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Chapter 1

Introduction

A main subject in this thesis is an analysis of coupled nonlinear Schrédinger equations
(CNLS) and nonlinear scalar field equations (NSF) by variational methods. More pre-
cisely, we consider the following nonlinear partial differential equations:

—’Auy + Vi(z)uy = puf + fujuj in RY,
(CNLS) —&2Auy + Vo(z)ug = Buiug + pgus  in RY,
uy,uy € H'(RY)

and

(NSF) { —Au = g(a],u) Q)

u€ H'Y(R).

Here V1, V5 : RNV — R are potential functions, € > 0, ji1, tto, 3 € R constants, 1 < N < 3
in (CNLS), N > 2 in (NSF), Q € R" and we denote the Sobolev space by H*():

HY(Q) = {u:RY = R« ullip o) = [IVullZa) + lull2q) < oo}

This thesis consists of two parts. In Part I, we treat (CNLS) and in Part II, we consider
(NSF). Part I includes from Chapters 2 to 4 and Part II from Chapters 5 to 7. In what
follows, we give a summary and main results of this thesis.

1.1 Part I: Introduction to (CNLS)

In Part I, we consider (CNLS). The equation (CNLS) appears when we consider the
existence of standing waves of the following time-depend coupled nonlinear Schrodinger
equations (TCNLS):

2 ~
20 I Ay 1 Vi + Gulen P+ BlsPn =0 in (0,00) x RY,
(TCNLS) 08@; s
iha—tz oA+ Va() + (B1¢n[* + paftha|*)os = 0 i (0,00) x RY



where h, m are positive constants, ‘71, V,:RY - R given functions and 1,15 : (0, 00) X
R”Y — C unknown functions. The standing wave solutions of (TCNLS) are solutions of
the form ¢;(¢,x) = exp(iA\;t/h)u;(z) (j = 1,2) where A\; € R and u;(z) is a real valued
function. Substituting this form into (TCNLS), then we obtain (CNLS) with ¢ = h?/2m
and V;(x) = A — Vy(z) (j = 1,2).

The equations (CNLS) and (TCNLS) appear in nonlinear optics and the theory of
Bose-Einstein condensates. Recently, a lot of researchers have studied (CNLS) and (TC-
NLS) not only in physics but also in mathematics. For example, see [36, 39, 44, 45, 81,
83, 89, 102, 111] for physical treatments, [9, 27, 58, 59, 101] for numerical treatments, and
3, 4, 10, 12, 13, 26, 29, 30, 31, 37, 43, 46, 47, 49, 50, 51, 65, 66, 67, 68, 69, 70, 71, 73,
74, 75, 76, 77, 79, 80, 82, 85, 86, 87, 94, 100, 105, 106, 107, 108, 109] for mathematical
treatments. See also references therein.

In this thesis, we concentrate on (CNLS) and consider the case pui,pus > 0. The
constant 5 in (CNLS) plays an important role. It stands for the strength of interactions
between u; and us. We call the interaction repulsive if § < 0 and attractive if g > 0.
In the articles mentioned above, they consider both cases, namely the repulsive and the
attractive case. Through Chapters 2 — 4, we focus on the attractive case, i.e., 8 > 0.

We also remark that (CNLS) has a semitrivial solution. Here we call solution u =
(u1,us) semitrivial solution if u solves (CNLS) and either u; = 0 or ug = 0. If uy =
(CNLS) becomes the following scalar nonlinear Schrodinger equation:

(SNLS) —&*Auy + Vi(2)uy = pyus in RY.

Under some suitable conditions for Vi(x), (SNLS) has a nontrivial solution. We refer to
2, 5,8, 11, 21, 22, 23, 24, 32, 33, 34, 38, 42, 56, 63, 93, 103, 104] for more precise results.
Therefore, under some suitable conditions, (CNLS) has a semitrivial solution.

On the other hand, we call v = (uy,u2) nontrivial solution if u solves (CNLS) and
uy,uy Z 0. Furthermore, if both of u; and wus are positive function, then we say it as
nontrivial positive solution. In this thesis, we are interested in the existence of nontrivial
positive solutions of (CNLS).

From now on, we suppose that pq, o, 8 > 0. In the following, we state a summary of
from Chapter 2 to Chapter 4.

1.1.1 Summary of Chapter 2

Chapter 2 is based on a work of [50]. In Chapter 2, we study (CNLS) in the following
setting: € = 1. Namely we consider the following equations:

—Auy + Vi(z)ug = pyul + fugus in RY,
(1.1.1) —Auy + Vo(z)ug = Bulug + poul  in RY,

ur,uy € HY(RN).

First we state known results in this setting. The most simple case is that V;(z) =V, > 0
(7 = 1,2), namely all coefficients are positive constants. Many researchers have considered
this case and we refer to [3, 4, 10, 12, 13, 26, 29, 30, 31, 46, 47, 65, 66, 75, 76, 94, 107].
In particular, Ambrosetti and Colorado (3, 4], Lin and Wei [65], and Sirakov [94] showed
that for N = 2, 3, there exist positive constants 0 < 5 < 5 < 0o such that
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(i) fo<p< (31, then (1.1.1) has a nontrivial positive solution.

(i) If By < f3, then (1.1.1) has a nontrivial positive solution.

Moreover, if Vi(z) = Vao(x) = V' > 0, then Sirakov [94] showed that B = min{ g, po},
By = max{jy, o} and there is no nontrivial positive solution of (1.1.1) if 5y < 8 < S,
and B < .. A similar result is also obtained in Bartsch and Wang [12]. In these
articles, they used essentially the compactness of the embedding H'(R™) c LP(RY) for
2 <p<2N/(N—-2)if N >3 and for 2 < p < oo if N = 2. Here we denote H!(RY)
as the space of all radially symmetric functions in H'(RY). This compactness property
plays an important role to show the existence of nontrivial positive solutions.

In contrast with constant coefficients case, the existence problem becomes delicate if
Vi(z) or Va(z) is not equal to a positive constant identically. In fact, we will prove the
following nonexistence result.

Theorem 1.1.1 (Theorem 2.1.4 in Chapter 2). Let N = 1,2,3 and Vi, V, salisfy the
following conditions:

(2-V1’) Forj=1,2,V; € CR",R) and VV; € LR, R").

(2-V2') For j=1,2,0< inf Vj(z) < sup Vj(x) < 0.

(2-V3’) There exists a v € RN\{0} such that (0V;/0v)(z) = VV;(z)-v >0 for j =1,2.
(2-V4’) It holds that either OV, /0v # 0 or OV, /0v # 0.
Then (1.1.1) has no nontrivial positive solution for any 3 > 0.

We note that if Vi (x) and V() satisfy the conditions (2-V1')—(2-V4’), then Vi (ez) and
Va(ex) also satisty (2-V17)—(2-V4’). Therefore from Theorem 1.1.1, we see that (CNLS)
has no nontrivial positive solution for any 5 > 0 under (2-V1’)-(2-V4’).

Theorem 1.1.1 suggests that even if graphs of V; and V; are close to positive constants,
(1.1.1) does not have any nontrivial positive solution. Therefore, if the coefficients in
(1.1.1) depend on the space variable z € RY, the existence problem may turn out to be
delicate.

Next we recall the result of G. Wei [105]. He considered (1.1.1) under the conditions:
For j =1,2,

V; € C¥RYN), 0<Vy,; <Vj(x) forall xR,

(1.1.2) o
meas {x € R" : Vj(x) < M} < oo forall M > 0.

The condition (1.1.2) appeared in Bartsch and Wang [11] and this is a generalization of
the condition in Rabinowitz [93]. Under these conditions, G. Wei [105] proved that for
N =1,2,3, there exists a 5 > 0 such that if 5 < 3, then (1.1.1) has a nontrivial positive
solution. His method also depends on the compactness of the embedding. Indeed, in
[105], he worked in the following space instead of the usual H*(R") space:

Him {u= () € (P RDP s [ V(e < .

RN

Va(2)ud(x)de < oo} .
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In this case, the embedding H C (LP(RY))? is compact for 2 < p < 2N/(N —2) if N > 3
and 2 < p < oo if N = 1,2. Therefore the situation is similar to ones in the constant

coeflicient case.
Now we explain our setting in Chapter 2. We will consider (1.1.1) under the following

conditions:
(2-V1) For j =1,2, V](x) € C’l(RN,R).

(2-V2) For j =1,2,0< inf Vj(z) < sup Vj(z) = Vi, < 0.
zeRN zeRN

(2-V3) For j =1,2, Vi(z) = Vx as |z| = oo.
In this setting we shall prove the following existence result.

Theorem 1.1.2 (Theorem 2.1.1 in Chapter 2). Suppose that N = 1,2,3 and V;, Vs satisfy
(2-V1)- (2-V3). Then there exist 0 < 1 < [y such that

(i) If 0 < B < B1, then (1.1.1) has a nontrivial positive solution.

(i) If Ba < B, then (1.1.1) has a nontrivial positive solution.

In Chapter 2, we will also show the characterization of solutions found in Theorem
1.1.2. In order to state a result, we need the following notion.

Definition 1.1.3. The solution u = (uy, us) is said a least energy solution of (1.1.1) if u
satisfies the following equality:

(1.1.3) I(u) :=inf{I(v) : v is a solution of (1.1.1) and v # (0,0)}
where )
I(u) =3 / (Vup)? + Vi(z)uidz + |[Vug|® + Va(z)usda
RN
1

-1 /RN pruf + 28uiua + ppusde € CH(H(RY))?, R).
We remark that the functional I corresponds to (1.1.1), which means that solutions of
(1.1.1) are equivalent to critical points of I. Therefore if the minimizer of (1.1.3) exists,
then the minimizer has the least energy among all solutions have except for the trivial
solution (0, 0).
The following theorem gives a characterization of solutions found in Theorem 1.1.2.

Theorem 1.1.4 (Theorem 2.1.2 in Chapter 2). Suppose that Vi and Vi satisfy (2-V1)-
(2-V3).
(i) There exists a B3 > 0 such that if € (0,53), then the nontrivial positive solution

obtained in Theorem 1.1.2 (i) is not a least energy solution.

(ii) If Po < B, then the nontrivial positive solution obtained in Theorem 1.1.2 (ii) is a
least energy solution.



1.1.2 Summary of Chapter 3

Chapter 3 is based on a work of [49]. In Chapter 3, we observe a uniqueness of nontrivial
positive solutions of (1.1.1). As mentioned in subsection 1.1.1, the existence of positive
solution is well-studied. However, the uniqueness of nontrivial positive solutions of (1.1.1)
is not studied very well even for the constant coefficients case. We will split into the
following two cases:

(I) constant coefficients case (V;(z) =V; > 0,5 =1,2) or
(IT) either V;(x) or V,(z) depends on x € RV.
More precisely, in the case (II), we assume the following conditions:

(3-V1) For j =1,2,V; € C*(RY), V;(z) = Vj(]z|) and limsup V;(z) > 0.

|z|—o00

(3V2) Forj = 1,2,
inf {/ \Vul? + Vi(z)u’de : |jul @y = 1} > 0.
RN

(3-V3) For j =1,2and r >0, V/(r) > 0.
(3-V4) There exist C' > 0 and M > 0 such that |V;(r)| < C(1+ 7)™ for j = 1,2 and r > 0.

(3-V5) When N = 3, the function

Hi(r) :== %erVj(r) + 73V (r) — 4

27
has a unique simple zero in (0, 00).

First we give a remark about symmetry property of nontrivial positive solutions of
(1.1.1).

Remark 1.1.5. (i) The conditions (3-V1)—(3-V5) include the constant coefficient case,
namely, Vi(z) = Vi > 0, Vo(z) = V2 > 0 satisfy (3-V1)—-(3-V5).

(ii) It is easy to see that V;(z) = |z|* with o > 2 satisfies (3-V1)-(3-V5). Therefore, the
conditions (3-V1)—(3-V5) include unbounded potentials.

(iii) Under the conditions (3-V1), (3-V3) and N > 2, by the result of Busca and Sirakov
[20], any nontrivial positive solution of (1.1.1) is radially symmetric with respect to some
point in RY. Furthermore, it is nonincreasing with respect to r = |x|. However, this
symmetry property holds even for N = 1. We will prove it at section 3.4 in Chapter 3.

By (ii) in Remark 1.1.5, it is sufficient to consider the uniqueness of nontrivial positive
solutions which are radially symmetric.
Before stating main results in Chapter 3, we need the following notions.
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Definition 1.1.6.
(i) For V; and V; satisfying (3-V1)-(3-V5), we define Hy, v, C HH(RY) x H}(RY) as
follows:

Hv, vor 1= {u = (uy,uy) € (H7}(RJV))2 : / Vl(x)u%d:c < o0, Vg(x)ugdx < oo}
RN RN

ii) A solution w = (wy,wq) € Hy, v, » is said nondegenerate in Hy, v, if the linearized
1,V2, g 1,V2,
equation of (1.1.1) at w

—Auy + Vi(x)uy = 3umwiug + Bwsuy + 2Bwiwsus  in RY,
—Auy + Va(2)ug = 2Bwiwety + Pwiug + 3pawius  in RY,

(Ul, u?) S %Vl,VQ,T
has only trivial solution u; = us = 0.
First we consider the case (I) (constant coefficient case).

Theorem 1.1.7 (Theorem 3.1.1 in Chapter 3). Suppose that N = 1,2,3 and V;(z) =
Vi >0 for j =1,2. Then there exists a B1 > 0 such that if 0 < B < 1, then the nontrivial

positive solution of (1.1.1) is unique up to translations. Furthermore, the unique nontrivial
positive solution of (1.1.1) is nondegenerate in H'(RN) x HX(RN) for 0 < 8 < B;.

Here we should mention a work of Wei and Yao [107]. In [107], they obtained a similar
result to Theorem 1.1.7.

Next we consider the case (II) (variable coefficient case). In this case, a uniqueness
result is the following:

Theorem 1.1.8 (Theorem 3.1.4 in Chapter 3). Suppose that N = 2,3 and Vi(x), Va(x)
satisfy the conditions (3-V1)—(3-V5). Then there exists a [f3 > 0 such that if 0 < § <
Ba, then (1.1.1) has a unique nontrivial radially symmetric positive solution in Hy, v, .
Furthermore, the unique nontrivial positive solution of (1.1.1) is nondegenerate in Hy, v, -

1.1.3 Summary of Chapter 4

Chapter 4 is based on a work of [51]. In Chapter 4, we treat (CNLS), and observe
the existence of nontrivial positive solutions and the asymptotic behavior as ¢ — 0.
Throughout in Chapter 4, we assume N = 2, 3.

In general, there are 4 kinds of asymptotic behaviors of a family of solutions of (CNLS).
Let ue = (ue 1, ue2) # (0,0) be a family of solution of (CNLS). Then

(I) The function . ; concentrates at a critical point P, € R of Vi (z) and w. 5 converges
to 0.

(IT) The function u. » concentrates at a critical point P, € RY of V5 (x) and u.; converges
to 0.

(ITI) The function u. ; concentrates at a critical point P; € R respectively and Py # Ps.

6



(IV) Both of components concentrate to the same point.

The aim of Chapter 4 is to show the existence of a family of solutions which is type
(IV).

As to (I) or (II), we can easily construct such a family of solutions of (CNLS) from
the scalar nonlinear Schrodinger equation (SNLS). Indeed, many researchers have studied
(SNLS). We refer to [2, 5, 21, 22, 23, 24, 32, 33, 34, 38, 42, 56, 63, 103, 104] and references
therein. In these articles, it is shown that under the suitable assumptions, (SNLS) has
a family of solutions (u. ;) concentrating to a critical point P;. Setting u. := (u.1,0) or
ue := (0,uc2), we can obtain a family of solutions of (CNLS) which is type (I) or (II).

Before stating known results concerning the existence result of type (III) and (IV), we
state a main result of Chapter 4. After the main result, we explain known results.

The aim of Chapter 4 is to show the existence of a family of solutions which is type
(IV). In order to state the main result, we prepare some notations.

First, to analyze the asymptotic behavior of (CNLS), it is important to study the
following constant coefficient problem: For P € RY,

—Avy + Vi(P)vy = v} + Buv; in RY,
(1.1.4) —Avy + Vo (P)vy = Bvivg + ppvd in RY,
U1, Vg € Hl(RN)

We define a functional Jp corresponding to (1.1.4) and the least energy m(P) among
nontrivial solutions as follows:

1
JVl(P)7V2(P)(U) 325 /RN |V’Ul|2 + Vl(P)U% + |V1)2|2 + Vz(P)U%d:(:

1
=1 vt 20602 + v,
4 RN
MVi(P), Va(P)) :={v € H'(R) x H'(R™) : vy, 05 # 0,
J\//l(P),Vg(P)(U>(U17 0) = ‘]X//l(P),Vg(P) (v)(0,v2) = 0},

P) = inf J ‘
m( ) vGM(Vll(r}DLVQ(p)) Vl(P):V2(P)<U)

Next, we state our settings in Chapter 4. First we assume
(1.1.5) 0 < B < /e
Secondly, we suppose the following two conditions:

Assumption (4-A1) There exists a set A = [ai9, a11] X [az, ag1] C (0,00) x (0, 00) with
the following properties:

(i) For any (A1, \2) € A, it holds that operators —A+\; — Bw2 and —A+ \y — S}
are positive definite on H!(RY). This means that

/ Vol? + A? — BadPd, / Vol? + daig? — Bz > 0
RN RN

for all o € H(RV)\{0}. Here @; € H}(RY) is a unique positive solution of
—Aw; + \w; = pw? in RY (See Kwong [60]).

7



(i) (Vi(P),Va(P)) € A for all P € RV.

Assumption (4-A2) There exists a bounded open set A C R such that

(1.1.6) Ilprg\m(P) < PlélafAm(P).

Finally, we define the following value and set:

moy 1= Ilprg\m(P),

K:={PeA:m(P)=mp}.
Now we can state our main result.

Theorem 1.1.9 (Theorem 4.1.3 in Chapter 4). Let Vi, V, € C(RY) and suppose that
(1.1.5) and Assumptions (4-Al), (4-A2) hold. Then there exists an €9 > 0 such that
(CNLS) has a family of nontrivial positive solutions (uye(x), use(x))o<e<e, Satisfying the
following properties: after taking a subsequence €; — 0 there exists a sequence (P.;) C A
such that

(1.1.7) P. - ReK,
(u1e, (gjz + P.,), use, (652 + Pr;)) — (wi(x), wa(x))
strongly in H*(RY) x H'(R").
Here (wy(x), wy(x)) is a nontrivial radial positive solution of the limit problem:
—Aw; + Vi(P)wy = pw} + fuwyw;  in RY,
{ —Awy + Vo (Py)wy = Bwiwy + pows  in RY

(1.1.8)

and it satisfies Jv, (py)va(py) (W1, w2) = m(Fy) = my.

Theorem 1.1.9 suggests that if the conditions (1.1.5), (4-A1) and (4-A2) hold, then
there exists a family of solutions which is type (IV). About when the condition (4-A2) is
satisfied, see Remark 4.1.5 (i). By Remark 4.1.5, we can see that there are many examples
in which the condition (4-A2) is satisfied.

Next we compare our results to known results. As to the existence of a family of
solutions which is type (III) or (IV), we refer to Lin and Wei [68], Montefusco, Pellacci
and Squassina [79], Pomponio [87] and G. Wei [105, 106]. Here we only state the results
of Lin and Wei [68].

Lin and Wei [68] studied the existence of least energy solutions among nontrivial
solutions and its asymptotic behavior. More precisely, we define

1
I.(u) ::5/ e2|Vuy|* + Vi(2)u] + 2| Vuy|* + Va(x)usdr

RN
1

——/ put + 2Butul + pausde,
4 RN

H = {u € (H'RM))?: / Vi(2)ui(z)dr < oo, Va(2)ui(z)dw < oo} :
RN RN

M :={u e H :uy,uy #0, I.(u)(u1,0) = I.(u)(0,uz) = 0},

be :zuler}é(E I.(u).



In [68], they proved that b, is attained by nontrivial positive solution u. and studied its
behavior under 0 < 8 < fy and some conditions concerning behaviors of Vi (z) and V;(x)
as |r| — oo. Especially, their result about asymptotic behaviors is the following: Let
(ue) C M. be a family of minimizer. Then they proved that

I(us) =b. — min{ inf m(P), inf e1(Py) + inf 62(P2)} as € — 0.

PeRN PeER P,eRN

Here e;(P;) stands for the least energy value for —Aw; + Vi(P)w; = pww? in RN and it
has the following formula:
V; PZ (4—N)/2
ei(p) = WESTTT
Hi
where ey > 0 is the least energy value for —Aw + w = w?® in RY. Moreover, Lin and Wei
showed that if
inf P) < inf P inf Py),

PIEIiXN m( ) PllélRN 61( 1) + leélRN 62( 2)
then the behavior of . is type (IV) and a concentration point of both components of .
is a global minimum point Py of m(P). On the other hand, if the opposite inequality

inf e (P)+ inf ey(P) < inf m(P)

P eRN PeRN PeRN

holds, then (u.) is type (III), which means that each component concentrates at P; re-
spectively and P, # P,. Here P; is a global minimum point of e;(P).

We remark that we can construct the following example. The function m(P) has a
global minimizer, however, the minimizer on M. is type (III), which means each compo-
nent of the minimizer concentrates at different point. On the other hand, applying our
theorem 1.1.9, we can find a family of solution which concentrates at a global minimum
point of m. This is a type (IV) solution.

1.2 Part II: Introduction to (NSF)

In Part II, we treat nonlinear scalar field equations (NSF). The equation (NSF) appears
in various research fields.
First we consider the following nonlinear Klein—Gordon equation:

(1.2.1) Uy — AP +m*p — f() =0 in R x RY
where m > 0. We assume that f satisfies f(e??s) = ¢ f(s) for all §,s € R. We look for a

standing wave solution, which is a form of (¢, s) = e**u(x) where w > 0 and u is a real
valued function. Substitute this form into (1.2.1), then we obtain

~Au+ (m? —wu = f(u) inRY
This is a special case of (NSF) with g(r,s) = —(m? — w?)s + f(s) and Q = R".
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Secondly, we consider a travelling wave solution of (1.2.1). This is a solution which
has the following form: (¢, ) = u(x — ct) where u is a real valued function and ¢ € RY.
Then (1.2.1) is reduced to the following equation:

N
0%u

1.2.2 — i 2, _ : N

( ) 3»:1(6” clcj)axiaxj +mu= f(u) inR

We note that the equation (1.2.2) is elliptic provided |c¢| < 1. In fact, let A = (A4;5);; =
(52‘3‘ — Cicj>ij7 then we have

§-AE=[€] — & = (1= [cP)|gl* for all £ € R,

Thus (1.2.2) is elliptic. Using the change of coordinates, (1.2.2) is equivalent to

—Au+1u = f(u) in RV,

Thus this equation is also a special case of (NSF).
We can also derive (NSF) from the following nonlinear Schrédinger equation:
O : N
(1.2.3) ZE—FAw—l—V(WD@D‘Ff(w) =0 in (0,00) x RY,
where f(e?s) = e f(s) for all §,s € R. When we look for a standing wave solution of
the form (¢, s) = exp(iwt)u(x), then (1.2.3) becomes

~Au+ (w—V(z)u= f(u) in RN,

This is (NSF) with g(r,s) = —(w — V(r))s + f(s).
Thus the equation (NSF) is a generalization of the nonlinear Klein-Gordon equations,
the nonlinear Schrodinger equations and so on.

The equation (NSF') has been extensively studied by many authors [7, 11, 14, 15, 16,
17, 18, 19, 28, 55, 61, 62, 95].

As to (NSF) with Q = R" and g(r, s) = g(s), Strauss [95] showed the existence of at
least one radial positive solution for N > 2. He also treated the existence of infinitely
many radial possibly sign changing solutions. Colemann, Glaser and Martin [28] studied
the existence of a least energy solution for N > 3. Berestycki, Gallouét and Kavian
[14] (N = 2) and Berestycki and Lions [15, 16] (N > 3) gave an almost necessary and
sufficient conditions for the existence of nontrivial solutions. In [14, 15, 16], they assume
the following conditions for g(s):

(5-g0) The function g € C(R,R) and g is odd: g(—=¢§) = —g(§).
(5-gl) For N > 3,
9(&)

£(N+2)/(N72) <0.

lim sup
E—o0

For N = 2,
9(¢)

at?

lim sup <0 for any a > 0.

E—oo €

10



(5-g2) For N > 3,

(1.2.4) —o0 < liminf 9 < lim sup 9 < 0.
£—0 6 €0
For N = 2,
(1.2.5) —o0o < lim 98 < 0.
=0 &

(5-g3) There exists a (o > 0 such that G((y) > 0, where G(§) = ffg(T)dT.

Under the conditions (5-gl)—(5-g3), they proved the existence of at least one radial
positive solution and infinitely many radial possibly sign changing radial solutions.

Brezis and Lieb [18] (N > 2) and Briining [19] (N = 2) considered the existence at
least one positive solution in not only scalar case but also vector case.

In [55], Jeanjean and Tanaka studied the relationship between a mountain pass solution
and a least energy solution of (NSF) . They proved that a mountain pass solution is
actually a least energy solution under (5-gl)—(5-g3).

Next we consider the case where g(r,s) depends on r. First, Li [62] studied such a
problem. He treated (NSF) with N >3 and Q =R or Q = {z € R" : |z| > R}. In
the case where @ = {x € R" : |z| > R}, he consider (NSF) under the Dirichlet boundary
condition. In [62], it is shown that (NSF) has at least one radial positive solution and
infinitely many radial possibly sign changing solutions under some conditions of g. In
particular, they assumed that ¢(r, s) is a monotone function with respect to r. In [61], Li
and Li treated (NSF) in the case N = 2, and proved the same result.

On the other hand, Azzollini and Pomponio [7] considered the following nonlinear
Schrodinger equation:

(1.2.6) ~Au+V(|z))u = gu) in RY

where N > 3 and ¢ satisfies (5-g1)—(5-g3). In [7], they showed the existence of at least
one positive solution without the monotonicity condition about V'(r), but they assumed

+
G-V V2 D)) Tl gy < 29W

where

V|7 gy
(z- VV(|2)* = max{0,2- VV(j2)} and Sy = IVl gy

1n 5 .
uweH(RN)\{0} HuHLQ*(RN)

Part II consists of three chapters. In Chapter 5, we treat (NSF) with Q = RY and
g(r,s) = g(s). Chapter 6 is devoted to (NSF) where g(r, s) does depend on 7 and 2 = RY
or Q = {x € R" : |z| > R}. Chapter 7 is an appendix of Chapters 5 and 6, and we prove
that a sequence of minimax values defined in Chapters 5 and 6 tend to infinity.
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1.2.1 Summary of Chapter 5
Chapter 5 is based on a work of [48]. In Chapter 5, we consider the following equation:

{ ~Au=g(u) in RY,

(1.27) u € H'(RY).

Next we state settings in Chapter 5. We suppose the conditions (5-g0), (5-gl) and
(5-g3). Moreover, we assume

(&) 9(§)

5-g2’ —00 < liminf =2~ < limsup ==~ < 0.
(oe2) &0 € T e €

We remark that there is a slight difference between the case N > 3 and N = 2 in
(14, 15, 16] (cf. (1.2.4) and (1.2.5)).
Now we state our main result in Chapter 5.

Theorem 1.2.1 (Theorem 5.1.3 in Chapter 5). Assume N > 2 and (5-g0), (5-gl), (5-g3)
and (5-g2’). Then (1.2.7) has a least energy positive solution and infinitely many radially
symmetric (possibly sign changing) solutions, which are characterized by the mountain
pass and symmetric mountain pass minimaz arguments in H(RY).

As mentioned above, Theorem 1.2.1 is a slight extension of results in [14]. Furthermore,
our idea to prove Theorem 1.2.1 is different from ones in [14, 15, 16]. Indeed, in [14, 15, 16],
they considered the following problem:

e (N > 3) Find critical points in H!(RY) of

/ |Vul*dz subject to / G(u)dx =1
RN RN

or
e (N = 2) Find critical points in H!(R?) of

/ |Vul?’dx  subject to/ G(u)dr >0 and ||ul|r2m2) = 1.
R? R2

If we find a critical point v(z) of the above problems, then there exists a A > 0 such
that —Av = Ag(v) in RN, Thus by setting u(x) = v(z/v/\), u(x) is a solution of (1.2.7).
On the other hand, our approach is the following. We consider an unconstrained

functional .
I(u) = —/ |Vul*dz —/ G(u)dz.
2 RN RN

Then we shall find critical points of I directly. Our approach is based on symmetric
mountain pass arguments in Ambrosetti and Rabinowitz [6] and Rabinowitz [92]. More-
over, in order to obtain bounded Palais—Smale sequences, we use an idea in Jeanjean [53].
Namely, we use the following augmented functional

o (N=2)0

1(0,u) := I(u(e %2)) = 5 /RN \Vu|*dz — N /RN G(u)dr € CY{R x H(R"),R).

This functional is based on the scale properties and gives us bounded Palais—Smale se-
quences.

12



1.2.2 Summary of Chapter 6

Chapter 6 is based on a work of [52] and devoted to study the inhomogeneous case:
(1.2.8) —Au = g(|z|,u) in Q.

Here Q = RY or Q= {z € R : |z| > R} and N > 2. Moreover, if Q = {z € RV : |z| >
R}, then we consider (1.2.8) with the Dirichlet or the Neumann boundary condition:

(D) u=0 on 02,

(N) ou

5—0 on 0f)

where v stands for the outward vector of 9€2. Namely, we consider the following equations:

(Prv) —Au=g(|z|,u) inRY, wuweH'(RY).
(Pp) —Au=g(jz|,u) in{|lz|>R}, u=0 onlz|=R, uecH ({|z|>R}).
ou

(Py) —Au = g(|z|,u) in {|z| > R}, >

=0 onl|z|=R, weH'({|z|>R}).

For the above problems, we assume the following conditions for g(r, s). In what follows,
we regard R = 0 if Q = RY.

6-gl) g € C([R,00) x R,R) and g(r, —s) = —g(r,s) for all r > R and s € R.

(6-g1)
(6-g2) f R<r; <ry<ocands >0, then g(ry,s) < g(rs,s).
(6-g3)
(6-g4)

6-g3) Asr — 00, g(r,s) = goo(s) in L2 (R).
6-g4) There exists an m; > 0 such that
—oo < liminf inf 9(r.s) < lim sup sup 9(rs) < —my
s=0 r>R 3§ s—0 >R S

(6-g5) For N > 3,

lim sup \g(;",jﬂ =0 where 2" =2N/(N —2).
S5—00 r>R S
For N = 2,
lim supM =0 for any a > 0.

s—00 > exp(as?)

(6-g6) There exist (o > 0 and R > Ry such that

inf G(r,{o) >0 where G(r,s) ::/ g(r,T)dr
0

r>Ro

For (Pg~) and (Pp), we do not need the following condition (6-g7), however for the
Neumann problem (Py), in addition to (6-gl)—(6-g6), we assume
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(6-g7) —o0 < Slg}f{G(R, s).
Now we state one of main results in Chapter 6.

Theorem 1.2.2 (Theorems 6.2.1 and 6.2.2 in Chapter 6). Suppose that N > 2 and g
satisfies (6-gl1)—(6-g6). Then

(i) The problem (Pg~) ( resp. (Pp) ) has at least one radial positive solution and
winfinitely many radial possibly sign changing solutions.

(ii) In addition to (6-gl)—(6-g6), assume (6-g7). Then (Py) has at least one radial
positive solution and infinitely many radial possibly sign changing solutions.

Here we give a remark. Li and Li [61] and Li [62] considered (Pr~) and (Pp) under
the similar conditions to (6-g1)—(6-g6). However, they also assume g(r,s) = —s + o(s)
as s — 0 uniformly with respect to r. Besides, they did not treat the Neumann problem
(Pn)-

In Chapter 6, we also consider the nonlinear Schrodinger equation without the mono-
tonicity condition about g(r,s). Namely, we treat the following equation:

(1.2.9) —Au+ V(|lz|)u = g(u) in Q.

Here Q =RY or Q = {z € R" : [2| > R} and N > 3.

Azzollini and Pomponio [7] studied the case where @ = R" and showed the existence
of at least one radial positive solution. We note that if we set g(r,s) = =V (r)s + g(s),
then (NSF) becomes (1.2.9). As in the above, we consider both of the Dirichlet and the
Neumann problems when Q = {z € R" : |z| > R}.

