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Abstract

How to efficiently extract the useful information from high throughput biological data is one of the
main challenges in bioinformatics. Machine learning techniques such as Support Vector Machines
(SVMs), Neural Networks (NNs), Estimation of Distribution Algorithms (EDAs) have been effec-
tive in analyzing biological data because of their capabilities in handling uncertain data noise and in
generalization. Gene function prediction and protein structure prediction are two important domains
where machine learning techniques are applied in bioinformatics. From the view of machine learn-
ing, the gene function predictions can be seen as multi-label classification or hierarchical multi-label
classification (HMC) tasks; the protein structure predictions can be seen as optimization tasks that
search for the protein folding structure with minimum energy based on its amino acid sequence.

For complicated tasks in bioinformatics, applying machine learning methods simply usually
cannot obtain expectable results. The different characteristics and challenges of the tasks will re-
quire novel modifications of existing machine learning methods. In t
methods based on multi-SVM and hybrid EDA are developed for solving complicated tasks in the
predictions of gene function and protein HP model. According to the characteristics of applications,
the prior knowledge of tasks and the information of biological data are extracted by some deli-
cate techniques. The obtained knowledge and information are used to enhance machine learning
methods. SVMs based methods are developed for solving different applications of the gene func-
tion prediction. EDAs based methods are proposed for solving protein HP model problems. The

’s HP-lattice model is a simplified model of protein structure prediction. It is a useful tool for
investigating general properties of protein folding.

In gene function classification applications, there are some datasets with characteristics of high
noise, large number of input features and relatively small number of training examples. For those
datasets, conventional nonlinear classification methods are unavailable due to the over-fitting prob-
lem. A new multi-SVM system called composite kernel based SVM (ck-SVM) is proposed to
realize a flexibility controllable classifier which can solve nonlinear tasks and avoid over-fitting in
certain degree. The proposed ck-SVM method realizes a nonlinear separating boundary by esti-
mating a series of piecewise local linear boundaries. A local linear multi-SVM system is estimated
by a composite kernel incorporating prior knowledge of training data. Instead of building multiple
local SVM models separately, the prior knowledge of local subsets is used to construct a composite
kernel, and the local linear multi-SVM model is realized exactly in the same way as a single SVM
model by using the composite kernel.
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In multi-label gene function classification, a training example is associated with a set of labels
and the task is to predict the label set for each unseen instance. The main challenge of this problem
is that classes are usually overlapped and correlated. An improved method based on label ranking
and delicate decision boundary SVM is proposed for solving the multi-label gene classification.
The label ranking strategy requires a real-valued score for each class (label) to order a label rank,
then classifies a new instance into the classes that ranking score above a threshold. In order to
obtain a proper label rank, an improved probabilistic SVM with delicate decision boundary is used
as the scoring method. It can improve the probabilistic label rank by introducing the information
of overlapped training samples into learning procedure. Instead of estimating a static threshold
for all testing instances, an instance-independent thresholding strategy is proposed to decide the
classification results. It can estimate an appropriate threshold for each testing instance according to
the characteristics of instance and label rank.

Hierarchical multi-label classification (HMC) is a special variant of multi-label classification
where the classes are organized in a hierarchy. FunCat prediction problem is a difficult task of HMC.
In FunCat datasets, there are hundreds of functional classes structured by a predefined hierarchy, and
the example distributions of classes are usually high degree skewed (imbalanced) with negative more
than positive. An improved method based on over-sampling and hierarchy constraint is proposed for
solving the FunCat prediction. Two measures are implemented to improve the HMC performance
by introducing the hierarchy constraint into learning procedures. Firstly, for imbalanced functional
classes, a hierarchical SMOTE is proposed as over-sampling preprocessing to improve the SVM
learning performance. Secondly, an improved True Path Rule consistency approach is introduced
to ensemble the results of binary probabilistic SVM classifications. It can correct the classification
results and guarantee the hierarchy constraint of classes.

The protein HP model prediction is an NP-complete optimization problem. The task is to predict
the minimum energy lattice structure of a protein from its simplified two-letter (H and P) amino acid
sequence. Evolutionary Algorithms (EAs) based methods can be used to solve this NP-complete
problem. But for long protein sequences, conventional methods can only find the suboptimum
solutions. A hybrid EDA is proposed for solving the protein HP model. In order to select better
individuals for probabilistic model of EDA, a composite fitness function containing the information
of folding structure core (H-Core) is introduced to replace the traditional fitness function of HP
model. Then, local search with guided operators is utilized to refine found solutions for improving
efficiency of EDA. In addition, an improved backtracking-based repairing method is proposed to
repair invalid individuals sampled by the probabilistic model of EDA. It can significantly reduce the
number of backtracking searching operation and the computational cost for long sequence protein.

For optimization problems with irregular and complex multimodal landscapes, EDAs always
suffer from the drawback of premature convergence similar to other evolutionary algorithms. An
adaptive niching EDA with balance searching based on clustering analysis is proposed for solving
complex optimization problems. The Affinity Propagation (AP) clustering is used to adaptively
partition the population into niches during a run of EDA firstly. Then, a niche capacity selection
mechanism based on the Boltzmann scheme is introduced to realize a balance searching between ex-
ploration and exploitation. Two different selection strategies, novelty-proportionate selection based
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on the searching history information and fitness-proportionate selection based on the best fitness in
a niche, are assembled by a Boltzmann weight. Tuned by the Boltzmann weight, at the beginning
phase of searching, the dominating novelty-proportionate selection can guide the EDA searching to
cover the search space as much as possible; at the end phase of searching, the dominating fitness-
proportionate selection can enforce the EDA searching to exploit the already found promising areas.
The proposed adaptive niching EDA is used for solving the protein HP model prediction. In addi-
tion, three benchmark functional multimodal optimization problems are also used to evaluate the
proposed method.
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Chapter 1

Introduction and Motivation

1.1 Machine Learning in Bioinformatics

How to extract useful information efficiently from high throughput biological data is an important
task in bioinformatics. The tools and softwares for transforming the biological data into the un-
derlying knowledge should be developed and applied. Effective computational methods capable
of handling biological data (such as gene sequences, protein expressions and biological pathways)
are very important for drug research and disease understanding [4]. Because of well-known gen-
eralization characteristic and outstanding capabilities in dealing with data noise, Machine Learning
methods such as Support Vector Machines (SVMs), Evolutionary Algorithms (EAs), Neural Net-
works (NNs), Markov models and graphical models have been remarkable in handling biological
data. [65, 100].

There are several biological domains where machine learning techniques are applied for knowl-
edge extraction from data, such as genomics, proteomics, microarrays, systems biology, evolution
and text mining, etc. Among them, applications in genomics and proteomics are our focuses in this
thesis. 1) Genomics has been an important research topic. The valid gene sequences is increasing
exponentially due to the high throughput technologies. And these sequences should be handled ef-
fectively for the sake of mining useful knowledge and information [62, 10, 13]. Assigning biological
functions to the genome sequences is a key challenge in Genomics. Machine learning techniques,
such as SVMs and NNs, are always used to predict gene functions from a predefined set of possible
functions. 2) Proteins play a vital role in the life process. In the proteomic domain, the main ap-
plication of computational techniques is protein structure prediction. The three-dimensional (3-D)
structure of protein is a key feature to decide the protein functions. Protein is a kind of complex

macromolecules with thousands of atoms and bounds. Therefore, the number of possible structures

1



T Transcription Translation

ACGATTGC
L] [ EeEe—=ACc6AUUGCUm[—>
TGCTAACSG

DNA RNA Protein

Figure 1.1: Information flows (from DNA to RNA to proteins) in the central dogma of biology.

is huge. This makes protein structure prediction a very complicated combinatorial problem where
optimization techniques, such as Genetic Algorithm (GA) and Estimation of distribution algorithm
(EDA), are required.

Machine learning strategies always are programming computers to optimize a performance s-
tandard by utilizing past experience or example data. The optimized performance standard can be
the accuracy index given by a predictive model (in modeling methods, such as NNs, SVM, etc.),
and the value of a evaluation or fitness function (in optimization methods, such as GA, EDAs,
etc.) [45, 54]. In the modeling method, the “learning” term means to induce a model by utilizing a
computer program according to training data or past experience. Statistical theories always are used
to build computational models because of the learning objective is to make inferences from training
samples. The two important steps in this procedure are to induce the model by processing the train-
ing data and to represent the model efficiently. Optimization problem always is the task of finding

an optimal solution in a space of multiple (sometimes exponentially sized) possible solutions.

1.2 Gene Function Prediction

1.2.1 Functional Genomics

Functional genomics is a bioinformatics research field that attempts to describe gene (and protein)
functions and interactions by utilizing the vast biologic data generated by genomic projects (such as
genome sequencing projects). The central dogma of biology is described as that DNA is transcribed
into RNA and RNA is translated into proteins. The relationship between the DNA, RNA and protein
is showed in Fig.1.1. The gene function usually means the function of the products of genes after

transcription and translation, which are proteins.



Genes and ORFs

Genes are defined as the DNA segments which carry the heredity information. This information
can produce an organism and decide the organism’s characteristics. Gene-finding programs are
implemented for finding where the genes locate in a DNA sequence. If a proper stretch of DNA
(such as length, start position and end position in DNA sequence, etc.) is identified in gene-finding

programs. This stretch of DNA can be signed as an Open Reading Frame (ORF).

DNA

DNA is a long chain molecule which is composed of a backbone of phosphate groups and alternate
sugars. A base is utilized for attaching to each sugar. And the base sequences along the backbone
produces the code. There are four categories of bases: Adenine (A), Guanine (G), Thymine (T) and
Cytosine (C). According to a view of computer science, DNA can be considered as a long letter

string with four letters A, G, T and C.

Encoding and replicating the information required to produce proteins are the main functions
of DNA. All the approximately twenty amino acids that produce proteins are coded by different
combinations of four DNA bases. A codon is defined as each triple of DNA. Three of the triples are
utilized for encoding “stop” codons, which indicate the cellular reading code mechanism where to

stop.

DNA is double stranded structure which two long chain of molecules entwined together in the
well-known double helix. The complementary base pairing exists in two strands. Each A in one

strand is paired with a T in the other and each C with a G.

RNA

RNA is utilized for translating DNA to proteins. RNA is a nucleic acid which its structure very
likes to DNA but only single stranded. There are four bases of RNA: A, G, C and U (Thymine is
replaced by Uracil ). RNA undertakes several important roles in a cell. Taking a copy of one of the
strands of DNA is the primary role of RNA. This messenger RNA can undertake splicing to remove
non-coding regions (introns) of a gene. At last, the base sequences of RNA are translated into amino

acids for producing the proteins.



1.2.2 Gene Function Prediction

Determining the functions of genes and proteins is a foundation for diseases understanding and drug
discovery. It can help for new drug targets identification and reliable diagnostics development. It
also can help to understand the molecular and biochemical processes that cause disease or main-
tain health [78]. The completion of several genome projects in the past decade has generated the
full genome sequence of many organisms. Assigning biological functions to the sequences has be-
come a key challenge in modern biology. This step is often implemented through cooperation of
computational tool guidance and laboratory experiments. Based on a predefined possible functions
sets (such as the FunCat and Gene Ontology), computational techniques are utilized to predict gene
functions. Then, the functions with highest confidence prediction are further tested in laboratory
experiments [78].

Many computational methods are used in functional genomics. The most common method of
determining the function of a protein is to use a sequence similarity program to infer function by
orthologous homology. Unfortunately, the sequence similarity method is always unavailable and
unpractical. By sequence comparison, gene is annotated as some functions, but it can not indicate
clearly where the those functions information came from. In addition, the error of original sequence
annotation may be propagated to the future gene function prediction by sequence similarity program.

Recently, some general prediction methods are proposed by using data mining and machine
learning to induce rules predicting function from a variety of data sources [3, 74, 6]. Some com-
prehensive statistic and analysis information, such as percentage of amino acids in the protein and
molecular weight of the protein, are abstracted from gene sequence. The obtained statistic and anal-
ysis information are utilized as sample attributes for data mining and machine learning techniques.
An example of the yeast genome (S. cerevisiae) benchmark dataset attributes is showed in Tab. 1.1.
These methods are more general and accurate than conventional sequence similarity methods [25].

From the view of machine learning, the gene function predictions can be seen as multi-label or
hierarchical multi-label classification tasks. Different from common machine learning tasks, there
are two characteristics of the function predictions: 1) there are multiple functions associated with a
single gene; 2) the hierarchy constraint may exist in gene functions: a gene that belongs to a certain
function automatically belongs to all its ancestor functions. In practice, if the hierarchical informa-
tion of functions can not be obtained or provided, the prediction task is a multi-label classification
problem.

The Gene Ontology (GO) [3] and the Functional Catalogue (FunCat) [74] are two main tax-

onomies for gene function. The GO taxonomy is consisted of functional classes organized by a



Table 1.1: Part attributes of the yeast genome (S. cerevisiae) benchmark datasets.

No. Attribute Description | Type

1 | aa-rat-pair-X-Y Percentage of the pair of amino acids real
X and Y consecutively in the protein
2 seq-len Length of the protein sequence integer
3 theo-pl Theoretical pl (isoelectric point) real
4 | atomic-comp-X | Atomic composition of X where X is ¢ (carbon), o (oxygen), | real
n (nitrogen), s (sulphur) or h (hydrogen)

5 mol-wt Molecular weight of the protein integer
6 aliphatic-index The aliphatic index real
7 aa-rat-X Percentage of amino acid X in the protein real
8 hydro Grand average of hydrophobicity real

DAG (directed acyclic graph). There are three separated ontologies in GO: “Biological Processes”,
“Molecular Function” and “Cellular Component”. Biology knowledge indicate that a gene may
participate in different biological processes and may perform different biological functions. For
example, a certain gene perform specific molecular functions in specific cellular components (such
as binding activities or catalytic that occur at the molecular level in mitochondrion or rough endo-
plasmic reticulum), at the same time, it also can participate to specific biological processes (such as
metabolism, cell cycle and nucleotide biosynthesis) [3]. Different from GO, the FunCat is a more
simple gene functional taxonomy. There are 28 main functional branches that contain general fields
such as metabolism, cellular transport and cellular communication in FunCat. These main function-
al branches are divided into a set of subclasses which are organized by a tooted tree structure. There
is a hierarchy constraint in FunCat taxonomy: a gene that belongs to a certain function automati-
cally belongs to all its ancestor functions [90]. A small part of the FunCat taxonomies is showed in

Fig. 1.2.

1.3 Protein Structure Prediction on HP Model
1.3.1 Protein and Protein Folding

Investigating the proteins’ roles in cell is very important to understand the operation of the whole
cell. Biology knowledge indicate that proteins are extremely important molecules. Proteins partici-

pate almost all the works in the cell, such as immunity, transportation, muscle structure, metabolism,
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Figure 1.2: A small part of the hierarchical FunCat classification scheme [64]

hormones, repair, respiration and control of genes.

As we all know, a protein molecule is a string of amino acids that are connected by peptide
bonds. There are approximately twenty different types of amino acids in protein. For computational

convenience, a protein always is represented by a character string in computational algorithms.

The protein conformation means how the long chain of amino acids folds in 3-D space. Many
research works have been implemented on protein structure determination because of it is associated
with the functions of the protein. Investigating protein conformation is a key to understanding
its interaction with RNA, DNA and enzyme. The protein conformation information can indicate

essential knowledge for protein engineering and drug design.

A protein can be described in terms of its four main structural descriptions as follows. 1) Pri-
mary Structure refers to the linear sequence of protein amino acid units. These sequences act
as instruction for protein, and are results of the human genome project. 2) Secondary Structure
presents a protein by substructures or regular patterns in the polypeptide backbone. These substruc-

tures or regular patterns are defined as one of three motifs (alpha-helix, random coil and beta-sheet).



3) Tertiary Structure describes the 3-D conformation of protein molecule. A protein can not real-
ize functional until its tertiary structure is formed. The spatial relationships between the proteins’
secondary substructures are presented in the tertiary structure. 4) Quaternary Structure describes
the molecular relationships and structures when a group of protein molecules are assembled for
forming larger molecules.

The protein three-dimensional tertiary structure is defined and folded by the protein primary
form. Some environmental conditions (such as the specific chaperon or helper molecules and the
correct pH condition) are required in the protein self-folding procedure. Some means of thermal or
chemical kinetics can be utilized to unfold a protein. When the agent is withdrawn, some proteins
also can refold into their tertiary structures. A protein self-folding process can be completed in a
few microseconds. Some large protein molecules may spent minutes or hours for self-folding.

Protein structure prediction is a research area that focuses on accurately predicting the proteins’
tertiary structures based on their primary structures. In the conventional structure elucidation bio-
logical experiment for protein tertiary structure, Nuclear Magnetic Resonance (NMR) spectroscopy
and X-ray crystallography are utilized to identify the positions of atoms within the molecular envi-
ronment. However, the conventional biological method is a slow and expensive process. As a result,
only a few proteins’ structures are experimentally determined while the number of known protein
sequences exceeds millions. Therefore, utilizing computer programs to predict the protein confor-
mations from protein sequences becomes a key means for uncovering proteins’ 3-D structures and
functions [4, 48, 9].

Under specific conditions, the protein sequence folds into a unique native 3-D structure. Each
possible protein fold has an associated energy. According to the thermodynamic hypothesis, a na-
tive protein conformation corresponds to the one which the free energy fulfils the global minimum.
Based on this hypothesis, many methods that search for the protein native structure define an ap-
proximation of the protein energy and use optimization algorithms that look for the protein fold that
minimizes this energy. These approaches mainly differ in the type of energy approximation em-
ployed and in the characteristics of the protein modeling. Due to the complexity of PSP task, some
simplified models ( such as Dill’s HP-lattice [56] model) are always used as tools to investigate the

properties of protein conformation.

1.3.2 Hydrophobic Polar (HP) Model

According to the assumption of thermodynamical approaches to the protein tertiary structure predic-

tion, a protein folding procedure searches the global minimum of Gibbs free energy. The simplest



Table 1.2: Assignment of residues as Hydrophobic or Polar.

Amino Acid | 1-Letter | Assignment | Amino Acid | 1-Letter | Assignment

Alanine A Hydrophobic Arginine R Polar
Glutamine Q Polar Glycine G Hydrophobic
Cysteine C Hydrophobic | Glutamic acid E Polar
Histidine H Polar Isoleucine I Hydrophobic
Proline P Hydrophobic Serine S Hydrophobic
Methionine M Hydrophobic | Phenylalanine F Hydrophobic
Threonine T Hydrophobic | Tryptophan w Hydrophobic
Asparagine N Polar Aspartic acid D Polar
Tyrosine Y Hydrophobic Valine \" Hydrophobic
Leucine L Hydrophobic Lysine K Polar

models of this assumption further simplifies that the interactions between hydrophobic amino acids
are the major contributions to the free energy of a protein’s native folding [31]. Biology knowl-
edge indicate that the hydrophobic amino acids in a protein sequence tend to push together, on
the contrary, the hydrophilic amino acids are inclined to push on the molecule outside [30]. This

well-studied simplified model for protein folding is called as hydrophobic polar (HP) model. [56].

Commonly studied proteins consists of approximately 20 different amino acids (as showed in
Tab. 1.2). Only two properties of amino acid information in the sequence, whether the amino acid
belongs to hydrophobic (H) or belongs to polar (P)(also known as hydrophilic), are considered in
HP model. Table 1.2 shows the assignment of residues as hydrophobic or polar [31]. The string
of amino acids are folded on a 2-D or 3-D lattice for seeking conformations which the number of

topologically adjacent H — H neighbors achieves the global maximum.

In HP model, a protein is considered as a sequence S € {H, P}t , where H represents a
hydrophobic residues and P represents a hydrophilic or polar residues. The HP model restricts
the space of conformations to self-avoiding paths on a lattice in which vertices are labeled by the
residues. Two neighbor relations are considered for a pair of residues. The one is connected neigh-
bor (they are adjacent in the chain). The other is topological neighbor (they are adjacent in the
lattice but not connected in the chain). Let ey denote the interaction energy between topologi-
cal neighbor of two H residues, epp for two P residues, egp for a H residue and a P residue.

An energy function is defined as the total energy of topological neighbors with ey = —1 and
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Figure 1.3: One possible configuration of the sequence HPHPPHHPPHPPPHHP in 2-D HP
model. There are four HH topological neighbors (represented by broken lines).

epp = egp = 0. The HP problem is to find the folding conformation that minimizes the total en-
ergy E(z). Figure 1.3 shows the graphical representation of a possible configuration for sequence
HPHPPHHPPHPPPHH P in 2-D HP model, hydrophobic residuals are represented by black
beads and polar residuals by white beads. The energy that the HP model associates with this con-
figuration is -4. The problem of finding such a minimum energy configuration has been proved to

be NP-complete for the 2-D and 3-D lattices [27, 8].

The HP model cannot be used to describe real protein or demonstrate folding of real protein. In
HP model, all amino acid properties are simplified by two binary properties and all protein structure
properties are simplified by a discrete lattice. Although more complex models have been proposed,
the HP model remains a focus of research in computational biology, chemical and statistical physic-
s. By varying the energy function and the bead sequence of the chain (the primary structure), effects
on the native state structure and the kinetics (rate) of folding can be explored, and this may provide
insights into the folding of real proteins. In particular, the HP model has been used to investigate the
energy landscapes of proteins, i.e. the variation of their internal free energy as a function of confor-
mation. In evolutionary computation, the model is still employed as benchmark problem because of

its simplicity and its usefulness as a test-bed for new evolutionary optimization approaches [75].

1.4 Challenges

For implementing machine learning techniques into difficult bioinformatics applications, the novel
characteristics of the applications will require novel modifications of existing algorithms and pro-

cedures, and in some invention of entirely new techniques.
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1.4.1 Challenges in Prediction of Gene Function

As mentioned in previous sections, the gene function predictions are considered as multi-label or
hierarchical multi-label classification tasks (if hierarchical information of functions are provided).
Multi-label classification problem is an extension of traditional multi-class classification problem
in which the classes are not mutually exclusive and each sample is related with several classes
simultaneously. In this problem, training samples may belong to a label subset and the classification
goal is to predict the label subset for the new instances. Hierarchical multi-label classification is
a special variant of multi-label classification where the classes are structured by a hierarchy: an
instance that is associated with one class automatically associated with all its ancestor classes.

In this thesis, the task of multi-label (or hierarchical multi-label) classification is transferred into
a series of separate basis binary classification tasks, and one SVM classifier is trained to learn one
class, then results of all binary classifiers are combined by considering the multi-label relationships
between classes (and hierarchical constraints in hierarchical multi-label problem). According to the
characteristics of gene function prediction, there are many challenges for classification methods in

three different levels:

* For the basis binary SVM classifier, there are some special datasets (such as FunCat Yeast
datasets [6] and Genbase motif-based datasets [32]), the nonlinear (RBF-kernel or other non-
linear kernels) SVM models can not obtain proper classification results. These tasks are
nonlinear problems with characteristics of high noise and large number of input features com-
pared with the relatively small number of training examples, the conventional nonlinear kernel

SVM models are severely overfitting at times [6].

