
 

 

Determination of crystal structure 

 and absolute configuration of 

 thalidomide enantiomers 
 

サリドマイド対掌体の結晶構造 

および絶対配置の決定 

 

 

 

 

 

 

 

 

 

December, 2010 

 

早稲田大学大学院 先進理工学研究科 

生命医科学専攻 生物物性科学研究 

 

Toshiya Suzuki 

鈴木 俊哉 

 



 

 

 

  





Preface 

i 

 

Preface 

 

 

Crystals of the same molecule can be in multiple forms. Phenomena of polymorphism, 

solvate formation, and co-crystallization affect solubility, dissolution rate, and other 

physicochemical properties. Therefore, characterization and identification of multiple 

forms of crystals are one of the most popular topics in modern solid state chemistry. 

Chirality is significant issue especially in pharmaceutical industry because many 

pharmaceutical compounds have chirality and several chiral drugs have different 

pharmacological effects between their enantiomers. In some cases, one enantiomer 

causes beneficial effect and yet the other harmful effect. 

Thalidomide, one of chiral compounds, was marketed as a safe sedative and 

hypnotic drug in 1956. Before long, its side-effect of teratogenicity caused tragic drug 

disaster and thalidomide was withdrawn from market in 1962. Recently, however, its 

potential as a treatment for intractable diseases, such as erythema nodosum leplosum 

and multiple myeloma, has been revealed and thus thalidomide has attracted 

considerable attention again. 

Although a number of researches have reported the bioactivity of thalidomide, 

only a few researches have reported its physicochemical properties. For instance, 

racemic thalidomide is known to exhibits lower solubility and higher melting point 

than the enantiomeric thalidomide. However, the origin of differences in these 

physicochemical properties between enantiomeric and racemic thalidomides has not 

been investigated. Although the knowledge about the crystal structure is essential for 

understanding these physicochemical properties, the crystal structure of enantiomeric 

thalidomide has not been published for about 40 years since that of racemic 

thalidomide was reported in 1971. 

The objectives of this thesis are to evaluate methods for crystallization of 

thalidomide, to determine crystal structure and absolute configuration of enantiomeric 

thalidomide, and to investigate the origin of differences in physicochemical properties 

between enantiomeric and racemic thalidomides. 
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This thesis is composed of following five chapters. 

 

Chapter 1 provides the general introduction of this thesis. As to crystal, chirality, and 

thalidomide, this chapter introduces the fundamental aspects such as definitions of 

terms, historical backgrounds, and significant properties. 

 

Chapter 2 evaluates methods for crystallization of thalidomide. The crystallization 

methods are determined with consideration of possible multiple forms of thalidomide 

crystal and undesirable chiral inversion in crystallization of enantiomeric thalidomide. 

 

Chapter 3 determines crystal structure of (S)-thalidomide with single crystal X-ray 

diffractometry. Hydrogen bonded dimers structure in unsolvate and infinite hydrogen 

bonded chains structure in solvate are investigated in detail. 

 

Chapter 4 investigates the origin of differences in physicochemical properties between 

enantiomeric and racemic thalidomides. Crystal structures of (S)- and 

(RS)-thalidomides are compared and structural stabilities of dimers in each crystal are 

evaluated by theoretical calculations. 

 

Chapter 5 concludes this thesis with future prospects. 
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1. General introduction 

 

 

 

1.1 Multiple forms of crystal 

 

Crystal is a solid substance formed with orderly arranged units. These units generally 

consist of atoms or molecules. In the case of molecules, the crystals are especially 

called molecular crystals. Studies concerning crystal are called crystallography. The 

primary significance of the crystallography is investigations into crystal structures. The 

crystal structures are usually determined with X-ray diffractometry based on the 

property of orderly arrangements in crystals. Determinations of crystal structures 

provide valuable information of the substances. The principal information obtainable 

from X-ray diffractometry on molecular crystals is details of component molecules, 

such as those conformations and relative position to another molecule. Thus, 

determinations of crystal structures are useful for understanding the physicochemical 

properties of the substances. 

Crystal structure is fundamental knowledge of a substance. However, crystal 

structure of a substance is not unique in a particular form. In other words, crystal 

structures of a substance obtained from various crystallization methods are not always 

correspond with each others. This phenomenon of the same component molecules 

being in different arrangements is called polymorphism (Figure 1.1). Polymorphic 

forms are generally distinguished by prefixes. Although the number of possible 

polymorphs is limited because crystalline solid is highly stable state, differences in 

crystal structures of polymorphs results in different physicochemical properties of each 

polymorph. Therefore, controlling polymorphism is a significant issue in crystal 

engineering.  

Moreover, molecules of some compounds often crystallized with those of other 

compound. This phenomenon is called co-crystallization in the general meaning. In the 

case of crystallization from solution, solute molecules often form solvates: crystals 

including solvent molecules as guests. Solvates are often regarded as a particular case 

of co-crystals. Nevertheless, the discrimination of solvate and co-crystal has been in 

controversy. Physicochemical properties of solvates are also different from those of 

unsolvated polymorphs.  
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Thus, crystals of the same molecule can be in multiple forms. Phenomena of 

polymorphism, solvate formation, and co-crystallization affect solubility, dissolution 

rate, and other physicochemical properties. Therefore, characterization and 

identification of multiple forms of crystals are one of the most popular topics in 

modern solid state chemistry. [1-8]  

 

 

 

 

 

 

  

Figure 1.1 Multiple forms of molecular crystal. 
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1.2 Definition of chirality and trends in chiral drug development 

 

Chirality is a property of an object to be non-superimposable on its mirror image, and 

the term “chiral” means having chirality. The term “achiral” means not chiral, i.e. 

being identical to its mirror image. Most universal example of chiral object is human 

hands: one hand is never superimposed on the other hand (Figure 1.2) [9, 10]. 

In the case of molecular structure, an atom with 4 different functional groups has 

chirality, and this is called molecular chirality (Figure 1.3). Two configurational 

isomers of chiral molecules are distinguished as (R)-isomer or (S)-isomer. Each of 

these two configurational isomers is called enantiomer. In chirality-independent 

physicochemical phenomena, one enantiomer exhibits same properties with the other. 

The mixture of enantiomers in same amount is called racemate. Generally, the term 

“racemate” is used in the same meaning with racemic mixture, which is different from 

racemic compound. 

 

 

 

 

  

Figure 1.2 “human intelligence, a left and a right hand and two enantiomorphous tetrahedral” 

drawn by Hans Erni. This artwork was the commemorative gift to Vladimir Prelog, winner of 

the 1975 Novel Prize in chemistry for his research into the stereochemistry of organic 

molecules and reactions [9, 10]. 
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The history of chirality started from two centuries ago. Jean-Baptiste Biot first 

observed the optical activity in 1815. The optical activity is a phenomenon based on 

molecular chirality that a solution of enantiomer rotates the plane of the incident 

polarized light. Louis Pasteur deduced that the origin of the optical activity is molecular 

structure. He achieved the mechanical separation of tartrate enantiomers in 1848. 

However, he coined the chiral structural arrangement in molecules as “dissymmetry”. 

The term “chirality” itself originated from Lord Kelvin‟s coinage: “I call any 

geometrical figure or group of points, chiral, and say that it has chirality, if its image in 

a plane mirror, ideally realized, cannot be brought to coincide with itself. Two equal and 

similar right hands are homochirally similar. Equal and similar right and left hands are 

heterochirally similar or allochirally similar (but heterochirally is better). These are 

also called enantiomorphs, after a usage introduced, I believe, by German writers. Any 

chiral object and its image in a plane mirror are heterochirally similar.” [11]. 

 

 

 

 

 

  

Figure 1.3 Configurational isomers of chiral molecule. 
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Chirality is significant issue especially in pharmaceutical industry because many 

pharmaceutical compounds have chirality and this fact cause undesirable problems. 

Several chiral drugs have different pharmacological effects between their enantiomers. 

In some cases, one enantiomer causes beneficial effect and yet the other harmful effect. 

This is mainly because protein, those receptor, homochirally consist of L-amino acids. 

Therefore, doses of chiral drug as racemate require careful attention. 

 In 1992, the US Food and Drug Administration (FDA) established the guideline 

for the development of chiral drugs [12]. Since then, the increasing number of chiral 

drugs has been developed as single enantiomer drugs. The distribution of 

worldwide-approved drugs concerning chirality is as follows: the ratio of single 

enantiomers is 39%, that of racemates is 23%, and that of achirals is 38%, respectively 

(Figure 1.4) [13]. 

 

 

 

 

 

 

 

  

 

Figure 1.4 (a) Distribution of worldwide-approved drugs according to chirality character in the 

period 1983–2002 (b) Distribution of FDA approved drugs according to chirality character in 

the period 1991–2002 [13].  
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Determining absolute configurations [14] of chiral molecules are significant issues 

because of possible difference in physicochemical properties between enantiomers. 

There are two methods for non-empirically determining absolute configurations of 

chiral molecules. One is single crystal X-ray diffractometry with the Bijvoet method 

[15] and the other is circular dichroic exciton chirality method [16]. 

In the case of compounds of which single crystals are obtainable, single crystal 

X-ray diffractometry becomes the most established method. Bijvoet method in X-ray 

diffractometry is capable of determining absolute configurations of chiral molecules 

based on anomalous dispersion, a phenomenon of occurring dispersed X-ray by 

resonance. However, determining absolute configurations of molecules composed with 

only light atoms is difficult due to too small effect of this dispersion. Nevertheless, it 

has been becoming easier because technological progress has increased available 

intensity of X-ray and accuracy of diffraction data.  

On the other hand, circular dichroic exciton chirality method requires no 

crystallization and has an advantage on compounds of which crystals are unobtainable 

or unstable. However, this method has difficulty in correctly understanding the results. 

 

 

1.3 Historical background of thalidomide 

 

3‟-(N-phthalimide)glutarimide, thalidomide (Figure 1.5) is a chiral compound 

consisting of phthalimide ring and glutarimide ring. Thalidomide is most frequently 

mentioned as an example of chiral molecule because of its history. This section 

reviews the historical background of thalidomide in the following three subsections. 

Section 1.3.1 introduces the history of thalidomide, section 1.3.2 researches on the 

teratogenicity, section 1.3.3 undesirable property of chiral inversion. 

 

 

1.3.1 Revival of dark remedy 

 

Thalidomide was first synthesized by CIBA pharmaceutical company in 1953 and was 

first marketed as a safe sedative and hypnotic drug as the name of Contergan
®
 by 

Chemie Grünenthal in 1956 [17]. Since then, the number of babies boned with limb 

defect had been increased. McBride, in 1961 [18], and Lenz, in 1962 [19], reported 

that this teratogenic effect is caused by pregnant women taking thalidomide, and then 
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thalidomide was withdrawn from market in 1962. This drug disaster caused by 

side-effect of thalidomide is called “thalidomide tragedy”. The number of worldwide 

victims is estimated to be over 10,000 [20].  

However, anti-inflammatory effect of thalidomide was reported in 1965 [21], and 

thalidomide was approved as a treatment of erythema nodosum leprosum by the FDA 

and has been marketed as the name of THALOMID
®
 by Celgene Corporation under 

the strict control since 1998. Furthermore, its potential of anti-angiogenesis activity 

was revealed in 1994 [22], and antitumor effect based on this activity was confirmed in 

1999 [23]. Currently, thalidomide has been approved as a treatment of multiple 

myeloma in about 20 countries since the first approved in Australia in 2003 (Table 1.1) 

[24]. In Japan, thalidomide has been marketed as the name of THALED
®
 Capsule 100 

by Fujimoto Pharmaceutical Corporation since 2009. Other beneficial potentials of 

thalidomide for intractable diseases, such as behcet's disease, pyoderma gangrenosum, 

and rheumatologic arthritis, are also reported [25-28], and some of them are in clinical 

testing. The number of research papers concerning thalidomide is shown in Figure 1.6. 

This data were obtained by searching the word “thalidomide” through all type 

documents in each year using Web of Science
®

. Thus thalidomide has attracted 

considerable attention again. 

 

 

 

 

 

Figure 1.5 Structural formula of thalidomide (*: chiral center). 
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Approval Date Country 

2003/10 Australia 

2003/12 New Zealand 

2004/ 5 Turk 

2004/ 8 Israel 

2006/ 4 South Korea 

2006/ 5 USA 

2006/ 6 Thailand 

2007/10 South Africa 

2008/ 4 EU 

2008/10 Japan 

Figure 1.6 The number of research papers concerning thalidomide. 

Table 1.1 The countries where thalidomide was 

approved as a treatment of multiple myeloma [24]. 
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1.3.2 Controversy over teratogenicity 

 

After the thalidomide tragedy, a number of researches, as a matter of course, have 

investigated the teratogenicity of thalidomide. However, the mechanism of its 

teratogenicity had been unclear for a long period, although influence of 

anti-angiogenesis activity [29, 30] and damage of DNA by oxidation [31] had been 

proposed as possible causes. Revelation of the mechanism of thalidomide teratogenicity 

is extremely difficult because metabolism and hydrolysis of thalidomide progressed in 

human body, and result in the existence of enormous number of products.  

