algorithmic trading. 

 Social Analytics: Using the connectivity of modern mobile devices, numerous users 
all over the world have started updating their moment-to-moment activities on 

                                                  
1 TSE : arrownet, http://www.tse.or.jp/english/system/networkservices/arrownet.html 
2 K. Slavin, “How algorithms shape our world,” 
http://www.ted.com/talks/lang/en/kevin_slavin_how_algorithms_shape_our_world.html 
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social network services. Analyzing these activity streams in real-time now forms 
the basis of a number of services, most notably those involving market analysis and 
targeted advertising. 

 Sensor Applications: Modern micro-device technology has led to a proliferation of 
sensory apparatus. Temperature and tracking sensors in smart homes can reduce 
energy consumption, security cameras can detect criminal behavior in public and 
private spaces, and GPS locators can keep track of property and people. 

 Network Monitoring: The most prevalent data stream of all is the one composed of 
network packets, and a number of applications are dedicated to direct analysis of 
this stream. An IPS (Intrusion Prevention System), for example, tries to detect and 
discard malicious packets in real time. Because of the nature of TCP 
communications, throughput between clients and servers can be noticeably 
degraded if an IPS cannot keep up with the speed of incoming packets. 

2.3. Difficulties in Data Stream Processing 
Applications such as those listed above must generally address three main 

problems in data stream processing: 
 
 Large Data: Data streams want to flow freely, and carrier routers can be configured 

to switch packets at a speed of 322 Tbps1. With millions of financial transactions 
occurring every minute, users generating 400 million tweets per day2, and security 
cameras producing untold amounts of pixel data, systems intended to process such 
data streams must be designed for massive throughput. 

 Low Latency: Delays of several microseconds can cause critical deficiencies for some 
applications. If a trading algorithm or IPS incurs undue latency, significant damage 
may result. 

 High Availability: Some applications cannot tolerate data loss. For example, if an 
IPS cannot process packets when a failure occurs, its network becomes unusable. 
For such applications, stream processing state must be replicated to multiple 
computers in order to prevent fatal losses. 

 
Processing data streams in real-time presents a steep programming challenge. 

Applications must handle multiple data sources, remain available for data arrival, and 
                                                  
1 Cisco Carrier Routing System Compare Models - Cisco Systems, http://www.cisco.com/en/US/pro
ducts/ps5763/prod_models_comparison.html 
2 Twitter hits 400 million tweets per day, mostly mobile, http://news.cnet.com/8301-1023_3-57448
388-93/twitter-hits-400-million-tweets-per-day-mostly-mobile/ 



10 
 

respond to variations in stream speed promptly. To meet this challenge requires 
parallel-distributed processing that does not introduce significant latency, and can 
handle sharp fluctuations in the rate of data arrival. Because it is difficult for 
programmers to balance all of these factors through custom design, it is crucial that a 
framework for real-time, parallel-distributed data-stream processing be developed. 

2.4. Previous Data Processing Systems 
As described above, data stream processing is a high-throughput, low-latency 

undertaking. To clarify the differences between data stream processing and traditional 
data processing, this section will review traditional data processing technologies such as 
DBMS (Database Management System) and distributed processing frameworks like 
MapReduce. 

2.4.1. DBMS (Database Management Systems) 
DBMS (Database Management Systems) have been, and continue to be, widely 

used for processing and storage of data. DBMSs have superb query optimization, and 
their transaction management mechanism prevent the kind of data inconsistencies that 
are unacceptable for many systems, including financial and commercial platforms. 

To use a DBMS, data must first be stored in a table, the structure of which is 
strictly defined by a schema. Thereafter, users or software programs can issue queries 
to the DBMS using a Structured Query Language (SQL), as shown in Figure 2.1. The 

 
Figure 2.1  Typical Processing Procedure of a DBMS 
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advantage of this procedure is that clients can interactively process and modify data 
using a declarative language. Because the tables are well structured and DBMSs return 
results as a table, users are not bothered by unexpected data formats. 

Unfortunately, secondary, table-based storage makes DBMSs unsuitable for 
data-stream processing, as it introduces significant latency to the system, and requires 
that SQL queries be constantly resubmitted to the DBMS to achieve real-time 
processing. Moreover, traditional query optimization is designed to minimize storage 
I/O, rather than to optimize data-stream processing. 

2.4.2. Apache Hadoop (Google MapReduce) 
Recent advancements in commodity computer hardware have made 

parallel-distributed computing available to everyone. Nevertheless, most developers 
want to avoid implementing concurrency controls and network communication 
procedures, as these have proven difficult to program in the past. These factors have led 
to the development of parallel-distributed computation frameworks such as MapReduce 
[1] and Dryad [20,21]. 

Apache Hadoop1, an open source implementation of Google MapReduce [1], is 
now widely used for processing big data. It realizes distributed computing for large data 
without requiring user implementation of network communications. In the MapReduce 
programming context, developers are tasked with identifying and defining the data 
parallelism of their applications, after which the framework can scale out data 
processing by simply distributing job to available computation nodes. The effectiveness 
of this kind of parallelism is a major reason why Hadoop enjoys broad success in 
processing big data. Now, it is used to process variety of big data. Graph mining library 
[22] is built on Hadoop, and is supported by a number of recent extensions, including 
the graph mining library [22] and Pig Latin [23] a high level query language. 

Figure 2.2 shows the procedure involved in MapReduce. Programmers implement 
the map and reduce functions. Each map function accepts data and processes it, and 
then outputs key-value data. Reduce functions accept values with the same key and 
output results. MapReduce executes these functions in parallel, by splitting distributing 
the input data to map functions running on available computation nodes. The outputs of 
the map functions are sorted based on shared key values and sent to a computer in the 
shuffle phase, where they are gathered into a list. Finally, the reduce functions process 
the list to generate results. Although all of these processing steps are executed in a 
parallel-distributed manner, programmers only have to implement the map and reduce 

                                                  
1 Welcome to Apache Hadoop!, http://hadoop.apache.org/ 
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functions, and can ignore issues of network communication. 
Although Hadoop is a powerful tool for big data processing, it must store its data 

using the Hadoop Distributed File System (HDFS). As such, even if storage access is 
reduced [24], Hadoop ultimately relies on disk-based systems for its batch-processing, 
making it unsuitable for data stream processing. 

2.5. Data Stream Management Systems (DSMS) 
As described above, traditional disk-based processing software is not well suited 

for processing data streams due to the inherent latency in its batch-processing 
mechanisms. Hence, a number of DSMSs (Data Stream Management Systems) have 
been designed specifically for processing data streams using what are called 
“continuous queries”. Aurora [2,25,26], Borealis [3,27,28,29], STREAM [4,30], 
TelegraphCQ [5], NiagaraCQ [6] and Gigascope [7] are examples of such systems. 
Figure 2.3 provides an overview of data stream processing by a DSMS. Queries for 
DSMSs can be usually described using a SQL-like language [15], after which the DSMS 
converts the query to a plan tree consisting of relational algebra operators. It then 
executes the query as data arrives and generates results in real-time. 

Traditional relational algebra operators are not appropriate for continuous data 
because they assume that all data persists in secondary storage. To overcome this 
limitation, a stream is divided into windows and relational operators are applied to the 
data within a given window. 

Figure 2.2  Word Count for a Novel “Alice’s Adventures in Wonderland” 
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2.5.1. Continuous Queries 
A continuous query is usually described by a SQL-like language [15] and compiled 

into a plan tree consisting of relational algebra operators that are traditionally used in 
DBMSs. Even so, the operator execution mechanism must be extended, since the 
computation of DSMSs differs from that of DBMSs in the following ways: 
 
 Real-time Result Generation: In a DBMS, some relational operators such as join 

and sort have to process entire input data set(s). In contrast, a DSMS has to 
produce query results based on partial stream data, as no data stream can be 
considered finite. If a traditional operator implementation is used, operators will 
not be able to produce results until a stream ends. Thus, in DSMSs, blocking 
operators are converted to non-blocking operators through the use of a ‘window’ 
that defines a finite part of a stream. 

 Different Operator Execution Mechanism: In a traditional DBSM, the pull model is 
a common implementation for executing a plan tree. In this model, an 
iterator-based pull execution mechanism is employed, such that, at the beginning of 
a query execution, the root operator of the plan tree is called, after which the 
children of the node are called recursively. The leaf nodes in a plan tree fetch data 
from a table that is typically persisted on secondary storage. 
In DSMSs, however, the arrival of data from a stream is unpredictable and leaf 
nodes may not yet have the necessary tuple, and a pull execution mechanism may 
block operator execution when there is no tuple. Thus, DSMSs must use a push 

 
Figure 2.3  Processing Procedure of a DSMS 



14 
 

mechanism that calls operators when a tuple arrives. All operators are associated 
with an in-memory queue that buffers arriving tuples to be processed. The output of 
an operator is then sent to the queue of the next operator. 

 
Figure 2.4 shows an example of a plan tree. Note that the query uses a time 

window specifying 24 hours, allowing blocking operators such as join to process tuples 
as they arrive. Here, the plan tree describes the query semantics representing the order 
in which operators are applied to tuples, but does not specify query execution strategy. 
This strategy is important because it can significantly affect query latency. 

2.5.2. Operator Execution Strategies for Continuous Queries 
DSMSs have to consider the execution strategy of each operator in a continuous 

query, as this strategy will have a significant impact on the query’s latency and 
throughput. In this section, operator execution strategies are reviewed in order to 
establish the objectives for the remaining chapters in this thesis. Numerous studies 
have been devoted to operator execution strategies for continuous query 
[8,9,10,31,32,33,34,35,36,37]. 

Aurora [2] represents a continuous query using a ‘box’ that manages operators 
and an ‘arrow’ that manages connections between boxes. The scheduler used in Aurora 
[34] tries to minimize the number of I/O operations performed per tuple and to minimize 

 

Figure 2.4  An Example of a Continuous Query and a Plan Tree 
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the number of box calls made per tuple. 
STREAM [4] uses a scheduling algorithm called Chain [8,31], which executes 

operators in a sequence that is near-optimal to minimize memory consumption. As a 
side effect of this optimization, it can also reduce processing latency, but may also create 
high latency if the speed of the input stream suddenly increases, resulting in a buildup 
of unprocessed tuples. Moreover, Chain assumes the use of a single core CPU 
environment, and is thus unusable in modern multi-core processor environments. 

TelegraphCQ [5] makes use of the Eddy [9] mechanism to reorder the operator 
execution sequence of a plan tree. With Eddy, each tuple has an execution history that 
records which operators the tuple has already visited. Based on this history and on the 
plan tree, an eddy transfers the tuple to the next appropriate operator. Unfortunately, 
doing so requires a call to the scheduler for every tuple, creating large overhead. This 
problem is addressed by Teddy [10], a refinement of Eddy, which processes a set of 
tuples at once, rather than one tuple at a time. 

There are also several operator scheduling methods for distributed data-stream 
processing [11,12,13]. For example, COLA [11], a scheduler used in IBM System S 
[38,39], finds an operator assignment that can minimize the CPU resources used for 
network communication. While COLA helps increase the throughput of the processing, 
it does not consider processing latency. Similarly, SODA [12] uses mathematical 
optimization techniques to find operator assignments that do not violate the resource 
constraints of the computation nodes, but it too fails to consider processing latency in 
distributed environments. RASC [13] uses minimum cost flow to find operator 
assignments that minimize the number of tuples discarded under conditions of overload. 
Since RASC presupposes the possibility of lost data, it is focused on reducing 
computations, making it inappropriate for systems that are intolerant of data loss or 
require precision in query results. 

None of the above provides a method for reducing the communication latency of a 
query executed in a parallel distributed environment. As mentioned previously, the 
arrival rate of a data stream may vary widely. To respond to such variations, a 
parallelized system must make difficult adjustments to the assignment of threads or 
computation nodes to operators. Because this adjustment involves transfer of the 
internal states of those operators, it typically creates new latency. The methods 
described above either fail to consider communication latency between threads and 
CPU cores, or assume this latency to be negligibly small. However, even a small amount 
of latency can seriously affect data stream applications, as described above, and must be 
addressed as a performance issue. 
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2.6. Other Systems 
FPGAs can process data streams obviously in low latency and they are now used 

in algorithmic trading. However, due to the limitation of memory and the difficulty in 
programming the circuits, it is still arduous to put an algorithmic trading mechanism 
on an FPGA1. 

GPUs [40] can be used to process data in highly parallel. However, it requires 
transferring data from the main memory to the GPU memory or vice versa. In addition, 
GPUs use a large number of arithmetic logical units to achieve high throughput, which 
means they do not attempt to reduce the processing latency of each tuple. 

Thus, software processing is still effective to process data streams. There are 
widely-used methods of research and systems to develop applications for parallel 
distributed computing. Grid projects such as Condor [41] attempt to leverage 
computation resources by batch processing. Obviously, they are not designed for data 
stream processing. 

Parallel databases including DB2 [42] and Volcano [43] also should be considered. 
However, they are not designed for processing data streams in real-time, as is the case 
with other DBMSs. 

MPI2 is quite a usable programming interface for high performance computing. 
If a developer can make an effort to implement highly optimized applications, MPI may 
be the best way to achieve the highest performance. However, most developers want to 
avoid implementing concurrency control as these have proven to be difficult to program. 

Recent frameworks such as Twitter Storm3, Apache S44, and Esper5 are designed 
to process data streams. However, they are not designed to realize low-latency 
processing in parallel-distributed computing. Low-latency processing techniques are 
closely correlated to framework design. Therefore, we must consider both a framework 
design and low latency processing techniques. 

2.7. Summary and Milestones for the Remaining Chapters 
This chapter described the common characteristics of data streams, several types 

of applications that use data streams, and a number of methods proposed for processing 
data streams. Overall, a modern data stream can be characterized as a large and 
                                                  
1 FPGA & Hardware Accelerated Trading, Part Four - Challenges and Constraints, 
http://www.hftreview.com/pg/blog/mike/read/58189/fpga-hardware-accelerated-trading-part-four-chall
enges-and-constraints 
2 Open MPI: Open Source High Performance Computing, http://www.open-mpi.org/ 
3 Storm, distributed and fault-tolerant realtime computation, http://storm-project.net/ 
4 S4: Distributed Stream Computing Platform, http://incubator.apache.org/s4/ 
5 Esper - Complex Event Processing, http://esper.codehaus.org/ 
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unpredictable sequence of data that arrives from an outside data source. Traditional 
batch data processing systems, such as DBMS and MapReduce, were shown to be ill 
suited to data stream processing. Furthermore, recent advancements in commodity 
computer hardware have made clear the need for broadly accessible parallel-distributed 
computing frameworks, with concurrency controls and network communication 
procedures built in. 

This chapter also reviewed several existing DSMSs and the conventional 
operator execution strategies they employ. It was shown that none of these systems 
provide methods for reducing the communication latency of a continuous query in a 
parallel-distributed environment. Low latency processing on parallel distributed 
environment is required because there are applications that are affected by latency on 
milliseconds or even on microseconds. 

The balance of this thesis presents a framework for parallel-distributed 
data-stream processing that accomplishes the goal of reliably low latency even in 
response to large fluctuations in data stream speed. 
 
 Requirements of a Framework for Parallel Distributed Data-Stream Processing 

 Analyzing data streams in real-time is required in a variety of situations. 
 To take full advantage of recent computer hardware developments in 

processing data streams, parallel-distributed computing is indispensable. 
 Developers want to be able to easily develop data stream applications without 

necessitating complicated implementations of network communication and 
concurrency controls. 

 Requirements for Parallel Distributed Low Latency Data-Stream Processing 
 Several applications are affected by processing latencies that are now, in some 

case, on the order of microseconds. 
 Speed and content changes by data streams must be considered in order to 

achieve low-latency processing. 
 

To meet with these requirements, Chapter 3 describes QueueLinker, a framework 
for parallel distributed data-stream processing. QueueLinker will enable developers to 
build data stream applications by implementing JAVA modules that utilize a producer–
consumer model and by specifying a logical directed graph representing the data-flow 
connection between modules. Using QueueLinker, programmers will not need to 
implement multi-threaded concurrency and network communication procedures. 
Chapter 3 also provides an overview of software architecture of QueueLinker, including 
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its use of “thread units” for low-latency execution modules and its general model for 
parallel processing. QueueLinker also provides an application programming interface 
(API) to realize data parallel computation that is adopted by MapReduce. By using this 
data parallel model, developers can easily scale-up applications. 

Chapter 4 describes a proposed method for assigning thread units of 
QueueLinker to the operators of a query so as to reduce the latency created by 
inter-thread communication. The chapter also proposes a low-overhead, dynamic 
operator reallocation technique that allows QueueLinker to continue processing during 
operator reallocation. 

Chapter 5 describes an operator backup method for distributed processing. The 
method reduces network communication latency, maintains high availability, and 
responds promptly to changes in the speed of the input data stream. By executing a 
query on a set of different operator deployments, and generating results from the fastest 
tuples output by these deployments. 

Chapter 6 describes a proposed Web crawler consisting of fine-grained 
QueueLinker modules, all of which can be executed using the data parallel model. It 
will be shown that this Web crawler achieves improved load balancing and memory 
utilization between computers as compared to traditional site-based Web crawlers. 
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Chapter 3. QueueLinker 

The proliferation of mobile devices and sensors has resulted in a large numbers of 
new data streams, the processing of which requires robust parallel-distributed 
computing. Fortunately, advancements in commodity computer hardware have made 
this kind of computing available to a broad user base. As CPU manufacturers have 
begun to favor increases in the number of CPU cores over increases in CPU core clock 
speed, the costs associated with parallel computing hardware have plummeted. To take 
full advantage of these trends in the processing of data streams, developers must now 
become familiar with the essentials of parallel-distributed computing. However, most 
developers still want to avoid implementing concurrency controls and network 
communication procedures, as these have traditionally proven difficult to program. 