* For the multi-label classification problem, the classes are not mutually exclusive and each
sample may belong to several classes simultaneously. The main challenge of this problem is
that classes are usually overlapped and correlated. Generally, traditional multi-class learning

algorithms cannot work with multi-label problem effectively.

* For the hierarchical multi-label classification problem, the task is characterized by hundreds
of classes structured according to a predefined hierarchy; and the example distributions of
functional classes are usually high degree skewed (imbalanced) with negative more than pos-
itive. In such imbalance dataset learning, standard classifiers tend to be overwhelmed by the

majority class and ignore the minority one.
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1.4.2 Challenges in Prediction of Protein HP model

The problem of protein structure prediction on HP model has been proved to be NP-complete for the
2-D and 3-D lattices. Therefore, a deterministic approaches is always not practical for this problem.
Many GA based methods have been proposed to solve the protein structure prediction on HP model
in recent years [89, 41, 82, 26, 22]. Among them, the EDAs that use Markov probabilistic model or
other probabilistic models proposed by Ref. [75] outperform other population-based methods when
solving the HP model folding problem, especially for the long sequence protein instances. But the

EDAs based methods still have some disadvantages as follows.

» For most long sequence protein instances, the chance of finding the global optimum is very
low, and the algorithm often need be set by very large generation number and population size
for finding the global optimum. For some deceptive sequences, those methods can only find

the suboptimum solutions.

* In those EDAs based methods, a backtracking method is used to repair invalid individuals
sampled by the probabilistic model of EDAs. For a traditional backtracking algorithm, the

computational cost of repairing procedure is very heavy for those long sequence instances.

* For those optimization problems with irregular and complex multimodal landscapes, the
EDA:s still suffer from the drawback of premature convergence similar to other Evolutionary
Algorithms (EAs). A simple yet popular explanation for the occurrence of premature conver-
gence is the loss of diversity. But high diversity can not always guarantee a good performance
for EA. It is a challenge which is called as the question of exploration vs. exploitation. At the
early stage of evolution, enhancing diversity measures can ensure EA to implement a broad
exploration in the search space. But such enhancement may be counterproductive or even
destructive for EA at the stage when high exploitation is necessary. Therefore, implementing

a modifiable balance between exploration and exploitation is very important for this issue.

1.5 Goals of the Thesis

For complicated tasks in bioinformatics, applying machine learning methods simply usually cannot
obtain expectable results. The different characteristics and challenges of the tasks will require novel
modifications of existing machine learning methods. In this thesis, improved methods based on
machine learning methods are developed and applied to the prediction of gene function and pro-

tein structure. More precisely, SVM based multi-label and hierarchical multi-label classification
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methods are developed for solving the gene function prediction problems, and hybrid EDA based
methods are proposed for solving the protein HP model problems. According to the characteristics
of applications, the prior knowledge of tasks and the information of biological data are extracted by
some delicate techniques. The obtained knowledge and information are used to enhance machine
learning methods.

The work presented here aims to assess the performances of the improved methods incorpo-
rating prior knowledge of application problems. The thesis also shows how the improved methods
handle the aforementioned challenges inherent in the gene function prediction and protein structure

prediction.

1.6 Thesis Outlines and Main Contributions

This thesis presents my work that has been done over the last three years. It consists of seven chap-
ters. Chapter 1 gives a background and an outline for the whole thesis. Chapter 2 introduces a
novel support vector machine with composite kernel for solving classification tasks in gene func-
tion prediction. Chapter 3 is devoted to multi-label classification based on label ranking and delicate
boundary SVM for Functional Genomics. Chapter 4 introduces a hierarchical multi-label classifica-
tion based on over-sampling and hierarchy constraint for FunCat gene function prediction. Chapter
5 proposes a hybrid EDA for protein structure prediction based on HP model. Chapter 6 proposes
an adaptive niching EDA with balance searching based on clustering analysis. Finally, Chapter 7
gives a summary for the whole thesis. The flow of this thesis is depicted in Fig. 1.4.

This thesis summarizes the research on the predictions of gene function and protein structure.

Thesis outlines and main contributions are listed as follows.

Chapter 2 proposes a composite kernel based SVM (ck-SVM) model for solving nonlinear classi-
fication tasks in gene function prediction. The proposed ck-SVM method realizes a nonlinear
separating boundary by estimating a series of piecewise local linear boundaries. A local linear
multi-SVM model is estimated by a composite kernel with incorporating prior knowledge of
training data. Firstly, according to the distribution information of training data, a partition-
ing approach composed of separating boundary detection and clustering technique is used to
obtain local subsets from training data. Secondly, a composite kernel is introduced to realize
a local linear multi-SVM model by incorporating prior knowledge mined from each training
subsets. Instead of building multiple local SVM models separately, the prior knowledge of

local subsets is used to construct a composite kernel, then the local linear multi-SVM model
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Figure 1.4: Flow diagram of this thesis

is realized exactly in the same way as a single SVM model by using the composite kernel.

The main contributions related to this composite kernel based SVM model are that:

* A novel composite kernel based SVM is proposed to realize a local linear multiple SVM
system. Instead of building multiple local SVM models separately, the local subsets is
used to estimate a composite kernel, and the composite kernel is utilized to realize the
local linear multi-SVM model by implementing the structural risk minimization in the

same way as a single standard SVM.

* A partitioning approach composed of separating boundary detection and clustering tech-
nique is used to obtain local subsets from training data. By considering sample label
changes in neighbor samples, the separating boundary detection can select the training
samples which near to separating boundary. It can avoid trivial partitioning produced

by implementing unsupervised clustering approach on original training data.
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Chapter 3 proposes an improved multi-label classification based on label ranking and delicate de-
cision boundary SVM. Firstly, an improved probabilistic SVM with delicate decision bound-
ary is used as the scoring method to obtain a proper label rank. It can improve the probabilistic
label rank by introducing the information of overlapped training samples into learning proce-
dure. Secondly, an instance-dependent thresholding of relating with input instance and label
rank is proposed to decide the classification results. It can estimate an appropriate threshold

for each testing instance according to the characteristics of instance and label rank.

The main contributions related to this multi-label classification method are that:

* A novel scoring method considering the information of overlapped training samples is
proposed to solve the multi-label classification problem. The range of overlapping sam-
ple space is identified according to the relative information of two separating surfaces
firstly. Then, a bias model with delicate decision boundaries is used to improve the

classification accuracy of overlapping samples.

* An instance-dependent thresholding of relating with input instance and label rank is
proposed to decide the classification results. By applying d-folds validation on training
data, a set of target thresholds for all training samples is determined as teachers, then the
instance-dependent thresholds for testing instances are obtained by implementing KNN

strategy on this teacher threshold set.

Chapter 4 proposes an improved hierarchical multi-label classification method based on over-
sampling and hierarchy constraint for solving the gene function prediction problem. The
hierarchical multi-label classification task is transferred into a series of binary SVM classifi-
cation tasks. Then, two measures are implemented to improve the classifier performance by
introducing the hierarchy constraint into learning procedures. Firstly, for imbalanced func-
tional classes, a hierarchical SMOTE is proposed as over-sampling preprocessing to improve
the SVM learning performance. Secondly, an improved True Path Rule (TPR) consistency
approach is introduced to ensemble the results of binary probabilistic SVM classifications. It

can improve the classification results and guarantee the hierarchy constraint of classes.
The main contributions related to this hierarchical multi-label classification method are that:
* For imbalance classes in gene function prediction datasets, a hierarchical SMOTE ap-

proach is proposed to preprocess the imbalanced training subsets for classifiers. It can

improve the performance of classifiers by changing the distribution of the imbalanced
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datasets.

* An improved TPR consistency approach is used to combine the results of binary prob-
abilistic SVM classifiers. A performance weight is introduced into TPR method, it can
restrict the poor performance binary classifiers bring an error propagation effect to other

classifiers.

Chapter 5 proposes a novel hybrid Estimation of Distribution Algorithm (EDA) to solve the H-
P model problem. Firstly, based on the information of folding structure core (H-Core), a
composite fitness function containing H-Core information is proposed to replace the tradi-
tional fitness function in HP model. The proposed fitness function is expected to select better
individuals for probabilistic model of EDA. Secondly, local search with guided operators
is utilized to refine found solutions for improving efficiency of EDA. Thirdly, an improved
backtracking-based repairing method is proposed to repair invalid individuals sampled by the
probabilistic model of EDA. It can significantly reduce the number of backtracking searching

operation and the computational cost for long sequence protein.

The main contributions related to this hybrid EDA are that:

* a composite fitness function containing H-Core information is proposed to replace the
traditional fitness function in HP model. The proposed fitness function is expected to
select better individuals for probabilistic model of EDAs algorithm. It can help to in-
crease the chance of finding the global optimum and reduce the complexity of EDA

(population size and the number of generation needed).

* Local search with guided operators is utilized to refine the found solutions for improv-
ing efficiency of EDA. Both the global information about the search space and the local
information of solutions found so far can be utilized to enhance the efficiency of evolu-

tionary algorithm.

* For the long sequence protein sequences, an improved backtracking-based repairing
method is proposed to repair invalid individuals generated by the EDA probabilistic
model. The traditional backtracking repairing procedure will produce heavy compu-
tational cost for searching invalid closed-areas of folding structure. To avoid entering
invalid closed-areas, a detection procedure for feasibility is introduced when selecting
directions for the residues in backtracking searching procedure. It can significantly re-
duce the number of backtracking searching operation and the computational cost for the

long protein sequences.
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Chapter 6 proposes an adaptive niching EDA based on Affinity Propagation (AP) clustering anal-
ysis. The AP clustering is used to adaptively partition the niches and mine the searching
information from the evolution process. The obtained information is successfully utilized to
improve the EDA performance by using a balance niching searching strategy. The proposed
adaptive niching EDA is used for solving the protein HP model folding. In addition, three
benchmark functional multimodal optimization problems based on continuous EDA with sin-
gle Gaussian probabilistic model are also used to evaluate the proposed method in continuous

situation.
The main contributions related to this adaptive niching EDA are that:
* An adaptive niching EDA is proposed, AP clustering is used to adaptively partition
the population into niches during a run of EDA. The individuals are clustered before

submitting them to niching clearing. A cluster can be seen as a niche, and the niche

number and the niche radiuses may vary obviously for different generations.

* A mechanism of niche capacity selection based on the Boltzmann scheme is proposed

to realize a balance searching between exploration and exploitation.

Chapter 7 concludes this work, summarizes the thesis and gives suggestions for further research.



Chapter 2

Support Vector Machine with Composite
Kernel for Classification

2.1 Introduction

Support Vector Machines (SVMs) have been widely used in different application areas and become
the state of the art. Different from most of conventional methods to minimize the training error, the
Structural Risk Minimization (SRM) principle is implemented in SVM to minimize an upper bound
of the generalization error [91]. This difference eventually results in some remarkable characteris-
tics for SVM, such as the good generalization performance, the absence of local minima and the

sparse representation of solution.

By mapping the input data onto a higher-dimensional feature space in a non-linear fashion
and seeking an optimal separating hyperplane in the feature space, SVMs can deal with linearly
inseparable classification problems, and the feature mapping can be done implicitly through the
kernel trick. Nonlinear SVMs employ sophisticated kernel functions, such as radial basis function
(RBF), polynomial functions, etc., to fit datasets with complex decision surfaces. However, as
many other nonlinear classification methods, nonlinear kernel SVM models also face the potential
overfitting issue when the number of training examples is small due to their large VC dimensions.

In functional genomics, there are some classification tasks (such as FunCat Yeast datasets [6]
and Genbase motif-based datasets [32]), the nonlinear (RBF-kernel or other non-linear kernels)
SVM models can not obtain proper classification results. These tasks are nonlinear problems with
characteristics of high noise and large number of input features compared with the relatively s-
mall number of training examples, the conventional nonlinear kernel SVM models are severely

overfitting at times [6]. Composite kernel techniques are always used to deal with some special

17



18

classification tasks [71, 57, 12, 50, 86], prior knowledge of training data can be introduced into
SVM classifier by composite kernel techniques. In this chapter, a new multi-SVM system called
composite kernel based SVM (ck-SVM) is proposed for solving those gene function classification

tasks.

A nonlinear separating boundary can be approximately seen as an aggregation of piecewise
local linear boundaries. The proposed ck-SVM method realizes a nonlinear separating boundary
by estimating a series of piecewise local linear boundaries. A local linear multi-SVM system is
estimated by a composite kernel with incorporating prior knowledge of training data. 1) According
to the distribution information of training data, a partitioning approach composed of separating
boundary detection and clustering technique is used to obtain local subsets from training data. By
considering sample label changes in neighbor samples, the separating boundary detection can select
the training samples which are near to separating boundary. The selected samples are partitioned
into local subsets by Affinity Propagation (AP) clustering, and each subset is utilized to capture prior
knowledge of corresponding local linear boundary. 2) A composite kernel is introduced to realize a
local linear multi-SVM system by incorporating prior knowledge mined from each training subsets.
Instead of building multiple local SVM models separately, the prior knowledge of local subsets is
used to construct a composite kernel, then the local linear multi-SVM system is realized exactly
in the same way as a single SVM model by using the composite kernel. Experimental results on
benchmark datasets demonstrate that the proposed method improves the classitication performance

efficiently.

The proposed method falls in the category of multiple linear SVM based on subspace pattern
recognition. In some previous works, Ref. [21] presented Localized Support Vector Machine which
builds multiple linear SVM models from training data and each model is designed to classify a
particular test example. Ref. [39] introduced Mixtures of Linear SVMs by packaging linear SVMs
into a probabilistic formulation and embedding them in the mixture of experts model. Different
from those methods, in the proposed ck-SVM method, first, the subsets for capturing local linear
knowledge are only clustered from samples which are near to separating boundaries. It can avoid
trivial partitioning produced by implementing unsupervised clustering approach on original training
data. Second, a composite kernel incorporating prior knowledge is introduced to realize the local
linear multi-SVM system by estimating a series of piecewise linear boundaries. Instead of building
multiple local SVM models separately, the partition information of local subsets is used to build a
composite kernel, and the composite kernel is utilized to realize the local linear multi-SVM system

by implementing the structural risk minimization in the same way as a single standard SVM.
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Figure 2.1: An example of multiple linear separating boundaries

The rest parts of the chapter are organized as follows. Section 2.2 formulates the proposed com-
posite kernel based SVM model. Section 2.3 describes estimation of the proposed model. Section
2.4 presents the Functional Genomics benchmark datasets and the results of experimental perfor-

mance evaluation. Finally, the conclusions and future work directions are discussed.

2.2 A Composite Kernel Based SVM (ck-SVM) Model
2.2.1 Formulations of Model

In this chapter, the binary classification problem is considered. The classifier is built from a given

labeled training dataset of /N samples

(@1,91)5 -5 (@i, ¥i)s - - -5 (TN, UN) (2.2.1)

where z; € R? is the input vector corresponding to the i-th sample labeled by y; € { 1,41}
depending on its class.

As showed in Fig. 2.1, a non-linear separating boundary can be seen as an aggregation of M
piecewise local linear boundaries Q;fa: +b;,j = 1,...,M. According to the piecewise linear
approximation method, the piecewise linear model fp(x) can be written compactly as follow.

M
fe(@) => (O] +b)R;(x) +b (2.2.2)

J=1

where R;(x)’s are the basis function, €2;’s are the coordinate parameter vectors of local linear
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boundaries. The role of basis function is similar to that of a functional space basis. In some partic-
ular situations, they do constitute a functional basis. Typical examples are wavelet basis and RBF
basis. The overall performance of the the piecewise linear model is obtained via an interpolation
using the basis function R(z). It also implies that the piecewise linear model fp(z) can describe
any sufficiently smooth nonlinear separating hyperplane function on a compact interval arbitrarily
well by merely increasing the value of M.

Two parameter vectors ¢ (x) and © are defined as follows.

() = [Ri(z),2Ri(2), -, Ru(x), 2R (x)]"
0 = [b,9F, - ba,0%]" (2.2.3)

Introducing parameter vectors ®(z) and © (Eq. 2.2.3) into Eq. 2.2.2, the piecewise linear model
fp(z) can be rewritten as:

fp(x) =0T®(x) +b (2.2.4)

By introducing the Structural Risk Minimization principle [28], the piecewise linear model

fr(z) (Eq. 2.2.4) can be written as the QP optimization problem as

N
. 1, 7
min Jp = -6 @—f—cZﬁk (2.2.5)

ot {yk[@)T@(wk)er]Zl—é‘mk:l,---,N

&>0k=1,...,N

The Lagrangian is constructed:

N
L(0,b,&a,v) = Tp(0,8) =Y (apyp®T ®(wy) + ] — 1+ &) kafk (2.2.6)
k=1

with Lagrange multipliers o, > 0, v > 0 for k = 1,..., N. The solution is given by the saddle
point of the Lagrangian:

in £(0,b,§; a, 22.7
max min £(6,5,¢; . v) (22.7)
This leads to
8_é) =0—-060= Zk lakyki)(ack)
%%—O%Ekzlakyk—o (2.2.8)
S =0-0=<a<ck=1,... N
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The dual problem becomes

N N
1
max Ip(a) = -3 Z Yy K (zg, 7)) agag + Zak (2.2.9)
k=1 k=1
o 0<ao,<c,k=1,...,N

where K (x, ;) is a composite kernel defined by
K(mk,ml) = (mk)TQ(ml)

M
= (+afz) ) Rz (2.2.10)
7=1

for k = 1,..., N. Hence, the piecewise linear model fp(x) (Eq. 2.2.4) is reduced to a standard

SVM based on a composite kernel. Finally the nonlinear SVM classifier takes the form

N
y = sign[z aryr K (x, ) + 0] (2.2.11)
k=1
with «a, positive real constants which are the solution to a QP problem.

From the optimal solution, it is not necessary to know the parameter vector ®(z) in expansion
(Eq. 2.2.3) explicitly, as the solution only depends on the inner product which defines composite
kernel K (xg,z;) (Eq. 2.2.10). In order to represent an inner product, the kernel is required to
satisfy Mercer’s condition [91]. In Eq. 2.2.10, factors R j(x;) R j(x) are outputs of basis functions. It
follows that the kernel K (z, x;) satisfies Mercer’s condition because it consists of a sum of products
of Mercer kernels, cf. [91].

2.2.2 Properties of Model

According to the definitions mentioned in the previous subsection, the proposed ck-SVM model can
be seen as a novel local linear multi-SVM system that is skillfully realized by a composite kernel.
The prior knowledge of each local linear boundaries are introduced into model by basis function
parameters of the composite kernel, and the local linear multi-SVM system is realized exactly in the
same way as a single SVM model by using the composite kernel.

When the parameter M in Eq. 2.2.2 is set as 1 specifically, the ck-SVM model becomes a linear
SVM. By increasing the value of M, the model can describe any sufficiently smooth nonlinear

separating hyperplane function. Therefore, the ck-SVM is a flexibility controllable support vector
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machine model, it can solve nonlinear tasks by introducing multiple local linear boundaries and
avoid over-fitting in certain degree by selecting a proper parameter M.

In conventional multi-SVM methods, the training data is partitioned into several subsets, and
each subset is used to estimate a local SVM model separately, then outputs of local SVM models are
combined by a certain ensemble mechanism. However, the local SVM models, estimated by local
information of subsets, are always not suitable for describing whole nonlinear separating boundary
because data noise and other reasons. And designing an effective ensemble mechanism is a difficult
task in practice.

In the proposed model, instead of building multiple local SVM models separately, the partition
information of local subsets is used to construct a composite kernel, and the composite kernel is
utilized to realize the local linear multi-SVM system by implementing the structural risk minimiza-
tion in the same way as a single standard SVM. Comparing with conventional multi-SVM methods,
the proposed model can properly estimate nonlinear separating boundary by learning from global
information of whole training data. In addition, by implementing the structural risk minimization as
a single SVM and introducing the interpolation based on basis function, the ck-SVM can overcome

some drawbacks of ensemble mechanism in conventional methods.

2.3 Estimation of the Proposed ck-SVM Model

2.3.1 Affinity Propagation Clustering

Affinity Propagation (AP) [38] is a recently proposed clustering method. A set of measures of
similarity between pairs of data points is used as input parameter in AP. And it outputs a set of
clusters of the points with their corresponding exemplars. The AP algorithm takes a matrix of
similarity metrics between each pair of points s(i, k) as input parameter. Different from some
traditional clustering methods to require a predetermined parameter of cluster number, a real number
s(k, k) for each data point k, which are called preferences, are used as input to calculate of how
likely each point is to be chosen as exemplar in AP clustering.

The AP clustering procedure is implemented by interchanging messages between the points
until a stop condition is satisfied. There are two messages types to be interchanged between data
points. The availability message a(i, k), sent from the candidate exemplar point k to the point
1, describes the accumulated evidence for how well-suited it would be for the point i to choose
the point k as its exemplar. The responsibility message (i, k), sent from the data point i to the

candidate exemplar point k, describes the accumulated evidence for how appropriate the point £ is
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to serve as the exemplar for the point ¢, comparing with other potential exemplars for the point .
The availability parameters are initialized as zero: a(i, k) = 0. Then, the parameters are calcu-

lated and updated according to the rules as follows:

r(i, k) « s(i,k) — max {a(i, k) + s(i,k)} 2.3.1)
K s.t.k'+£k
a(i, k) < min{0,r(k, k) + Z max{0,7(i , k)}} (2.3.2)
i's.t.i’ ¢{i,k}
a(k, k)< > max{0,r(i',k)} (2.3.3)
i st #k

The AP method has been praised because of its ability to efficiently and quickly handle very large

problems.

2.3.2 Partitioning Based on Separating Boundary Detection

In order to estimate parameters of the proposed ck-SVM model according to the distribution infor-
mation of training data, clustering techniques can be used to partition training data into subsets. But
our partitioning task is somewhat different from conventional unsupervised clustering. In order to
capture the prior knowledge of local linear boundaries properly, the partitioning approach in the ck-
SVM should ensure each subset contains training examples from two classes simultaneously. But
conventional clustering techniques consider only the proximity between examples and often end up
grouping training examples from the same class into the same cluster, because such clusters tend to
be pure.

A partitioning approach composed of separating boundary detection and clustering technique is
proposed to partition training data into subsets. A separating boundary detection considering sample
label changes in neighbor area is used to select samples which are near to the separating boundary
firstly. Then, the AP clustering is used to partition the selected samples into subsets for estimating
parameters of the ck-SVM model.

An example on synthetic data is used to formulate the proposed partitioning method. As showed
in Fig. 2.2(a), a two-class dataset is constructed comprising 339 points in each class, the points are
uniformly drawn from some shifted cosine signals in the two-dimensional space and perturbed with
Gaussian noise in the vertical direction. Implementing unsupervised clustering technique onto the
original data may produce trivial partitioning. The clustering results of implementing AP clustering
(the cluster number is set as 3 empirically) onto the synthetic data (678 samples) is showed in Fig.