For (Prw~), (Pp) and (Py) with g(r,s) = —V(r)s + g(s), we assume the following
conditions:

(6-g8) g satisfies (5-g0)—(5-g3).
(6-89) —oo < inf (—%V(R)sz + é(s)) where Gi(s) = /0 (.

(6-V1) V € CY([R,0)) and V(r) > 0 for all r > R.
(6-V2) Tim V() = 0.

r—00

(6-V3) [[(z - VV(|z])T| < 2Sy where

N
L2 (|Jz|>R)

HVUH%Z(RN)

- VV(|z])T = max{0,z - VV (|z and Sy = in —_—
(o TVl =m0 VD)t Syi=

Now we state a result concerning the nonlinear Schrodinger equations (1.2.9).

Theorem 1.2.3 (Theorem 6.2.4 in Chapter 6). Suppose that N > 3 and
g(r,s) ==V (r)s + g(s) satisfies (6-g8) and (6-V1)—(6-V3). Then the following hold:

14



(i) (Pr~) (resp. (Pp)) admits at least one radial positive solution and infinitely many
radial possibly sign changing solutions.

(ii) Assume (6-g9) in addition to (6-g8) and (6-V1)—(6-V3). Then (Py) admits at least
one radial positive solution and infinitely many radial possibly radial sign changing
solutions.

In Theorem 1.2.3, we treat both of the Dirichlet problem and the Neumann problem.
Furthermore, we establish the existence of infinitely many solutions.
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Part 1

Coupled nonlinear Schrodinger
equations
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Chapter 2

Existence of standing waves for
variable coefficient problems

2.1 Introduction and main result

In this chapter, we consider the existence of standing waves for (TCNLS) with ¢ = 1.
Namely, we consider

8(;@1 + Apthy + A (@)y 4 (a[n]? + Ble*)r =0 in (0,00) x RY,
(2.1.1) ks

i+ At + do(w s + (B]t1]* + po|ta )b =0 in (0,00) x RY,

where gy, po, 5 > 0 are constants and the dimension N = 1,2,3. The system (2.1.1)
appears in many physical problems, especially in the Hartree—Fock theory and nonlinear
optics. We refer to [3, 4, 12, 36, 45, 65, 75, 94, 105, 111] and references therein for more
physical treatments. )

In order to obtain standing waves, we substitute v;(t,x) = e'u;(z) into (2.1.1).
Then wu;(x), us(z) solve

—Auy + Vi(x)uy = /MU? + 5“1“3 in RV,
(2.1.2) —Aug + Va(2)uy = Buiug + pous in RY,
Uy, U & Hl(RN),

where Vj(z) = \; — \;(z). In particular we are interested in a nontrivial positive solution
of (2.1.2). Here, we say u = (uy,us) is a nontrivial positive solution of (2.1.2) if u solves
(2.1.2) and both uy, uy are positive in RY.

Our aim of this chapter is to study the existence of a nontrivial positive solution for the
system with variable coefficients. Our work is motivated by Sirakov [94], and Ambrosetti
and Colorado [4]. They consider (2.1.2) in constant coefficient case, which means that
Vi(x) = const. > 0. Roughly speaking, they proved that there exist positive constants
B1 and B, such that if 0 < 8 < 81 or B2 < 8 holds, then (2.1.2) has a nontrivial positive
solution. We remark that the existence problem becomes delicate when the coefficient
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depends on the space variable x. In Theorem 2.1.4 we give an example even if Vj(x) is
very close to constant, (2.1.2) does not have any nontrivial positive solutions.

In this chapter, except for the nonexistence result (Theorem 2.1.4), we assume that
V;(z) satisfies the following conditions:

(2-V1) For j = 1,2, Vj(z) € C*(RY,R).
(2-V2) For j =1,2,0 < inf Vj(z) < sup Vj(z) = Vi, < 0.

zeRN zeRN
(2-V3) For j =1,2, Vj(z) = Vi as x| = oo.

Here we introduce some terminologies. We call u = (uy,us) nontrivial solution if u
solves (2.1.2) and uy, us # 0. On the other hand, we call u semitrivial solution if u solves
(2.1.2) and vy = 0 or up = 0. We remark that if V;(z) satisfies (2-V1)-(2-V3), then
(2.1.2) has a semitrivial solution. Indeed, the equation

—Auy + Vi(z)u; = pu?  in RV,
u; € H'(RY)

or

—Auy + Vo(z)ug = ppus in RV,
uy € H'(RY)

has a nontrivial solution (for instance, see Willem [110]). Then u = (uy,0) or u = (0, uz)
is a semitrivial solution of (2.1.2).

Hereafter, we fix pi, pus > 0,Vi(z), Va(x) and consider the range of 5 > 0 in which
(2.1.2) has a nontrivial positive solution. Here we state the main theorem in this paper.

Theorem 2.1.1. Suppose that N = 1,2,3 and V;(x) satisfies (2-V1)—~(2-V3). Then there
exist f1 > 0 and [y > [y such that

(i) If 0 < B < B1, then (2.1.2) has a nontrivial positive solution.
(i) If Ba < B, then (2.1.2) has a nontrivial positive solution.

Next, we consider whether the solutions obtained in Theorem 2.1.1 is a least energy
solution or not. We say a solution u = (uy,uy) of (2.1.2) is a least energy solution if u
satisfies the equality

I(uy,ug) = inf {I(vy,vq) : (v1,v2) # (0,0) solves (2.1.2)}.

Here, we use notation: for v = (vy,v) € HY(RYN) x HY(RY),

1 1
I(v) = 5 /RN Vo + Vi(z)v] + |Vua|* + Va(z)vs do — 1 /RN pivf + 28vivs + povs de.

Theorem 2.1.2. The following hold:

(i) There exists a B3 € (0,Bs] such that if B € [0,03), then the nontrivial positive
solution obtained in Theorem 2.1.1 (i) is not a least energy solution.
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(ii) If B > B2, then the nontrivial positive solution obtained in Theorem 2.1.1 (ii) is a
least energy solution. Here (o is given in Theorem 2.1.1.

Remark 2.1.3. Ambrosetti and Colorado [4] obtained a nontrivial positive solution of
(2.1.2) in the constant coefficient case with the mountain pass argument on the Nehari
manifold. When g > 0 is small, they showed that the nontrivial positive solution of
(2.1.2) has a higher energy than the semitrivial positive solutions.

Next, we give the nonexistence result. We assume that V;(x) satisfies the following
conditions:

(2-V1)) For j=1,2andi=1,...,N, V; € C'(R",R), VV; € L°(R").

(2-V2’) For j =1,2,0 < inf Vj(z) < sup Vj(z) < oo.

(2
(2

2€RN 2E€RN
V3’) There exists a v € RN\{0} such that (9V;/0v)(x) = VV;(z)-v >0 for j = 1,2.
V4’) It holds that either 0V;/0v # 0 or 0V2/0v # 0.
Here we state the nonexistence result.

Theorem 2.1.4. Let V;(z) satisfy (2-V1')~(2-V4’). Then (2.1.2) has no nontrivial pos-
itwwe solution for any 5 > 0.

Remark 2.1.5. There is a function which is close to a constant and satisfies (2-V1’)—(2-
V4’). For instance, setting V;(z) = e arctan(x;) + m, then V;(x) satisfies (2-V1’)-(2-V4)
and (2.1.2) has no nontrivial positive solution for any € € (0,2). This fact implies that the
existence of nontrivial positive solution is a delicate problem and we need some conditions
concerning the behavior of V;(z) at infinity in order to show the existence of .

We prove Theorem 2.1.1 by variational methods. To obtain a nontrivial solution of
(2.1.2), we introduce the Nehari manifold A/ and the Nehari type manifold M:

N:={ue H'R") x H'(R") : u# (0,0), I'(u)u =0},
M :={ue H'RY) x H'(RY) 1 uy,us £ 0, I'(u)(u1,0) = I'(u)(0,us) = 0} .

When 5 > 0 is large, which implies the setting of Theorem 2.1.1(ii), a nontrivial
solution will be obtained as a minimizer of I on A (see section 2.5).

When £ > 0 is small, which is dealt in Theorem 2.1.1(i), we will also observe that
infy [ is also attained. However the minimizer turns out to be a semitrivial function and
the Nehari type manifold M plays a role to find a nontrivial solution. In section 2.2, we
will prove that M is a smooth Hilbert manifold with codimension 2 under the condition
0 < B < /p1jrz and a nontrivial solution will be obtained as a minimizer of I on M (see
section 2.6).

We remark that for problems with constant coefficients Sirakov [94] introduced mani-
folds in the space of radially symmetric functions:

N, ={ue H'R") x HR"Y) : u % (0,0), I'(u)u=0},
M, = {ue H(R") x HR") : us,us £ 0, ](u)(ul, 0) = I'(u)(0,u2) =0}
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He obtained a nontrivial solution as a minimizer of I on N, (M, respectively) when 3 > 0
is large (5 > 0 is small respectively). We remark that when 5 > 0 is small Ambrosetti and
Colorado [4] develops a mountain pass argument in N, to find a nontrivial solution. We
also remark that in these works, the compactness of the embedding H!(RY) — L*(RY)
is very important to get the Palais—Smale condition ((PS) condition).

In our setting, we cannot work in the space of radially symmetric functions and due to
noncompactness of the embedding H'(R") — L*(RY), the corresponding functional I
does not satisfy the (PS) condition. To solve this difficulty we will develop a concentration
compactness type result and give the estimates of critical value of I.

Finally, we give a mention to a work of Wei [105]. Wei considered (2.1.2) with vari-
able coefficients, but under different conditions of Vj(x) from ours. He considered the
case where Vj(x) is smooth, positive and V;(z) — oo as || — oco. The functional I is
considered on

H:{UGH: Vi(z)u? do < oo for j:1,2}.

RN

In this case, the embedding H — L*(R"M) x L*(RY) is compact (See Rabinowitz [93],
and Bartsch and Wang [11]), which implies that I satisfies the (PS) condition on H.

This chapter is organized as follows: In sections 2.2 and 2.3, we give some preliminaries:
especially we give functional frameworks and introduce our variational settings. In section
2.4, we prove the achievement of inf s I for all § > 0. It is important to determine whether
the minimizer is nontrivial or not. In sections 2.5 and 2.6, we give a proof to Theorems
2.1.1 and 2.1.2. In section 2.5, we deal with the case where [ is large and it turns out that
the minimizer of infy I is a nontrivial solution. In section 2.6, we study the case where
[ is small. In this case the Nehari type manifold M plays a role. Moreover we will show
that for sufficiently small 3, a least energy solution of (2.1.2) is a semitrivial solution. In
section 2.7, we prove Theorem 2.1.4.

2.2 Preliminaries

In this section, we prove some preliminary results to prove Theorem 2.1.1.

2.2.1 Function spaces and functionals

We set H := HY(RY) x H'(R"Y) and denote elements of H by u = (uy,us). For u =
(u1,us) and v = (vy,v3) € H, we define inner products and norms in H'(R") and H as
follows:
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(uj,vi)j == [ Vu;- Vo + Vi(z)uo;de (j =1,2),

RN
(U, V) 00,j = . Vu; - Vo, + Vo jujv;de (j =1,2),
(u,v) := (U1, v1)1 + (U2, v2)2, (U, V)00 := (U1, V1)001 + (U2, V2) 00,2,
g3 = (uy,uy);, lusll2 5 o= (g, t)sey (5 =1,2),
lull* := {luallT + [Juall3, lullse = llunllZes + llualls 2
We remark that || - ||, || - |l are equivalent to the standard H'(R") norm under the

conditions (2-V1)—(2-V2). We define the functional I : H — R as follows:

1 1

T(u) = ~fuf® — X / 4 280 + o de
2 4 Jan

Differentiating I, we have
I'(u)v = (u,v) — / prudv + Buiuivy + Butugvy + pouive dr  for all v € H.
RN

It is easily seen that any critical point of I is a solution of (2.1.2). We also use a notation
VI(u) € H, where VI(u) is a unique element satisfying I'(u)v = (VI(u),v) for allv € H.
We also define the functional I, : H — R as follows:

1 1

o) = 3l ~ | /R jrd + 2803+ o de.

The functional I, corresponds to the problem ‘at infinity’:
—Auy + Vg ur = paud + Bujul in RY,

(2.2.1) —Auy + Vg oug = Bulug + pous in RY,
ur,uy € HY(RN).

Any critical point of I, is also a solution of (2.2.1).
It is easily seen that the following equalities hold:

I'(wyu = |lull® = pallur|| 74 — 28]l urus|72 — pollus|| 74,
I'(w)(ur,0) = Jur||] = paflwa]7a — Bllurus|li-,
I'(u)(0,uz) = |Jusll3 — Bllususl|72 — pollus|7a.
2.2.2 Nehari manifold and Nehari type manifold

In this subsection we introduce the Nehari manifold A" and the Nehari type manifold M
and state some properties of N' and M.
We define J, Ji, Jo: H — R as follows:

J(u) :=I'(uw)u, Ji(u):=T1"(u)(u,0), Jo(u):=1I'(u)0,us).
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Definition 2.2.1. We define the Nehari manifold A and the Nehari type manifold M as
follows:

N :={ueH:u#(0,0), J(u) =0},
M:={ueH:u #0, ug Z0, Jy(u) = Jo(u) =0}.
We also define MV, and M, corresponding to (2.2.1):

N :={ue H:u#(0,0), Jo(u) =0},
Mo i ={ue€ H:u Z0, ug 20, Jo1(u) = J2(u) =0}.

Remark 2.2.2. (i) M CN and My C N.
(il) Except for (0,0), any solution of (2.1.2) belongs to N.

(iii) If u is a nontrivial solution of (2.1.2), then u € M.
Remark 2.2.3. We set |u| := (|uy], |ug|), then the following hold:

(i) If u € N, then |u| € N.
(i) If uw € M, then |u| € M.
Next, we state the fundamental properties of A" and N.
Proposition 2.2.4. The following properties hold:

(i) For each u € H with u # (0,0), there exist unique 6y > 0 and Oy o > 0 such that
9011, S N, 90070u € Noo

(i) 1) = glul? on N, Lefw)=lulZ on A

(i) There exist o > 0 and 0o, > 0 such that

|lul] > 6o for all u € N, [|v]|ec > 0 for all v € N.

Proof. We only prove for V.
(i) Suppose that v € H,u # (0,0) and set

6> 64
f(0) :=1(0u) = EHUHZ I /RN pauy + 28utus + pguy da.

Then we see
F1(0) = I'(Ouyu = 0 {J|ull* — 0> (ua[Jua][ 7 + 28 |lurus|| 72 + pollual7a) } -
Thus f'(6) = 0 holds if and only if § = §,, where

b = ]|
Virllu||7a + 28/ urus||2, + pollusll7.
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(ii) Let u € N. Then it follows that
lull* = plluall7s + 2Bluruall7s + palluzll7s.

From the above equality, we obtain

B 4 1

H(u) = =5 14

(iii) Let u € M. By using Holder’s inequality and Sobolev’s embedding, we have

lull* = plluillze + 28|lurusl|7z + polluzllzs
< pullwr]|7a + 281w || 7allual T4 + pallua]| 74
< Cpllully + 28w [ Flluall3 + p2llusll3)
< C([Jua)l? + [[uzll3)? = Cllull*.

Therefore it follows that .
— < 2.

Next, we prove that N/ and M are smooth Hilbert manifolds.

Lemma 2.2.5. It holds that

(i) For each 5> 0, N and N are smooth Hilbert manifolds with codimension 1.

(ii) If0 < B < /pipiz, then M and M, are smooth Hilbert manifolds with codimension

2.
(iii) LN ={v e H : J'(u)v = 0}.
(iv) TLM ={ve H: Jj(uv=Ji(u)p =0}.

The above lemma will be derived from the following well-known lemma. For example,

see Ambrosetti and Malchiodi [5].

Lemma 2.2.6. Let O C H be an open set. Suppose G,G1,Gy € C™(O,R) and set

M := G~1(0), M := G71(0) N G3*(0). Then the following hold:

(i) If G'(p) # 0 for each p € M, then M is a C™ Hilbert manifold with codimension 1.

(i) If G (p) and G,(p) are linearly independent for each p € M, then M is a C™ Hilbert

manifold with codimension 2.
(iii) T,M ={q € H : G'(p)q = 0}.
(iv) T,M = {q € H : G} (p)g = Gy(p)q = 0}.

We prove Lemma 2.2.5 with the aid of Lemma 2.2.6.
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Proof of Lemma 2.2.5. We only prove (i) and (ii) since (iii) and (iv) are directly derived
from Lemma 2.2.6.
(i) For u € N, we have

J'(w)u = 2[Jul|* = 4(p Jur |74 + 28] Jurual|7s + pollus)|74) = —2[jul|* < 0.

In particular, we have J'(u) # 0 for any v € A. Thus applying Lemma 2.2.6 to J :
H\{0} — R, we have (i) of Lemma 2.2.5.
(ii) Next we apply (ii) of Lemma 2.2.6 to Jy, Jy : H\{u; = 0 or us = 0} — R. For u € M,
we have

Ji(u)(u1,0) = =2mlluiflza,  Jo(u)(0,u2) = —2psal|usl[7s,

Ji(u)(0,uz) = Jy(u)(ur, 0) = =28 uruz|[72.

Define A(u) by

N
—~
&

I

VR
~
=

S— —r
—~
IS
=
=
S~
=

O,U2)> _ (—2/“““1%4 —25”%“2”%2)

0, uz) —2Blluauall7,  —2pallusl|7
and we see
det A(u) = 4(papollur || 1allusl| 7o — B lurusllzz) > (e — 5)luallgallus| 74 > 0.

The above inequality implies that Ji(u) and Jj(u) are linearly independent. Thus by
Lemma 2.2.6 we infer that M is a smooth Hilbert manifold with codimension 2. []

Lastly we state some properties of the level sets of N' and M. For each a > 0, we
define N and M® as follows:

N ={ueN: : I(u) <a}, M*={ueM:I(u)<a}.
Proposition 2.2.7 (Properties of N'). The following properties hold:

(i) The set N is a closed subset of H and N is a bounded closed subset of H. In
particular,
0<dp < |lul| <2v/a for all ue N,

where 0y is given in Proposition 2.2.4.
(ii) For each o > 0, it holds
0 <20 < [|[VJ(u)]| € er(a) for all u e N,
where ¢1(a) depends on o but not on u € N,
Proof. (i) It is clear from Proposition 2.2.4 (ii) and (iii).
(i) Since J'(u)u = —2||u|* and ||u|| > &y, we have 25y < ||J'(u)||. On the other hand,

since J' : H — H* maps bounded sets to bounded sets and N'* is bounded, we infer the
conclusion of Proposition 2.2.7. [
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We define T,N* and T, M* as the orthonormal complement of T,,N' and T,,M, re-
spectively:
TN+ ={veH: (v,h)=0for he TN},

T M*:={veH:{v,h)=0for he T,M}.

We also define Pp, y1 and Pp, y1 as the projections from H to T,N* and T, M, respec-
tively:
Pryo: H— TN Ppay: H— T,M™.

By Lemma 2.2.5, we have T, N+ = span {V.J(u)}. Thus

PMLU:< VJ(u) > VJ(u)

ZOIRvANOT)
By Lemma 2.2.5 and Proposition 2.2.7, we have the following corollary.
Corollary 2.2.8. For each o > 0, there holds

0 < ci(a) < ||Prarul] < co(a) for all u e N,
where ¢1(a), co(a) are positive constants and depend on c.

Next we state the properties of M.

Proposition 2.2.9 (Properties of M). Let a > 0.

(i) There exist Bi(a) € (0, /uipi2), c1(a), ca(a) > 0 such that for each 5 € (0, f1(x))
and u € M*?,

(@) < luylle < ea(@), erl@) < luyll; < ea(e),

)
a(a) < V()] < cx(a) (G =1,2).
(ii) If 6 € (0, B1()), then M® is a closed subset of H.
(iii) There exists an e1(c) > 0 such that for each u € M* and B € (0, f1(«)),

[(VIi(u), V()] < (1 = er(@)[[VIi(u) [V J2(w)]]

(iv) There exist cs(o) > 0 and cy(a) > 0 such that for each € (0,51(a)) and u =
(ug,uz) € M?,

0 <es(a) < |[ProacUl < ale) (G =1,2),
where Uy = (u1,0) and Uy = (0,us). Moreover, there ezists an eo(a) > 0 such that
[(PrpmeUrs Proe Us)| < (1 = ea() || Pr s Url | P Ua|

for all w € M*.
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Proof. (i) Since M* C N®, N® is a bounded set in H and J; maps bounded sets to
bounded sets, it is sufficient to show that

0 <erfa) < lugllzs, 0 <ela) <lully, 0 <ela) <[Vl

for each u € M®. We only show the statements for u; and V.J; since the same argument
is valid for uy and V.J,.
Since

luillf = g lluallza + Bllurusa|7e,
using Holder’s inequality and Sobolev’s embedding theorem, it follows that
lullZe < Clluall} < Cluallualiza + BllualZalluzl|Ze).
This implies that

1
= — BllualZs < pullur||Zs.

C
Since ||u;||; are bounded, there exists a f(a) > 0 such that if 8 € (0, f(«)), then
0 <c(a) < ||luglpa.
By Sobolev’s embedding, we have
c1(@) < Jlurlze < Cllually.
Since Ji(u)(u1,0) = =241 [|u1 |74, we have ¢i(a) < ||V Jy(u)]].
(ii) By (i) and the continuity of J;(u), it is easy to check that (ii) holds.
(iii) Let v € M® and set

VJQ(U)
IV I ()|

52 =6 — (&, &L)4, &= é:_z
&2

Since M® is bounded and VJ;, V.J; map bounded sets into bounded sets, we only prove
that there exists a ¢(a) = ¢ > 0 such that

61 . VJ1<U)

AT

(2.2.2) 0<ec<|&|? forall ue M.
Indeed, since

e ey IR — (VA (0, V()
el =t e NPTV L) ’

(iii) follows from (2.2.2).
Set Uy := (u1,0), Uy := (0, u2) and define A(u) as follows:

(U1, &) (Un,&s)
A = ({ore) Te)
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Since

1 (Ur,61) <U1>§2>) 1 <<U1,§1> <U1,§2—<§1,§2>€1>)
det A(w) = H &| T ((Uz,fﬁ (Us,&2) 1€ || T (Uz,&1) (U2, & — (£1,82)61)
_ 1 dt(<U1’£1> <U1,§2>)
]|§~2|| (Uz,&1) (U2, &)
. 21 28wl
2| uaiza “P||u1U2|[y2
Uy, Ui,
e A ] R L2 A0
 2B|luaus|72  2p|uallze
U- Us,
o) = %) = TR
we have

dpppallu [galluzlze = Pllwruallz) o 4Gz = B)lwn g lluzllzs
eIV T2 () [V T2 (w) &GNV AV S (w)]

By (i) and the assumption of f,

det A(u) =

(2.2.3) det A(u) > % for all u € M*.

&l

On the other hand, the components of A(u) are bounded, which implies that there exists
a C; = Ci(«) > 0 such that

(2.2.4) det A(u) < Ci(a) for all u € M?.
From (2.2.3) and (2.2.4), there exists a ¢ = ¢(a) > 0 such that
0<c<|&| forallue M

(iv) Since
(2.2.5) ProjrUp = (Ur, &)& + (Ur, &3)Es,
where &; are given in (iii), it follows that
Apd [ 124
_ 2 2 2 _ A4 L
HU1H2 > HPTuMiUIH2 = <U1751> + <U1,§3> > <U1751> - W

By (i), it follows that there exist c¢3(«) > 0 and c4(a) > 0 such that
(2.2.6) cs(a) < ||ProaqeUsll < ca(er)  for all u € M.
Similarly we have (2.2.6) for U,. Since (2.2.5) and

Pr,meUz = (Uz, &0)& + (U, €3)8s,

we have
| Pr, j U 1| P pa Unl)? = [(Pryaqe Uty P e Us) [P = (det A(u))?.

By (2.2.3) and the boundedness of (Pr, v U;), for sufficiently small e5(c) > 0, the con-
clusion of (iv) holds. O
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Corollary 2.2.10. (i) Let u € N satisfy I'(u)h = 0 for all h € T,N. Then I'(u) = 0.
(ii) Let u € M satisfy I'(u)h =0 for all h € T,M. Then I'(u) = 0.
Remark 2.2.11. Similar results hold for NV, and M.

Proof. We only treat (ii) since (i) can be shown similarly. Let u € M satisfy I'(u)h = 0
for all h € T,M. Tt is sufficient to prove I’(u) = 0 on T,M*. Let U = (u;,0) and
Us; = (0,us) as in the proof of Proposition 2.2.9. Then from the proof of Proposition 2.2.9
(iv), we see that T, M* = span{Pp, v U1, Pp,p2Uz}. Hence we show I'(u)Pp, 1 Uy =
I'(w) Py, pqr Uy = 0. However, this is easily follows from the fact that I'(u)U; = I'(u)Us =
0 and I'(u)h = 0 for all h € T,,M. Therefore we have I'(u) = 0. O

2.2.3 (PS), sequence

First, we introduce important values to obtain a nontrivial solution of (2.1.2).
We define bar, bag, by, O, as follows.

by = Jgj{/l(u), b = ulg/f/l I(u), by, = ug./l\/foo Io(u), bm,, = ué%fm Io(u).

Remark 2.2.12. By Remark 2.2.2, it follows that
0<by <bum, 0<by, <bue.

To obtain a solution of (2.1.2), we see that by or bu is attained. So it is important
to see the behavior of the minimizing sequence on N or M.

Definition 2.2.13. Let ¢ € R.

(i) A sequence (u,) C H is said to be a Palais—Smale sequence of I on H at level ¢ (in
short (PS), 5 sequence), if it satisfies

)

I(u,) = ¢, || (un)||g — 0,
where
II'(w)||g= :=  sup  I'(u)h.
heH, |[h]|=1

(ii) A sequence (u,) C N is said to be a (PS), - sequence of [, if it satisfies
I(u,) — ¢, ”]/(un)HTunN* — 0,

where
1" )lza+ o= sup  I'(v)h.
heTu N, ||h]=1
(iii) Let 8 < \/fifiz. A sequence (u,) C M is said to be a (PS), , sequence of I on
M, if it satisfies
I(uy) = ¢, ' (un) |z, me — 0,

where

1" (w)|lzyme = sup  I'(w)h.
heTwM, [[h]=1
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Next we see the relationships between a (PS), ,, (PS), 4 and (PS), ,, sequence.
Lemma 2.2.14. (i) Any (PS), y sequence (uy) is a bounded sequence on H.
(i) Any (PS), » sequence (uy) is a (PS), j sequence.

(iii) If ¢ < a and B € (0,B1(«)), then any (PS), o sequence is a (PS), , sequence,
where f1(«) appeared in Proposition 2.2.9.

Proof. (i) Let (u,) be a (PS), ; sequence. Since ||1(uy)|
such that

m+ — 0, there exists an n; € N

[T (up)un| < |Juy||  for all n > ny.

On the other hand, it holds

1 1
I(uy) = §||un||2 - Z(Mlllulllizt + 28| Jun1tn 2|72 + pioltn 2| 14),
Il(“ﬂ)“ﬂ = HUNH2 - (MIHUIHZEZI + 26Hun,lun,2||%2 + N2||un,2||i4)a
which implies
1 1
1 n) — _I/ n)Un = —||Un 2-
(1) = 31 =

Thus we conclude that for sufficiently large n,
1 2
2lall” < Jluall + ¢ +o(1),

which implies that (u,) is a bounded sequence.
(ii) By [[1'(un)||7, A+ — 0 and I(u,) — c, it is sufficient to prove |[I'(uy)|z- — O.
Since we may assume that (u,) € N for some a > 0, (u,) is a bounded sequence.
By Lemma 2.2.5, H = span{VJ(u,)} ® T,,N. So we prove that I'(u,)(, — 0 where
Cn = VJ(un)/||VJ(uy,)| and it is equivalent to

P n
(2.2.7) '(uy) {T—M} 0

| Pr,, vt

First, we prove that I'(u,)[Pr, atu,] — 0. Since I'(u,)u, = J(u,) = 0 and u, —
Pr, ntun € T, N, it follows that

|I,(un)[PTunN’lun]| = |I/(un)un - I,(un)[un - PTunN’iun” = |]/(Un)[un - PTuanun”
< M (u)

Tup N* || Un — PTun/\/J-unH — 0.

By Corollary 2.2.8, (|| Pp, a1usl||) is bounded below away from 0. Thus (2.2.7) holds.
(iii) Let (un) be a (PS), ., sequence and ¢ < a. We remark that (u,) is bounded in H

C,

and (U, ;) also. As in (ii), by Lemma 2.2.5 and Proposition 2.2.9, we prove that
(2.2.8) I'(up)én1 — 0, I'(un)éns — 0,
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where (&,1) and (&,3) are given in the proof of Proposition 2.2.9. Since I'(u,)U,1 =
I'(un)Un2 =0, Upj — Pp, pmrUpnj € Ty, M and || I'(uy)||1,,m — 0, we have

|],<un)[PTunMiUn,j]| = |],(un)Un,j - I,(un)[Umj - PTunMiUn,jH
= |I"(un)[Un,j — Pr,, 02 Un,l|
< W' (wa) 7, M= 1Unj — Pr,, par Un sl = 0.

By Proposition 2.2.9, || Pr, Uyl are bounded below away from 0, it follows that
Il(“ﬂ)fn,l — 0, Il(“n)fnz — 0.

Using Proposition 2.2.9 again, it follows that ||&,.2— (€n2, &n,1)&n 1| is bounded below away
from 0, which implies (2.2.8). O

The following lemma tells us that we can obtain a (PS),  sequence and a (PS);
sequence from the minimizing sequence, respectively.

Lemma 2.2.15. (i) For each 8> 0, there exists a (PS),,. 5 sequence.

(i) Suppose that oo > by for all B € (0, \/finfiz). Then there exists a 0 < f(cr) < \/fi1jia

such that if B € (0, B(cx)), then there exists a (PS); —p sequence.

Remark 2.2.16. We remark that by depends on (. In Proposition 2.6.1, we will prove
SUPgefo,00) b < 00. In particular, there exists an a which satisfies the assumption of
Lemma 2.2.15 (ii).

We can prove Lemma 2.2.15 by applying Ekeland’s variational principle (See Ekeland
[35] and Mahwin and Willem [78]). So we omit the proof.

The following lemma is so-called Concentration Compactness Lemma (cf. Lions [72]).
This lemma plays an important role in analysing a (PS)Q 5 Sequence.

Lemma 2.2.17 (Concentration Compactness Lemma). Let (u,) be a (PS), ; sequence.
Then there ezist a subsequence (uy, ), an £ € N, a critical point uy of I, critical points
wi(l <i<V¥) of I, (i) C RN(1 < i < () satisfying the following:

(i) Jyil = 00 (L<i <), |yi—yl| = o0 (i # ).

— 0.

(i)

l
thn, =g — Y wi(v = 4)
1=1

¢
(i) T(tn,) = c=T(ug) + Y Tn(w;).
i=1
See Bahri and Lions [8] and Jeanjean and Tanaka [56] for a proof of Lemma 2.2.17.

Remark 2.2.18. If £ = 0 in the above lemma, then u,, converges to uy strongly in H.

32



2.3 Semitrivial solutions

Here, we consider some properties of semitrivial solutions, i.e., the solution of a form
(u1,0) or (0,us).
The functionals u; — I(uy,0) and us — (0, uy) corresponds to

(2.3.1) —Auy + Vi(2)uy = pyuj in RY,
o u; € H'(RN),

(2.32) —Auy + Va(x)uy = poui in RV,
o uy € HY(RM).

We define dj, dy as the least energy of (2.3.1), (2.3.2), respectively:

di = inf I(uy,0), do:= inf 1(0,us).

(u1,0)eEN (0,u2)eN
Similarly, we set
dooq = inf I (u1,0), deo:= inf I(0,us).
1 (ul,O)ENoo ( ! ) 2 (07u2)eNoo ( 2)

Remark 2.3.1. By the definition of d;, we have

If the inequality (2.3.3) is strict, we can see the critical point corresponding to by is
nontrivial. We will see in section 2.5 that this is the case when f is large.