This chapter describes a new framework, QueueLinker, developed especially for 
real-time data processing. QueueLinker enables programmers to build data stream 
processing applications by implementing application modules that use a producer–
consumer model, and specifying a logical directed graph representing the data-flow 
connections between these modules. Each module is automatically instantiated and 
executed in parallel according to the logical directed graph. The data generated by a 
module is automatically serialized and transferred to other modules across the network, 
relieving the programmer of complex multi-threading and communication 
implementations. In addition, data parallel model of QueueLinker helps the developers 
to realize parallel processing without concurrency control. 

3.1. Producer–Consumer Model 
In QueueLinker, a module is a software processing unit implemented according to 

the producer–consumer model commonly described in design patterns for 
multi-threaded programming. Under the producer–consumer model, a module processes 
input item(s) and generates a result. Modules communicate with each other using 
queues. A module sending an item to another module puts the item into the input queue 
of the destination module. Because modules are not meant to share their internal states, 
an arbitrary number of threads can be assigned to each, and they can be executed in 
parallel on multiple computers to achieve greater speed. 
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3.2. Module Implementation Interfaces 
QueueLinker presents a Java API for constructing producer–consumer modules 

of four major types: push modules, pull modules, source modules and sink modules. A 
push module is designed for non-blocking operations such as filtering and arithmetic 
operations. A pull module is designed for blocking operations such as file I/O and 
receiving data from external data sources. A source module is designed for providing 
data to other modules from external data sources. A sink module is designed for storing 
data in secondary storage or visualizing application window to a user. 

3.2.1. Push Module Implementation 
Figure 3.1 shows pseudo code for a push module. In this example, the module has 

two input queues and an output queue. An item transferred from another module is 
passed through the variable ‘item’. The queue that the item was put into is identified by 
the variable ‘queueId’. The module processes an input item and then returns a string as 
a result. Processing can differ depending on the input queue the item was put into. If 
the module returns null, QueueLinker sends no data to the next module. This 
mechanism helps us implement modules for filtering of data. A relational operator for 
continuous queries can be implemented using the interface for push modules. 

Because QueueLinker uses a push thread unit (described in 3.5.1) to execute 
multiple push modules, a push module cannot use an infinite loop or perform blocking 
operations like file I/O. If a push module does not return, other push modules will not be 
executed. 

3.2.2. Pull Module Implementation 
Figure 3.2 shows pseudo code for a pull module. In this example, the module pulls 

an item from an input queue and then outputs a string toward an output queue. The 
system assigns a dedicated thread to each instance of the pull module. Thus, a pull 
module implementation can make use of an infinite loop, which is useful for 
implementing blocking operations, such as receiving data from external data sources. To 
do this, the blocking operation is simply written inside an infinite loop in a pull module. 

3.2.3. Source Module Implementation 
Figure 3.3 shows pseudo code for a source module. A source module has no input 

queue and has only one output queue. A data source is typically used to provide data to 
other modules from external data sources. For example, a data source may leverage the 
Twitter API to feed tweets to the system. QueueLinker can manage multiple data 
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sources and automatically duplicate the data if multiple modules need the data from a 
single data source. 

3.2.4. Sink Module Implementation 
QueueLinker also provides interfaces for data sink. A sink module has one input 

queue and no output queue, and is typically used to store data in secondary storage and 
present that data in visualize window to a user. Figure 3.4 shows pseudo code for a sink 
module. 

 

 
Figure 3.1  A Pseudo Code of a Push Module 

 

 

Figure 3.2  A Pseudo Code of a Pull Module 

public class ExamplePushModule extends PushModule<String, String>
{

@Override
public String execute(String item, int queueId)
{

if (queueId == 0)
return "Waseda";

else if (queueId == 1)
return "University";

return null;
}

}

public class ExamplePullModule extends PullModule<String, String> {

@Override
public void execute(InputStaff<String>  inputStaff,

OutputStaff<String> outputStaff,
QueueLinkerService service)

{
InputQueue<String> input  = inputStaff.getDefaultInputQueue();
OutputQueue<String> output = outputStaff.getDefaultOutputQueue();

while (!service.stopRequested()) {
try {

String item = input.take();

/* Something to do and generate newStr */

output.put(newStr);
} catch (InterruptedException e) {}

}
}
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3.3. Data Parallel Execution 
This section describes how QueueLinker executes modules in a 

parallel-distributed way. Figure 3.5 shows an example consisting of three execution 
patterns for two modules, “Tweets Parse” and “Word Count”. A rectangle with a dashed 
line represents a computer and each rectangle represents a thread executing a module 
instance. The “Tweets Parse” module pares a tweet and outputs the extracted words 
from the tweet. The “Word Count” module counts the number of appearance of each 
word. 

In pattern (1) of the figure, only one instance is created for each module and a 
thread is assigned to the module. Thus, “Tweets Parse” and “Word Count” run on 
different threads. 

In the general producer–consumer model, an instance is executed by multiple 
threads. Thus, modules must be implemented for thread-safety by using concurrency 
control to avoid inconsistency. Concurrency control can be an especially difficult task, 
and even when it performed properly, the possibility of lock contention will increase 
with the number of threads executing the instance. To solve this problem, QueueLinker 

 

Figure 3.3  A Pseudo Code of a Source Module 
 

 
Figure 3.4  A Pseudo Code of a Sink Module 

public class ExampleSourceModule extends SourceModule<String>
{

@Override
public void execute(OutputStaff<String> staff, QueueLinkerService service)
{

OutputQueue<String> output = staff.getDefaultOutputQueue();

while (!service.stopRequested()) {
try {

output.put("Output Something");
} catch (InterruptedException e) {}

}
}

}

public class ExampleSinkModule extends SinkModule<String> {
@Override
public void execute(String input, int queueId) {

/* Something to do */
}

}
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uses data parallel execution with a hash partitioning technique to ensure that each 
instance of a module is executed by only one dedicated thread, allowing the programmer 
to implement modules without concurrency control. 

For example, in pattern (2) of the figure, a word is transferred to one of the two 
“Word Count” instances depending on the hash value. QueueLinker automatically 
transfers words that have the same hash value to the same instance. This mechanism 
eliminates the need for concurrency control of the module because each instance is 
executed by only one thread. Note that developers must specify modules to be executed 
by this mechanism when they define an application; QueueLinker cannot infer 
automatically which modules can be parallelized in this way. 

Modules executed in this way do not share their internal states with other 
modules and only communicate with other modules via queues. Thus, they can be run 
on any computer. Pattern (3) in the figure shows an example of parallel-distributed 
execution on three computers. QueueLinker automatically transfers items between 
modules, developers do not need to implement network communication procedures. 

 

 
Figure 3.5  Parallel Distributed Execution Model of QueueLinker 
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3.4. Application Definition Using a Logical Directed Graph 
A QueueLinker user can build an application by specifying connections between 

modules. The directed graph representing these connections is called a ‘logical directed 
graph’. Figure 3.6 shows a logical directed graph  for the proposed Web crawler 
described in Chapter 6. Each node  is indicated by a rectangle and represents a 
module; each edge is indicated by a line and represents a connection between two 
modules. A node in the graph is called a ‘logical vertex’ and an edge is called a ‘logical 
edge’. 

Users can specify the parallel execution mode of modules as well as connection 
settings. Figure 3.7 provides pseudo code describing a logical directed graph for the 
application shown in Figure 3.8. In the code, the execution mode of the ‘Word Count’ 
module is set to data parallel mode by hash partitioning the three instances. The 
function of the module is to count the number of appearances of each word in tweets. In 
this case, QueueLinker instantiates three instances on different threads and transfers 
each string output from the ‘Morph Analyzer’ module to the correct instance based on 
the hash value of the string. Note that the code does not specify data parallel mode for 
the ‘Morph Analyzer’ module. In this case, QueueLinker transfers each tweet to one of 
the two instances in round-robin fashion. 

 

 
Figure 3.6  An Example of a Logical Graph 
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As described above, when QueueLinker accepts module implementations and a 
logical directed graph, it realizes parallel distributed execution by automatically 
instantiating the modules on available computers and transferring data items between 
the modules. The programmer does not need to know whether transfers between 
modules require network communication. 

3.4.1. Switcher and Virtual Module 
QueueLinker provides a mechanism called a ‘switcher’ for choosing a destination 

module based on the result data a module produces. It also offers a mechanism called a 
‘virtual module’ that allows modules to be reused in different data flows. 

The logical directed graph in Figure 3.9 includes a switcher, indicated by a circle 
containing the number of destination modules. Figure 3.10 provides pseudo code for a 
switcher. Note that the switcher returns an integer specifying the destination module. 
QueueLinker will send an item to a module based on this number. For example, in 
Figure 3.9, an output of module A is sent to B if the switcher returns 0, or to C if the 

 

Figure 3.7  Pseudo Code Describing an Application 
 

Figure 3.8  Logical Directed Graph Described by the Code in Figure 3.7. 

LogicalGraph graph = new LogicalGraph();
LogicalVertex twitter       = graph.addLogicalVertex(TwitterDataSource.class);
LogicalVertex morphAnalyzer = graph.addLogicalVertex(MorphAnalyzer.class, 2);
LogicalVertex wordCount = graph.addLogicalVertex(WordCount.class, 3, PMode.Hash);
LogicalVertex ui = graph.addLogicalVertex(UI.class);

graph.addLogicalEdge(twitter,       morphAnalyzer);
graph.addLogicalEdge(morphAnalyzer, wordCount);
graph.addLogicalEdge(wordCount,     ui);

QueueLinkerClient client = QueueLinkerClientFactory.getClient();
QueueLinkerJob job = new QueueLinkerJob(graph);
JobHandle handle = client.startJob(job);
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switcher returns 1. Thus, the switcher provides control over data routing independent of 
module implementation. 

The logical directed graph also includes a virtual module, indicated by a 
rectangle with a dashed line. In the logical directed graph, outputs of module B are sent 
to virtual module A. The virtual module is executed using the same instance of module 
A shown at the far left of the figure, but outputs of the virtual module are sent to 
module D. Thus, the virtual module makes it possible to reuse a module in a different 
data flow. For example, the Web crawler described in Chapter 6 uses multiple switchers 
and virtual modules. The logical directed graph of the crawler is shown in Figure 3.6. 
Despite being simple mechanisms, the switcher and virtual module are indispensable 
for describing a complex logical directed graph efficiently. 

3.5. Software Architecture of QueueLinker 
This section provides an overview of the software architecture of QueueLinker. 

QueueLinker uses several software mechanisms to execute modules and control 
execution. 

 
Figure 3.9  A Virtual Module and a Switcher 

 

 

Figure 3.10  A Pseudo Code of a Switcher 
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public class SwitcherExample extends FlowSwitcherModule<String>
{
@Override
public int execute(String input) {
if (input.length() % 2 == 0)

return 0;
else

return 1;
}

}
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3.5.1. Push Thread Unit 
A push thread unit is designed to execute multiple push modules and sink 

modules as illustrated in Figure 3.11. The push thread unit has a “thread local 
scheduler” and a “thread local router” for handling multiple modules. An item to be 
processed by a module in a thread unit is put into the “thread input queue”. The thread 
unit fetches the item from the queue, and the thread local router, according to the 
logical directed graph, determines which module will process the item. It then sends the 
item to the input queue of that module. The thread local scheduler then chooses an 
executable module and executes it. When an item is produced from this module, the 
thread local router determines the destination of that item. If the destination module 
runs in data parallel mode, the local router calculates the hash value of the output item 
and transfers it to the appropriate thread unit. If the destination module is running in a 
thread unit on a remote computer, QueueLinker transfers the item to that computer, 
using a thread unit dedicated for network communication. 

A thread unit can ‘busy wait’ for items to arrive in the thread input queue, and 
the CPU core that a thread unit runs on can be controlled using system calls like 
sched_setaffinity on Linux. ‘Busy wait’ is important for achieving low latency 
execution of continuous queries (described in Chapter 4). In addition, a push thread unit 
has a mechanism for collecting statistics on operator execution, such as the number of 
input/output items to/from, and the total CPU time consumed by, each operator. Note 

 

 

Figure 3.11  A Push Thread Unit 
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that the scheduler and the router in a push thread unit are only used by that thread 
unit, and thus do not require any concurrency control. 

A number of optimizations should be considered for the thread local scheduler, 
since the strategy of the scheduler will affect the processing latency, throughput and 
memory consumption of applications. QueueLinker normally uses a FIFO scheduler, 
but other algorithms, such as Chain [8,31], can be substituted. 

3.5.2. Pull Thread Unit 
A pull thread unit executes only one pull or source module. It must execute that 

pull module on a single thread, since a pull thread unit may contain an infinite loop (as 
described in 3.2.2) and may therefore refuse to yield to other modules. Like the push 
thread unit, a pull thread unit has a thread local router to determine the transfer route 
of each result, but unlike the push thread unit, it does not have a local scheduler, since 
it does not execute multiple modules. Other mechanisms of the pull thread unit are 
nearly identical to those of the push module unit, and are therefore omitted. 

3.5.3. Master Server and Worker Server 
QueueLinker uses a master server to manage all computation nodes, or ‘worker 

severs’. It accepts job requests from clients and sends commands to the worker servers, 
which in turn manage thread units. QueueLinker uses ZooKeeper1 to communicate 
among master server, worker servers, and clients. 

Figure 3.12 shows a worker server and its constituent thread units. A worker 
server has a worker local scheduler that collects operator statistics from thread units, 
such as the number of input/output items to/from, and the total CPU time consumed by, 
each operator. The proposed method in Chapter 4 is implemented by using this 
mechanism. 

3.6. Continuous Query and QueueLinker 
The relational operators of a continuous query can be implemented as a push 

module, and a query plan can be described as a logical directed graph. In this way, 
QueueLinker allows us to execute a continuous query in a parallel-distributed 
environment. 

Recall that many data stream processing applications require extremely low 
latency. By assigning a dedicated push thread unit to each operator, QueueLinker 

                                                  
1 Apache ZooKeeper – Home, http://zookeeper.apache.org/ 
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achieves high parallelism. However, in this case, tuple transfer between the thread 
units adds latency to the query. By contrast, if a push thread unit executes too many 
operators, the thread unit may not be able to process all tuples and computation over 
load happens. The strategy of assigning operators to push thread units affects the 
latency of the query. 

A query also can be executed in a distributed environment using the data parallel 
model of QueueLinker. In the distributed query execution, transferring tuples between 
computers incurs latency by network communication. 

Thus, Chapters 4 and 5 propose a method for low latency execution of continuous 
queries using QueueLinker. Detailed in Chapter 4, this method attempts to reduce the 
frequency of communication between thread units, but it performs an operator 
reallocation when computational load changes. The method also uses a dynamic 
operator reallocation technique that does not require QueueLinker to stop stream 
processing during reallocation. In Chapter 5, a proposed backup method is shown to 
reduce latency by executing secondary processing on a set of alternative operator 
deployments, and generating query results from the tuples outputted fastest, either by 
primary or secondary deployments. 

3.7. Summary 
This chapter described the proposed QueueLinker framework. QueueLinker 

adopts a producer–consumer programming model, and accepts a Java module 
implementation along with a logical directed graph. Based on these, it automatically 
executes each module in the graph in parallel-distributed manner. Data generated by a 
module is automatically serialized and transferred to other modules across the 

 

Figure 3.12  Thread Units on a Worker Server 
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computational network, even if they are running on other computers. Programmers do 
not need to write multi-threaded programs or network communication procedures. 

The following chapters describe methods by which QueueLinker can be used to 
execute continuous queries efficiently. Chapter 4 presents a method for minimizing the 
processing latency of continuous queries. Chapter 5 presents a backup method that 
achieves low latency processing and handles computation node failures. Chapter 6 
presents a proposed Web crawler consisting of fine-grained QueueLinker modules. 
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Chapter 4. Low-Latency Continuous Query Processing 

on Multi-core CPU Environments 

The concept of a “continuous query” [14] has been studied in the field of database 
science since the early 2000s. A relational continuous query is usually described by an 
SQL-like language and compiled to a plan tree consisting of relational algebra operators. 
As each tuple arrives, it is pushed into a leaf of the plan tree and the result of the query 
is generated. 

As a relational operator can be implemented as a QueueLinker push module, and 
a plan tree can be described as a logical directed graph of QueueLinker, the proposed 
framework can execute a plan tree in parallel on a multi-core CPU. The parallel 
computation power of multi-core CPUs allows us to process data streams at high speed. 
Reducing latency is important for data stream applications, with several, such as 
algorithmic trading and network packet monitoring, requiring very-low-latency stream 
processing. For such applications, we must consider the assignment of relational 
operators to QueueLinker push thread units, because this affects the query latency. 

This chapter describes a proposed method for low-latency execution of continuous 
queries on multi-core environments. First, this chapter discusses the cause of 
processing latency in terms of the CPU architecture and thread context switch. 
Reducing the number of CPU cores used for processing and controlling the 
communication route between CPU cores are important factors in decreasing the 
latency derived from inter-core communication. This latency, along with the thread 
waiting overhead, becomes large if a thread executes only one operator. However, if a 
thread executes multiple operators, the throughput performance becomes limited. 

The proposed method gives a definition of the latency of data stream processing 
and a dynamic programming algorithm to determine the optimal CPU core assignment 
problem for relational operators. In addition, the proposed method includes a dynamic 
operator reallocation technique that does not require QueueLinker to stop stream 
processing during the reallocation. 

4.1. Background 
Examples of applications that are highly affected by latency are those involved in 

algorithmic trading. The Tokyo Stock Exchange, Inc. says their “arrownet” system, an 
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access network to the trading system, supplies data within 32 μs one-way1. Moreover, 
Wall Street algorithms will reportedly be uncompetitive if they experience a 5μs 
processing delay.2 Reducing latency provides advantages over other trading competitors, 
because if an order reaches the central trading server first, it will be processed prior to 
other companies’ orders. Nowadays, algorithmic trading is competitive to the order of 
microseconds. 

For such latency-aware applications, the system has to consider a delay of several 
microseconds when it assigns computational resources to the operators. In addition, 
multi-core CPUs are required to process high-speed data streams. However, existing 
research on data streams does not consider the processing latency in sufficient detail. 
Chain assumes a single-core CPU environment and cannot be applied to a parallel 
processing environment. In the multi-core CPU environment, the latency of inter-core 
communication and the overhead of thread contexts must be considered. 