2.2(b), where samples from different clusters are plotted in different colors. It can be found that the
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Figure 2.2: An example of partitioning approach. (a) the synthetic data (678 samples) constructed
by shifted cosine signals with Gaussian noise; (b) the clustering results of implementing AP clus-
tering onto the original synthetic data; (c) the selected samples (219 samples) by implementing the
separation boundary detection; (d) the clustering results of implementing AP clustering onto the
selected samples.

partitioning tends to grouping samples from the same class into the same cluster. The partitioned

subsets cannot be used to capture distribution information of local separating boundaries properly.

To solve above problem, in the proposed partitioning method, a separating boundary detection
is introduced to select samples before implementing clustering. Samples around the boundary are
selected by detecting changes of class label. The detection procedure is described as follows. For
a certain training data sample P, consider the n nearest neighbor samples, if one of its n neighbor
samples has a different class label, then P is selected as a sample around the separating boundary
to be reserved. The result of detection on the training data may lead to a subset of samples that
distribute around the separation boundary between classes. It can filter out information that may be

regarded as less relevant, while preserving the important structural properties near to the separation
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boundary. The selected result (219 samples) from the synthetic data by implementing the detection
is showed in Fig. 2.2(c) and the clustering results on the selected samples is showed in Fig. 2.2(d). It
can be found that the subsets of the proposed partitioning is able to capture distribution information

in the training data properly.

2.3.3 Estimation of the Proposed ck-SVM Model

According to the definition of the proposed ck-SVM described in previous, basis functions is used
to interpolate the piecewise linear hyperplanes, and each basis function corresponds to a local linear
hyperplane. Therefore, the basis functions should abstract the distribution information of dataset as
accurate as possible. In this chapter, a RBF gaussian function is selected as the basis function to

capture distribution information of obtained partitioning subsets.

R(x) = e’(wT_a“); (2.3.4)
where 1 is the subset center, o the radius of subset and A the scale parameter.

Another important parameter in the proposed model is the number of basis function M. It is
decided by the number of partitioning subsets (clusters). Theoretically, the proposed model fp(z)
(Eq. 2.2.10) can describe any sufficiently smooth nonlinear separating hyperplane function on a
compact interval arbitrarily well by merely increasing the value of M. If a proper parameter M is
selected according with the data distribution (for example, select M = 3 for the cosine synthetic
data showed in Fig. 2.2(a)), the proposed model will get a well performance. In practice, the AP
clustering used in the proposed model is an adaptive clustering approach, and it also can work by

user-specified number of clusters.

2.4 Experiments and Results
2.4.1 Experiment Data Sets

In functional genomics, an important problem is predicting the functions of genes (proteins). Cur-
rently, the number of protein sequences is constantly increasing, and these protein sequences always
are stored in central protein databases from laboratories all over the world. The experimental deter-
mination of protein structure is time-consuming and quite labor-intensive. Therefore, only a fraction
of these proteins has been experimentally analyzed for the sake of detecting their structure and un-
covering their function in the corresponding organism. The automated tools that can classify new

proteins to structural families are needed in functional genomics research field.
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Table 2.1: Properties of experiment datasets

Dataset Attribute | Training | Testing
Sequence (seq) 478 2580 1339
All microarray (expr) 551 2488 1291

Table 2.2: Descriptions of classes (labels).

FunCat ID | Description
14.01 Protein folding and stabilization
14.04 Protein targeting, sorting and translocation
14.07 Protein modification
14.10 Assembly of protein complexes
14.13 Protein/peptide degradation

Generally, gene function predictions always are tasks of multi-label classification [34] or hierar-
chical multi-label classification [6], and SVMs is often used as efficient basis classifier because
of their good generalization ability [34, 93, 6]. The purpose of this chapter is to improve the
basis classifier performance for each label (class), so only per-class (binary classification) exper-
iments are implemented for evaluating the proposed method. Two yeast datasets (‘“Sequence” and
“All microarray”) from FunCat are used to evaluate the proposed method. The different dataset-
s describe different aspects of the genes in the yeast genome, and the different sources of data
highlight different aspects of gene function. The properties of experiment datasets, including in-
stance number D and attribute number, are listed in Tab. 2.1, the detailed description of each
dataset can be referred from Ref. [25, 92]. The datasets are downloaded from the following web-
page: http://dtai.cs.kuleuven.be/clus/hmcdatasets/. Five classes (labels) in “protein fate” FunCat
class (FunCat I D = 14) are selected to implement per-class (binary classification) experiments, the

descriptions of labels are listed in Tab. 2.2,

2.4.2 Evaluation Metrics

Three classical evaluation metrics of Precision, Recall and F-score are used to evaluate the efficiency
of the proposed method. The three metrics are introduced for a (raditional binary classification
model with negative and positive classes. Precision metric is defined as the proportion of positive

predictions that are correct, and Recall metric is defined as the proportion of positive instances that
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are correctly predicted positive. That is:

Precisi TP
recision -
TP+ FP
TP
Il = ———
Reca TP+ FN
2 x Precisi l
F— score — * Precision * Recal 2.4.1)

Precision + Recall

with TP is the number of true positives (correctly predicted positive instances), FP is the number of
false positives (positive predictions that are incorrect), and FN is the number of false negatives (pos-
itive instances that are incorrectly predicted negative). Note that the above three metrics ignore the
number of correctly predicted negative instances because of only positive instances are concerned

in gene function prediction.

2.4.3 Experiment Setting and Results

In our experiments, the LSSVM [85] is taken as a basis. SVM parameters are chosen by cross-
validation procedure. In partitioning approach, the neighbor parameter n is set as 5 for separating
boundary detection. About the parameters of AP clustering (defined in Ref. [38]), the maximum
number of iterations is set as 1000, and early terminate parameter is set as 100 (i.e., the clustering
procedure will be terminated if the estimated exemplars stay fixed for continuous 100 iterations);
the damping factor, which may be needed if oscillations occur, is set as 0.9; Euclidean distance is
used for the similarity metric of samples.

The RBF-kernel SVM and linear SVM are used to compare with the proposed ck-SVM method.
The experimental results for five labels on two datasets are presented in the Tab. 2.3 and Tab. 2.4.
It can be found that the RBF-kernel SVMs are severely overfitting, most of testing instances are
predicted as negative and values of the recall metrics are very low. The experimental results of all
evaluation metrics demonstrate that the proposed method improves the classification performance

efficiently.

2.5 Conclusions

In this chapter, a composite kernel based SVM method with incorporating prior knowledge is pre-
sented. The proposed ck-SVM approximates a nonlinear separating boundary by estimating a series
of piecewise linear boundaries. A partitioning approach composed of separating boundary detec-

tion and clustering technique is used to obtain local subsets from the training data. The separating
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Table 2.3: Results of comparing with the RBF kernel and linear SVM for FunCat “Sequence” datset.

RBF-kernel SVM Linear SVM Proposed ck-SVM
FunCat ID | Prec. Rec.  F-score | Prec. Rec.  F-score | Prec. Rec.  F-score
14.01 0.3963 0.0472 0.0843 | 0.1667 0.3333 0.2222 | 0.1921 0.3452 0.2468
14.04 0.5326 0.0825 0.1429 | 0.3131 0.3690 0.3388 | 0.3548 0.4013 0.3766
14.07 0.7253 0.0623 0.1147 | 0.6460 0.5474 0.5926 | 0.6982 0.6053 0.6484
14.10 0.4039 0.0772 0.1296 | 0.2474 0.4068 0.3077 | 0.2731 0.3841 0.3192
14.13 0.4532 0.0451 0.0820 | 0.3048 0.4507 0.3637 | 0.3122 0.4864 0.3803

Table 2.4: Results of comparing with the RBF kernel and linear SVM for FunCat “All microarray”

datset.
RBF-kernel SVM Linear SVM Proposed ck-SVM
FunCat ID | Prec. Rec.  F-score | Prec. Rec.  F-score | Prec. Rec.  F-score
14.01 0.4092 0.1175 0.1826 | 0.2292 0.3929 0.2895 | 0.2571 0.4285 0.3214
14.04 0.4813 0.1281 0.2023 | 0.4178 0.4449 0.4309 | 0.4375 0.4603 0.4486
14.07 0.6947 0.1275 0.2155 | 0.6081 0.5632 0.5848 | 0.6424 0.6226 0.6323
14.10 0.4187 0.0984 0.1594 | 0.2843 0.5075 0.3644 | 0.3071 0.5684 0.3988
14.13 0.4382 0.0946 0.1556 | 0.2992 0.4524 0.3602 | 0.3317 0.4805 0.3925

boundary detection can select the training samples which are near to separating boundary by con-

sidering sample label changes in neighbor samples. The selected samples are partitioned into local

subsets by AP clustering, and each subset is utilized to capture prior knowledge of corresponding

local linear boundary. Then, a composite kernel is introduced to realize the local linear model by

incorporating prior knowledge mined from each training subsets.

The experimental results demonstrate that the proposed method can solve the special nonlinear

classification tasks in gene function prediction, which conventional nonlinear kernel SVMs can not

work efficiently.



Chapter 3

Multi-label Classification Based on
Label Ranking and Delicate Boundary
SVM for Functional Genomics

3.1 Introduction

Multi-label classification problem is an extension of traditional multi-class classification problem in
which its classes are not mutually exclusive and each sample may belong to several classes simulta-
neously. It is increasingly required by many real-world applications. For instance, in text categoriza-
tion, a document generally has several different topics, such as social, sport and health [63, 77]; in
bioinformatics, each gene may belong to several functional classes, such as transcription, metabolis-
m and protein synthesis [34]; in scene classification problem, each scene image may be associated
with a set of semantic classes, such as city and beach [11]. In these cases, instances in the training
dataset are related with a set of labels and the classification task is to predict the label set for the
unseen instances. The main challenge of this problem is that classes are usually overlapped and cor-
related. Generally, traditional multi-class learning algorithms cannot work with multi-label problem
effectively.

Label ranking strategy is often used in multi-label classification methods [34, 88, 95]. This
strategy requires a real-valued score for each class (label) to order a label rank, the labels of higher
score values are more related with the new instance, and then classifies a new instance into the
classes that ranking score above a threshold. In a ranking based classification, both the scoring
method and the threshold selection can influence the classification results significantly. An ideal
ranking based classifier can be imagined as follows, the scoring method can provide a proper label

rank (i.e., the labels of higher score values are more related with the instance). And the threshold

29
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selection strategy can estimate an appropriate threshold according to the characteristics of instance

and label ranking strategy.

About the scoring methods, since Support Vector Machine (SVM) based methods have good
generalization ability in single-label multi-class problem[79, 20], more attention also has been paid
on such kind of techniques for multi-label problem. At present, there are mainly two types of SVM-
based methods to solve the multi-label problem. One is to consider all samples and their labels
simultaneously to construct one optimization formulation, for example, rank-SVM [34] and maxi-
mal margin labeling algorithm [51]. But it is time-consuming to solve such large scale optimization
problems in numerical computation. The other is to decompose a multi-label problem into many
binary class sub-problems and to solve them by using SVM-like methods. Generally speaking, the

latter runs faster than the former does.

Nowadays the widely used decomposition techniques include one-versus-rest and one-versus-
one strategies. In one-versus-rest SVM methods [34, 88], the multi-label training set is simply
divided into [ (the number of labels) binary class subsets, where each positive class consists of those
samples with some given label and the other remained samples belong to the corresponding negative
class; and then [ traditional binary SVM classifiers are trained. The weakness of this strategy is that

binary classifiers are trained independently, ignoring the semantic relationship of labels.

For one-versus-one SVM methods, the first step is to split the training set into [ x (I — 1)/2
binary class subsets. It is noted that in some subsets samples possess double labels (overlapping
samples), i.e. belonging to both positive and negative classes at the same time. Some papers show
that the performance of classifier can be improved by introducing the information of those double-
label training samples into learning procedure effectively. In [80], those double-label samples are
processed by the method of triple class support vector machine. In [93], those double-label samples
are considered as the third class besides positive and negative classes and so-called parallel support
vector machine is designed to cope with such training subsets. The drawback of this strategy is that
many binary classifiers need to be built for those datasets with large label number [.

Different from the above methods, in this chapter, a novel scoring method is proposed to solve
the multi-label classification problem. Experientially, the basic Binary-SVM method cannot work
very well for those overlapping samples because of the complexity of multi-label problem. But
there is an important common characteristic of overlapping (double-label) samples in the essentially
overlapping classes of two labels. It is that the majority of double-label samples are distributed near
to two binary SVM separating surfaces simultaneously. The motivation of the proposed method is

that, the range of overlapping sample space is identified according to the relative information of two
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separating surfaces firstly. Then, a bias model with delicate decision boundaries is used to improve

the classification accuracy of overlapping samples.

The scoring methods are the major focus of research in the multi-label classification. Howev-
er, the threshold selection is often processed as a unimportant post-processing step and so far few
studies have done on this subject. For the document classification applications, in [96] and [58],
threshold selection techniques are successfully applied to obtain better performance. A per-class
threshold selection strategy has been used to improve the performance of the one-versus-all binary
Support Vector Machine (SVM) multi-label classification in [36]. It estimate an appropriate thresh-

old value for each class by optimizing macro-average F-measure.

An improved ranking based multi-label classification method is proposed in this chapter. )
An improved probabilistic SVM with delicate decision boundary is used as the scoring method.
In this method, firstly, utilizing the one-versus-rest strategy and the Platt’s sigmoid method [69], [
binary probabilistic SVM classifiers are trained for [ labels correspondingly. For example, training
the p-th (p € [1,!]) binary SVM, the samples labeled by p only are considered as “positive”, all
others are considered as “negative”. Secondly, according to the one-versus-one strategy and / binary
probabilistic SVMs, [ (I — 1)/2 bias models are built by corresponding each pair of labels. The
proposed bias model can capture the characteristics of double-label samples and give the more
delicate decision boundaries for samples of overlapping sample space. It is expected to obtain more
proper probabilistic classifier results by introducing the information of double-label training samples
into classifier. Finally, biased probabilistic classification results are ranked to produce label ranking.
2) An instance-dependent thresholding of relating with input instance and label rank is proposed to
decide the classification results. By applying d-folds validation on training data, a set of target
thresholds for all training samples is determined as teachers, then the instance-dependent thresholds
for testing instances are obtained by implementing KNN strategy on this teacher threshold set.
Experimental results on the two Functional Genomics benchmark datasets of Yeast and Genbase
show that the proposed method improves the classification performance efficiently, compared with

binary SVM method and some existing well-known methods.

The rest parts of the chapter are organized as follows. Section 3.2 gives a brief overview of
probabilistic outputs of SVM classification and ranking based multi-label classification. Section 3.3
describes the details of the proposed method based on label ranking and delicate decision boundary
SVM. Section 3.4 formulates evaluation metrics of multi-label classification problem and the results
of experimental performance evaluation. Finally, the conclusions and future work directions are

discussed.



32

3.2 Probabilistic Outputs of SVM Classification and Ranking Based
Multi-label Classification

3.2.1 Probabilistic Outputs for SVMs

SVM is a supervised learning method introduced by Vapnik based on his Statistical Learning Theory
and Structural Minimization Principle [91]. The basic idea of using SVM for classification is to
find the optimal separating hyperplane between the positive and negative samples. The optimal
hyperplane is defined as the maximum margin between the training samples that lie closest to it.
The samples that lie closest to the separating hyperplane are defined as support vectors. Once this
hyperplane is found, new samples can be classified simply by determining on which side of the
hyperplane they fall.

Given training data, 7' = {(x1,v1), - - (T, Ym)} , where z; € R™ is the input vector of training
samples, and y; € {—1, 1} is the class label of sample x;. The task of classification is to train a
classifier f(X'), which minimizes an expected misclassification criterion. A linear SVM classifier

f(X) is equivalent to solving a convex quadratic optimization problem defined as follow.

n

min%HWHQ—I—CZ& (3.2.1)
i=1

subject to y; ({(W, X;) +b) > 1 — & and & > 0. The regularization parameter C' is used to

balance the classifier complexity and the classification precision on the training dataset T'. This

convex quadratic problem can be generally solved by its dual formulation [28]. The linear SVM can

be converted into a more flexible non-linear SVM by simply replacing the involved vector inner-

product with a non-linear kernel function [94, 15].

Constructing a classifier to produce a posterior probability p (class—input) is very useful in
practical recognition situations. Posterior probabilities are also required when a classifier is making
a small part of an overall decision, and the classification output must be combined for the overall
decision. However, the standard SVM do not provide such probabilities. The Platt’s sigmoid method
through training the parameters of an additional sigmoid function to map the SVM outputs into
probabilities [69]. The following gives a brief description of this method of probabilistic output for
SVM in two classes’ case.

Given training data 7" = {(x1,y1),- - (©m,ym)}, labeled by y; € {—1,1}, the binary SVM
can obtain a decision function f(x). The signs of f(x) are used to predict all the test samples x.
Instead of predicting a label y; € {—1,1} for the the test samples x, many applications require a

posterior class probability p(y = 1|z). In [69], the probability p(y = 1|z) is approximated by a
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sigmoid function with parameters A and B defined as follow.

1
T 1+ exp(Af(x) + B)

For estimating the best values of parameters A and B, any subset of m training data can be used to

p(y = 1|z) (3.2.2)

solve the following maximum likelihood problem,

!
min ){— > (tilog(p:) + (1 — t:) log(1 — pi)) }
=1

Z=(A,B
- ! fi = f(x)
pz_l—i—exp(Afi—i-B)’ L ‘
Ni+1 . =1
t; =14 Mot Z_fy’ i=1,2,---m (3.2.3)
vz fyi=-1

where N, means the number of positive-labeled samples, and N means the number of negative-
labeled samples.

The method leaves the SVM error function unchanged. Instead, it adds a trainable post-processing
step which is trained with regularized binomial maximum likelihood. A Sigmoid function with t-
wo parameters is chosen as the post-processing, since it matches the posterior that is empirically
observed. The SVM+Sigmoid combination preserves the spareness of the SVM while producing

probabilities that are of comparable quality to the regularized likelihood kernel method.

3.2.2 Ranking Based Multi-label Classification

A formal problem statement for multi-label classification is described as follow. The domain of
instances is denoted as X = IR% and the finite set of labels as Y = {1,2,...,1}. Given a multi-
label training set 7" of size m, T' = {(z1,v1), (x2,92), - - -, (T, Ym) Hz; € X, y; CY') where each
instance x; € X is associated with a subset of relevant labels y; C Y, the goal of the multi-label
classification is to construct a multi-label classifier C : X — 2/(I = |Y'| > 2) which, for any given
instance x;, determines all its relevant label subset v;.

For the ranking based multi-label classification problem, the learning model is expected to build
areal-valued scoring function as f(-,-) : X XY — IR. And it is supposed that a successful learning
model will tend to output larger score values for labels in y; than those not in y;. The corresponding

multi-label classifier C'(-) can also be derived from the real-valued scoring function:

C(zi) = {y|f(zi,y) > t,y e Y}. (3.2.4)

where t is a value estimated by a certain threshold selection strategy.
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3.2.3 Threshold Selection Strategies

There are three commonly used threshold selection strategies for classification [96], including the
rank-based method (RCut), the proportion-based assignments (PCut) and the score-based local op-
timization (SCut). Let [ denotes the number of classes (labels) in the problem, d denotes the number
of instances in the testing (or validation) set, and assume one score is produced by the classifier for

each instance-class pair. The threshold selection algorithms are defined as follows.

1. RCut, it is a per-instance strategy, for each instance, sort classes by score and assign positive
to each of the ¢ top-ranking classes. The parameter ¢ is a value (an integer between 1 and
[) can be either specified by the user or automatically tuned using a validation set. That is,
the value of ¢ optimizing the global performance of the classifier on the validation set is fixed
when applying the classifier on new instance in the testing set. RCut with ¢ = 1 is also

commonly used for single-label classification.

2. PCut, it is a per-class strategy, for each class c¢;, sort the testing instance by score and assign
positive to each of the /; top-ranking instances, where [; = P(c;) x  x d is the number of
instance assigned to class ¢;. and P(c;) is the prior probability (estimated using a training
set) for an arbitrary instance to be an member of class c¢;. The parameter x is automatically
tuned in the same fashion as tuning ¢ for RCut, by varying the value of x until the global

performance of the classifier is optimized on the validation set.

3. SCaut, it is also a per-class strategy, score a validation set of documents for each class and
tune the threshold over the local pool of score values until the optimal performance of the
classifier is obtained for that class. And the per-class thresholds are fixed when applying the

classifier to new instance in the testing set.

The three strategies have different properties of information used, suitability, flexibility and
overfitting risk. And the choice of threshold selection strategy depends on the characteristics of

classifier and application [96].

3.3 Proposed Ranking Based Multi-label Classification

According to the previous analysis, the ranking based multi-label classification consists of two
important parts: the scoring method and the threshold selection. And both the scoring and the

threshold selection can influence the classification results significantly. The scoring method should
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Figure 3.1: Main scheme of the proposed ranking based multi-label classification.

provide a proper label rank, i.e., the labels of high score values are more related with the instance.
And the threshold selection strategy can choose appropriate thresholds for the testing instances.

Int -label classification, as showed in Fig. 3.1, instead of es-
timating a static threshold for all testing instances in conventional methods, threshold selection is
considered as a function T'(x;, R(x;)). The threshold function relies on both the input instance x;
and the label rank R(z;). It is expected to choose appropriate thresholds according to the character-
istics of instances and label ranking strategy. The corresponding multi-label classifier C(-) can be
described as:

Efforts on both parts are made to improve the classification performance. For the scoring patrt,
an improved probabilistic SVM with delicate decision boundary is used to obtain a proper label
ranking results. For the threshold selection part, based on the ideal threshold set of training data
estimated by the cross validation method, a KNN learning model is used to realize the threshold

function T'(z;, R(x;)) related with both the input instance and the label rank.

3.3.1 Scoring Method Based on SVM with Delicate Decision Boundary

The goal of the multi-label classification is to construct a multi-label classifier ¢ : X — 2(I =
|Y'| > 2) which, for any given sample x;, determines all its relevant label subset ;. In this chapter,
however, the learning model will produce a real-valued scoring function as the form f : X x Y —
IR. A successful learning system will tend to output larger values (probability) for labels in y; than
those not in y;. The corresponding multi-label classifier ¢(-) can also be derived from the real-valued
scoring function f(-,-) : c(x;) = {y|f(zi,y) > t(z;),y € Y}, where ¢(-) is a function of threshold.