The following lemma shows that d; is attained and (2.1.2) has a semitrivial solution.
Lemma 2.3.2. Suppose N =1,2,3 and V1, Vs satisfy (2-V1)—(2-V3). Then,

(i) The equation (2.3.1) ( resp. (2.3.2) ) has a least energy solution which is positive in
RY.

(ii) It holds that d; < dw ;. Moreover if Vj(x) # Va ;, then dj < d ;.

A proof of Lemma 2.3.2 is standard, so we omit it. For example, see Willem [110].

2.4 Achievements of by, by

In this section, we prove that by and by are attained for each 5 > 0. These facts are
useful to prove the existence of nontrivial solutions of (2.1.2) in section 2.5.
First we recall the following result.

Proposition 2.4.1 (Ambrosetti and Colorado [4], and Sirakov [94]). It holds that

(i) For each B >0, by, is attained.
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(ii) There exists a By > 0 such that if 8 > By, then by, is attained by a nontrivial
positive solution of (2.2.1).

This proposition is proved in Ambrosetti and Colorado [4] and Sirakov [94] in the case
N = 2,3. For reader’s convenience, we shall give a proof of Theorem 2.4.1 (i) for the case
N = 2,3 as well as the case N = 1. To prove Proposition 2.4.1 (i), we need the Schwarz
symmetrization. We denote u* the Schwarz symmetrization of w:

u” = (u1, up).

It is well-known that the Schwarz symmertization satisfies the following: (See Lieb and
Loss [64])

[ujllcs = Nujllice,  NVujliee < [IVuillze,  lujuzllze = [Jurusl| e
Proof of Proposition 4.1. We consider two cases.
Case 1: N =2,3.

Suppose that (u,) C N satisfies Io(u,) — by... Then Proposition 2.2.4 implies
that (u,) is a bounded sequence. By the above properties of u*, (u}) is also a bounded
sequence. Let H!(RY) be the space of radially symmetric functions in H*(R"). Since
the embedding H!(RY) — L*RY) is compact, there exists a subsequence (write still
(uy)) such that

uw’ —uy weakly in H'RY) x H'RY),
uh — ug strongly in  L*RM) x L*RN).
Then it follows that
ool < timminf 2, < lim inf 1
= i inf (s || 70 + 28 n i 2|72 + pi2lltn 270)
< Timint (o gy 1 + 261, 122 + o)

= pun||uo |74 + 2B luouozl|7> + palluosl|1s-

Hence there exists a unique 6y € (0, 1] such that 6yug € N. Thus we see

03 2 O e 0 2 2
by, < ZHUOHOO < hmmfZHunHoo < hmmfZHunHoo = 65ba,,
n

which implies 6y = 1, ug € N and I (ug) = bar, .
Case 2: N =1

By Lemma 2.2.15, there exists a (PS), . 5 sequence. We denote it by (u,). Then
Proposition 2.2.4 implies that (u,) is bounded. Furthermore, by Lemma 2.2.17, there
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exist a subsequence (u,, ), an £ € N, critical points w; (0 < i < {) of I, and sequences
(yi) € RY (1 <4 < () such that

Yl = o0 if 1<i <Y, !y,i—yi!%oo f1<i<j<eé,

—Wo — Z w;(z yk

Moreover, we may assume that if £ > 1, then w; # 0 for all 1 <i < /.

If wy # 0, then we can conclude ¢ = 0 and [(wy) = bp,. Indeed, since wy # 0,
Io(wo) > bar, holds. Since it holds that I (w;) > by, for 1 < i < ¢, it follows from
(2.4.1) that £ =0 and I (wo) = by, -

If wy = 0, then we infer that ¢ = 1. In fact, if £ = 0, then from (2.4.1) we have u,, — 0
strongly in H. This contradicts Proposition 2.2.4 (ii). On the other hand, if ¢ > 2, then
from (2.4.1) we have liminfy o Ioo(up,) > 20y, > bar,. This is a contradiction and we
obtain ¢ = 1. We set vg(x) = u,, (z +y;,). Then we have I, (vy) = Io(tuyn, ), vi € N and
vr — wq strongly in H. Hence we obtain I (w;) = bar,, which completes a proof.

24.1
( ) — 0, Ioo(un,) —>ZI w;).

=0

]

Next we prove that by is attained.
Proposition 2.4.2. For each 8 > 0, by is attained.

Proof. First, we prove the inequality byr < by.. By Proposition 2.4.1, there exists a
Uoo € Ny such that I (us) = by,. With the assumption of Vj(x) we obtain

o l® < uscllze = p1llucoa I + 28 toc 1tioo 2|72 + pal|to 2 1,

which implies that there exists a 6, € (0, 1] such that . u. € N. Then it follows that

2

(2'4'2) by < 1(Octing) = QT.QHUOOH2 < ||Uoo||§o = Loo(Uoo) = by -

1
4
Thus we obtain by < by, .

Next we consider two cases: by = by, and by < bar_ .

If by = by, takes place, then by (2.4.2), we have 6., = 1. This implies that u., € N
and I (us) = byr. This is our conclusion.

If by < by, takes place, then by Lemma 2.2.15, there exists a (PS)bM y sequence
(un). By Lemma 2.2.17, there exist subsequence (u,, ), ¢ € N, ug with I'(up) =0, w; # 0
with I’_(w;) = 0 and (yi) C RY such that

¢
Up, — Uy — g wi(z
i=1

Since w; # (0,0), we have by < Io(w;). By by < by, it follows that ¢ = 0, which
implies

l
=0, I(un,) = by =I(ug) + > Lo(w)).

=1

Up, — Uo strongly in H.
This shows that ug € N and I(ug) = by. O
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Remark 2.4.3. We consider the situation by = by, more precisely. We deal with the two
cases. (a) by, is attained by nontrivial functions wug. In this case, we can show that both
of V;(x) are constant functions. (b) by, is attained by semitrivial functions u,. We may
assume that uy = (u1,0). Then we can show that V;(z) is a constant function. Moreover,
we can prove the equality by = by, = doo1 = d;.

2.5 Proof of Theorem 1.1 (ii) (when 3 is large)

In this section, we prove the existence of a nontrivial positive solution of (2.1.2) when /3
is large. By Proposition 2.4.2, there exists a ug = (ug1, uo2) € N such that I(ug) = by
Moreover, Corollary 2.2.10 implies that ug is a solution of (2.1.2). Hence we need to prove
Uo,1, U0,2 ?é 0.

Following Ambrosetti and Colorado [4], let us define constants which are related to
the stability of semitrivial solutions on N/

Definition 2.5.1. We define Bl and Bg as follows:

5 : : 213 5 : : ln I3
= inf inf - ;= inf inf -
b (u1,0)€81 p2e HHRN\(0} [ n uip3dx b (0,u2)€82 1€ (RV\(0} [pn udpT dx

Here, S; and Sy are defined by
Sl = {(Ul,O) S N . I(U,l,O) = dl}, SQ = {(O,Ug) S N : [(O,Ug) = dg} .
A main result in this section is the following:

Theorem 2.5.2. If § > max{@l, Bg}, then both components of any minimizer of I on
N are not zero, i.e.,

I(UQ) = bN, Uy € N = Ug,1, Uo,2 :7é 0.

Proof. 1t suffices to prove by < min{d;,ds}. Since § > max{Bl, Bg}, there exist (u1,0) €
S1,(0,uz) € So, 01,02 € HY(RY) such that

2 2
' 2
o, ledli
fRN usp; dx fRN uips dx

We remark that {0} x H*(R"Y) C T(y, 0N and H*(RY) x {0} C TiouN. In fact, for
each 11, v, € HY(RY), we have

S (u1,0)[(0,¢2)] = 0, J'(0,u2)[(¢1, 0)] = 0.
Thus, it holds that {0} x H*(R"Y) C Ty, 0N and H*(RY) x {0} C T{g.u)/N by Lemma

2.2.5.
Next let 71,72 € C*((—¢,¢),N) satisfy

’71(0) = (uho)v 71(0) = (07 902>7 '72(()) = (Oau2)> 7;(0) = (901;0)
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By the Taylor expansion of I(v;(t)) and I'(u,0) = I'(0,uz) = 0, we obtain

I(7;(8)) = 1(7;(0)) + %f”(%(O))M(O), V(O] + o(t?).

Since

(01,00, 92), 0. 02)) = lally = | i da <o
1"(0, us)[(p1,0), (¢1,0)] <0,
it follows that for sufficiently small ¢ > 0
I(7;(t)) — 1(7;(0)) <0.
Thus we have by < min{dy, ds}. O
Next, we give a proof of Theorem 2.1.1 (ii).

Proof of Theorem 2.1.1 (ii). By Theorem 2.5.2, there exists a ug such that by = I(uy),
up1 7# 0,up2 # 0. By Remark 2.2.3, we have

luo| = (luoal, [uoel) € N, by = I(ug) = I(|uol),

which implies that |ug| is also a minimizer of I on N. Thus we may assume that uy; >
O,Uo’l §é O,UOQ > O,U(LQ §é 0. 1\/]:OI'GOVGI'7 it hold that ]/<U0) = 0 and U, 1, Up,2 > 0 by
Corollary 2.2.10 and the maximum principle. O]

2.6 Proofs of Theorem 2.1.1 (i) and Theorem 2.1.2.
(when [ is small)

2.6.1 Proof of Theorem 2.1.1(i).

The aim of this subsection is to prove the existence of a nontrivial positive solution of
(2.1.2) when £ is small.
The following two propositions give some estimates of byy.

Proposition 2.6.1. For each 5 > 0,
(i) bag < min{dy + duo2, door + da}.
(i) bpre < door + doos.
Remark 2.6.2. ISM depends on 8 but di, ds, ds 1, dso 2 are independent of .
Proposition 2.6.3. There exists a By > 0 such that for each 8 € (0, 31)
b < b -
Proofs of Propositions 2.6.1 and 2.6.3 will be given in subsection 2.6.2.
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Theorem 2.6.4. There exists a B2 > 0 such that for each 3 € (O,Bg), b is attained.

Proof of Theorem 2.6.4. Set ay = min{d; +doo 2, doo1+d2}. By Proposition 2.6.1, M*° 2
() for all B € (0, /p1j12). By Proposition 2.2.9; there exist Sy > 0 and §; > 0 such that
for cach u € M and 8 € (0, 5),

(2.6.1) uil|r > 01, [|uzll2 > 01

Suppose 0 < 8 < min{Bl, BO}. Then we remark that there exists a (PS)
(un) by Lemmas 2.2.14 and 2.2.15. Then by Lemma 2.2.17, we have

b, H sequence

(2.6.2) — 0,

)4
Up — Up — sz(l‘ - Z/Z)
¢
(2.6.3) I(u) = bps = I(ug) + > Loo(wy).

=1

We shall show that uy = (ug 1, uo2), uo1 # 0,up2 # 0 and ¢ = 0. We divide our argument
into three steps.

Step 1. ug # (0,0).

We prove indirectly and we assume that ug = (0,0). By (2.6.3), it follows that

L

b= Lno(w)).

=1

By b v > 0, we obtain ¢ # 0. Since b M < b M., we conclude that one of the components
of w; equals 0. Moreover if £ > 2, we have

Otherwise, we have b M = doo 1 + doo 2, which contradicts Proposition 2.6.1.

Suppose that w;; = 0 (1 < i < {). By (2.6.2), we obtain [|u,]y — 0, which
contradicts (2.6.1). In a similar way, w;2 = 0 (1 < i < ¢) does not take place. This
implies that uy Z (0, 0).

Step 2. uy & (H'(RY) x {0}) U ({0} x H'(R")).

We prove indirectly and we assume that ug € H'(RY) x {0}. By (2.6.3) we have

L

b = I(ug) + ZLXJ(wi)'

=1

Since I;M < I;Moo, one of the components of w; is equal to 0 for 1 < ¢ < £. Since
bm < dy + dw2 and dy < I(ug), we have

(2.6.5) wie=0 for 1<i<V.
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From (2.6.2) and (2.6.5), it follows that ||u,z2|l2 — 0, which contradicts (2.6.1). So, we
conclude uy € H'(RY) x {0}. In a similar way, we can prove that uy & {0} x H'(RY).

Step 3. Conclusion.

Now we complete a proof of Theorem 2.6.4. By Steps 1 and 2, it follows that
Up 1, Upz # 0. Since by < I(ug) and Ioo(w;) > 0, we have ¢ = 0. By Remark 2.2.18, (u,)
converges to ug strongly in H, so I(ug) = i/I\l/[f] = by O

We give a proof of Theorem 2.1.1 (i).

Proof of Theorem 2.1.1 (i). As in the proof of Theorem 2.1.1 (ii), we obtain a nontrivial
positive solution of (2.1.2) by Theorem 2.6.4, Corollary 2.2.10 and the maximum principle.
O

2.6.2 Proofs of Propositions 2.6.1 and 2.6.3.

Before proving Propositions 2.6.1 and 2.6.3, we state a useful lemma. For u € H,u; #
0,us # 0, we set
2 2

fu(s1, s2) == I(y/s1u1, \/S2u2)
S1S52

S1 S9 S S
= §|’U1||f + 5||U2||§ - Zl#1||ul||i4 - 75||U1U2||2L2 - fﬂ2||u2||i4-

Lemma 2.6.5. Let u € H, uy # 0,us # 0. Then the following hold.
(i) Let 0 < B < \Juipz. Then f,(s1,s2) is strictly concave in [0,00) x [0,00).
(ii)) Let w € M and 0 < B < Jppia. Then (1,1) is a unique mazimum point of
fu(s1,82). Namely, it follows

I(u) = fu(1,1) = max )[(\/Eul,\/s_ﬂ@).

[0,00) x[0,00

(iii) Let B> 0 and (so1,502) € (0,00) x (0,00) be a mazimum point of f.(s1,s2). Then
(\/50,1U1, \/S02u2) € M.
Remark 2.6.6. Similar results hold for I, and M.
Proof. This lemma is proved in Lin and Wei [65], however, for reader’s convenience, we

give a proof.
(i) Differentiating f,(s1,s2), we have

Of, 1 51 S2
Ps1 §\|U1Hf — §M1HU1H4L4 - 55\|U1U2\|i27
8]@ 1 S1 S2

(2.6.6) Bsy §||U2||3 - 35““1“2“%2 - §M2||U2||4L4,
9%f. 9 fu

1 . 1
o =gl G=12, 5= =~ Bl

J
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Since 0 < 8 < /p1 12, the matrix

2

9 fu 9 fu
(a_s§<81,82) 951053 (81782)) _ 1 (—u1||u1|]j§4 —5||u1u2||%2>

32:;1;2(51,52) 8825]%“(51752) 2 \Bllmuzllze —pollualzs

is negative definite. Thus f,(s1, s2) is strictly concave in [0, 00) x [0, 00).
(i) Suppose u € M. By (2.6.6) and § € [0, \/f11/12), we have

V fu(s1,82) = (0,0) & (s1,82) = (1,1).

Since f,(s1, s9) is strictly concave, (1,1) is an unique maximum point and

I(u) = f,(1,1) = max )I(\/gul,\/s_gm).

[0,00) x[0,00

(iii) Suppose (So1,502) € (0,00) x (0,00) is a maximum point of f,(s1,s2). Since
V fu(s0.1, S02) = (0,0), we have

soallutlli = sg1mlluallzs + so,150,28] urusl|7.,

sozlluzll3 = so1s028/lurusl|7s + g opialugl|7s-

Thus this implies (,/So1u0.1, /So2t02) € M. O

First, we prove Proposition 2.6.1.

Proof of Proposition 2.6.1. We only prove BM < dj + d 2 since we can prove other in-
equality in a similar way. By Lemma 2.3.2, we suppose that (¢g1,0) € N, (0, poo2) € N
satisfy

I(gO()yl, O) = dl, IOO(O, QDOO,Z) = doo,Q; ®o,1 > 0, Poo,2 > 0.

We remark that for a k € N, it follows [¢01(2)¢sc2(x — ke1)||3. — 0 as k — oo where
er = (1,0,...,0). Thus we have

gr(s1,82) = I1(1/5100,1(2), V/S20s02(x — ke1)) = g(s1,52) in Cio((0,00)%)

where
2

S1 S
g(s1,52) := §||<P0,1||% - Zlﬂl||900,1|

4 S2 2 3% 4
bt 2lpmalig = Zloumalle

Since g(s1, s2) has a unique maximum point (1,1) and gx(s1, s2) < g(s1,S2), gr(s1, S2) has
a maximum point (sx1, sk2) € (0,00) x (0,00) for a sufficiently large k. By Lemma 2.6.5

we have (, /3k71<p071($), \/Sk,QSOOQZ(x — ke1)) € M.
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Thus we have

bt < I(\/551001, \/ShaPoo (T — kep))

1
= —Sk,1||800,1

4
4
2 L

1 1
24 5 Skallpoca(z — key)lls — Zsi,llh”sﬁo,ﬂ

1 1
- 555k,15k,2| <Po,1900o,2(96 - k€1)||i2 - ZSi,2M2H<Poo,2||i4
1 1 1
< §8k,1||¢0,1||% + 53k2||%o,2||go,2 - 152,1M1||900,1| i
1 1
- 558k,15k,2| P0,1Po02 (T — ker) |72 — 152,2M2||90oo,2||i4
1 1
=dy +dea+ 5(81@,1 — Dllgorll; + 5(51:,2 — 1ozl
th 112 1
+ Z(l — sp)|loallzs + I(l — S 9)|[Poc2lTe — 553k,13k,2||900,190oo,2($ — key) |72
Since
leoall? = pilleollzas  lscllonz = t2llocel1as
we obtain
1 9 M1 2 4 _ lpoall? 2
§(Sk,1 — D)lwonlli + Z(l — sp)llwollze = 1 (—spq1 + 2881 — 1)
2
- _ ||80(;,:1||1 (Sk,l o 1)2 S O7
1 H2
§(Sk,2 — 1) lpoopllZen + Z(l — S 9)|[oc2ll1a < 0.

Moreover, since @g.1, Poc2 > 0, it follows that ||po1¢ec2(z — ker)||72 > 0. Hence we have
ZA)M <dy+ doo,g.
]

The following lemma is related to the existence of minimizer for b M., Which is due to
Lin and Wei [65], and Sirakov [94] in the case N = 2, 3.

Lemma 2.6.7 (Lin and Wei [65], and Sirakov [94]). There exists a 3 € (0, \/fi1jiz) such

that if B € (0,[), then IA)MOO is attained by a nontrivial positive solution w = (wy,ws) of
(2.2.1).

Proof. We only consider the case IV = 1 since the other case is proved in [65] and [94]. We
use the arguments in the proof of Theorem 2.6.4. Set oy = doo1 + doo 2. Since bp,, < g
by Proposition 2.6.1, M =£ () for all 5 € (0, \/uipz). By Proposition 2.2.9, there exist

Bo > (0 and 0; > 0 such that for each u € M% and € (O,Bo),
(2.6.7) [urlly > 61, Jluzll2 > 01
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Suppose 0 < 3 < min{Bl,Bo} and let (u,) be a (PS)EM g sequence. Then by Lemma
2.2.17, we have

l
=0, Tuo(tn) = bt = Too(uo) + Y Too(wy).

i=1

(2.6.8)

¢
Up — Up — sz(l’ —yh)
i=1

We shall show that ug = (ug1,u02), w1 7 0,up2 # 0 and £ = 0.

First we prove ¢ < 1 indirectly and assume ¢ > 2. Since I.(w;) > 0 for all 1 < </,
we may suppose w; 1 = 0 or w; 2 = 0 for all 1 < i < /. Otherwise, we have a contradiction:
limy, o0 oo (1) > BMOO- Suppose w;; = 0 for all 1 <4 < /. In this case, it follows from
(2.6.8) that ||u,1][1 — 0, which contradicts (2.6.7). In the other case, we can lead a
contradiction. Therefore we obtain ¢ < 1.

If ¢ = 0, then since u,, — ug strongly in H, it follows from (2.6.7) and (2.6.8) that
uy € My and Ioo(ug) = I;MOO. This is our conclusion.

If £ =1 and w;; = 0, then we can infer that ups # 0. In fact, if ups = 0, then
from (2.6.8), it holds that ||u, 2|2 — 0. This is a contradiction. Thus we have ugo # 0.
However, in this case, from (2.6.8) we obtain ISMOO > doo1 + dso 2, which contradicts to
ZA)MOO < dx1 + dso2. In a similar way, the case £ = 1 and w; 2 = 0 does not take place.

Hence we have ¢ =1 and wy ; # 0 for j = 1, 2. Since I (wy) > IA)MOO, we obtain ug =0
and Io(w;) = by, which completes a proof. O

Now we prove Proposition 2.6.3.

Proof of Proposition 2.6.3. Set (3, := [ where f3 is given in Lemma 2.6.7. By Lemma
2.6.7, there exists an w € M., such that Io(w) = by, and w; > 0 in RY. By Lemma

2.6.5 a function
h<51> 32) = ]oo(\/gwla \/3_2002)

has a unique maximum point (1,1). Let hg(sy, s2) := I(wi(z — key), wo(z — key)). Since
hi(s1,82) < h(s1,s9) and

hi(s1,82) = I(wi(z — key), wa(x — key)) — h(s1,s0) in CF((0,00)?),

the function hy(sy, s2) has a maximum point (sg 1, sk2) € (0,00) x (0, 00) for a sufficiently
large k. By Lemma 2.6.5, we have

(VSeawi(z — key), \/Skowa(x — key)) € M.

Since we can suppose that Vi # const. or Vo # const., by Lemma 2.6.5 again, we have

b < I(y/sawi(z — key), /siawa(x — key))
< oo (V/srawi (@ — ke1), /Skawa(x — ker)) = Lo (\/Spawi (2), y/Spaws (7))
< max Lo (\/S1w1 (), \/Sawa () = baq.. s

(s1,82)€[0,00)x[0,00)

which completes the proof. O]
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2.6.3 Proof of Theorem 2.1.2.

In this subsection, we prove Theorem 2.1.2. When 8 > 0 is large, in other words, Theorem
2.1.2(ii) follows from the construction of a positive solution of (2.1.2). So we only prove
(i). A main result in this section is the following.

Proposition 2.6.8. For each sufficiently small B > 0, it holds
(2.6.9) ba < bt

We remark that (2.6.9) shows that the minimizer of infy I is a semitrivial solution
and a proof of Theorem 2.1.2 easily follows.

Proof of Proposition 2.6.8. We prove (2.6.9) indirectly. So we assume that there exists a
sequence (f3,,) such that 8, — 0 and bpq, = byr,, where

4
Ny={ue H:uz0, I (u)u=0},
M, ={u€ H :up,ug Z0, I (u)(uy,0) = I (u)(0,us) = 0},

by, = uleI}\ffn I(u), bn, = ug}\ﬁn I, (u).

1 1
a(w) = gl — /R i+ 26,0008 4 o d,

By Theorem 2.6.4, there exists a (u,) C M, such that I,,(u,) = bu, = bx,. It is obvious
that (u,) is a bounded sequence. So we assume that wu, — ug weakly in H. Since

3 2 : N

_Aun,l + ‘/i(x>un,l = /Lluml + Bnun,lun,g in R y
_ 2 3 . N

—Aup g + Vo(T)una = Buty, jUno + oty 5 in RY,

we have

(2.6.10) { —Augy + Vi(z)uoy = pug, in RN,

—Aug s + Va(z)ug = ,u2ug’2 in RY.
We prove the following claim.

Claim up; =0 or up2 = 0.

Proof of Claim. We assume that ug; # 0 and ugs # 0. From (2.6.10), we have d; 4+ dy <
Io(up). On the other hand, since I,,(u,) = ||u,|*/4 and u,, — uo weakly in H, it follows
that

Ip(ug) < lirllrgicgf I(u,) = lirllrgiorgf by, < min{dy,ds}.

This is a contradiction, hence up; = 0 or up2 = 0. []

Suppose that ugo = 0. By Proposition 2.2.9, there exists a §; > 0 such that ||u,, ;|| 7+ >
91 (j = 1,2). Developing a concentration—compactness type argument, we can find a
sequence (y,) C RY such that

lyn] = 00, |unalla@ig — ¢ >0, Un2(+y,) = wy weakly in H'(RY),
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where @ = [0, 1]Y. Moreover w, satisfies that wy # 0 and

—Awy + Vi oo = M2w§-

Since
_1 4 2 2 4 M 4 H2 4

L (uy,) = [y, 1 +2Bpus U o + potty, o da > u,, 1 d + Uy o (T 4+ ) di,

4 RN ) ’ ’ ’ 4 RN ’ 4 RN )
we have

T 0(0,w2) = &/ wydz < 54 + lim inf 22 ut o(z + yn)de
’ 4 Jg~ n—00 RN
< liminf [,,(u,) = hm by, < min{dy,ds},
n—oo

which implies that dy o < min{d;,d>} < dy. This is a contradiction. The situation
up1 = 0 can be treated similarly. Thus we have (2.6.9). O

2.7 Proof of Theorem 2.1.4.

In this section, we prove Theorem 2.1.4 and follow the idea in Tanaka [99] (cf. Wang
[103]).

Proof of Theorem 2.1.4. We prove indirectly and we assume that (2.1.2) has a positive
solution u. Since V;(z) € CY(RN) N L*(RY), we remark u; € H?(R"). Without loss of

Ou; 0
generality we may assume that v = e; = (1,0,...,0). Since I'(u [( u1 U2)1 =0, we
L 8x1 8]31
ave
2 Juy ou
2
(2.7.1) Z_: <uj, e > Z/ ujuja—] dx + 8 uluga + u%t@a—wl dzx.

7j=1

Here, we claim that

(2.7.2) - Vu; -V (%) dr =0, /RN O ng dxr =0,
(2.7.3) / ulug% + uju 28u2 dx =0,
RN O Oy
ou; 1 A%
2.74 V; —Ldr = —= —u 2 d.
( ) /RN ( ) 8 2 RN 61'1

Assuming (2.7.2)—(2.7.4). It follows from (2.7.1) that

__Z/RN(?_xlu dr = 0.

By (2-V3’), (2-V4’) and u; > 0, this is a contradiction, so (2.1.2) has no positive solution.
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Next we show (2.7.2)-(2.7.4). We only prove (2.7.3) since proofs of other cases are
similar. For o1, o € C5°(RY), we have

Thus

Since C§°(RY) is dense in H*(RY) and the functional

ou ou
2 1 2 U2
(ul,ug) — U Uy + U U2

RN 8361 ox 1

dx : H*(RN) x H*(RY) = R

is continuous, (2.7.3) holds. O
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Chapter 3

Uniqueness of nontrivial positive
solutions

3.1 Introduction

In this chapter, we consider the uniqueness of nontrivial positive solution of (CNLS) with
e = 1, namely,

(3.1.1) —Auy + Vi(z)uy = vl + Buiu; in RY,
(3.1.2) —Auy + Vo(x)uy = Bujus + pous in RY,
(3.1.3) uy (), uz(z) = 0 as |z| — oo,

(3.1.4) uy (), uz(z) >0 in RV,

where pi1, o, 5 >0 and N = 1,2, 3.

Recently the existence of nontrivial positive solutions has been studied extensively in
[4, 31, 50, 75, 65, 94, 105]. In particular, the case where Vj(z), Va(x) are positive and
independent of z is well studied and it is shown in [4, 31, 75, 65, 94] that there exist
positive constants S > 1 > 0 such that for g € [0, 5;) U (B2, 0), (3.1.1)—(3.1.4) has
a nontrivial positive solution. And it has been extended to z-dependent situations in
[50, 105]. However the uniqueness of nontrivial positive solutions is not studied and the
main purpose of this chapter is to establish the uniqueness for small 5 > 0.

First we consider the uniqueness of nontrivial positive solutions in the constant coef-
ficient case:

—Auy + Viug = muf + fuuy  in RY,

—Ausy + Vouy = ﬁu%m + ,ugug in RV,
uy(z), ug(z) >0 in R,
uy (), uz(z) — 0 as |z| — oo.

(3.1.5)

Here Vi, V5 are positive constants and N = 1,2, 3.
Now we state our result in the constant coeflicient case.

Theorem 3.1.1. Suppose that N = 1,2,3. Then there exists a By > 0 such that if
B € (0, o), then nontrivial positive solutions of (3.1.5) are unique up to translation.
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Remark 3.1.2. Wei and Yao [107] also obtains similar results concerning (3.1.5).

Next we deal with the variable coefficient case. Here we assume that N = 2,3 and
V;(x) satisfies the following condition:

(3-V1) For j = 1,2, V; € C*(RY), V;(z) = Vj(|z|) and lim V;(x) > 0.

|z| =00

(3-V2) For j = 1,2,
inf {/ \Vul? + Vi(z)u’dz : ||ul gy = 1} > 0.
RN

(3-V3) For j=1,2and r >0, Vj(r) > 0.
(3-V4) There exist C' > 0 and M > 0 such that |V;(r)| < C(1+ 7)™ for j = 1,2 and r > 0.

(3-V5) When N = 3, the function

4 , 4
Hj(?”) = 57”2‘/]'(7’) + 7’3‘/ (7”) — ﬁ

has a unique simple zero in (0, 00).

As in Remark 1.1.5, the function V;(r) = r* (a > 2 ) satisfies (3-V1)-(3-V5).
Therefore, we restrict ourselves in the following function space.

Definition 3.1.3. For V; and Vj satisfying (3-V1)—(3-V5), we define Hy, v, C H} (RY)x
HY(RY) as follows:

Hv, vy 1= {u c H'RM) x HYRY) : u(z) = u(|z|), / V](a:)ufdx < oo for j = 1,2} .
RN

Under (3-V1)—(3-V5), we have the following uniqueness result.

Theorem 3.1.4. Suppose N = 2,3 and Vj(x) satisfies (3-V1)—(3-V5). Then there exists
a By > 0 such that for 5 € (0,5) (3.1.1)—(3.1.4) has a unique nontrivial positive solution
m HV17V2,7"

Remark 3.1.5. (i) When N = 2,3, by the result of Busca and Sirakov [20], it is known
that any nontrivial positive solution of (3.1.1)—(3.1.4) is radially symmetric and monotone
decreasing under (3-V1) and (3-V3), and radially symmetric with respect to some point
zo € RN if V() is independent of = and positive.
(ii)) We remark that the argument in [20] also works for N = 1 after suitable modification.
However, it is not clearly stated in [20], we give the symmetry and monotonicity result
for N =1 in section 3.4 for the sake of readers.
(iii) The uniqueness of nontrivial positive solution of (3.1.1)—(3.1.4) does not hold for some
f > 0. Indeed, the following example is given in Sirakov [94], and Montefusco, Pellacci
and Squassina [79]; let Vi(z) = Vo(z) = 1, 1y = p2 = B = 1 and w; be a positive solution
of

—Auy +up = u:f in RV.

Then u(x) = (ui(x),uz(x)) = (w1(z) cosh,w;(x)sinf) is a nontrivial positive solution of
(3.1.1)(3.1.4) for any 6 € (0,7/2).
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We say that a nontrivial positive solution v = (uy,us) € Hyy 1, of (3.1.1)-(3.1.4) is
nondegenerate in the function space Hy, v, if and only if the linearized system

—Aw; + Vi(2)w, = 3puiw, + Bludwy + 2uiusws) in RY,
—Awy + Va(2)wy = B(2uyugwy + ulwsy) 4 3pusuiw, in RY,
(w1, w2) € Hvy v
has only trivial solution w; = ws = 0.

As to the nondegeneracy of our unique radial positive solution, we have

Theorem 3.1.6. The unique nontrivial radial positive solution of (3.1.1)—(3.1.4) is non-
degenerate in Hy, v, for B € (0, Bo).

To prove our Theorems 3.1.1, 3.1.4 and 3.1.6, a priori estimates and uniform expo-
nential decays of nontrivial radial positive solutions are important. In section 3.2, we will
obtain a priori L> estimates and uniform exponential decays of

Sp = {u € Hy, v, - u is a nontrivial positive solution of (3.1.1)-(3.1.4)
for some 3 € [0, 5]}

Here Liouville type result (Lemma 3.2.1) and monotonicity of solutions play roles. In
section 3.3, we prove Theorems 3.1.1, 3.1.4 and 3.1.6. The behavior of nontrivial positive
solutions as 8 — 0 is a key of our argument.

3.2 A priori bounds for nontrivial positive solutions

In this section, we assume that 1 < N < 3 and Vj(z) satisfies (3-V1)-(3-V5).