4.2. Causes of Processing Latency 
This section describes the causes of processing latency from the viewpoint of 

inter-core communication and thread-waiting techniques for tuple arrival. This section 
gives an experimental evaluation to validate the discussion. 

4.2.1. Latency Derived from Inter-Core Latency 
The ccNUMA (cache-coherent Non-Uniform Memory Access) architecture is now 

common in multi-processer environments. Figure 4.1 shows the architecture diagram of 
the Intel Xeon 7500 Series3. A CPU has 8 cores, and HT (Hyper-Threading) provides 16 
logical cores. Each CPU core has a 1st and a 2nd level cache. The CPU cores in a CPU 
package share a 3rd level cache with a capacity of 24 MB. Different CPUs are connected 
by QPI (QuickPath Interconnect). Therefore, the latency of communication within the 
3rd level cache is less than that required for QPI communication. 

Unless there is a risk of an overload, the number of CPU cores used for processing 
should be reduced to decrease the latency of inter-core communication. For example, 
Figure 4.2 shows an example in which a thread executes only one operator. If each 
thread can run on a dedicated CPU core, this execution receives the maximum benefit 
from pipeline processing and can process high-speed data streams. However, this 

                                                  
1 TSE: arrownet, http://www.tse.or.jp/english/system/networkservices/arrownet.html 
2 K. Slavin, “How algorithms shape our world,” 
http://www.ted.com/talks/lang/en/kevin_slavin_how_algorithms_shape_our_world.html 
3 Intel Xeon Processor 7500 Series, Datasheet, Volume 2: http://www.intel.com/Assets/PDF/datash
eet/323341.pdf 
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approach requires a large amount of inter-core communication, which increases the 
latency. On the other hand, Figure 4.3 shows an example in which a thread executes 
multiple operators. This execution can reduce the amount of inter-core communication, 
decreasing the latency. However, if the input stream rate becomes large and an overload 
occurs, the thread cannot keep up with the newly arriving tuples. Having multiple 
tuples waiting to be processed causes considerable latency. This is a trade-off, so the 
proposed method attempts to minimize the communication latency, except in the case of 
an overload. 

4.2.2. Latency Derived from Thread Waiting 
In addition to inter-core communication, the thread-waiting method dramatically 

affects the latency. As an example, consider 100,000 tuples arriving at equally spaced 
intervals. In this case, the tuples arrive every 10 μs. A 2 GHz CPU runs 20,000 clock 
cycles during the 10 μs interval. If each tuple is processed before the next tuple arrives, 
the processing thread has to wait for the arrival of the next tuple. 

There are two methods of waiting for the arrival of tuples. The first puts the 
thread to sleep, and the second uses a “busy wait” with an infinite loop. In the sleeping 
method, the thread requires a system call in order to awake when a new tuple arrives. 
The benefit of this method is that it saves CPU time. However, the overhead of waking 
the thread becomes large, because the thread needs the help of the operating system to 
change from the sleep state. 

On the other hand, the busy wait method does not rely on the operating system, 

 
Figure 4.1  Architecture Diagram of Intel Xeon 7500 Series 
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and uses an infinite loop to await a new tuple. This method can reduce the latency, 
because there is no thread waking overhead1. However, CPU time and power are both 
consumed. The system administrator must determine the waiting method depending on 
the system requirements. The cache coherence protocol means that the busy wait does 
not consume the CPU bus while the read memory region is not being modified. 
Therefore, the busy wait does not affect other procedures running on other CPU cores if 
it is carefully implemented to only read from memory. 

4.2.3. Experimental Validation 
An experiment was carried out on a real computer, as described in Table 4.1, in 

order to validate the discussion in this section. In this experiment, 12 operators are 
connected to one another. Each operator executes 10 simple multiplication and addition 
calculations. Thus, the operators execute a total of 120 calculations for each tuple. The 
operators are assigned to thread units as shown in Figure 4.2 or Figure 4.3. Thus, the 
number of operators assigned to a thread unit was changed during the experiment. The 
latency of processing is the interval between the Data Source generating a tuple and the 
tuple arriving at the Sink. The Data Source generated 100,000 tuples per second, and 
sent a tuple to Thread Unit 1 every 10 μs. The tuples pass through the operators and 
then arrive at the Sink. Considering the CPU speed and the stream speed, each thread 

                                                  
1 Note that even if the system uses the busy wait method, it can be interrupted and other applications 
may run on the CPU. This situation is not considered in this chapter. 

 
Figure 4.2  Thread Unit Executing Only One Operator 

 

 
Figure 4.3  Thread Unit Executing Multiple Operators 
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unit is able to process a tuple before the next one arrives. Hence, there is a large amount 
of thread waiting. 

Each thread unit uses LinkedBlockingQueue in java.util.concurrent as a FIFO 
queue for the inter-thread communication. The poll() method of LinkedBlockingQueue 
is used to perform a busy loop and the take() method is used to perform thread sleeping. 
The poll() method first checks the queue size, returning “null” if the queue is empty. 
Thus, it only causes a read operation, and this is important for implementing the busy 
loop without generating side-effects for the other CPU cores. Unfortunately, the 
operating system cannot assign appropriate CPU cores to the thread units. This is 
because the operating system does not have information about the connection between 
operators. To fix the CPU core on which each thread unit runs, the experiment calls 
sched_setaffinity, a Linux system call, through JNI (Java Native Interface). 

Figure 4.4 shows the experimental evaluation. “Non-Fixed” means that CPU core 
assignment is completely controlled by the operating system. “Fixed” means that all 
threads, including the Data Source and Sink, run on the same CPU, and the CPU core 
on which each thread runs is controlled using sched_setaffinity. When fewer than six 
thread units are used in the experiment, each core runs only one thread. When twelve 
thread units are used in the experiment, each core runs two thread units with the help 
of HT. Note that the Data Source and Sink run on dedicated CPU cores throughout all of 
the experiments. 

From Figure 4.4, we can see that the busy wait method and fixing CPU cores is 
the best way to stably reduce the latency. In the “Non Fixed” case with 12 thread units, 
the input tuples could not be processed, leading to an overflow. This result shows that 
the CPU cores on which thread units run should be fixed, even if the system cannot 
apply the busy wait method because of its power and resource consumption. 
Additionally, we can see that the latency increased with the number of threads used for 
processing. Therefore, for the same amount of processing, it is better to use the 
minimum number of threads in order to reduce the total processing latency. However, if 

Table 4.1  Experimental Environment 

CPU 
4 Intel Xeon L7555 Processors 

(Total 32 Physical Cores and 64 Logical Cores) 
Memory 512 GB 

OS 
CeontOS 5.5 

(Linux Kernel: 2.6.18-238.19.1.el5) 
Runtime Java 1.6.0 
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the system uses too few threads, the data stream cannot be processed quickly enough. 
This means that tuples have to wait to be processed, which increases the latency 
dramatically and causes processing delays. Considering this trade-off, the proposed 
method attempts to minimize the number of CPU cores used, except when a processing 
overload occurs. 

4.3. Latency Definition for a Continuous Query and 
Average Latency Minimization Problem 
This section defines the latency of a continuous query and states the average 

latency minimization problem. This section only discusses an assignment method for 
CPU cores on a single CPU and communication inside the CPU. An assignment method 
for multiple CPUs, which causes communication over QPI, is beyond the scope of this 
thesis. In addition, the proposed method assumes the number of CPU cores in a CPU is 
sufficient that all operators can be assigned without a processing delay. The proposed 
minimization problem is an extended version of the “Average Path Length Minimization” 
described by Diwan et al. [44]. The paper considers how to minimize the number of disk 
I/Os when storing a tree structure on a secondary storage, which is different from the 
purpose of this thesis. 

 

 
Figure 4.4  Experimental Validation of Processing Latency 
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4.3.1. Latency Definition and Problem Definition 
A relational continuous query is represented by a plan tree . A node 

 represents a relational operator, and an edge  represents a connection 
between two operators. Each operator has at least one input edge and only one output 
edge. An operator  processes a tuple using processor resource , and then outputs a 
tuple or a tuple set with probability , which is equivalent to the selectivity of the 
relational operator . A plan tree  has an input operator set  that includes at least 
one input operator and only one output operator . An input operator accepts tuples 
from a data source in the data source set . An output operator generates result tuples 
for the query. 

For a given CPU core set , consider a CPU core assignment strategy  
that determines “which operator is executed on which CPU core .” Let  be the 
processing power of a CPU core per unit of time. Let  be the number of tuples 
processed by an operator  per unit time. We get 

 

as a necessary and sufficient condition between the number of tuples that a CPU core 
processes per unit time and the processing power of the CPU core. In addition, assume 
that sending a tuple from a CPU core to another core causes latency . The proposed 
method assumes that the CPU has a sufficient number of cores. Thus, communication 
via QPI does not occur. The method does not deploy an operator to multiple CPU cores, 
which means the method does not use data parallel computation techniques of 
QueueLinker. 

The latency of an output tuple can now be defined. Let  be the time at 
which the input tuple  from data source  arrives at an input operator. Let 

 be the time at which the output operator generates an output tuple . Let  
be a set of input tuples that contribute to the generation of the output tuple . Let  
be the latency of the output tuple , described as 

 . (1)  
Formula (1) describes the time difference between an input tuple arriving at an 

input operator and an output tuple being generated from the output operator. In other 
words, it gives the response time following the point at which all the data required to 
produce the result tuple has arrived. Thus, smaller values of (1) imply a better latency 
performance, all else being equal. 

Consider the path that an input tuple passes through after arriving at the input 
operator  until it is outputted from the output operator . There is only one such 
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path if the plan is a tree. Thus, the path can be described as 
. Let us assume that each operator can begin processing a tuple 

immediately upon arrival, and that no interruptions occur during the processing. In 
addition, operators that have two or more input queues process the tuples 
independently, and the operator does not wait for the different queues. Let  be 
the latency of a tuple going through a path , described as 
 

  (2)  

 
Let  be the probability that an output tuple is generated through path 

 after a tuple arrives at an input operator . The probability is expressed as the 
product of the selectivities of the operators on the path: 
 

 

 
Let  be the ratio of tuples arriving at  to all input tuples. We can obtain 

the average latency of a query  as 
 
 

  (3)  

 
For example, the average latency of the plan tree in Figure 4.5 can be calculated 

as 
. The problem can now be stated using the above definitions. 

 
CPU Core Assignment Problem with Minimization of Average Latency 

Find an optimal CPU core assignment strategy  that minimizes the average 
latency  subject to . There are enough CPU cores to 
assign all operators. 
 
Theorem 

The “CPU Core Assignment Problem with Minimization of Average Latency” is 
an NP-hard problem. 
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Proof 

Consider the knapsack problem of capacity . There are  items, the sizes of 
which are given by  and the values of which are given by 

. Consider a plan tree that has  input operators 
, and an output operator . The processing power of a CPU core is 

C (Figure 4.6). Now, consider the solution of the core assignment problem with 
. Input operators assigned to the same core as the output operator 

obviously give the solution to the knapsack problem. Therefore, the problem is NP-hard, 

 

 
Figure 4.5  Calculation Example of Average Latency 
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because it can be transformed into a reduction of the knapsack problem, which is known 
to be an NP-hard problem.  
 

Note that “Average Path Length Minimization” [44], which finds a mapping 
between nodes of a tree structure and disk pages while minimizing the average number 
of disk seeks, is equivalent to a core assignment problem if  
and . 

4.3.2. A Solution using Dynamic Programming 
We can minimize (3) by minimizing the first term of (2). The proposed method 

finds the optimal solution  by modifying the dynamic programming solution of 
“Average Path Length Minimization” [44] to consider the case that 

. 
Consider  operators  that send tuples to an operator . and  

sub-trees, the roots of which are . Consider operators that are 
assigned to the same CPU core as  and in the same sub-trees. Assuming  is an 
output operator, let  be the minimal average latency when the total resource 
consumption of the operators is exactly equal to  (Figure 4.7). To simplify, the 
description below uses , . Let  be the ratio 
of the number of output tuples from  to the number of output tuples from . This 
value can be calculated recursively by  for non-input operators 

. The initial values for input operators , are 

 
 
For non-input operators , 

 
 

which defines the values recursively as below. 
 

 
 

We can obtain the minimal average latency  of  as 
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  (4) 

 
If  and  are handled by integers, the time complexity is  and the 

space complexity is , where  is the number of operators. As usual in dynamic 
programming methods, the optimal CPU core assignment  can be recovered by 
tracking back the calculations. This method finds an optimal static CPU core 
assignment. The next section discusses dynamic operator reassignment to respond to 

 

 

Figure 4.6  Reduction from the Knapsack Problem 
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changes in the computational load. 

4.4. Dynamic Operator Reassignment and Statistics Collection 
This section describes the proposed method of operator reassignment, and also 

discusses how to collect statistics regarding the computational load of the operators. 
Although the proposed method in Section 4.3.2 gives a static optimal solution, the 
computational loads of the operators change depending on both the content and arrival 
speed of data streams. Therefore, CPU cores should be reassigned to respond to these 
changes. However, operators that have internal states, such as join operators, have to 
process tuples in order of arrival. Therefore, it is necessary to migrate operators among 
thread units with low overhead to reduce the processing latency. 

4.4.1. Thread Units and the Collection of Statistics 
The proposed method assigns only one push thread unit (TU in this section) of 

QueueLinker to a CPU core. A TU has only one FIFO queue, and communication 
between TUs is conducted by messages placed in the queue. A TU runs on a dedicated 
CPU core, and thus communication between the queues is completed inside a CPU. TUs 
should adopt the busy wait while waiting for a new message, though the method 
described below is independent of the waiting methodology. 

In addition to the given operators, a scheduler is run on a dedicated CPU core 
using the method described in Section 4.3.2. For each operator, the TU records the total 
CPU time consumed, the total number of input tuples, and the total number of output 
tuples. TUs update these statistics after processing a tuple1. The selectivity of an 
operator can be calculated by dividing the number of output tuples by the number of 
input tuples. Each TU sends the collected statistics to the scheduler at regular intervals. 
The interval should not be smaller than the time needed to solve the dynamic 
programming described in Section 4.3.2. Therefore, the overhead associated with 
sending statistics to the scheduler is not large, because the interval is long enough 
compared to the tuple arrival interval. The calculation time under dynamic 
programming is shown in Section 4.5.1. Depending on the statistics, the scheduler finds 
the core assignment by the method described in Section 4.3.2. When operator 
reassignment is required, the scheduler requests TUs to reorganize the CPU core 
assignment. Note that, at the beginning of the query execution, the scheduler assigns 
enough CPU cores to operators because it does not know any of the operator statistics. 
                                                  
1 rdtsc instruction can be used to get the current CPU clock count with a low overhead. The total CPU 
time consumed can be calculated from the time before and after an operator execution. 
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After the scheduler collects a sufficient amount of statistics, it reassigns the cores. 

4.4.2. Operator Reassignment Procedure 
Relational operators usually have to process tuples in order of arrival, because 

processing tuples in a different order gives a different result. The proposed method 
restricts the direction of operator migration and realizes low-overhead operator 
reassignment without suspension of stream processing. 

Consider the case of an operator  running on TU1 being migrated to TU2, as in 
Figure 4.8. The FIFO queue of TU2 has tuples generated by , and the tuples are 
waiting to be processed by operator . In the proposed method, TU1 adds a migration 
instruction message to the TU2 queue in order to migrate operator . This ensures that 
the tuples, which are put in the TU2 queue before the migration message for operator  
arrives, have already been processed by operator , because the queue is 
first-in-first-out. This also ensures that tuples arriving after the message are not 
processed by operator . 

On the other hand, if the system moves operator  from TU2 to TU1, there is no 
such guarantee. In this case, the queue must be locked to prevent further tuples from 
arriving, and then operator  must be applied to all tuples in the TU2 queue. This 
causes a high overhead concurrency control and increases the processing latency. Thus, 
the proposed method restricts the direction of operator migration to the same as the 

 

 
Figure 4.8  Operator Movement Operation 
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data transfer to avoid such high overhead controls. Note that the internal state of an 
operator can be seen from the TU that the operator moved to, because the system runs 
on a shared memory computer. 

The next consideration is how to maintain one-hop communication, as in the 
model described in Section 4.3, while ensuring that the tuples are processed in order of 
arrival. Consider the migration of operator  to TU3 from state (1) in Figure 4.9. To 
maintain one hop communication, TU1 must send the result tuples of  directly to TU3. 
When TU1 changes the destination of tuples, the FIFO queue of TU2 contains tuples 
from , and thus TU2 has to send them to TU3, as shown in state (2) in the figure. In 
this case, TU3 may accept the tuples without preservation of tuple arrival order, 
because it accepts them from both TU1 and TU2. Therefore, TU3 has to sort them 
according to the tuple IDs and then apply  to the tuples. Note that TU2 does not have 
to do anything when TU1 sends a migration message for  to the TU2 queue in the 

 

 
Figure 4.9  Operator Movement Operation with Tuple Transfer 
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situation of (2) or (3’) in Figure 4.9. This is because it is guaranteed that TU2 has 
finished transferring the tuples when TU2 recognizes the migration message. 

Figure 4.9 (3’’) shows the state after operator  has moved to TU3 from state (2). 
In this case, the tuples generated by  remain in the TU2 queue. Therefore, even if 
TU3 processes the input tuples for , and  generates new tuples,  must not process 
the new tuples. Operator  has to wait until the transfer from TU2 finishes, and then 
process the transferred tuples prior to the tuples that  generated in TU3. 