The main scheme of the proposed method is shown in Fig. 3.2. First of all, [ (the number of

label) binary SVMs are built by one-versus-rest strategy, i.e., training the p (p € [1,!]) binary SVM,
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Figure 3.2: Main scheme of the SVM based scoring method

the samples labeled by p only are considered as “positive”, all others are “negative”. And the Platt’s
sigmoid method is used to obtain the probabilistic outputs of SVMs. Thus, [ probabilistic classifiers
are constructed. Then, according to the one-versus-one strategy and probabilistic outputs of [ binary
SVMs, [« (I — 1)/2 bias models are built by corresponding each pair of labels. The detailed
mechanism of bias model will be described in next subsection, it can capture the characteristics of
double-label samples and give a more delicate decision boundary for samples of overlapping sample
space. It can be used to improve the performance of probabilistic classifier. Finally, in integration,
ranking and final decision procedure, for each sample, there are (I — 1) probabilistic values for every
label, the mean value of (I — 1) probabilistic values is used as the final probability for this label.
Hence, a probabilistic rank of [ values are obtained for all labels. In the testing procedure, a proper
threshold estimated based on training set is used to determine the label subset and its size for each

testing sample.

Bias Model with Delicate Decision Boundary

Now let us consider the basic problem of classifying the essentially overlapping classes of label p
and q. As shown in Fig. 3.3 (a), two separating surfaces are constructed by SVM binary classifiers
mentioned in previous subsection. They divide the sample space into four areas: “only p area (1)”,
“only q area (2)”, “p and q area (3)” and “no one’s area (4)”. It must be noted that in some cases (e.g.

2

for linearly separable classes, or symmetric classes) one or two of these areas may be empty [67].
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And two SVM separating surfaces are constructed in different high dimensional space, in order to
summarize the probabilistic relativity of two surfaces, they are analyzed in same dimensional space

for convenience.

In practice, there is an important common characteristic of double-label samples in the essential-
ly overlapping classes of two labels. It is that the majority of double-label samples are distributed
near to two probabilistic separating surfaces simultaneously. A real example of the Yeast bench-
mark dataset (label 3-rd and 4-t ) is shown in Fig. 3.3 (b). Because of the error of SVMSs classifiers,
there are many samples (especially the double-label samples) can not be classified correctly. Most
of double-label samples are distributed near to the separating surfaces and intermixed with other

single-label samples.

The main idea of the proposed bias model is that, for certain pair of labels, the distributing
range of overlapping sample space (specified by the four thresholds €1, €,—, €4+ and €, ) can be
estimated by double-label training samples and relative information of two probabilistic boundaries.
Then, training samples in this overlapping sample space are used to estimate two delicate boundaries
for two label respectively (bold curves shown in Fig. 3.3 (a)). And the delicate boundaries are used

to obtain better classification results of SVMs.

The proposed bias model utilizes the probability value to realize the delicate boundaries. The
probabilistic outputs of SVM can be obtained by Sigmoid method mentioned in previous section.
Training the first separating surface, the samples labeled by p only are considered as “positive”,

all others are “negative”. Trained classifier estimates the probability r]‘;](:n) and dual probability

rpq(ac):

raa(t) = P(p€ flx)Aq¢ f(z)|lx €pUq)
rpg(2) =1—17,(x) = Plg€ flz)Ap¢ f(z)lz€pUq). (33.2)

The second separating surface is trained for class ¢ can estimates the probability r;;,(ac) and dual

probability r () similarly:

rp@) = Plage f(x)Ap ¢ f(z)lz€pUq)
rp(@) =1-rh(@) = Ppeflx)Aqé f(z)lzepuq). (3.3.3)
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And the probabilities of a given sample , which belongs to each of four areas, can be derived:

P = P(z e “onlyp") = ry(x)ry,(x)

Py = P(zc “only q") =rp,(x)rs,(x)

Py = P(ze“pandq’) =1y (x)r) (z)

Py = P(z € “noone's”) =r,,(x)r,,(z) G34)

The mechanism of bias model is described as follows. Firstly, double-label training samples
near to two separating surfaces simultaneously are selected, and their SVM distance values to hy-
perplane of two labels (denoted as {d,; }and{dy; }) are used to estimate the four range thresholds
Ep+» Ep—» Eg+ and g, of two separating surfaces. Those thresholds can be used to decide the range
of overlapping sample space. Secondly, according to the four thresholds, training samples in the
range of overlapping sample space are selected to train two delicate boundaries for two label p and
q respectively. Thirdly, in the testing procedure, the four thresholds and trained delicate bound-
aries of two separating surfaces are utilized to correct the classification results. For every sample
in the testing dataset, if it belong to the overlapping sample space, its final probabilistic outputs are

corrected by two trained delicate boundaries of two labels.

Parameters estimation for the proposed method

According to mechanism of the proposed bias model described in previous section, the key pro-
cedures of bias model are how to estimate the four thresholds and train the delicate boundaries of
separating surfaces.

For the first problem, the double-label training samples near to two separating surfaces simul-
taneously are utilized to estimate them. Take the ¢, _ as the example to introduce the estimation
algorithm: select the double label training samples subset (denoted S,;). For every sample ¢ € S,
according to the Eq. 3.3.4 to estimate the probabilities P;,P», P53 and Py, then calculate the standard
deviation value r4q = stdev(P;, P, P3, Py). So the threshold €, can be calculated by the equation
as follow:

ep— =mean(|dy;|), i € Sop A dpi < OATgq <1 (3.3.5)

where d,,; is the sample’s distance value to label p SVM hyperplane, 754 < 17 means the distribution
of sample simultaneously near to the two separating surfaces of label p and ¢ in Fig. 3.3 (a), the
is a constant trained based on the overlapping training data.

For the second problem, training samples in the overlapping sample space decided by four range

thresholds (those samples stimulatingly meet two conditionof e, < d,; < epyande;, < dy <
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€q+) are selected to train two curve functions f, and f, (delicate boundaries) for two label p and ¢
respectively.

Take f,, as the example to introduce the curve function fitting algorithm. A statistical method
and the relative information of two separating surfaces are used to fit the curve function f,,. The
decision values for function f,, is denoted by the distances between the training samples and sepa-
ration boundary of the label g. As shown in Fig. 3.3 (a), let us consider the decision value region
[€g—+€q+], the length is L. The whole decision value domain is divided into ki intervals, then
the distance between two neighbor intervals d can be calculated as d = L/ki. Using statistical
method, the numbers of samples in overlapping sample space belonging to double-label or single-
label respectively in each interval are counted. In the j—th interval, the number of samples be-
longing to double-label is denoted as /N umfl, belonging to single label is denoted as [V um?, where

7 =1,2, ..., ki is the index of interval. The bias probabilistic value is defined as following

J
Numy,

: o (3.3.6)
Numil + Num

Pde_j =

Then the data set {(dg;, pde_j) } is used to fit the delicate decision boundary curve function f, dg;
as the input variable and pq_; as the value of function.

In the testing procedure, for every sample ¢ of the test data, if the values of d,,; and d,; meet two
conditions of €, < dp; < epy and g4 < dy; < €44 simultaneously, the probabilities are biased as

Ppi = Dpi + [p(dgi)s Dgi = Pgi + fq(dpi) for the final probabilistic outputs.

3.3.2 Instance-dependent Thresholding Strategy

Different from the conventional methods to estimate a static threshold for all testing instances,
the proposed instance-dependent thresholding strategy is considered as a function that relies on
input instance and label rank. It is expected to choose appropriate thresholds according to the
characteristics of instance and label ranking strategy. Based on the ideal threshold set of training
data estimated by the cross validation strategy, a KNN learning model is used to realize the threshold
function related with the input instance and the label rank.

As showed in Fig. 3.4, firstly, the d-folds validation method is utilized to estimate the target
threshold values for training samples. The training data is split into several training/validation
subsets. Training subsets are used to train the classifiers, and estimate the target threshold value for
each sample in validation subset by optimizing a certain evaluation measure. Secondly, according

to the teacher set of target thresholds for training samples, the KNN strategy is utilized to obtain the
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Figure 3.4: Proposed instance-dependent threshold selection based on KNN.

instance-dependent thresholds for testing instances. The outline of the proposed instance-dependent

thresholding strategy is described as follows.

1. Split training data into d folds. According to the validation strategy, for foldz =1, ... ,d.

(a) Train the SVM+Sigmoid multi-label classifier (mentioned in previous subsection) on

the d — 1 folds (except the validation fold 7).

(b) Based to the trained multi-label classifier, consider the fold 7 as the testing data, obtain

the probabilistic test outputs (score values for each classes) for samples in the fold <.

(c) For each sample I, in the validation fold 7, sort the score values of classes (labels)
as a descending rank (c(l),c@), ~~~~~~ ,c(l)), where ¢(!) is the label of maximum s-
core and [ is the number of labels. Then, respectively take subset {c(1)}, {c(1) @)},
{c®) @) B} (from the subset contains the top label, add a new label one by
one sequentially) as the candidate result label set for the sample I, and evaluate it by a
certain evaluation measure. Select the best candidate label set {c(!) ¢®) ...c0)} 1 <
j < 1. Then, take the mean of score values of ¢U) and c¢UTY as the target threshold

value of the sample ,,.

2. The target threshold values for all training samples are obtained by validation of Step 1. This
target threshold set of training data is utilized as teacher set to estimate the thresholds of

testing instances by KNN strategy described in Step 3.

3. In test procedure, for each instance /, in the testing data, the similarities with all training
samples are calculated by a certain distance metric (Euclidean distance, Hamming distance or
other measures). The mean value of % nearest samples’ thresholds is assigned as the threshold

of the testing instance I, where k is the parameter of KNN strategy.
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The proposed threshold selection is a per-instance strategy similar with the RCut method. But
different from RCut method, instead of using a static parameter ¢ as the threshold for all testing
instances, the proposed method estimates threshold for different testing instance by a lazy learning
method of KNN according to the ideal threshold values of training data. For the d-folds validation
method in the proposed thresholding strategy, the parameter d should be chosen by considering the

trade-off between the performance and computational cost.

3.4 Experiments
3.4.1 Benchmark Datasets

Nowadays, many protein sequences are stored in central protein databases from labs all over the
world. And the number of sequences is constantly increasing. Only a fraction of these protein
sequences has been experimentally analyzed for detecting their structure and their functions in the
corresponding organism. The main reason is that experimental determination of protein structure is
time-consuming and labor-intensive. Therefore, the automatic computer program tools that can clas-
sify new proteins to their corresponding structural families are important and imperative. With the
contribution of modern data analysis techniques, such as machine learning and knowledge discov-
ery, the issue has been approached computationally, thus providing fast and more flexible solutions.

The proposed improved multi-label classification method is used to solve two benchmark bi-
ology functional prediction problems of Yeast functional genomics [34] and Genbase motif-based
protein classification [32].

Yeast functional genomics data. The yeast Saccharomyces cerevisiae is one of the best-studied
organisms. The yeast functional genomics dataset from Ref. [34] is studied in our experiments. Each
gene is described by the phylogenetic profile and concatenation of microarray expression data. And
each gene is associated with a set of functional labels whose maximum size is very large (more than
190). The whole set of functional classes is structured by hierarchies up to four levels deep. In order
to make it simplified, the dataset is preprocessed by Elisseeff and Weston. Only the known structure
of the functional classes are utilized in dataset. In this chapter, the same data set as used in [34] is
adopted. In this data set, only functional classes in the top hierarchy are considered.

Genbase motif-based protein classification data. This problem is studied in [32]. The protein
chain can be mapped into a proper motif sequence representation according to attributes. A very
important issue in the data mining process is the efficient choice of attributes. The motif sequence

representation supports the efficient function of data-driven algorithms, which represent samples as
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classified part of a fixed set of attributes. In this problem, protein chains are represented utilizing a
proper motif sequence vocabulary. Suppose there are N motifs in the vocabulary. Given a protein
sequence typically contains a few motifs in the vocabulary. A protein sequence is encoded as an [N-
bit binary vector. The ¢-th bit is encoded as 1 if the corresponding motif is present in the sequence;
otherwise the corresponding bit is encoded as 0. And each N-bit binary vector is associated with a

set of functional label (if known).

Two benchmark datasets are downloaded from website of [88]. The detailed information about
them, such as the number of samples, attributes, classes and their average number of labels or classes
are listed in Tab. 3.1.

Table 3.1: Characteristics of the experimental benchmark datasets

Dataset | Total labels| Total features |Avg. labels | Training/Testing set

Yeast 14 103 (Numeric) 4.25 1500/917
Genbase 27 1186 (Discrete) 1.35 463/199

3.4.2 Evaluation metrics for multi-label classification

Multi-label classification requires different metrics than those used in traditional single-label classi-
fication. The evaluation multi-label dataset D contains |D| instances (x;,y;),i =1...|D],y; C Y.
Y = {1,2,...,1} is the set of labels. Let C' be a multi-label classifier and z; = C(z;) be the set
of labels predicted by C for example x;. The following evaluation metrics for label ranking used in
[77, 34, 88, 98] are adopted in this chapter:

Hamming loss metric describes how many times a sample label pair is misclassified (a label not
belonging to the sample is predicted or a label belonging to the sample is not predicted). Hamming
loss is defined as follow.

1 2
HammingLoss = ﬁ Zz_; 7|yiAzi| (3.4.1)

where A means for the XOR operation of two sets. In £1, A means the X OR operation of two

sets. The smaller this measure is, the better the method performs.

Multi-label Precision (MPrec), Multi-label Recall (MRec) and Multi-label F-score (MF-score)
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evaluation metrics are defined as follows.

| D]
1 lyi N zi]
MPrec = —
P
MR 1 i\ymzil
ec = —
D] & Iyl
2% M Prec* M Rec
MF — = 3.4.2
seore M Prec+ M Rec ( )

There is a common characteristic for above three measures, the lager measure value, the better the

classification performance. And the performance is perfect when its value equal 1.

3.4.3 Experimental Setting and Results

In our experiments, the LSSVM [85] is taken as a basis. SVM parameters are chosen by cross-
validation procedure. In the training procedure, the methods mentioned in Section 3.3 are utilized
to train the SVM classifiers, calculate the parameters of sigmoid functions and correction models
and estimate the ideal threshold values for all training samples. In the testing procedure, for each
test instance, a probabilistic rank of [ values for all labels is obtained by final decision procedure.
Then, according to the ideal threshold values of training samples, a proper threshold estimated based
on KNN method. And this proper threshold is used to determine the label subset finally.

For the threshold selection, the MF-score evaluation metric is selected as the optimizing mea-
sure for estimating the ideal threshold set of training data. In addition, there are two important
parameters for the proposed threshold selection. The first is the parameter d of d-fold cross val-
idation, considering the trade-off between the performance and computational consume, 10-folds
strategy is used for Yeast dataset and 5-folds for Genbase dataset. The second is the parameter k
of KNN method, by experimentalism, k = 4 is chosen for Yeast dataset and £ = 3 for Genbase
dataset. The Fig. 3.5 shows the relation of the parameter k and the performance of classification for
Yeast dataset.

The following popular multi-label classification methods: C4.5, Naive Bayes and Binary-SVM [77,
88] are utilized to compare with the proposed method. The experiment results for two datasets are
presented in the Tab. 3.2 and Tab. 3.3. For Genbase dataset, the nonlinear (RBF-kernel or other
non-linear kernels) SVM models are severely overfitting. Therefor, the linear SVM and ck-SVM
(proposed in Chapter 2) are used for Genbase dataset in our experiments. The results of the meth-

ods of C4.5 and Naive Bayes are cited from [88]. The winning results are marked with bold font.
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Figure 3.5: Relation between the parameter k£ of KNN in threshold selection and the performance
of classification for Yeast dataset

Table 3.2: Experimental results for Yeast dataset.

Algorithms | Hamming loss | MPrec | MRec | MF-score
C4.5 0.259 0.561 | 0.593 0.5766
Naive Bayes 0.301 0.610 | 0.531 0.5678
Binary-SVM (based on RBF kernel) 0.2021 0.5862 | 0.6332 0.6088
Proposed (based on RBF kernel) 0.1915 0.6761 | 0.7106 | 0.6929

Table 3.3: Experimental results for Genbase dataset.

Algorithms | Hamming loss | MPrec | MRec | MF-score
C4.5 0.001 0.992 | 0.995 0.9935
Naive Bayes 0.035 0.273 | 0.276 0.2745
Binary-SVM (Based on linear SVM) 0.0011 0.9933 | 0.9958 | 0.9945
Proposed (based on linear SVM) 0.00006 0.9947 | 0.9950 | 0.9949
Proposed (based on ck-SVM) 0.00006 0.9968 | 0.9942 | 0.9955
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Figure 3.6 shows the MF-score results of the thirteen bias models for 12-th label in Yeast dataset

comparing with the Binary-SVM method.
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Figure 3.6: Comparing results of the bias models for 12-th label in Yeast dataset

The experimental results of all evaluation metrics demonstrate that the proposed method im-

proves the performance of classification efficiently.

3.5 Conclusions

In a ranking based multi-label classification, both the scoring method and the threshold selection can
influence the classification results significantly. In t -
label classification is proposed to solve functional genomics applications. Firstly, the improved
probabilistic SVM with correction model is used as the scoring method. It can improve the proba-
bilistic label ranking by introducing the information of multi-label training samples in overlapping
sample space into learning procedure. Secondly, an instance-dependent thresholding is proposed to
decide the classification results. It can estimate appropriate threshold value according to the char-
acteristics of input instance and label ranking strategy. Experimental results on the two functional
genomics benchmark datasets of Yeast and Genbase show that the proposed method improves the
performance of classification efficiently, compared with binary SVM method and some existing

well-known methods.



Chapter 4

Hierarchical Multi-label Classification
Based on Over-sampling and Hierarchy
Constraint for Gene Function Prediction

4.1 Introduction

Multi-label classification problem is an extension of traditional multi-class classification problem
in which the classes are not mutually exclusive and each sample is associated with several classes
simultaneously. Tn multi-label classification, training samples are belong to a label subset and the
classification goal is to predict label subset for a new instance. Hierarchical multi-label classification
(HMQ) is a special variant of multi-label classification where the classes are organized by hierarchy
structure, which an sample that is labeled by one class automatically is labeled by all its super-
classes (this is called hierarchy constraint).

Gene function prediction [6] is a difficult task of HMC. It is known that a single gene may have
multiple functions, and these functions are organized in a hierarchy. Gene function prediction is
characterized by hundreds or thousands of functional classes structured according to a predefined
hierarchy; and the example distributions of functional classes are usually high degree skewed (im-
balanced) with negative more than positive. There are two hierarchy structures: a directed acyclic
graph for the Gene Ontology (GO) [3] and a tree forest for FunCat [74]. The classification on
FunCat taxonomy of rooted tree structure is our focus in this chapter.

Many approaches have been proposed to deal with the HMC tasks [72, 73, 83, 6, 70, 78], and the
approaches can be categorized as two different research lines. The first research line is to develop a
single multi-label learning model that predicts all the classes of an example at once. Clare et al [25]

presented a decision tree method for multi-label classification in the context of functional genomics.

47
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A decision tree is used to predict not a single class but a vector of Boolean class variables. Vens
et al. [92] proposed a method based on the predictive clustering trees for HMC tasks. The second
research line is to develop an ensemble model that consisted of binary classifiers. An HMC task
is transferred into a series of separate binary classification tasks, and each classifier is trained to
learn one class, then results of all binary classifiers are combined by considering the hierarchical
relationships between classes [5, 6, 66, 42, 14, 90]. Barutcuoglu et al. [6] presented a two-step
method where SVMs are used to learn for each class separately and combined by a Bayesian net-
work model so that the prediction results are compliance with the hierarchy constraint. Valentini et
al. [90] proposed a True Path Rule (TPR) ensemble method to combine the binary classifications.
This approach is implemented by a two-way asymmetric information flow that traverses the graph-
structured ensemble. The positive predictions for a node influence its ancestor nodes by a recursive

way. And the negative predictions influence its offspring nodes.

Approaches of the first research line, which most of are based on the decision tree model with
a vector of Boolean class variables, can predict all the classes by learning a single model. But for
complicated HMC tasks (datasets) with a large number of attributes and classes, it is difficult and
unpractical to tackle all classes efficiently by a single learning model. The approaches of the second
research line, which transfer an HMC task into many binary classifications, always have advantages
for solving such complicated HMC tasks with high dimension attributes. Efficient classification
method (such as SVM), which is adept at high dimension learning task, can be used as binary

classifier to improve the classification performance.

There are two main challenges that need to be solved for the second research line approaches.
Firstly, most of binary classifiers at lower hierarchy levels often need to learn from strongly skewed
training datasets. Because of the hierarchy constraint in typical HMC problems, the frequency of
classes at higher levels often tends to be high, while the frequency of classes at lower hierarchy level-
s tends to be small. In such imbalance dataset learning, standard classifiers tend to be overwhelmed
by the majority class and ignore the minority one. Secondly, the hierarchy constraint of classes is
not taken into account in separate binary classifiers. [t can not guarantee that a sample belongs to a
class should belongs to all its super-classes. Most of traditional HMC methods [6, 66, 42, 14, 90]
mainly focus on the second challenge by developing ensemble strategies considering the hierarchy
constraint. In our research, the two challenges are simultaneously considered: a hierarchical im-
balanced dataset preprocessing approach is proposed to enhance the performance of the separate
binary classifiers; and an improved ensemble strategy based on classifier performance is introduced

to deal with the second challenge.
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How to efficiently introduce the information of hierarchy constraint between classes into learn-
ing model is a vital problem for the HMC task. Along the second research line, this chapter proposes
an improved HMC method based on over-sampling and hierarchy constraint for solving the gene
function prediction problem. The HMC task is transferred into binary SVM classification tasks for
classes in the hierarchy. Then, two measures are implemented to improve the HMC performance
by introducing the hierarchy constraint into learning procedures. 1) A hierarchical over-sampling
approach based on Synthetic Minority Over-sampling Technique (SMOTE) is proposed to prepro-
cess the imbalanced training subsets for binary SVM classifiers. It can improve the performance of
classifiers by changing the distribution of the imbalanced datasets. 2) An improved TPR consisten-
cy approach is used to combine the results of binary probabilistic SVM classifiers. The consistency
ensemble can improve the classification results and guarantee the hierarchy constraint of classes (an
instance belonging to a class should belong to all its super-classes).

The rest of the chapter is organized as follows. Section 4.2 gives a brief overview of the hi-
erarchical multi-label classification, True Path Rule consistency ensemble and imbalanced datasets
learning methods. Section 4.3 formulates the proposed HMC method based on over-sampling and
consistency ensemble. Section 4.4 presents the experiments on FunCat benchmark datasets. Finally,

the conclusions are introduced.

4.2 Hierarchical Multi-label Classification
4.2.1 Notation and Definition

In a hierarchical multi-label classification problem, an instance x can be assigned to one or more
classes of the set C' = {c1,ca, -+ , ¢ }. The assignments can be coded through a vector of multil-
abels y = (y1, Y2, ,ym) € 10,1}™, where if x can be labeled as class ¢;, then y; = 1, otherwise
y; = 0. And the parameter ¢, 1 < ¢ < m means the indices corresponding to the m classes in the
set C.