3.2.1 L bound of nontrivial positive solutions

First, we introduce an inner product in Hy, v, for u,v € Hy, v, -, we define (-, -)
by

Hvy Va,r

(u, U>Hv1,V2,r = Vuy - Vo + Vi(z)ugvy + Vug - Vog + Va(x)ugvede.
RN
Then it is easily seen that Hy, v, is a Hilbert space with (-, -) and we denote its

Next, for 5 > 0 we define Sj as follows:

Hvy,vy,r

norm by || - ||Hv1,v2,r'

S5 = {u € Hy, v, : v is a nontrivial positive solution of (3.1.1)—(3.1.4)
for some 3 € [0, 3],

The following lemma is essential to prove uniform L> estimates and uniform expo-
nential decays of u € Sj.

Lemma 3.2.1. Let 1 <a <3 if N=3and 1 < a < oo if N =1,2. Then there is no
positive function such that

(3.2.1) —Au > |u|*tu in RY.
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Proof. When N = 3, we refer to Theorem 8.4 in Quittner and Souplet [90]. When N = 2
the conclusion of Lemma 3.2.1 follows from Liouville’s theorem. For example, see Protter
and Weinberger [88]. When N = 1, Lemma 3.2.1 can be shown easily. O

The following proposition gives us a uniform a priori L*~bound of Sz.

Proposition 3.2.2. For any B > 0 there exists an Mz > 0 such that the following
mequality
[ua[|zoe + [uzll e < Mj

holds for all u € Sj.

Proof. We prove indirectly and assume that there exist (u) C Sz and (5i) such that
Br — Bo and [Jug 1] g~ + ||tk 2||Le — 0o. Furthermore, without loss of generality, we may
assume ||ugo||pee < ||| e — 00. For j = 1,2, we set

1

= my 'Uk,j(x) = nkuk,](ﬁkl‘)

Mk -

By Remark 3.1.5, (uy) is radially symmetric and monotone decreasing, and we have
vk1(0) = 1 and |Jvg ][z~ <1 (5 = 1,2). Moreover, since uy, is a solution of (3.1.1)—(3.1.2),
vy, satisfies

—Auvpy 4 Vi () vk = u1U;?$,1 + 51#71@,1111372,

—Avgg + i Va (1) vka = Brvi 1Uk2 + Havp o

By the standard elliptic argument, if necessary take a subsequence, it holds that vy ; — v ;

in CZ_(RY) where v ; is a nonnegative solution of

3 2
{ —Avg = vy, + Bovo,10g 9,

2 3
—Avga = Bovg 102 + H2Vp o-

Since vp1(0) = 1 and the maximum principle, vo; > 0 in RY. So vy (z) satisfies the
following differential inequality:

3 .. pN
—Avgy > vy, in R

This contradicts Lemma 3.2.1, so the conclusion of Proposition 3.2.2 holds. O]

3.2.2 Uniform exponential decay estimates in S3.

As pointed in Remark 3.1.5, any nontrivial positive solution of (3.1.1)-(3.1.4) is a radially
symmetric function. So we rewrite (3.1.1)—(3.1.2) as follows:

N-1
—uy(r) —

(3.2.2) "
—upry - 2

uy(r) + Va(ryu(r) = pug (r) + Bua (r)uz(r),

uy(r) + Va(ruz(r) = Bui(r)us(r) + pauy(r).

The following proposition gives us a uniform exponential decay of Sz.
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Proposition 3.2.3. For any 8 > 0 there exist C; = C1(B) and Cy = Co(3) > 0 such that
ur(r)] + Juz(r)] < Crexp(=Cor),  [uy(r)| + [uj(r)| < Crexp(—Car)

for all u € Sj.

Proof. The proof is divided into 2 steps.

Step 1 Let > 0 and u(r) € Hy, v, be a nontrivial positive solution of (3.1.1)—(3.1.4).
There exist C3 = C3(u), Cy = Cy(u) > 0 such that

(3.2.3) Jur ()] + ua(r)] < Cyexp(=Car),  [ui (r)] + [us(r)| < Cs exp(=Cir).

Let f > 0 and w € Hy; 1, be a nontrivial positive solution of (3.2.2). We prove
that wuy(r) and «|(r) decay exponentially. We follow arguments in Tanaka [99]. Since
uj(r) = 0 as r = oo and (3-V1) holds, there exists an ro > 1 such that for r > rj, we
have

Vi(ro)
2

(3.2.4) ur(r), ug(r) <1, 0< < VA(r) — ppud(r) — Bua(r).

Thus it holds

oy 07O E2L )+ () — i) = () e )
> —uf(r) — ?ui(r) + @ul(r) for r > 7.

Let § > 0 satisfy max{d?, (N — 1)d} < Vi(ry)/4 and for any R > r, we set

Yrs(r) :==exp(—=d(r — o)) + exp(—d6(R —r)).
Then we have

N -1 Vi(0)

@}%’5(7‘) + 5 Yrs(r) >0 for all r € [ro, R].

(3.2.6) —Pps(r) —

Since wrs(ro) > 1, wrs(R) > 1 and (3.2.4)—(3.2.6) hold, by the comparison theorem, it
follows

(3.2.7) ur(r) < prs(r) forall r € [rg, R].
Since R > rq is arbitrary, let R — oo, then we obtain
uy(r) < exp(—d(r —rg)) for all r > ro.

Thus wu;(r) has an exponential decay. In a similar way, we can show that wus(r) has an
exponential decay.
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Next we will show that u)(r) has an exponential decay. We follow the arguments in
Berestycki and Lions [15]. By (3.2.2), it holds that

(3.2.8) (™ () = " () (Vi) — i (r) = Bu(r).
Hence the function (=14 (r))" has an exponential decay, which implies that the limit

lim, o 7V 1u) (r) exists. Since u; has an exponential decay, it holds r¥~1u}(r) — 0 as

r — 00. Otherwise, u; does not have an exponential decay. Therefore we obtain

N () = — / " (Nl () ds,

which implies that u}(r) has an exponential decay. In a similar way, it follows that u5(r)
has an exponential decay.

Next we prove that for any 3 > 0 we can choose C3, C4 in (3.2.3) uniformly with
respect to u € Sz, that is, we complete the proof of Proposition 3.2.3.

Step 2 Conclusion.
We prove that there exist Cy = C3(3),Cy = C4(B) > 0 such that
(3.2.9) [ur ()] + |ua(r)| < Csexp(—Cyr)
for all u € Sz. From (3.2.8) and (3.2.9) it follows that
|y (r)] + uy(r)| < Cs exp(—=Car)

for all u € Sz.
We prove (3.2.9) indirectly and assume that there exist (u;) C Sz and (f3;) such that

Br — Bo and
(3.2.10) U (rr) + ug2(ry) > kexp(—rg/k)  for some 7, > 0.

Since (uy) satisfies (3.2.2) with § = 5y and ||ug||z~ is bounded by Proposition 3.2.2, we

can also assume that uy ; — ug; in CZ_(RY), where ug is a nonnegative solution of

N -1

(3:2.11) —ug (1) — T%,l(?”) + Vi(r)uoa(r) = M1U3,1(7“) + 50U0,1(7”)U3,2(7“)7
o N -1

— g 5(r) — g o (1) + Va(r)uga(r) = Boug 1 (r)ue2(r) + paug o (7).
We set



(RY), E, — E, in C}

Since uy — ug in C? L (RY). By (3-V3) and (3.2.2) with 8 = f3,

loc
we have

+ 5kukylui,2<7")uﬁc,1(7") + Bkuz,l(r)ukﬂ(r)u;cﬂ(r>

T Y ) = 3 Ve ) <0

r

Since uy and wuj have an exponential decay for each £k > 1 by Step 1, it holds that
lim, o Ex(r) = 0. By the monotonicity of Ej, it follows that Ey(r) > 0 for r > 0, which
implies that Ey(r) > 0 for r > 0.

By [20], ug(r) is a decreasing function when N = 2,3. We remark that this result holds
even when N = 1. See Theorem 3.4.1 in section 3.4. Thus u,(r) is also a nonincreasing
function. So we set

(3212) lim uO,j(T) = U0,00,j Z 0 (j = 1, 2)

7—00

and next we claim

U 00,1 = Up,00,2 = 0.

Since Ey(r) and ug j(r) are bounded in [0, 00), ugy(r) is also bounded in [0, 00). Fur-
thermore, u ;(r) is bounded since Fy(r) and ug ;(r) converge as r — oo.

Here we consider 3 cases.

Case 1 V), := lim Vj(r) € (0,00) for j = 1,2.

r—00

By (3.2.11), up,00,1 and ug 2 satisty

Uo,oo,l(ﬂlug,om + 50“3,00,2 Vi) =

(3.2.13)
U0,00,2 (B0t 5o + H2UG 0o0 — Vo) =

Then we have

Voo Vs oo . s
(uO,oo,lauO,oo,Q) € {(O, 0)7 ( L 70> ) <O7 = > 7(“’17“2)}
H1 M2

where (uf, u}) satisfies

Vieo = pu(ui)? + Bo(u3)?

Vaoo = Bo(ui)” + pra(u3)”.
If (40,001, %0,002) 7 (0,0), then it is easily seen that lim Ey(r) < 0, which contradicts to
Ey(r) > 0. Thus upe; =0 (j = 1,2). o

Case 2V, =oofor j =1,2.

23



In this case, ug~; = 0 follows easily. In fact, Since Ey(r) > 0 for all » > 0, it must
be U0,00,j = 0 for j = 1, 2.

Case 3 Vj, o = 00 and Vj, o < co. Here {ig, jo} = {1, 2}.

Without loss of generality, we can assume iy = 1 and j, = 2. As in Case 2, we may
infer that ug .1 = 0. Furthermore, by (3.2.11), it follows that

uO,oo,2(,u2u(2)7oo72 - ‘/2,00) =0.

Now we suppose that ugsco = \/Vaeo/pe. Since Vi(r) — oo as r — oo and ug2 is
bounded, we can choose r; > 0 such that

0 < inf {Vi(r) — o () — B ()}
Hence, as in Step 1, it holds that there exist C, Cy > 0 such that

ugp1(r) < Cyexp(—Cyr)  for all r > 0.
By (3-V4), we obtain

V?
lim Fy(r) = — 400’2 <0,

r—00 ILLQ

which contradicts that Ey(r) > 0 for all » > 0. Therefore we have ug o2 = 0.
Bylim, o ug;(r) = 0, as in Step 1, we can prove that there exist Cy, Cy > 0 such that
|[ug.1 (r)] + uo2(r)| < Crexp(—Car).

Moreover, since uy ;(r) is a decreasing function and uy ; — ug; in CZ_(RY), there exist
ro > 0, kg € N such that

sup {ug1(r) + ug2(r)} <1 for all k& with k& > ko,
T>T2
0< i;lf {Vi(r) — g, (r) — 516%%,2(7’)} for all k with k& > k.

Hence, we can show that there exist C3, C, > 0 such that
w1 ()] + Jur2(r)] < Cs exp(=Ciyr)
for all k > 1 and » > 0. However this is a contradiction to (3.2.10) and (3.2.9) holds. O

As a corollary to Proposition 3.2.3, we have

Corollary 3.2.4. For any 8 > 0, Sz is bounded in Hy, yv,,. Moreover it has the following
compactness property : for any sequence (uy) C 337 there exists a strongly convergent
subsequence (uy,,) in Hy; vyr-

Proof. By Proposition 3.2.3 and (3-V4), it is clear that (uy) is bounded in Hy, v, , and
for any € > 0 there exists an R. > 0 such that

2
Z/|>R [V () * + Vj(x)uz](x)dx <e fork>1.
i—1 7 z|>Re

Moreover, since (ug) is bounded in Hy, v, -, there exists a subsequence (uy,,) such that
Uk, — ug weakly in Hy, v, . Since (uy) satisfies (3.2.2) and is bounded in L>°, we can
assume ug,, — up in C2_(RY). Therefore we have uy,, — ug strongly in Hy, v, . O
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3.3 Proof of Theorems 3.1.1, 3.1.4 and 3.1.6

In this section, we assume that Vj(x) is a positive constant function if N =1 and V;(z)
satisfies (3-V1)—(3-V5) if N =2, 3.

3.3.1 Nondegeneracy of solutions when 5 =0
In this subsection, we consider the following limit equations as § — 0 in (3.1.1)—(3.1.4):

_ .3 i RN
(3.3.1) —Av; + Vi(z)v; = pjvy  in RY,
v; € HVJ‘W? v > 0.

Here

V}(x)u?dm < oo} .
RN

Mo = s € R 50y (0) = o). |

Definition 3.3.1. A solution w; of (3.3.1) is nondegenerate in Hy,, if the following
equation has only a trivial solution ¢; = 0:

—AY; + Vi(x)); = 3,ujw]2-¢j in RY,
w]’ S /ijﬂn.
The following proposition is due to Byeon and Ohshita [25], and Kabeya and Tanaka
[57].
Proposition 3.3.2. If V;(z) satisfies (3-V1)-(3-V5) and N = 2,3, then (3.3.1) has a
unique radial positive solution w;(x) € Hy,,. Moreover, w;(x) is nondegenerate in Hy, .
The following proposition is well-known. See Willem [110] and Kwong [60].

Proposition 3.3.3. Suppose that 1 < N < 3, and V;(x) is positive and independent of
x. Then (3.3.1) has a unique positive solution w;(x). Moreover, w;(z) is nondegenerate
in HY(RY).

By Propositions 3.3.2 and 3.3.3, we have
Corollary 3.3.4. Under the assumptions in Theorem 3.1.1 or 3.1.4, (3.1.1)—(3.1.4) with
B =0 has a unique nontrivial positive solution w(z) = (wi(x),w2(x)) in Hy, vy, and w(z)
s nondegenerate 1 Hy, v, .

Remark 3.3.5. We set
1 :
L) = [ VP4 Vs -5 [yl
2 RN 4 RN
Io(Y) == To(¥1,92) = Li(Y1) + Lz(32).
Then solutions w; € Hy,, of (3.3.1) and w(w) of (3.1.1)-(3.1.4) with 3 = 0 are nondegen-
erate in Hy, ., and Hy, v, if and only if the mapping
Y= I (wi) [ W5, ]+ Mo = (Hyn)™
(s [6/<w)[¢7 ] : (HVhVQﬂ”)Z — (HVLVZJ’)*

are invertible.
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3.3.2 Proof of Theorems 3.1.1, 3.1.4 and 3.1.6
We prove Theorems 3.1.1, 3.1.4 and 3.1.6.

Proof of Theorems 3.1.1, 3.1.4 and 3.1.6. Let (ug) = (ug1,us2) be a nontrivial positive
solution of (3.1.1)—(3.1.4). By Corollary 3.2.4, there exist (ux) and (5g) such that ux — ug
in Hy, v, and S, — 0. Since (uy) satisfies (3.1.1)-(3.1.4) with 8 = Sk, we have

w3y, = pallwnallzs + Bellukaunzlze.
Using Sobolev’s embedding, Holder’s inequality and (3-V2), it holds that
lurillze, » < Crlllunaliag, , + Bullurallis,  lueell, ).
Since S — 0 and (ug) is bounded in Hy, v, -, there exists a Cy > 0 such that
Cy < lugllny,, forall ke N.
Similar arguments lead that
0 < Cs < |upalln,, forallkeN.

2 (RY) and Hy, v, we deduce that ug; > 0 and ug; # 0 for
j = 1,2. By the maximum principle, we have ug ;(z) > 0 in R". By Propositions 3.3.2
and 3.3.3, we have ug; = w;. This implies that

Since uy; — ug; in CF

ug = w = (w1, wq) strongly in Hy, v, as B — 0.

Thus, for any € > 0 there exists a B = B(e) > 0 such that for any 5 € [0, ] and any
nontrivial positive solution u € Hy, v, of (3.1.1)—(3.1.4) satisfies

(3.3.2) luj = willay, vy, <&

Set
o _ ﬁ 2.2
I(u) == I (u1) + I2(us) 5 ujusde,
RN
@(ﬁ,u) = Ié(u) : R x Hvl,Vg,r — (HV1,V2,7")*-

Then it is clear that ®(0,w) = 0. Moreover, by Corollary 3.3.4 and Remark 3.3.5,
®,(0,w) = [j(w) is invertible. By the implicit function theorem, there exist 5y > 0,
ro > 0 and ¢ : (—fo, fo) — By, (w) such that

L. ¢(0) = w,

2. ®(B,¢(8)) = 0 for all 3 € (—fo, bo),

3. For any 8 € (=B, o), ®(3,u) = 0 has a unique solution u = ¢(8) in By, (w).
4. The mapping ¥ — IJ(u)[¥),-] : Hv,vpr — (Hyivyr)” is invertible in By, (w).

By (3.3.2) and the above properties, we conclude that (3.1.1)—(3.1.4) has a unique radial
nontrivial solution for any 5 € [0, 8y). The nondegeneracy of solution also follows from
the above properties. O
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3.4 Symmetry and monotonicity of nontrivial posi-
tive solutions (N =1)

In this section, we consider the symmetry and monotonicity of nontrivial positive solutions
when N = 1. We consider the following equations:

ui + fi(x,u(z), uz(x)) =0 inR,
(3.4.1) uj + fo(w, u(2), up(x)) =0 in R,
ur(z),uz(x) >0 in R,

ui(z), us(z) = 0 as [z = oo

Here we assume that f; satisfies the following conditions:

(fO) fi(xa 81752) € Cl(R X (07 OO)2> and fi(—$781,82) = fz‘(%51,52) for any z € R,
(51,82) € (0,00)% and 7 = 1, 2.

(f1) %(m, s1,82) <0 for all x > 0, (s1,s9) € (0,00)% and i = 1, 2.

0
(f2) 8—2(17,31, So),

of:

B (z,81,82) >0 for all z € R, (51, 52) € (0,00)* and 7 = 1, 2.
1

(f3) There exist Ry > 0, €; > 0 and &; > 0 such that if |z| > R; and s} + s3 < &2, then

of, _ of; .
3_£i(:v,51,sz) < —0pfori=1,2, 0< 8_2(%31732) < 0y for i # j.

In this section we will prove the following theorem:

Theorem 3.4.1. Suppose that f; satisfies (f0)—~(f3). Then any nontrivial solution of
(3.4.1) is even and monotone decreasing.

Remark 3.4.2. We can apply Theorem 3.4.1 to (3.1.1)—(3.1.4) with N = 1 under (3-V1)-
(3-V5).

In [20], they considered the symmetry and monotonicity of nontrivial positive solutions
for N > 2. In the following, we show the argument in [20] still works for N = 1 after
modification and give an outline of the proof of Theorem 3.4.1.

We use the moving plane method to prove the symmetry and monotonicity of nontrivial
positive solutions of (3.4.1). Let u(z) = (u1(z), us(z)) be a solution of (3.4.1) and we set

2 =2\ —

UMx) i= ui(2?) — wi(z) = w;(2\ — ) — w; ()

7

for A>0and x > A\
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Outline of the proof of Theorem 3.4.1.
First, we observe that U2 (z) satisfies

2
(3.4.2) UM+ can(x)UR <0 in (A, 00),
k=1
where g
en(e) = [ L] + (2 = Jo), u(z) + 0N @),

- 0 Ouk
UAz) = (U7\(x), Uz (2)).

These inequalities are corresponding to the inequality (13) in [20] and we can show (3.4.2)
in a similar way to [20].
Next we define

A={\>0:U/>0in (u,00) for all p > A, i =1,2},

and a key step of the proof of Theorem 3.4.1 is to show A # 0.
Here we need to modify the argument in [20]. In [20], they introduced the auxiliary
function U*(x) := U*(x)/g(x), where

(@) = |22 41 if N >3,
g = log(log(|z| +27)) if N =2.

When N =1, g(x) is not given in [20].
Under our assumption (f3), which is stronger than those in [20], we can show there
exist Ry > R; and A\; > R, such that

ul(x) +us(z) < & for |z| > R,

max  u; < min w; for A > Ay,
(3.4.3) [2A~R2,2)+Ry] [~ Rz, R3]

c11(x), en(r) < =61, 0 < ci2(x), co1(z) < 6y
for A > \; and z, 2" &€ [~ Rs, Ry).

From (3.4.3), we have

(3.4.4) det (Eigg 228;) >0 for A > Ay and z, 2%, y, 4> & [— Ry, Ra).

We will see that (3.4.4) enables us to show A # () without introducing U*(z).
Indeed, we show A\; € A to prove A # (). We show indirectly and assume \; ¢ A.

Then there exist a Ay > A\; and x1, 22 € [y, 00) and one of the following three cases takes

place:
(i) U} (z1) = min U? <0, min Uy? =0,
[)‘2700) [)‘2700)
(i) min U? =0, U3?*(xy) = min Uy? <0,
[)‘2700) [)‘2700)
(i) UM (x1) = [/I\nin) U¥ <0, Up?(xy) = [/r\nin) Uy < 0.
2,00 2,00
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We consider the case (i). Since z; is a minimum point of U;* in (Ag,00) and the
inequality (3.4.2), Us?(x1)c12(x1) > 0 hold, we have

(3.4.5) e (21)U2(21) < 0.

On the other hand, by (3.4.3), U}(z1) < 0 implies that 21, 2}2 & [~ R, Ry] and ¢11(21) <
—01, which contradicts (3.4.5). Thus the case (i) never occurs. Similarly, the case (ii)
cannot occur.

In the case (iii), Since z; is a minimum point of U;*?, it follows

A2
() i) () = (&) wweraneaso
By (3.4.3), we have
(3.4.6) T1, 9,207,205 & [~ Ra, Ry, i) < =61, 0 <cy(w) <d1 (5 #4).
By (3.4.4) and (3.4.6), we have

022(332)51 - C12(I1)§2
011(5131)022(562) - C12($1)021($2)

Ul)\z(l'1>: > 0.

However, this is a contradiction. Thus A\; € A.
Therefore A # () and A\, = inf A is well-defined. Using U™ (z), we can show the
symmetry and monotonicity of u(x) along the argument in [20] after slight modification.
O
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Chapter 4

Existence of concentration solutions

4.1 Introduction
In this chapter we consider a singular perturbation problem for (CNLS), namely

( ) —e?Avy + Vi(z)or = o} + fuv;  in RY,
(4.1.2) —e?Avy + Va(x)vy = Brivy 4 povs  in RY,
( ) vi(x), va() >0 in RY,

(4.1.4) vi(z), va(z) € HY(RY),

where N = 2,3, u1, 2 > 0, 3 € R are constants, V;(x), Va(x) : RY — R are bounded
continuous positive functions, and € > 0 is a small perturbation parameter.

One of the difficulties in the study of (4.1.1)—(4.1.4) is that it has semitrivial solutions
of type (v1(x),0) or (0,va(x)), where vi(x) or ve(z) solves

—e? Av; + Vi(x)v; = pod  in RY.

We call solutions (vy(x), ve(z)) with vy (z) #Z 0 and va(x) # 0 by nontrivial solutions.
(4.1.1)—(4.1.4) is studied in Lin and Wei [68], Pomponio [87], Montefusco, Pellacci and
Squassina [79] and G. Wei [105], [106]. In [68], Lin and Wei studied (4.1.1)—(4.1.4) by
analyzing least energy nontrivial solutions. They studied both of attractive interaction
(i.e., B > 0) and repulsive interaction (i.e., f < 0). Especially, when g > 0, they
showed the existence of a least energy nontrivial solution for a small € > 0 under suitable
conditions on the behavior of V;(z) and V,(z) as |z| — co. Moreover they showed that if

inf m(P) < inf e (P)+ inf ey(P)

PeRN P eRN PeRN

(see (4.1.12) and (4.1.18) for notation), then both components of the least energy non-
trivial solution (v.(x),vee(z)) concentrate to the some point Py satisfying m(FP,) =
inf pery m(P) as e — 0 after taking a subsequence. See Remark 4.1.6 below. We also refer
to Lin and Wei [66] for study of a singularly perturbed system of nonlinear Schrodinger
equations in a bounded domain.
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In [79], Montefusco, Pellacci and Squassina studied the case § > 0. They consider
concentration of solutions around the local minimum (possibly degenerate) point of the
potentials; they assume that z € RY and r > 0 satisfy

min Vi) < min Vi(e) (i =1.2)
and they showed for small ¢ > 0 (4.1.1)—(4.1.4) has a nonzero solution (v.i(z),ve(z))
such that v.(x) + veo(x) has exactly one global maximum point in {z; |z — z| < r}.
However, when § > 0 is small, one component of (v.1(x),vea(x)) converges to 0 as € — 0
(see Theorem 2.1 (ii) in [79]). We also refer to [68, 87, 105] for the study of (4.1.1)-(4.1.4)
when § < 0.

We consider the case where the interaction parameter (3 is positive and the aim in
this chapter is to construct a family of solutions of (4.1.1)—(4.1.4) which concentrates to
a nontrivial positive solution.

In the study of (4.1.1)—(4.1.4), the following constant coefficient problem plays an
important role:

(4.1.5) —Auy + Viug = pyud + Bugu  in RY,
(4.1.6) —Auy + Vauy = Buluy + pous  in RY,
(4.1.7) uy (), ug(z) >0 in RY,

(4.1.8) uy (), uy(z) € HYRYN),

where Vi, V4 > 0 are positive constants. We remark that (4.1.5)—(4.1.8) appears as a limit
problem after a suitable rescaling. There are many works on the existence of nontrivial
positive solutions of (4.1.5)—(4.1.8). See [4, 10, 12, 13, 29, 31, 47, 49, 50, 65, 75, 94, 107,
108]. Sign and size of 5 are important in the study of (4.1.5)—(4.1.8) and various situations
are studied in the above papers.

Here we consider the case where the interaction f is positive and relatively small and
treat the existence of a nontrivial radially symmetric positive solution, which is charac-
terized as a critical point of
(4.1.9)

Jovive) (ur, ug) = /RN %(|Vu1|2 + Viud + |Vug|? + Vaus) — %(ulu‘f + 2Butu; + pouy) dr
. HYR™) x HYR") — R.
Here HY(RY) := {u € H'(R") : u(x) = u(|z])}. We assume
(4.1.10) 0< B <V

and
Condition (AC) Let @;(x) € H}(RY) be the least energy solution of —Aw; + Viw; =
wiw?, in RN, Then the operators —A+V; — w3, —A+V,— Bw? are positive definite
on H}(RN), that is,
[ IVeP+ (- padigtde, [ VP + (- it d > 0
RN RN
for all p(z) € HY(RN)\ {0}.
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We will show the following existence result in Section 4.2.

Proposition 4.1.1. Assume (4.1.10) and (AC). Then (4.1.5)—(4.1.8) has a nontrivial
radially symmetric positive solution (ugi,up2) € HX(RN) x HY(RYN), which can be char-
acterized as

(4.1.11) Jvai,va) (o1, uo2) = b(V1, V2),
where
b<‘/17 ‘/2) = (u1,u2)€iﬁ\1/£(V1,V2) J(VIVVQ)(UMUQ)?
M, (Vi, Vo) = {(ug,ug) € H:(RN) X H}(RN) cup £ 0, ug £ 0,

Ty vey (U1, u2) (1, 0) = 0, J(y, vy (U1, u2)(0,u) = 0}

Moreover, suppose that there exists a set A C (0,00) x (0,00) such that (AC) holds for
all (Vi, Vo) € A. Then

(i) (V1,V2) = b(V4,Va); A — R is continuous.
(ii) Vi = b(Vi, Vo) (resp. Vo — b(Vi, V3)) is strictly increasing for a fized Vo (resp. V7).

Remark 4.1.2. (i) In [20], Busca and Sirakov showed that when 5 > 0, any nontrivial
positive solution of (4.1.5)—(4.1.8) is radially symmetric with respect to some point Py €
RM.

(ii) Condition (AC) is introduced in Ambrosetti and Colorado [4] and they showed the
existence of nontrivial positive solutions. We give another proof of their existence result
as well as the characterization (4.1.11) and some additional compactness properties. We
also refer to Lin and Wei [65], Sirakov [94] for the existence of least energy nontrivial
solutions.

For (4.1.1)—(4.1.4), we assume the following

Assumption (4-A1) There exists a set A = a9, a11] X [az, as1] C (0,00) x (0, 00) with
the following properties:

(i) For any (V1,V,) € A, the constant coefficient problem (4.1.5)—(4.1.6) satisfies
the condition (AC).

(ii) (Vi(P),Va(P)) € A for all P € RY.
We set
(4.1.12) m(P) := b(Vi(P),Va(P)) : RN — R.
As the second assumption, we assume
Assumption (4-A2) There exists a bounded open set A C R such that

(4.1.13) }}ngm(P) < PlélafAm(P).
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We set

my = Il)rg\m(P),

K:={PeA:m(P)=mp}.

Now we can state our main result.

Theorem 4.1.3. Suppose that (4.1.10) and Assumptions (4-Al), (4-A2) hold. Then
there ezists an g9 > 0 such that (4.1.1)—(4.1.4) has a family of nontrivial positive solutions
(V1e(2), V2e (@) )o<e<e, Satisfying the following properties: after taking a subsequence e; — 0
there exists a sequence (P.;) C A such that

(4.1.14) P, = PeK,

(vie, (g52 + P.,), vae, (g52 + Pr,)) — (wi(x), wa(z))

4.1.15
( ) strongly in H'(RY) x H'(R").

Here (wq(z),wy(x)) is a nontrivial positive solution of the limit problem:

—Aw; + Vi(Py)wy = pw} + fuyw;  in RY,
—Awy + Vo Py)wy = pw?wy + ppws  in RY

and it satisfies Jv,(py),va (o)) (W1, W2) = My.

Remark 4.1.4. If we assume Vi(z), Vo(z) € CHRY) in addition to the assumptions of
Theorem 4.1.3, we have

(4.1.16) K C{P € A; \VVi(P) 4+ MVVa(P) =0 for some A, \y > 0}.

See Lemma 4.2.9 in section 4.2 for a proof of (4.1.16).

Remark 4.1.5. (1) We remark that b(V;, V) and m(P) also depend on 3. We write de-
pendence on (3 explicitly and use notation bg(Vi,V3), mg(P) in this remark. We also
remark that if (4.1.10) and (AC), (4-A1l) hold for 8 = [y > 0, then they also hold for all
B € (0, fy]. Concerning a behavior of bg(Vi, V3) as f — 0, we have

(4.1.17) b/g(‘/l,‘/g) — 61(‘/1) + 62(‘/2) as ﬁ — O,

where (1oN)2
(V) = e,
Hi
is the least energy level for —Au + Viu = p;ud. Here eg > 0 is the least energy level for
—Aw +w = ¥, that is, eg = [gn 5(|Vwo|® + w§) — 3w do where wy(z) is the unique
radial positive solution of —Aw +w = w?. See Lemma 4.2.10 in section 4.2 for a proof of
(4.1.17).

In particular, from Proposition 4.1.1, (4-A1) and Remark 4.2.11, we have

mg(P) — e1(P) + ea(P) in C’loc(RN) as 3 — 0,
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where
(4.1.18) ei(P) =e;(V;(P)) = ———ey.

Thus if a bounded open set A C RY satisfies
(4.1.19) llgréa (e1(P) + ea(P)) < PlgafA (e1(P) + ea(P)),

then (4-A2) also holds for 8 > 0 small.

(ii) We can easily construct an example of Vj(z), Va(x) and A, where V;(z) (i = 1,2) has
no critical points in A but (4.1.19) holds. Thus Theorem 4.1.3 can be applied for § > 0
small to find a concentrating family of solutions in A.

(iii) When 8 = 0, there is no interaction between two equations. Then concentration
points must be critical points of V;(z)’s. See Wang [103] and Wang and Zeng [104]. Thus,
even if a bounded open set A C RY satisfies (4.1.19), there does not exist a family of
concentrating solutions in A in general and thus the positivity of 3 is necessary to find a
concentrating solution in A.