The above description can be applied to a plan tree to give the state transition 
diagram shown in Figure 4.10. This state transition defines the state of an edge from 
operator src to operator dest. Each TU manages a state for each edge. NONE is the 
initial state in which TUs execute neither src nor dest. SORT is the state in which the 
TU starts to execute dest and has to sort the input tuples. After the sorting finishes, the 
state is changed to RECV. Migrating src to the TU changes the state from RECV to 
RUN, whereby the TU executes both the src and dest operators. After this, migration of 
the dest operator to other TUs changes the state to SEND, whereby the TU has to 
transfer the tuples generated by src to the TU to which the dest operator moved. In 

 

 
Figure 4.10  State Transition Diagram 
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addition to these states, TRANSFER corresponds to TU2 transferring the tuples as 
shown in Figure 4.9 (2), (3’), and (3’’). RUN_WAIT corresponds to TU3 in Figure 4.9 (3’’). 
In this case, the TU waits until the transfer has completed. 

As described above, restricting the direction of operator migration allows us to 
realize operator migration and communication route changes without concurrency 
control. 

4.5. Performance Evaluation 
This section presents a performance evaluation of the proposed method. The 

experimental environment is given in Table 4.1. 

4.5.1. Computation Time of the Dynamic Programming 
This subsection confirms the computation time of the dynamic programming 

method described in Section 4.3.2. Figure 4.11 shows the time taken to find an optimal 
solution under dynamic programming. From the figure, we can see that the 
computation time increases linearly with the number of operators. The algorithm took 
about 3 ms to calculate the solution for a plan tree consisting of 100 operators, which 

 

 
Figure 4.11  Scheduling Time and the Number of Operators 
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means that the scheduler can re-calculate the solution over 300 times a second. The 
graph provides a guideline to determine the time interval for sending statistics from 
thread units to the scheduler. Operator reassignment takes place after the scheduler 
finds an optimal solution. Therefore, the time interval of sending statistics to the 
scheduler can be determined from Figure 4.11. 

4.5.2. Experiment for a Query Plan Tree 
The next experiment used a plan tree consisting of relational operators. Figure 

4.12 shows the plan tree used in this experiment. The query received input tuples from 
eight data sources and outputted join results. The window size of the join operators was 
10 s. A tuple from a data source was composed of four integers with attribute names A, 
B, C, and D. Four data sources supplied 5,000 tuples per second and the other four 
sources supplied 1,250 tuples per second. In the experiment, the latency was measured 
under a change of input speed every 5 s between patterns A and B, as shown in Figure 
4.12. This figure also shows an optimal CPU core assignment for pattern A. The 
experiment compared the proposed method of changing the assignment dynamically 
depending on the pattern with the optimal core assignment for pattern A and no change 

 

 
Figure 4.12  Query Plan Tree and CPU Core Mapping For Pattern A 
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of assignment. The thread units used the busy wait method. The experiment used 
pattern A from 5 s to 10 s, and then changed between patterns A and B every 5 s. 

Figure 4.13 shows the results of the experiment, where the average latency is 
taken over 100 ms. The figure omits results from before 10 s because the window of the 
join operators is not filled during this time. ‘Static’ denotes a static method that did not 
change the optimal core assignment for pattern A, resulting in increased latency when 
the stream speed changed to pattern B. The figure shows that the proposed method 
maintained a similar latency after the stream speed change because it changed the core 
assignment. For example, we can see the benefits of the proposed method from 10–15 s, 
20–25 s, and 30–35 s. The reassignment of cores after the stream speed changed caused 
the temporary latency increase shown in Figure 4.13. However, the increased latency 
did not exceed that of the static method, demonstrating that the proposed method can 
reassign CPU cores with low overhead. Note that the increased latency of the proposed 
method around 10 s was caused by the Java JIT compiler, because the Java runtime 
performed the JIT compilation the first time cores were reassigned. 

 

 
Figure 4.13  Experimental Result of Average Latency 
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4.6. Discussion of Applicable Conditions for the Proposed 
Method 
This section discusses the conditions necessary for the proposed method to 

achieve the maximum benefit. The effectiveness of the proposed method is determined 
by the relationship between operator computation time and the communication latency. 
For a given plan tree, consider the worst-case CPU core assignment, whose 
communication latency is the largest possible. Obviously, the worst case is the 
assignment in which every CPU executes only one operator. The average latency 

 of the worst case is 

 

If we use 

 

to simplify, the ratio  of the optimal value  given by the proposed method to 
the worst case is 

 
 can be considered as the performance ratio of the proposed method to the worst 

case. Formula (5) is an optimistic estimation of , and gives the highest performance 
improvement of the proposed method when it can reduce all communication latencies. 
The formula represents the contribution of the method as the sum of operator 
computation time  and inter-core communication latency . The smaller is , the 
greater the ratio of communication latency to query latency , providing more 
benefits from reducing the communication latency by the proposed method. 

The next consideration is the cost of reassignment. The computation time of the 
dynamic programming gives a suggestion of the cost. The proposed method finds an 
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optimal solution using a dynamic programming method depending on the input stream 
speed and the CPU consumption of operators, reassigning operators when the optimal 
assignment changes. Figure 4.11 shows that the computation time of the dynamic 
programming increases linearly with the number of operators. Therefore, if the 
scheduler manages a large number of operators, the computation time becomes long 
and the scheduler cannot reassign CPU cores to respond to changes in computational 
load. This is a weakness of the proposed method, as it is unavoidable in finding a 
solution. Thus, to use the method most efficiently, the computation time of the dynamic 
programming must be shorter than the intervals at which reassignment is required. 

The optimization target of the method is a plan tree consisting of relational 
operators that process a tuple in memory over a short time period. The purpose of the 
method is to reduce the inter-core communication latency , which is usually a small 
value of the order of several microseconds. Therefore, it is not clear whether the method 
can produce positive effects for a plan tree including relational operators, such as 
selection or join, that may have a small . 

The experimental evaluation showed that the method produces positive effects in 
terms of reducing the communication latency when selection operators and join 
operators are used in a plan tree. Moreover, the comparison in Figure 4.13 is an optimal 
assignment for pattern A. This is a more severe condition than the worst assignment 
where a CPU core executes only one operator, which is used to give the optimistic 
estimation of formula (5). Under this severe condition, the method can reduce the 
latency from 10 s to 8 s, as shown in Figure 4.13. 

The effectiveness of the proposed method is determined by the calculation 
interval of the dynamic programming, the timing of operator reassignment, and the 
number of operators that must migrate. However, the degree to which these aspects 
affect performance is still an open question. The main contribution of this chapter is to 
show the possibility of reducing communication latency by operator reassignment, an 
approach that has not been considered in previous research in the field of continuous 
queries. 

4.7. Summary and Future Work from this Chapter 
This chapter detailed a low-latency execution method for continuous queries on a 

multi-core CPU. A definition of the latency of continuous queries was given. The 
proposed dynamic programming algorithm gives an optimal CPU core assignment for 
the relational operators of a plan tree. This method includes a dynamic operator 
reallocation technique that does not require stream processing to be interrupted during 
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the reallocation. 
There are many areas of future work, including an evaluation of the frequently 

changing arrival rate of streams and communication over QPI, which is required when 
operators are assigned to multiple CPUs. Communication over QPI makes the problem 
difficult, because the latency is different from the inter-core communication latency  
and the system has to handle the two different latency values. Another area of work 
involves considering future computer environments in which a few hundred or thousand 
CPU cores are available. In such an environment, each CPU core may have to adjust its 
assignment without a centralized scheduler, which cannot handle the statistics from so 
many cores. In addition, the arrival of data over networks should be considered when 
applying the method to an actual system. Data can be sent to other computers in several 
microseconds using InfiniBand’s RDMA (Remote Direct Memory Access). The proposed 
method should work well under such a low-latency network environment. 
 
 
 





53 
 

Chapter 5. A Backup Method for Reducing Latency of a 

Continuous Query 

High-speed data streams and/or queries that consume large amounts of memory 
represent significant opportunities for distributed processing. To seize this opportunity, 
QueueLinker can be used to run continuous queries on commodity clusters, executing 
the operators of those queries in a data parallel model. As described in previous 
chapters, there are a number of applications that require low latency query processing. 

In the distributed processing of a continuous query, the deployment of operators 
to computation nodes introduces a certain amount of latency. While increasing the 
number of computation nodes can improve processing throughput, it will increase query 
latency due to the greater amount of network communications between operators 
running on different nodes. By the same token, while reducing the number of 
computation nodes can reduce query latency, it can decrease processing throughput. 
Migration of operators is required when the computational load is heavy, or when 
sudden variations in stream speed occur. 

The method introduced in this chapter is based on the notion that a stream 
processing system has to make backups of operators. The proposed backup method is 
called “Chase Execution”, and it ensures that the internal states of all operators must 
be replicated to multiple computers in order to cope with computation node failures. 
Under Chase Execution, the secondary query execution uses a different set of operator 
deployments than the primary execution, and results are generated from the fastest 
tuples output by both deployments. This helps reduce overall processing latency and 
handle changes in the speed of incoming data streams. Experimental results show that 
the chase execution method can achieve a lower latency than deployments that do not 
perform backup. 

5.1. Background and Example 
In this chapter, an IPS (Intrusion Prevention System) is combined with a DSMS 

to form an example application. IPS protects networks from malicious activities by 
dropping malicious packets. As shown in Figure 5.1, the DSMS monitors packet headers 
and lets the IPS determine whether each packet should be allowed for transmitting. The 
IPS makes this determination based on complicated analytic queries rather than simple 
pattern matching techniques. 
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When a DSMS is used with an IPS in this way, it must balance the following 
priorities: 
 

 Reducing the latency of a query 
 Responding to changes in the rate of incoming data 
 Handling computation node failures 

 
The DSMS ought to process packets with the lowest possible latency. Note that if 

packets are sent under the TCP protocol, the packet sender must wait for an ‘ack’ 
(acknowledgment) signal to return from the receiver if the TCP window size is full. Thus, 
throughput will be degraded if the packet round trip time becomes large. The DSMS 
must respond to changes in the rate of incoming packets while maintaining low latency, 
and it must be able to handle computation node failures. If the DSMS fails, the IPS 
cannot process incoming packets, and the network as a whole will fail as a result. 

This chapter will consider operator deployments for the following simple analytic 
query of a packet monitoring system: 
 

Example Query: 
For each arriving packet, calculate (count(srcIP), count(destIP)) for the 

last 3 minutes of activity. 
 

Each packet carries a ‘Source Address’ (srcIP) field and a ‘Destination Address’ 
(destIP) field in its header. On packet arrival, the above query calculates the total 
number of appearances of the ‘Source Address’ and the ‘Destination Address’ in all 
packets arriving over the previous 3 minutes. This query can be executed by two 
grouping operators. A grouping operator maintains the number of appearances of each 

 

 
Figure 5.1  Conceptual Diagram of an IPS with a DSMS 
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IP address using a hash table or some similar data structure. More formally, let  
be an operator to count the appearance of each srcIP and let  be an operator to 
count the appearance of each destIP. 

The following section addresses operator assignment to available computation 
nodes. The latency of the above query and its responsiveness to fluctuations in incoming 
data rates will be determined by this assignment. 

5.1.1. Operator Deployment Strategy and Latency 
Figure 5.2 shows two examples of operator deployment for the operators  

and . The top of the figure shows a deployment that executes the query using only 
one computer (Node A). In this deployment, the output tuple incurs no network latency 
because no network communication is required. However, the length of the input queue 
will grow if the arrival rate exceeds the processing rate of Node A, resulting in increased 
latency. If queue growth persists, Load Shedding [19], which discards tuples or 
sacrifices the accuracy of the computation, must be employed to prevent network 
failure. 

By contrast, the bottom of the Figure 5.2 shows a deployment that executes the 
query through data parallel processing, using hash partitioning between two 
computation nodes (Node A and B). The system determines to which of the two nodes an 
input tuple should be routed, depending on the hash value of srcIP. After the receiving 

 

 
Figure 5.2  Deployment Examples for Operators in the Example Query 
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node applies  to the tuple, it forwards it to the next computation node depending 
on the hash value of its destIP. Assuming a uniform distribution of srcIPs and destIPs, 
Node A and B will process the same number of tuples, and transfer half of those tuples 
to one another, between the  and  operations. If the system uses more 
computation nodes, the processing load per node decreases, but the number of tuples 
transferred between nodes increases. In either case, new latency is introduced. 

Under the above scenario, the best way to maintain low latency is to use one 
computation node when the data arrival rate is low and multiple nodes when the arrival 
rate is high. So long as the arrival rate is not too volatile, adjusting the number of 
computation nodes in this way should help the system execute the query with 
consistently lower latency. Note, however, that the internal states of operators  
and  must also be transferred when the number of computation nodes is adjusted. 
If the data arrival rate changes very sharply, there may be insufficient time to transfer 
internal state without creating new latency. 

5.1.2. Operator Backup 
The technique of Operator Backup provides a means of handling computation 

node failures. Under this technique, only those operators with internal state are 
replicated, as stateless operators (e.g. those that perform selections) can be redeployed 
and restarted at any time. In the scenario above, the  and  operators would 
be replicated (“backed up”) to prevent loss of that state when a computation node fails. 

Active Standby [45] is a previously proposed method of achieving high 
availability for DSMSs. Figure 5.3 shows how Active Standby can be applied to the 
deployment depicted at the top of Figure 5.2. Replicated data is sent to secondary 
processing, but the results of this processing only sent back to the application if the 
primary node fails. Note that this does not, in itself, reduce the latency described in 
5.1.1, since primary and secondary processing must still be configured with the same 
deployment. Further, note that Active Standby requires twice the number of 
computation nodes for stateful operations. For example, four computation nodes will be 
required for the deployment depicted at the bottom of the Figure 5.2. 

5.1.3. The Purpose of the Proposed Method 
Chiefly, DSMSs need to reduce latency in response to changes in data arrival rate, 

and thereby preserve high availability. Many applications can be seriously affected by 
latency, even on the order of several milliseconds, and in the case of IPS applications, 
security precludes use of Load Shedding because all packets must be examined. 
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Using Chase Execution allows a query to be executed on a set of alternative 
operator deployments and to get results based on the fastest tuple outputs from the 
deployments. The proposed method simultaneously tries to reduce processing latency, 
handle node failures, and respond to changes in the speed of a data stream. 

5.2. Proposed Method: Chase Execution 
This section describes Chase Execution, the proposed backup method. Under 

Chase Execution, a query is executed by a set of alternative operator deployments and 
the results of the query are generated from the fastest tuples output by the deployments. 
Alternative query deployments are called “chasers”. Arriving tuples of data are 
duplicated and send to these chasers for processing. 

Figure 5.4 shows the deployment of the example query using Chase Execution. 
While Chaser 1, consisting of Node A, executes the query, Chaser 2, consisting of Nodes 
B, C and D will also execute the query. As described in 5.1.1, Chaser 1 can produce the 
results faster than Chaser 2 as it will require no network communication between the 

 and  operators. Meanwhile, Chaser 2 uses three computation nodes and 
network communication between the operators, increasing latency. Only if the data 
arrival rate becomes too large and Chaser 1 cannot process the data due to the shortage 
of computational resources, will Chaser 2 produce the results faster than Chaser 1. 
When the data arrival rate goes back down, Chaser 1 will again produce the results 
faster than Chaser 2. 

For robustness, Chase Execution always organizes alternative chasers using 
different numbers of computation nodes. The Chase Operator (Figure 5.5) produces the 
results of the query from the fastest tuples output by the chasers. Even if a node failure 

 

 
Figure 5.3  An Example of Active Standby for the Example Query 
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occurs in a chaser, it maintains other chaser(s) consisting of normal status nodes and 
can achieve high availability by using tuples from the normal status chaser(s). Previous 
methods for DSMS, such as Active Standby and hot standby (for duplex systems), 
construct secondary processing with the same deployment as primary processing, and 
do not use the secondary under normal conditions. This is in contrast to Chase 
Execution, which uses multiple chasers even under normal (i.e. non-failure) conditions. 

5.2.1. Chase Operator 
Figure 5.4 shows a Chase Operator that generates results for a query by 

consuming the earliest tuples output by multiple chasers. A tuple with a duplicate ID 
that arrives later is discarded. For Chase Operator to work correctly, each tuple must 
have a tuple ID representing its ascending order of arrival. In addition, output tuples of 
operators must hold the same tuple IDs as input tuples. Some operators may produce a 
single tuple based on multiple input tuples. In such a case, the latest tuple ID among 
the input tuples consumed by the operator is used as the ID of the output tuple. 

Pseudo-code for the Chase Operator is given in Figure 5.5. Note that the 
procedure does not depend on the number of chasers and has a single input queue . 

 denotes a function that returns the tuple ID of a tuple . From a chaser running 
with multiple computers, such as Chaser 2 in Figure 5.4, tuples may not arrive in 
ascending order of their IDs. To address this, the Chase Operator detects and discards 

 

 
Figure 5.4  Chase Execution of the Example Query 
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redundant tuples using a variable  to hold the smallest tuple ID among the tuples 
that have not yet arrived at the Chase Operator, as well as a set  to hold the IDs that 
have arrived too early. As long as the processing proceeds normally in at least one of the 
chasers, the size of  will not continue to grow even when processing delays arise 
among the chasers, since the members of  that are no longer needed will be discarded. 

The tuples that are output by the Chase Operator are a mixture of outputs from 
multiple chasers. Thus, there is a possibility that the result will be different from that 
output by a single computation node. For instance, a join operator, which has two or 
more input queues and a window to delimit the data stream, may produce different 
results depending on the order of acquisition from the multiple input queues. Results 
will also differ if an operator uses a non-deterministic algorithm. 

Thus, applications using a Chase Operator must tolerate mixed tuples and 
unguaranteed ordering. For applications that need guaranteed ordering, such as those 
involving event processing, the Chase Operator must use a buffer to arrange tuples in 

 

 

Figure 5.5  Pseudo Code for Chase Operator 
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the proper order. Note that an IPS, as discussed earlier, can tolerate mixed ordering 
because it only needs to determine whether packet should be permitted. Thus, a 
reordering buffer is not used in the experimentation in this chapter. 

5.2.2. Handling a Node Failure 
In the proposed method, even if a computational node fails, the system can 

continue processing so long as there is more than one normal chaser with sufficient 
computational resources. When such a failure occurs, the chaser with the failed 
computational node will not function anymore and must be recovered. Operator 
recovery can be achieved using general methods such as internal state transfer and 
check pointing, and is beyond the scope of this thesis. 