More recently, Handa et al. identified a protein cereblon as a primary target of 

thalidomide teratogenicity [32]. They immobilized thalidomide derivatives to 

ferrite-glycidyl methacrylate beads. These beads were incubated in human HeLa cell 

extracts. As a result, protein specifically interacted with these beads was identified as 

cereblon. Cereblon is revealed to be a subunit of a functional E3 ubiquitin ligase 

complex. Thalidomide teratogenicity was indicated to arise from inhibition of the 

function of this E3 ubiquitin ligase. However, as they mentioned, whether thalidomide 

or one of its metabolites is actually interacted with cereblon remain unclear. In addition, 

chirality of thalidomide was not described in their study. More specifically, whether or 

not there is difference in binding behavior with cereblon between enantiomers of 

thalidomide has been unclear. 

Several researches focused on the difference in bioactivities between enantiomers 

of thalidomide. In 1979, Blaschke et al. reported that only (S)-thalidomide shows 

teratogenicity with the examinations of separately dosing enantiomers to rats and mice 

[33]. This report, as a matter of course, attracted considerable attention, and has been 

thought to trigger the present guideline for the development of chiral drugs as 

mentioned in section 1.2. However, this report has been doubted in several points. One 

of examples is employing rats and mice as the model animal because rats and mice 

strongly resist to teratogenicity. Furthermore, no difference was observed between 

enantiomers of thalidomide in a similar experiment to rabbits, showing sensitivity to 

teratogenicity [34]. 

On the contrary, Schmahl et al. examined on EM12, an analog of thalidomide with 

stronger teratogenicity, by dose of each enantiomer to marmoset monkeys [35]. As a 

result, the incidence rate of teratogenic effect in the case of (S)-EM12 was extremely 

higher than that of (R)-EM12. Although this results support the Blaschke‟s report, the 
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teratogenic effect was slightly observed in the case of (R)-EM12. To understand these 

results consistently, a phenomenon of “chiral inversion” is never negligible. 

 

 

1.3.3 Chiral inversion: cause of the confusion 

 

The chiral inversion is phenomenon that a chiral compound inverts its chirality, namely, 

one enantiomer turns into the other. Thalidomide is well-known to show this 

phenomenon of chiral inversion [36]. The chiral inversion mechanism of thalidomide 

is proposed as isomerization via base-catalyzed keto-enol tautomerism due to high 

acidity of the proton bonding to the chiral center, as shown in Figure 1.7 [37]. 

According to this mechanism, the chiral inversion will be avoidable in polar aprotic 

and nonpolar solvents. Nevertheless, thalidomide easily inverts its chirality in polar 

solution state. For instance, Hashimoto et al. reported that almost all enantiomers of 

thalidomide invert their chirality with incubation in water solution for 10 h at 37°C 

[38].  

 

 

 

 

 

 

 

 

Figure 1.7 Chiral inversion via base-catalyzed keto-enol tautomerism. 
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Moreover, this chiral inversion of thalidomide is accelerated especially in human 

body. This is because albumin, hydroxyl ions, phosphate, and amino acids catalyze the 

chiral inversion [39]. Blaschke et al. also reported that chiral inversion of thalidomide 

in human citric plasma is extremely fast: 25% of enantiomers invert their chirality with 

incubation for 10 min at 37°C [40]. Therefore, experimentally confirming the 

differences in bioactivity between the enantiomers of thalidomide is extremely difficult. 

Furthermore, the unavoidable chiral inversion in human body of thalidomide is thought 

to one of the reasons why thalidomide has been approved for sale as the racemate 

against the recent trends in the development of chiral drugs. 

 

 

1.4 Overall objectives 

 

In the case of solution state, molecules play main roll in physicochemical phenomena. 

Thus, there is no difference in chirality-independent properties between an enantiomer 

and the racemate. Whereas in the case of solid state, major differences of 

chirality-independent properties are in between an enantiomer and the racemate, not 

the enantiomeric isomers. This is because crystal structures of enantiomeric and 

racemic compounds are essentially different. Therefore, the idea of comparison 

between an enantiomer and the racemate is significant for studies concerning crystals 

of chiral compounds, particularly for pharmaceutical compounds due to recent trends 

in the chiral drug development. 

Although a number of studies have reported the bioactivity of thalidomide [20, 

26-28, 31, 34, 41], only a few studies have reported its physicochemical properties. 

Racemic thalidomide is known to exhibit lower solubility and higher melting point 

than the enantiomers [34]. It is also known that the oral absorption of racemic 

thalidomide is slower than that of the enantiomers [27, 41]. However, the origin of 

differences in these physicochemical properties between enantiomeric and racemic 

thalidomides has not been investigated. 

Crystal structures of racemic thalidomide have been investigated since 1971. Two 

polymorphs of α and β forms are known in racemic thalidomide. However, despite the 

renewed attention to thalidomide, crystal structures of enantiomeric thalidomide had 

not been reported. 

There are a few possible reasons for this. First, thalidomide has not been regarded 

as focus of research, not only crystallography but also in other fields, due to the 
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disaster. This fact is reflected in Figure 1.6. The other reason may be in asymmetric 

synthesis of enantiomeric thalidomides. Until recently, practical asymmetric synthesis 

of the enantiomeric thalidomide had not been achieved. This is because the chiral 

inversion easily occurs under high temperature and high basicity conditions for 

creating the phthalimide and glutarimide rings of thalidomide. At long last, in 2001, the 

three-step synthesis of enantiomeric thalidomide from ornithine with 99% e.e. in good 

yield was achieved. 

As to experimental difficulty, chiral inversion of thalidomide will be a problem in 

crystallization of enantiomeric thalidomides. This is because the enantiomeric isomers 

generated by chiral inversion are nothing but impurities in crystallization of 

enantiomeric thalidomides. Therefore, it requires proper consideration of 

crystallization method. Although chiral inversion of thalidomide has often been 

concerned, particularly in pharmacological study, mechanism of the chiral inversion 

has been referred in few studies. 

In addition, even if enantiomeric crystals of thalidomide were successfully 

obtained, another problem may have been in determination of absolute configuration 

with single crystal X-ray diffractometry. This is because thalidomide is composed with 

only light atoms of carbon, nitrogen, oxygen, and hydrogen. Nevertheless, determining 

absolute configuration of light molecules is becoming easier because of recent progress 

in X-ray diffractometry. 

On the above background, this study focuses on crystal structures of thalidomide. 

The objectives of this thesis are summarized as: 

･ Evaluation of methods for crystallization of thalidomide; 

･ Determination of crystal structure and absolute configuration of enantiomeric 

thalidomide; 

･ Investigation into the origin of differences in physicochemical properties between 

enantiomeric and racemic thalidomides. 

The primary significance of this study is on the idea of comparison between an 

enantiomer and the racemate. In chapter 2, methods for crystallization of thalidomide 

are evaluated with consideration of possible multiple forms. In chapter 3, detail structure 

of (S)-thalidomide crystals obtained from different methods are investigated. In chapter 

4, crystal structures of (RS)-thalidomide obtained from different methods are 

investigated and compared with those of (S)-thalidomide. 
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2. Evaluation of methods for crystallization of 

thalidomide 

 

 

 

2.1 Introduction 

 

Molecules of a compound are capable of forming different crystals depending on the 

crystallization method. This multiple formation is characterized as a phenomenon of 

polymorphism. Moreover, molecules of a compound are often crystallized with 

including solvent molecules in its crystal lattice. These crystals are called as solvates. 

This phenomenon of solvate formation also depends on the crystallization method. 

These phenomena of polymorphism and solvate formation greatly impact on solubility, 

dissolution rate, and other physicochemical properties, because of difference in crystal 

structure between polymorphs and solvates. Therefore, controlling polymorphism and 

solvate formation is significant issues, particularly in pharmaceutical industry for drug 

safety and bioavailability. 

Controlling habits of crystal is also important issue, for instance application in 

pharmaceutical preparation, although its effects on physicochemical properties are less 

than polymorphs and solvates. In some case, the habits of isomorphic crystals are 

different from each other depending on the crystallization methods. 

Thus, characterization and identification of multiple forms of crystals are one of 

the most popular topics in modern solid state chemistry. [1-8] However, absolutely 

controlling the phenomena of polymorphism and solvate formation with the present 

crystal engineering is impossible. Actually, a number of polymorphs and solvates were 

obtained as unpredictable results. Nevertheless, appropriate consideration on the 

crystallization method is capable of narrowing the possibilities for occurrences of these 

phenomena. 

Crystal structures of racemic thalidomide have been investigated since 1971. [9] 

Two polymorphs of α and β forms are known in (RS)-thalidomide. [10] However, 

crystallographical studies on enantiomeric thalidomide have not been reported. 

This study, in this chapter, evaluates methods for crystallization of thalidomide 

with consideration of possible multiple forms of thalidomide crystal and undesirable 
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chiral inversion in crystallization of enantiomeric thalidomide. The crystallization 

methods were determined on the basis of consideration for selection of solvent and 

technique for crystallization. Chiral inversions in determined methods were estimated 

with circular dichroism (CD) measurements. Habits of obtained crystals were observed 

with polarizing microscope. The possibilities of polymorphs or solvates were 

investigated with thermogravimetry-differential thermal analyses (TG-DTA). 

 

 

2.2 Determination of crystallization methods 

 

A method for crystallization is divided into two major factors: selection of solvent and 

technique for crystallization. 

The solvent for crystallization is one of most crucial factor impacting on the 

phenomena of polymorphism and solvate formation. At an early phase in crystal 

growth from solution, crystal nuclei are grew from clusters which are assembling unit 

of solute molecules. The forms of these clusters critically depend on the polarity of 

solvent: high-polar cluster form is more favorable in high-polar solvent, contrastingly, 

low-polar cluster form in low-polar solvent. Thus, crystallizations in solvents with 

different polarity often cause the formation of polymorphs and solvates. 

The most common technique for crystallization is solvent evaporation. The solvent 

evaporation technique is easy to control the condition and require no unconventional 

equipment. Therefore, solvent evaporation technique suits for the first attempt of 

crystallization. 

Water is one of the most important polar solvent, particularly for crystallizing 

pharmaceutical compound because only hydrates of solvates may be of practical use as 

drugs. Therefore, crystallization from water solution should be attempted. However, in 

the case of thalidomide, large crystals enough to conduct X-ray diffractometry are 

difficult to be obtained by crystallization from water solution due to poor solubility of 

thalidomide in water. Actually, preliminary experiment of crystallization from water 

solution with solvent evaporation technique obtained only powder, whose quality is 

impossible to be identified.  

Methanol is also common polar solvent. According to previous study on solubility 

of thalidomide, solubility of thalidomide in water is 0.238 mM at 32 °C, whereas that 

in methanol is 4.38 mM at 32 °C [11]. On this point, single crystals of more suitable 

size for X-ray diffractometry should be obtainable with crystallization with solvent 
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evaporation technique from methanol solution. Nevertheless, this solubility of 

methanol is relatively poor compared to other solvents such as after mentioned 

chloroform. Therefore, crystallization of thalidomide from methanol solution occurs 

just before complete evaporation of the solution. In addition, methanol has relatively 

low boiling point. Because of these properties, optimizing evaporation ratio of 

methanol solution for crystallization is difficult. In some cases, colored crystals, whose 

color is thought to arise from impurities, were obtained by completely evaporating the 

solution. Thus, preliminary experiments of crystallization from methanol solution with 

solvent evaporation technique failed to obtain crystals with proper size and quality. 

In the case of crystallization from methanol solution, spending a long time on will 

be undesirable because racemization of thalidomide progress in methanol solution. 

Considering this point, preliminary experiments attempted to crystallize from methanol 

solution with solvent evaporation technique. this attempt because optimizing 

crystallization conditions is difficult due to poor solubility and low boiling point.  

While water is easier to control evaporation ratio than methanol because of higher 

boiling point than methanol, methanol has advantage in solubility of thalidomide 

compared to water. Considering these points and the property of methanol being 

miscible with water, crystallization from mixed solution of methanol and water with 

solvent evaporation technique were attempted. In this case, complete evaporation of 

the solution should be easily avoided. To increase solubility of thalidomide in the 

mixed solvent, the ratio of methanol prefers to be as high as possible. As a result of 

observation for evaporation ratio with gradually changing the mixing ratio, the optimal 

ratio was determined as methanol:water = 5:3. Thus, methanol-water (5:3) was selected 

as a polar solvent for crystallization of thalidomide. 

However, crystallizations of enantiomeric thalidomide from polar solutions require 

special attention because an undesirable reaction of racemization progress in polar 

protic solvents such as water and methanol. In crystallization of enantiomeric 

thalidomide, the enantiomeric isomers generated through racemization are nothing but 

impurities. Nevertheless, single crystals of enantiomeric thalidomide may be 

obtainable by crystallizing before the racemization has completely proceeded. The 

racemization mechanism of thalidomide is proposed as chiral inversion via 

base-catalyzed keto-enol tautomerism (Figure 2.1) [12]. According to this mechanism, 

the racemization of thalidomide will be avoidable in polar aprotic and nonpolar 

solvents. 
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Chloroform is one of common nonpolar solvents. According to the proposed 

mechanism, the chloroform solution of thalidomide should be suitably free from 

problem of racemization. In addition, (R)-thalidomide molecules in chloroform 

solution are indicated to exist in dynamic equilibrium of three isomeric dimers which 

differ in the hydrogen bonded ring moieties (Figure 2.2) [13]. With this indication, 

behavior of thalidomide molecules at cluster formation in nonpolar chloroform 

solution is expected to fundamentally different from that in polar methanol-water 

solution. Therefore, this study selected chloroform as a nonpolar solvent for 

crystallization. 