Remark 4.1.6. Under suitable conditions on the behavior of V;(z) and Va(x) as |z| — oo,
Lin and Wei [68] showed the existence of a least energy nontrivial solution U.(z) =
(u1e(x), use(x)) which can be characterized as

LU)= inf  IL(uy,us).
(Ue) = inf  L(u,u)

Here I.(U) is a functional and M, is a Nehari type manifold corresponding to (4.1.1)—
(4.1.4). See section 4.3 (especially (4.3.5) and (4.3.8)). They showed

IE(U{_:)—Hnin{ inf m(P), inf e;(P)+ inf eg(Pg)}

PeRN P eRN PeRN

and if
inf m(P) > inf e (P)+ inf es(P),
PERV PieRN P,eRN

then, after taking a subsequence ui-(x) and wug.(z) concentrate to different points @4
and Q, in general. Here @; satisfies V;(Q;) = infpegy Vi(P). Thus, even if Py € RY
is a global minimizer of m(P), i.e., m(Fy) = infpcgny m(P), the minimizer U.(z) =
(u1e(x), uge(z)) of I in M. does not have the desired behavior (4.1.14)—(4.1.15) in general.
We remark that in a singular perturbation problem for a nonlinear Schrédinger equation:
—&2Au+V(z)u = u® in RY, the situation is simpler and we can find a family of solutions
concentrating to a global minimum of V' (z) via global minimization of the functional on

the Nehari manifold N := {u € H'(R)\ {0} : [gn [Vul* + V(ex)u?dx = [gn [u|* dx}.

The following sections are devoted to proofs of our Proposition 4.1.1 and Theorem
4.1.3. As stated in Remark 4.1.6, one of the difficulties in proving Theorem 4.1.3 is that
the global minimization method on the Nehari type manifold M. does not work even for a
global minimizer Py of m(P). Another difficulty is that uniqueness and nondegeneracy of
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solutions of the limit equation (4.1.5)—(4.1.8) are not known and thus classical Liapunov-
Schmidt reduction approach seems to be difficult to apply in our setting. To overcome
these difficulties, we use an idea from Byeon and Jeanjean [22, 23] (c.f. [24]). In [22, 23],
Byeon and Jeanjean developed a new variational approach to find a localized positive
solution for nonlinear Schrodinger equations with a wide class of nonlinearities. We also
refer to [2, 32, 33, 34, 38, 42, 56, 63, 93, 103, 104] and references therein for preceding
results on nonlinear Schrodinger equations. Here, adapting the idea in [22, 23] on the
Nehari type manifold M. and developing new estimates, we find a subset of M, in which
the corresponding functional has a local minimizer with the desired property (4.1.14)—
(4.1.15).

4.2 Constant coefficient problems

In this section we study the existence of a nontrivial radially symmetric positive solution
of (4.1.5)—(4.1.8).

The main purpose of this section is to give a proof of Proposition 4.1.1 as well as
additional compactness properties.

4.2.1 Preliminaries

In the following sections, we denote for D C R¥

1/p
fallry = ( | 1ul ) for u € I7(D),
D
|w|| Lo (D) = esssup,eplu(x)] for u € L>(D),

lull () = \/HVuH%Q(D) t lul2epy for u e H'(D).

When D = RN, we also use abbreviation: || - ||p = |- ”LP(RN) (p e [1,09)), || - |l =
|- | gy We also write

(u,v)q := / uv dx for u,v € L*(RM).
RN

For uy, uy € HY(RY) we write U = (uy, up) and
U7 = Nl + Izl

For (V1,V3) € (0,00)? and U € H}(RY) x H}(RY), we define Jy; v,)(U) as in (4.1.9),
that is,

1
Toaol0) = 510 vy = [ WU e

where ) ) ) ) )
1U 51,015 = [IVurllz + Vallud |5 + [[Vua |5 + Vallua|3,

W(61,6) 1= (mel + 2066 + ).
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We can easily see that Ju, v,) € C?*(HHRY) x H}(RY),R) and

T ) (1, u2) (ha, ha)
= (Vu, Vhi)s + Vi(ug, hi)a + (Vug, Vhs)a + Va(ug, ha)s
- VW (uy,ug)(hi, he) dx

RN

== VUthl + V1u1h1 + VUQVhQ + ‘/QUQ}LQ

RN
—plu:{’hl — ﬁulughl — mu%hg - /BU%UQhQ dx

for all (u1, uz), (h1,he) € HY(RYN) x H(RY). Thus critical points of Jyy, 1) are radially
symmetric solutions of (4.1.5)—(4.1.8).
We have the following lemma.

Lemma 4.2.1. Jy, v,) € C?(H}(RY) x HY(RY),R) satisfies the Palais-Smale compact-
ness condition.

Proof. Lemma 4.2.1 follows from the compactness of the embedding H!(R") c L*(R")
and the fact that VW (U)U = 4W (U) in a rather standard way. O

One of the difficulties in the studying (4.1.5)—(4.1.8) is to distinguish nontrivial solu-
tions from semitrivial solutions. We remark that (4.1.5)—(4.1.8) has 2 semitrivial solutions:

Ql(Vl;x) = (1 (Vi;2),0) = <\/ng( Vw),O) ,
Qo (Va; ) := (0, o (Vas 2)) = (0, \/%wo( m)) ,

where wy(z) is the unique radially symmetric positive symmetric solution of —Au+u = u
in H'(R"). We note that for i = 1,2

3

R V(4*N)/2
J(Vl,Vz)(Qi) = 61(‘/1) = ZTeOv

where ¢y = %HWOH%H - iHWOHi-

4.2.2 Ambrosetti and Colorado’s condition

In [4], Ambrosetti and Colorado introduced the condition (AC) and they showed the
existence of nontrivial positive solutions through a mountain pass argument on the Nehari
manifold:

NV, V) = {U € HERY) x HYRY) = U £ (0,0), T v,y (U)U = 0}

We give another proof to their existence result. Since estimates, which is uniform in
(V1, V), are important for the study of the singular perturbation problem, we assume
(4.1.10) and the following condition:
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(C1) There exists a set A = [ay0, a11] X [ag, az1] C (0,00)? such that (AC) holds for
(V1,V2) € A.

The condition (AC) ensures the positivity of the following bilinear forms:

Tl (Q2)(h1,0)(h2,0) = (Vhy, Vho)s + Vi(hy, ha)y — B | @3hiheda

RN

o) (HHRY) < {0) > R

Tnws) (Q1)(0,h1)(0, ha) = (Vhi, Vha)o + Va(hy, ho)o — B | &ihihada

RN

- ({0} x HX(RM))* = R.

It is easily seen that N, (V, V3) is a Hilbert manifold with codimension 1 and the critical
points of the constraint functional Jiv; vy)|ar(vi,vs) @ No(Vi, V2) — R are nonzero critical
points of J; vy).

Under the condition (C1) we have

Lemma 4.2.2. Assume (C1). Then there exist py > 0 and 0 < 1y <
min{ || (Vi @) || g i v), 1Q2(Vas @) || i ve) o (Va, Va) € A} such that for each (Vi, Va) €
A, the following hold:

(1) Jiwa)(U) = ex(Vi) + po for all U € No(Vi, Vo) N {IU = @l v1.vm) = 70}
(i) Jrue)(U) > ea(Va) + po for all U € Ny (Vi, Vo) N {IU = Qalla v 1m) = 1o}
Proof. We prove just (i). (ii) can be shown in a similar way. We set

N1y (Vi) =={ur € Hy(R™)\ {0} + Jy, vy (s, 0)(us, 0) = 0}
={ur € HyRM)\ {0} : Va3 + Villual3 = poallual3},

which is the Nehari manifold for the scalar equation: —Au + Viu = puu®. We remark
that N7, (V1) x {0} € NV,.(V4, V3) and

~

Jviw () = e (V1) = ule/{/?f(vl) Jvi v (u1,0).

Since w(Vi;x) is a nondegenerate critical point of J; vu)|ar., (vi)x{0}, the conclusion (i)
follows from the positivity of the bilinear form (4.2.1). O

Now we introduce our minimax method to find a nontrivial solution. We set
[ = {1(s,1) € C([0,00)%, H(R) x H}(R™)) :
For some ug; (), ug2(z) > 0(#£ 0) and R > 0, (s, t) satisfies
v(s,0) = (v/sup1,0) for s >0,
v(0,t) = (0,Vtugy) fort >0,
v(s,t) = (Vsuor, Vtug) for s +12 > R?}
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and

(4.2.2) b(Vi, Vo) :i=1inf  sup  Juy v (7(s,1)).

V€L (5,6)€[0,00)2
Our main result in this subsection is

Proposition 4.2.3. Suppose (4.1.10) and (C1) hold. Then for any (Vi,V2) € A,
(i) max{e1(V1) + po, €2(V2) + po} < b(V1,V2) < e1(V1) + ea(V2).

(ii) The value b(Vy,Vs) is attained by a nontrivial radially symmetric positive solution

of (4.1.5)~(4.1.8).

Proof. Setting (s, t) 1= (v/st1(Vi; ), Vien(Va; 7)) and

1 1
Jvi vy 0(ur, u) = §(HVU1H§ + Villw |3 + [Vuz|l3 4 Val|uz|)3) — Z(Nl”“l”i + po|uzlly),

we have

b(vl,Vg) < sup J(VLVQ)(,YO(S?t))

(s,t)€[0,00)?

< sup ‘](Vl,Vz),O(’yO(S’ t)) = el(vl) + 62(‘/2)'
(s,t)€[0,00)?

Thus we obtain b(V1, V2) < e1(V1) + ea(Va). To prove the remaining parts, we set
L(V1,V2) :={1(s,1) € C([0,00)*, H}(RY) x H}(RY));
For some R > 0, (s, t) satisfies
7(s,0) = (v/s@(Vy;2),0) for s >0,
7(0,t) = (0, vVt @y (Vy; ) fort >0,
v(s,t) = (Vsin(Vis ), Vte(Va; ) for s +t2 > R ).

It is clear that f(Vh V) C I'. First we show

Step 1: b(V1,V5) = inf sup  Jo v (V(s,1)).
yEL(V1,V2) (s,t)€[0,00)2

It suffices to show that for any v € I' there exists % € f(Vl, V3) such that

sup J(V1,V2)(:?(S7t)) = sSup J(VLVQ)(’Y(Svt))‘
(s,t)€[0,00)2 (s,t)€[0,00)2
Let v(s,t) € ' be a given path and suppose (s, t) = (v/sug1, vVt uge) for (s,t) € (R x
{0}) U ({0} x R) U {(s,t); s> + ¢t* > R*}. Moreover, we may assume ug; € Ny,.(V})
and ugy € Ny,.(V2) without loss of generality. We remark that {y/sug1; s € [0,00)} and
Ni,-(V1) intersects at exactly one point ug;. Take a curve ¢;(7) € C([0, 1], N1,.(V1)) such
that

Gi(0) = @1, Gi(1) = wor, G(7)(z) =20 forall 7 € [0,1],
7 Joi,v)(¢1(7),0) is nondecreasing.
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Such a curve exists since Jiy, v,) (W1, 0) = infuen, , (1) Joa,v) (4, 0) and there are no other
nonnegative critical points on N (V) other than w.
Similarly, we take a curve (o(7) € C([0, 1], N2,(V2)) joining ws(Va; x) and uge. We set

y(s—=1,t—1) ifs>1andt>1,
Y(s,t) =< (Vs—1tG(t),0) ifte[0,1)andt <s,
(0,Vt —s((s)) ifs€[0,1) and s <.

Then we can see that

sup J(V1,V2) (;5/(57 t)) = sup J(V1,V2) (/7(57 t))
(s,t)€[0,00)2 (s,t)€[0,00)2

For sufficiently large R > R, modifying #(s,t) in a suitable way, we can get %(s,t) €

['(Vi, V,) with the desired properties.

Next we show

Step 2: For any vy € f(Vl, Va),
7([0,00)%) VNG (Va, Vo) O {[IU = (V)L va ) = 70} # 0.
where ry > 0 is given in Lemma 4.2.2.
For a given (s, t) € [(V4, Va) we set

F(87t) = ('](/Vl,VQ)(Py(S7t))PY<S7t)7 ”7(87t) - Ql(‘/l)Hzl,(Vl,Vg) - Tg)

We compute deg(F,[0, R]?,(0,0)) for sufficiently large R > 0. Set G(s,t) = Vg(s,t)
where g(s,t) = —(s — 1)> + (¢t — €)? for sufficiently small ¢ > 0 and consider the following
homotopy between F' and G: For 6 € [0, 1],

Fy(s,t) = (1 —0)F(s,t) + 0G(s,t)

For sufficiently large R > 0 we can see that Fy(s,t) # (0,0) for all (s,t) € 9]0, R]* and
6 € [0,1]. Therefore we obtain deg(F, [0, R]?,(0,0)) = deg(G, [0, R]?,(0,0)) = —1. Thus
there exists (sg,t) € (0, R)? such that F(so,ty) = (0,0). That is, Uy = (8o, to) satisfies

~

UO S Nr(‘/la VV2) and HUO - Ql(‘/l)”Hl,(VLVz) = To.
Step 3: b(V1,V2) = max{e1 (V1) + po, €2(V2) + po}-.

By Step 2 and Lemma 4.2.2 (i), we have

v

sSup J(V1 V2) (/7(87 t)) inf R J(V1 V2) (U)
(s,t)€[0,00)2 UeN;:(Vi,Vo)n{||lU—1 || g1=ro}

> ey (Vi) + po

for all v € f(Vl, V5). Thus by Step 1, we have b(Vi, V,) > e1(V1) + po. In a similar way,
we can show b(V1, Va) > ea(Va) + po. Therefore we get the conclusion of Step 3.
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Step 4: The value b(V1, V3) is attained by a nontrivial positive solution of (4.1.5)—(4.1.8).

Since sup,z v (1(5:0)) < e1(Vh), suppzg ey (10, 8)) < ex(Va) for 7 € T(VA, Va),
we can see from Step 3 that f(Vl, V5) is stable under deformation. Thus, by Lemma 4.2.1,
b(V1,Va) = 1inf_ 5y, vy) SUP(s1)€0,00)2 11,12 (1(8, 1)) is achieved.

Next we show that b(V3, V,) is attained by a nontrivial positive solution. For (s, t) =

(1(s,8),72(s, 1)), we set [y|(s,?) = (|71(s, 1), |72(s,?)[). Since J(Vl,Vz)(ﬁ)/(sat)) =
Joviva)([7](s,t)), we can conclude that there exists a nonnegative critical point corre-

sponding to b(V;, V). By Step 3, we can see that the corresponding critical point is a
nontrivial positive solution. O

4.2.3 Minimizing property

The aim of this subsection is to give characterizations to b(V1, V4) using the Nehari type
manifolds. In what follows, we define Jy; v,)(U) by (4.1.9) also for U € H'(RY)x H'(RY).
We consider 2 type of manifolds:

M (Vi, Vo) :={U = (uy,ug) € HYRY) x HY(RN) : uy # 0, ug #0,
Jvive) (U1, u2) (u1,0) = 0, Jiy, vy (U1, u2)(0, uz) = 0},
M(Vi, Vo) :={U = (ur,uz) € H'(RY) x H'(RY) - ug # 0, ug # 0,
Ty vey (U1, u2) (u1,0) = 0, Jiy, vy (ur, u2) (0, uz) = 0}.
Such a type of manifolds were introduced in Lin and Wei [65] and Sirakov [94] and they

studied the existence of a minimizer of Jv; v,) on M,.(V1,V5) and M(Vi, V3).
We have

Lemma 4.2.4 (cf. Lin and Wei [65]). Assume (4.1.10). Then we have

(i) The set M, (V1,Va) (resp. M(V1,V3)) is a Hilbert submanifold of
HYRYN) x HY(RY) (resp. HY(RY) x HY(RN)) with codimension 2.

(i) For (ui,us) € HYRN) x HYRYN) (resp. HY(RN) x HYRN)) with uy # 0, uy Z 0
and s, t >0,
(Vs ur, VEuz) € M, (Vi, Va) (resp. M(Vi, V2))

if and only if

(4.23) { sl s sl = 19w+ il
Bllurus|lzs + pallus|lzt = [[Vua|[3 + Val[uzll3.

Proof. We show for M,.(V1, V5). We can show for M(V, V2) in a similar way.
(i) Set

Fl(Ul,Ug) = J(/VLVQ)(ul?uQ)(ula O)? FQ(Ul,UQ) = J(/VLVQ)(U/l)uQ)(Oa u?)-
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Then M, (Vi,Vs) = {(ui,us) € HY(RY) x HY(RY) : uy # 0, uy # 0, Fi(uy,ug) =
Fy(uy,ug) = 0}. For U = (uy,us) € M, (V1,V,) we have

Fi(u1,ug)(ur, 0) - FY(ug,u0)(0,u0) | _ o [ pallwalls  Bllurus|f3
Fy(uy, up)(ug, 0) - Fy(uy, uz)(0, ug) Bllurusll3  pralluzlly

and

det{ pallurlli Bllurusl|3

4 4 2 4
= u u — U1U
5“u1u2”% IUQHUQHi 1 N1N2‘| 1H4H 2“4 B H 1 2H2

(4.2.4)
= (pip2 — B2)|lwa]| ] uzlls > 0.

Thus FY(uy,us) and Fy(uy, ug) are linearly independent for all (u1,us) € M,.(V4,Vs), and
M., (V1, V) is a submanifold of H}(RYN) x H}(RY) with codimension 2.
(ii) Since

Fi(Vsur, Vius) = s(|[ V|3 + Valluall3 = pflua|ls = Blluruall3t),

Fy(V/sur, Vtug) = t(||Vuall3 + Valluz||3 — Bllurusllys — polluz|it),
we see that (ii) holds. O
The aim of this subsection is to show the following proposition.

Proposition 4.2.5. Assume (4.1.10) and (C1). Then

4.2.5 bV, Va) = inf J, U) = inf J, U).
( ) ( 1, 2) UE/\/%,I-%Vl,Vﬂ (V1,V2)( ) UE./\}lI(thVQ) (Vl,VZ)( )

Since all nontrivial positive solutions of (4.1.5)—(4.1.8) lie in M,.(Vi, V) after a suitable
shift by the result of Busca and Sirakov [20], we can see that the critical point correspond-
ing to b(V7, V3) has the least energy among nontrivial solutions. Thus we call the solution
corresponding to b(Vi, V3) the least energy nontrivial solution. We also call b(Vy, V) the
least energy level for nontrivial solution.

Proof. First we remark that M, (Vi, V) C M(Vy, V2) implies

( ) UG-A/}'P(VLVQ) (Vl,VZ)( ) — UE./\}lI(lvl,Vg) (V1,V2)( )

For U = (uy,uy) € M(Vi, V3), we set v(s,t) = (v/suy, Vtuy). Since

1 1
T v (7(5:8) =5 (IVurll5 + Vllw [2)s + 5(1Vuall3 + Vallua2)t
1
— 7 (mllwallis® + 28l urus 55t + palfus][3£)
and (4.2.3) holds with (s,t) = (1,1), we can see

sup J(Vl,VQ)(,Y(S’t)) = J(V1,V2)(’7(17 1)) = J(V1,V2)(U)'

(s,t)€[0,00)2
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We also set v*(s,t) = (v/sul,vtui) € T, where u} (resp. u}) is the Schwarz symmetriza-
tion of uy (resp. uy). We can easily see that

J(V1,V2)(’y*<$>t)) < J(Vl,Vg)(fY(S?t)) for all (Sat) € [0700)2'

Thus
b(‘/lv ‘/2) < sup J(Vl,Vz)(’y*(Svt)) < sup J(V1,V2)(7(S7t))
(s,t)€[0,00)2 (s,t)€[0,00)2
J(V1,V2)<U)'

Since U € M(V4, V) is arbitrary, we have

(4.2.7) b(Vi,V3) < et Jviv) (U).

On the other hand, by Proposition 4.2.3, b(Vi, V3) is achieved by a nontrivial positive
solution. Denoting the corresponding nontrivial solution (ugy, ug2), we have (ugy, ug2) €
M., (V1,V3) and thus

4.2.8 b(Vy, Vo) = J > inf J U).
( ) ( 1, 2) (VI,VQ)(U017U02) _UEJ\}S%%) (VI,VQ)( )

Therefore we get (4.2.5) from (4.2.6)—(4.2.8). O

Remark 4.2.6. In [4], Ambrosetti and Colorado showed the existence of nontrivial positive
solutions via a mountain pass argument in N, (Vi,V3). More precisely they showed the
following minimax value is corresponding to a nontrivial solution.

bimp(V1, V2) = inf max Jiv; vy) (7(¢))-

’yGFmp(Vl,VQ) tG[O,l]

Here T',,,,(Vi, Va) is the class of continuous curves in N, (V4, V5) which join Ql(Vl; x) and
Qy(Va; ). We remark that by, (V1, Va) = b(V4, V3) holds.

To show this fact, for any U = (uy,us) € M, (V1,V2) we need to find a path v(t) €
Ly (Vi, Vi) such that

42. )= '
(4.2.9) trél[a:ic]J(vl,vz)(V( ) = Jwive)(U)

To construct such a path, we set

v(t) = r(t)((1 — t)ug, tug),
where 7(t) > 0 is uniquely determined so that v(t) € N, (V1,V2). We can easily see that
7(0) € HY(RY) x {0}, v(5) = U, y(1) € {0} x Hy(RY) and Jiv15) (7(1)) < Jiva 1) (U) for

all t € [0,1]. Using paths (;(7) and (2(7) in the proof of Proposition 4.2.3, we can find a
path () € ', (V1, V2) satisfying (4.2.9).
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4.2.4 Some compactness properties
We use the following notation:
8, (Vi, Vo) =2 = (w1,5) € H(RY) x HIRY) : Ty, 1) (@) =0,
wi(z) >0, wa(x) >0, Jvy15)(Q2) = b(V3,Vo)}  for (V3,V5) € A,
Sra ={((Vi,V2),Q) e R* x H}RY) x H}RY): (Vi,Vh) € A, Q€ S, (W1, Vo))
The sets S, (Vi, Va) and S, 4 have the following compactness properties.
Proposition 4.2.7. Assume (4.1.10) and (C1). Then

(i) There ezist Cy, Cy, Cy, C5 > 0 such that for all (V1,V2),Q) € S, 4, it follows that

(4.2.10) 12|z < C,
(4.2.11)  lwrlla, [lwzlls = Gy,
(4.2.12) wi (), wo(x), |Vwy ()], [Vwe(x)] < Coe %1 for all z € RV,

Here we write Q) = (w1, ws).

(ii) The set S, 4 is compact in R* x H}RN) x HY(RYN). More precisely, any sequence
((V1j, V23),92)521 C Sra has a subsequence ((Vij,,, Vaj,),$2,) and ((Vio, Vao), $o0) €
Sr.4 such that

(Vaj,., Vajn) = (Vig, Vao) and Q;, — Qo strongly in H}(RY) x H(RN).

(iii) The function b(Vy,V3) : A — R is continuous.
(iv) The function b(Vy,Va) is strictly increasing in Vi (resp. Va) for fized Va (resp. V1).

Proof. First we prove (iv). By the definition (4.2.2) of b(V;, V3), it is clear that b(V7, V5)
is nondecreasing in V; for fixed V5. Since b(V;, V3) is achieved by (s, t) = (v/su1, vVtuy)
with (uj,us) € S,.(V1,Vs), it is also easy to see b(V;, V3) is strictly increasing in V; for
fixed V5. In a similar way, we can see that b(V;,V5) is strictly increasing in V5 for fixed
.

Next we show (i). By (iv) we have

b(aro, az) < b(V1,Va) < b(ai,as) forall (Vi,V5) € A.

Since HQ\|§{1’(V17V2) = 4b(WV1, V3) for Q € S,(V1, V3), we have (4.2.10) for some constant Cj
independent of (V;,V3) € A. We recall that for some constant Cy > 0, it holds that
lu(z)| < &HUH v foru e HYRY) and |z] > 1
= |a| (=D r =
(For example, see Lemma A.Il of Berestycki and Lions [15].) Thus Q = (wi,wq) €

S, (V1, V) satisfies
CnCh

wilw) = T
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Since 2 satisfies (4.1.5)—(4.1.6), we can see (4.2.12) holds for some constants Cy, C5 > 0
independent of (V4,V3) € A.
Next we show (4.2.11). We argue indirectly and we assume that there exists a sequence
(Vij, Vo), €2;) € Sy 4 such that Q; = (wy;,ws;) satisfies

4.2. 13) ||UJ2]‘||4 — 0.

(

(

(we can deal with the case ||wy;|l4 — 0 in a similar way.) We may also assume (V;;, Vo;) —
(Vio, Vag) € A. Since §; solves (4.1.5)-(4.1.8) and the embedding H}(R™) c L*(RY)
is compact, we can see that 2; has a strongly convergent subsequence. Extracting a
subsequence if necessary, we may assume €2; — Qg = (w19, ws0). It is easily seen that
is a critical point of Jv;,v4,)(U) and

(4.2.14) b(Vij, Vai) = Jva; vay) (25) = J(vie.va0) (€0)

On the other hand, it follows from Jiy, v, (w1, ws;)(0,ws;) = 0 that

[Vwasll3 + lwaj 13 = pallws;l|3 + Bllwrjws;ll3 = 0 as j — oo

under the condition (4.2.13). That is, wyy = 0 and Q¢ = (w1, 0) is a semitrivial positive
solution. Thus,

‘](V107V20)(QO) < 61(‘/10)'
By (4.2.14), we have limsup;_, b(V1;, Va;) < e1(Vig), which is in contradiction with (i)
of Proposition 4.2.3. Thus (4.2.11) holds.
Next we show (ii). Suppose ((Vij,V55),Q;) € Spa (j = 1,2,--+) and (Vi;, Vo;) —
(Vio, Vag) € A. We may also assume ; — Q strongly in H}(RY) x H}(R") and (4.2.14)
holds. Here, by (4.2.11), € is a nontrivial positive solution of (4.1.5)—(4.1.8) and we have

(4.2.15) Jvio,va0) (Q20) = b(Vig, Vao).

On the other hand, by the definition of b(V;, V5), we can see that b(Vy, V5) is upper semi-
continuous, that is,

(4216) hIIl sup b(Vij, ‘/2]) S b(‘/l(), Véo)

Jj—o0

Thus by (4.2.14), (4.2.15) and (4.2.16), we have J(v;,,v4)(€20) = b(Vio, Vao). Thus €y €
S, (Vio, Vao), that is, ((Vio, Vao), Qo) € Sy, a.
(iii) also follows from the proof of (ii). O

Corollary 4.2.8. For any § > 0 there exists py(8) > 0 such that if (V1,V3) and (Vi,V3) €
A satisfy

|(Vi, Vo) — (i, V)| < pu(6),
then

st (9, 8,70, ) (= _int 0= Gl ) <0
(s 1,V2

for any 2 € S,.(V1, V2).
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Now Proposition 4.1.1 easily follows.

Proof of Proposition 4.1.1. Proposition 4.1.1 follows from Propositions 4.2.3, 4.2.5, 4.2.7.
]

Finally in this section, we prove (4.1.16) and (4.1.17).
For (4.1.16), we study the behavior of m(P) = b(V1(P), Vo(P)) in the setting of Remark
4.1.4. Clearly (4.1.16) holds from the following lemma.

Lemma 4.2.9. Suppose that Vi(z), Va(xz) € CYRYN) in addition to the assumption of
Theorem 4.1.3. If m(P) takes a local minimum at Py € RN, that is, for some r > 0

m(P) > m(Fy)  for all [P — Ry| <,
then there exist \; and Ay > 0 such that
MVVI(FRy) + X VVa(Fy) = 0.
Proof. Tt suffices to show that if Py € R" satisfies
(4.2.17) MVVI(Ry) + AV Vs (FPy) # 0 for all A\, Ay > 0,

then m(P) does not take a local minimum at F.

First we remark that (4.2.17) implies that at least one of VVi(Fy), VV,(Fp) is not 0.
We consider the case VVi(Fy) # 0. In this case, (4.2.17) implies VVa(Py) & {=AVV1(F) :
A > 0} and we can find a vector hy € RY \ {0} such that

We will show that
(4.2.19) m(Py + Tho) < m(Fp) for small 7 > 0.

Let (uo1,up2) € M, (Vi(F),Va(Py)) be a nontrivial solution corresponding to m(Py) =
b(Vi(Ry), Va(Py)) and set vo(s,t) := (v/suo1, Vtuge) € I'. Then we have

m(FPy) = b(Vi(Fy), Va(Fo)) = sup  Jwi(ry)va(ro)) (10(5, 1))

(s,t)€[0,00)2

We also remark that (s,t) — Jui(py)va(m)) (Y0(s, 1)) takes its maximum only at (s,t) =
(1,1). Thus there exist 0y and 79 > 0 such that for 0 < 7 < 79

(37 t) = J(Vl(P0+Th0),V2(P0+Th0))(70(57 t))
takes its maximum in {(s,?); |s — 1| 4+ |t — 1| < dp}. Thus we have

m(P + Thy) — m(Fp)

Ji T T >t - Ji 7t
ooy aX iRyt Va(Ro ho)) (70(s, 1)) o o (Va(Po),Va(Po)) (0(5, 1))

IN

< max |:J(V1(P0+Th0)’V2(P0+Th0))(70<87t))_J(Vl(PO)aV2(PO))(’YO(Svt)):|
[s—1]-+[t—1|<do

= L max [(Vl(Po + 7ho) — Vi(Po))|uorll3s + (Va(Po + Tho) — VZ(PO»HUOZH%} .

2 |s—1|+]t—1|<bo
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We remark that (4.2.18) implies

T
m(P +7he) = m(Py) < Z|(VVA(Py)ho + 0(1)) uor [3(1 = do) + o(1) oz [3(1 + 60)]
<0 for small 7 > 0,

which implies (4.2.19) and m(P) does not take a local minimum at P,. The case where
VVa(Py) # 0 can be treated in a similar way. O

Next we deal with (4.1.17). In the following lemma we write dependence on /3 explicitly
and use notation bg(V1, Va) for b(Vi, V) as in Remark 4.1.5

Lemma 4.2.10. As § — 0, it follows that bg(Vy,Va) — e1(V1) + ea(V2).

Proof. We also use notation Jy, )3 for Ju, vs,). We remark that bg(Vi, V) and Jv, 1) 8
are nonincreasing in £ and if (4.1.10) and (AC) hold for 5y > 0, then (4.1.10) and (AC)
hold for all 5 € (0, By].

By Proposition 4.2.3, there exists a nontrivial positive solution Us(z) € H}(RY) x
H!(RY) such that for each 3 € (0, (]

(4220)  Jwivays(Us) = bs(Vi, Vi) € max{er (V) + po. e2(V5) + pos 1 (V2) + ea(12)]

Here py > 0 is independent of 5. As in the proof of Proposition 4.2.7, we can show that
(Us)ge(o,p0) 1s bounded in H}(RY) x H}(R") and, after extracting a subsequence 3; — 0,
Ug,(z) converges strongly to some critical point Up(x) of Jiv; v5)0(U). We remark that
Joviva)0(U) is corresponding to two equations without interaction:

—Auy + Viug = ppu?  in RV,
—Aug + Vouy = uzug in RV.

By (4.2.20),
max{ey (V1) + po, e2(V2) + po} < Jvi,ve),0(Uo).

Since Up(x) is nonnegative, from (4.2.11), we have Up(x) = (@ (Vi;x),w9(Va;x)) and
bg,(V1,Va) — e1(V1)+ea(Vz). Since the limit does not depend on the choice of subsequence
Bj, we have the conclusion of Lemma 4.2.10. O

Remark 4.2.11. We can also show that if (Vi;, V5;) — (Vig, Vao) where Vig, Voo > 0, then
bs(Vij, Vaj) — e1(Vio) + ea(Vao) as B — 0.

4.3 Nehari manifolds and the Palais-Smale condition

4.3.1 A singular perturbation problem

In the following sections we study a singular perturbation problem (4.1.1)—(4.1.4). From
now on we assume (Al) and (A2).
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We set u;(z) = v;(ex) and we try to find a solution U(z) = (u1(x), ua(x)) of

(4.3.1) —Auy + Vi(ex)uy = pud + Bugu  in RV,
(4.3.2) —Auy + Va(ex)uy = fuiug + poui  in RY,
(4.3.3) uy (), up(r) >0 in RV,

(4.3.4) uy (), us(w) € HY(RM).

A functional corresponding to (4.3.1)—(4.3.4) is
L.(U) :=1(uy,us)

1 1
5Vl + [ Vileonddo) + (1 Vuslf+ [
RN

Va(ex)us dr)
RN

1
- Z(Ml”“l”i + 2Burus|l3 + p2lluslly)
c C*(H'RY) x H'(RY),R).

We use the following notation:
il i= [Vl + [ Vit do tor i =1,2
RN

10N ¢ = llualli 1 ¢ + luallz .