5.3. Performance Evaluation 
This section presents a performance evaluation of the proposed method using 

QueueLinker. Though the evaluation experiment is run against data constructed 
specifically to test packet monitoring, the results are expected to generalize to all kinds 
of stream processing applications. The experiment was conducted on a Linux cluster 
using the example query described in 5.1. 

5.3.1. Data for the Experimental Evaluation 
The experiment used simulated packet data generated for a hypothetical 1,000 

servers and 1,000 thousands clients. Each client selected a server on Zipf distribution 
and accessed that server. Each server accepted the request and sent a response to the 
client immediately. After the client accepted the response, it immediately started server 
selection again and sent a request to the newly selected server. The experiment 
measured performance by varying the number of packets from 10,000 to 100,000 per 
second. The packets contained only headers (no payloads). Thus, a simulated data 
stream of 100,000 packets per second for 9 minutes contained 54 million packets, totally 
about 3.6GB. The amount of data for a one-minute packet trace was about 7MB, which 
was easily transferred via a 1000Base-T Ethernet network. All the packets were 
processed by QueueLinker. 

5.3.2. Experimental Environment 
Table 5.1 shows the experimental environment. All computation nodes had the 

same computation resources and were connected to a same network switch. The purpose 
of the experiment is to test whether the proposed method can perform in a commodity 
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network environment. A single computation node acted as a virtual router, sending 
packets to QueueLinker and measuring the latency, that is, the time difference between 
sending a packet to QueueLinker and receiving the corresponding result tuple. This 
setup is same as depicted in Figure 5.1. The Chase Operator and Duplicator also run on 
the router node. 

5.3.3. Experimental Results 
To evaluate the performance of Chase Execution under dynamic fluctuation of the 

data arrival rate, the data source was configured to generate 10,000 tuples (packets) per 
second for the first 3 minutes, then 100,000 tuples per second for the next 3 minutes, 
and again 10,000 tuples per second for the last 3 minutes. Chase Execution used four 
computers as computation nodes: one computer for Chaser 1 and the other three for 
Chaser 2. To establish comparative references for Chase Execution, the query was first 
executed using just one computer and then again using three computers. Note that 
because these reference setups did not actually replicate internal states, they could not 
have coped with any node failures. 

Figure 5.6 shows the average latency of the query. Although the proposed method 
has to replicate incoming packets to multiple chasers, its latency performance is the 
best among the three experimental settings. Figure 5.7 shows the cumulative 
percentage of latency when the arrival rate was 10,000 tuples per second. Figure 5.8 
shows the result at 100,000 tuples per second. As discussed in 5.1.1, the performance of 
one computer was better than that of three computers when the arrival rate was small, 
and vice versa when the arrival rate was high. Chase Execution outperformed both of 
these configurations, and showed the lowest overall latency. 

5.4. Summary 
This chapter described a proposed backup method that achieves low latency for 

distributed processing of continuous queries. The primary advantage of this method is 
that backup chasers do not add significant latency to normal, failure-free function. The 
method executes a query on a set of different operator deployments, or “chasers”, and 
collects the fastest result tuples from these deployments. Experimental results show 
that this method can achieve lower latency than deployments for which achieving high 
availability is not an objective. 

Possible directions for future work include investigation of possible bottlenecks in 
applications that require an ordering mechanism, and evaluation of the Chase Operator 
as a single point of failure, especially where more than two chasers are used. One 
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promising approach to these kinds of issues is the introduction of a backup mechanism 
to the upstream side of the system.  
 
 
 
 
 

 
Table 5.1  Experimental Environment 

CPU Intel Xeon E5530 x2 (Total 16 Logical Cores) 
Memory 16GB 

OS CentOS 5.5 

Runtime 
Java HotSpot 64-Bit Server VM 

(Java version 1.6.0_27) 
Network 1000Base-T Ethernet 

 
 

 
Figure 5.6  Average Latency with Data Rate Change 
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Figure 5.7  Cumulative Percentage of Latency (10,000 tuples / sec) 
 

 

Figure 5.8  Cumulative Percentage of Latency (100,000 tuples / sec) 
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Chapter 6. A Parallel Distributed Web Crawler 

Consisting of QueueLinker Modules 

This chapter describes a parallel distributed Web crawler implemented using 
QueueLinker. Web crawlers collect Web data while performing tasks such as detecting 
crawled URLs and preventing consecutive access to a certain Web server. Parallel and 
distributed crawling is required to realize high-speed crawling for the massive number 
of URLs that exist on the Web. 

QueueLinker can help build a parallel distributed Web crawler. The proposed 
Web crawler consists of QueueLinker modules, and its tasks are distributed to 
computers by QueueLinker. The Web crawler consists of fine-grained modules, allowing 
it to realize better load balancing and memory utilization between computers than 
traditional site-based Web crawlers. Moreover, it becomes possible to crawl the Web on a 
large scale while conserving resources, because each module is implemented by data 
structures that are temporally and spatially efficient. 

6.1. Background 
Web crawlers collect Web pages from the Internet, performing an indispensable 

task for research, services, and businesses. A Web crawler starts crawling from a given 
seed page, and follows hyperlinks from one page to another in order to gather Web 
pages, images, and videos. High-speed crawling is important to quickly gather the large 
amount of data on the Web. However, intensively accessing the same Web server causes 
it to become overloaded. In a 2012 report [46], it was stated that, although Web crawlers 
represent only 6.68% of access to a Web server, they are responsible for 31.76% of its 
computational load. This is because the access pattern used by a Web crawler is 
different from that of a human. Thus, Web crawlers should be polite as they crawl the 
Web. 

There are many Web servers and URLs on the Internet. For example, Google 
reports that there are over a trillion URLs1. Thus, Web crawlers manage a large number 
of URLs as they collect Web data, performing concurrent tasks such as detecting 
crawled URLs and preventing consecutive access to the same Web server. Parallel 
distributed Web crawling is expected to allow us to gather more pages, but the load 
balancing and scalable distributed crawling necessary to construct such a crawler are 
                                                  
1 We knew the web was big..., http://googleblog.blogspot.jp/2008/07/we-knew-web-was-big.html 
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difficult issues. In addition, it is necessary to decrease the time and space complexity in 
order to reduce the number of computers required for crawling. Polite crawling, scalable 
distributed crawling, and resource saving are all important factors for incorporation in 
a parallel distributed Web crawler. In particular, parallel distributed computing 
mechanisms are tightly correlated to algorithms and data structures. Thus, we must 
discuss the whole software architecture of Web crawlers. Although commercial Web 
crawlers work very well, their technical details are not published. Therefore, a parallel 
distributed Web crawler is still worthy of discussion in research literature. 

In existing research papers on distributed crawling, each computer executes a 
crawler, and all of the URLs of a Web site are assigned to a certain computer. This 
site-based distribution method easily realizes parallel distributed Web crawling. 
However, the number of URLs on a Web site varies, and thus a site such as Twitter, 
which has a large number of URLs, may cause a particular computer to become 
overloaded. 

The proposed Web crawler consists of QueueLinker modules. It realizes polite 
crawling by ensuring that access to a certain Web server does not occur more than once 
in a given interval. Every module is designed along the data parallel model of 
QueueLinker, and thus every module can run on any number of computers and any 
number of threads. In other words, the crawler can assign any computational resources 
to each module independently. In addition, the crawler uses data structures that are 
temporally and spatially efficient, which allows us to crawl a large number of URLs 
with a small amount of computational resources. Another positive effect of the 
QueueLinker model is that it enables us to analyze Web data in real-time using the flow 
of data between modules. We can also easily customize the crawler by changing the 
module implementation. 

6.2. Requirements for Web Crawlers and Existing Crawlers 
This section describes the requirements of a Web crawler. Many existing papers 

on Web crawlers [16,47,48,49,50] discuss their scalability and crawling manner. To 
crawl the large number of URLs on the Web, crawlers must be scalable and able to 
crawl more URLs by simply adding crawler nodes. Moreover, crawlers must be polite to 
each Web server. In addition, some papers discuss re-crawling, fault tolerance, ease of 
configuration, and ease of customization for each purpose. This thesis does not consider 
these aspects, but such functions could be implemented by adding new modules to the 
proposed crawler. Thus, this chapter describes the proposed Web crawler from the 
standpoint of polite crawling and scalability. Firstly, this section discusses the following 
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aspects of politeness and scalability. 
 

1. Requirements for polite crawling 
(a) Ensuring access intervals to a certain Web server are sufficiently long 
(b) Crawling pages by following instructions in ‘robots.txt’ and ‘meta tags’ 
(c) Not frequently accessing same Web pages 
(d) Reducing the load on outside DNS servers 
(e) Handling errors when accessing Web servers 

2. Requirements for scalability 
(a) High-speed parallel distributed Web crawling with load balancing 
(b) Crawling with small computational resources 
(c) Priority crawling on good quality pages 

6.2.1. Crawling Politeness 
A Web page usually has hyperlinks to pages on the same Web server. If the 

crawler accesses the destination page given by these links without any interval, the 
Web server may be overloaded. As described above, 31.76% of the computational load of 
a Web server derives from Web crawlers [46]. To accomplish polite Web crawling, pages 
on the same server should only be accessed after a sufficient interval. 

A Web server can give instructions to Web crawlers that access it by placing a 
robots.txt file in the top directory of the Web site. Using the ‘disallow’ description, 
robots.txt can prevent Web crawlers from accessing all or part of the Web site. According 
to some research papers [51,52], over 30% of Web servers have a robots.txt file, which 
means that Web crawlers should consider this file to realize polite crawling. Moreover, 
robots.txt may have a ‘Crawl-delay’ description that specifies the shortest interval for 
re-accessing the server. Some commercial crawlers do not consider Crawl-delay [46]. 
However, because the proposed crawler is for research purposes, and does not offer the 
benefits to Web sites that commercial Web crawlers do, the crawler proposed in this 
chapter should take account of Crawl-delay to make it acceptable to Web site 
administrators. 

In addition, accessing the same page not only causes an increased load for the 
server, but also degrades the performance of the crawler. The large number of URLs on 
the Web makes it difficult to manage the crawled URLs. After the crawler resolves the 
IP address of a host, it should cache the address for a given period to reduce the 
overhead of name resolution and the load for external DNS servers. The cache must use 
a space-efficient data structure to manage a large number of URLs. Some limitation on 
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the number of retries is also required to avoid continuous access attempts when an 
error occurs. 

6.2.2. Scalability 
Realizing high-speed crawling with politeness and scalability is a challenging 

problem in terms of a suitable data structure. We should choose carefully between 
memory- and storage-based data structures. Papers on IRLbot [49,50] point out that 
previous storage-based structures had scalability problems due to storage access, and 
thus they proposed DRUM, an efficient batch-based processing mechanism. Storing 
data in physical memory allows crawlers to easily achieve scalability. However, the 
crawler must discard URLs or other data when there is no available memory space. 

Parallel crawling must also gather Web data efficiently. The response time and 
throughput of Web servers varies. If the crawler does not perform parallel crawling, it 
has to wait until each download is completed, and thus slow Web servers degrade the 
crawling performance. In addition, distributed crawling should achieve better 
performance, because parsing Web pages and detecting crawled URLs require a large 
amount of computation time and space. Thus, a parallel distributed system is 
indispensable for high-performance Web crawling. 

The method and flexibility of computational resource assignment is also 
important in parallel distributed Web crawling. In research papers, a full-set crawler is 
executed on each computer, and all URLs on a Web site are assigned to a certain 
computer. This site-based distribution method easily realizes parallel distributed Web 
crawling. However, the number of URLs on a Web site varies, and thus a Web site such 
as Twitter, which has a large number of URLs, may cause certain computers to be 
overloaded. 

Finally, the crawler performance is evaluated in terms of the download speed and 
the quality of pages that the crawler traverses. There are a large number of spam Web 
pages that may cause large amounts of traffic, and these can be obstacles to gathering 
good quality pages. 

6.2.3. Download Speed of Published Crawlers 
The development of Web crawlers is a research topic that has produced a number 

of papers [16,17,18,49,50,53,54]. For example, Mercator [54] was reported to crawl 112 
pages/s using only one computer. A report on Mercator [16] in 2001 discusses an attempt 
at distributed crawling with four computers. Several papers have described distributed 
Web crawlers. In 2002, Ubicrawler [17] crawled 10 million pages/day (116 pages/s), and 
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another crawler was reported to have crawled 140 pages/s. IRLbot [49,50] is the fastest 
of the published Web crawlers that use only one computer, reaching a performance level 
of 1,789 pages/s. A research paper on WebBase [18], which was developed at Stanford 
University, argues that it can gather up to 6,000 pages/s with 40 processes. 

6.3. Characterization of the Proposed Web Crawler 
Previous distributed Web crawlers assign each Web site to be crawled to a certain 

computer. This site-based distribution approach causes computers assigned Web sites 
with a large number of URLs to be overloaded. In addition, resource consumption varies 
according to the functions of a crawler. Thus, an efficient crawler should be organized 
into fine-grained modules, enabling it to assign computing resources more flexibly. 
Previous research papers on distributed Web crawlers have not considered the problem 
of resource assignment. To solve these problems, the proposed Web crawler consists of 
QueueLinker modules. 

Table 6.1 shows a solution for the Web crawler requirements described in Section 
6.2. The proposed crawler stores data structures in the main memory. The data space of 
each module can be divided using the hash values of host names, URLs, or IP addresses. 
The modules do not share their internal states. Thus, every module can be executed 
according to the data parallel model of QueueLinker, and can run on any number of 
threads and computers. Therefore, the proposed system can assign computational 
resources to each crawler function more flexibly than existing site-based crawlers. 

Figure 6.1 explains the benefit of the load balancing offered by the proposed 
crawler. The figure compares the proposed Web crawler with a site-based Web crawler 
in terms of load balancing the DNS cache module and duplicated URL detection module. 
The site-based Web crawler assigns each Web site to a certain computer, which causes a 
bias in the number of URLs processed among the computers, as shown in (1a) and (1b), 
because the number of URLs on a Web site varies. The DNS cache module keeps the 
Web site IP addresses, and thus there is no bias in memory consumption between (1a) 
and (1b). On the other hand, a duplicated URL detection module keeps URLs that the 
crawler has already visited, resulting in the load bias between (1a) and (1b). The 
proposed crawler executes the DNS cache task and duplicate detection task in different 
modules. Thus, the proposed crawler can realize load balancing in the duplicate 
detection task, because the URLs to be processed by the module are partitioned by the 
hash value of each URL. Load balancing is an important factor for Web crawlers, 
because several Web sites have a large number of URLs. 

Moreover, the proposed crawler uses a Bloom Filter [55] and HAT-trie [56] to 
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reduce the space complexity of data. A Bloom Filter is a space-efficient probabilistic 
data structure that can determine whether an element is already contained in a set 
with a certain false positive. HAT-trie is a trie data structure that stores a set of strings 
within a small data space. Additionally, another positive effect of the QueueLinker 
model is that it enables us to analyze Web data in real-time using the flow of data 
between modules. Thus, the crawler can be used as the backend of applications like [57]. 
QueueLinker offers a simple way to add new modules and change the connections 
between modules. 

Previous papers discuss other aspects, including re-crawling, fault tolerance, and 
ease of configuration. These aspects are important in actual operation. This thesis does 
not consider these aspects, but existing re-crawling methods could be implemented by 
adding new modules to the proposed crawler. 

 
Table 6.1  Solutions for the Requirements of Web Crawlers 
Requirements Solutions 

(1a) Ensuring Access Intervals 
Crawling scheduler guarantees that the 
minimum access interval to a certain Web 
server is always longer than a given value. 

(1b) Dealing with robots.txt and meta tag The crawler can analyze them. 

(1c) Duplicated URL Detection 
Duplicated URLs are filtered using LRU 
cache and a Bloom Filter. 

(1d) Reducing DNS Overhead 
The crawler caches IP addresses of Web 
sites using HAT-trie. 

(1e) Error Handling 
The crawler suspends crawling to error 
pages. 

(2a) Parallel Distributed Web Crawling 
QueueLinker can automatically execute 
modules in a parallel distributed way. 

(2b) Reducing Memory Consumption 
The crawler uses a Bloom Filter and 
HAT-trie, which are space efficient data 
structures. 

(2c) Crawling High Quality Pages 
The Scheduler can gather high PageRank 
pages. 
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Figure 6.1  Load Balancing Benefit of the Proposed Crawler 
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6.4. Execution Model of the Proposed Web Crawler 
This section describes the execution model of the proposed Web crawler. The 

proposed crawler is implemented by QueueLinker. Thus, QueueLinker automatically 
realizes parallel distributed Web crawling. This section describes the execution model. 
The implementation details of each module are described in Section 6.5. 

6.4.1. Data Structure for Crawling 
Table 6.2 shows the data structure that is transferred between modules of the 

crawler. QueueLinker automatically transfers the data structure between modules. In 
the following explanation, this structure is referred to as CrawlingData. A URL found 
during crawling is managed by an instance of CrawlingData. Each module accepts 
CrawlingData, performs a process, and then outputs CrawlingData. Thus, 
CrawlingData can be modified if needed. For example, the downloading module accepts 
CrawlingData, and then downloads the Web page indicated by its ‘url’ field. The 
downloading module then stores the downloaded data in the ‘data’ field of CrawlingData, 
and finally outputs the modified CrawlingData. 

6.4.2. Hash Functions 
As described in Chapter 3, QueueLinker provides a hash partitioning technique 

to realize data parallel execution. The data space of every module of the crawler can be 

 
Table 6.2  Main Components of CrawlingData, a Data Structure 

for Communication between Modules 
Type Name Role 

String url A URL to be processed. 
byte[ ] ipAddress An IP address of the Web sever of the URL 
byte[ ] data Downloaded data 

int robotsFlag 
Robots.txt Existence 
(0: Does Not Exist, 1: Exists, 2: Unknown) 

boolean downloadable 
If true, the page can be downloaded. Otherwise, 
not downloadable. This flag is affected by the 
robots.txt or the meta tag in the Web page. 

int crawlDelay 
Crawl-delay of robots.txt of the Web site. 
Default value is 5 seconds. 