In HMC problem, the classes are structured by a hierarchy and can be described by a rooted tree.
Each node of the rooted tree corresponds to a class, and paths correspond to relationships of classes.
The class hierarchy is denoted by (C, <},), where <}, is a partial order in class tree representing
the superclass relationship (for all ¢1,co € C,c1 <p co if and only if ¢ is a superclass of ¢3). For
convenience, the node corresponding to class c¢; is simply denoted by ¢. The child nodes set of c;
is denoted by child(i), and the parent nodes set of ¢; is denoted by par(i). The children classes of

node ¢; is represented by y.piiq(i), and the parent classes of ¢; is represented by yp,qr(;). A classifier
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D : X — {0,1}™ is builded to predict the label set corresponding to each new instance € X,
and d;(z) € {0,1} is the label set for class ¢; predicted by the classifier. For simplicity, d;(x) is

represented simply by d; if there is no ambiguity.

4.2.2 Imbalanced Dataset Learning

The imbalanced dataset learning is a difficult challenge in a classification problem. There are much
more samples of some classes than others. And the standard classifiers for solving such imbalanced
dataset are inclined to ignore the small classes and be overwhelmed by the large classes [17, 87].
The solutions to imbalanced dataset learning problem can be divided into data and algorithmic
levels categories. The methods at data level change the distribution of the imbalanced dataset, and
then the balanced dataset are provided to the learner to improve the detection rate of minority class.
The methods at the algorithm level modify the existing data mining algorithms or put forward new
algorithms to resolve the imbalance problem [44].

For the algorithmic level, solutions for imbalanced dataset learning include adjusting the proba-
bilistic estimation of the leaf nodes based on decision tree methods, adjusting the costs of the various
classes for dealing with the imbalance problem, and adopting recognition-based methods (learning
from one class) rather than discrimination-based methods (learning from two classes) [17].

For the data level, different forms of re-sampling methods were proposed [17]. The simplest
re-sampling methods are random over-sampling and random under-sampling. The former augments
the minority class by exactly duplicating the examples of the minority class, while the latter ran-
domly takes away some examples of the majority class. However, random over-sampling may
make the decision regions of the learner smaller and more specific, thus cause the learner to over-fit.
Random under-sampling can reduce some useful information of the data sets. Many improved re-
sampling methods are thus presented, such as heuristic re-sampling methods [53], combination of
over-sampling and under-sampling methods [7], embedding re-sampling methods into data mining
algorithms [43], and so on.

SMOTE (Synthetic Minority Over-sampling Technique) proposed in Ref. [16] is an efficient re-
sampling method at the data level. It generates new synthetic examples along the line between the
minority examples and their selected nearest neighbors. The advantage of SMOTE is that it makes
the decision regions larger and less specific. SMOTE method produces synthetic examples for over-
sampling the minority class. Firstly, for each minority example, its k£ nearest neighbors with same
class are considered. The default value of parameter & is set as kK = 5 in SMOTE. Secondly, some

examples are randomly selected from the considered neighbors by a over-sampling rate. Finally,
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according to the line between the minority example and its selected nearest neighbors, some new

synthetic examples are produced by over-sampling.

4.2.3 TPR Consistency Ensemble

TPR consistency ensemble method has proposed in Ref. [90] for solving the HMC problem. The
True Path Rule can guarantee the uniformity of gene function annotations in FunCat taxonomies:
“If the child term describes the gene product, then all its parent terms must also apply to that gene
product”. That is to say, if a gene is labeled by a specific functional class, then it should be labeled
by all its “parent” classes, and also should be labeled by all its ancestor classes in a recursive way.
The ensemble method is implemented by a two-way asymmetric information flow that traverses
the graph-structured classes. The positive predictions for a node influence its ancestor nodes by a
recursive way. And the negative predictions influence its offspring nodes.

For a given example x and a class node c;, a classifier in TPR consistency ensemble should obey

the rules as follows:

{ di =15 dpoyiy = 1 @2.1)

di =0 = depizgiy =0

The TPR method realizes an ensemble that respects the “true path rule” by putting together the
classification results predicted at each node by local “base” classifiers. Positive predictions of local
classifiers are propagated from bottom to top across the graph in a recursive way. They eftect the
predictions of their ancestors nodes by traversing the graph towards higher level nodes. Negative
predictions for a given node are propagated to their descendants nodes for preserving the consistency

of the hierarchy according to the true path rule.

4.3 Improved HMC Method
4.3.1 Main Frame of the Proposed Method

Main frame of the proposed HMC method based on over-sampling and hierarchy constraint ensem-
ble is shown in Fig. 4.1. Firstly, the training dataset is partitioned into m (the number of classes)
subsets for each binary classifier, and the imbalanced subsets are preprocessed by over-sampling
strategy to improve the data distribution firstly. Then, the m binary probabilistic SVM classifier-
s are trained to predict the classification results. Finally, the probabilistic prediction results of m
binary classifiers are assembled by the consistency strategy of taking into account the hierarchical

relationships between classes.
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Figure 4.1: Main frame of the proposed HMC method.

The SVM+Sigmoid method is used as the basic binary probabilistic classifier. Constructing
a classifier to produce a posterior probability ps (class—input) is very useful when a classifier is
making a small part of an overall decision, and the classification output must be combined for the
overall decision. The standard SVM do not provide such probabilities, and the Platt’s sigmoid
method is commonly used to estimate the probabilistic outputs of SVM. It maps the SVM outputs
into probabilities through training the parameters of an additional sigmoid function by validation

set in training data [69].

1
ps(y = 1jz) = 1 (AT @) T D) 4.3.1)

In order to obtain the best values of parameters A and B, a validation subset including n’ training

data can be used to solve the following maximum likelihood problem,

l
i {~ ; (tilog(psi) + (1 — t) log(1 — psi))}

1
Ps; = [T oxp(Af; + B)’ fi = flxs)
Nitl po 1
;=4 N4f2 Z_fy’ B i=1,2,---n (4.3.2)
v iy =1

where N, means the number of positive-labeled samples, and IN_ means the number of negative-
labeled samples. The SVM+Sigmoid combination preserves the spareness of the SVM while pro-

ducing probabilities that are of comparable quality to the regularized likelihood kernel method.
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Figure 4.2: Illustration of the hierarchical SMOTE.

4.3.2 Proposed Hierarchical SMOTE

Preprocessing for Training Subsets

In the preprocessing procedure of partitioning the training dataset into m subsets for binary classi-
fiers. According to the hierarchy relations between classes, the negative examples in subset for each
class have been selected in such a way described as follows. The negative examples are not anno-
tated for the class, but belong to the parent class (i.e. positive for the parent class). For the training
subset of class c¢;, examples that belong to c; become the positive examples, and the other examples
which belong to par(i) but not to ¢;) become the negative examples. This negative example selec-
tion method is often used in many HMC methods [92, 90], in this way only negative examples that

are not too dissimilar to the positive ones are selected as the training subsets for binary classifiers.

Even using the above mentioned partition preprocess, there are still many high degree imbal-
anced training subsets for binary classifiers. A hierarchical SMOTE is proposed to tackle this prob-
lem. SMOTE is an over-sampling approach in which the minority class is over-sampled by creating
“synthetic” examples. The dataset of minority class is over-sampled by introducing synthetic exam-
ples generated according to each minority class sample and its & nearest neighbors.

According to the hierarchy constraint characteristic of HMC problem, for the hierarchical class
tree, the positive examples belong to training subset of class (node) c; automatically belong to all
training subset of its super-classes (nodes) par(i). Therefore, in the proposed hierarchical SMOTE

method, over-sampling procedures for m subsets are implemented from bottom to top across the
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class tree, and the “synthetic” examples created by children classes are automatically reserved and
regarded as the “synthetic” examples of their parent classes. For example, as showed in Fig. 4.2,
considering the node 2, all “synthetic” examples {e3 U e4} created by its children nodes child(2) =
{3,4} are combined and reserved as its “synthetic” examples firstly, the over-sampling procedure of
node 2 only need create the insufficient “synthetic” examples. Detailed procedures of the proposed
hierarchical SMOTE are described in next subsection.

Comparing with implementing the basic SMOTE over-sampling for each subsets respectively,
the proposed hierarchical SMOTE method has two advantages. Firstly, because of the “synthet-
ic” examples created by children classes are automatically reserved for their parent classes, the
proposed method can remarkably reduce the over-sampling operations of “synthetic” examples for
whole HMC problem. Secondly, the basic SMOTE method has a drawback in some special situ-
ations [1], it can not obtain good performance because of its assumptions about the training set.
For instance, the space between two positive instances is assumed to be positive and the neighbor-
hood of a positive instance is also assumed to be positive, but those assumptions may not always
be true for some special distribution datasets. In the proposed hierarchical SMOTE method, con-
sidering the “synthetic” examples for class ¢;, those reserved “synthetic” examples from children
classes child(i) are all distributed in the positive space of class ¢; definitely, therefore, the proposed

method can solve the drawback of basic SMOTE in certain degree.

Hierarchical SMOTE for Imbalanced Subsets

According to the rooted tree of m labels, from bottom to top across the tree, implement over-
sampling processing for subsets of imbalanced classes. For node ¢; (1 < 7 < m) in the class tree,

denote the positive (minority) class is P and the negative (majority) class is N as follows,

P = {p17p27 T 7ppn}7N = {n17n27 e 7nnn} (433)

where pn and nn are the number of positive and negative examples in training subset of label ¢;. The
class ¢; is considered as imbalanced if 2% < 7, 1 (n = 0.6 is chosen in experiments) is a skewed
parameter to evaluate the degree of imbalance. The hierarchical SMOTE method is described as
follows.

Step 1, calculate the number of “synthetic” examples need be over-sampled O, = nn * p — pn,
where i (+ = 0.8 is chosen in experiments) is a cost sensitive parameter of SMOTE, it means the
ratio of positive and negative examples after over-sampling.

Step 2, if ¢; is a leaf node in class tree, generate O, “synthetic” positive examples from the
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data P as follows. Calculate the parameter vector S = {s1, 52, - , sp,} according to an average
strategy, where s; is an integer and O, = Z?Zl s;. For each p; € P, s; nearest neighbors are
randomly selected from its k£ (kK = max(S) + 5 is chosen in experiments) nearest neighbors in P.
Firstly, the differences di f;(¢ = 1,2, - - - , s;) between example p; and its s; nearest neighbors from
P are calculated, then multiply dif, by a random number 74(¢ = 1,2,--- ,s;) between 0 and 1,

finally, s; new “synthetic” positive examples are generated between p; and its nearest neighbors:
sysntheticy = p; +1rq X dify,q=1,2,---,5;. (4.3.4)

The above procedure is repeated for each p; in P, and O), “synthetic” positive examples are gener-
ated for node ¢;. This step is similar with SMOTE, more details can be seen in Ref. [16].

Step 3, if ¢; is not a leaf node in class tree, combine all “synthetic” examples created by children
nodes child(i) as set Pepizg. If | Penita| > Op, randomly select O, examples from the set Py ;q as
“synthetic” positive examples set of node ¢;. If |Pepia| < Op, generate Op — | Pepia| “synthetic”
positive examples for node ¢; using similar procedure Step 2, and combine the generated examples

and the examples of P,;;4 as “synthetic” positive examples of node c;.

4.3.3 Improved TPR Consistency Ensemble
Disadvantage of the basic TPR Ensemble

The TPR ensemble method [90] combines the local decisions of the base classifiers related to each
node with the positive predictions that propagate from the lower level nodes of hierarchy, and with
the negative predictions that propagate from the higher level nodes. Given a new instance x, the
base classifiers predict local probabilities ph;(x) that it associated with the class c;, and the TPR
ensemble generates a “consensus” global probabilities ph;(x). ¢;(x) is used to denote the children

set of node c; which have a positive decision for the instance x:
pile) = {jlj € child(i), d;(x) = 1) (43.5)

Based on the local probabilities ph; () and the decisions of the child nodes in ;(z), the global
consensus probabilities ph;(z) of the TPR ensemble can be obtained as described in Eq. 4.3.6. The
decision d;(x) at node ¢; is set as 1 if ph;(z) > t (a default value for ¢ is 0.5), and as 0 otherwise.
The positive decisions propagate from bottom to top through this ensemble way. On the contrary,
if d;(x) = 0 is obtained, then this negative prediction is propagated to its subtree. For all leaf
nodes, the Eq. 4.3.6 becomes ph;(x) = ph,(x). To balance the local predictions with the positive

predictions coming from the ensemble, a parent weight w,0 < w < 1 is introduced. If w = 1
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the prediction at node ¢; is provided only by the local predictor, otherwise the decision is provided

proportionally to w and 1 — w between respectively the local predictor and its child nodes.

— 1—w
h; =w-ph;(x) + —— hi(x). 4.3.6
o) = T 5 i 50

There is a disadvantage in basic TPR ensemble method. In practice, the performances of dif-
ferent binary SVM classifiers for hierarchy classes are obviously varied for real-world datasets. For
some classes at lower level of hierarchy rooted tree, the classifier performance is very poor because
of data noise or other reasons. But in the basic TPR consistency ensemble method, as described in
Eq. 4.3.6, each classifier in the positive prediction children set ;(x) contributes same propagation
effect for estimating the local probabilities ph,(z). Because the propagation effects from children
classes are represented by probabilistic values, this equal propagation mechanism may produce an
error propagation: if an error prediction occurs in a poor performance child node classifier, i.e., this
child classifier predicts a high probabilistic value for a negative instance that not belongs to it. This
error prediction will give an obvious effect to other node classifiers because of its high probabilistic

value.

Improved TPR Ensemble Based on Classifier Performance

To restrict the poor performance binary classifiers bring an error propagation effect to other classi-
fiers. In the improved consistency ensemble method, another weight v; of classifier performance is

introduced to the TPR ensemble as follows:

— 1—w
phi(z) = w-phi(z)+—— > vj-ph;(x)
lpi(z)| “
JEpi(x)
_ B o
vj = 5 Ek,je%(az) (4.3.7)

kepi(x)

where E; is the performance evaluation of child node classifier j € ¢;(x) by a certain metric.

The introduced performance weight v; are decided by a certain performance metric of classi-
fiers, this classifier performance metric can be estimated by a validation strategy according to the
train data. It should be noted that the meaning of two weight w and »; are different. The parent
weight w is used to balance the local predictions and the positive predictions coming from the chil-
dren nodes, Ref. [90] indicates that this parent weight is a global parameter that affect the general

precision/recall characteristics of the ensemble. The performance weight v/; in the improved method
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is used to restrict the poor performance binary classifiers bring an error propagation effect to other

classifiers.

Similar to the negative prediction propagation method in Ref. [90], negative predictions for a
given node are propagated to its descendants, to preserve the consistency of the hierarchy. In the
event that a negative prediction for the node c;, all the nodes belonging to the subtree rooted at
¢; are predicted as negative, and if their probabilities are larger than ph;(x), their probabilities are

changed to ph;(z).

4.4 Experiments
4.4.1 Evaluation Metrics

Considering the multi-label and hierarchy characteristics of HMC problem, two categories of met-
rics are adopted to evaluate the proposed method.

The first metric category is the classical Precision (Prec), Recall (Rec) and F-score for each
class of the hierarchy. F-score metric is used to estimate the classifier performance parameters in the
improved TPR ensemble method (Eq. 4.3.7). The three metrics are traditionally introduced for the
binary classification with positive and negative classes. The recall metric means the proportion of
positive instances that are correctly predicted as positive. The precision metric means the proportion

of positive predictions that are correct. That is:

P B TP Rec — TP
T TPy FP T TPYFN
2% Prec * Rec
F— = - 4.4.1
seore Prec+ Rec ( )

with FN is the number of false negatives (positive instances that are incorrectly predicted as neg-
ative), FP is the number of false positives (positive predictions that are incorrect), and TP is the
number of true positives (correctly predicted positive instances). Note that these measures ignore

the number of correctly predicted negative examples.

Moreover, in order to take into account the multi-label characteristics of HMC problem, the
second metric category, which includes Multi-label Precision (MPrec), Multi-label Recall (MRec)
and Multi-label F-score (MF-score) [34, 88], is also used to evaluate the proposed method. Let D be
a multi-label evaluation data set, consisting of | D| multi-label examples (z;,v;),i =1...|D|,y; C
Y. Y ={1,2,...,k} is the set of labels. Let z; be the set of labels predicted by HMC classifier for
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Table 4.1: Properties of experiment datasets

Dateset Attribute | Training | Testing
D, Sequence (seq) 478 2580 1339
D5 Spellman et al. (cellcycle) 77 2476 1281
D3 Gasch et al. (gaschl) 173 2480 1284
D, All microarray (expr) 551 2488 1291

example x;. The three metrics are described as follows.

VP 1 i\yiﬁzﬁ
rec = —
D] & [z
MR 1 XD:\%QZA
ec = —
D] 2= Ty
2% M Prec* M Rec
MF — = 4.4.2
seore M Prec+ M Rec ( )

There is a common characteristic for above mentioned metrics, the lager measure value, the

better the classification performance. The performance is perfect when its value equals 1.

4.4.2 Data Sets and Experiment Setting

Four yeast data sets from FunCat are used to evaluate the proposed method. The different data sets
describe different aspects of the genes in the yeast genome, and the different sources of data high-
light different aspects of gene function. The properties of experiment datasets, including instance
number D and attribute number, are listed in Tab. 4.1, the detailed description of each dataset can
be referred from Ref. [25, 92]. The four datasets are downloaded from the following webpage:
http://dtai.cs.kuleuven.be/clus/hmcdatasets/.

Two different ensemble strategies is used to compare with the proposed method. The first is
Flat ensemble, that does not take into account the hierarchical structure of the data. The second is
basic TPR hierarchical ensemble, the parent weight w in Eq. 4.3.6 is set as 0.5. For each ensemble
strategies, linear LSSVM method [85] is taken as base learner (the nonlinear (RBF-kernel or other
non-linear kernels) SVM models are severely overfitting for FunCat datsets), the Platt’s sigmoid
method is utilized to estimate the probabilistic outputs of SVM, and the threshold ¢ of all binary
classifier output are set as 0.5 in all the experiments. About the parameters of the proposed method,

the hierarchical SMOTE parameter setting are described in Subsection 3.2.2; in the improved TPR
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ensemble, 5-folds validation strategy on training data is used to estimate the F-score metric as the

performance weight ;.

4.4.3 Experiment Results and Analysis

To observe the detailed performance of the proposed hierarchical SMOTE and the improved TPR
ensemble, firstly, some specific experiments are implemented based on the dataset of Sequence (D1)
and the subtree of “protein fate” FunCat class (FunCat /D = 14). The subtree is composed by 20
nodes (as showed in Fig. 4.3). In the dataset of Sequence (D7), there are 625 training examples
and 337 testing instances relating with the class subtree of D = 14. For each class, the number of
positive and negative training examples are listed in Tab. 4.2, it can be found that most of classes
are significantly imbalanced.

In order to evaluate the performance of the proposed hierarchical SMOTE over-sampling ap-
proach, three experiment strategies including Flat ensemble, basic SMOTE over-sampling and the
proposed hierarchical SMOTE over-sampling are implemented and evaluated. Experiment results
about per-class metrics (Prec, Rec) for 20 classes (nodes) are listed in Tab. 4.2. We can find that
two over-sampling strategies can effectively improve the performances of classifiers for imbalanced
datasets, and the proposed hierarchical SMOTE over-sampling approach outperforms the basic S-
MOTE for all classes. The basic SMOTE assumes the space between two positive instances is to
be positive and the neighborhood of a positive instance is also to be positive, but those assumptions
may not always be true for some special distribution datasets. The proposed hierarchical SMOTE
can overcome this drawback in certain degree. According to the strategies of the proposed hier-
archical SMOTE, most of the reserved “synthetic” samples from children classes child(i) are all
distributed in the positive space of class c; definitely.

To observe the improved TPR ensemble approach, two experiment strategies including basic
TPR ensemble and the improved method with classifier performance weight are implemented and
evaluated. As listed in Tab. 4.3, the experiment results about per-class metrics (Prec, Rec) for 20
classes (nodes) show that the improved TPR outperforms the basic TPR ensemble method. The
classifier performance weight in the proposed method can effectively restrict the error propagation
effects from poor performance binary classifiets.

To evaluate the performances of combination methods based on different over-sampling and
ensemble strategies, four combination strategies including M1 (Flat ensemble), M2 (basic TPR
ensemble), M3 (the proposed hierarchical SMOTE over-sampling and Flat ensemble) and the pro-
posed HMC (the proposed hierarchical SMOTE over-sampling and the improved TPR ensemble)
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Table 4.2: Experiment results of different over-sampling strategies based on the FunCat subtree of
“Protein fate” (ID=14).

FunCat ID | Positive | Negative | Flat Flat | SMOTE | SMOTE | H-SMOTE | H-SMOTE
Prec Rec Prec Rec Prec Rec

14.01 61 564 0.1667 | 0.3333 | 0.1721 0.3784 0.2407 0.4415
14.04 158 467 0.3131 | 0.3690 | 0.3371 0.3814 0.3558 0.4405
14.07 306 319 0.6460 | 0.5474 | 0.6460 | 0.5474 0.6460 0.5474
14.07.01 14 292 0.1020 | 0.4167 | 0.2141 0.4072 0.2111 0.4833
14.07.02 41 265 0.0822 | 0.2500 | 0.0978 0.2571 0.1486 0.4583
14.07.02.01 11 30 0.0714 | 0.7500 | 0.1521 0.4860 0.0882 0.7500
14.07.02.02 27 14 0.0606 | 0.8571 | 0.0606 0.8571 0.0606 0.8571
14.07.03 91 215 0.2619 | 0.6226 | 0.2987 0.6233 0.2736 0.6604
14.07.04 32 274 0.1019 | 0.5500 | 0.0925 0.3672 0.1400 0.7000
14.07.05 44 262 0.0532 | 0.2174 | 0.0872 0.2556 0.0860 0.3478
14.07.07 11 295 0.0121 | 0.1453 | 0.0195 0.1670 0.0263 0.3333
14.07.09 6 300 0.0153 | 0.1475 | 0.0205 0.1892 0.0385 0.2500
14.07.11 49 257 0.0690 | 0.2857 | 0.0944 | 0.3034 0.0909 0.5000
14.07.11.01 13 36 0.0244 | 0.2500 | 0.0215 0.1931 0.0357 0.3750
14.10 118 507 0.2474 | 0.4068 | 0.2850 | 0.4768 0.2700 0.4576
14.13 150 475 0.3048 | 0.4507 | 0.2715 0.5272 0.3380 0.5070
14.13.01 112 38 0.1688 | 0.7407 | 0.1275 0.4248 0.1688 0.7407
14.13.01.01 75 37 0.1147 | 0.7143 | 0.1147 0.7143 0.1147 0.7143
14.13.04 16 134 0.0333 | 0.1429 | 0.0314 | 0.1762 0.0556 0.2857
14.13.04.02 6 16 0.0127 | 0.2542 | 0.0127 0.2542 0.0127 0.2542

are implemented and evaluated. Experiment results about multi-label metrics (MPrec, MRec and

ME-score) for the whole subtree dataset are showed in Fig.4.4. The results show that the proposed

HMC method outperforms other three strategies. The combination of two proposed strategies (the

hierarchical SMOTE over-sampling and the improved TPR with classifier performance weight) can

effectively enhance the HMC performance.