With this notation, we can write

1 1
(4.3.5) LWU)=Z|U|3 . — —/ W(U)dzx.
2 ’ 4 RN
We remark that under (A1) there exist constants a;, ag > 0
(4.3.6) ar|U|lm < |Ullmre < aa||U]|gn for all U € HY(RY) x HY(RY).

For d > 0 we set
K= {r e RY : dist (v, K) < d}.

We remark that there exists d; > 0 such that
K% c A.
Under the conditions (A1)-(A2), we introduce for P € R" and ¢ > 0

ST,P = ST(‘/I(P)J‘/Q(P>>7
Sp={Qp+®: QpeS,p, ®cH'R")x H(R"), |®|m <4},
m(P) = b(Vi(P), Va(P)).
It follows from Proposition 4.2.7 that S,.p (P € RY) and Upcya Srp are compact in
H}RN) x HY(RY). We set for ¢, d, § > 0,
S.q:={Qp(x — P/e): P€ K% Qp € S,p},
Sf,d ={Qp(xr — Ple) + ®(z): P€ K Qp €S, p,
dc H'RY) x H'RY), ||®]| g < 6}
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Such a type of sets are introduced in Byeon and Jeanjean [22, 23] (cf. Byeon, Jeanjean
and Tanaka [24]) for nonlinear Schrodinger equations —e2Au + V(z)u = f(u) and used
successfully to construct a family of solutions, which concentrates at a local minimum
of V(x) without assumptions of uniqueness or nondegeneracy of solutions of the limit
problems.

Remark 4.3.1. In [22, 23, 24], they introduced a class of sets which is slightly different
from our Sf’ 4 Their class of sets is, in our setting,
X.g:={Qp(x —PJe): PEK,|P—P|<d, Qp €S,.p},
X2, ={Qp(x — P/e) + ®(z) : Qp(x — PJe) € X. 4,
¢ € H'(RY) x H'(RY), ||| < 6}
We remark that
(437) Xs,d - Sg,da Xa(id - S&?f;d

for sufficiently small d. In fact, by Corollary 4.2.8, for any § > 0 there exists a py(d) > 0
such that o 3

S.p CS°5 forany P, P €N with [P — P| < ps(0).
Thus (4.3.7) holds for d € (0, p2(9)].

In [22, 23, 24|, the desired solution is obtained through mountain pass arguments in
H'(RY). Here we deal with the constraint problem I_|x. : M. — R, where

M. = {U = (u1,uy) € H*RY) x HY(RY) : uy #0, uy # 0,
I(U)(u1,0) = 0, IZ(U)(0,us) = 0},

&€

(4.3.8)

and we try to find a critical point corresponding to a local minimum of m : A — R.
Here we fix dy € (0,d;] arbitrary and, in what follows, we try to find a critical point
of I.(U) in 82 ;. We use the following abbreviation:

S.=S8.4 and S = Sgdo.
We start with the following
Lemma 4.3.2. There exist €1 and 61 > 0 which have the following properties:

(i) Ife € (0,&1] and U(z) € 8 satisfy I.(U) = 0, then U(z) is a nontrivial positive
solution of (4.3.1)—(4.3.4).

(i) If P € K% and U € SffP satisfy J(y, pyvypy(U) = 0, then U(z) is a nontrivial
positive solution of (4.1.5)—(4.1.8) with Vi = Vi(P) and Vo = V4(P).

Proof. We give just an outline of a proof of (i).

It suffices to show that both components of U(x) are positive. Via the standard
regularity argument for solutions of elliptic equations, we can show that for any v > 0
there exist €, and d,, > 0 such that

“(I)HOO <V
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for all ¢ € (0,¢,] and U(z) = Qp(z — P/e) + ®(x — P/e) € 8% satisfying I'(U) = 0.
For any R > 0 we choose v > 0 small so that the following inequality holds for all
e € (0,¢,) and U(z) = (u1(7),uz(x))(= Qp(x — P/e) + ®(x — P/e)) € S satisfying
I(U) =0
uy(z), ug(x) >0 for |z — P/e| < R.

In particular, we have suppu;_, suppus_ C {z € RN : |z — P/e| > R}. Setting
U_ = (u1—,us_), it follows from IZ(U)U_ = 0 that
(43.9) 0|2 — / VIV (U)U_ dz — 0.

’ lx—P/e|>R

When R > 0 is sufficiently large, [VW (U(z))| < 1 for |x — P/e| > R and (4.3.9) implies
U_ =0, that is, both components of U(x) are nonnegative.

By the maximal principle we have u;(x), ug(xz) > 0 for all z € RN and U(z) is a
nontrivial positive solution. Setting 1 = ¢, d; = J,, we have (i). O

In what follows, we always assume ¢ € (0,¢1] and 0 € (0, 01].

4.3.2 Nehari type manifold M, and a projection P. : S? — M.

We can show the following lemma as in Lemma 4.2.4.
Lemma 4.3.3. Assume (4.1.10). Then we have
(i) The set M. is a submanifold of H'(RY) x H*(RY) with codimension 2.
(ii) For (ui,us) € HYRN) x HYRN) with uy Z0, uy 0 and s, t > 0,
(vV/suy, Vtuy) € M.
holds if and only if

(4.3.10) palluallis + Bllurus|3t = V|3 + [gw Vilez)ui da,
h Bllurus3s + pallusllit = [Vuo|l3 + [gn Valez)us dr.

For U = (uy,us) € HY(RY) x HY(RY) with u; # 0 and uy # 0, we set

A(U) = { ludlls  Blluauelf3 } _

Blluruzlls  polluslly

By (4.2.4), we remark that A(U) is invertible and the system (4.3.10) has a unique solution
— we denote it (s.(U),t.(U)) —.
For P € RY, we also consider

Vurll2 + V(P ]
ANl P | = [V |3 2
( >M [szu%vxpmwua ’

which is equivalent to (v/su1, Vtus) € M(Vi(P), Va(P)). We denote the unique solution
by (sp(U),tp(U)). We have the following
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Lemma 4.3.4. For any v € (0, %) there ezist e5 € (0,e1) and 9y € (0,01) such that for
each € € (0,e5] and § € (0, 0o

(i) For allU € 8?2, it holds that s.(U), t.(U) € (1 —v,1+v).
(ii) It holds that sp(U), tp(U) € (1 —v,1 4+ v) for all U(zx) = Qp(z — P/e) + ®(x)

satisfying P € A, Qp € S, p and ||®|| g < 6.

Proof. We can see that

] - o]
oy ] = e [ |

Since Qp = (wpr,wp2) € S p C M, (Vi(P),Va(P)), we have (4.2.3) with (s,t) = (1,1),
that is,
[ 1 ] — A(Qp) [ IVwp1 3 + Vi(P)llwp |3 ]
1 L IVwpsll; + Va(P)llwpsll; |

We remark that
(4.3.11)

lwpi(z — P/e)lli . = IIVwrillz + /N Vi(ex + P)wp; dz — [[Vwpill3 + Vi(P)[lwpill2
R

for i = 1,2 as € — 0 uniformly in P € A and Qp € Sr.p.
Thus the conclusions (i) and (ii) follow from the continuity of U — A(U)™! in a
neighborhood of S, and compactness of | Jp.x Sy p. [

By Lemma 4.3.4, we can see the projections

P. : Sf = Mg U = (ug,ug) — (\/SE(U) Uy, \/tE(U) Us),
Pp: {Qp(x — Ple)+ O(x) : Qp € Sp.p, | @] g < 6} = M(VL(P), Va(P));

U = (u1,u2) = (/s5p(U) ur, Vtp(U) us)

are well-defined and continuous for € € (0, 5] and § € (0, do].
The projection P. has the following properties:

Lemma 4.3.5. There ezist 3 € (0,¢3), 93 € (0,62), Lo > 0 and a nondecreasing function
p3(e) € C([0,e3],]0,00)) satisfying p3(0) = 0 such that

(i) For alle € (0,e3), P € A and Qp € S, p,
[Pe(Qp(x — P/e)) = Qp(x — P/e)|[arxa < ps(e)-
(ii) For all e € (0,e3] and U, U € 8%,

(4.3.12) |P-(U) = P-(U)|| grrrr < Lol|lU = Ul s
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(iii) For all € € (0,e3) and § € (0, d3], it holds that S° N M. C P.(8°) C SLodtpa(e)

Proof. Noting the convergence (4.3.11) is uniform in P € A and Qp € S, p, we have (i).
Since U = A(U)™", [Vuill3 ., - - are Lipschitz continuous in S?, (ii) holds. (iii) follows
from (i) and (ii). O

Choosing €3, 03 > 0 smaller if necessary, we may assume
(i) It follows that
L .
(4.3.13) 05 < Jminfflwn |, wallm : (w1, w2) € U S.r}-
PeA
(ii) For a; > 0 appeared in (4.3.6),

2
(4.3.14) VW)U de < %HUngl for ||U|lm < 26.
R

(iii) There exist Cy, C5, Cs > 0 such that for any ¢ € (0,e3], § € (0,5] and U € S?

(4.3.15) |U|gr < Cu,
(4.3.16) |AU) || m22) < Cs,
(4.3.17) IAU) a2z < Cs,
-1 HU1H%11,175 s . 1 §
(4.3.18) A(U) [ oo 12 € | sitE 59| (-

Here we use notation: |[Af ar(2,2) := SuDgerz =1 [AE] for 2 x 2 matrix A.

4.3.3 The Palais-Smale condition in 8’ N M.

The behavior of the Palais-Smale sequence is important for the proof of our main result.
Here we consider its behavior in the set S N M..
For U € M. we use the following notation:

X o meye = sup [I2(U)2].

@ETUME, ||‘I>HH1 <1
Here Ty M. is the tangent space of M, at U:
TyM. = {0 c H'RY) x HY(R"Y): F|_(U)® = F;_(U)® = 0},

where Fi.(uy, us) = IL(uy, u2)(ug,0), Foc(uy,us) = IL(uy, us)(0, us).
We show 2 types of the concentration-compactness results.

Proposition 4.3.6. Assume § € (0,03]. Furthermore, for a fived ¢ € (0,¢e3], suppose a
sequence (U;)22, C 82 N M. satisfies for some ¢y € R

Ig(Uj) — Cp,
H[é(UJ)H(TU]ME)* —0 CLSj — OQ.

Then U; has a strongly convergent subsequence in H*(R™) x HY(RY) and its limit Uy is
a critical point of 1.(U) which satisfies 1.(Uy) = co and Up(x) > 0.

82



Proposition 4.3.7. Assume 6 € (0,03]. Furthermore suppose that sequences (g;)32, C
(0,e3] and (U;)52, € HYRN) x HY(RYN) satisfy for some co < mg

(4.3.19) g =0,

(4.3.20) Uj € S, N M.,
(4.3.21) I, (Uj) = co(< mo),
(4.3.22) 12, Uz, m.,y+ = 0.

Then co = mg and there exists a subsequence — we still denote it by j — (Qj)?i1 Cc RV,
Qo € K and Qy € S, ¢, such that

(4.3.23) Qj — Qo € K,
(4.3.24) Uj(x + Q;/e;) — Q(x)  strongly in H'(RY) x H'(R").

In what follows we give a proof of Proposition 4.3.7 and an outline of a proof of Proposition
4.3.6.

Proof of Proposition 4.3.7. Suppose (g;)32, and (U;)32, satisfy (4.3.19)-(4.3.22).
Step 1: |[|IZ (U;)[|g-1 — 0 as j — oo.

We remark that

12O ymeys = min |[IL(U) = et Fi.(U) = coFo (U)]| -

c1,c2€R
Thus, under the assumption (4.3.22), there exists a sequence (c14, ¢a;) € R? such that
112, (U;) — i Py (Uy) — e B (Uj) |- — 0.
In particular, writing U; := (uy;, us;), we have
(4.3.25) (L2, (U;) = e FLL (Uy) — 2By, (Up)) (w5, 0) = 0,
(4.3.26) (L2, (U;) = e FLL (Uy) — 2 F5. (U7))(0, ug5) — 0.

For U = (u1,u2) € M., we note that I’(U)(uy,0) = I2(U)(0,uz) = 0 and

FI.(U)(u1,0) = =21 [|ua |7, F5 (U)(ur,0) = =28 |urusl|3,
FL(U)(0,u3) = =2 lugus3, F5 (U)(0,uz) = —2ps | o[-

Thus (4.3.25)—(4.3.26) implies
C1j 0 .
A(U;) S I as j — 00.
By (4.3.17), A(U)™! is bounded in 8. Thus we have c¢;;, ca; — 0 and
I, (U e < el Fie, (U -1 + le;l | B, (Up) [ -1 + o(1) — 0
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as j — 0o. Thus Step 1 is proved.

Since U; € Sfj, we can write Uj(z) = Qp, (x — P;/e;) + ®;(x — P;/e;) with P; € K%,
Qp, € S.p,, | D] < 6. We set

Ui(z) := Uj(x + Pj/g;) = Qp,(z) + @;(x) € 87‘?713],

and suppose

P — Py e K%,
Qp, () = Qp,(z) € S;.p, strongly in H'(RY) x H'(RY),
;(x) = Dp(x) weakly in H'(RY) x H'(R").

Here we used the compactness of S, 4. We also set Up(x) = Qp, (x) + Po(z) and U, (z) :=
U;(z) — Up(x). It follows from (4.3.13) that Uy = (to1, Uo2) satisfies Gg1 # 0, G2 # 0. We
also have

limsup |||z < 26,

Jj—o0
(4.3.27) W (r) =0 weakly in H'(RY) x HY(R"),
Ui(z) = Up(x) + U,(x) — Up(z) weakly in H'(RN) x H'(RM).

Next we show

Step 2: |||z — 0 as j — oo. In particular, U;(x) — Uy(x) strongly in H'(RN) x
HY(RY).

Since I. (U;) — 0, we have
IL(Uj)V(x — Pj/ej) — 0.
Thus, WI‘ltll’lg \I/j = (wlju ¢2j> and IlOtiIlg ﬁj = Uv() + \I/j = (1210 + 1/}1]', ﬂgo + 77D2j>) we have
V(o + ¢15)Vipy; + Vileja + Fj) (g + 1)t da
RN

+ V(T + 125) Vipaj + Va(ejw + Pj)(toj + oj)the; do

RN

— | VW(Uy+ ¥;)¥; dx — 0.

RN

It follows from (4.3.27) that for i = 1,2, [pn VUV de, [gn Vilejz + Pj)liothy; d,
fRN &‘;’O@sz dﬁ, fRN ’&%0’@/}12] diL', <= 0. ThllS,

19507, —/ VW (U,)¥,; dz — 0.
RN
Thus by (4.3.6) and (4.3.14),
a3 ) )
RN
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That is, the conclusion of Step 2 holds.
Next we show

Step 3: P, € K and Uo(x —ly) € S,.p, for some {, € RY.

We remark that Step 2 implies U; — Uy strongly in H'(RN) x H'(RYN), from which
it follows

. J(VI(POLVQ(PO))(UO) a Jlglolo Ia]‘(ﬁj(x — Pj/e;)) = co(< my),
J(/VI(PO),VQ(PO))(UO) =0.

Thus, by Lemma 4.3.2, Uy(z) € % C Sffpo is a nontrivial positive critical point of
Ty va(re)(U). By the result of Busca and Sirakov [20], Up(x) is radially symmetric
after a suitable shift, that is, Uo(x —ly) € M. (Vi(Py), Va(Py)) for some £y € RY.

On the other hand, we have by Proposition 4.2.5

J(V1(P0)7V2(P0))(00) > b(VI(P0>7 VQ(PO)) = m(P())-

Thus, by (4.3.28), m(Fy) < ¢y < myg, which implies ¢y = mg, Py € K and Uo(x—éo) €S p
for some ¢, € RV.

Step 4: Conclusion

Setting (); = P; + ¢;{p, we have the conclusion of Proposition 4.3.7 with Qo = F,
Qg(x) = U()(.T — 60) ]

Proof of Proposition 4.3.6. As in Step 1 of the proof of Proposition 4.3.7, we can show
1 7L(U)||g-1 — 0. We assume that U; — Uy weakly in H'(RY) x H'(R"). As in Step 2,
we can show that U; — Up strongly. A positivity of Uy(x) follows from Lemma 4.3.2. O

As a corollary to Proposition 4.3.7, we have the following corollary, which will play an
important role in the proof of our main Theorem 4.1.3.

Corollary 4.3.8. For any § € (0,d3/4], there ezist vy, ho, €0 > 0 such that

D)z pmap = 1o
for all e € (0,&0) and U € (8¥\ 8°) N M. satisfying I.(U) < mg + ho.

Proof. We argue indirectly and assume that there exists d € (0, d3/4] which satisfies the
following property:

For any j € N, there exist ¢; € (0, %] and U; € HY(RY) x H'(RY) such that
(4.3.29) Uy € (SP\ S )N M.,

1

]gj(Uj) S mo + 3,
, 1
||I€](U])||(TUMEJ)* < ;
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Applying Proposition 4.3.7, there exist a sequence (Q;)52; C RN, Qo € K and Qg € S, g,
such that

Q; — Qo, Ui(x+Q;/g5) = Qo(x) strongly in H'(RY) x H'(RY).

Thus dist (Uj, S;;) — 0, which is in contradiction to (4.3.29). Therefore Corollary 4.3.8
holds. [

4.4 An estimate of I.(U) on S’ N M.

The aim of this section is to show the following estimate which is a key of the proof of
our main Theorem 4.1.3.

Proposition 4.4.1. For sufficiently small 6 > 0,

lim inf I.(U) = my.

e=0UeSINM. 6( ) 0
Here we explain our idea to get the above estimate. It is rather easy to show the upper
estimate lim._,infyc sinm. < Mmo. The harder part is to show the lower estimate.

First we show any U(z) € 8’ can be approximated uniformly by a function of a form:
E(z — P/e) + ®(x — P/e), where P € K% and

(4.4.1) supp =(z) C B(0, R),
(4.4.2) |®]| ;1 < 46,

(4.4.3) supp Z(z) N supp ®(x) = 0.
By (4.4.3),

(44.4) L(U)~I.(2(x — Ple)+ ®(x — P/e)) = I.(E(x — P/e)) + I.(P(x — P/e)).
By (4.4.2), we have I.(®(x — P/e)) > 0 for § > 0 small. Thus

(4.4.5) I(U) ~ I(E(x — P/e) + ®(x — P/e)) > L(E(z — P/e)).

By (4.4.1), we also have

(4.4.6) I.(Z(x — P/e)) = Jyu(p)vap)(E) ase — 0.

(4.4.4)-(4.4.6) are useful to estimate I.(U) from below. We remark that to prove our
Proposition 4.4.1 we need to deal with I.(U) on M. and develop more precise arguments
which involve the projection P. : 8 — M..

For a proof of Proposition 4.4.1, we choose § > 0 and £ > 0 small so that

85 < 03, 8Lgd + pg(E) < 03.
Under these conditions we have

P-: Sf‘s — M, is well defined for small ¢,
PE(SS(S) C SB8Lod+ps(e) — §ds.
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We also assume that § > 0 satisfies
(4.4.7) a? — 4a2C*Cs*Cr(46)* > 0,

where Cy, Cs > 0 are constants appeared in (4.3.15), (4.3.17) and C; > 0 is a constant
such that

pil| @l Bl|@1 P2 } H )
4.4.8 <ol
e H{ Bller®2ll  pof| Pl M(2.2) el

for all ® = (®1,®y) € HY(RYN) x H(RY).

Proof of Proposition 4.4.1. Proof of Proposition 4.4.1 consists of several steps. First we
show that any U € & can be approximated by a function of form: Z(z—P/e)+®(z— P/e).

Step 1: For any v > 0 there exists R;, > 0 independent of ¢ and U € 8° such
that the following property holds: for any U(x) € 8 there exist P € K% and Z(z),
d(x) € HY(RN) x HY(RY) such that

(4.4.9) Z(x — P/e) + ®(x — Ple) € S¥,

(4.4.10) E(z) € 8%, @]l < 4,

(4.4.11) |U(z) — (E(x — P/e) + ®(x — P/e))||m < v,
(4.4.12) supp = C B(0, Rs,),

(4.4.13) supp ®(z) N supp Z(z) = 0.

Moreover, there exists Cg > 0 such that for U(z) € 8 N M.

(4.4.14) I(U) > I(P-(E(x — P/e) + ®(z — PJ¢))) — Cyv.

We choose Rs > 0 such that
(4415) ||Q||H1(|$‘ZE5) < ¢ forall Q S S»,a,A.

Let n, € N be an integer such that
A 2
(4.4.16) <§> n, > 462

and we set

Rs, = Rs + 3n,.
We show that Rj, has the desired property.
In fact, let U(z) = Qp(x — P/e) + VU(x — P/e) € 8, where P € K%, Qp € S, p
and [|[W[|;n < 6. We set U(z) := U(r + P/e) = Qp(x) + ¥(z). By (4.4.15), we have
HU(QI)HH1(|Z|255) = ||QP(ZE) + \I/(x)”Hl(\fﬂZEg) < 2. We remark that

ny—1

> T ajetr, 1358, 3610 < MO0 azm,) < 46%
=0

87



By (4.4.16), there exists n € {0,1,2,--- ,n, — 1} such that

NN IAN

U1 el el +3n. 253 1)) <
We choose two functions (;(r), (2(r) such that
for r € [0, Rs + 3n/,

[
for r € [Ry + 3n + 3, 00),
[

1

0

0 forr e [0, Rs+ 3n+ 2],
1 for r € [R5+ 3n+3,00),

G(r), G(r) € 10,1, ¢ (r) € [~1,0], ¢(r) € [0,1] for all r € R
and we set . .
E(z) = Q(lz))U(z), ¢(z) = G(z))U().

(4.4.12)—(4.4.13) clearly hold. We note that [|(1¢||m < 2H¢||H1(|m|e[o,55+3n+§}) for all

¢ € H' and similar inequalities hold for ||(1 — ()¢llmt, [|CGellmr, [[(1— &)ellm-
Thus we have

12 = Qpllm = G2 +¥) = Qpllar < [[(G = 1)Qpa + |G
< 2[Qp || i1 (2l 5 +80) + 20 Y| < 49,

[Pl = [[G(Q2p + V)[[ar < (|GQp||ar + |GV < 49,

1T = E+ @)l =11 = G = )Tl

< 2| Ul (alets+3n,Bs+3n+1))) < V-

Thus (4.4.9)—(4.4.11) hold.
Next we suppose U € S N M.. Then P.(U) = U and by (4.3.12)

|U = Pe(E+ @) = [P=(U) = Pe(E+ ®)|lan < Lov.

Thus we have
L.(U) > I.(P-(E+ ®)) — CLyv

and (4.4.14) holds.

Next we show a property corresponding (4.4.5).

Step 2: For any given U € S N M., let Z(z) € 8% and ® € H'(RY) x H'(RY)
(|®|lzr < 49) be given in Step 1. Then

I(Pe(E(x — P/e))) < I(P-(E(x — P/e) + ®(x — P/e))).

It suffices to show that
0 I(P(E(x — P/e) + 0®(x — P/e))) : [0,1] = R
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is a nondecreasing function. We write = = (51, E5), & = (P, P;) and
P.((E+0®)(x — PJe))
= (VMO)(E1 +091)(z — P/e), / As(0)(E2 + 0D,)(z — P/e)),
where (A1(0), \2(0)) satisfies

(4.4.17) A(Z + 00) { i;gg; ] _ [ 1

QA
o
[\

—~

s

~—

_

Here for 1 = 1,2
Gei(0) = =i + 0Qill3 ;o = ISl 70 5. + O il s
It follows from (4.4.17) that

e | =2 o

G:1(0)
Geo(60) } '
We also have

] - e 5

C) G, (0
CAE + 00)! (d%A(E + 9@)) AE + 6)! [ g;gz; } |
Since IL(P-((2+ 0®)(x — P/e)))(P.(E+ 0®)(x — P/e))) = 0, we have

L(P(E+69)(x — PJ2))) = {IP-(E + 62)(z — P/2) .

_ %()\1(9)6’51<9) + X2 (0)G2(0)) = ;1 ({ gi% ] ’ { 2223 D '
Thus

1 CL(P(E +00)(x — P/2)
(e D () ()
(e :



By (4.4.13), we remark that

prlElls +0M@ul)  BUIELE[3 + 6% 2122 3) ] _

A(E+ 6P) = L _
(E+60) [6(||:1:2H§+94H<I>1<1>2||§) o(|[Za + 03], 1)

Thus

d pal| @l Bl P213
—A(E+ 09 493{ 4 2.
g NETOR) =40 015 B2 ua] Pl

By (4.4.8), we have

(4.4.19) H =4 00) H < 4C70%|| @[3
M(2,2)
Since Z + 0P € S¥, we have by (4.3.18) that A (0), A2(0) € [5, 3] for all 6 € [0,1]. Thus
GLi(0) = ~1 [ Ge(0) D
2 el A(Z+ 609
([Gioy | aevom [ G0
=2 (M(0)GL(0) + A2(0)GL,y(0)) = GLi(6) + GLy(6)
220 (I@1ll7 1.c + 1927 2.0) = 20/l - > 2a30]| @171

(4.4.20)

By (4.3.15) we remark that

‘ { glgzg ] ‘ < V2|2 +60®|7n. < V243|E + 097 < V243C,%
€2

Thus, by (4.4.18)—(4.4.20) and (4.3.16)—(4.3.17), we have

d
4ol (P(2+09)) > 20i0||®||7: — (V203C4%)°Ce” - 4CH6°| @] .
= 20] @3 (af — 4a3C,* C* 107|131 -

By (4.4.7),
d

e
which implies the conclusion of Step 2.

L. (P-(240®)) >0 for ||®| g < 49,

The following step shows a property corresponding to (4.4.6).
Step 3: For any v > 0 there exists an €4 > 0 such that

|[I(P=(2(x — P/e)) = Japyvary(Pp(E))| < v
for any ¢ € (0,e4] and Z(z) € 8% with supp = C B(O Rs,).

We have

/ Vi(ex + P)Zi(2)* dov — Vi(P)||Zi]3 < | dnax Vi(ez + P) = Vi(P) 1Zill;
RN

—+ 0 as e — 0 uniformly in P and = € Sﬁp with supp= C B(0, Rs,).
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Thus,
|1Ei(z — P/e)llfn e = IVEllS + Vi(P)IEil3

uniformly. From the definition of P., Pp, the conclusion of Step 3 holds.
Step 4: Conclusion
By Step 3, we have for € € (0, 4]
L(P=(E(x = P/e))) = Juipvap))(Pp(Z)) — v = m(P) —v.
Thus by Steps 1-2, we have for any U(z) € S°
L(U) > (P.(E+ ®)(x — Ple))) — Csv > I.(P-(E(x — P/e)) — Csv
>m(P) — (Cs+ 1)v > inf m(P)— (Cs+ 1)v
PeKdo

=mgy — (Cg + 1)1/

Since U € 82 N M. and v > 0 are arbitrary, we have

(4.4.21) liminf inf I.(U) > my.
e=0 UeSinM.

On the other hand, we have for P € K and Qp € S, p

(i) P-(Qp(z — P/e)) € 8 N M. for small ¢.

(i) L(P(Qp(z = P/e))) = Jwi(p) vy (2p) = m(P) = mo.
Thus we have

li inf I.(U) < lim I.(P.(Qp(z — P/e))) = myq.
imsup _inf (U) < lim I.(P(Qp (2 — P/e))) = mg

Together with (4.4.21), we complete the proof of Proposition 4.4.1. ]
Corollary 4.3.8 and Proposition 4.4.1 imply the following:

Proposition 4.4.2. Choose 6 > 0 small so that Corollary 4.3.8 and Proposition 4.4.1
hold. Then there exist vy > 0 and €5 > 0 such that

(4.4.22) I.(U) > mo+ 1y

for all e € (0,&5) and U € (8% \ S¥) N M..

Proof. By Corollary 4.3.8, there exist 1y and hg > 0 such that for small € > 0
(4.4.23) L)l rymn: > v for any U € (S2\ 8%) N M. with I.(U) < mg + ho.

By Proposition 4.4.1, we have lim. g infycsasnm. (U) = mg. Thus for sufficiently small
€ > 0, it holds that

1
4.4.24 inf  I.(U) > mg — ~140.
(44.24) peaik,, F(U) 2 mo = Juo
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We will show that (4.4.22) holds with v; = min{hy, %1/0(5}.

By (4.4.23), we can construct a pseudo-gradient vector field V(U) on (S¥\S?)NM.N
{U: I.(U) < mg+ ho} such that for all U € (82 \ 8°) N M. with I.(U) < mg + hy, it
follows that

V(U) € TUM67
VW) asemr <1,

L) > %VO.

We consider the following ODE in M.:

d
(4.4.25) d_7t7 = V), n0) =T
We can easily see that
S| <,
dt HlxH?!
d 1

S () = =LV () < —5wo.

as long as n(t) € (82 \ &) N M. and IL.(n(t)) < mg + ho.

Now let Uy € (8% \ 8%) N M. and we show (4.4.22) holds for Uy. Suppose that
I.(Uy) < mg+ hy otherwise (4.4.22) holds. We consider the solution 7(t) of (4.4.25). By
the above argument we have

(4.4.26) n(t) € (SP\ SN M. fortelo,0d],
(4.4.27) Ln(s)) < L(Us) — %yoa.

It follows from (4.4.26)—(4.4.27) that

1 . 1
[E(Uo) Z [5(77(5>> + 51/0(5 2 Ueslélrtgw\/[s L—:(U) + 51/0(5.
By (4.4.24), we have
1
Ie(UO) > mo + ZVQ(S.
Since Uy € (827 \ 8%) N M, is arbitrary, we have (4.4.22). O

End of the proof of Theorem 4.1.3. We fix § > 0 small so that Propositions 4.4.1 and
4.4.2 hold and let g5 > 0 be given in Proposition 4.4.2. Then we have for € € (0, €3]

inf L.(U)>my+ 1.
Ue(S30\526) M. (U) zmo+ 1

On the other hand, by Proposition 4.4.1, it follows that

(4.4.28) lim inf I.(U) = my.

e=>0UeS35NM,
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Since I.|u. satisfies the Palais-Smale condition in 83 N M. by Proposition 4.3.6, there
exists a minimizer U, (x) € S* N M. via Ekeland principle. U,(x) satisfies

L(U)= inf L(U),

UeS3nM.

1(U.) = 0.

By Lemma 4.3.2 (i), U.(x) is a nontrivial positive solution of (4.3.1)—(4.3.4). Since
I.(U.) = my by (4.4.28), Proposition 4.3.7 implies the existence of a subsequence £; — 0
and (Q;)32, C RN, Qp € K and Qg € S,., that satisfies (4.3.23)-(4.3.24). Thus, denoting
Ue(7) == (w1c(x), uge (7)) and setting vie(z) 1= ui(v/€), voc () := ug-(v/c) and P, := Q;,
Py := Qy, we have (4.1.14)—(4.1.15). Thus the proof of Theorem 4.1.3 is completed. [
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Part 11

Nonlinear scalar field equations
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Chapter 5

Existence of positive and infinitely
many solutions: homogeneous case

5.1 Introduction

In this chapter, we study (NSF) with Q = R™ and ¢(r, s) = g(s). Namely, we consider the
existence of radially symmetric solutions of the following nonlinear scalar field equations:

(5.1.1) —Au = g(u) in RV,
(5.1.2) ue H'(RY).

Here N > 2 and ¢g : R — R is a continuous function. This type of problem appears in
many models in mathematical physics etc. and almost necessary and sufficient conditions
for the existence of nontrivial solutions are obtained by Berestycki and Lions [15, 16] for
N > 3 and Berestycki, Gallouét and Kavian [14] for N = 2. See also Strauss [95] and
Coleman, Glaser and Martin [28] for earlier works.

In [14, 15, 16], they assume:
(5-g0) The function g € C(R,R) and g is odd: g(—¢&) = —g(§).
(5-gl) For N > 3,

lim sup L <0.

rmo ENF2/(N-2) =
For N =2,
lim sup 9(52) <0 for any a > 0.
£—o00 ea&
(5-g2) For N > 3,
5.1.3 —00 < liminfﬁ < limsu @ < 0.
( p
&—0 0§ €0
For N = 2,
(5.1.4) —00 < lim 9 < 0.
-0 &
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(5-g3) There exists a y > 0 such that G({y) > 0, where G(§) = fog g(T)dr.