Exception exception Exception occurred when downloading 
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hash partitioned, and the following hash functions are used to determine a partition. 
 

  : A function calculating the hash value of a host name 
 Used by host cache module and robots.txt processor module 

  : A function calculating the hash value of a URL 
 Used by duplicated URL detection module 

  : A function calculating the hash value of an IP address 
 Used by crawling scheduler module 

 
For example, QueueLinker always transfers URLs with the same hash value 
 to the same instance of the host data cache module that caches each IP address 

corresponding to a host. The cache works correctly if and only if URLs with the same 
hash value are always processed by the same instance. The duplicated URL detection 
module also correctly detects already-crawled URLs if and only if those with the same 
hash value  are always processed by the same instance. Each process is 
completed inside an instance of each module, and does not require access to any other 
instances. Therefore, every module can run on any number of threads and any number 
of computers. This is the benefit of the data parallel model of QueueLinker. 

6.5. Implementation of Web Crawler Modules 
This section describes the implementation of each module in the proposed 

crawler using the QueueLinker model described in Chapter 3. The modules listed in 
Table 6.3 are connected to each other as shown in Figure 6.2. Each rectangle in the 
figure represents a QueueLinker module, and the colored rectangles represent virtual 
modules. In the figure, queue names are shown beside modules that have multiple input 
queues. 

The crawler uses a crawling scheduler whose time complexity is O(1). The 
crawling scheduler ensures that the access intervals for a certain Web server are always 
longer than a specified time interval. The scheduler can place high priority on good 
quality pages, and the total PageRank value of crawled pages is higher than that of 
breadth-first order crawling for the same number of crawled pages. The crawler 
interprets robots.txt and meta tags in HTML. The results of DNS resolution are cached 
using HAT-trie. The LRU cache and Bloom Filter are used to detect duplicate URLs, 
allowing the crawler to detect crawled URLs efficiently. HAT-trie and the Bloom Filter 
are spatially efficient data structures, which mean the crawler can gather a large 
number of Web pages with a small amount of computational resources. 
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6.5.1. Overview of the Modules and Strategy of Distributed Crawling 
Each module of the crawler can be grouped into one of two types according to 

whether the module has internal states. The distribution strategy of the modules that 
do not have an internal state is ‘Free,’ as shown in Table 6.3. For example, ‘(d) 
Downloader’ just downloads data and outputs the downloaded data, and this does not 
require any internal states inside the module. 

The distribution strategy of modules that have internal states is one of ‘IP,’ ‘Host,’ 
or ‘URL.’ As described in Chapter 3, QueueLinker selects which instance of a module to 
transfer CrawlingData to based on its hash value. For example, CrawlingData must be 
transferred to an instance of ‘(a) Scheduler’ depending on the value of , because 
the module realizes the scheduling by grouping URLs according to their IP addresses. 
As another example, ‘(i) Host Data Cache’ caches IP addresses of Web sites, and 
CrawlingData must be transferred depending on the value of . ‘(k) robots.txt 
Processor’ also uses the ‘Host’ strategy, because robots.txt exists in the top directory of 
each Web site. ‘(h) Duplicated URL Checker’ detects already crawled URLs, and thus an 
instance must be chosen according to the value of . Note that the strategy of ‘(m) 
Seeder’ is ‘Single,’ because it must be executed only once whilst crawling to avoid 

 
Table 6.3  List of Modules Composing the Proposed Crawler 

Module Name Distribution Strategy Number of Input Queues 
(a) Scheduler IP 2 
(b) Scheduler Timer Free 1 
(c) robots.txt Downloader Free 1 
(d) Downloader Free 1 
(e) HTML Parser Free 1 
(f) URL Format Filter Free 1 
(g) Explicit URL Filter Free 1 
(h) Duplicated URL Checker URL 1 
(i) Host Data Cache Host 4 
(j) Domain Name Resolver Free 1 
(k) robots.txt Processor Host 2 
(l) Data Store Free 1 
(m) Seeder Single 0 
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seeding URLs multiple times. 

6.5.2. Crawling Scheduler Modules 
The crawling scheduler is the most important part of the crawler, affecting the 

performance and the politeness of the Web crawler [58,59]. This scheduler ensures that 
the access intervals on a certain Web site are always longer than a given time interval. 
The time complexity of the scheduler is O(1). In this thesis, the minimum interval is set 
to 5 s. The scheduler consists of two modules, ‘(a) Scheduler’ and ‘(b) Scheduler Timer,’ 
as shown in Table 6.3 

The ‘Scheduler’ module has two input queues,  and . During crawling, 
queue  receives CrawlingData containing a newly found URL. Queue  receives 
CrawlingData containing URLs whose download procedure has been completed or failed 
for some reason. In addition, as shown in Figure 6.3, the scheduler has  lists 

 containing URLs to be downloaded. These lists do not contain multiple 
URLs from a single Web server. The scheduler controls the crawler so as to always 
download URLs belonging to only one list. After downloading a list, the crawler waits 

 

Figure 6.2  The Logical Directed Graph of the Proposed Crawler. 
The Black Circles Represent Switchers 
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for 5 s before it starts to download URLs in the next list, which ensures the crawling 
interval for a given Web server is always longer than 5 s. 

The scheduler algorithm is shown in Figure 6.4. After the scheduler receives a 
URL via , it chooses which list to add the URL to by referencing an integer array 

. A list  is the candidate for the URL, where  is the remainder 
of the division of the IP address by , where the IP address corresponding to the URL is 
considered as an integer. Although different IP addresses may have the same remainder, 
the lists do not have multiple URLs from a single Web server, even if such collisions are 
neglected. In other words, the scheduler stores the URLs of a certain Web server in lists 

 in order of increasing , where  and  is the 
list that is currently being crawled. A new URL is discarded when there is no available 
list in which to store the new URL. However, if the discarded page is important, it is 
expected to appear again during the crawl, because important Web pages tend to be 
linked from many other pages. Note that the scheduler has to store URLs with an extra 
interval to adhere to the given interval when the robots.txt file defines ‘Crawl-delay’ 
(lines 15 and 21 in Figure 6.4). If a Web site does not use ‘Crawl-delay’, the ‘crawlDelay’ 
field of CrawlingData has the default value 5 s, and site URLs are successively stored in 
the list. 

 

  
Figure 6.3  Conceptual Diagram of the Scheduler 
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Figure 6.4  Pseudo-Code of the Scheduler Module 
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The scheduler can determine the number of URLs that have been crawled by 
counting those arriving at . When all of the URLs in  have been crawled, the 
scheduler outputs the next list. More precisely, it selects a list from , 
where  is the smallest number such that the chosen list has at least one URL. After 
the scheduler outputs a list, the Scheduler Timer receives the list and waits for 5 s 
before it is output. The pseudo-code for Scheduler Timer is shown in Figure 6.5. This 
procedure ensures the crawling intervals for a certain Web server are always longer 
than 5 s. Note that, even if the list is empty, the scheduler has to wait in order to ensure 
the minimum interval (line 36 in Figure 6.4). This line is rarely executed, because URLs 
of Web sites that have no ‘Crawl-delay’ definition almost always fill the lists without 
gaps. 

The proposed scheduler has the drawback that no downloading is performed 
while a list waits in the Scheduler Timer. In addition, URLs of slow Web servers can 
cause a bottleneck, because the scheduler does not output a new list until all of the 

 

 
Figure 6.5  Pseudo-Code of Scheduler Timer 

 

 

Figure 6.6  Pseudo-Code of Duplicated URL Checker 



79 
 

URLs in the current list have downloaded. However, these drawbacks can be resolved 
by increasing the number of parallel executions of the scheduler, because this increases 
the number of CrawlingData instances that are being downloaded while several 
instances are waiting in the Scheduler Timer. 

Our scheduler places a high priority on good quality pages, and the total 
PageRank value of crawled pages is higher than that of breadth-first order crawling for 
the same number of crawled pages. Although RankMass [60], a previous method, may 
be faster at collecting high quality pages, the proposed scheduler has a better time 
complexity than that of RankMass. This is because RankMass calculates the estimated 
PageRank values while crawling, and it has to access the link structure in order to 
estimate the PageRank. 

The time complexity of the proposed scheduler is O(1). The scheduler can be 
distributed by a hash partitioning technique with the help of QueueLinker, and the 
hash value of each IP address is used to determine which instance processes each URL.  

6.5.3. Duplicated URL Detection Module 
The ‘(h) Duplicated URL Checker’ detects duplicated URLs using the LRU cache 

and Bloom Filter. It is known that cache algorithms can be used to detect duplicated 
URLs efficiently [61]. The proposed crawler uses an LRU cache as the first-level cache 
for detecting duplicated URLs. A Bloom Filter is used as the second-level cache to store 
evicted URLs from the LRU cache. This is necessary because of the size limitation of the 
LRU cache. Bloom Filters are space-efficient probabilistic data structures that 
determine whether an element is contained in a set while allowing false positives. Thus, 
the crawler can detect already-crawled URLs because the Bloom Filter does not cause 
false negatives, whereas the crawler mistakenly assumes a URL has already been 
crawled if a false positive occurs. 

The algorithm for this module is shown in Figure 6.6. First, it checks the LRU 
cache. If the LRU cache does not contain the URL, it checks the Bloom Filter. If the URL 
is contained in either data structure, the module discards the URL as not to be crawled. 
Otherwise, if neither data structure contains the URL, the module outputs the URL for 
future crawling. When a URL overflows from the LRU cache, the URL is inserted into 
the Bloom Filter, and thus the duplication of the URL will be correctly checked without 
error. 

6.5.4. Host Data Cache Module 
To avoid the overheads associated with name-resolution and accessing robots.txt 
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multiple times, the crawler must store a flag denoting the presence or absence of 
robots.txt and IP addresses corresponding to host names. The ‘(i) Host Data Cache’ 
module uses a modified version of the original HAT-trie [56] in order to store key-value 
data. In this case, the key is a host name and the value is an IP address and a flag 
denoting the presence or absence of robots.txt. 

Figure 6.7 illustrates the performance of the HAT-trie key-value storage. This 
experiment was carried out on the assumption that the structure is used to cache IP 
addresses of Web sites. Host names were inserted as keys, and a 4-byte integer 
corresponding to an IP address was inserted as a value for each key. The experiment 
used 590 million host names taken from published data1. The total data size of the host 
names was about 16 GB. The total size of the inserted data was about 18 GB, because a 
4-byte integer was inserted for each host name. The memory consumption and 
throughput of inserting key-value data were measured from when the data structure 
was empty, at the beginning. After the data had been inserted, the throughput of 
searching for values was measured for all the host names that had been inserted in the 
structure. 

As shown in Figure 6.7, the memory consumption was almost the same as the 

                                                  
1 Laboratory for Web Algorithmics, http://law.di.unimi.it/index.php 

 

Figure 6.7  Performance of HAT-trie for Storing and Searching Host Names 
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total size of the inserted data. The trie data structure compresses common URL prefixes, 
and this acts to reduce the memory consumption. The memory consumption is one-fifth 
of that of HashMap in the Java API. The peak throughput of inserting data is over 
300,000/s and the peak throughput of searching is over 1,000,000/s. 

The Host Data Cache module uses four input queues . Queue  
receives CrawlingData from the Duplicated URL Checker module, and this contains a 
URL that has not been crawled. This module searches for a value including the IP 
address from the HAT-trie. The module then stores the IP address in the ‘ipAddress’ 
field of CrawlingData. The ‘ipAddress’ field is set to ‘null’ if HAT-trie does not have the 
IP address of the Web server. In addition, this module also checks whether HAT-trie 
caches the presence or absence of robots.txt on the site and sets the ‘robotsFlag’ in 
CrawlingData. The switcher connected to this module transfers CrawlingData 
according to the status of the ‘ipAddress’ and ‘robotsFlag’ fields. The switcher transfers 
the data to the Domain Name Resolver in order to resolve the IP address when 
‘ipAddress’ is null. The switcher transfers the data to the robots.txt Processor module to 
check whether the URL can be downloaded when the ‘robotsFlag’ indicates the site 
contains a robots.txt file. Otherwise, the data is transferred to the Scheduler module so 
that it can be scheduled for future crawling. 

The remaining input queues  are used in the virtual modules of this 
module. The input queue  receives CrawlingData from the Domain Name Resolver. 
This contains the resolved IP address of the site. In this case, the module inserts the IP 
address in HAT-trie and simply outputs the data. When a URL from the same site 
appears, the inserted IP address will be used to avoid name resolution. The output is 
transferred to the input queue  of the Scheduler module, and will thus be crawled 
during a future crawling. 

The input queue  receives CrawlingData from the Scheduler module. This 
means the URL contained in the CrawlingData is now going to be crawled. This module 
checks again whether HAT-trie has cached the presence or absence of robots.txt on the 
site. This check is required because there is a possibility that other URLs from the site 
may check the existence of ‘robots.txt’ while the URL is waiting to be crawled in the 
Scheduler. For example, two URLs for a newly found Web site can be added to lists  
and  in the Scheduler module when URLs in  are being downloaded. In this case, 
when the URL in  is crawled, the crawler checks whether the robots.txt file exists 
on the server. Thus, the existence of robots.txt has been checked before the URL in  
has begun to be crawled. 

The input queue  receives CrawlingData containing a URL of a Web site that 
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has robots.txt. This module records the robots.txt existence in HAT-trie and simply 
outputs the data to the Scheduler module for future crawling. 

6.5.5. robots.txt Processing Module 
The ‘(k) robots.txt Processor’ module has two input queues,  and , and 

processes robots.txt. This module uses the Pattern class of the Java API to check 
whether URLs are allowed or disallowed by robots.txt. 

When the input queue  receives CrawlingData, it checks whether the URL has 
been disallowed for crawling by the robots.txt file. This module sets the ‘downloadable’ 
flag of CrawlingData to false if robots.txt disallows crawling on the URL. Otherwise, 
this module sets the flag to true. The switcher connected to this module checks the 
‘downloadable’ flag. If the URL is downloadable, CrawlingData is transferred to the 
Downloader module. If not, CrawlingData is transferred to the input queue  of the 
Scheduler module and discarded. 

The input queue  is used in the virtual module of robots.txt Processor. It 
receives CrawlingData containing robots.txt from a Web site. When this module 
receives a newly found robots.txt, it generates Pattern instances of the rules in the 
robots.txt file. 

6.5.6. Downloading Modules 
This crawler has two modules for downloading. The ‘(c) robots.txt Downloader’ 

module downloads robots.txt, and the ‘(d) Downloader’ module downloads other Web 
data. Data indicated by a URL are downloaded after the modules receive CrawlingData. 
The data is stored in the ‘data’ field of CrawlingData. These modules use Apache 
HttpClient library1 to download data. 

If a download error occurs, the exception is stored in the ‘exception’ field of 
CrawlingData. In this case, the Switcher connected to this module transfers 
CrawlingData to the input queue  of the Scheduler in order to stop the page 
downloading. 

6.5.7. Link Extraction Module and Filtering Modules 
The ‘(e) HTML Parser’ module analyzes HTML pages and extracts linked URLs 

from them. After the URLs are extracted, the ‘(f) URL Format Filter’ module checks the 
format of the extracted URLs. The ‘(g) Explicit URL Filter’ module checks each URL to 
determine whether it is marked as uncrawlable by the crawler user. 

                                                  
1 HttpComponents HttpClient Overview, http://hc.apache.org/httpcomponents-client-ga/index.html 



83 
 

The HTML Parser module uses the jsoup library1 to parse HTML pages, from 
which it extracts linked URLs. Web pages often include incorrect or illegally formatted 
URLs. Thus, URL Format Filter module discards URLs that are not included in the 
Public Suffix List2, a list of worldwide domains. The Explicit URL Filter module then 
filters the URLs of sites marked as uncrawlable by the user. These uncrawlable sites 
include electronic journals such as ACM Digital Library and IEEE Xplorer, which 
prohibit the crawling of their sites. In addition, some Web sites whose administrators 
have complained about crawling may be marked as uncrawlable. 

6.5.8. Storing Downloaded Data Module 
The ‘(l) Data Store’ module stores downloaded data in secondary storage. This 

module receives CrawlingData and serializes it into a BSON-format file. This module 
packs multiple Web data into a file, because large numbers of files are generated if the 
data is stored in separate files. The large number of files strongly reduces the read 
throughput due to random accesses to the files, resulting in difficulties analyzing the 
crawled data. To cope with file corruptions, this module limits the file size to 2 GB and 
creates a new file when this limit is reached. 

6.5.9. URL Seed Module 
The Web crawler requires a seed set of URLs as the starting point for crawling. 

The ‘(m) Seeder’ module runs once at the beginning of a crawling, and supplies seeds to 
the Scheduler module. This thesis does not consider how to choose the seeds. 

6.6. Performance Evaluation 
This section describes the performance evaluation of the proposed crawler. In this 

evaluation, computers were placed in Waseda University and NII (National Institute of 
Informatics). A virtual Web space was built on the NII computers. Those in Waseda 
University accessed the virtual Web space. In this experiment, resource assignment to 
the modules was manually controlled. To evaluate the maximum throughput of the 
proposed crawler, the minimum interval for accessing a certain Web server was set to 
zero. Java 1.7 was used for this experiment. 

6.6.1. Experimental Environment and Module Deployment 
Figure 6.8 and Table 6.4 show the experimental environment. One master node 

                                                  
1 jsoup Java HTML Parser, with best of DOM, CSS, and jquery, http://jsoup.org/ 
2 Public Suffix List, http://publicsuffix.org/ 
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and eight crawling nodes were placed in Waseda University. A virtual Web space was 
built on four computers in NII. The virtual Web space was built using the actual Web 
link structure of uk-2007-051, and virtual Web pages were created according to the 
structure. In this experiment, the microhttpd library2, a lightweight Web server for 
embedded devices, was used as the Web server of the virtual space. Microhttpd can 
generate Web pages in parallel using multi-threads. The networks of Waseda University 
and NII were connected by SINET43, and the upstream network switches of the 
computer were connected to SINET4 by 10 Gbps lines. 