Finally, the three ensemble strategies experiment results on four datasets are listed in Tab. 4.4.

The results of the proposed HMC method based on ck-SVM (proposed in Chapter 2) are also listed.

It can be found that the proposed method significantly outperforms the basic TPR ensemble method

and the Flat ensemble method.
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Figure 4.3: Rooted tree of the FunCat classes of ID=14 (Protein fate).
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Table 4.3: Experiment results of different ensemble strategies based on the FunCat subtree of “Pro-
tein fate” (ID=14).

FunCat ID TPR TPR | Improved TPR | Improved TPR
Prec Rec Prec Rec

14.01 0.2016 | 0.3792 0.2578 0.4356
14.04 0.3228 | 0.3929 0.3521 0.4568
14.07 0.5490 | 0.8263 0.6705 0.8947
14.07.01 | 0.2000 | 0.4167 0.2176 0.5116
14.07.02 | 0.0923 | 0.2500 0.2275 0.4835
14.07.02.01 | 0.1667 | 0.5000 0.2483 0.5758
14.07.02.02 | 0.0794 | 0.3571 0.1829 0.7683
14.07.03 | 0.2857 | 0.6038 0.2837 0.6487
14.07.04 | 0.0824 | 0.3500 0.1285 0.6982
14.07.05 | 0.0685 | 0.2174 0.0920 0.4276
14.07.07 | 0.0121 | 0.1453 0.0303 0.3333
14.07.09 | 0.0153 | 0.1475 0.0657 0.3150
14.07.11 | 0.0749 | 0.2786 0.1267 0.546
14.07.11.01 | 0.0169 | 0.1436 0.0465 0.3542
14.10 0.2474 | 0.4068 0.3043 0.4792
14.13 0.2516 | 0.5634 0.3357 0.5547
14.13.01 | 0.1825 | 0.4630 0.1864 0.6932
14.13.01.01 | 0.1221 | 0.7429 0.1237 0.7265
14.13.04 | 0.0378 | 0.1865 0.0567 0.2487
14.13.04.02 | 0.0127 | 0.2542 0.0476 0.5000

4.5 Conclusions

In this chapter, an improved HMC method based on over-sampling and consistency ensemble is
proposed for solving the gene function prediction problem. According to the characteristics of
HMC task, two measures are implemented to improve the HMC performance by introducing the
hierarchy constraint into learning procedures.

Firstly, in typical HMC problems, the frequency of classes at higher levels in hierarchy tends to
be high, while classes at lower levels often have very small frequencies. Therefore, most of training
datasets for binary classifiers at lower hierarchy levels are always imbalanced. For such imbalance
dataset learning, a hierarchical SMOTE approach is proposed to preprocess the imbalanced training
subsets for binary SVM classifiers. It can improve the performance of classifiers by changing the

distribution of the imbalanced datasets.



Table 4.4: Classification results on the four FunCat datasets.

Dataset Method MPrec | MRec | MF-score
Flat 0.4771 | 0.3049 | 0.3720
D1 TPR 0.6056 | 0.3568 | 0.4490
Proposed 0.6832 | 0.4362 | 0.5324
Proposed + ck-SVM | 0.6905 | 0.4487 | 0.5439
Flat 0.4598 | 0.2876 | 0.3539
D2 TPR 0.5529 | 0.3624 | 0.4378
Proposed 0.6513 | 0.4292 | 0.5174
Proposed + ck-SVM | 0.6597 | 0.4472 | 0.5331
Flat 0.4694 | 0.2917 | 0.3598
D3 TPR 0.5883 | 0.3342 | 0.4263
Proposed 0.6728 | 0.4318 | 0.5260
Proposed + ck-SVM | 0.6704 | 0.4342 | 0.5270
Flat 0.4628 | 0.2932 | 0.3590
D4 TPR 0.5785 | 0.3427 | 0.4304
Proposed 0.6593 | 0.4186 | 0.5121
Proposed + ck-SVM | 0.6685 | 0.4276 | 0.5216
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Secondly, the hierarchy constraint of classes is not taken into account in separate binary classi-

fiers. In other words, it can not greentree that an instance is predicted as a class should be predicted

as all its super-classes. For this problem, an improved TPR consistency approach is used to com-

bine the results of binary probabilistic SVM classifiers. It can improve the classification results and

guarantee the hierarchy constraint of classes.

Four yeast data sets from FunCat are used to evaluate the proposed method. Experiment re-

sults show that the proposed method is an efficient hierarchical multi-label classification method, it

significantly outperforms the basic TPR ensemble and the Flat ensemble.
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Chapter 5

Protein Structure Prediction on HP
Model Using a Hybrid EDA

5.1 Introduction

Protein structure prediction (PSP) is one of the most important problems in computational biology.
A protein is a chain of amino acids (also called as residues) that folds into a specific native tertiary
structure under certain physiological conditions. Understanding protein structures is very important
for determining a protein’s function and its interaction with RNA, DNA and enzyme. Some vital
knowledge for protein engineering and drug design can be obtained from the protein conformation
information. There are over a million known protein sequences. However, only a limited number of
protein structures are experimentally determined due to expensive and time-consuming. Therefore,
prediction protein structure from its sequences utilizing computer software is an important means
for understanding proteins’ functions.

Due to the complexity of PSP task, simplified models ( such as Dill’s HP-lattice [56] model) are
always used as tools to investigate the general properties of protein folding. In HP model, 20-letter
alphabet of residues is simplified to a two-letter alphabet, namely H (hydrophobic) and P (polar).
Experiments on small protein suggest that the native state of a protein corresponds to a free energy
minimum. This hypothesis is widely accepted, and forms the basis for computational prediction
of a protein’s conformation from its residue sequence. The problem of finding such a minimum
energy configuration has been proved to be NP-complete for the bi-dimensional (2-D) [27] and tri-
dimensional (3-D) lattices [8]. Therefore, a deterministic approache is always not practical for this

problem.

Many genetic algorithm (GA) based methods have been proposed to solve the PSP on HP model
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in recent years [89, 41, 82, 26, 22]. However, it has been acknowledged that the crossover operators,
particularly one-point crossover and uniform crossover, in a conventional GA do not perform well
for this problem [52, 37]. On the other hand, R. Santana et al. (2008) pointed out that the evolution-
ary algorithms able to learn and use the relevant interactions that may arise between the variables of
the problem can perform well for this kind of problems. Estimation of distribution algorithm (EDA)

is known as one of such kind of evolutionary algorithms.

In the EDAs [55, 59], instead of using conventional crossover and mutation operations, prob-
abilistic models are used to sample the genetic information in the next population. The use of
probabilistic models, especially, models taking into account bivariate or multivariate dependencies
between variables, allows EDAs to capture genetic tendencies in the current population effective-
ly. In brief, these algorithms construct, in each generation, a probabilistic model that estimates the
probability distribution of the selected solutions. Dependency regulars are then used to generate
next generation solutions during a simulation step. It is expected that the generated solutions share
a number of characteristics with the selected ones. In this way, the search leads to promising areas

of the search space.

In Ref. [75], the EDAs that use Markov probabilistic model or other probabilistic models out-
perform other population-based methods when solving the HP model folding problem, especially
for the long sequence protein instances. But those methods have three obvious disadvantages as
follow. 1) For most long sequence protein instances, the chance of finding the global optimum is
very low, and the algorithm often need be set by very large generation number and population size
for finding the global optimum. 2) For some deceptive sequences, those methods can only find the
suboptimum solutions. 3) In those methods, a backtracking method is used to repair invalid indi-
viduals sampled by the probabilistic model of EDAs. For a traditional backtracking algorithm, the

computational cost of repairing procedure is very heavy for those long sequence instances.

This chapter proposes a hybrid method to solve above problems. Firstly, based on the informa-
tion of folding structure core (H-Core), a composite fitness function containing H-Core information
is proposed to replace the traditional fitness function in HP model. The proposed fitness function
is expected to select better individuals for probabilistic model of EDAs algorithm. It can help to
increase the chance of finding the global optimum and reduce the complexity of EDA (popula-
tion size and the number of generation needed). Secondly, local search with guided operators is
utilized to refine the found solutions for improving efficiency of EDA. Local search with guided
operators generates offspring through combination of global statistical information and the location

information of solutions found so far. Thirdly, for the long sequence protein sequences, an improved
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backtracking-based repairing method is proposed to repair invalid individuals generated by the EDA
probabilistic model. The traditional backtracking repairing procedure will produce heavy computa-
tional cost for searching invalid closed-areas of folding structure. In the improved method, to avoid
entering invalid closed-areas, a detection procedure for feasibility is introduced when selecting di-
rections for the residues in backtracking searching procedure. It can significantly reduce the number
of backtracking searching operation and the computational cost for the long protein sequences.
The rest of the chapter is organized as follows. Section 5.2 gives a brief overview of protein
HP model and the EDAs. Section 5.3 describes the proposed hybrid EDA for HP model protein
folding. It includes the proposed composite fitness function and local search with guided operators.
Section 5.4 formulates the improved backtracking repairing algorithm for invalid solutions. Section
5.5 presents the experiment results of the introduced method. Finally, the conclusions and further

work directions are given.

5.2 Protein HP Model and Problem Representation
5.2.1 Protein Folding and HP model

Proteins are macromolecules made out of 20 different residues. A residue has a peptide backbone
and a distinctive side chain group. The peptide bond is defined by an amino group and a carboxyl
group connected to an alpha carbon to which a hydrogen and side chain group is attached. Residues
are combined to form sequences which are considered as the primary structure of proteins. And
the locally ordered structure generated by hydrogen bounding mainly within the peptide backbone
is named as the secondary structure of protein. The beta sheet and the alpha helix are two com-
mon secondary structure elements in proteins. The global folding of a single polypeptide chain is
considered as the tertiary structure of protein.

Under specific conditions, a protein sequence folds into a unique native 3-D structure. Each
possible protein fold has an associated energy. According to the thermodynamic hypothesis, the
native structure of a protein corresponds to the folding which the free energy reaches the minimum.
Based on this hypothesis, many methods are proposed to search for the protein native structure
by defining an approximation of the protein energy and utilizing the optimization methods. These
approaches mainly differ in the type of energy approximation employed and in the characteristics
of the protein modeling.

The well-known Dills HP model is used in this chapter. The HP model takes into account the

hydrophobic interaction as the main driving force in protein folding. In HP model representation,
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Start

Figure 5.1: One possible configuration of the sequence HPHPPHHPPHPHPH in 2-D HP
model. There are six HH topological neighbors (represented by broken lines).

beads denotes the amino acids, and lines of beads denotes the connecting bonds. In this model, a
protein is considered as a sequence S € {H, P} , where H represents a hydrophobic residue and
P represents a hydrophilic or polar residue. The HP model restricts the space of conformations to

self-avoiding paths on a lattice in which vertices are labeled by the residues.

Two neighbor relations are considered for a pair of residues. The one is connected neighbor
(they are adjacent in the chain). The other is topological neighbor (they are adjacent in the lattice but
not connected in the chain). Let € gy denote the interaction energy between topological neighbor of
two H residues, € pp for two P residues, €7 p for a H residue and a P residue. An energy function is
defined as the total energy of topological neighbors with ey = —1 and epp = egp = 0. The HP
problem is to find the folding conformation that minimizes the total energy E(x). Figure 5.1 shows
the graphical representation of a possible configuration for sequence HPHPPHHPPHPHPH
in 2-D HP model, hydrophobic residuals are represented by black beads and polar residuals by white

beads. The energy that the HP model associates with this configuration is -6.

Although more complex models have been proposed, the HP model remains a focus of research
in computational biology, chemical and statistical physics. By varying the energy function and
the bead sequence of the chain (the primary structure), effects on the native state structure and
the kinetics (rate) of folding can be explored, and this may provide insights into the folding of
real proteins. In particular, the HP model has been used to investigate the energy landscapes of
proteins, i.e. the variation of their internal free energy as a function of conformation. In evolutionary
computation, the model is still employed because of its simplicity and its usefulness as a test-bed

for new evolutionary optimization approaches [75].
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5.2.2 Problem Representation

There are neither mutation nor crossover operators in EDAs [55]. A probabilistic model is used
to capture the probability distribution from a database that includes the selected individuals from
previous generation. And this probabilistic model is utilized to sample the new population for
EDA. Therefore, through the joint probability distribution of the selected individuals at each gener-
ation, the interrelations between the different variables that represent the individuals are explicitly
expressed by the probabilistic model.

EDAs suppose that it is feasible to obtain a probabilistic model for the promising areas of search
space. And this model can be utilized to guide the search for the optimum solutions. A condensed
representation of the features shared by the selected individuals is used to build the probabilistic
graphical model in EDAs. By the probabilistic graphical model, different patterns of interactions
between subsets of the problem variables can be captured efficiently, and this knowledge can be
utilized to sample new solutions conveniently.

In the algorithm of protein folding optimum, one of the important problems is how to present a
specific conformation. To embed a hydrophobic pattern S € {H, P} into a lattice, there are three

methods of Cartesian Coordinate, Internal Coordinate and Distance Matrix [52] as follows.

1) Cartesian Coordinate representation. The residue position is represented by its Cartesian

Coordinate. The positions of residues are independently.

2) Internal Coordinate representation. The residue position is decided by its predecessor residues
in the sequence. Two types of internal coordinate are often used in lattice model. The one is
relative direction representation where the residue directions depend on the direction of the
previous move. The other is absolute direction representation where the residue directions

depend on the axes defined by the lattice.

3) Distance Matrix representation. A distance matrix is introduced to represent the residue po-

sitions. Given a residue, its location can be computed by the distance matrix.

In Ref. [52], the authors implemented a detailed comparative research on absolute and relative
directions utilizing evolutionary algorithms. According to the experimental results, relative direc-
tions always have better performances than absolute directions based on square and cubic lattice.
On the contrary, absolute directions outperform relative directions based on triangular lattices. Eval-

uation the effectiveness of direction encoding on an evolutionary algorithm is uncertain in general.
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But the internal coordinates with relative directions can be suggested based on the experimental
evidence.

In this chapter, the representation of internal coordinates with relative direction is used. The
position of each residue depends upon the previous move. Relative direction representation presents
the direction of each residue relative to the main chain next turn direction. This representation can
reduce the direction number of each position. For 2-D HP model, the set of direction is left, right
and forward (L, R, F). And it is left, right, forward, up and down, (L, R, F, U, D) for the 3-D HP
model. For example, by relative direction representation, the representation of the protein structure
shown in Fig. 5.1is s = (RFRRLLRRFRLR).

It can be noted that the backward direction is not used, because the backward direction will
cause overlap in this representation. Thus, this representation can reduce the position collision in
a certain degree to guarantee the self-avoiding walk folding procedure. There are other advantages
of the relative direction representation. One is that the sequence conformation can be presented as
one dimension array. The most important is that the change of a start direction will not influence

the structure of other part in sequence.

5.2.3 Probabilistic Model of EDA

It is very important for EDAs to select an appropriate probabilistic model according to a given
application problem. The probabilistic model is represented by conditional probability distributions
for each variable and estimated from the genetic information of selected individuals in the current
generation. Therefore, the type of probabilistic model also influences the number and strength of
the interactions learned by the model.

In Ref. [75], three probabilistic models for EDAs are proposed to solve the HP model problem:
k-order Markov model, tree model and mixtures of trees model. In practice, the k-order Markov
model is an appropriate probabilistic model for the HP model problem, where k£ > 0 is a parameter
of the model. It can effectively embody the self-avoiding folding characteristics of the HP model
problem, because it is assumed that positions of adjacent residues are related in the protein folding
procedure.

The k-order Markov model can encode the dependencies between the move of a residue and the
moves of the previous residues in the sequence, and this information can be used in the generation
of solutions. It is described as follow. The joint probability mass function of X is denoted as
p(X). Given X; = z;, the conditional probability distribution of X; = x; is denoted by p(X; =

x; | X; = ;) or its simplified form p(x; |x; ).
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Inner Kernel HCC
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Figure 5.2: Illustration of the protein folding H-Core in 2-D HP model.

In the k-order Markov model, the value of variable X; depends on the values of the previous &

variables. The joint probability distribution can be factorized as follows:

n

puk(X) =p(@1,- - Tpp1) H p(@il@iz1, -+, @ k) (5.2.1)
i=h+2

Since the structure of the Markov model is given, it can be used to construct the probabilistic
model through computing the marginal and conditional probabilities of the set of selected indi-
viduals and to sample the new generation. To sample a new solution, first variables in the factor
(z1,- - ,xky1) are generated and the rest of variables are sampled according to the order specified

by the Markov factorization.

5.3 A Hybrid EDA for Protein Folding Based on HP Model
5.3.1 Proposed Composite Fitness Function

In order to increase the chance of finding the global optimum and reduce the complexity of EDA
(population size and the number of generation needed), a composite fitness function based on the
information of folding structure core (H-Core) is proposed to replace the traditional fitness function
in HP lattice model.

It is well known that the hydrophobic residues have a potential propensity to develop a hy-
drophobic core in protein folding. The Hs (hydrophobic residues) form the protein core and the Ps
(hydrophilic or polar residues) tend to remain in the outer surface. As shown in Fig. 5.2, the inner
kernel, called the H-Core [46], is compact and mainly formed of Hs while the outer kernel consists

mostly of Ps. The H-Core Center is called HCC. The H-Core is a rectangle-like area in 2-D lattice
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Figure 5.3: Two example solutions with same energy (Instance s8 in Tab. 5.1, length: 64, energy:
-25).

and cube-like space in 3-D lattice. The coordinates of HCC can be calculated by follows equations.

1 X 1 X
THCC = Ezﬂfz, yHCC:EZyz‘
i= i=1
1 &
ZHCC — E Z (531)
i=1

where n g is the sum of hydrophobic residues in solution, x;, y; and z; (for 3-D HP model) are the
coordinates of hydrophobic residues position in lattice. The number of Hs in inner kernel H-Core
(denoted as Ny (x)) can be calculated through search surrounding rectangle area (cube space for

3-D HP model) of HCC.

The number of Hs in inner kernel H-Core is an important characteristic for the folding solution.
It also reflects the optimum degree of solution. In practice, as showed in Fig. 5.3, for two solutions
with same basic HP model energy F(x) (defined by the number of topological neighbor residues
in lattice), the solution with bigger H-Core has more similar to the optimum solution, and it also
has more biology significance. The two possible solutions of the Instance s8 (length is 64) have
same basic HP model energy (-25), but they have different Ny (x) values (9 and 15 respectively).

Obviously, the solution Fig. 5.3(b) has more similar to the optimum solution.
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Figure 5.4: Guided operators for local search.

In the proposed method, a novel composite fitness function containing the information of H-

Core for the k-order Markov EDA is introduced as follow.
Fitey(x) =w(-E(z)) + (1 - w)Nuc(x) (5.3.2)

where, F(x) is the total energy of the interaction between topological neighbor residues of HP
model (egy = —1,epp = egp = 0). Ngc(x) is the number of Hs in inner kernel H-Core. w is
weight parameter of the fitness function, and w > 0.5 is chosen in practice, because the interaction

energy F/(z) is the dominant characteristic of protein folding solution.

5.3.2 Local Search with Guided Operators

The search in traditional EDAs is mainly based on the global information, but local search is an
exploitation method based on local information. Both the global information about the search space
and the local information of solutions found so far can be utilized to enhance the efficiency of
evolutionary algorithm. The global information can supervise the search for exploring in promising
areas. And the local information of solutions can be useful for exploitation in promising areas.
Therefore, it is worthwhile investigating whether combining local search with EDA could improve
the performance of the EDA [99, 98].

Local search with a set of guided operators is implemented in the proposed hybrid EDA. Some
of these operations have been utilized as mutations in the previous GA and ant colony optimizations

studies of protein folding [82]. But in this chapter, “guided operators” means that those operations
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are implemented only under some special conditions.

Take 2-D HP model as example, the special conditions defined as follow. 1) Guided operation
should guarantee the validity of individual, i.e. it can not produce position collision in lattice. If the
positions of residues in lattice are changed, the object positions must be empty. 2) Guided operation
should follow a basic principle that make Hs as near as possible to the HCC and Ps far away from
the HCC according to the relative position in lattice, as shown in Fig. 5.4.

The way of choosing individuals to implement local search is described as follow. In each it-
eration procedure of EDAs, use the composite fitness function (described by Eq. 5.3.2) to sort the
selection individuals. According to the distribution of individuals’ fitness, randomly select some in-
dividuals (the number is a certain percentage of the population) in each fitness domain to implement
the local search with guided operators.

EDAs extract globally statistical information from the previous search and then build a proba-
bilistic model for modeling the distribution of best solutions visited in the search space. However,
the information of the locations of best individual solutions found so far is not directly used for
guiding the further search. Local search with guided operator generates offspring through combi-
nation of global statistical information and the location information of solutions found so far. The
resultant solution can (hopefully) fall in or close to a promising area which is characterized by the

probabilistic model.

5.4 Improved Backtracking-based Repairing Method

5.4.1 Backtracking Method

In HP model, A collision is the embedding of two different peptides onto the same vertex of the
lattice. As each member of the initial population of EA based method is randomly generated, it
may represent an illegal conformation resulting one or more collisions when embedded. Similar-
ly, crossover and mutation operations of GAs, sampling from probabilistic model operation of
EDAs and other genetic operations may produce additional collisions.

In Ref. [26], a backtracking algorithm was introduced to repair the positional collisions. It
utilizes backtracking strategy to search feasible positions for collision residues in folding proce-
dure. This particular algorithm constitutes a simple yet efficient approach for the purposed task. Its
pseudocode is showed in Fig. 5.5.

The algorithm receives three parameters. The first one is A, a table containing the allowed moves

for each residue in the protein; thus, Ay is a list of allowed moves for (k + 1)-th residue and A,
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is the r-th move. Although A may contain in principle the full set of moves, in general |[A| will not
be the same for every k. The second parameter s is a partial conformation involving |s| residues.
As to the third parameter, it is a Boolean flag used to finalize the execution of the algorithm as
soon as a feasible conformation is found. Notice finally that the operator :: represents the sequence

concatenation operator.

5.4.2 Disadvantage of Traditional Backtracking-based Method

The basic backtracking method mentioned in the previous section has been shown to be a simple and
efficient means of positional collision repairing for protein folding. But in practice, the repairing
computational cost is very heavy for long sequence instances of more than 50 residues.