In the case of crystallization from methanol-water solution, solubility of 

thalidomide in methanol-water is relatively poor. To increase the solubility, moderate 

heating is desired. Furthermore, spending long time will be unfavorable due to 

racemization. To appropriately increase the solubility and accelerate the evaporation of 

solvent, crystallization with solvent evaporation technique from methanol-water 

solution was attempted at temperatures around 50 °C. 

In the case of crystallization from chloroform solution, chloroform has relatively 

high solubility of thalidomide at room temperature. Preliminary experiments 

demonstrate the solubilities of enantiomeric and racemic thalidomides in chloroform at 

room temperature are about 28.7 mM and 5.5 mM, respectively. These solubilities 

Figure 2.1 Chiral inversion via base-catalyzed keto-enol tautomerism. 
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appeared to be enough to attempt crystallization with vapor diffusion technique. The 

vapor diffusion technique requires the poor solvent of thalidomide with low boiling 

point and being miscible in chloroform. Diethyl ether is one of common nonpolar 

solvents and satisfies above requirements. Therefore, this study evaporated the 

chloroform solution at room temperature. Moreover, as a further experiment, 

crystallization with vapor diffusion technique, diffusing diethyl ether into chloroform 

solutions, was also attempted at room temperature. 

On the basis of above consideration, this study attempted following three methods 

for crystallization of (S)- and (RS)-thalidomides: 

･ solvent evaporation technique from methanol-water solution; 

･ solvent evaporation technique from chloroform solution; 

･ vapor diffusion technique from chloroform solution. 

 

 

 

 

 

 

 

  

Figure 2.2 Dynamic equilibrium of three isomeric (R)-thalidomide dimers in chloroform 

solution [13]. Color code: C: gray, N: blue, O: red, H: white. 
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2.3 Estimation of chiral inversion with CD spectrometry 

 

Although chiral inversion of thalidomide is unavoidable in methanol-water solution, 

single crystals of enantiomeric thalidomide are thought to be obtainable by 

crystallizing before the racemization has completely proceeded. While chiral HPLC is 

generally used for quantitative estimation of chiral inversion, CD measurement has 

advantage in minute observation of time course. Therefore, chiral inversions of 

(S)-thalidomide in crystallization conditions were estimated with CD measurements. 

 

 

2.3.1 Basic theory of circular dichroism measurement 

 

CD is an optical property that a substance shows different absorbance for left circularly 

polarized (LCP) and right circularly polarized (RCP) lights. Linearly polarized light is 

identified as a sum of LCP and RCP lights in the same amplitude. Therefore, CD turns 

the incident linearly polarized light into the elliptically polarized light with passing 

through the substance. The difference between absorbencies for LCP and RCP lights is 

expressed as 

,rl AAA   (2.1)  

where Al and Ar represent the absorbance of LCP and RCP lights, respectively. Applying 

Beer–Lambert law into this equation leads the following equation: 

  ,CLA rl    (2.2)  

where εl and εr represent molar absorptivity for LCP and RCP lights, respectively. C is 

the molar concentration and L is the length of light path. The molar circular dichroism Δε 

is defined as 

,rl    (2.3)  

and then the molar ellipticity [θ] is expressed as 
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Generally, this molar ellipticity is measured as the intensity of CD. 

CD essentially originates from chirality of substances. Thus the CD experiments 

are widely applied to a number of researches on chiral substances. CD of one 

enantiomer has same amplitude and reverse sign of the other. Therefore, racemate, a 

mixture of enantiomers in equal amount, does not exhibit CD.  

 

 

2.3.2 Materials 

 

(S)-thalidomide was purchased from Sigma-Aldrich, Inc. Methanol, chloroform, diethyl 

ether, and acetonitrile were purchased from Wako Pure Chemical Industries, Ltd. 

 

 

2.3.3 Experimental method 

 

Measurement conditions were determined based on the crystallization conditions. To 

estimate the chiral inversion ratio in protic methanol-water solution, time course in CD 

spectra of 0.2 mM methanol-water solutions of (S)-thalidomide was measured at 50 °C 

for 10 hours. The mixture ratio of methanol-water is the same 5:3 as that of mixed 

solvent for crystallization. In addition, to confirm stability to chiral inversion in aprotic 

and nonpolar solutions, chloroform, diethyl ether, and acetonitrile solutions of 

(S)-thalidomide were conducted. Time course in CD spectra of 0.1 mM chloroform, 0.1 

mM diethyl ether, and 0.1 mM acetonitrile solutions of (S)-thalidomides were measured 

at room temperature for 48 hours. 

These measurements were immediately started after preparation of the solutions. 

However, chiral inversion during dissolution was not exactly considered in this 

estimation. Thus, it should be noted that these estimations are somewhat less 

quantitative in this point. 

All CD measurement was conducted using JASCO J-820 spectrometer. A 

rectangular quartz cell of 10 mm light-path length was used. The measurement 

conditions were as follows: step scan measurement, 1 nm bandwidth, 2 sec response 

time, standard sensitivity, 1 nm wavelength resolution. 
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2.3.4 Result for protic methanol-water solution 

 

CD spectra of 0.2 mM (S)-thalidomide methanol-water solution measured every 1 h at 

50 °C are shown in Figure 2.3. The CD peak around 250 nm is obviously observable 

after 10 hours. This result supports that procession of racemization will be incomplete in 

10 hours, although chiral inversion during dissolution was not exactly considered in this 

estimation as mentioned above. Therefore, single crystals of enantiomeric thalidomide 

will be obtainable from protic methanol-water solution by crystallizing in a few hours. 

 

 

 

 

 

 

  

Figure 2.3 CD spectra of (S)-thalidomide methanol-water solution measured every 1 hour. 
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2.3.5 Result for polar aprotic and nonpolar solutions  

 

To confirm stability to chiral inversion in polar aprotic and nonpolar solutions, CD 

spectra of 0.1 mM chloroform, diethyl ether, and acetonitrile solutions were measured at 

room temperature (Figure 2.4-2.6). In the results of chloroform and acetonitrile solutions, 

the CD peaks around 250 nm remain almost unchanged for 48 hours. Although the result 

of diethyl ether solution shows slight increase of the peak intensity, this should be caused 

by rise of the concentration due to high volatility of diethyl ether. Therefore, it is 

confirmed that chiral inversion of thalidomide is surely avoidable in polar aprotic and 

nonpolar solutions. 
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Figure 2.4 CD spectra of (S)-thalidomide chloroform solution measured every 12 hour. 
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Figure 2.5 CD spectra of (S)-thalidomide diethyl ether solution measured every 24 hour. 

Figure 2.6 CD spectra of (S)-thalidomide acetonitrile solution measured every 12 hour. 
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2.4 Crystallization of (S)- and (RS)-thalidomides 

 

2.4.1 Materials 

 

(S)- and (RS)-thalidomides were purchased from Sigma-Aldrich, Inc. Methanol, 

chloroform, diethyl ether, and acetonitrile were purchased from Wako Pure Chemical 

Industries, Ltd. 

 

 

2.4.2 Solvent evaporation technique from methanol-water solution 

 

To avoid excess chiral inversion, (S)-thalidomide was crystallized in about 4 hours 

based on the result of CD measurement. In addition, to compare with the case of 

(S)-thalidomide, (RS)-thalidomide was also crystallized in about 4 hours. 

Crystallization procedure of (S)-thalidomide with solvent evaporation technique 

from methanol-water solution was as follows: 

(1) (S)-thalidomide powder (50 mg) was dissolved in 40 ml methanol-water (5:3). 

(2) The solution was evaporated for about 4 h at 50 °C. 

(3) The grown crystals floating on the solutions were filtered out. 

Crystallization procedure of (RS)-thalidomide with solvent evaporation technique from 

methanol-water solution was as follows: 

(1) (RS)-thalidomide powder (50 mg) was dissolved in 40 ml methanol-water (5:3). 

(2) The solution was evaporated for about 4 h at 50 °C. 

(3) The grown crystals floating on the solutions were filtered out. 

 

 

2.4.3 Solvent evaporation technique from chloroform solution 

 

Crystallization procedure of (S)-thalidomide with solvent evaporation technique from 

chloroform solution was as follows: 

(1) (S)-thalidomide powder (77.3 mg) was dissolved in 14 ml chloroform. 

(2) The solution was evaporated in a few days at room temperature. 

(3) The grown crystals floating on the solutions were filtered out. 

Crystallization procedure of (RS)-thalidomide with solvent evaporation technique from 



Chapter 2 

28 

 

chloroform solution was as follows: 

(1) (RS)-thalidomide powder (6.28 mg) was dissolved in 4.8 ml chloroform. 

(2) The solution was evaporated in a few days at room temperature. 

(3) The grown crystals floating on the solutions were filtered out. 

 

 

2.4.4 Vapor diffusion technique from chloroform solution 

 

Crystallization procedure of (S)-thalidomide with vapor diffusion technique from 

chloroform solution was as follows: 

(1) (S)-thalidomide powder (7.0 mg) was dissolved in 1 ml chloroform. 

(2) The inner vial containing 1 ml of this chloroform solution was put in the outer 

beaker with about 20 ml of diethyl ether. 

(3) This outer beaker was kept sealed for a few days at room temperature. 

(4) The grown crystals were filtered out. 

Crystallization procedure of (RS)-thalidomide with vapor diffusion technique from 

chloroform solution was as follows: 

(1) (RS)-thalidomide powder (64.5 mg) was dissolved in 50 ml chloroform. 

(2) The inner vial containing 50 ml of this chloroform solution was put in the outer 

beaker with about 80 ml of diethyl ether. 

(3) This outer beaker was kept sealed for a few days at room temperature. 

(4) The grown crystals were filtered out. 

 

 

2.5 Polarizing microscope observation and thermal analysis  

 

2.5.1 Experimental method 

 

Habits of all crystals were observed with polarizing microscope. Furthermore, 

possibilities of polymorphs or solvates were investigated with TG-DTA. TG-DTA was 

conducted without grinding each crystal using Rigaku TG8120 with heating rate of 

10.0 °C min
-1

. 
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2.5.2 Crystals obtained with solvent evaporation technique from 

 methanol-water solution 

 

From the solution of (S)-thalidomide, needle shaped crystals (I) were obtained (Figure 

2.7(A)). Similarly, from the solution of (RS)-thalidomide, needle shaped crystals (II) 

were obtained (Figure 2.7(B)). These results suggest that visually identifying the 

crystals of (RS)-thalidomide, which are generated by racemization of (S)-thalidomide, in 

the crystals obtained from solution of (S)-thalidomide will be impossible because the 

similar needle shaped crystals were obtained from solution of (RS)-thalidomide. 

TG-DTA on 4.7 mg of I shows endothermic peaks around 240 °C and 270 °C 

(Figure 2.8(A)). The melting points of enantiomeric and racemic thalidomides are 

reported to be 241 °C and 271 °C, respectively [14]. According to this report, those 

two endothermic peaks indicates that I is mixture of (S)- and (RS)-thalidomides. 

TG-DTA on I also shows exothermic peak around 250 °C. This exothermic peak 

indicates possibility of polymorphic transformation of (S)-thalidomide because the 

weight is not increased. On the other hand, TG-DTA on 2.6 mg of II shows 

endothermic peaks around 270 °C (Figure 2.8(B)). This peak is reasonable because of 

consistency with known melting point of (RS)-thalidomide. TG-DTA on each of I and 

II shows the no weight reduction arising from solvent desorption. Therefore, both I 

and II are thought to be unsolvates. 

 

   

Figure 2.7 Polarizing microscopic images of needle shaped crystals of (A) (S)- and (B) 

(RS)-thalidomides crystallized with solvent evaporation technique from methanol water 

solutions. The scale bars represent 0.5 mm. 

(A) (B) 
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2.5.3 Crystals obtained with solvent evaporation technique from chloroform 

 solution 

 

From the solution of (S)-thalidomide, rod shaped crystals (III) were obtained (Figure 

9(A)). Whereas, from the solution of (RS)-thalidomide, plate shaped crystals (IV) were 

obtained (Figure 9(B)). Comparing with the results of crystallization from 

methanol-water solution, crystal habits of both III and IV are different from those of I 

and II. This result suggests that those crystals are possibly polymorphs or solvates. 

TG-DTA on 5.9 mg of III shows endothermic peak with weight reduction around 

125 °C (Figure 2.10(A)). Therefore, III is thought to be solvates. In addition, no peaks 

around 270 °C support that racemization of thalidomide is not proceed in chloroform 

solution. TG-DTA on 2.2 mg of IV shows endothermic peaks around 270 °C (Figure 

2.10(B)). This result on IV is almost similar to that on II. Therefore, IV may be 

isomorphic unsolvate with II, although those habits are significantly different. 
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Figure 2.8 TG-DTA curves of (A) (S)-thalidomide crystals (I) and (B) (RS)-thalidomide 

crystals (II). 