Under the above conditions, they show the existence of a radially symmetric positive
solution and infinitely many radially symmetric (possibly sign changing) solutions.

Remark 5.1.1. For the existence of a positive solution, it is sufficient to assume (5-g0)—
(5—g3) just for & > 0. Namely we assume

(5-80") g € C([0,00)), g(0) =0

and (5-gl), (5-g3) and (5-g2) just for a limit as & — +0.

Remark 5.1.2. (a) We refer to Berestycki and Lions [17] (see also Section 11, Chapter II
of Struwe [98]) for the study of zero mass case, where N > 3. In particular, they assume

: G(&)
s g <0

instead of (5-g2) and they show the existence of infinitely many solutions in D*?(RY).
(b) For the study of the existence of at least one solution, especially the existence of a
least energy solution, we also refer to Brezis and Lieb [18], in which they study the system
of equations

(5.1.5) ~Au; =g'(u) mRY i=1,...,n,

where d > 2 with u : R — R" and ¢'(u) = 0G/du;. Here we call u = (uy, ..., u,) a least
energy solution of (5.1.5) if u satisfies

(5.1.6) J(u) = inf{J(v) : v is a nontrivial solution of (5.1.5) }

where
J(v) = %Z/Rd|Vvi(x)|2dx—/Rd G(v(x))dz.

Under suitable conditions on G (which differ between d = 2 and d > 3), they prove that
(5.1.5) admits a nontrivial solution u which satisfies (5.1.6). We also refer to Briining [19]
for a generalization when d = 2.

(5-g0)—(5-g3) are natural conditions for the existence of solutions. However we can
see a difference between cases N > 3 and N = 2 in the condition (5-g2). We remark
that when N = 2, the existence of a limit lim¢ 0 g(§)/¢ € (—00,0) is used essentially
to show that the Palais—-Smale compactness condition for the corresponding functional
under suitable constraint ([14]).

The aim of this chapter is to extend the result of [14] slightly and we prove the existence
of radially symmetric positive solution and infinitely many radially symmetric solutions
under the conditions (5-g0), (5-gl), (5-g3) and (5.1.3) (not (5.1.4)).

We also remark that in [14, 15, 16] (cf. [18, 19]), they constructed solutions of (5.1.1)—
(5.1.2) through constraint problems in the space of radially symmetric functions:

e find critical points of

(5.1.7) {/RN Vade: [ Gl - 1} (N > 3),
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or
e find critical points of

(5.1.8) {/R Vuldz /R Glu)dz =0, /R Wy — 1} (N = 2).

In fact, if v(x) is a critical point of (5.1.7) or (5.1.8), then for a suitable A > 0, u(z) =
v(xz/A) is a solution of (5.1.1)—(5.1.2). On the other hand, solutions of (5.1.1)—(5.1.2) are
also characterized as critical points of the functional I € C*(H!}(RY),R) defined by

I(w) = %/RN Vul2dz /RN G(u)de.

Here we denote by H!(RY) the space of radially symmetric H'-functions defined on RY.
It is natural to ask whether it is possible to find critical points through the unconstraint
functional I.

Our second aim is to give another proof of the results of [14, 15, 16] using mountain
pass and symmetric mountain pass arguments to /.

Before stating our main result in this chapter, we prepare one notation. We say that
a nontrivial solution u of (5.1.1)-(5.1.2) is a least energy solution if and only if u satisfies

I(u) = inf{I(v) : v € H*(R"Y) is a nontrivial solution of (5.1.1)}.
Now we can state our main result.

Theorem 5.1.3. Assume N > 2, (5-g0), (5-¢gl), (5-g3) and
(€) 9(§)

(g2) —o0 < liminf === < lim sup == < 0.
§—0 '3 €0

Then (5.1.1)—(5.1.2) has a least energy positive solution and infinitely many radially sym-
metric (possibly sign changing) solutions, which are characterized by the mountain pass
and symmetric mountain pass minimax arguments in H}(RN) (see (5.3.1)—(5.3.2) and
(5.6.1)—(5.6.3) below).

Remark 5.1.4. (a) When N > 3, the existence of solutions of (5.1.1)—(5.1.2) is obtained in
[15, 16], and we provide another proof and give a minimax characterization of infinitely
many solutions using the functional I.

(b) When N = 2, our existence result extends the result of [14] slightly. Indeed, we show
the existence under the condition (5-g2’) not (5.1.4).

In Jeanjean and Tanaka [55], they give a mountain pass characterization to a least
energy solution of (5.1.1)—(5.1.2) under the conditions (5-g0)—(5-g3). More precisely, let b
be the mountain pass minimax value for I and m the least energy level. To show b = m, we
argued in [55] as follows: To show b < m, for any solution u(x) we constructed a path vy €
C([0,1], H}(RY)) such that u € ¥([0,1]), v(0) = 0, I(y(1)) < 0 and maxeo,q I(y(t)) =
I(u). To show b > m, the existence of a minimizer of the minimization problems (5.1.7)
or (5.1.8) is essential and we relied on the arguments in [14, 15].
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We will take mountain pass and symmetric mountain pass approaches to prove The-
orem 5.1.3. In section 5.3, we will observe that [ is an even functional with a mountain
pass geometry and it is possible to define a mountain pass minimax values b,,, and sym-
metric mountain pass values b, (n € N) for I. By Ekeland’s principle, we can find a
Palais-Smale sequence (u;)32, C H}(R") at levels by, and by, that is, (u;);2, satisfies

(5.1.9) I(u;) = by (o1 by),
(5.1.10) I'(uj) — 0 strongly in (HH(RM))*.

However one of the difficulty is a lack of the Palais-Smale compactness condition and
it seems difficult to show the existence of strongly convergent subsequence merely under
the conditions (5.1.9)—(5.1.10). A key of our argument is to find a Palais-Smale sequence
with an extra property related to the Pohozaev Identity. We recall that if u is a critical
point of I, then u satisfies
N -2 9
P(u) =0, where P(u):= 2 / Vuldz—N | Gu)ds.
2 RV RN

The above equality is called the Pohozaev Identity. It is natural to ask the existence
of a Palais-Smale sequence (u;)32, satisfying (5.1.9)—(5.1.10) and P(u;) — 0. For this
purpose, in section 5.4, we introduce an auxiliary functional:

B (N—-2)6
0(0,u) = 5 / \Vul2dz — e’ | G(u)dz: R x H'(RY) > R.
RN RN

We will find a Palais-Smale sequence (6, u;) in the augmented space R x H}(R") satis-
fying

(5.1.11) 0; — 0,
(5.1.12) 1(0;,u;) = by (o1 by),,
(5.1.13) I'(0;,u;) — 0 strongly in (H}(RM))*,
N -2
(5.1.14) TG(NQ)QJ' / |Vu;|*de — NeM G(uj)dx — 0.
RN RN

Remark 5.1.5. We remark that this type of auxiliary functionals was first used in Jeanjean
[54] for a nonlinear eigenvalue problem. It should be compared with a monotonicity
method due to Struwe [96, 97| and Jeanjean [54]. We expect that this type of auxiliary
functionals can be applied to other problems.

We remark that our auxiliary functional I(6,u) satisfies

1(0,u) = I(u),

I1(0,u) = I(u(e™’z)) forall # € R and u € H(RM).

Properties (5.1.11)—(5.1.14) enable us to obtain the boundedness and the existence of
strongly convergent subsequence of (u;).
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5.2 Preliminaries
We will deal with the cases N =2 and N > 3 in a unified way. In what follows we assume

N > 2 and g satisfies (5-g0), (5-gl), (5-g2’) and (5-g3).

5.2.1 Modification of g

To give a proof of Theorem 5.1.3, we modify the nonlinearity g. First we remark that we
can assume

: g§)
( ]_7) When N 2 3, gli)l{.lom = 07
g
when N =2, lim @:O for any a > 0.
£—o00 e

In fact, if g satisfies g(§) > 0 for & > (o, (5—gl’) clearly follows from (5-gl). If there exists
a (1 > (o such that g(¢;) = 0, we set

9(§) for 0 <& < G,
g(&) =10 for £ > (4,
—g(=¢) for £ <0.
Then § satisfies (5-g0), (5-gl’), (5-g2'), (5-g3) and all solutions of —Au = g(u) in RY
which belong to H'(RY) satisfy —(; < u(z) < (; for all x € RY, that is, u also solves
(5.1.1). Thus we may replace g by g and assume (5—g1’).

In what follows, we assume that g satisfies (5—g0), (5—g1’), (5—g2’) and (5—g3).
Next we set

1
mg = —— limsup 9() € (0,00)
2 £—0 €

and rewrite (5.1.1) as
—Au + mou = mou + g(u) in RV,

We introduce h € C(R,R) by

) max{me€ +¢(£),0} for £ >0,
M) = { — h(=¢€) for £ < 0.

Furthermore, we choose py € (1, (N +2)/(N —2))if N >3, pg € (1,00) if N =2 and set

EP0 sup M for £ > 0,
- o<r<g TPO
h(g) = 0 for £ =0,
— h(=¢) for £ < 0.

We also set

From the definition of h, h and my, we have
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Lemma 5.2.1. The following hold:
(a) For all & >0, me& + g(&) < h(§) < h(€).
(b) For all £ >0, h(€) > 0 and h(£) > 0.

C

There exists a 6y > 0 such that h(€) = h(€) = 0 for all £ € [0, &].
<

().
(e) The map & — h(£)/&P0; (0, 00) — R is non-increasing.

(
(d) There exists a & > 0 such that 0 < h(&p)

)
)
)
)

(f) The functions h, h satisfy (5-gl’).

Proof. (a), (b) and (e) follow from the definitions of h and h.

(c) By the definition of mg, we can easily see that £g(£) < —mg&? in a neighborhood of
¢ = 0. Thus (c) holds for small §, > 0.

(d) By (5-g3), there exists a & € (0,(y) such that g(&) > 0. Thus h(&) > h(&) >
mo&o + g(&) > 0 and (d) holds.

(f) It is easy to see that h satisfies (5-g1’) and we will show (f) for ~. We consider the
case N > 3 first. We remark that

N+2)/(N—=2)=po

E(f) _g—((N+2)/(N—2)—p0) sup h(7) h(7) 7{

N+ (N-2) ool T ol T(NH2)/(N=2) N+ (N=2)=p0

Since h satisfies (5-gl’), for any € > 0 there exists a 7. > 0 such that

h(r)

m <e forall > 7.

Thus denoting C. := supy,<,. [h(7)/7NT2/N=2)| we have

N+2)/(N=2)=po

h(¢) hr) | h(r)
o < max 4 sup SUp | —v o5 o
(W) (N-7) = P TR VD | (W N2 S | D ()

CLr V42 (N=2)=po
S MAXS N D 0 S (
Therefore we have .
: h(€)
i sup Zy vy < &
Since £ > 0 is arbitrary, we have limg o, h(€)/ENFT2/(N=2) = q,
Next we deal with the case N = 2. It suffices to show
(g
(5.2.1) glggo Ereed — 0 for any o > 0.
Since _ ,
h(§) 1 h(T) h(t) e*"
517060452 B 60452 OS<171_2£ TPO o OS<171_12€ 7—1)060672 60452
and h satisfies lime_,o0 2(€) /7% = 0, we can show (5.2.1) in a similar way. O
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Corollary 5.2.2. The following hold:
(a) For all € € R, mo€?/2 + G(€) < H(E) < H(E).

(b) For all € € R, H(¢), H(€) > 0.
c¢) There exists a 0y > 0 such that H(&) = H(E) =0 for [£] < do.

)

)
(c)
(d) It holds that H(Cy) — meC2/2 > 0.
(e) Forall{ € R, 0< (po+ 1)H(E) < ER(E).
(f)

) The functions H and H satisfy
. H(E) HE
A fepes = I, s — 0 when V28
H H
lim (? = lim (E) =0 for any a > 0 when N = 2.
€|—o0 €26 ¢l o0 €26

Proof. (a)—(c) easily follow from (a)—(c) of Lemma 5.2.1.
By (a) and (5-g3), it follows that

H(¢) > H(Go) > %mng + G(¢o) > 0.

Thus (d) holds. B
Since the map & — h(&)/&P°; (0,00) — R is nondecreasing, we have for £ > 0

13 ¢ - Tr
ER(E) — (po + DF(E) = / B(E) = (po + h(r)dr — / §§ ot DD
3 po@ _ 7_po@ =
> /0 & £ro (po+1) £ro dr = 0.

Therefore (e) holds.
The statement (f) also follows from (f) of Lemma 5.2.1.

5.2.2 Fundamental properties of H!(R"Y)

In what follows, we use the following notation: for u € H(RY) and 1 < p < o0,

1/p
il = ([ trae) Ll = essup uto),
RN

zeRN

el = (IVull3 + mollull)'2.

We also write

(u,v)y := / wodx, (u,v)gr = Vu - Vo + myuvdz.
RN

RN
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We remark that H!(R”) equips the norm || - ||z and is a closed subspace of H(RY).
The following properties are well-known (see [1, 15]).

(i) For N > 2, there exists a Cy > 0 such that

(5.2.2) lu(z)| < Cyla|" N Y2||u|| ;0 for uwe H'(RYN) and |z| > 1.

(ii) The embedding H}(R™) c LP(RY) is continuous for 2 < p < 2N/(N — 2) if N > 3,
2<p<ooif N=2anditis compact for 2 <p < 2N/(N —2)if N >3,2<p<ooif
N =2.

(iii) Set ®(s) := e® — 1. When N = 2, for any (§ € (0,4r) there exists a Cs < 0 such that

Bu? 5 lull3 12
(5.2.3) / o ( iz < C for all u € H'(R2)/{0}.
e \[[Vull3 “IVul3

(iv) In particular, for any M >0

(5.2.4) P pu dr < C Iz for all u € H'(R?) with ||Vull, < M
- e \M2) T T 2=

In fact, if || Vu|l2 < M holds, then we have

Bu? sem 1 Bu2) K1 pIE K1 puY
MO (== ) =MD =(-%5] =) 555D ———5=
(7\12 Z]l 7\12 Z]l M?]—Q — ‘= ]' ”vu||§]—2

=1 =1

)
= [|[Vu 2(13( .
VB2 [l

Thus (5.2.4) follows from (5.2.3) (see also Byeon, Jeanjean and Tanaka [24]).

Let 6o > 0 be a number given in Lemma 5.2.1 (¢) and Corollary 5.2.2 (¢). By (5.2.2),
for any M > 0 there exists an Ry, > 0 such that

(5.2.5) lu(x)] < & for all |x| > Ry and u € H}(RY) with ||ulm < M.

In particular, it follows that from (5.2.5) that

(5.26)  h(u(x)), h(u(x)), H(u(x)), H(u(x)) =0 for |z] > Ry and ||ullz: < M.
From (5.2.6) and the compactness of the embedding H!(R"™) — LP(RY), we have

Lemma 5.2.3. Let N > 2 and suppose that (u;)52, C H}(R") converges touo € H}(R")
weakly in H*(RYN). Then

(a) H(uj)dx — H(up)dz and H(uj)dzx — H(ug)dz.
RN RN RN RN

(b) h(u;) — h(ug) and h(u;) — h(ug) strongly in (H:H(RN))*.
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Proof. We show only h(u;) — h(ug) strongly in (H}(R"))* and deal with the case N = 2.
Other cases can be treated similarly.
Suppose that ||u;||z1 < M for all j € N. By (5.2.4), we have

u? e .
/RN o (VQ) dz < 2 |luill3 < Co.

Since h satisfies (5-gl’), for any € > 0 there exists an £. (> &y > 0) such that

52
2M?

he)| < scb( ) for [¢] > ¢..

We set
h(&) for [¢] < £,

BE) = h(L)  foré> L,
— h(l:) for & < —L..
Then we have
52
2M?

|h(€) — h(&)| < 2e® ( ) for all £ € R.

Since the embedding H!(RY) C L*(|z| < Ry) is compact, we have u; — g strongly in
L*(]z| < Ryr), which implies

h(uj) — h(ug) strongly in L*(|z| < Ra).
Thus, by (5.2.6) and the definition of &, we have h(u;(x)) = 0 for |z| > Ry and

1) = B(ug)lls — 0 as j — oo,

On the other hand,

7 2 2 uj i 2 uj 2~
|h(u;) — h(uy)||5 < 4e /qu)<2M2> dr < 4e /R2<I>(W) dr < 4e*Ch.

Here we used the fact that ®(s/2)* < ®(s) for all s > 0. Similarly we also have ||h(ug) —
h(UO)Hg S 48201. Thus

17 (5) = P(uo)ll2 < N1(uz) = hlu)ll2 + [1A(uz) = h(uo)llz + [17(uo) — h(uo) |2

< ||h(uy) — h(ug)|z + 4e\/Cy — 40/ Cy  as j — oo.
Since € > 0 is arbitrary, we have ||h(u;) — h(ug)||2 — 0. We remark that H}(R") C
L*(RY) implies L*(RY) C (H}(RM))* and thus h(u;) — h(ug) strongly in (H}(RM))*.
[
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5.2.3 A comparison functional J
We define two functionals I and J; H}(RY) — R by

1 1 1
I(u) := §|]Vu||§ — /RN G(u)dx = §||u||?q1 - /RN §m0u2 + G(u)dx

J(u) = %Hu”%{l — /RN H(u)dx

Critical points of I are solutions of our original problem (5.1.1)-(5.1.2) and critical points
of J are solutions of the following equation: —Au + mou = h(u) in RY. For I and J, we
have the following lemma.

Lemma 5.2.4. The following hold:
(a) The functionals I, J € C*(H}(RN),R) and for all u,o € H}(RY), it holds that

Fu)e = () = [ moup+ alu)ode,
T = () = [ Fwds

(b) For allu € HX(RYN), I(u) > J(u).
(¢) There exist ro > 0 and py > 0 such that

I(u), J(u) >0 for each u € HY(R™) with |lu||z < ro,
I(u), J(u)>po for each u € HYRY) with ||u| g = ro.

(d) For any n € N, there exists an odd continuous mapping Yo, : S" ' = { o =
(01,...,0,) € R™; |o| =1} = HY(RY) such that

J(yon () < I(yon(c)) <0 for all o € S™ 1.

Proof. The statement (a) follows from (5-gl’) and (5-g2’), and (b) follows from (a) of
Corollary 5.2.2.

(¢) By Corollary 5.2.2, for any € > 0 there exists a C. such that H (&) < C.|€P0 + eW(€)
for all ¢ € R where p appearing in the definition of A and W(¢) = [N/ (V=2 if N > 3,
U(€) = e’ —1if N = 2. Thus by the Sobolev’s inequality and (5.2.4), for all u € H'(RN)
with ||u||gr < 1, we have

H(u)d C Po d C€||u||p0 + Clg”“”% if N =2,
H(u)dx < C.l|u +5/ V(u)dr =
/RN () el RN (W) Celull + Cellullyy/iy—3 if N >3.
Therefore, for ||ul|g: < 1, it follows that
1 .
Sllullfn = Cellullzyy — Crelluls if N =2,

I(u) = J(u) =

2N/(N—2)

1 .
Sllullin = Cellullfyy — Cellullyyv—a) i N >3.
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Thus choosing € > 0 and 79 > 0 small enough, (c¢) holds.

(d) Since h is an odd function and satisfies H((y) —mo(Z/2 > G(() > 0, we can argue as
in Theorem 10 of [16] and find for any n € N an odd continuous mapping 7, : S"! —
H!(RY) such that

0¢&m,(S™1), / G(mp(0))dr > 1 for all o € S"7t,
RN

For ¢ > 1, set
Yon(0) (@) = Ta(0)(/0) 1 S — HARY),
Then
EN 2 N gN—Q ) N
I(Yon(0)) = IV (a)l3 ¢ / G(mn(0))dz < [V (o)llz — €7
Thus for sufficiently large £ = ¢,, > 1, 7o, has the desired property. O

By the above lemma, I and J have symmetric mountain pass geometry and we can
define symmetric mountain pass values. We will give them in section 5.3.
One of the virtue of our comparison functional J is the following:

Lemma 5.2.5. The functional J satisfies the Palais—-Smale compactness condition.

Proof. Since h satisfies the global Ambrosetti-Rabinowitz condition (see Corollary 5.2.2
(e)), we can easily verify the Palais-Smale condition. Indeed, let (u;);2, C H}(RY) be a
sequence satisfying

(5.2.7) J(u;) = b,
(5.2.8) ||J,<Uj)||(H71(RN))* — 0.
From Corollary 5.2.2 (e), we have
(5.2.9)
1
) = s = (5=l = [ ) - s

> (oL e
—_— — —— u .

Thus we can get the boundedness of (u;)52, in H}(R"Y) from (5.2.7)-(5.2.9) and extract
a subsequence such that u;, — uo weakly in H!(R"). By Lemma 5.2.3 (b), we have
h(uj,) — h(up) strongly in (HXH(RN))*, thus by (5.2.8), u;, converges to ug strongly in
H!(RY), which completes the proof. [

5.3 Minimax arguments

By Lemma 5.2.4, I and J have a symmetric mountain pass geometry and we can define
mountain pass and symmetric mountain pass values. Here we follow Rabinowitz [92]
essentially and set for n € N

(5.3.1) b, := inf max I(vy(0)), ¢, := inf max J(y(0)).

VEFn UEDn €Fn O'eDn
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Here D,, ;== {oc € R": |o| <1} and a family of mappings I';, is defined by
(5.32) I'n:={y€ (D, HR")): 7, is odd and 7,(c) = you(c) on o € 9D,.},

where 7o, : 0D, = S"' — HYRY) is given in Lemma 5.2.4. We remark that

g
|am(—) for o € D,\{0}.
y(o) =4 " o
0 for o =0,

belongs to I',, and T',, # @ for all n € N.

Remark 5.3.1. We can define mountain pass values by, ¢y for I, J by

(5.3.3) byp = inf max I(y(t)), ¢cmp:= inf max J(y(t)),

YEDmp 0<t<1 YED p 0<t<1
where '), := {7 € C([0,1], H}(RY)) : v(0) = 0, (1) = ¢} and ey € H}(RY) is chosen
so that I(eg) < 0. We will show in section 5.6 that b,,, and ¢,,, do not depend on the
choice of ey (see Lemma 5.6.1). Thus, recalling S° = {£1} and choosing ey = 71(1), we

can see by,, = by, ¢y = ¢1. We will also show that b,,, is corresponding to a positive least
energy solution of (5.1.1)—(5.1.2) in section 5.6.

We can easily see that v(D,) N {u € HY(RY) : |jul|z = ro} # 0 for all v € T,,. Thus
it follows from Lemma 5.2.4 (b) and (c) that

(5.3.4) by > cn > po > 0.
Moreover, we have
Lemma 5.3.2. The following hold:
(a) The value ¢, is a critical value of J for all n € N.
(b) Asn — o0, ¢, — 0.
Proof. (a) By Lemma 5.2.5, J satisfies the Palais-Smale condition. Thus (a) holds (see

for example [92]).
(b) By Theorem 7.1.1 in chapter 7, we can see that ¢, — 0o as n — . O

By (5.3.4) and Lemma 5.3.2, the minimax values b,, satisfy
b, >0 (neN), b,—o00asn— 0.
In the following sections we will see that the value b, is critical value of I for all n € N.
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5.4 Functional (6, u)

It seems difficult to show the Palais-Smale compactness condition for I directly and it is
a main difficulty in showing that b,, is a critical value of I. 5
As stated in section 5.1, we introduce an auxiliary functional 7 € C*(R x H}(RY),R)

by
~ 1
1(0,u) = —e(Nz)a/ |Vul*dz — eNQ/ G(u)dz.
2 RN RN

The functional I is introduced based on the scaling properties of ||Vul||3 and Jan G(u)dz,
and has the following properties:

(5.4.1) 1(0,u) = I(u),
I(0,u) = I(u(e™’z)) foralld € R and u € H (RY).

We equip a standard product norm ||(6, u)||rxzm = (0% + ||Ju|%:)Y? to R x HY{(RYN).
We define a minimax value b, for I by

bn = inf max [(3(0)),

T, :={3eC(D,,Rx HYRM)):4(c) = (8(c),n(0)) satisfies
(0(—0),n(—0)) = (0(c),—n(c)) forall o € D,,
(0(c),n(0)) = (0,70n(c)) for all ¢ € D, }.

Then we have
Lemma 5.4.1. For each n € N, lN)n =b,, holds.

Proof. For any v € T',,, we can see that (0,v) € I, and we may regard I',, C I',,. Thus by
the definitions of by, b, and (5.4.1), we have b, < b,.

Next, for any given 5(0) = (A(0),n(c)) € I, we set v(0) == n(o)(e~??z). We can
verify that v € T\, and by (5.4.2), I(y(0)) = I(7(0)) for all ¢ € D,. Thus we also have
by, > by,. O

As a virtue of I(f,u), we can obtain a Palais-Smale sequence (0j,u;)32, in the aug-
mented space R x H}(RY) with an additional property (d) in Proposition 5.4.2 below.
Namely we have:

Proposition 5.4.2. For any n € N, there exists a sequence (0;,u;) C R x H}(RY) such
that :

(a) 6, — 0.
(b) i(@j, Uj) — by,.
(c) I'(6,u;) — O strongly in (H}(RN))*.

o -
(d) 551(65,u5) = 0.
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To prove Proposition 5.4.2, we need the following lemma, which is a version of Eke-
land’s principle. We use the following notation:

DI(,u) = (gg(@ u), 1:/(9,16)> ;

distr g @wy) ((0,u), A) = ( iI%fA(IH — 72+ Ju—v||)Y? for ACRx HY(RY).
T,0)€E

Lemma 5.4.3. Let n € N and ¢ > 0. Suppose 7 € T,, satisfies

max I(5(0)) < b, + €.

O'EDn

Then there exists (0,u) € R x H}(RN) such that:
(a) distrxm @) (0, u),7(Dn)) < 2vE.
(b) 1(0,u) € [by, — &, b, +€].
() [IDI(0, w)[[mo a2y < 2v/E.
Proof. Since I satisfies
10, —u) = 1(0,u) for all (§,u) € R x H}(RN),

we can see that the family T',, is stable under the pseudo-deformation flow generated by
I. Moreover, since b, = b, > 0, maXyeop, I (0,70n(0)) < 0, we can show Lemma 5.4.3 in
a standard way. O]

Proof of Proposition 5.4.2. For any j € N, we can find a ~; € I'), such that

1
< —-.
max I(y;(0)) < bn+j

Since b, = by, 7;(0) := (0,7;(c)) € T, satisfies max,ep, I(3;(0)) < b, + 1/j. Applying
Lemma 5.4.3, we can find a (;,u;) such that

) . 2
(5.4.3) distry i m) (05, u5), 7 (Dn)) < 7
~ 1 1
(544) I(Qj,uj) c |:bn - -, bn + T] ,
J J
- 2
(5.45) 1D, ) e < —=.

i

Since ¥(D,) C {0} x H}RY), (5.4.3) implies 6;] < 2/4/7, in particular, (a). Clearly
(5.4.4) implies (b) and (5.4.5) implies (c¢) and (d). Thus the proof of Proposition 5.4.2 is
completed. O

In the following section, we consider the boundedness and compactness properties of
the sequence (6;,u;)32, satisfying (a)—(d) of Proposition 5.4.2.
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5.5 Boundedness and compactness of (Qj,uj)

Let (6;,u;) C R x HY(R") be a sequence given in Proposition 5.4.2. In particular, u;
satisfies (a)—(d) of Proposition 5.4.2. First we observe that (b) and (d) imply the following

= o (N=2)0; V)2 — &N / G(uj)dz — by,
RN

2
_N_2 (N—2)0; 2 nf; .
5 © | Vuyllz = Ne™ G(uj)dr — 0 as j — oo.
RN

Thus we have
(5.5.1) IVusll3 = N,

(5.5.2) / G(uj)dx — an.
o 2

First we show the boundedness of (u;) in H}(R").

Proposition 5.5.1. Let (6;,u;) be a sequence satisfying (a)-(d) of Proposition 5.4.2.
Then (u;) is bounded in H!(RY).

Proof. (cf. Proof of Proposition 5.5 of Jeanjean and Tanaka [56]). We set
&= Hf/(ej?uj)H(H}(RN))*'
By Proposition 5.4.2 (c), we have £; — 0 and for any ¢ € H}(RY),
1105, u)el < gl

that is,

(5.53) < e\ I8l +mollv 3.

eN=2; Vu; - Vipdr — eNOi /

g(uj)pdx
RN RN

We argue indirectly and assume |[|u;j]|ls — oo. We remark that ||[Vu,||2 is bounded by

(5.5.1). We set t; := Hungz/N — 0 and v;(y) := u;(y/t;). Then we have

(5.5.4) lojlla =1 and ||Vl = £5*[[ V3.

In particular, (v;) is bounded in H}!(RY) and we can extract a subsequence v; — v
weakly in H!(RY). First we claim:

Step 1: vy = 0.

Let ¢ € HY(RY) be a function with compact support. Setting ¢ := ¢(t;z) in (5.5.3),
we have

—9)9. ,—(N—2 = —(N=2 N
o201 )(vw,v@)z—eN%nN/Ng@j)sody‘ < eyt 2NVl + mat; ol
R
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Multiplying t;v ,

e(N—Q)Gjt?(vvj’ Vi) — Mo /RN g(vj)gpdy' < sjtév/Q\/t?”Vng% + mgllp||3 — 0.
Thus vy € H}(RY) satisfies
(5.5.5) / g(vo)pdy =0 for all ¢ € H'(R") with compact support,

RN

which implies g(vg) = 0. Since £ = 0 is an isolated solution of g(¢) = 0 by (5-g2’), it
follows from (5.5.5) that vy = 0.

Step 2: Conclusion

Next we set ¢(z) := u;(z) in (5.5.3). We have

N0 T V|3 - NN /R g(o)vgda) < e[t DIV 3 + mot Y o3

Again, multiplying ¢}, it follows that

0; = N3 | V|3 — % / g(v;)vjdx — 0.
RN

Thus

eN 205210513 + moe™ vy 3 = &N /N mov; + g(v;)vide + 4

(5.5.6) "

< N / h(v;)v;dx + 0;.
RN

Here we used Lemma 5.2.1 (a). Since v; — 0 weakly in H}(R"Y), Lemma 5.2.3 (b) implies
Jan h(v;)vide — 0. Thus (5.5.6) implies ||v;]|s — 0, which is in contradiction to (5.5.4).
Therefore (u;) is bounded in H}(RY). O

Remark 5.5.2. When N > 3, we can prove Proposition 5.5.1 in a direct way. Indeed, by
the definition of h, we have for some constant C' > 0

|h(€)] < ClE|NHD/ =D for all € € R.
It follows from ¢; = ||[~’(9j,uj)||(HT1(RN))* — 0 that |I'(6;, u;)u;| < &;||u;]lgr. Thus
T o sl < e [+ gl + <5l
(557) S eNaj /RN h(u])u]dx + 6j||uj||H1
. 2N/(N—2
< O™ lusll3)v—a) + Esllu .

Since || Vu;l|2 is bounded, we can observe that ||u;||an/(nv—2) is also bounded. Thus (5.5.7)
implies the boundedness of ||u;|9, that is, (u;) is bounded in H}(RY).
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Lastly in this section, we prove that (u;) has a strongly convergent subsequence in
HYRM).

Proposition 5.5.3. Let (6;,u;) be a sequence satisfying (a)—(d) of Proposition 5.4.2.
Then (0;,u;) has a strongly convergent subsequence in R x H}(RY).

Proof. Tt suffices to prove (u;) has a strongly convergent subsequence in H}(RY). By
Proposition 5.5.1, (u;) is bounded in H}(RY) and we may assume u; — uy weakly in
H!(RM) as j — oo.

It follows from Proposition 5.4.2 (c¢) that f’(ﬁj,uj)go — 0 as j — oo for any ¢ €
HI(RY), that is,

(5.5.8) / W20y, - Vi — eNg(uj)pdr — 0 as j — oo.
RN

Thus wuq satisfies fRN Vg - Vo — glug)pdr = 0 for all ¢ € HY(RY) and ug is a solution
of (5.1.1)-(5.1.2). In particular, we have ||Vuol|3 — [gn g(to)uodz = 0, that is,

(5.5.9) (- /RN moug + g(uo)ugdr = 0.
Setting ¢ := u; in (5.5.8), we have eV =2%||Vu;||3 — eN% [\ g(u;)u;dz — 0. Thus
N =203 |74 12 4 e |y |12 = N /RN mou? + g(u;)u;dz + o(1)
(5.5.10) = NVl / h(u;)ujde — eN% / h(uj)u; — m0u§ — g(u;)u;dx + o(1)
RN RN

= eN0(1) — NO(IT) + o(1) as j — oo.