In the generic search procedure of protein folding, especially for the long protein sequences, the
EAs based algorithm will produce a lots of valid and invalid individuals that contain closed-areas
(or closed-spaces in 3-D circumstance). The Fig. 5.6 shows a valid 2-D individual’s conformation
contains two closed-areas. When the basic backtracking method is used to repair invalid individuals
contain closed-areas, some invalid closed-areas made by backtracking searching folding procedure
will produce computational cost wastes.

Take the 2-D circumstance as example, as showed in Fig. 5.7(a), there is a closed-area formed
by residues from 1 to n. If the folding procedure select right (R) as the next direction for n + 1
residue, it will enter the closed-area. Thus, even if the size of this closed-area can not satisfy the
length of remain residues (called it as invalid closed-area), the traditional backtracking method will
still search all empty position in closed-area by backtracking operation. This will produce a large
number of computational cost wastes. According to our experiment, this phenomenon takes place

with a high probability in repairing procedures for long sequence proteins.

5.4.3 Improved Method

To solve the above problem, in the improved method, a detection for feasibility is introduced. The
detection procedure is implemented before selecting direction for next residue to avoid entering an
invalid closed-area (The procedure Detect — fea in Line 9 of Fig. 5.5).

The pseudocode of the introduced detection algorithm is shown in Fig. 5.8. The main idea of
the detection procedure is described as follow.

1) The current boundaries in lattice is defined as shown in Fig. 5.7(a), the scale of boundary
coordinates is larger one position than current filled area and will be changed with current folding

procedure. For example, four current boundaries of the 2-D solution shown in Fig. 5.6 are x = —11
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

R-Backtracking (| A:XMOVE([], |1 s:MOVE[],
1 Solution Found:bool).

if Feasible(s) then
if |s| = n — 1 then
SolutionFound <~ TRUE
else
SolutionFound < FALSE
11
while —SolutionFound A (i < P\|5|‘) do
if Detect — fea (</\‘Sw>, s) then
s s (Njgp)
R-Backtracking (A, s’, Solution Found)
endif
1+—i+1
if SolutionFound then
s+ s
endif
endwhile
endif
else
SolutionFound < FALSE

endif

Figure 5.5: Pseudocode of the backtracking repairing algorithm.
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Figure 5.6: Illustration of the closed-areas in 2-D HP model.

(left), x = 4 (right), y = 13 (up) and y = —4 (down). They can be used to check the folding
procedure whether enter a closed-area. If the detection meet the current boundaries, the folding
procedure will not enter a closed-area.

2) A search approach, similar to Floodfill strategy, is utilized to count possible empty position-
s connected to the detected direction <)\‘ 8\,i>’ i.e. those empty positions which could be arrived
through this direction. The Floodfill-like search approach count and label the possible empty posi-
tions based on a queue (). If the queue () becomes empty, it means that all possible empty positions
are labeled.

3) In the operation of detection procedure, if the current boundaries are met or the number of
counted empty positions is larger than the length of remain residues, it means that the folding will
not enter a closed-area or entered closed-area is not invalid. Under such circumstance, the detected
direction <)\| s|,i> could be chosen for the next residue.

For long length protein sequences, there are many invalid closed-area in folding procedure. The
improved method can significantly reduce the computational cost. Although the detection procedure
has some computational cost, it is far less than the cost of backtracking searching operations for
invalid closed-areas.

The main reason of the improvement is that the improved method can significantly reduce the
number of backtracking operation. The folding procedure implements backtracking operation only
under few special circumstances. As shown in Fig. 5.7(b), if the folding procedure has selected the

right (R) direction for the n + 1 residues. But at n 4 ¢ position, the folding procedure produce two
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Figure 5.7: (a) Illustration of closed-area detection. (b) The situation that need to implement back-
tracking.

sub-closed-areas and all of two are invalid closed-area for remain residues. The folding procedure
should implement a backtracking operation under this situation. It will back to the n 4 ¢ — 1 residue

and search other possible directions.

5.5 Experiments

5.5.1 Problem Benchmark

Eleven benchmark HP instances are used to evaluate the searching capability of the proposed
method. The first nine instances are taken from the Tortilla 2-D HP Benchmarks !, and the last
two are taken from Ref. [75]. In Tab. 5.1, E* is the optimal or best-known energy value, H;, P,
and (- - -); indicate i repetitions of the relative symbol or subsequence. It is important to highlight
that most randomly generated amino acid sequences do not behave like natural proteins, because
the latter are products of natural selection. Likewise, most randomly generated sequences of H and

P residues in the HP model do not fold to a single conformation [75].

5.5.2 Results of the Hybrid EDA for HP Model

In order to test the effects of the composite fitness function and the local search with guided mu-

tation, different experiments are implemented by using one of them independently. The composite

"http://www.cs.sandia.gov/tech-reports/compbio/tortilla-hp-benchmarks.html
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1 Detect-fea (| (A), | ssMOVE[]):bool.
Calculate current boundaries according to s
Set label for every positions in s (i.e. not empty).
if Feasible(s :: (\)) then

counter = 0 and set an empty queue ()
Add () to the end of @
while @ is not empty do
x=tirst element of Q)
if position z is unlabeled
Set label for position x
counter = counter + 1
endif

if (position x meet the current boundaries) or (counter is larger than the length of remain
residues)

Return TRUE
endif
Remove the first element of ()
if west neighbor of x is unlabeled
Set label for west — x
Add west — x to the end of )
endif

Check and process other three (five for 3D) neighbor positions of x using similar strate-
gies Step (17)-(20)

endwhile
endif

Return FALSE

Figure 5.8: Pseudocode of the detection procedure.
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Table 5.1: HP instances used in the experiments.

No. | Size|E*
sl 20 | 9 | HPHP,H,PHP,HPHP,HPH

s2 24 -9 HQPQ(HPQ)GHQ

s3 25 -8 PQHPQ(H2P4)3H2

s | 36 | -14 | PyHyPyHyPsHy Py Hy Py Ho Py H Py

s5 | 48 | -23 | PyH(PyHs)sPsHoPs(HyPs)oH Py Hs

6 | 50 | -21 | Hy(PH)sPHyP(HPs);HPH,(PH),H

s7 | 60 | -36 | P,H3sPHgPsH,PHP;H 2P H¢ PH,PH P

8 | 64 | -42 | Hyy(PH)y(PyHy)oPyH(PyHy)o PyH (PyHy) o Po(HP)o Hy
9 | 85 | -53 | HyPyHy3Ps(HyaPs)sH(PyHy)o Py HPH

s10 | 100 | 48 | PkHPH2PsHsPHsPH,PyH PoHoPHs PH1cPHy PH7 P Hy
P HPH3PsHPHH

sl | 100 | -50 | PsHoPyHyPoH3(PHo)3HyPsHe PyHs Py HPHoPH 1 P,H3 P
HyPHP,HPH3PsHs

Sequence

fitness function can help to reduce the complexity of EDA, it can obtain same results with basic
k-order Markov EDA (MK-EDA) by using less population size and generation number. The local
search with guided mutation can help to obtain the global optimum for some instances. But it seem-
s that combination of two strategies can get much better results in practice. The performance of

MK-EDA for k € {2, 3,4} are investigated, and the algorithm performs very well when k& = 3.

In the experiments of the hybrid EDA, all algorithms use a population size of 2000 individu-
als. Truncation selection is used as selection strategy. In this strategy, individuals are ordered by
fitness, and the best T' « PopS'ize are selected where T’ is the truncation coefficient. The parameter
T = 0.15 is used in our algorithms. The best elitism scheme is also implemented in algorithms,
the set of selected solutions in the current generation are passed to the next generation. The stop
criteria considered are a maximum number of generation G = 1000 or that the number of different
individuals in the population falls below 5. For the protein instances of s6 to s11, the improved

backtracking-based method is used to repair the invalid solutions.

The results of the proposed method comparing with the MK-EDA for the 2-D HP Model shown
in Tab. 5.2. It includes the best solution and the percentage of times the best solution has been
found in 100 experiments. The results of MK-EDA are also obtained by our experiments with
same EDA parameters (Pop = 2000, G = 1000 and T = 0.15) as the proposed method. The

experiment results show that the proposed method has more chance to find global optimum or
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suboptimum solution for long sequences. The MK-EDA cannot find the global optimum of the
deceptive sequences and long sequences s7, s9, s10 and s11, but the proposed method can find the
global optimum of the sequences s7, s9 and s10, and can find the second best solution for sequence
s11. Figure 5.9 shows the best fitness for one representative run of the instance S7.

The performance of the proposed method comparing with the best results achieved with other
evolutionary and Monte Carlo optimization algorithms is shown in Tab. 5.3 (2-D HP model) and
Tab. 5.4 (3-D HP model). The results of other method are cited from Ref. [75, 46]. The experiment
results show that none of the algorithms are able to outperform the rest of algorithms for all the
instances. The PERM is one of the best contenders in all cases except s8 in which its result is
very poor. It shows that the proposed method is very competitive with the other existing algorithms
for the PSP on HP models. It should be noted that all fitness values of the proposed method in
the comparing results are calculated by basic HP-model fitness definition. The composite fitness

function is only used in optimization procedure of EDA.

Table 5.2: Results of comparing with MK-EDA for 2-D HP model.

Proposed Method MK-EDA
No. | E* | H(X) Percentage | H(X) Percentage
sl -9 -9 100 -9 100
s2 -9 -9 100 -9 100
s3 -8 -8 100 -8 100
s4 | -14 -14 16 -14 5
s5 | -23 -23 22 -23 7
s6 | -21 -21 92 -21 57
s7 | -36 -36 24 -35 12
s8 | -42 -42 16 -42 4
s9 | -53 -53 8 -52 3
s10 | -48 -48 12 -47 4
sl1 | -50 -49 6 -48 2

5.5.3 Results of Comparing Computational Cost

The hybrid EDA is an improved method based on the MK-EDA. The detailed computational cost
analysis of the MK-EDA method can be found in the Ref. [75]. Comparing with the MK-EDA,
t

local search with guided operations; 3) the improved backtracking-based repairing method for the
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Figure 5.9: The best fitness for one representative run of instance s7.

Table 5.3: Results achieved by different search methods for 2-D HP model.

Proposed Method | MK-EDA | GA | NewACO | PERM
No. H(X) H(X) H(X) H(X) H(X)
sl -9 -9 -9 -9 -9
s2 -9 -9 -9 -9 -9
s3 -8 -8 -8 -8 -8
s4 -14 -14 -14 -14 -14
s5 -23 -23 -22 -23 -23
s6 -21 -21 -21 -21 -21
s7 -36 -35 -34 -36 -36
s8 -42 -42 -37 -42 -38
s9 -53 -52 -51 -53
s10 -48 -47 -47 -48
sl -49 -48 -47 -50
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Table 5.4: Results achieved by different search methods for 3-D HP model.

Proposed Method | MK-EDA | Hybrid GA 1A

No. H(X) H(X) H(X) H(X)
sl -11 -11 -11 -11
s2 -13 -13 -11 -13
s3 -9 -9 -9 -9
s4 -18 -18 -18 -18
s5 -29 -29 -28 -28
s6 -30 -29 -22 -23
s7 -49 -48 -48 -41
s8 -51 -50 -46 -42

long protein instances. As far as the computational cost is concerned, modifications of 1) and 2)
will produce some additional computational cost. The modification 3) can significantly reduce the
repairing costs for EDA invalid individuals.

To demonstrate the computational cost of the hybrid EDA comparing with MK-EDA, some
practical experiments in 2-D are implemented. Two comparing methods are implemented with same
parameters (population:1000, generation: 100, the truncation selection of parameter 7' = 0.15) and
same computational environment 2. Because there are few closed-areas existing in short protein
folding, the improved backtracking-based repairing method can not improve the EDA efficiency
for short instances. In the comparing experiments for the short instances of s1 to s5, same basic
backtracking repairing methods are used in two comparing methods. For the long instances of s6 to
510, the improved backtracking-based repairing method is used in the hybrid EDA.

The number of backtracking searching operation and computer CPU-Time are recorded. The
average backtracking searching operations and the CPU-Times of 10 runs are shown in Tab. 5.5.
According to the results of the short instances of s1 to sb, it can be found that the local search
operations and the composite fitness calculation in the hybrid EDA produce some additional com-
putational costs. But it is not very serious. The results of the long instances of s6 to s10 show that
t It not only covers the
additional computational costs caused by local search and composite fitness calculation, but also

improves the algorithm efficiency remarkably.

The backtracking searching operations of each generation for sequence s8 (the length is 64),

2All experiments are performed on the computers with Intel Xeon 2.20 GHz processor, and 1 GB of RAM.
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Table 5.5: Comparing results of the improved backtracking repairing method in 2-D HP model.

AVG-Backtracking operation AVG-CPUTime (Hour)
No. | Size | MK-EDA  Proposed Method | MK-EDA  Proposed Method
sl 20 | 2.1492E+4 2.1496E+4 0.2181 0.2309
s2 24 | 2.5715E+4 2.5715E+4 0.2659 0.2761
s3 25 | 2.6834E+4 2.7044E+4 0.2774 0.2805
s4 36 | 3.8898E+4 3.8797E+4 0.3059 0.3203
s5 48 | 5.2577E+5 5.2617E+5 0.4341 0.4659
s6 50 | 5.7842E+6 *5.4887E+6 0.6249 0.5768
s7 60 | 7.4545E+6 *6.7478E+6 0.9276 0.7516
s8 64 | 9.6731E+6 *7.2236E+6 1.1276 0.8661
s9 85 | 2.0829E+8 *1.1196E+7 12.3077 1.6086
s10 | 100 | 2.6531E+8 *1.9765E+7 15.7125 2.0007

59 (the length is 85) and s10 (the length is 100) are also be counted and shown in Fig. 5.10, Fig.
5.11 and Fig. 5.12. It can be found that the improved backtracking-based repairing method can
significantly reduce the number of backtracking searching operation. And the longer the protein

sequence length is, the more remarkable the improvement achieves.

5.6 Conclusions

In this chapter, a novel hybrid EDA method is introduced to solve the HP model problem. For
the basic k-order Markov EDA, it has very low chance to find the general optimum for those long
sequence and deceptive protein instances. A composite fitness function based on the information
of folding structure core {H-Core) is proposed to replace the traditional fitness function. It can help
to select better individuals for probabilistic model of EDA algorithm. In addition, local search with
guided operators is utilized to refine found solutions for improving efficiency of EDA.

For the disadvantage of heavy computational cost of the traditional backtracking method which
used to repair the invalid individuals in population. It will produce heavy computational cost for
searching invalid closed-areas of folding structure. For the long protein sequences, an improved
method is proposed to reduce the repairing computational cost. When selecting directions for the
residues, a detection procedure for feasibility is introduced to avoid entering invalid closed-areas.
Therefore, the number of backtracking searching operation and the computational cost can be signif-

icantly reduced for long sequence protein. It can be noted that the improved backtracking repairing
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Figure 5.12: The number of backtracking searching operations for instance s10.

method can be used in all EA based PSP methods that need to repair invalid individuals. And the
underlying mutations are implemented for individuals in repairing procedure.

Experimental results show that the proposed method has better performance than the basic EDA
approach. Meanwhile, the proposed method is very competitive with other existing methods for
the HP model. Further research is needed to determine more efficient local search strategies and

probabilistic models of EDA for protein HP model problem.



Chapter 6

Protein HP Model Folding Based on
Adaptive Niching EDA with Balance
Searching

6.1 Introduction

Estimation of Distribution Algorithms (EDAs) [55] are a new class of evolutionary algorithms. Such
approaches, instead of using conventional crossover and mutation operations, use probabilistic mod-
els to sample the genetic information in the population. The use of probabilistic models, especially
those models taking into account bivariate or multivariate dependencies between variables, allows
EDAs to capture genetic tendencies in current population effectively. In brief, these algorithms
construct, in each generation, a probabilistic model that estimates the probability distribution of se-
lected solutions. Dependency regulars are then used to generate next generation solutions during a
sampling step. It is expected that the generated solutions share a number of characteristics with the

selected ones. In this way, the search leads to promising areas of the search space [55].

By explicitly handling interactions between different variables that represent the individuals, the
EDA based methods can get much better results than other population-based methods when solv-
ing some optimization problems. But for those optimization problems with irregular and complex
multimodal landscapes, the EDAs still suffer from the drawback of premature convergence simi-
lar to other Evolutionary Algorithms (EAs). A simple yet popular explanation for the occurrence
of premature convergence is the loss of diversity. But high diversity can not always guarantee a
good performance for EA. It is a challenge which is called as the question of exploration vs. ex-

ploitation [61, 19]. At the early stage of evolution, enhancing diversity measures can ensure EA

87
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to implement a broad exploration in the search space. But such enhancement may be counterpro-
ductive or even destructive for EA at the stage when high exploitation is necessary. Therefore,
implementing a modifiable balance between exploration and exploitation is very important for this
issue [2, 35, 84].

For solving complex optimization problems, an efficient EA searching procedure with a bal-
ance between exploration and exploitation can be imagined as follows. At the beginning phase,
the searching procedure should cover the search space as much as possible to avoid the premature
convergence. But at the end phase of searching, the exploitation should be enforced to find good
solutions. In other words, the degree of exploration should be monotonically decreasing, while the
degree of exploitation should be monotonically increasing during the searching procedure. Inspired
by this thought, in this chapter, an adaptive niching EDA based on Affinity Propagation (AP) clus-
tering analysis [38] is proposed to improve the performance of EDA. As a machine learning method,
the AP clustering is used as an intelligent and efficient way to mine the information of EDA search
procedure. It is not only used to partition the niches for population adaptively, but also used to mine

the searching history information of EDA to guide the EDA searching.

The clearing procedure [68] is used as a basic niching frame in the proposed method. 1) AP
clustering is used to adaptively partition the population into niches during a run of EDA. The indi-
viduals are clustered before submitting them to niching clearing. A cluster can be seen as a niche,
and the niche number and the niche radiuses may vary obviously for different generations. 2) A
mechanism of niche capacity selection based on the Boltzmann scheme is proposed to realize a bal-
ance searching between exploration and exploitation. A niche novelty metric is proposed to record
the searching history information by detecting the overlapping distributions of the niches in succes-
sive generations. The metric is used to evaluate the degree of search space that has been explored
by the previous searching. Two different selection strategies, novelty-proportionate selection based
on the novelty metric and fitness-proportionate selection based on the best fitness in a niche, are
assembled by a Boltzmann weight in the niche capacity selection mechanism. Tuned by the Boltz-
mann weight, at the beginning phase of searching, the dominating novelty-proportionate selection
can guide the EDA searching to cover the search space as much as possible; at the end phase of
searching, the dominating fitness-proportionate selection can enforce the EDA searching to exploit

the already found promising areas.

The proposed adaptive niching EDA is used for solving the protein HP model folding. For
the protein HP model problems, the k-order Markov EDA proposed in Ref. [75] outperforms other

population-based methods. But for most of the long protein sequences, the chance of finding the
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global optimum is very low, and for some deceptive sequences, it can only find the suboptimum
solutions. In this chapter, the proposed method is used to improve the performance of the k-order
Markov EDA for protein HP problem. In addition, three benchmark functional multimodal op-
timization problems based on continuous EDA with single Gaussian probabilistic model are also
used to evaluate the proposed method in continuous situation. Experiment results show that the

proposed adaptive niching EDA is an efficient method.

The rest of the chapter is organized as follows. Section 6.2 briefly introduces the premature
convergence and the AP clustering. Section 6.3 formulates the proposed adaptive niching EDA
based on AP clustering analysis. Section 6.4 carries out experiments on solving the optimization
problem of HP model protein folding based on a k-order Markov probabilistic model. Finally,

Section 6.5 presents the conclusions.

6.2 Premature Convergence and Niching Clearing
6.2.1 Premature Convergence

A critical problem when dealing with EAs is the phenomenon of premature convergence. Premature
convergence occurs when the population of an evolution searching reach a suboptimal situation. In
such suboptimal situation, the search process of EA is trapped in a local suboptimal region, and the
genetic operators can not generate better offspring solutions than their parents. The loss of diversity
is always regarded as the main reason for the occurrence of premature convergence. The diversity

means a genetic variation of the population members in this context [40].

Various enhanced strategies for diversity maintenance have been proposed which target different
stages of the evolution process. Niching method is one of the well-known strategies proposed to
reduce the effects of genetic drift resulting from the selection mechanism, to allow the formation and
the maintenance of different solutions and to prevent the EA from being trapped in local optima [40].
In the niching method, the analogy with nature is straightforward. As in an ecosystem there are
different subsystems (niches) that contain many diverse species (subpopulations). The number of
elements in a niche is determined by its resources and by the efficiency of each individual in taking
profit of these resources. Using this analogy, it is possible for a EA to maintain its population

diversity during the generations.



90

6.2.2 Niching Clearing Procedure

Among niching methods, fitness sharing based methods are widely known and used [23, 24, 81, 47,
29]. In sharing algorithms, the number of individuals in a niche is limited to the caring capacity
of the niche. Individuals within a niche must share the fitness payoff offered by their niche. By
treating fitness as a resource and sharing it among all niche members it restricts the maximum
number of individuals that can be supported by the niche. When a niche becomes overcrowded,
payoff is spread too thin and it in each individual’s best interests to seek out another less crowded
niche where they can get more payoff (fitness). Niches are a subdividing of the environment, or the
fitness landscape. A population can be thought to specialize in different areas of the environment,
where the idea of sharing resources between individuals induces a powerful niching behavior. It
has been said [47] that through sharing, a form of localized competition for local resources leads to
implicit cooperation between subpopulations (niches).

The clearing strategy [68] is another niching method. Different from the fitness sharing, the
clearing strategy is derived from the concept of limited resources of the environment. The available
resources are shared among all members of a subpopulation in the fitness sharing. But in clearing
strategy, those limited resources are only used to supply the best individuals of each subpopulation.

As well as sharing, clearing is applied after the fitness evaluation and before selection, using
a dissimilarity measure to separate the individuals in niches. Similar to in the sharing strategies,
individuals are classified to a same niche if their distance in the search space is less than a dissim-
ilarity threshold o (is called as clearing radius).The maximum number of individuals that a niche
can contain is defined as the capacity «. In the clearing strategy, the # best individuals (are called
as dominant individuals) of a niche are preserved, and the fitness of others that belong to the same
nich (are called as dominated individuals) are reset. The elitism strategies can also used in clearing
naturally to preserve the best elements of niches during the generations. If the two parameters (the
niche radius and the niche capacity) are correctly estimated, the clearing method can be considered

as an excellent niching method [76].

6.3 Adaptive Niching EDA with Balance Searching

The clearing procedure is used as a basic niching frame in the proposed adaptive niching EDA.
To implement the niching clearing in the selection procedure of EDAs, the individuals are firstly
grouped into many niches by a certain partition strategy. A static radius o is used to partition the

niches in a conventional niching clearing method. Then, the x best individuals are selected from
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Figure 6.1: Selection procedure of the adaptive niching EDA.

each niche respectively and a combination of selected individuals is used to estimate probabilistic
model of EDA. The capacity parameter  is defined as the maximum number of winners that a niche
can accept. In the conventional method, the capacity « is set as a static value for all niches, and it
can be set in a range from 1 to the population size, so that the niching effect can be, respectively,
maximized or minimized as convenient.