(B) (A) 



Chapter 2 

31 

 

 

 

 

   

 

 

 

   

 

 

 

-120

-100

-80

-60

-40

-20

0

20

50 100 150 200 250 300 350
Temperature (°C)

W
e

ig
h

t 
(%

)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

H
e

a
t 

F
lo

w
 (

μ
V

)

TG

DTA

-120

-100

-80

-60

-40

-20

0

20

50 100 150 200 250 300 350
Temperature (°C)

W
e

ig
h

t 
(%

)

-12

-10

-8

-6

-4

-2

0

2

4

H
e

a
t 

F
lo

w
 (

μ
V

)

TG

DTA

Figure 2.9 Polarizing microscopic images of (A) rod shaped crystals of (S)-thalidomide and 

(B) plate shaped crystals of (RS)-thalidomide crystallized with solvent evaporation technique 

from chloroform solutions. The scale bars represent 0.5 mm. 

(A) (B) 

Figure 2.10 TG-DTA curves of (A) (S)-thalidomide crystals (III) and (B) (RS)-thalidomide 

crystals (IV). 

(B) (A) 
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2.5.4 Crystals obtained with vapor diffusion technique from chloroform 

 solution 

 

From the solution of (S)-thalidomide, rod shaped (V) and plate shaped (VI) crystals 

were concomitantly obtained (Figure 2.11(A)). These rod shaped crystals were almost 

similar to III. From the solution of (RS)-thalidomide, only plate shaped crystals (VII) 

were obtained (Figure 2.11(B)). These plate shaped crystals were almost similar to the 

plate shaped VI. 

TG-DTA of V and VI were conducted on visually identified crystals from the 

mixture based on those different habits. Therefore, each of result may be negatively 

affected by the other. TG-DTA on 1.1 mg of V shows slightly noisy peaks because the 

amount of analyzed crystal was relatively small (Figure 2.12(A)). Similarly to III, the 

endothermic peak with weight reduction around 150 °C indicates that V is solvate. 

TG-DTA on 3.8 mg of VI shows marginal endothermic peaks with great weight 

reduction around 150 °C (Figure 2.12(B)). This weight reduction is too great to regard 

the cause as desorption of included solvent. Therefore, judging whether VI is solvate 

or unsolvate from this result is difficult. TG-DTA of VII was not conducted because 

the total amount of obtained crystals was not enough to appropriately conduct 

TG-DTA. 

 

   

 

Figure 2.11 Polarizing microscopic images of (A) rod and plate shaped crystals of 

(S)-thalidomide and (B) plate shaped crystal of (RS)-thalidomide crystallized with vapor 

diffusion technique from chloroform solutions. The scale bars represent 0.5 mm. 

(A) (B) 
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Figure 2.12 TG-DTA curves of (A) rod shaped (S)-thalidomide crystals (V) and (B) plate 

shaped (S)-thalidomide crystals (VI). 
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2.6 Conclusion 

 

In this chapter, this study evaluates methods for crystallization of thalidomide. 

Considering possibilities of multiple forms, i.e. polymorphs or solvates, three different 

methods were determined in terms of selection of solvent and technique for 

crystallization. Undesirable chiral inversion in protic methanol-water solution and 

stability to chiral inversion in aprotic and nonpolar solutions were estimated with CD 

spectrometry. As summarized in Table 2.1, crystallizations with three different methods 

produced crystals with different habits. These results suggest that visually identifying 

the crystals of (RS)-thalidomide, which are generated by racemization of 

(S)-thalidomide, in the crystals obtained from solution of (S)-thalidomide will be 

impossible because the similar needle shaped crystals were obtained from solutions of 

both (S)- and (RS)-thalidomide. The results of TG-DTA suggested that I, II, and IV 

should be unsolvate and III and V should be solvate. On the basis of these results, all 

crystal structures of (S)- and (RS)-thalidomides are investigated in chapter 3 and 4, 

respectively. 

As future works, possibility of polymorphic transformation of (S)-thalidomide, 

which is indicated by exothermic peak without weight increase around 250 °C in 

TG-DTA on I, and the cause of the excess weight reduction around 150 °C in TG-DTA 

on VI, should be investigated. 

 

 

Table 2.1 Comparison of crystal habits between (S)- and (RS)-thalidomide crystals obtained 

with three different methods. 

Solvent Technique 

Solute 

(S)-thalidomide (RS)-thalidomide 

methanol-water solvent evaporation needle (I) needle (II) 

chloroform solvent evaporation rod (III) plate (IV) 

chloroform-diethyl ether vapor diffusion rod (V) / plate (VI) plate (VII) 
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3. Determination of crystal structure and 

absolute configuration of (S)-thalidomide 

 

 

 

3.1 Introduction 

 

Crystal structures are fundamental knowledge of substances. Determinations of crystal 

structures provide detail information of component molecules, such as those 

conformations and relative position to another molecule. Physicochemical properties 

such as solubility and melting point are directly related with the structural stability of the 

crystal. In the case of chiral compounds, crystal structures of enantiomeric and racemic 

compounds are essentially different: enantiomeric crystals consist of either enantiomer, 

and racemic crystals consist of both enantiomeric isomers. Therefore, knowledge about 

structures of not only racemic crystal but also the enantiomeric crystal is significant for 

understanding the physicochemical properties of chiral compounds. Crystal structures 

of racemic thalidomide have been investigated since 1971 [1]. However, crystal 

structures of enantiomeric thalidomide have not been reported. 

To determine crystal structure and absolute configuration of enantiomeric 

thalidomide, this study attempted to crystallize (S)-thalidomide. Considering chiral 

inversion of (S)-thalidomide and possibility for multiple forms, three different 

crystallization methods were attempted. All crystal structures were investigated with 

single crystal X-ray diffractometry. 

 

 

3.2 Crystallization of (S)-thalidomide 

 

3.2.1 Materials 

 

(S)-thalidomides was purchased from Sigma-Aldrich, Inc. Methanol, chloroform, 

diethyl ether, and acetonitrile were purchased from Wako Pure Chemical Industries, 

Ltd. 
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3.2.2 Experimental method 

 

On the basis of the evaluation in chapter 2, (S)-thalidomide crystals were obtained with 

following three different crystallization methods: 

･ solvent evaporation technique from methanol-water solution; 

･ solvent evaporation technique from chloroform solution; 

･ vapor diffusion technique from chloroform solution. 

Detail procedures of crystallization are as follows. 

Crystallization procedure of (S)-thalidomide with solvent evaporation technique 

from methanol-water solution was as follows: 

(1) (S)-thalidomide powder (50 mg) was dissolved in 40 ml methanol-water (5:3). 

(2) The solution was evaporated for about 4 h at 50 °C. 

(3) The grown crystals floating on the solutions were filtered out. 

Crystallization procedure of (S)-thalidomide with solvent evaporation technique from 

chloroform solution was as follows: 

(1) (S)-thalidomide powder (77.3 mg) was dissolved in 14 ml chloroform. 

(2) The solution was evaporated in a few days at room temperature. 

(3) The grown crystals floating on the solutions were filtered out. 

Crystallization procedure of (S)-thalidomide with vapor diffusion technique from 

chloroform solution was as follows: 

(1) (S)-thalidomide powder (7.0 mg) was dissolved in 1 ml chloroform. 

(2) The inner vial containing 1 ml of this chloroform solution was put in the outer 

beaker with about 20 ml of diethyl ether. 

(3) This outer beaker was kept sealed for a few days at room temperature. 

(4) The grown crystals were filtered out. 

 

 

3.2.3 Results 

 

Crystallization with solvent evaporation technique from methanol-water solution of 

(S)-thalidomide produced needle shaped crystals (I) (Figure 3.1(A)). To avoid excess 

chiral inversion, (S)-thalidomide was crystallized in about 4 hours at temperatures 

around 50 °C. In this case, (RS)-thalidomide crystals arising from the chiral inversion 

of (S)-thalidomide should be mixed with the crystals of (S)-thalidomide. However, 
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visually identifying the crystals of (RS)-thalidomide is impossible due to those almost 

same shapes. Therefore, (S)-thalidomide crystals were identified with repeated trials. 

Crystallization with solvent evaporation technique from chloroform solution of 

(S)-thalidomide produced rod shaped crystals (III) (Figure 3.1(B)).Crystallization with 

vapor diffusion technique from chloroform solution of (S)-thalidomide concomitantly 

produced rod shaped (V) and plate shaped (VI) crystals (Figure 3.1(C)). As 

demonstrated in chapter 2, chloroform and diethyl ether solutions of enantiomeric 

thalidomide are free from chiral inversion. Therefore, crystals obtained from 

chloroform solutions were regarded without special attention to the chiral inversion. 

 

 

 

   

 

(A) (B) 

(C) 

Figure 3.1 Polarizing microscopic images of (S)-thalidomide crystals obtained with (A) solvent 

evaporation technique from methanol-water solution (B) solvent evaporation technique from 

chloroform solution (C) vapor diffusion technique from chloroform solution. The scale bars 

represent 0.5 mm. 
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3.3 X-ray diffractometry on (S)-thalidomide crystals 

 

3.3.1 Experimental method 

 

Some points should be paid attention in selection of crystals for X-ray diffractometry. 

To minimize directional dependency in measurement, shape of the crystal is preferably 

similar to sphere. The least cracks on the crystal are desired due to its negative 

influence on diffraction. Moreover, particularly for film shaped crystal, possible 

existence of twined crystals, which appeared an isolated single crystal but is actually 

piled units of some single crystals with slight misalignments, should be cared. In this 

case, carefully observing extinction of transmitted light from crystal using polarizing 

microscope is important. Considering these points, crystals for X-ray diffractometry 

were selected. 

X-ray diffraction data for all crystals (I, III, V, and VI) were collected using a 

Rigaku RAXIS RAPID imaging plate detector with graphite monochromated Cu-Kα 

radiation. Crystal structures were solved by direct methods and refined by full-matrix 

least-squares on F
2 

[2]. Non-hydrogen atoms were refined with anisotropic 

displacement parameters, except for isotropically refined solvent molecules. Hydrogen 

atoms were refined using the riding model. Absolute configurations were determined 

based on Flack parameters. 

 

 

3.3.2 Summary of results 

 

As a result of single crystal X-ray diffractometry, I and VI are revealed to be unsolvate 

of (S)-thalidomide. VI is determined as the isomorphic form with I. On the other hand, 

III and V are revealed to be solvate of (S)-thalidomide. Crystal and structure 

refinement data are summarized in Table 3.1. Detail crystal structures of unsolvated 

and solvated (S)-thalidomide are discussed in Section 3.3.3 and Section 3.3.4, 

respectively. 

Rint is the degree of agreement on equivalent reflections. R1 and wR2 are the 

unweighted and weighted degrees of agreement on structure factors based on 

calculated and observed reflections, respectively. Max Shift/Error is the indicator of 

convergence in the structure refinement, and is favorable to be almost equal to 0. 
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Goodness of fit represents the suitability of weighting, and is favorable to be almost 

equal to 1. Flack parameter is the indicator of absolute configuration. This parameter 

being almost equal to 0 means the absolute configuration is true. 

To crystallographically determine the crystal structure, the result of single crystal 

X-ray diffractometry needs to fulfill the following requirements: 

 Rint < 0.1 

 R1 ≦ 0.1 

 wR2 < 0.25 

 -0.01 < Max Shift/Error < 0.01 

 0.8 ≦ Goodness of fit ≦ 2.0 

According to these requirements, the crystal structure of III is crystallographically 

undetermined. Nevertheless, III is concluded to be chloroform solvate of 

(S)-thalidomide based on result of TG-DTA and comparison with V as described in 

section 3.3.3. 
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Table 3.1 Crystal and structure refinement data. The data for III is the final result of 

incomplete refinement, and the ratio of chloroform is assumed. 

 I III  V VI 

Empirical formula C13H10O4N2 C13.25H10.25N2O4Cl0.75 C14.25H12.75Cl0.75N2O4.25 C13H10O4N2 

M (g mol-1) 258.23 288.08 306.61 258.23 

Temperature (K) 93(1) 223(1) 153(1) 263(1) 

Crystal system monoclinic orthorhombic orthorhombic monoclinic 

Space group P21 P21212 P21212 P21 

a (Å) 8.40187 (15) 13.4826(2) 13.2889(2) 8.3513(4) 

b (Å) 10.02372 (18) 31.1367(5) 30.502(2) 10.1578(5) 

c (Å) 14.4814 (7) 7.05915(10) 7.05698(10) 14.7613(7) 

β (°) 103.4938 (8) - - 103.590(3) 

V (Å3) 1185.93 (7) 2963.46(8) 2860.5(2) 1217.16(10) 

Z 4 8 8 4 

D (g cm-3) 1.446 1.291 1.424 1.409 

Reflection total/unique 13965/3822 32785/5331 33446/5162 12696/4236 

Rint 0.025 0.136 0.033 0.063 

R1 [I > 2σ(I)] 0.0328 0.1223 0.0748 0.0392 

wR2 (all data) 0.0844 0.3558 0.2243 0.1084 

Max Shift/Error 0.000 0.202 0.000 0.004 

Goodness of fit 1.094 1.553 1.051 0.938 

Flack Parameter 0.05(18) 0.10(11) 0.09(6) 0.0(2) 
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3.3.3 Crystal structures of unsolvated (S)-thalidomide 

 

Both I and VI are revealed to be unsolvate of (S)-thalidomide. Although VI is 

determined as the isomorphic form with I, the result of structural refinement on I is 

better than that on VI. Therefore, this study focuses on I as the crystal structure of 

unsolvated (S)-thalidomide. 