In this experiment, the Scheduler module was assigned to the master node with 
the largest memory among the computers. The Data Store module was assigned to the 
storage node. Other modules were assigned to crawling nodes. Each module, except the 
Downloader module, was executed by one thread. The Downloader module on a 
crawling node was executed by 200 threads. To reduce the amount of network 
communication, Web pages that were downloaded by the Downloader module on a node 
were parsed by the HTML Parser module on the same node. 

The above configuration allows the Scheduler module, which requires a large 
memory space to store URLs, to use 512 GB of the master node’s memory space. At the 
same time, the Duplicated URL Checker, Host Data Cache, and robots.txt Processor, 
which also require a large amount of memory space to store data, can use a total of 128 
GB of memory when eight crawling nodes are used. As described above, the crawler 
implementation using QueueLinker allows us to assign computational resources to the 
modules flexibly. This is one advantage of the proposed crawler. 

6.6.2. Experimental Results 
Figure 6.9–Figure 6.11 show the number of pages downloaded per second. The 

experiment was performed on 2, 4, and 8 crawling nodes. The figures show that the 
download speed increased with the number of crawling nodes. This result demonstrates 
the scalability of the crawler. 

Figure 6.12 shows the number of URLs and Web sites that the crawling nodes 
handled when all of the pages in the virtual space were downloaded. The proposed Web 
crawler consists of fine-grained modules, and QueueLinker executes each module using 
a hash partitioning technique. As a result, the load bias between computers is reduced. 
There was a 0.30% difference between the maximum and minimum number of URLs 
handled by the crawling nodes, and a difference of 3.0 % in the case of Web sites. 
                                                  
1 Laboratory for Web Algorithmics, http://law.di.unimi.it/index.php 
2 GNU libmicrohttpd, http://www.gnu.org/software/libmicrohttpd/ 
3 SINET4: Science Information NETwork 4, http://www.sinet.ad.jp/index_en.html?lang=english 
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Figure 6.13 shows the simulated result of a site-based crawler that assigns all 
pages in each Web site to a certain computer. For Web sites, the result was similar to 
that in Figure 6.12. However, there is a load bias in the number of URLs handled, 
because the number of URLs on a Web site varies. For the site-based crawler, the 
difference between the maximum and minimum number of URLs handled by a 
computer was 12.4%. If the number of URLs that each Web site has is known prior to 
crawling, the site-based crawler can optimally assign Web sites to computers such that 
they handle almost the same number of URLs. However, in reality, it is difficult to 
adjust the Web site assignment, because such numbers of URLs cannot be achieved 
until the crawling has finished. 

In contrast, the proposed Web crawler can distribute every process depending on 

 

Figure 6.8  Experimental Environment 
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the hash value. This characteristic allows for load balancing during Web crawling. 
Recently, Web sites have been constructed with a large number of dynamic pages. The 
load balancing mechanism of the proposed crawler is indispensable for such Web sites. 

6.7. Summary 
In this chapter, a parallel distributed Web crawler was described as an 

application of QueueLinker. Web crawling is a difficult task, and a large number of 
computers are required to download and analyze Web pages from the Internet. The 
proposed crawler was implemented as a series of QueueLinker modules. The crawler 
realizes better load balancing and memory utilization between computers than 
traditional site-based Web crawlers. Moreover, it becomes possible to crawl the Web on a 
large scale while conserving resources, because each module is implemented by data 
structures that are temporally and spatially efficient. 

The performance of actual Internet crawling is currently being evaluated. 
QueueLinker enables monitoring of the crawling progress. Figure 6.14 shows a 
visualization of a crawling for the Internet with 4 computers. Statistics on the number 
of items processed by each module and the amount of resources consumed by each 
module can be obtained with the help of the QueueLinker statistics mechanism. 
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Figure 6.9  Number of Pages Downloaded per Second (2 Computers) 

 

 
Figure 6.10  Number of Pages Downloaded per Second (4 Computers) 

 

 
Figure 6.11  Number of Pages Downloaded per Second (8 Computers) 
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Figure 6.12  Number of Web Sites and URLs Handled 
(Proposed Web Crawler, 8 Computers) 

 
 

 

Figure 6.13  Number of Web Sites and URLs Handled 
(Site-based Crawler, 8 Computers) 
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Figure 6.14 Crawling for the Internet with 4 Computers 
(Each Computer is Represented as a Yellow Rectangle) 
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Chapter 7. Conclusion 

Analyzing data streams in real-time contributes to many information services. 
The advance in information technology society increases the number of mobile devices 
and sensors, which results in generating large amount of data streams. Processing such 
large streams requires parallel distributed computing. The recent advancement in 
commodity computer hardware makes parallel distributed computing available for 
everyone. However, most developers want to avoid implementing concurrency control 
and network communication procedure, which are difficult to program. Moreover, 
several data stream applications are affected by processing latency even on order of 
microseconds. It is difficult for many programmers to consider these aspects, and so a 
framework for parallel distributed data-stream processing is indispensable for the 
real-time world. 

7.1. Contributions of This Thesis 
This thesis proposed QueueLinker, a framework for parallel distributed 

data-stream processing. QueueLinker adopts a producer–consumer approach as a 
programming model, and helps programmers to implement data-stream applications. 
The contributions of this thesis are listed below. 
 
1. QueueLinker Development (Chapter 3) 

 QueueLinker provides producer–consumer programming model for 
data-stream processing and developers can implement applications for data 
streams without network communication and concurrency control. 

2. Low Latency Processing of Continuous Query (Chapter 4 and 5) 
 A low latency execution method for continuous query on a multi-core processor 

is proposed in Chapter 4. 
 A proposed backup method for continuous query with realizing low latency 

processing on a distributed environment is proposed in Chapter 5. 
3. Application Demonstration (Chapter 6) 

 QueueLinker can execute a practical application like Web crawler. The crawler 
can be executed with data parallel model of QueueLinker. It can realize better 
load balancing and memory utilization between computers compared to 
traditional site-based Web crawlers. 
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7.2. Future Works and Discussion 
There are many remaining avenues for future work. QueueLinker is a simple but 

general-purpose framework; thus, it should be evaluated in more widely used cases. For 
example, QueueLinker may be used to execute machine learning algorithms in a 
parallel distributed environment. However, the programming interface may not be 
convenient for implementing machine learning algorithms. 

Another interesting research topic is a programming language to describe data 
stream applications. Several languages can be used to describe data stream 
applications; for example, Continuous Query Language (CQL) was developed as an 
extension of SQL and has been adopted in STREAM; and IBM System S has adopted 
SPADE [38] as a dedicated language. Although QueueLinker currently uses Java to 
implement applications, the abilities of its simple programming interface were 
demonstrated in this thesis through continuous query execution and the Web crawler. 

Another future work is comparing the performance with other frameworks, 
including Twitter Storm, Apache S4, and Esper. The proposed methods in this thesis 
provide a runtime complement to the QueueLinker package, especially for low-latency 
data stream processing; thus, QueueLinker can be a unique and valuable framework. 

Chapter 4 described the proposed low-latency parallel execution of a continuous 
query with QueueLinker in a multi-core processor environment. An alternative should 
be considered to QPI communication, which is required when operators are assigned to 
multiple CPUs. Furthermore, future computer environments may have several hundred 
or even thousand CPU cores. In this environment, each CPU core may have to adjust its 
assignment without a centralized scheduler because the centralized scheduler cannot 
handle the statistics from the many cores, which causes bottlenecks. 

Chapter 5 described a backup method to realize low-latency processing in a 
distributed environment. The impact on applications when the ordering mechanism is 
used in Chase Operator should be evaluated. Additionally, the concentration of tuples in 
a Chase Operator can result into a bottleneck when the data streams have a high 
arrival rate. Chase Operator can be a single point of failure. As a measure against 
bottlenecks, Chase Operator can—when three or more chasers are running in 
total—receive tuples from only two chasers and run the remaining chaser(s) in a 
manner similar to the active standby; that is, it switches from one chaser to another in 
response to data rate changes and failure occurrences. To address the single point of 
failure, an upstream backup in which a backup is deployed at the upstream side can be 
applied. 

Chapter 6 described the proposed Web crawler. High-performance crawling and 
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better load balancing between computers were presented. The performance of actual 
Internet crawling is currently being evaluated. QueueLinker enables monitoring of the 
crawling progress. Statistics on the number of items processed by each module and the 
amount of resources consumed by each module can be obtained with the help of the 
QueueLinker statistics mechanism. QueueLinker currently has no resource scheduler 
for the Web crawler; an automated resource scheduler may be indispensable for global 
crawling. 

While many future works remain, I believe this thesis provides valuable 
methodologies for processing data streams. I have developed QueueLinker with strong 
confidence that data streams will become ubiquitous in the future. I am hopeful that 
this thesis will prove helpful in data stream processing. 
 
 





95 
 

References 

[1] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large 
Clusters," In Proceedings of the 6th Symposium on Operating Systems Design and 
Implementation (OSDI), San Francisco, US-CA, Dec. 2004. 

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. 
Stonebraker, N. Tatbul, and S. Zdonik, "Aurora: a new model and architecture for 
data stream management," The VLDB Journal, vol.12, pp.120-139, Aug. 2003. 

[3] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J. Hwang, W. 
Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al., "The Design of the Borealis 
Stream Processing Engine," In Proceedings of CIDR 2005, pp.277-289. 

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, "Models and issues in 
data stream systems," In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART 
symposium on Principles of database systems (PODS), Jun. 2002. 

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, 
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah, 
"TelegraphCQ: Continuous Dataflow Processing for an Uncertain World," In 
Proceedings of the 1st Conference on Innovative Data Systems Research (CIDR), 
Asilomar, US-CA, Jan. 2003. 

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, "NiagaraCQ: A Scalable Continuous 
Query System for Internet Databases," In Proceedings of the 2000 ACM SIGMOD 
International Conference on Management of Data (SIGMOD), pp.379-390, Dallas, 
US-TX, May 2000. 

[7] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, "Gigascope: a stream 
database for network applications," In Proceedings of the 2003 ACM SIGMOD 
international conference on Management of data (SIGMOD), Jun. 2003. 

[8] B. Babcock, S. Babu, R. Motwani, and M. Datar, "Chain: Operator Scheduling for 
Memory Minimization in Data Stream Systems," In Proceedings of the 2003 ACM 
SIGMOD International Conference on Management of Data (SIGMOD), 
pp.253-264, San Diego, US-CA, Jun. 2003. 

[9] R. Avnur and J. M. Hellerstein, "Eddies: Continuously Adaptive Query 
Processing," In Proceedings of the 2000 ACM SIGMOD International Conference 
on Management of Data (SIGMOD '00), pp.261-272, Dallas, US-TX, Mar. 2000. 



96 
 

[10] K. Claypool and M. Claypool, "Teddies: Trained Eddies for Reactive Stream 
Processing," In Proceedings of DASFAA 2008, pp.220-234. 

[11] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, KL. Wu, H. Andrade, and 
B. Gedik, "COLA: Optimizing Stream Processing Applications via Graph 
Partitioning," In Proceedings of the ACM/IFIP/USENIX 10th International 
Middleware Conference (Middleware), pp.308-327, Urbana Champaign, US-IL, 
Dec. 2009. 

[12] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, KL. Wu, and L. 
Fleischer, "SODA: An Optimizing Scheduler for Large-Scale Stream-based 
Distributed Computer Systems," In Proceedings of the 9th ACM/IFIP/USENIX 
International Conference on Middleware (Middleware), pp.306-325, Leuven, 
Belgium, Dec. 2008. 

[13] Y. Drougas and V. Kalogeraki, "RASC: Dynamic Rate Allocation for Distributed 
Stream Processing Applications," In Proceedings of IPDPS 2007, pp.1-10. 

[14] S. Chakravarthy and Q. Jiang. Stream Data Processing: A Quality of Service 
Perspective. Springer, 2009. 

[15] A. Arasu, S. Babu, and J. Widom, "The CQL continuous query language: semantic 
foundations and query execution," The VLDB Journal, vol.15, pp.121-142, Jun. 
2006. 

[16] M. Najork and A. Heydon, "High-Performance Web Crawling," COMPAQ Systems 
Research Center, Sep. 2001. 

[17] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, "UbiCrawler: A Scalable Fully 
Distributed Web Crawler," In Proceedings of AusWeb 2002. 

[18] J. Cho, H. Garcia-Molina, T. Haveliwala, W. Lam, A. Paepcke, S. Raghavan, and G. 
Wesley, "Stanford WebBase Components and Applications," ACM Transactions on 
Internet Technology (TOIT), vol.6, no.2, pp.153-186, May 2006. 

[19] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker, "Load 
Shedding in a Data Stream Manager," In Proceedings of VLDB 2003, pp.309-320. 

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, "Dryad: Distributed 
Data-Parallel Programs from Sequential Building Blocks," In Proceedings of the 
2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 
(EuroSys), pp.59-72, Lisbon, Portugal, Mar. 2007. 

[21] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey, 
"DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing 



97 
 

Using a High-Level Language," In Proceedings of the 8th USENIX Symposium on 
Operating Systems Design and Implementation (OSDI), pp.1-14, San Diego, 
US-CA, Dec. 2008. 

[22] U. Kang, C. E. Tsourakakis, and C. Faloutsos, "PEGASUS: A Peta-Scale Graph 
Mining System - Implementation and Observations," In Proceedings of the 9th 
International Conference on Data Mining (ICDM), pp.229-238, Miami, US-FL, 
Dec. 2009. 

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, "Pig Latin: A 
Not-So-Foreign Language for Data Processing," In Proceedings of International 
Conference on Management of Data (SIGMOD '08), pp.1099-1110, Vancouver, 
Canada, Jun. 2008. 

[24] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears, 
"MapReduce Online," In Proceedings of the 7th USENIX Conference on 
Networked Systems Design and Implementation (NSDI), San Jose, US-CA, Apr. 
2010. 

[25] H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, M. Cherniack, C. 
Convey, E. Galvez, J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts, and S. Zdonik, 
"Retrospective on Aurora," The VLDB Journal, vol.13, pp.370-383, Dec. 2004. 

[26] S. B, Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel, M. Balazinska, and H. 
Balakrishnan, "The Aurora and Medusa Projects," IEEE Data Engineering 
Bulletin, vol.26, no.1, Mar. 2003. 

[27] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing, 
and S. B. Zdonik, "Scalable Distributed Stream Processing," In Proceedings of the 
1st Biennial Conference on Innovative Data Systems Research (CIDR), Jan. 2003.

[28] Y. Xing, S. Zdonik, and JH. Hwang, "Dynamic Load Distribution in the Borealis 
Stream Processor," In Proceedings of the 21st International Conference on Data 
Engineering (ICDE), Apr. 2005. 

[29] Y. Ahmad, B. Berg, U. Çetintemel, M. Humphrey, JH. Hwang, A. Jhingran, A. 
Maskey, O. Papaemmanouil, A. Rasin, N. Tatbul, et al., "Distributed operation in 
the Borealis stream processing engine," In Proceedings of the 2005 ACM SIGMOD 
international conference on Management of data (SIGMOD), Jun. 2005. 

[30] S. Babu and J. Widom, "Continuous queries over data streams," SIGMOD Record, 
vol.30, pp.109-120, Sep. 2001. 

[31] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas, "Operator scheduling 



98 
 

in data stream systems," The VLDB Journal, vol.13, pp.333-353, Dec. 2004. 

[32] S. D. Viglas and J. F. Naughton, "Rate-based Query Optimization for Streaming 
Information Sources," In Proceedings of the 2002 ACM SIGMOD International 
Conference on Management of Data (SIGMOD '02), pp.37-48, Madison, US-WI, 
Jun. 2002. 

[33] R. H. Arpaci-Dusseau, "Run-Time Adaptation in River," ACM Transactions on 
Computer Systems, vol.21, no.1, pp.36-86, Feb. 2003. 

[34] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M. Stonebraker, 
"Operator Scheduling in a Data Stream Manager," In Proceedings of the 29th 
International Conference on Very Large Data Bases (VLDB), pp.838-849, Berlin, 
Germany, Sep. 2003. 

[35] J. Chen, D. J. DeWitt, and J. F. Naughton, "Design and Evaluation of Alternative 
Selection Placement Strategies in Optimizing Continuous Queries," In 
Proceedings of the 18th International Conference on Data Engineering (ICDE), 
pp.345-356, San Jose, US-CA, Mar. 2002. 

[36] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin, "Flux: An 
Adaptive Partitioning Operator for Continuous Query Systems," In Proceedings of 
the 19th International Conference on Data Engineering (ICDE), pp.25-36, 
Bangalore, India, Mar. 2003. 

[37] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. 
Stonebraker, N. Tatbul, and S. Zdonik, "Monitoring Streams – A New Class of 
Data Management Applications," In Proceedings of the 28th International 
Conference on Very Large Data Bases (VLDB '02), pp.215-226, Hong Kong, China, 
Aug. 2002. 

[38] B. Gedik, H. Andrade, KL. Wu, P. S. Yu, and M. Doo, "SPADE: The System S 
Declarative Stream Processing Engine," In Proceedings of the 2008 ACM SIGMOD 
International Conference on Management of Data (SIGMOD'08), pp.1123-1134, 
Vancouver, Canada, Jun. 2008. 

[39] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo, Y. Park, and C. 
Venkatramani, "SPC: A Distributed, Scalable Platform for Data Mining," In 
Proceedings of the 4th International Workshop on Data Mining Standards, 
Services and Platforms (DMSSP '06), pp.27-37, Philadelphia, PA-US, Aug. 2006. 

[40] D. Tarditi, S. Puri, and J. Oglesby, "Accelerator: Using Data Parallelism to 
Program GPUs for General-Purpose Uses," In Proceedings of the 12th 



99 
 

International Conference on Architectural Support for Programming Languages 
and Operating Systems (ASPLOS), pp.325-335, Oct. 2006. 