In the proposed adaptive niching EDA, as showed in Fig. 6.1, a balance niching searching
strategy based on adaptive clustering is introduced into the selection procedure to improve the per-
formance of EDA. 1) The values of the clearing radius ¢ are determined adaptively by AP clustering
during a run of EDA. The individuals are clustered before submitting them to the niching clearing
and a cluster can be seen as a niche. 2) A niche capacity & selection mechanism based on the
Boltzmann scheme is utilized to realize a balance searching. Two different selection strategies of
considering exploration and exploitation are assembled by the Boltzmann scheme in the selection
mechanism. A combination of the selected individuals from all niches is used to estimate the prob-

abilistic model of EDA.

6.3.1 A Mechanism of Niche Capacity Selection

In each iteration of the niching EDA, a combination of the selected individuals from all niches is
used to estimate a probabilistic model to capture genetic tendencies in the current population. For
a certain niche, the number of winners (the » selected individuals) represents the degree of EDA
searching for this niche area. Therefore, the niche capacity selection can be utilized to tune the
searching behavior of EDA. An efficient EDA with a balance searching should have the behaviors
described as follows. The degree of exploration is monotonically decreasing, while the degree of
exploitation is monotonically increasing during the search run. To realize an efficient searching

procedure with a balance between exploration and exploitation, a mechanism of niche capacity
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selection based on the Boltzmann scheme is defined as follows.

ki(ng) = M X |w X Eig(n;) + (1 —wi) X Erg(n;)]
e('—ﬂrﬁax) -1
w o= || S 1<i<d 6.3.1)
e —

where M is the number of selected individuals in each iteration, n; denotes the ¢-th niche, w; the
Boltzmann weight of the t-th iteration, 7., the maximum number of iterations, « the scaling
factor used to tune the Boltzmann scheme, cl; the cluster number of the ¢-th iteration population,
Eii(n;) and Eri(n;) the selection probabilities of the i-th niche in the ¢-t

. The detail definitions of Ei;(n;) and
Er(n;) will be described in the following subsections.

The round value |x.(n;)]| is used as the winner number of niche n;. A combination of the
winners from all niches is used as the selected individuals (the number is Zfﬁl | k¢(n;) |) to estimate
the probabilistic model of the ¢-th generation.

In the proposed mechanism of niche capacity selection, two different selection strategies are
assembled by a Boltzmann weight w; related with the generation ¢. Tuned by the Boltzmann weight
wy, at the beginning phase of EDA, the searching procedure explores the search areas as more
as possible by dominating the exploration strategy; at the end phase of searching, the searching

exploitation is enforced to refine the already found solutions by dominating the exploitation strategy.

6.3.2 The Exploration Probability £r.(n;)

According to the definition of the niche capacity selection mechanism described in the previous
subsection, the exploration strategy (represented by the probability Er.(n;)) is expected to preserve
a diversity in the population of EDA. It should guide the EDA searching to cover the solution space
as much as possible to avoid premature convergence. Selecting the same number of winners from all
niches is a simple exploration strategy, i.e., the niche capacities for all niches are set as the average
value decided by the selected population size and the cluster number of current population.

But the average selection is not a good strategy suitable to the adaptive niching scheme. Be-
cause in the adaptive niching scheme, the individuals in the population are separated into niches
adaptively; in addition, the niche number and the niche radiuses vary obviously in different genera-
tions. The varied niche radiuses may produce a problem of irregular niche distribution, i.e., at some
generations, too many niches are distributed in a search space that has already been explored by the

previous searching. A simple experiment can be used to explain this problem. An experiment of
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Figure 6.2: Population clustering center exemplars of Schwefel function (dimemsion=2) optimized
by UMDA..

optimizing the 2-dimension Schwefel function (Eq. 6.4.3 and the function landscape showed in Fig.
6.5) is implemented by the continuous Univariate Marginal Distribution Algorithm (UMDA() [55].
The function domain is [-500 500] and the population size is 50. The populations of four differ-
ent searching phases (generations of 1-5, 11-15, 21-25 and 31-35) are stored and analyzed by AP
clustering. The obtained cluster center exemplars are showed in Fig. 6.2. From the distributions of
cluster center exemplars in different generations, it can be found that the adaptive niching scheme
often produces the irregular niche distribution problems. To solve this problem, two levels of diver-
sity preservation are considered in the adaptive niching scheme: one is the diversity preservation at

individual level; the other is the one at niche (subpopulation) level.
In the proposed exploration searching strategy, the population clustering information is utilized
to record the EDA searching history for solving the irregular niche distribution problem. From

the overlapping information of the cluster center exemplar distribution in successive generations,
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the search space parts which have been explored by the previous searching can be found. A niche
novelty metric is proposed to record the overlapping information, and it is used to evaluate the
degree of the corresponding niche explored by the previous searching. The niches with smaller
novelty metric values will be punished moderately at the exploration searching strategy to realize
the diversity preservation at the niche level.

The niche novelty metric nov(n;) of niche n; in the ¢-t
nov(n;) = ) 0<p<1 (6.3.2)

where n; denotes the i-th niche, £ is the penalty parameter for niche novelty, and O;(n;) the over-
lapping parameter of niche n; in the ¢-th generation.

Let us describe a niche n; at generation ¢ by its center C;(n;) and radius o (n;) where the center
determining its position and the radius determining its area. If the center of a niche n; of ¢ generation
is inside the niche n; of ¢ — 1 generation, that is, the distance between two centers C’t,l(nj) and
Cy(n;) is less than the radius o; _1(n;), the niche n; of ¢ generation is said to be overlapped by the
niche n; of £ — 1 generation.

Set O¢(n;) = 0 as the initial value. If the niche n; of ¢ generation is one of the k(k > 1) niches
that are overlapped by the niche n; of ¢ — 1 generation, then set Oy(n;) = O¢—1(n;) + 1 with a
probability of (k — 1)/k. That is, among the k niches only one keeps 0, while other & — 1 niches
are set to O _1(n;) + 1.

The niche novelty metric reflects the information of search space explored by the EDA. The

exploration searching probability Er.(n;) is defined by a novelty-proportionate strategy as follows.
nov(n;)
2521 nov(n;)

where cl; is the cluster number of the ¢-th iteration population.

Ery(n;) = (6.3.3)

6.3.3 The Exploitation Probability Fi,(n;)

A popular fitness-proportionate method is used as the exploitation strategy in the proposed adaptive

niching EDA. The exploitation searching probability Ei;(n;) is defined as follows.
fe(ni)

Z;& fe(ny)

where f;(n;) is the maximum fitness value of the i-th niche in the ¢-th iteration.

Eiy(n;) = (6.3.4)

The fitness-proportionate niche capacity selection is defined based on the best fitness value in a

niche. It can guide the EDA to search the already found promising areas of searching space.
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Figure 6.3: Framework of the proposed adaptive Niching EDA

6.3.4 Framework of the Proposed Method

Following a typical EDA framework, as showed in Fig. 6.3, the major steps of the proposed adaptive

niching EDA can be summarized as follows.

1) Generate the first population of NV individuals randomly. The individuals should be initialized

to cover different areas in the search space.

2) Repair invalid individuals and evaluate each individuals of the current population. Then the
individuals of current population is grouped into clusters by using AP method based on a

certain similarity metric.

3) Calculate the novelty metric for each cluster (niche) by Eq. 6.3.2 and evaluate each niche

by its best solution found. According to the proposed niche capacity « selection mechanism
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cly

of the Boltzmann scheme defined by Eq. 6.3.1, a number of >

', | ke(n;)] individuals are

selected from the niches obtained in Step 2).
4) Estimate the probabilistic model from the selected individuals.

5) Generate a new population of individuals based on the probabilistic model obtained in Step
4). The elitist preservation strategy is implemented, so a set of good solutions in the current

generation is passed to the next generation.

6) Repeat Steps 2) to 5) until certain stop criterion is met (e.g. a maximum number of genera-

tions, a homogeneous population, or no improvement after a certain number of generations).

6.4 Experiments
6.4.1 Experiments on Continuous Benchmark Functions

To evaluate the proposed method for continuous optimization problems, the proposed adaptive nich-
ing EDA is applied to solving three benchmark functional multimodal problems firstly. In cases of
continuous EDAs, Gaussian model is the most widely used probabilistic model. But there are diffi-
culties in solving those multimodal functions with irregular and complex landscapes, since conven-
tional EDAs are said to be easily misled by such kinds of deceptive landscapes and then converge

to poor results.

Benchmark Functions

The following three benchmark functions from [97] are used to evaluate the proposed method.

1) Kowalik function

11 2
l’l(bz + b2$2)
=> Jaj— 5 t— 6.4.1
f(x) i1 |:a bz2 + bi.’L'g + x4 ( )

where —5 < z; < 5, and a; is [0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0323
0.0235 0.0246], b;l is[0.250512468 1012 14 16].
2) Shekel function

fE@) =3 IF )@ —a)" + e (64.2)

where 7 is set to 5 in the experiment and the parameters of a;; and ¢; are listed in Table 6.1.
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Table 6.1: Parameters of the Shekel function (n = 5)
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Table 6.2: Settings for the three test functions

Dimension | Domain | Type | Optimum

Kowalik 4 [-55] Min. | 0.0003075
Shekel(n=5) 30 [0 10] Max. | 10.0134
Schwefel 30 [-500 500] | Min. | -12569.5

3) Schwefel function.
n

F(@) =) —asin(y/|zi) (6.4.3)

i=1
Table 6.2 lists the specifications of three test functions. And the particular two-dimension cases

for the Shekel and Schwefel are showed in Fig. 6.4 and Fig. 6.5.

Experiment Results

Three EDA based methods of UMDA -, CEGDA g, [60] and NichingEDA [33] are used to com-
pare with the proposed method. Among them, the results of CEGDApgg. and NichingEDA are
cited from their original papers, the results of the UMDA are obtained by our experiments. In
Ref. [60, 33], the maximal evaluation number for CEGDA g, and NichingEDA are 4 x 10° and
5 x 105, respectively; all results have been averaged over 30 independent runs.

In our experiments, the maximal evaluation number for UMDA ¢ and the proposed method are
set as 4 x 10° (population: 1000 and generation: 400). A Gaussian probabilistic model similar to
the UMDA( is used in the proposed method. The initial populations are sampled by randomly in
the function domain. A truncation selection with size of 500 is used in all algorithms. And the
elitism strategy is utilized in the evolution processing. For those invalid individuals sampled in

each generation, a repairing procedure is used to change the values of each out of range variable
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£(x)

Figure 6.4: Plot of the Shekel function (dimension=2).

to the minimum (respectively maximum) bounds of the function domain. The penalty parameter o
in Eq. 6.3.1 for the niche novelty and the scaling factor 3 in Eq. 6.3.2 for the Boltzmann scheme
are set as: o« = 2 and J = 0.95, respectively. About the parameters of AP clustering (defined in
Ref. [38]), Euclidean distance is used as the similarity metric of individuals; the maximum number
of iterations is set as 1000, and early terminate parameter is set as 100 (i.e., the clustering procedure
will be terminated if the estimated exemplars stay fixed for continuous 100 iterations); the damping
factor, which may be needed if oscillations occur, is set as 0.9.

The results on three functions are listed in Table 6.3, Table 6.4 and Table 6.5. Based on the best
solutions that the algorithms have found in 30 independent runs, the best values, mean values and
standard errors are calculated for comparison. The results show that the proposed method outper-
forms other methods for solving the three functional optimizations. To observe the computational
overheads of the proposed method, the CPU-Time costs (the computers with Intel Xeon 2.20 GHz
processor, and 1 GB of RAM) are listed in Table 6.6.

6.4.2 Experiments on Protein HP Model

In this section, the proposed adaptive niching EDA is applied to solving a real complicated discrete

EDA optimization problem, the HP model protein folding based on a k-order Markov (MK-EDA)
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Figure 6.5: Plot of the Schwefel function (dimension=2).

Table 6.3: Experimental results for the Kowalik function

Algorithm Best Mean Std
UMDA. 0.00085553 0.0031 0.0017
NichingEDA | 0.00030750 | 0.00030874 | 2.7899¢-006
Proposed | 0.00030750 | 0.00030791 | 4.173e-008

probabilistic model.

Experiment Setting

99

In this chapter, the representation of internal coordinates with relative direction [52] is used. The

position of each residue depends upon the previous move. Relative direction representation presents

the direction of each residue relative to the main chain next turn direction. This representation can

reduce the direction number of each position. For 2-D HP model, the set of direction is left, right
and forward (L, R, F). It is left, right, forward, up and down, (L, R, F, U, D) for the 3-D HP model.

During the course of EDA search procedure, initialization and sampling from probabilistic mod-

el operations may produce a lot of invalid individuals including positional collisions. A positional

collision is the embedding of two different residues onto the same vertex of the lattice. The improved
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Table 6.4: Experimental results for the Shekel function (Dim=30)

Algorithm Best Mean Std
UMDA. 5.1325 | 4.3108 0.9326
NichingEDA | 0.3550 | 0.2230 0.0564
CEGDApBge | 10.0134 | 10.0134 | 8.8818e-015
Proposed | 10.0134 | 10.0134 | 4.7622e-015

Table 6.5: Experimental results for the Schwefel function

Algorithm Best Mean Std
UMDA, -5928.24 | -5424.81 | 202.437
NichingEDA | -8733.51 | -8005.39 | 270.755
CEGDApRge | -10773.1 | -6760.35 | 2624.33
Proposed | -11064.82 | -8741.61 | 2124.33

backtracking-based repairing method proposed in Ref. [18] is used to repair invalid individuals for
the long sequence protein instances. In this repairing method, to avoid entering invalid closed-
areas, a detection procedure for feasibility is introduced when selecting directions for the residues
in backtracking searching procedure. It can significantly reduce the number of backtracking search-

ing operation and the computational cost for the long protein sequences.

pu(X) =p(z1, - Thi1) H p(@il@io1, - Tik)- (6.4.4)
i=h42

The k-order Markov model of EDA is described by Eq. 6.4.4. It can encode the dependencies
between the move of a residue and the moves of the previous residues in the sequence, and this
information can be used in the generation of solutions. To sample a new solution, first variables in
the factor (21, - -, xp41) are generated and the rest of variables are sampled according to the order

specified by the Markov factorization.

Table 6.6: Computing costs of the proposed method and the UMDA,...

Algorithm Kowalik | Shekel | Schwefel
UMDA.. (second) 11.27 13.34 14.95
Proposed (second) | 1551.65 | 1618.73 | 1692.39
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Experiment Results

In our experiments, the benchmark protein instances (s4 to s11 in Chapter 5 Tab. 5.1) from the
Tortilla 2-D HP Benchmarks and Ref. [75] are used to evaluate the searching capability of the
proposed method.

Table 6.7: Results of comparing with MK-EDA and the proposed method for 2-D HP model.

Proposed method MK-EDA
No. | E* | Runs | Best Perc. Mean Time(H) | Best Perc. Mean Time(H)

s4 | -14 | 100 -14 32% -13.87 1.5324 -14 5%  -11.05 0.5321
sS | -23| 100 -23 49% -22.72 1.9113 -23 7%  -20.45 0.7112
s6 | -21 | 100 -21 96% -20.83 2.5884 -21 57% -1832 09125
s7 | -36 | 100 -36 34% -35.02 3.1270 -35 12%  -32.65 1.5278
s8 | -42 | 100 -42 28% -41.71 4.5327 -42 4%  -36.24 2.1232
s9 | -53 15 -53  1333% -5191 11.4751 52 6.67% -46.62 8.5321
s10 | -48 15 -48  6.67% -46.77  16.6680 47 6.67% -43.24  10.2117
sl1 | -50 15 -49  6.67% -47.81 159712 -48  6.67% -44.38 9.5449

The results of MK-EDA are also obtained by our experiments, the maximal evaluation number
of the proposed method and MK-EDA are set as 2 x 10°, all algorithms use a population size of
2000 individuals. Truncation selection parameter 7" = 0.15, i.e., the best T'x PopS'ize, are selected
for learning probabilistic model. The penalty parameter o in Eq. 6.3.1 for the niche novelty and the
scaling factor 4 in Eq. 6.3.2 for the Boltzmann scheme are set as: « = 1 and 8 = 0.80. The stop
criteria considered are a maximum number of generation G = 1000 or that the number of different
individuals in the population falls below 5. The performance of MK-EDA for k € {2,3,4} are
investigated in our experiments, and the algorithm performs very well when £ = 3. In the AP
clustering, Hamming distance is used as the similarity metric of individuals, other parameters are
set same as the previous section experiments.

The results of the proposed method compared with the MK-EDA for the 2-D HP Model are
listed in Table 6.7. It includes the best solution, the percentage of times the best solution has been
found, the mean fitness of selected solutions in the last generation has been found and computing
cost (CPU-T ). The experiment results show that the proposed method has more chance to find
global optimum or suboptimum solution for protein sequences than MK-EDA. The MK-EDA can-

not find the global optimum of the deceptive sequences and long sequences s7, s9, s10 and s11.
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The proposed method also can find the global optimum of the sequences s7, s9 and s10, and can
find the second best solution for sequence s11. But the proposed method need more computing cost
than the MK-EDA because of the clustering and niching operations. Figure 6.6 shows the number
of different individuals in the selected population for one representative run of instance s10 in 2-D
model. One 3-D conformation of the best results for sequences s5, s7 and s8 are shown in Fig. 6.7,

Fig. 6.8 and Fig. 6.9 respectively.

Table 6.8: Results of different search methods for 2-D HP model.

Proposed | MK-EDA GA NewACO | PERM

No. H(X) H(X) H(X) H(X) H(X)
s4 -14 -14 -14 -14 -14
s5 -23 -23 -22 -23 -23
s6 -21 -21 -21 -21 -21
s7 -36 -35 -34 -36 -36
s8 -42 -42 -37 -42 -38
s9 -53 -52 -51 -53
s10 -48 -47 -47 -48
s11 -49 -48 -47 -50

Table 6.9: Results of different search methods for 3-D HP model.

Proposed | MK-EDA | Hybrid GA 1A

No. | H(X) H(X) H(X) H(X)
s4 -18 -18 -18 -18
s5 -29 -29 -28 -28
s6 -30 -29 -22 -23
s7 -49 -48 -48 -41
s8 -51 -50 -46 -42

The performance of the proposed method compared with the best results achieved with other
evolutionary and Monte Carlo optimization algorithms is shown in Table 6.8 (2-D HP model) and
Table 6.9 (3-D HP model). The results of other methods are cited from Ref. [75]. The experiment
results show that none of the algorithms are able to outperform the rest of algorithms for all the
instances. The PERM (Pruned-Enriched Rosenbluth Method) [49] is a biased chain growth algo-

r -sampling (“population control”) with depth-first implementation. It is one of the best
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Figure 6.6: The number of different individuals in the selected population for one representative run
of instance s10.

Figure 6.7: One conformation of the best results for the instance s5 in 3-D HP model (fitness=-29,
star denotes H and circle denotes P).



104

Figure 6.8: One conformation of the best results for the instance s7 in 3-D HP model (fitness=-49,
star denotes H and circle denotes P).

Figure 6.9: One conformation of the best results for the instance s8 in 3-D HP model (fitness=-51,
star denotes H and circle denotes P).
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contenders in all cases except s8 in which its result is very poor. This shows that our method is very

competitive with other existing algorithms for the PSP on lattice HP models.

6.5 Conclusions

This chapter proposed a novel adaptive niching EDA based on AP clustering analysis. The clearing
procedure is utilized as a basic niching frame in the proposed method. The AP clustering is not only
used to partition the niches for population adaptively, but also used to mine the searching history
information of EDA. A niche novelty metric is introduced to evaluate the degree of search space
that has been explored by detecting the niche overlapping information of continuous generations.
A Boltzmann scheme niche capacity selection is proposed to improve the EDA performance by a
balance searching between exploration and exploitation. At the beginning phase of the search, the
dominating novelty-proportionate selection based on the niche novelty metric can guide the EDA
searching to cover the search space as much as possible. At the end of the search process, the
dominating fitness-proportionate selection based on the best fitness value in a niche can enforce the
EDA searching to exploit the already found promising areas.

Two different categories of optimization problems are used to evaluate the proposed adaptive
niching EDA. Experiment results show that the proposed adaptive niching EDA is an efficient

method for solving the optimization problems with irregular and complex multimodal landscapes.
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Chapter 7

Conclusions

7.1 Summary

The gene function prediction and protein structure prediction are two important domains where
machine learning techniques are applied in bioinformatics. Generally, the first is a classification
problem and the second is an optimization problem. Supervised and unsupervised classification
methods are often used to predict gene function, such as Clustering, SVM, NN, etc. Evolutionary
algorithm (EA) based methods are the main optimization technologies for protein structure predic-
tion, such as genetic algorithm (GA), estimation distribution algorithms (EDAs), particle swarm
optimization (PSO), etc.

For the complicated tasks, such as the hierarchical multi-label gene function classification and
the long protein sequence structure prediction, applying machine learning methods simply usually
cannot obtain expectable results. The different characteristics of the applications will require novel
modifications of existing machine learning methods.

In this thesis, improved machine learning methods are explored for solving complicated ge-
nomics and proteomic applications. More precisely, SVM based multi-label and hierarchical multi-
label classification methods are developed for solving the gene function prediction problems, and
novel EDAs based methods are proposed for solving the protein HP model problems. The infor-
mation of the biology data is extracted and used to improve the performances of machine learning
methods, and some delicate techniques are also combined according to the characteristics of appli-
cation problem.

The following are the main conclusions of this thesis:

1. A composite kernel based SVM (ck-SVM) model can be used for solving nonlinear classifi-

cation tasks in gene function prediction, which conventional nonlinear kernel SVMs can not
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work efficiently.

2. A multi-label classification based on label ranking and delicate decision boundary SVM can

be used for solving multi-label gene function classification.

3. A hierarchical multi-label classification (HMC) method based on over-sampling and hierar-

chy constraint can be used for solving the FunCat gene function prediction problem.

4. A hybrid Estimation of EDA can be used for solving the protein structure problem on HP

model.

5. An adaptive niching EDA with balance searching based on clustering analysis can be used to

enhance the performance of EDA.

7.2 Topics for Future Research

Although a lot of progress has been made, there are still many aspects that need further investiga-

tions.

1. More characteristics and properties of the proposed composite kernel based SVM are need be
investigated, such as the efficient subset partition methods and composite kernel estimation

techniques.

2. Applications of the proposed hierarchical multi-label method in other domains should be

studied, such as in text classification and object recognition.

3. Applications of the proposed adaptive niching EDA in other protein structure prediction prob-
lems should be researched, such as in protein side chain placement problem and tag single

nucleotide polymorphism (SNP) selection.
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