The crystal structure of unsolvated (S)-thalidomide is revealed to be formed with 

two conformational isomers, i.e. two (S)-thalidomide molecules with different 

conformation. To distinguish these two conformational isomers, they are hereafter 

designated as S1 and S2, respectively. The unit-cell structure is shown in Figure 3.2. 

The packing structures are shown in Figure 3.3. 

 

  

Figure 3.2 The unit-cell structure of (S)-thalidomide crystal drawn with thermal ellipsoids at 

50% probability level. Brown axes represent 2-fold screw axes. Color code: C: gray, N: blue, O: 

red, H: white. 
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(A) (B) 

(C) 

Figure 3.3 Packing structures of unsolvated (S)-thalidomide crystal drawn with thermal 

ellipsoids at 50% probability level: (A) along a axis, (B) along b axis, (C) along c axis. S1 and 

S2 are colored by symmetry equivalence as green and blue, respectively. 
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A thalidomide molecule consists of phthalimide ring (C1-C8, N1, O1, O2) and 

glutarimide ring (C9-C13, N2, O3, O4). The differences in corresponding bond length 

between S1 and S2 are tested with the following t value: 

   2
22 LL

LL

SS1

S2S1

 


t

 

(3.1)  

where 

2t  

 

: the difference is not significant,  

522 .t  : the difference is probably significant,  

t5.2  

 

: the difference is significant.  

Here S1L and 2LS  represent the length of particular bond in S1 and S2, respectively. In 

addition, the differences in corresponding bond angle between S1 and S2 are 

analogically evaluated of the based above test. The all bond lengths are listed in Table 

3.2. The bond angles of phthalimide and glutarimide rings are listed in Table 3.3 and 

Table 3.4, respectively. 

As indicated in Figure 3.4, significant differences in corresponding bond length 

between S1 and S2 limitedly exist at N1-C8 and C6-C7 bonds in the phthalimide ring, 

and N2-C10 and C9-C13 bonds in the glutarimide ring. The differences in each of the 

corresponding bond lengths between S1 and S2 are 0.011(4) Å for N1-C8, 0.013(4) Å 

for C6-C7, 0.011(3) Å for N2-C10, and 0.010(4) Å for C9-C13, respectively, where 

values in the parentheses represent standard deviations. Such crystal structure formed 

with two conformational isomers is not unique for (S)-thalidomide but also shown in 

other compounds (e.g. L-leucine [3], L-valine [4, 5], L-cysteine [6]). 
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Table 3.2 The list of bond lengths in S1 and S2. The values in the parentheses represent standard 

deviations. The t values over 2 are colored in orange. 

Bond LS1 / Å LS2 / Å |LS1-LS2| / Å t 

O1-C1 1.205(2) 1.205(2) 0.000(3) 0.00  

O2-C8 1.218(3) 1.214(2) 0.004(4) 1.11  

N1-C1 1.413(3) 1.409(2) 0.004(4) 1.11  

N1-C8 1.400(2) 1.411(3) 0.011(4) 3.05  

C1-C2 1.492(2) 1.494(2) 0.002(3) 0.71  

C2-C3 1.379(3) 1.371(3) 0.008(4) 1.89  

C2-C7 1.385(3) 1.386(3) 0.001(4) 0.24  

C3-C4 1.392(3) 1.398(3) 0.006(4) 1.41  

C4-C5 1.395(3) 1.393(3) 0.002(4) 0.47  

C5-C6 1.393(3) 1.393(3) 0.000(4) 0.00  

C6-C7 1.380(3) 1.393(3) 0.013(4) 3.06  

C7-C8 1.480(3) 1.482(2) 0.002(4) 0.55  

     
N1-C9 1.453(2) 1.450(2) 0.003(3) 1.06  

     
O3-C10 1.210(2) 1.213(2) 0.003(3) 1.06  

O4-C11 1.223(2) 1.223(2) 0.000(3) 0.00  

N2-C10 1.379(2) 1.390(2) 0.011(3) 3.89  

N2-C11 1.382(3) 1.377(2) 0.005(4) 1.39  

C9-C10 1.521(3) 1.514(3) 0.007(4) 1.65  

C9-C13 1.518(3) 1.528(3) 0.010(4) 2.36  

C11-C12 1.501(3) 1.502(3) 0.001(4) 0.24  

C12-C13 1.524(3) 1.522(2) 0.002(4) 0.55  
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Table 3.3 The list of bond angles of phthalimide rings in S1 and S2. AS1 and AS2

 

represent the 

angle of particular bond in S1 and S2, respectively. The values in the parentheses represent 

standard deviations. The t values over 2 are colored in orange. 

Bond AS1 / deg AS2 / deg |AS1-AS2| / deg t 

C1-N1-C8 111.26(17) 111.66(16) 0.40(23) 1.71  

C1-N1-C9 125.14(18)  123.98(18) 1.16(25) 4.56  

C8-N1-C9 121.0(2) 122.09(18)  1.09(27) 4.05  

O1-C1-N1 125.2(2) 124.17(18) 1.03(27) 3.83  

O1-C1-C2 129.5(2)  130.2(2)  0.7(3) 2.47  

N1-C1-C2 105.35(19) 105.64(19) 0.29(27) 1.08  

C1-C2-C3 130.0(2)  130.7(2)  0.7(3) 2.47  

C1-C2-C7 108.2(2) 107.77(18) 0.43(27) 1.60  

C3-C2-C7 121.82(19)  121.5(2)  0.32(28) 1.16  

C2-C3-C4 116.7(2) 117.4(2) 0.7(3) 2.47  

C3-C4-C5 121.7(2)  121.4(2)  0.3(3) 1.06  

C4-C5-C6 120.8(2) 120.9(2) 0.1(3) 0.35  

C5-C6-C7 117.1(2)  116.9(2)  0.2(3) 0.71  

C2-C7-C6 121.8(2) 121.9(2) 0.1(3) 0.35  

C2-C7-C8 108.55(18)  109.33(19)  0.78(26) 2.98  

C6-C7-C8 129.6(2) 128.8(2) 0.8(3) 2.83  

O2-C8-N1 124.13(19)  105.20(19)  0.41(26) 1.57  

O2-C8-C7 129.8(2) 130.3(2) 0.5(3) 1.77  

N1-C8-C7 106.0(2)  124.54(18)  0.8(28) 2.90  
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Table 3.4 The list of bond angles of glutarimide rings in S1 and S2. AS1 and AS2 represent the 

angle of particular bond in S1 and S2, respectively. The values in the parentheses represent 

standard deviations. The t values over 2 are colored in orange. 

Bond AS1 / deg AS2 / deg |AS1-AS2| / deg t 

N1-C9-C10 109.57(19) 108.92(18)  0.65(26) 2.48  

N1-C9-C13 115.0(2) 114.35(18) 0.65(27) 2.42  

C10-C9-C13 111.46(18) 111.00(19)  0.46(26) 1.76  

O3-C10-N2 121.8(2) 120.5(2) 1.3(3) 4.60  

O3-C10-C9 122.80(18) 124.15(18)  1.35(25) 5.30  

N2-C10-C9 115.30(19)  115.32(19) 0.02(27) 0.07  

C10-N2-C11 127.2(2)  126.59(19)  0.61(28) 2.21  

O4-C11-N2 119.5(2) 119.6(2)  0.1(3) 0.35  

O4-C11-C12 123.3(2)  122.7(2) 0.6(3) 2.12  

N2-C11-C12 117.22(18) 117.65(17)  0.43(25) 1.74  

C11-C12-C13 113.9(2)  113.9(2) 0.0(3) 0.00  

C9-C13-C12 108.9(2) 108.52(19)  0.38(28) 1.38  

 

 

 

 

 

  

Figure 3.4 The conformation of S1 drawn with thermal ellipsoids at 50% probability level. 

Bonds, of which lengths are significantly different between S1 and S2, are represented in 

orange. Color code: C: gray, N: blue, O: red, H: white. 
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Furthermore, dimer formation by pairs of S1 and S2 molecules with 

hydrogen-bonded rings at each of the glutarimide rings is also revealed (Figure 3.5). 

Generally, hydrogen bond forming between atoms of X and A as X－H…A is judged 

by the distance between X and A is less than the sum of those Van der Waals radii. The 

strength of hydrogen bond is classified as Table 3.5. Nevertheless, the 

hydrogen-bonded ring in dimers formed by pairs of S1 and S2 molecules is unable to 

directly apply to this classification due to the hydrogen-bonded ring consisting of two 

hydrogen bonds. As shown in Figure 3.6, S1 and S2 form the dimers with each of the 

corresponding S2 and S1 in the adjacent unit cell. The lengths of these two 

intermolecular hydrogen-bonds are not significantly different: 2.912(3) Å for N2-O4‟ 

and 2.910(3) Å for O4-N2‟, respectively (the primed numbers represent atoms of S2). 

Similar hydrogen-bonded rings are often formed with such as amide units with dual 

capacity of donor and acceptor. A number of reports investigated in detail or 

systematically analyzed those hydrogen-bonded rings [7, 8]. 

 

 

Figure 3.5 The dimer formation in (S)-thalidomide crystal drawn with thermal ellipsoids at 50% 

probability level. Green broken lines represent hydrogen bonds. Color code: C: gray, N: blue, O: 

red, H: white. 
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Strong Moderate Weak 

interaction type 
strongly 

covalent 

mostly 

electrostatic 

electrostatic / 

dispersion 

H…A [Å] 1.2-1.5 1.5-2.2 >2.2 

X－A [Å] 2.2-2.5 2.5-3.2 >3.2 

X－H versus H…A X－H≒H…A X－H < H…A X－H << H…A 

lengthening of X－H [Å] 0.08-0.25 0.02-0.08 <0.02 

directionality strong moderate weak 

bond angles [deg] 170-180 >130 >90 

 

 

 

 

 

 

 

  

Table 3.5 The classification of strong, moderate, and weak hydrogen bonds. 

Figure 3.6 The packing structure and dimer formations by hydrogen-bonded rings. 
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In addition, (R)-thalidomide molecules in chloroform solution are suggested to 

exist in dynamic equilibrium of three isomeric dimers which differ in the hydrogen 

bonded ring moieties (Figure 3.7) [9]. Moreover, density functional theory calculation 

demonstrated that the most populated dimer is the lowest energy one (Table 3.6). The 

two hydrogen bonding moieties of dimers in (S)-thalidomide unsolvated crystal are the 

same as those of the most populated dimer of (R)-thalidomide in chloroform solution. 

 

 

 

 

Dimer Electronic energy [kcal/mol] Population 

2-AA -1144431.463 0.235970024 

2-AB -1144431.613 0.335168207 

2-BB -1144431.674 0.428861769 

  

Figure 3.7 Dynamic equilibrium of three isomeric (R)-thalidomide dimers in chloroform solution 

[9]. Color code: C: gray, N: blue, O: red, H: white. 

Table 3.6 Calculated Electronic energies (B3LYP/6-31G*) and 

populations of each dimers [9]. 
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3.3.4 Crystal structures of solvated (S)-thalidomide 

 

As a result of single crystal X-ray diffractometry, both III and V are revealed to be 

solvate of (S)-thalidomide. 

On one hand, the rod shaped III is concluded to be chloroform solvate of 

(S)-thalidomide. Although structure refinement is incomplete due to disordered 

chloroform molecules, the clathrate structure of host lattice formed with 

(S)-thalidomide molecules is almost determined (Figure 3.8). The final result of 

incomplete refinement is shown in Table 3.7. Disordered chloroform molecules appear 

to be confined into the channel spaces. The inclusion of chloroform molecules is also 

demonstrated in TG-DTA by the weight reduction at temperatures around 125 °C 

(Figure 3.9). 

 

 

 

 

  

Figure 3.8 Packing arrangements of incompletely refined III colored by symmetry equivalence: 

(A) along c axis and (B) along a axis. Purple domains represent channel spaces where disordered 

chloroform molecules confined. 
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 III  

Empirical formula C13.25H10.25N2O4Cl0.75 

M (g mol-1) 288.08 

Temperature (K) 223(1) 

Crystal system orthorhombic 

Space group P21212 

a (Å) 13.4826(2) 

b (Å) 31.1367(5) 

c (Å) 7.05915(10) 

V (Å3) 2963.46(8) 

Z 8 

D (g cm-3) 1.291 

 

 

 

  

-120

-100

-80

-60

-40

-20

0

20

50 100 150 200 250 300 350
Temperature (°C)

W
e
ig

h
t 
(%

)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

H
e
a

t 
F

lo
w

 (
μ

V
)

TG

DTA

Table 3.7 The crystal data for III. The values are the final result 

of incomplete refinement, and the ratio of chloroform is assumed. 