[41] D. Thain, T. Tannenbaum, and M. Livny, "Distributed Computing in Practice: The 
Condor Experience," Concurrency and Computation: Practice and Experience, 
vol.17, no.2-4, pp.323-356, 2005. 

[42] C. Baru and G. Fecteau, "An overview of DB2 parallel edition," In Proceedings of 
the 1995 ACM SIGMOD International Conference on Management of Data 
(SIGMOD), 1995. 

[43] G. Graefe, "Encapsulation of parallelism in the Volcano query processing system," 
In Proceedings of the 1990 ACM SIGMOD International Conference on 
Management of Data (SIGMOD), 1990. 

[44] A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan, "Clustering Techniques for 
Minimizing External Path Length," In Proceedings of VLDB 1996. 

[45] JH. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stonebraker, and S. 
Zdonik, "High-Availability Algorithms for Distributed Stream Processing," In 
Proceedings of ICDE 2005, pp.779-790. 

[46] A. Koehl and H. Wang, "Surviving a Search Engine Overload," In Proceedings of 
WWW 2012. 

[47] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, "UbiCrawler: A scalable fully 
distributed web crawler," Software: Practice & Experience, vol.34, pp.711-726, Jul. 
2004. 

[48] V. Shkapenyuk and T. Suel, "Design and Implementation of a High-Performance 
Distributed Web Crawler," In Proceedings of ICDE 2002. 

[49] H. Lee, D. Leonard, X. Wang, and D. Loguinov, "IRLbot: Scaling to 6 Billion Pages 
and Beyond," In Proceedings of the 17th International World Wide Web 
Conference (WWW), pp.427-436, Beijing, China, Apr. 2008. 

[50] H. Lee, D. Leonard, X. Wang, and D. Loguinov, "IRLbot: Scaling to 6 billion pages 
and beyond," ACM Transactions on the Web, vol.3, Jun. 2009. 

[51] Y. Sun, Z. Zhuang, and C. L. Giles, "A Large-Scale Study of Robots.txt," In 
Proceedings of WWW 2007. 

[52] S. Kolay, P. D'Alberto, A. Dasdan, and A. Bhattacharjee, "A Larger Scale Study of 
Robots.txt," In Proceedings of WWW 2008. 

[53] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, "Trovatore: Towards a Highly 
Scalable Distributed Web Crawler," In Proceedings of the 10th International 



100 
 

World Wide Web Conference (WWW), Hong Kong, May 2001. 

[54] A. Heydon and M. Najork, "Mercator: A Scalable, Extensible Web Crawler," World 
Wide Web, vol.2, no.4, pp.219-229, 1999. 

[55] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors," 
Communications of the ACM (CACM), vol.13, Jul. 1970. 

[56] N. Askitis and R. Sinha, "HAT-trie: A Cache-conscious Trie-based Data Structure 
for Strings," In Proceedings of ACSC 2007. 

[57] J. M. Hsieh, S. D. Gribble, and H. M. Levy, "The Architecture and Implementation 
of an Extensible Web Crawler," In Proceedings of NSDI 2010. 

[58] R. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez, "Crawling a Country: 
Better Strategies than Breadth-First for Web Page Ordering," In Proceedings of 
the 14th International World Wide Web Conference (WWW), pp.864-872, Chiba, 
Japan, May 2005. 

[59] C. Castillo, A. Nelli, and A. Panconesi, "A Memory-Efficient Strategy for Exploring 
the Web," In Proceedings of the 2006 IEEE/WIC/ACM International Conference on 
Web Intelligence (WI), Hong Kong, Dec. 2006. 

[60] J. Cho and U. Schonfeld, "RankMass Crawler: A Crawler with High Personalized 
PageRank Coverage Guarantee," In Proceedings of VLDB 2007. 

[61] A. Z. Broder, M. Najork, and J. L. Wiener, "Efficient URL Caching for World Wide 
Web Crawling," In Proceedings of The 12th International World Wide Web 
Conference (WWW), pp.679-689, Budapest, Hungary, May 2003. 

 
 



101 
 

Publications 

Journals 
1. Takanori Ueda, Sayaka Akioka, and Hayato Yamana, “Low Latency Data Stream 

Processing on Multi-core CPU Environments,” IEICE Transaction D, vol. 96, no. 5, 
May 2013 (in Japanese). 

2. Takanori Ueda, Koh Satoh, Daichi Suzuki, Kenji Uchida, Kousuke Morimoto, 
Sayaka Akioka and Hayato Yamana, “A Parallel Distributed Web Crawler 
Consisting of Producer-Consumer Modules,” IPSJ Transactions on Database, vol. 
57, Mar. 2013 (in Japanese). 

3. Takanori Ueda, Kenji Uchida, Sayaka Akioka, Hayato Yamana, “An Operator 
Execution Method for Data Stream Processing to Reduce Latency and Achieve High 
Availability,” DBSJ Journal, vol.10, no.3, pp.1-6, Feb. 2012 (in Japanese). 

4. Nobuyuki Kubota, TTakanori Ueda and Hayato Yamana, “Efficient Duplicated URL 
Detection for Web Crawlers,” DBSJ Journal, vol.8, no.1, pp.83-88, Jun. 2009 (in 
Japanese). 

5. Takuya Funahashi, TTakanori Ueda, Yu Hirate and Hayato Yamana, “Reliability 
Verification of Search Engines’ Hit Count,” DBSJ Journal, vol.7, no.3, pp.31-36, Dec. 
2008 (in Japanese). 

6. Takanori Ueda, Yu Hirate and Hayato Yamana, “Disk Access Pattern Mining with 
System Call Level Access Log,” DBSJ Journal, vol.7, no.1, pp.145-150, Jun. 2008 (in 
Japanese). 

7. Takuya Funahashi, TTakanori Ueda, Yu Hirate and Hayato Yamana, “Gathering and 
Analysis of Unlisted Search Engines’ Results,” DBSJ Journal, vol.7, no.1, pp.37-42, 
Jun. 2008 (in Japanese). 

8. Hiroaki Katase, Taku Matsunaga, TTakanori Ueda, Takashi Tashiro, Yu Hirate and 
Hayato Yamana, “Web-Link Structure Reduction for Accelerating Link Analysis 
Algorithms,” DBSJ Journal,vol.7, no.1, pp.245-250, Jun. 2008 (in Japanese). 

  



102 
 

International Conferences, Symposiums, and Workshops 
1. Hiroki Asai, TTakanori Ueda and Hayato Yamana, “Legible Thumbnail: 

Summarizing On-line Handwritten Documents based on Emphasized Expressions,” 
In Proc. of the 13th International Conference on Human-Computer Interaction 
with Mobile Devices and Services (MobileHCI), Stockholm, Sweden, Aug. 2011 
(Poster). 

2. Takanori Ueda, Yu Hirate and Hayato Yamana, “The Challenge of Eliminating 
Storage Bottlenecks in Distributed Systems,” In Proc. of the 1st International 
Workshop on Software Technologies for Future Dependable Distributed Systems 
(STFSSD), Tokyo, Japan, Mar. 2009.  

3. Sayaka Akioka, Junichi Ikeda, TTakanori Ueda, Yuki Ohno, Midori Sugaya, Yu 
Hirate, Jiro Katto, Shigeki Goto, Yoichi Muraoka, Hayato Yamana and Tatsuo 
Nakajima, “Scalable Monitoring System for Distributed Environment,” In Proc. of 
the 1st International Workshop on Software Technologies for Future Dependable 
Distributed Systems (STFSSD), Tokyo, Japan, Mar. 2009.  

4. Takanori Ueda, Yu Hirate and Hayato Yamana, “Exploiting Idle CPU Cores to 
Improve File Access Performance,” In Proc. of the 3rd International Conference on 
Ubiquitous Information Management and Communication (ICUIMC), Suwon, 
Korea, Jan. 2009.  

5. Yasuaki Yoshida, TTakanori Ueda, Takashi Tashiro, Yu Hirate and Hayato Yamana, 
“What’s going on in search engine rankings?,” In Proc. of the 2008 IEEE 
International Symposium on Mining And Web (MAW), Okinawa, Japan, Mar. 2008.  

6. Takanori Ueda, Yu Hirate and Hayato Yamana, “EReM-DiCE: Exploiting Remote 
Memory for Disk Cache Extension,” In Proc. of the 1st International Workshop on 
Storage and I/O Virtualization, Performance, Energy, Evaluation and 
Dependability (SPEED), Salt Lake City, US-UT, Feb. 2008. 

7. Takashi Tashiro, TTakanori Ueda, Taisuke Hori, Yu Hirate and Hayato Yamana, 
“EPCI: Extracting Potentially Copyright Infringement Texts from the Web,” In Proc. 
of the 16th International World Wide Web Conference (WWW), Banff, Canada, 
pp.1151-1152, May 2007 (Poster). 

  



103 
 

Domestic Forums, Symposiums and Workshops 
1. Takanori Ueda, Koh Satoh, Daichi Suzuki, Sayaka Akioka, and Hayato Yamana, 

“QueueLinker: A Framework for Parallel Distributed Processing of Data Streams,” 
DEIM 2013, Mar. 2013. 

2. Koh Satoh, TTakanori Ueda, and Hayato Yamana, “An Accuracy Evaluation for 
Search Engine’s Hit Count – Comparison with Document Frequency in Large-Scale 
Crawl Data–,” DEIM 2013, Mar. 2013 (in Japanese). 

3. Yusuke Yamamoto, Hiroki Asai, TTakanori Ueda, Sayaka Akioka, and Hayato 
Yamana, “Real-time Detection of Twitter Users who Have Opinions for TV 
Programs,” DEIM 2013, Mar. 2013 (in Japanese). 

4. Shino Fujiki, TTakanori Ueda, and Hayato Yamana, “A Method for Extracting 
Information from Twitter by Query Expansion Considering Continuous Variations 
of Correlated Words,” DEIM 2013, Mar. 2013 (in Japanese). 

5. Daichi Suzuki, TTakanori Ueda, and Hayato Yamana, “A Consideration of I/O 
Parallelization of DBMS Queries on a High Performance Storage Environment,” 
DEIM 2013, Mar. 2013 (in Japanese). 

6. Takanori Ueda, Hiroki Asai, Shino Fujiki, Yusuke Yamamoto, Hiromasa Takei, 
Sayaka Akioka and Hayato Yamana, “Information Extraction by Analyzing 
Multiple Media Big Data Including Social Media,” IPSJ SIG Technical Report 
(DBS), vol.2012-DBS-15, no.8, Dec. 2012 (in Japanese). 

7. Takanori Ueda, Koh Satoh, Daichi Suzuki, Kenji Uchida, Kousuke Morimoto, 
Sayaka Akioka, and Hayato Yamana, “A Parallel Distributed Web Crawler 
Consisting of Producer-Consumer Modules,” WebDB Forum, Nov. 2012 (in 
Japanese). 

8. Takanori Ueda, Sayaka Akioka, and Hayato Yamana, “A Method of Thread 
Assignment for Low Latency Stream Processing on Multi-core Environment,” 
DEIM 2012, Mar. 2012 (in Japanese). 

9. Kenji Uchida, TTakanori Ueda, and Hayato Yamana, “Design and Implementation of 
the Web Crawler Focusing on Customizability and Offering Real-time Stream Data,” 
DEIM 2012, Mar. 2012 (in Japanese). 

10. Daichi Suzuki, Koh Satoh, TTakanori Ueda, and Hayato Yamana, “Constructing and 
Evaluation of RDF-Store using a Key-Value Database,” DEIM 2012, Mar. 2012 (in 
Japanese). 



104 
 

11. Yuki Tanaka, Yusuke Yamamoto, TTakanori Ueda, and Hayato Yamana, “A 
Similarity Video Search that can Adjust Search Time and Recall,” DEIM 2012, Mar. 
2012 (in Japanese). 

12. Takanori Ueda, Kenji Uchida, Sayaka Akioka, and Hayato Yamana, “An Operator 
Execution Method for Data Stream Processing to Minimize Latency and Achieve 
High Availability,” WebDB Forum 2011, Nov. 2011 (in Japanese). 

13. Kosuke MORIMOTO, TTakanori Ueda, Kenji UCHIDA, Hayato YAMANA, “An O(1) 
Time Complexity Web Crawling Scheduler with Guarantee of Minimum Interval of 
Accesses to a Web Server,” In Proc. of the 3rd Forum on Data Engineering and 
Information Management (DEIM), Feb. 2011 (in Japanese). 

14. Takanori Ueda, Hiroaki Katase, Kousuke Morimoto, Kenji Uchida, Makoto Yui and 
Hayato Yamana, “QueueLinker: A Distributed Framework for Pipelined 
Applications,” In Proc. of the 2nd Forum on Data Engineering and Information 
Management (DEIM), Feb. 2010 (in Japanese). 

15. Hiroaki Katase, TTakanori Ueda and Hayato Yamana, “LittleWeb: Web Graph 
Compression Method using Similar Nodes Aggregation,” In Proc. of the 2nd Forum 
on Data Engineering and Information Management (DEIM), Feb. 2010 (in 
Japanese). 

16. Takanori Ueda, Hiroaki Katase, Kousuke Morimoto, Kenji Uchida and Hayato 
Yamana, “QueueLinker: Distributed Producer/Consumer Queue Framework,” In 
WebDB Forum (Poster), Nov. 2009 (in Japanese). 

17. Nobuyuki Kubota, TTakanori Ueda and Hayato Yamana, “Efficient Duplicated URL 
Detection for Web Crawlers,” In Proc. of the 1st Forum on Data Engineering and 
Information Management (DEIM), Mar. 2009 (in Japanese). 

18. Taku Matsunaga, Hiroaki Katase, TTakanori Ueda, Nobuyuki Kubota, Kosuke 
Morimoto, Yu Hirate and Hayato Yamana, “Implementing and Evaluating Graph 
Engine for Large Scale Graphs,” In WebDB Forum, IEICE Technical Report, 
vol.108, no. 329, DE2008-69, pp. 43-43, Dec. 2008 (in Japanese). 

19. Takuya Funahashi, TTakanori Ueda, Yu Hirate and Hayato Yamana, “Reliability 
Verification of Search Engines’ Hit Count,” In iDB Forum, IPSJ SIG Technical 
Report (DBS), vol.2008, no.88, pp.139-144, Sep. 2008 (in Japanese). 

20. Takanori Ueda, Yu Hirate and Hayato Yamana, “Dynamic I/O Optimization with 
Access Pattern Mining at OS Level,” In iDB Forum, IPSJ SIG Technical Report 



105 
 

(DBS), vol.2008, no.88, pp.73-78, Sep. 2008 (in Japanese). 

21. Takanori Ueda, “OS Level I/O Optimization in the Many-Core Era,” In jDB 
Workshop, IPSJ SIG Technical Report (DBS), vol.2008, no.56, p.133, Jun. 2008 (in 
Japanese). 

22. Takuya Funahashi, TTakanori Ueda, Yu Hirate and Hayato Yamana, “Gathering and 
Analysis of Unlisted Search Engines’ Results,” In Proc. of the 19th Data 
Engineering Workshop (DEWS), Mar. 2008 (in Japanese). 

23. Hiroaki Katase, Taku Matsunaga, TTakanori Ueda, Takashi Tashiro, Yu Hirate and 
Hayato Yamana, “Web-Link Structure Reduction for accelerating Link-Structure 
Analysis Algorithms,” In Proc. of the 19th Data Engineering Workshop (DEWS), 
Mar. 2008 (in Japanese). 

24. Takashi Tashiro, TTakanori Ueda, Yu Hirate and Hayato Yamana, “Evaluation of 
EPCI: Extracting Potentially Copyright Infringement texts by using a Search 
Engine,” In Proc. of the 19th Data Engineering Workshop (DEWS), Mar. 2008 (in 
Japanese). 

25. Sayaka Kuroki, TTakanori Ueda, Yu Hirate and Hayato Yamana, “A Similar Code 
Search System using Abstraction of Program Codes,” In Proc. of the 19th Data 
Engineering Workshop (DEWS), Mar. 2008 (in Japanese). 

26. Takanori Ueda, Yu Hirate and Hayato Yamana, “Disk Access Pattern Mining for 
System Call Level Access Log,” In Proc. of the 19th Data Engineering Workshop 
(DEWS), Mar. 2008 (in Japanese). 

27. Yasuaki Yoshida, Takuya Funahashi, Hiroaki Katase, TTakanori Ueda, Yu Hirate 
and Hayato Yamana, “Support System for Analysis of Commercial Search Engines’ 
Rankings,” In DBWeb (Poster), Nov. 2007 (in Japanese). 

28. Takanori Ueda, Yu Hirate and Hayato Yamana, “Exploiting Remote Memory to 
Speed-up Random Disk Access,” In Summer United Workshops on Parallel, 
Distributed and Cooperative Processing (SWoPP), IPSJ SIG Technical Report 
(ARC), vol.2007, no.79, pp.151-156, Aug. 2007 (in Japanese). 

29. Yasuaki Yoshida, TTakanori Ueda, Takashi Tashiro, Yu Hirate and Hayato Yamana, 
“Quantitative Evaluation and Feature Analysis of Search Engine Rankings,” In 
Database Workshop (DBWS), IPSJ SIG Technical Report (DBS), vol.2007, no.65, 
pp.441-446, Jul. 2007 (in Japanese). 

30. Takanori Ueda, Yu Hirate and Hayato Yamana, “Performance Evaluation of using 



106 
 

Machines on a Network as Disk Cache,” In Proc. of the 18th Data Engineering 
Workshop (DEWS), Mar. 2007 (in Japanese). 

31. Takashi Tashiro, TTakanori Ueda, Taisuke Hori, Yu Hirate and Hayato Yamana, 
“Copyright violation detection system for Web texts,” In Database Workshop 
(DBWS), IPSJ SIG Technical Report (DBS), vol.2006, no.78, pp.27-33, Jul. 2006 (in 
Japanese). 

 