Figure 3.9 TG-DTA curves of III. 
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On the other hand, V is determined as chloroform and diethyl ether solvate of 

(S)-thalidomide. The composition ratio of V is (S)-thalidomide:chloroform:diethyl 

ether = 1:0.25:0.25. The packing arrangement of (S)-thalidomide molecules in V is 

determined as quite similar clathrate structure with III (Figure 3.10). This result 

indicates the crystallographically undetermined structure of III is almost isomorphic 

with the crystal structure of V. Disordered chloroform and diethyl ether molecules are 

confined into the channel spaces. According to the statistical study on the Cambridge 

Structural Database, each of chloroform and diethyl ether tends to form not only 

solvates but also heterosolvates, i.e. co-existing of two different solvent molecules in 

crystal. [10] Considering this tendency, the heterosolvate formation with chloroform 

and diethyl ether in V appear to be reasonable.  

 

 

 

  

Figure 3.10 Packing arrangements of V drawn with thermal ellipsoids at 50% probability level: 

(A) along c axis and (B) along a axis. Disordered chloroform and diethyl ether molecules are 

overlaid with space filling model as 100% occupancy. Color code: C: gray, N: blue, O: red, H: 

white, Cl: green. 
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The crystal data for V is shown in Table 3.8. Both this non-stoichiometric 

inclusion of solvent molecules and the similarity between clathrate structures of III 

and V imply the capability for replacing solvent molecules at channel spaces with 

maintaining the host lattice of (S)-thalidomide, as demonstrated on a drug substance of 

FK041 [11, 12]. 

The crystal structure of V is revealed to be also formed with two conformational 

isomers, similarly to the unsolvated (S)-thalidomide crystals. To distinguish these two 

conformational isomers, they are designated as S’1 and S’2, respectively. The unit-cell 

structure of V is shown in Figure 3.11. The all bond lengths are listed in Table 3.9. The 

bond angles of phthalimide and glutarimide rings are listed in Table 3.10 and Table 

3.11, respectively. Significant differences in corresponding bond length between S’1 

and S’2 exist at N1-C8 and C5-C6 bonds in the phthalimide ring, C9-C10 and C10-O3 

bonds in the glutarimide ring, and N1-C9 bond of the connector for both rings (Figure 

3.12). The differences in each of the corresponding bond lengths between S’1 and S’2 

are 0.03(7) Å for N1-C8, 0.018(8) Å for C5-C6, 0.019(7) Å for C9-C10, 0.029(7) Å for 

C10-O3, and 0.018(6) Å for N1-C9, respectively. 

 

 

 V 

Empirical formula C14.25H12.75Cl0.75N2O4.25 

M (g mol-1) 306.61 

Temperature (K) 153(1) 

Crystal system orthorhombic 

Space group P21212 

a (Å) 13.2889(2) 

b (Å) 30.502(2) 

c (Å) 7.05698(10) 

V (Å3) 2860.5(2) 

Z 8 

D (g cm-3) 1.424 

  

Table 3.8 The crystal data for V. 
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Figure 3.11 The unit-cell structure of V drawn with thermal ellipsoids at 50% probability level. 

Brown axes represent 2-fold screw axes. (A) Thalidomide molecules are colored by element as 

C: gray, N: blue, O: red, H: white. (B) S’1 and S’2 are colored by symmetry equivalence as 

green and blue, respectively. 

(A) 

(B) 
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Table 3.9 The list of bond lengths in S’1 and S’2. The values in the parentheses represent 

standard deviations. The t values over 2 are colored in orange. 

Bond LS’1 / Å LS’2 / Å |LS’1-LS’2| / Å t 

O1-C1 1.231(5) 1.219(4) 0.012(6) 1.87  

O2-C8 1.203(5) 1.213(5) 0.01(7) 1.41  

N1-C1 1.378(5) 1.385(4) 0.007(6) 1.09  

N1-C8 1.417(5) 1.387(5) 0.03(7) 4.24  

C1-C2 1.498(6) 1.493(5) 0.005(8) 0.64  

C2-C3 1.355(6) 1.366(5) 0.011(8) 1.41  

C2-C7 1.391(6) 1.401(5) 0.01(8) 1.28  

C3-C4 1.396(6) 1.383(6) 0.013(8) 1.53  

C4-C5 1.413(7) 1.400(6) 0.013(9) 1.41  

C5-C6 1.361(6) 1.379(6) 0.018(8) 2.12  

C6-C7 1.385(6) 1.379(6) 0.006(8) 0.71  

C7-C8 1.480(6) 1.484(5) 0.004(8) 0.51  

     
N1-C9 1.448(5) 1.466(4) 0.018(6) 2.81  

     
O3-C10 1.216(5) 1.187(5) 0.029(7) 4.10  

O4-C11 1.213(5) 1.217(5) 0.004(7) 0.57  

N2-C10 1.385(5) 1.394(5) 0.009(7) 1.27  

N2-C11 1.377(5) 1.381(5) 0.004(7) 0.57  

C9-C10 1.521(5) 1.540(5) 0.019(7) 2.69  

C9-C13 1.515(6) 1.519(5) 0.004(8) 0.51  

C11-C12 1.497(6) 1.494(5) 0.003(8) 0.38  

C12-C13 1.533(6) 1.518(5) 0.015(8) 1.92  

 

 

  



Chapter 3 

58 

 

Table 3.10 The list of bond angles of phthalimide rings in S’1 and S’2. AS’1 and AS’2

 

represent 

the angle of particular bond in S’1 and S’2, respectively. The values in the parentheses represent 

standard deviations. The t values over 2 are colored in orange. 

Bond AS’1 / deg AS’2 / deg |AS’1-AS’2| / deg t 

C1-N1-C8 111.26(17) 111.66(16) 0.6 1.41  

C1-N1-C9 125.14(18)  123.98(18) 1.9 4.48  

C8-N1-C9 121.0(2) 122.09(18)  1.1 2.59  

O1-C1-N1 125.2(2) 124.17(18) 0.3 0.53  

O1-C1-C2 129.5(2)  130.2(2)  1.4 2.47  

N1-C1-C2 105.35(19) 105.64(19) 1 2.36  

C1-C2-C3 130.0(2)  130.7(2)  0.8 1.41  

C1-C2-C7 108.2(2) 107.77(18) 1.6 3.77  

C3-C2-C7 121.82(19)  121.5(2)  2.4 4.80  

C2-C3-C4 116.7(2) 117.4(2) 0.9 1.59  

C3-C4-C5 121.7(2)  121.4(2)  0.8 1.41  

C4-C5-C6 120.8(2) 120.9(2) 0.5 0.88  

C5-C6-C7 117.1(2)  116.9(2)  0.3 0.60  

C2-C7-C6 121.8(2) 121.9(2) 1.6 3.20  

C2-C7-C8 108.55(18)  109.33(19)  2.4 5.66  

C6-C7-C8 129.6(2) 128.8(2) 0.7 1.40  

O2-C8-N1 124.13(19)  105.20(19)  0.5 1.00  

O2-C8-C7 129.8(2) 130.3(2) 1.8 3.60  

N1-C8-C7 106.0(2)  124.54(18)  1.2 2.83  
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Table 3.11 The list of bond angles of glutarimide rings in S’1 and S’2. AS’1 and AS’2

 

represent 

the angle of particular bond in S’1 and S’2, respectively. The values in the parentheses represent 

standard deviations. The t values over 2 are colored in orange. 

Bond AS’1 / deg AS’2 / deg |AS’1-AS’2| / deg t 

N1-C9-C10 109.57(19) 108.92(18)  1.2 2.83  

N1-C9-C13 115.0(2)  114.35(18) 0.6 1.41  

C10-C9-C13 111.46(18) 111.00(19)  0.4 0.94  

O3-C10-N2 121.8(2)  120.5(2) 0.2 0.40  

O3-C10-C9 122.80(18) 124.15(18)  0.1 0.20  

N2-C10-C9 115.30(19)  115.32(19) 0.1 0.24  

C10-N2-C11 127.2(2)  126.59(19)  0.3 0.71  

O4-C11-N2 119.5(2) 119.6(2)  0.6 1.20  

O4-C11-C12 123.3(2)  122.7(2) 0.2 0.40  

N2-C11-C12 117.22(18) 117.65(17)  0.5 1.00  

C11-C12-C13 113.9(2)  113.9(2) 2.5 5.00  

C9-C13-C12 108.9(2) 108.52(19)  1.2 2.40  

 

 

 

 

  

Figure 3.12 The conformation of S’1 drawn with thermal ellipsoids at 50% probability level. 

Bonds, of which lengths are significantly different between S’1 and S’2, are represented in 

orange. Color code: C: gray, N: blue, O: red, H: white. 
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Focusing on these conformational isomers, each of them is interacted with the 

other by hydrogen bonds. In the unsolvated crystal of (S)-thalidomide, pairs of 

conformational isomers forms dimers with the hydrogen bonded ring (Fig. 3.13(A)). 

Contrastingly, in the solvated crystal of (S)-thalidomide, alternate arrangement of 

conformational isomers forms infinite hydrogen bonded chain (Fig. 3.13(B)). 

Considering the fact that both unsolvated and solvated crystals were concomitantly 

obtained with the vapor diffusion technique, structural stabilities of each crystal appear 

to be close level. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 The structures of (A) hydrogen bonded dimer in unsolvated crystal of 

(S)-thalidomide and (B) hydrogen bonded chain in solvated crystal of (S)-thalidomide. Green 

broken lines represent hydrogen bonds. Color code: C: gray, N: blue, O: red, H: white, Cl: 

green. 
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3.4 Conclusion 

 

In this chapter, crystal structure and absolute configuration of (S)-thalidomide was 

determined with single crystal X-ray diffractometry. Despite thalidomide has been 

attracting considerable attention again because of its wide-ranging bioactivity, the 

crystal structure of the enantiomeric thalidomide had not been published for about 40 

years since that of racemic thalidomide was reported. This study revealed that 

crystallization from high polar methanol-water solution, in which hydrogen bonds are 

not generally formed, produces unsolvated (S)-thalidomide crystal and crystallization 

from nonpolar chloroform solution, in which thalidomide molecules exist in dynamic 

equilibrium of three isomeric dimers, produces solvated (S)-thalidomide crystal. Both 

unsolvated and solvated crystals are composed of two conformational isomers of 

(S)-thalidomide. The unsolvated crystals are formed with hydrogen bonded dimers 

consisting of pairs of these isomers, whereas the solvated crystals are formed with 

infinite hydrogen bonded chains consisting of alternately arranging conformational 

isomers.  

As future works, the capability for replacing solvent molecules at channel spaces 

with maintaining the host lattice of the clathrate structure in the solvated 

(S)-thalidomide crystals should be investigated. Achieving this property of solvated 

crystals will be expected for pharmaceutical application, particularly with water 

because only hydrates may be of practical use as drugs. 
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4. Investigation into the origin of differences in 

physicochemical properties between 

enantiomeric and racemic thalidomides 

 

 

 

4.1 Introduction 

 

Although a number of studies have reported bioactivities of thalidomide [1-8], only a 

few researches have reported its physicochemical properties. Racemic thalidomide is 

known to exhibit lower solubility and higher melting point than the enantiomers [1]. It is 

also known that the oral absorption of racemic thalidomide is slower than that of the 

enantiomers [2, 3]. However, the origin of differences in these physicochemical 

properties between enantiomeric and racemic thalidomides has not been investigated.  

As to chiral compounds, crystal structures of enantiomeric and racemic 

compounds are essentially different. Therefore, the idea of comparing crystal structures 

between an enantiomer and the racemate is significant for understanding differences in 

such physicochemical properties between them.  

Crystal structures of racemic thalidomide have been investigated since 1971 

[9].Two polymorphs of α and β forms are known in (RS)-thalidomide [10]. However, 

crystal structures between enantiomeric and racemic thalidomides have not been 

compared because even crystal structures of enantiomeric thalidomide have not been 

reported. 

To investigate the origin of differences in such physicochemical properties 

between (S)- and (RS)-thalidomides, this study, in this chapter, focuses on comparison 

of crystal structures between (S)- and (RS)-thalidomides. Crystallizations of (S)- and 

(RS)-thalidomide were performed with three different methods. The structures of 

(S)-thalidomide crystals investigated in chapter 3 are adopted for comparison with 

those of (RS)-thalidomide. The structures of (RS)-thalidomide crystals were 

investigated with X-ray diffractometry. Furthermore, structural stabilities of those 

crystals were evaluated with energy calculations. 
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4.2 Crystallization of (RS)-thalidomides 

 

4.2.1 Materials 

 

(RS)-thalidomides was purchased from Sigma-Aldrich, Inc. Methanol, chloroform, 

diethyl ether, and acetonitrile were purchased from Wako Pure Chemical Industries, 

Ltd. 

 

 

4.2.2 Experimental method 

 

As in the case of (S)-thalidomide, (RS)-thalidomide crystals were obtained with 

following three different crystallization methods: 

･ solvent evaporation technique from methanol-water solution; 

･ solvent evaporation technique from chloroform solution; 

･ vapor diffusion technique from chloroform solution. 

Detail procedures of crystallization are as follows. 

Crystallization procedure of (RS)-thalidomide with solvent evaporation technique 

from methanol-water solution was as follows: 

(1) (RS)-thalidomide powder (50 mg) was dissolved in 40 ml methanol-water (5:3). 

(2) The solution was evaporated for about 4 h at 50 °C. 

(3) The grown crystals floating on the solutions were filtered out. 

Crystallization procedure of (RS)-thalidomide with solvent evaporation technique from 

chloroform solution was as follows: 

(1) (RS)-thalidomide powder (6.28 mg) was dissolved in 4.8 ml chloroform. 

(2) The solution was evaporated in a few days at room temperature. 

(3) The grown crystals floating on the solutions were filtered out. 

Crystallization procedure of (RS)-thalidomide with vapor diffusion technique from 

chloroform solution was as follows: 

(1) (RS)-thalidomide powder (64.5 mg) was dissolved in 50 ml chloroform. 

(2) The inner vial containing 50 ml of this chloroform solution was put in the outer 

beaker with about 80 ml of diethyl ether. 

(3) This outer beaker was kept sealed for a few days at room temperature. 

(4) The grown crystals were filtered out. 
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4.2.3 Results 

 

Crystallization with solvent evaporation technique from methanol-water solution 

produced needle shaped crystals (II) (Figure 4.1(A)). To appropriately realize the same 

crystallization condition with (S)-thalidomide, (RS)-thalidomide was also crystallized 

in about 4 hours at temperatures around 50 °C. Crystallization with solvent evaporation 

technique from chloroform solution produced plate shaped crystals (IV) (Figure 

4.1(B)). Similarly, crystallization with vapor diffusion technique from chloroform 

solution also produced plate shaped crystals (VII) (Figure 4.1(C)). 

 

 

   

  

(A) (B) 

(C) 

Figure 4.1 Polarizing microscopic images of (RS)-thalidomide crystals obtained with (A) 

solvent evaporation technique from methanol-water solution (B) solvent evaporation technique 

from chloroform solution (C) vapor diffusion technique from chloroform solution. The scale 

bars represent 0.5 mm. 
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4.3 X-ray diffractometry on (RS)-thalidomide crystals 

 

4.3.1 Experimental method 

 

Crystals for X-ray diffractometry were carefully selected considering the points as 

mentioned in Section 3.3.1. X-ray diffraction data for all crystals (II, IV, and VII) 

were collected using a Rigaku RAXIS RAPID imaging plate detector with graphite 

monochromated Cu-Kα radiation. Crystal structures were solved by direct methods and 

refined by full-matrix least-squares on F
2 
[11]. Non-hydrogen atoms were refined with 

anisotropic displacement parameters, except for isotropically refined solvent molecules. 

Hydrogen atoms were refined using the riding model. 

 

 

4.3.2 Summary of results 

 

Crystal and structure refinement data combined with previous reports on α and β forms 

of (RS)-thalidomide are summarized in Table 4.1. To crystallographically determine the 

crystal structure, the result of single crystal X-ray diffractometry needs to fulfill the 

following requirements: 

 Rint < 0.1 

 R1 ≦ 0.1 

 wR2 < 0.25 

 -0.01 < Max Shift/Error < 0.01 

 0.8 ≦ Goodness of fit ≦ 2.0 

According to these requirements, crystal strictures of II, IV, and VII were 

crystallographically determined and completely refined. 

As a result of single crystal X-ray diffractometry, all of II, IV, and VII were 

determined as the isomorphic form with the previously reported α form of 

(RS)-thalidomide. Contrary to the case of (S)-thalidomide, all of II, IV, and VII are 

revealed to be unsolvated crystals of (RS)-thalidomide. To appropriately compare with 

the unsolvated (S)-thalidomide of I, this study focuses on II, which are crystallized 

with the corresponding method with I, as the crystal structure of α-(RS)-thalidomide.  
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 Previous report  

 α-form [9] β-form [10] II IV VII 

Empirical formula C13H10O4N2 C13H10O4N2 C13H10O4N2 C13H10O4N2 C13H10O4N2 

M (g mol-1) 258.23 258.23 258.23 258.23 258.23 

Temperature (K) NA 296(1) 93(1) 223(1) 173(1) 

Crystal system monoclinic monoclinic monoclinic monoclinic monoclinic 

Space group P21/n C2/c P21/n P21/n P21/n 

a (Å) 8.233(1) 20.741(2) 8.3156(3) 8.2668(3) 8.2855(3) 

b (Å) 10.070(2) 8.072(1) 9.9732(4) 10.0175(3) 10.0184(3) 

c (Å) 14.865(2) 14.216(1) 14.5740(5) 14.7749(5) 14.6698(5) 

β (°) 102.53(2) 102.78(1) 102.762(2) 102.603(2) 102.6511(19) 

V (Å3) 1203.0 2321. 1 1178.81(7) 1194.07(7) 1188.13(6) 

Z 4 8 4 4 4 

D (g cm-3) 1.426 1.48 1.455 1.436 1.444 

Reflection total/unique NA NA/2350 12229/2122 13090/2170 11767/2139 

Rint NA NA 0.064 0.038 0.089 

R1 [I > 2σ(I)] 0.053 0.057 0.0467 0.0447 0.0734 

wR2 (all data) NA 0.081 0.1212 0.1333 0.0830 

Max Shift/Error NA NA 0.000 0.000 0.000 

Goodness of fit NA NA 0.999 1.013 0.977 

  

Table 4.1 Crystal and structure refinement data for II, IV, and VII combined with those of 

previous reports on α and β forms of (RS)-thalidomide.  
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4.3.3 Crystal structures of (RS)-thalidomide 

 

The unit-cell structure of α-(RS)-thalidomide (II) is shown in Figure 4.2. The crystal 

structure of (RS)-thalidomide is formed with (R)- and (S)-thalidomide molecules in 

mirror conformation. In the α-(RS)-thalidomide crystal, pairs of (R)- and 

(S)-thalidomide molecules form the heterochiral dimers (Figure 4.3). Whereas, in the 

β-(RS)-thalidomide crystal, alternately arranged (R)- and (S)-thalidomide molecules 

form the infinite chain structure (Figure 4.4). 

 

 

 

 

  

Figure 4.2 The unit-cell structure of (RS)-thalidomide crystal drawn with thermal ellipsoids at 

50% probability level. Brown axes, green plane, and orange sphere represent 2-fold screw axes, 

mirror plane, and symmetry center, respectively. Color code: C: gray, N: blue, O: red, H: white. 
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Figure 4.4 Packing structure of the β-(RS)-thalidomide crystal along b axis [10]. 

Figure 4.3 Packing structure of the α-(RS)-thalidomide crystal along a axis. Green 

broken lines represent hydrogen bonds. Color code: C: gray, N: blue, O: red, H: white. 
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4.3.4 Comparison of crystal structures between (S)- and (RS)-thalidomides 

 

The crystal structures of unsolvated (S)-thalidomide (I) and α-(RS)-thalidomide (II) 

were compared in detail. Comparison of structural parameters between (S)-thalidomide 

(I) and (RS)-thalidomide (II) crystals is listed in Table 4.2. 

While the (RS)-thalidomide crystal consists of (R)- and (S)-thalidomide molecules 

in symmetrical conformations, the (S)-thalidomide crystal consists of two 

conformational isomers of (S)-thalidomide. To distinguish these four thalidomide 

molecules, namely (R)- and (S)-thalidomide molecules in the (RS)-thalidomide crystal 

and two conformational isomeric molecules of (S)-thalidomide in the (S)-thalidomide 

crystal, they are hereafter designated as RRS, SRS, S1, and S2, respectively. The 

conformation of SRS with atomic numbering of non-hydrogen atoms is shown in Figure 

4.5. In comparison of the conformational difference among three (S)-thalidomide 

molecules, SRS, S1, and S2, the dihedral angles between the mean plane composed of 

non-hydrogen atoms in the phthalimide ring and that in the glutarimide ring are 81.72° 

for SRS, 84.81° for S1, and 82.18° for S2, respectively. The packing structures of (S)- 

and (RS)-thalidomide crystal along a, b, and c axes are shown in Figures 4.6, 4.7, and 

4.8, respectively. The bond lengths and angles of the three (S)-thalidomide molecules 

are listed in Table 4.3 and Table 4.4, respectively. 
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 I II 

 (S)-thalidomide (RS)-thalidomide 

Crystal system monoclinic monoclinic 

Space group P21 P21/n 

a (Å) 8.40187 (15) 8.3156(3) 

b (Å) 10.02372 (18) 9.9732(4) 

c (Å) 14.4814 (7) 14.5740(5) 

β (°) 103.4938 (8) 102.762(2) 

V (Å3) 1185.93 (7) 1178.81(7) 

Z 4 4 

D (g cm-3) 1.446 1.455 

Figure 4.5 The configuration of SRS drawn with thermal ellipsoids at 50% probability level. 

Color code: C: gray, N: blue, O: red, H: white. 

Table 4.2 Comparison of structural parameters between I and II.  
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Figure 4.6 The packing structures of the (upper) (S)- and (lower) (RS)-thalidomide crystals 

along a axis. 
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Figure 4.7 The packing structures of the (upper) (S)- and (lower) (RS)-thalidomide crystals 

along b axis. 
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Figure 4.8 The packing structures of the (upper) (S)- and (lower) (RS)-thalidomide crystals 

along c axis. 
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Table 4.3 Comparison of bond lengths among S1, S2, and SRS molecules. Values in the 

parentheses represent standard deviations. 

Bond 
Length 

S1 (Å) S2 (Å) SRS (Å) 

O1-C1 1.205(2) 1.205(2) 1.215(2) 

O2-C8 1.218(3) 1.214(2) 1.212(2) 

N1-C1 1.413(3) 1.409(2) 1.395(2) 

N1-C8 1.400(2) 1.411(3) 1.403(2) 

C1-C2 1.492(2) 1.494(2) 1.487(2) 

C2-C3 1.379(3) 1.371(3) 1.372(2) 

C2-C7 1.385(3) 1.386(3) 1.392(3) 

C3-C4 1.392(3) 1.398(3) 1.395(2) 

C4-C5 1.395(3) 1.393(3) 1.387(3) 

C5-C6 1.393(3) 1.393(3) 1.394(2) 

C6-C7 1.380(3) 1.393(3) 1.375(2) 

C7-C8 1.480(3) 1.482(2) 1.486(2) 

    
N1-C9 1.453(2) 1.450(2) 1.452(2) 

    
O3-C10 1.210(2) 1.213(2) 1.216(2) 

O4-C11 1.223(2) 1.223(2) 1.226(2) 

N2-C10 1.379(2) 1.390(2) 1.378(2) 

N2-C11 1.382(3) 1.377(2) 1.378(2) 

C9-C10 1.521(3) 1.514(3) 1.516(3) 

C9-C13 1.518(3) 1.528(3) 1.516(3) 

C11-C12 1.501(3) 1.502(3) 1.500(3) 

C12-C13 1.524(3) 1.522(2) 1.508(2) 
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Table 4.4 Comparison of bond angles among S1, S2, and SRS molecules. Values in the 

parentheses represent standard deviations. 

Bond 
Angle 

S1 (°) S2 (°) SRS (°) 

C1-N1-C8 111.26(17) 111.66(16) 111.25(14) 

C1-N1-C9 125.14(18) 123.98(18) 124.33(14) 

C8-N1-C9 121.0(2) 122.09(18) 121.61(15) 

O1-C1-N1 125.2(2) 124.17(18) 124.56(16) 

O1-C1-C2 129.5(2) 130.2(2) 128.69(16) 

N1-C1-C2 105.35(19) 105.64(19) 106.75(15) 

C1-C2-C3 130.0(2) 130.7(2) 131.21(17) 

C1-C2-C7 108.2(2) 107.77(18) 107.4(15) 

C3-C2-C7 121.82(19) 121.5(2) 121.39(17) 

C2-C3-C4 116.7(2) 117.4(2) 117.35(18) 

C3-C4-C5 121.7(2) 121.4(2) 121.13(17) 

C4-C5-C6 120.8(2) 120.9(2) 121.25(18) 

C5-C6-C7 117.1(2) 116.9(2) 117.03(18) 

C2-C7-C6 121.8(2) 121.9(2) 121.85(16) 

C2-C7-C8 108.55(18) 109.33(19) 108.52(15) 

C6-C7-C8 129.6(2) 128.8(2) 129.61(17) 

O2-C8-N1 124.13(19) 124.54(18) 124.66(16) 

O2-C8-C7 129.8(2) 130.3(2) 129.48(17) 

N1-C8-C7 106.0(2) 105.20(19) 105.85(15) 

    N1-C9-C10 109.57(19) 108.92(18)  108.51(14) 

N1-C9-C13 115.0(2)  114.35(18) 114.88(18) 

C10-C9-C13 111.46(18) 111.00(19)  111.12(15) 

O3-C10-N2 121.8(2)  120.5(2) 120.77(16) 

O3-C10-C9 122.80(18) 124.15(18)  123.46(15) 

N2-C10-C9 115.30(19)  115.32(19) 115.7(15) 

C10-N2-C11 127.2(2)  126.59(19)  126.35(15) 

O4-C11-N2 119.5(2) 119.6(2)  119.46(17) 

O4-C11-C12 123.3(2)  122.7(2) 122.94(17) 

N2-C11-C12 117.22(18) 117.65(17)  117.59(15) 

C11-C12-C13 113.9(2)  113.9(2) 114.56(15) 

C9-C13-C12 108.9(2) 108.52(19)  109.41(18) 
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On one hand, pairs of RRS and SRS molecules form heterochiral dimers in the 

(RS)-thalidomide crystal. On the other hand, pairs of S1 and S2 molecules form 

homochiral dimers in the (S)-thalidomide crystal. Both the heterochiral dimer and the 

homochiral dimer are formed with two intermolecular hydrogen bonds. These 

hydrogen bonds link the glutarimide moieties of each molecule in a ring shape. The 

center of the hydrogen-bonded ring in heterochiral dimer is the symmetry center of the 

(RS)-thalidomide crystal. Therefore, the dihedral angle between the mean plane 

composed of N2, C11 and O4 in SRS and the corresponding plane in RRS is 0° as 

shown in Figure 4.9(A). In contrast, the dihedral angle between the mean plane 

composed of N2, C11 and O4 in S1 and that composed of N2‟, C11‟ and O4‟ in 

S2 ,where the primed numbers represent atoms of S2, is not 0° but 14.52° because S1 

and S2 are asymmetric as shown in Figure 4.9(B). 

 

 

 

 

  

Figure 4.9 Top and side views of hydrogen-bonded rings in (A) heterochiral dimer and (B) 

homochiral dimer. Blue and pink planes represent each mean plane, and only constituent atoms 

of the mean plane are drawn with thermal ellipsoids in side view. Green broken lines represent 

hydrogen bonds. Color code: C: gray, N: blue, O: red, H: white. 

(A) (B) 
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4.4 Evaluation of the structural stabilities with energy calculations 

 

4.4.1 Introduction 

 

The structural stability of the molecular crystal such as thalidomide crystals is closely 

related with intermolecular interaction in the crystal. The intermolecular interactions in 

thalidomide crystals originate from hydrogen bonds and Van der Waals Force. The 

hydrogen bonds are thought to main intermolecular interaction because hydrogen bond 

is much stronger than Van der Waals Force. Therefore, it is reasonable expectation that 

the differences in melting point between enantiomeric and racemic thalidomides are 

caused by the difference in structural stabilities between hydrogen-bonded rings in 

homochiral dimers and those in heterochiral dimers. On this hypothesis, this study 

evaluated the stabilities of hydrogen-bonded rings with calculation of the hydrogen 

bond energies. 

 

4.4.2 Experimental method 

 

Single-point energy of a molecule is the sum of the electron energy and the nuclear 

repulsion energy, and is obtainable from the density functional theory (DFT) calculation 

with a combination of a functional and a basis set [12]. This study calculated the 

single-point energies of monomers and dimers from the atomic coordinates in the crystal 

structures of (S)-thalidomide (I) and (RS)-thalidomide (II) using Gaussian
®
 03 program 

[13] based on DFT. The calculations were performed employing 12 practically used 

combinations of 3 functionals, B3LYP, B3PW91, and O3LYP, with 4 basis sets, 

6-31+G(d,p), 6-311++G(d,p), cc-pVDZ, and TZVP, respectively. 

This study estimated the hydrogen bond energy in the homochiral dimer (ΔEhomo) 

by subtracting the sum of the single-point energies of each monomer, which contains 

no contribution of inter-monomer interaction, from the single-point energy of the dimer, 

which contains the contribution of inter-monomer interaction, as follows: 

 2S1SSSohom EEEE 
,
 

(4.1)  

where ESS, ES1, and ES2 represent the single point energies of homochiral dimer, S1, and 

S2, respectively. Similarly, the hydrogen bond energy in the heterochiral dimer (ΔEhetero) 

was estimated as follows: 
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 SRRShetero EEEE 
,
 

(4.2)  

where ERS, ER, and ES represent the single point energies of heterochiral dimer, RRS, and 

SRS, respectively. 

These calculations assume the thalidomide monomer or dimer as alone in a 

vacuum, i.e. no neighboring molecules. Therefore, intermolecular interactions in 

crystalline state are not strictly reflected in these calculations. Moreover, to discuss the 

case in solution state, effect of solvents should additionally be included in calculation. 

Nevertheless, energy calculations for these dimer structures based on the crystal 

structures is significant for comparison between enantiomeric and racemic crystals 

composed with homochiral and heterochiral dimers, respectively. 

 

 

4.4.3 Results 

 

As shown in Table. 4.5, the hydrogen bond energies in heterochiral dimer are about 10% 

lower than that in homochiral dimer on all combinations of the functional and the basis 

set. This result suggests that the heterochiral dimer in the (RS)-thalidomide crystal is 

more stable than the homochiral dimer in (S)-thalidomide crystal. This is consistent with 

the differences of physicochemical properties that racemic thalidomide exhibits higher 

melting point than the enantiomeric thalidomide. 
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Table 4.5 Results of calculation in each combination of functionals and basis sets  ΔEhomo and 

ΔEhetero represent estimated hydrogen bond energy in homochiral and heterochiral dimers, 

respectively. 

Functional Basis set 
ΔEhomo 

(kcal mol
-1

) 

ΔEhetero 

(kcal mol
-1

) 

ΔEhomo-ΔEhetero 

(kcal mol
-1

) 
ΔEhetero / ΔEhomo 

B3LYP 6-31+G(d,p) -5.692864075 -6.448119450 0.755255374 1.132667031 

B3LYP 6-311++G(d,p) -5.885150557 -6.650696459 0.765545902 1.130080938 

B3LYP cc-pVDZ -8.950256935 -9.913402611 0.963145676 1.107610953 

B3LYP TZVP -5.903374060 -6.853759788 0.950385728 1.160990261 

      

B3PW91 6-31+G(d,p) -4.675627878 -5.450517397 0.774889519 1.165729510 

B3PW91 6-311++G(d,p) -4.954715866 -5.726484152 0.771768286 1.155764388 

B3PW91 cc-pVDZ -7.395916073 -8.356241552 0.960325479 1.129845373 

B3PW91 TZVP -4.800420692 -5.698508523 0.898087831 1.187085235 

      

O3LYP 6-31+G(d,p) -3.165314795 -3.852607125 0.687292330 1.217132378 

O3LYP 6-311++G(d,p) -3.159772631 -3.869748175 0.709975544 1.224691972 

O3LYP cc-pVDZ -6.391051226 -7.224241397 0.833190171 1.130368251 

O3LYP TZVP -3.286703998 -4.109936849 0.823232851 1.250473682 
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4.5 Conclusion 

 

In this chapter, this study focuses on comparison of crystal structures between (S)- and 

(RS)-thalidomides. The crystals obtained with three different methods were determined 

as the isomorphic with previously known α-form. Although the crystal structure of 

(RS)-thalidomide have been investigated, special attention on the heterochiral dimer 

formation in the crystal have not been paid. On the basis of the crystal structure of 

(S)-thalidomide determination in chapter 3, comparison of crystal structures between 

(S)- and (RS)-thalidomides reveals the main difference between (S)- and 

(RS)-thalidomide crystals is in the dimer structures: homochiral dimers in the 

(S)-thalidomide crystal and heterochiral dimers in the (RS)-thalidomide crystal. The 

comparison of these dimer structures suggested that the symmetric heterochiral dimers 

are more stable than the asymmetric homochiral dimers. The theoretical calculation 

based on the crystal structures revealed that the intermolecular energy of the 

heterochiral dimer is lower than that of the homochiral dimer. These results indicate 

that the known differences of physicochemical properties between racemic thalidomide 

and enantiomeric thalidomide originate from the stability difference of 

hydrogen-bonded rings between heterochiral dimers and homochiral dimers. 
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5. Overall conclusion 

 

 

 

5.1 Overall conclusion 

 

This study focused on the crystal structures of thalidomide. The principal results of this 

study are summarized in Table 5.1. Methods for crystallization of thalidomide were 

evaluated with consideration of possible multiple forms, i.e. polymorphs or solvates. 

The different crystallization methods produced crystals with different habits. Crystal 

structures and absolute configurations were determined except for the case of crystals 

obtained with solvent evaporation technique from chloroform solution of 

(S)-thalidomide. 

In the case of (S)-thalidomide, crystallization from high polar methanol-water 

solution, in which hydrogen bonds are not generally formed, produces unsolvated 

crystal, whereas crystallization from nonpolar chloroform solution, in which 

thalidomide molecules exist in dynamic equilibrium of three isomeric dimers, produces 

solvated crystal. Both unsolvated and solvated crystals are composed of two 

conformational isomers of (S)-thalidomide. The unsolvated crystals are formed with 

hydrogen bonded dimers consisting of pairs of these isomers, whereas the solvated 

crystals are formed with infinite hydrogen bonded chains consisting of alternately 

arranging conformational isomers (Figure 5.1). The clathrate structure in solvated 

crystals and non-stoichiometric inclusion of solvent molecules imply the capability for 

replacing solvent molecules at channel spaces with maintaining the host lattice of 

(S)-thalidomide. This property of solvated crystal will be expected for pharmaceutical 

application. 

In the case of (RS)-thalidomide, the corresponding three methods produced only 

unsolvated (RS)-thalidomide crystals. These crystals were determined as the 

isomorphic with previously known α-form. The comparison of homochiral dimers in 

(S)-thalidomide crystal and heterochiral dimers in (RS)-thalidomide crystal suggested 

that the symmetric heterochiral dimers are more stable than the asymmetric homochiral 

dimers. The theoretical calculation based on the crystal structures revealed that the 

intermolecular energy of the heterochiral dimer is lower than that of the homochiral 

dimer. These results indicate that the known differences of physicochemical properties 
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between racemic thalidomide and enantiomeric thalidomide originate from the stability 

difference of hydrogen-bonded rings between heterochiral dimers and homochiral 

dimers. 

 

 

Table 5.1 Comparison of solvate formation between (S)- and (RS)-thalidomide crystals 

obtained with three different methods. 

Solvent Technique 

Solute 

(S)-thalidomide (RS)-thalidomide 

methanol-water solvent evaporation unsolvate (I) unsolvate (II) 

chloroform solvent evaporation solvate (III) unsolvate (IV) 

chloroform-diethyl ether vapor diffusion solvate (V) / unsolvate (VI) unsolvate (VII) 

 

 

 

 

 

 

 

 

  

Figure 5.1 The structures of (A) hydrogen bonded dimer in unsolvated crystal of 

(S)-thalidomide and (B) hydrogen bonded chain in solvated crystal of (S)-thalidomide. Green 

broken lines represent hydrogen bonds. Color code: C: gray, N: blue, O: red, H: white, Cl: 

green. 
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The primary significance of this study is on the idea of comparison between an 

enantiomer and the racemate. Crystal structures of enantiomeric and racemic 

compounds are essentially different. However, almost no study concerning crystal of 

chiral compounds has focused on this idea. 

Although the crystal structure of (RS)-thalidomide have been investigated, special 

attention on the heterochiral dimer formation in the crystal have not been paid. In this 

study, determination of the crystal structure of (S)-thalidomide revealed not only the 

homochiral dimer structure in the crystal but also the main difference between (S)- and 

(RS)-thalidomide crystals being in the dimer structures. 

Furthermore, focusing on the result of III and IV, crystallization with solvent 

evaporation technique from chloroform solution demonstrated contrasting behavior at 

solvate formation: solvate of (S)-thalidomide and unsolvate of (RS)-thalidomide. This 

contrasting behavior should be significant, particularly for pharmaceutical compounds 

due to recent trends in the chiral drug development. 

 

 

5.2 Future works 

 

The exothermic peak without weight increase around 250 °C in TG-DTA on I indicated 

that the possible polymorphic transformation of (S)-thalidomide (Figure 5.2(A)). The 

previously study reported that β-(RS)-thalidomide is obtainable with melt of 

α-(RS)-thalidomide. Therefore, the result of TG-DTA suggests that (S)-thalidomide 

possibly transformed to the polymorph corresponding to β-(RS)-thalidomide. This 

possibility should be investigated for instance using X-ray diffractometry-differential 

scanning calorimetry. Moreover, the cause of the excess weight reduction around 

150 °C in TG-DTA on VI should also be investigated (Figure 5.2(B)). This result is 

strange because VI is determined as the unsolvated crystal with single crystal X-ray 

diffractometry. 

As to the solvated (S)-thalidomide crystals, the capability for replacing solvent 

molecules at channel spaces with maintaining the host lattice of the clathrate structure 

should be investigated. Achieving this property of solvated crystal will be expected for 

pharmaceutical application, particularly with water because only hydrates may be of 

practical use as drugs. 

Although solvated (RS)-thalidomide crystals were not obtained in this study, the 

possibility for obtaining solvated (RS)-thalidomide crystals should exist. Finding 
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crystallization methods for solvated (RS)-thalidomide and applying the methods for 

crystallization of (S)-thalidomide will provide interesting results, especially in terms of 

comparison with the results of this study. 

Furthermore, as the contrasting solvate formation of III and IV, contrasting 

behavior at polymorphs or solvates formation between an enantiomer and the racemate 

of other chiral compounds, particularly for pharmaceutical compounds, are of great 

interest.  
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Figure 5.2 TG-DTA curves of unsolvated (S)-thalidomide crystals (A) obtained with 

solvent evaporation technique from methanol-water solution (I) and (B) obtained with 

vapor diffusion technique from chloroform solution (VI). 
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