By Lemma 5.2.3 (b), we have

(5.5.11) (I) = h(ug)updz.

On the other hand, by Lemma 5.2.1 (a), we have
h(u;(x))u;(x) — mouj(z)? — g(u;())u;(z) >0 forall j € N and x € R.
Thus by Fatou’s lemma,

Jj—00

(5.5.12) lim inf (IT) > / h(uo)ug — moui — g(uo)uodz.
RN
It follows from (5.5.10)—(5.5.12) that
limsup ||u;| 2 = limsup (e=2% || Vu; |3 + moe™ ||u;13) < / moug + g(uo)uodz.
j—ro0 Jj—00 RN

Thus by (5.5.9), we have limsup,_,, [|u;|| g1 < [Juo|| g, which implies u; — ug strongly in
H(RY). O
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Now we can prove

Theorem 5.5.4. Assume N > 2 and (5-g0), (5-gl’), (5-g2’), (5-g3). Then b,(n € N)
defined in (5.3.1)—(5.3.2) is a critical value of I. That is , for any n € N, there ezists a
critical point ug, € HY(RYN), which is a solution of (5.1.1)—(5.1.2), such that

(5.5.13) I(ugn) = by, I'(tign) = 0.

Proof. Let (0;,u;) be a sequence obtained in Proposition 5.4.2. By Proposition 5.5.3, we
may assume u; — Ug, strongly in H}(RY). Then uy, satisfies

I(Oa uOn) - bna I/(07u0n) = 07

that is nothing but (5.5.13). Thus b, is a critical value of I which completes the proof. [

5.6 Least energy solutions

In this section, we show that a mountain pass value b,,, is corresponding to a positive
solution of (5.1.1)—(5.1.2), which has the least energy among all nontrivial solutions.
We start with the following lemma.

Lemma 5.6.1. Suppose N > 2 and assume (5-g0), (5-gl’), (5-g2’) and (5-g3). Let
O ={ue€ H{(RY): I(u) < 0}. Then the set O is arcwise connected.

We will give a proof of Lemma 5.6.1 in the section 5.7. By Lemma 5.6.1, we can easily
see that the mountain pass value by, given in (5.3.3) does not depend on the end point
eg and we may write

(5.6.1) bup = _Inf max I(+(t)),
(5.6.2) Loy := {v € C([0,1], Hy (RY)) : 7(0) = 0, I(~(1)) < 0}.

This fact is also used in Remark 5.3.1.

Remark 5.6.2. Lemma 5.6.1 is also obtained in Byeon [21] (but with a different proof).
We learned [21] from Professor J. Byeon and the referee after a submission of [48].

Our main result in this section is the following.

Theorem 5.6.3. Suppose N > 2 and assume (5-g0), (5-gl’), (5-g2’), (5-g3). Then for
by defined in (5.6.1)—(5.6.2) it holds that:

(a) There exists a positive solution uy of (5.1.1)—(5.1.2) such that
(5.6.3) I(tg) = by

(b) For any nontrivial solution v of (5.1.1)—(5.1.2), we have
(5.6.4) binp < I(v),

that is, ug is a least energy solution of (5.1.1)—(5.1.2) and the value by, is the least
enerqy level.
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Proof. (a) We argue as in previous sections and for any v, € Iy, satisfying

(5.6.5) max 1(v;(t)) < by, + %

0<t<1

we can find a (0;,u;) € R x H}(R") such that

(5.6.6) distryar ) (0, 45), {0} x 7;((0, 1)) <

(5.6.7) u; — ug  strongly in H}(RM).

§|“

Here ug is a critical point of I satisfying I(ug) = bpyp. Since I(u) = I(|u|) for all u €
H}RY), we may assume v; € [',,,,, in (5.6.5) satisfies

v;()(z) >0 forallte [0,1] and z € RV.
Then it follows from (5.6.6) that

[(us) - < distroc @y ((6,15), {03 x;([0,1])) =0,

where u_(x) = max{0, —u(z)}. Thus we have (up)_ = 0 and by the maximum principle,
ug(z) > 0 in RY, and (a) is proved.
(b) To see (5.6.4), we can use argument in [55] and for any given nontrivial solution
v € HY(RY), we can construct a path v € I',,, such that

ve([0,1]), max I((t)) = I(v).

0<t<1

Thus we have (b) and the proof of Theorem 5.6.3 is completed. O]

5.7 Proof of Lemma 5.6.1

The aim of this section is to give a proof of Lemma 5.6.1. We will show that for any
up, u; € O, there exists a continuous path v in O joining uy and w;.

In this section, we write r = |x| and we identify u(r) and a radially symmetric function
u(z) = u(|z|). We set for R > 1, >0,

(0 if r € [0, R],

Co(r — R) if € [R,R+ 1],
n(R,t;r) =< (o ifre[R+1,R+1+1],

G(R+2+t—71) ifre[R+1+tR+2+1,

[ 0 if re[R+2+1t,00).

Here ¢y > 0 is given in (5-g3). In particular, we have G((y) > 0.

We will see that n(R,T;r) € O for large R, T and there exist continuous curves joining
u; (1 =0,1) and n(R,T;r) in O. Clearly this proves our Lemma 5.6.1.

We start with the following lemma.
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Lemma 5.7.1. There exist Ry > 1 and Cy, C7 > 0 which do not depend on R and t such
that:

(a) For all (R,t) witht > R> Ry, I(n(R,t;r)) < —CoG(¢o)tY
(b) For all R > Ry, supyc;cs I(n(R, t;7)) < CyRN-L,
(c) For all R > Ry, maxg<s<1 I(sn(R,0;7)) < C; RN
Proof. For R > 1, t > 0, a direct computation gives us
I(n(R,t;T)

R+1 R1+t R+2+t
s ( [ ) ( (R t57)? G(U(RJ;T))) N1y
R+1 R+1+t

<NIAB(R+DY —RY + (R+2+0)Y — (R+1+1)Y)

WN1

GG)(R+1+8)Y — (R+1)V),

where wy_; is the surface area of the unit sphere in R and B is defined by

(5.7.1) B= —Co + nax 1G]

We remark for R > 1 and ¢ >0
(R+ 1N = RY = NOIRY '+ NCoRY 2+ 4 8Oy < (¥Ci 4.+ vCy) RV
= (2" - 1R,
(R+2+t)N —(R+1+t)N <(@2¥ —1)(R+ 1+ )N L <2V 12V —1)(R+ )N !
(R+1+t)N —(R+ 1)V >V,
Thus there exists a constant C'y > 0 independent of R > 1, ¢ > 0 such that

(5.7.2) I(n(R,t;7)) < Co(R¥N '+ (R+t)N 1) — “’fjvv—lc;(go)tN.

(a)—(c) follow from (5.7.2). Indeed, if t > R, it follows from (5.7.2) that
I(n(R. 7)) < otV + (20 = LG ().

Thus for sufficiently large Ry > 1, (a) holds.
By (a), for each R > Ry, we have supg<; ., [(n(R,t;7)) = maxo<i<r I(n(R,t;7)).
From (5.7.2), we have
I(R,t;7)) < Co(RN"' 4+ 2R)N™Y) for t € [0, R].

Thus we have (b).
For (c), recalling (5.7.1), we have

I(sn(R,0;7)) < wN—1/

R

R+2

(%‘SUT(R, 0;7)]* — G(sn(R,0; r))) rNtdr

< “]]VV*B (R+2)N =RY) for s € [0,1].
Thus, choosing C} > 0 larger if necessary, we get (c). O
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Now, suppose ug, u; € O and we try to join uy and uy through n(Ry, Ty;7) (Ty > Ry >
1) in O. We remark that we may assume that ug, u; have compact supports and

supp ug, suppu; C [0, Ly] for some constant Ly > 0.

We consider the following curves:

Y1 : [Lo, Ry — HYRY), R+ uo(Lor/R),

v 1 [0,1] = HYRN), s+ ug(Lor/Ry) + sn(Ry, 0;7),

v 1 [0,T4] = HY(RY),  t > uo(Lor/Ry) + n(Ry, t;7),

7 [0,1] = Hi(RY), s (1= s)uo(Lor/Ry) + n(Ri, Tv; 7).

Joining these curves, we get the desired path joining ug and (R, T1;7). We need to show
with suitable choices of Ry, T7, our path is included in O.

Lemma 5.7.2. It holds that
(a) For all R € [Lg,00), I(ug(Lor/R)) < 0.
(b) There ezists an Ry > Ry such that
(5.7.3) I(uo(Lor/Ry) 4+ sn(Ry1,0;7)) <0 for all s € [0, 1],
(5.7.4) I(up(Lor/Ry) + n(Ry,t;7)) < 0 for all ¢ € [0, 00).
(¢) There exists a Ty > Ry such that
(5.7.5) I((1 = s)uo(Lor/Ry) + n(Ry, Th;7)) <0 for all s € [0, 1].
Proof. (a) Since uy € O, we have [py G(ug)dz > 0 and we can see that the map R —
I(up(r/R)) : [1,00) = HY(RY) is strictly decreasing. Thus (a) holds.

(b) We mainly deal with (5.7.4). Suppose Ry > Ry, where Ry > 1 is given in Lemma
5.7.1. We remark

supp uo(Lor/Ry) C [0, Ry}, suppn(Ry,t;7) C [Ry, Ry +2 + ).
Thus for all t > 0, R; > Ry,
I(uo(Lor/Ry) + (R, b)) = I(uo(Lor/Ra)) 4+ I(n(Ry, t;7))

1 /(R "2 , (R\" N
< (X (2 d .
=5 (LO) HVUQH2 LO . G(Uo) $+01R1

Here we used Lemma 5.7.1 (b). Thus for sufficiently large R; > Ry, we have (5.7.4).
Using Lemma 5.7.1 (c), we also get (5.7.3).
(¢) As in the proof of (b), for 73 > Ry, we have from Lemma 5.7.1 (a)

I((1 = s)uo(Lor/Ry) + (R, Tysr)) = 1((1 = s)uo(Lor/Ry)) + L(n(Ry, T1;7))
S I((]_ — S)Uo(LoT/Rl)) — G()TIN

Taking 7} > Ry large, we have (5.7.5).
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Proof of Lemma 5.6.1. We choose Ry > Ry and T7 > R; as in Lemma 5.7.2. We can see
7 ([Lo, R1]), 72(]0, 1]), v3([0, T1]), 74([0, 1]) C O and thus uy and n(Ry, Ty;r) are connected
by a continuous path in O. We can also join u; and n(Ry,Ti;7) in O in a similar way.
Thus Lemma 5.6.1 is proved. O
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Chapter 6

Existence of positive and infinitely
many solutions: inhomogeneous case

6.1 Introduction

In this chapter, we are concerned with the following nonlinear scalar field equation:

(6.1.1) { —Au = g(l\x],u) in €,
ue H (Q).

Here 2 C R is either the whole space = R or the exterior domain of the ball Br(0)

with radius R > 0 (Q = {z € R" : |z| > R}) and the function g(r,s) : [R,00) x R = R

is continuous in both variables and odd with respect to s € R. In the case where (Q is

the exterior domain, we consider (6.1.1) under the homogeneous Dirichlet or Neumann

boundary condition:

(D) u =0 on 01,
ou
(N) % =0on (‘BQ,

where v is the outward normal vector of 0€). Namely, we consider the following equations:

(Prv) —Au=g(|z|,u) inRY, wuwe H'(RY).
(Pp) —Au=g(|z|,u) in{|lz|>R}, u=0 on|z|=R, uecH{z|>R}).
ou
o
When Q = RY and g¢(r, s) does not depend on r, that is g(r,s) = g(s), (Pgr~) has
been studied by many researchers. For example, we refer to [14, 15, 16, 18, 19, 48, 55, 95]
and references therein.
On the other hand, when ¢(r, s) depends on r in a monotone decreasing way, Li and
Li [61] and Li [62] studied (Pr~) and (Pp). They showed the existence of a radial positive

solution and infinitely many radial possibly sign changing solutions for a suitable class of
nonlinearities (see Remark 6.2.3 for a precise statement).

(Py) —Au=g(|z|,u) in {|z| > R}, =0 onl|r|=R, uecH{lz|>R)}).
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One of the aims in this chapter is to deal with the Neumann boundary problem (Py)
as well as (Pgrw~) and (Pp), and give a generalization of the results of [61, 62]. Especially,
we relax the conditions on the behavior of g(r,s) near s = 0. In [61, 62], they assumed
lims0g(r,s)/s = —1 uniformly with respect to r (see Remark 6.2.3). However, our
main results (Theorems 6.2.1 and 6.2.2 below) enable us to deal with the following case:
—oo < liminf, oinf,>rg(r,s)/s < limsup,_,osup,~pg(r,s)/s < 0. Therefore we can
treat the following example: —Au = —(V (|x|) +a(|2]) sin®(1/u))u+b(|z|) f(u) in Q where
V(r), a(r), b(r) are monotone functions and f(s) is superlinear near s = 0.

Another aim of this chapter is to deal with nonlinear Schrodinger type problems with-
out a monotonicity assumption on g(r,s) with respect to r. Namely, setting g(r,s) :=
—V(r)s+ g(s) in (6.1.1), we consider the following equation:

(6.1.2)

When © = RY, Azzollini and Pomponio [7] studied (6.1.2) and obtained the existence
of at least one radial positive solution. We give an extension of their result to the exterior
problems (Pp) and (Py). Moreover, we show the existence of infinitely many solutions.
See Theorem 6.2.4 for a precise statement (see also Remark 6.2.5).

We will prove our theorems by variational methods and use the monotonicity method
due to Struwe [96], and developed by Jeanjean [54] and Rabier [91]. With the monotonicity
method, a newly developed Pohozaev type inequality (see Propositions 6.5.5 and 6.5.7)
will play important roles in our argument.

This chapter is organized as follows. We state our main results in section 6.2. In
section 6.3, we introduce an auxiliary functional J and prepare some lemmas. Proofs
of lemmas in section 6.3 will be given in section 6.6. In section 6.4, we define minimax
values based on the symmetric mountain pass arguments. Section 6.5 is devoted to prove
Theorems 6.2.1, 6.2.2 and 6.2.4. In section 6.6, we prove some lemmas.

6.2 Statement of main results

In this section, we state our main results of this chapter.

6.2.1 Results for the equation (6.1.1)

First we consider the equation (6.1.1). We assume that g(r, s) : [R, 00) x R — R satisfies
the following conditions. In what follows, we regard R = 0 if Q = RV,

(6-gl) g € C([R,00) x R,R) and g(r,—s) = —g(r,s) for all r > R and s € R.
(6-g2) If R <1 <1y <ooands>0,then g(ry,s) < g(ras).

(6-g3) Asr — 00, g(1,5) = gools) in L2

loc

(R).
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(6-g4) There exists an my > 0 such that

oo < liminf inf 9(r.s) < lim sup sup g(r,s)

< —ml
s=0 r>R § s—0 r>R S

(6-g5) For N > 3,
lim sup |g(r,_s)| =0 where 2"=2N/(N —2).

For N = 2,

lim sup lg(r, 5)]

> =0 forany a > 0.
s—00 > exp(as?)

(6-g6) There exist (; > 0 and R > Ry such that

inf G(r,(op) >0 where G(r,s) ::/ g(r,7)dr
r>Ro 0

Except for (6-g3) and (6-g4), the above conditions are same to the ones in [61, 62]. As
for (6-g4), this type of condition is used in [15, 16, 48, 95] when ¢(r, s) does not depend
onr,ie., g(r,s) = g(s) (cf. see also (g2) below). We remark that in [61, 62], they suppose
limg_,0 g(r, s)/s = —1 uniformly with respect to r, which is stronger than (6-g4).

For the Neumann problem (Py), in addition to (6-gl)—(6-g6), we assume

(6-g7) —o0 < slgff{G(R, s).
Our main results are as follows. First we state a result for (Py).

Theorem 6.2.1. Suppose that Q2 = {|x| > R} and (6-gl)—(6-g7) are satisfied. Then (Py)
has at least one radial positive solution and infinitely many radial possibly sign changing
solutions.

For (Pr~) and (Pp), we assume (6-g1)—(6-g6) and we do not need (6-¢7).

Theorem 6.2.2. Suppose that Q = RN (resp. Q = {|z| > R}) and (6-gl)—(6-g6) are
satisfied. Then (Pgr~) (resp. (Pp)) has at least one radial positive solution and infinitely
many radial possibly sign changing solutions.

Remark 6.2.3. In [61, 62], in addition to (6-gl), (6-g2), (6-g4)—(6-g6), they suppose that
the function ¢ has a form g(r,s) = —s + f(r,s) where f(r,s) = o(1) uniformly with
respect to r as s — 0 (cf. (6-g4)). Under these conditions, they proved the existence of
one radial positive solution and infinitely many radial possibly sign changing solutions to
(Prv~) and (Pp). However Theorem 6.2.2 enables us to deal with the following type of
equations: —Au = —(V(|z|) + a(|z|) sin®(1/u))u + b(|z|) f(v) where V, a, b are monotone
functions and f(s) is superlinear near s = 0.
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6.2.2 Results for the equation (6.1.2)

Next we consider (6.1.2) for N > 3. We write g(r,s) = —V(r)s + g(s) and assume the
following conditions:

(gl) g€ C(R,R) and g(—s) = —g(s) for all s € R.
g(s) g(s)

(g2) There exists an m; > 0 such that —oo < lim inf N5 <limsup == < —n
s—0 S s—0 S

9)

(g3) limsup 1S

S5—00

(84) There exists a (, > 0 such that G((y) > 0 where G(s) := / g(T)dr.
0

) , 1 , -
(85) —oo < slglg <—§V(R)S +G(s)) :

The conditions (g1)-(g4) are same to the ones in [15, 16, 48]. The condition (g5)
corresponds to (6-g7) above and is only needed for (Py). For V| we assume the following:

(6-V1) V € CY([R,00)) and V(r) > 0 for all r > R.
(6-V2) lim V(r) = 0.

=00

(6-V3) |[(z- VV(|z])"|

‘L%(\x|>R) < 2Sy where

Vu 22 N
(@ TV (el))* = max{O,0 VY (i} and Swo= g ol

we HLRN)\(0} [|ul]?,. BV '
When Q = R”, the above conditions (g1)—(g4) and (6-V1)—(6-V3) are same to the

ones in [7]. Next we give a remark about (6-V3). If g(r,s) = —V(r)s + g(s) satisfies

(6-g2), then we can see x - VV(|z|) < 0, which implies (6-V3). Therefore, we can relax

the monotonicity condition (6-g2) by (6-V3) for the equation (6.1.2).
Now we state a result for (6.1.2).

Theorem 6.2.4. Suppose that N > 3 and g(r,s) = =V (r)s+ g(s) satisfies (g1)—(g4) and
(6-V1)—(6-V3). Then the following hold:

(i) (Pr~) (resp. (Pp)) admits at least one radial positive solution and infinitely many
possibly radial sign—changing solutions.

(ii) Assume (g5) in addition to (g1)—(g4) and (6-V1)—(6-V3). Then (Py) admits at
least one radial positive solution and infinitely many possibly radial sign changing
solutions.

Remark 6.2.5. In [7], they showed the existence of one radially symmetric positive solution
to (Pgr~) with g(r,s) = —V/(r)s+g(s) under the conditions (g1)—-(g4) and (6-V1)—(6-V3).
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In the following, we give an idea of proofs of Theorems 6.2.1, 6.2.2, 6.2.4.
We will prove Theorems 6.2.1, 6.2.2 and 6.2.4 by variational methods, and find critical
points of

I(w) = %/Q|Vu|2d;1:—/QG(|x|,u)da:.

One of difficulties is to show the boundedness of Palais—Smale (for short (PS)) sequences.
In [61, 62], they introduced the following parametrized functional in order to obtain
bounded (PS) sequences: (cf. Remark 6.2.3)

I(u) == %/Q|Vu|2 + uldx — /QF(|:17|,u)dx — )\/Qq(|m|)B(u)dx, A€ 0,1].

Here F(r,s) := [, f(r,t)dt, and B(s) and ¢(r) are suitable penalty functions. The virtue
of their penalty functions is that I, satisfies the (PS) condition. However, the construction
is rather complicated.

In our proofs, we consider another parametrized functional to obtain bounded (PS)
sequences:

I(u) = %/Q|Vu|2dx —/QG(|x|,u)d$ - )\/QH(u)d:B A€ [0,1].

Here H(s) is also a penalty function which is different from B(s) in I, and we can construct
the function H(s) in a simply way (see the definition of H(s) in section 6.3). To obtain
critical points of I, we will apply the monotonicity method to . Here, we apply a version
of Rabier [91] (see Propositions 6.5.1 and 6.5.2), and obtain sequences (Ax) and (uy) such
that

e =0, —Au = g(|z|, ur) + Aeh(ug)  in €,

where h(s) := H'(s). To show that (u;) has a strongly convergent subsequence, we use
the Pohozaev type inequality (6.5.2), (6.5.8), (6.5.9). Here we remark that in [61, 62] they
used the Pohozaev Identity (for instance, see (6.5.7), (6.5.10), (6.5.11)) which includes the
term z - VG(|z|,u) and they need to approximate g(r, s) with a function of class C! in r.
However, in this paper, we introduce a new Pohozaev type inequality, which enables us
to argue without introducing approximations.

Our proofs can also be applied for the equation (6.1.2), namely g(r,s) = =V (r)s+g(s)
in (6.1.1). By virtue of our proofs of Theorems 6.2.1 and 6.2.2, we will be able to show
that not only (Pgrw~) but also (Pp) and (Py) admit at least one radial positive solution
and infinitely many radial possibly sign changing solutions under the conditions (g1)—(g4),
(6-V1)—(6-V3) or (g1)-(g5), (6-V1)—(6-V3).

6.3 Preliminaries

In this section, we introduce an auxiliary functional J and state some lemmas. A Proof
of Lemma 6.3.2 will be given in section 6.6.

First, we remark that when we consider (Pp) or (Py) under the assumptions of The-
orems 6.2.1, 6.2.2 or 6.2.4 we may assume R = 1 without loss of generality. Indeed, set
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Q = {|z| > R}, v(z) := u(Rx) and gg(r,s) := R?g(Rr,s). Then (6.1.1) is equivalent to
the following equation:
—Av = gg(r,v) in {|]z| > 1}.

Moreover, it is easily seen that g satisfies (6-g1)—(6-g7) in {|z| > R} if and only if gg
satisfies (6-gl)—(6-g7) in {|z| > 1}. In the case where g(r,s) = =V (r)s + g(s), set
Vr(r) := R?V(Rr) and ggr(s) := R?G(s). Then it is also clear that V and g satisfy
(6-V1)—(6-V3), (g1)—(g5) in {|z| > R} if and only if Vi and gg satisfy (6-V1)—(6-V3),
(g1)—(gb) in {|z| > 1}. Therefore to prove Theorems 6.2.1, 6.2.2 and 6.2.4, we may R = 1
without loss of generality.

Hereafter we mainly consider (Py) and let Q = {z € R" : |z| > 1}. Furthermore we
assume the following condition in this section:

(H1) The conditions (6-gl) and (6-g3)—(6-gb) are satisfied.

In order to obtain radial solutions, we consider the following function space:
E:=HXQ)={ue H(Q) : u is a radial function }.

The following properties hold (For (i) and (ii), see Berestycki and Lions [15], Strauss [95]):

(i) There exists a C > 0 such that for all u € E and |z| > 1,

—1

_N-1
(6.3.1) lu(z)| < Clz|™ "2 [|ul| g1(q)-

(ii) The embedding E C L(Q) is continuous for 2 < ¢ < 2* if N >3 and 2 < ¢ < oo if
N =2 and it is compact for 2 < q < 2* if N >3 and 2 < g < oo if N = 2.

(iii) For each s € (0, 1], we define the extension operator T, : H:({|z| > s}) — H}(RY)
by

u(lz) if 2] > s,
uw(2s — |z|) if |z] < s.

(6:3.2) (L)) := (Tou)(Jo]) = {

Then, for each s € (0,1] and u € H}({|z| > s}), it holds that
(633) Tl 2@y < V20ullaqassy 1V Tsull2@yy < V2] Vull2ass)-
Using (6.3.3), we have the following Sobolev inequality holds for N > 3:

(6.3.4)  Jull 2 (qujssp) < ClIVUll2(qopssy  for all w € H({|z] > s}), s € (0,1].
We define the following functional:
1
I(u) :== —/ |Vul|?dx — / G(|z|,u)dz : E — R.
2 Ja Q

We note that I € C'(E,R) under the condition (#;) and the functional I corresponds to
(Py). So, we will find critical points of I.
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Following chapter 5, we prepare a penalty function to construct an auxiliary functional.
For s > 0, we define f(s) and h(s) as follows:

f(s) :== max {0, %mls + sup g(r, s)} , h(s):=s" sup M

>1 0<r<s TP

Here m; is a constant appearing in (6—g4) and p is a positive number satisfying 1 < p <
(N+2)/(N—-2)if N>3and 1 < p < ooif N=2. Note that by (6-g3) and (6-g4), f
and h are well-defined. We extend h as an odd function on R and set

Then h and H have the following properties.

Lemma 6.3.1 (cf. Lemma 5.2.1 and Corollary 5.2.2 in Chapter 5). The following prop-
erties hold:

(i) h e C(R), 0 < h(s) and h(—s) = —h(s) for all s € [0, 00).
(ii) There ezists an so > 0 such that h = H = 0 on [—so, So.

(iii) For all s € R, it follows that

1 1
—mys® +sup g(r, s)s < h(s)s, —mys* 4+ sup G(r,s) < H(s).
2 r>1 4 r>1
(iv) It holds that
h(s)

lim ———=0 foralla>0 if N =2,

s—o0 exp(as?)
lim )

$—00 32* -1

=0 if N>3.

(v) The function h satisfies a global Ambrosetti—Rabinowitz condition:
0<(p+1)H(s) <h(s)s forall seR.
Here p appears in the definition of h.

Since we can prove Lemma 6.3.1 as in Lemma 5.2.1 and Corollary 5.2.2 in Chapter 5,
we omit a proof.

Next we rewrite the functional I as follows:

1 1 my
Ia) = 3IVulls ~ [ Glelwde = Sllully ~ [ "+ Gl s
Q Q
where my
lulfy o= IVl + 2 a3
We remark that || - ||z and the standard H'-norm are equivalent.
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Next, we define a parametrized functional I, ( A € [0,1] ) and an auxiliary functional
J which gives us lower bounds of minimax values b, () defined in section 6.4:

1
I(u) = 5 lully = | ZHu? + Gllal.w) + AH (w)dr € C1(E,R),
Q
I =3l ~ 2 [ Hwds € C(ER),
Q

Note that if A = 0, then [y(u) = I(u). Furthermore, by Lemma 6.3.1, I, and J satisfy
the following: for any 0 < A\ < Ay <1 and u € F,

(6.3.5) J(u) < Li(u) < I, (u) < Iy, (u) < I(u).
Now we state properties of I and J. Similar properties are obtained in [7, 48]

Lemma 6.3.2. (cf. Lemma 3.5 in [7], Lemmas 5.2.3, 5.2.5, Proposition 5.5.3 in Chapter
5) Set K(u):= |, H(u)dz. Then,

(i) The maps K : E — R and K" : E — E* are weakly continuous.
(ii) Any bounded (PS) sequence (uy) C E for I\ has a strongly convergent subsequence.

(iii) The functional J satisfies the (PS) condition.

6.4 Minimax arguments

In this section, we define minimax values b,,(A) of I, based on the arguments of symmetric
mountain pass theorem (cf. [48] and Rabinowitz [92]). In this section, we assume the
following conditions:

(H2) The conditions (6-gl) and (6-g3)—(6-g6) are satisfied.

First of all, we prove that I, and J have a symmetric mountain pass geometry under
the condition (#Hz). More precisely, we have

Lemma 6.4.1. The following hold:
(i) There exist 6 > 0 and p > 0 such that
0<6<J(u) forall ue E with ||u|lg = p,
0 < J(u) for all u € E with ||ul|g < p.

(ii) For each n € N, there exists an odd continuous map ~y, : S"~* — Hj .(Q) such that
Io(ym(0)) <0 forall o € S™ 1.
Here

S"ti={o=(01,...,0,) ER":|o| =1}, Hy,(Q):={uec E:u(l)=0}
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Remark 6.4.2. By (6.3.5), we see that I, and J have a symmetric mountain pass geometry.

Proof. We only prove (i). (ii) will be proven in section 6.6.
First, we show for N > 3. By Lemma 6.3.1, there exists a C' > 0 such that

H(s) < Ols|* forall s € R.
Using Sobolev’s embedding, we obtain

J(w) > Jullp — Cllu

oy = Il = Cllulz ).

Thus (i) holds for N > 3.
Next we consider the case N = 2. By Lemma 6.3.1, there exists a C; > 0 such that

H(s) < C1®(s%/2) where ®(s) := exp(s) — 1 — s.

By Lemma 6.6.2 (iii), we have
/ H(u)dx < Cy||u|| for all u € E with ||jul|g < 1.
Q

Thus it follows that if ||ul|z < 1, then
J(w) = [ullf = Collulg,
which completes the proof of (i). O

Next, we define minimax values of I, and J using mappings (7,) appearing in Lemma
6.4.1.

Definition 6.4.3. For each n € N and A € [0, 1], we define b,,(\) and ¢, as follows:

b(N) := inf max I\(y(0)), ¢, := inf max J(v(0)),

~vEDy o€D,, €Ly 0€Dy,
where
D,={ceR":|o|<1}, T,:={y€C(D,,E):~visoddand vy =+, on S"'}.
The values b, () and ¢, have the following properties.
Lemma 6.4.4. The following properties hold:
(i) T # 0 for alln € N.
(ii) For each 0 < A < Ao < 1, bp(A2) < bp(Ay).

(iii) For each n € N and X € [0,1], it holds that 0 < 6 < ¢, < b,(\) where § appears in
Lemma 6.4.1 (i).
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Proof. (i) We define 4, as follows: for o € D", 7,,(0) := |o|y(c/|o|). Then 74, € ;..
(ii) By (6.3.5), (ii) holds.
(iii) By (6.3.5) and (i), it holds ¢, < b, () for each A € [0,1]. The property 6 < ¢, follows
from the fact
{u€e E:|ullg=ptn~(D,) #0 forallyel,.

]

Since J satisfies the (PS) condition by Lemma 6.3.2, we can show the following lemma
by Theorem 7.1.1 in Chapter 7.

Lemma 6.4.5. (c.f. Lemma 5.3.2 in Chapter 5)  The following hold:
(i) The values c,is a critical value of J.

(ii) Asn — o0, ¢, — 0.

6.5 proofs of Theorems 6.2.1, 6.2.2 and 6.2.4

In this section, we prove Theorems 6.2.1, 6.2.2 and 6.2.4 by using the monotonicity method
and the Pohozaev type inequality (Propositions 6.5.5 and 6.5.7).

6.5.1 Monotonicity method

First, we will recall Rabier’s result [91]. Let (X, ||-||) be a Banach space and A4 : X — R,
B:[0,1] x X — R be C*' functionals and set Z(u) := A(u) — B(\,u). We assume that
A and B satisfy the following:
(BPS1) B(-,u) is nondecreasing on [0, 1] for every u € X.
oB
BPS2 li — = 0.
(BPS2) By 00 DA (A u) = o0

(BPS3) lim A(u) = oo.

llull—o0

Moreover, we suppose that there exist e, e € X such that
(BSP4) max{Z,(e1),Zx(e2)} < ¢y for all A € [0, 1].

Here

I":={y € C([0,1], X) [ 7(0) = e1, 7(1) = e2}.
Then the following proposition holds.

Proposition 6.5.1 (Rabier [91]). Under the conditions (BPS1)—(BPS4), for almost every
A € [0,1], Z) has a bounded (PS) sequence at level cy.

We will apply the above proposition for the functional which satisfies the symmetric
mountain pass structure. Assume the following conditions in addition to (BSP1)-(BSP3):
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(BPS5) A(—u) = A(u) and B(\, —u) = B(\,u) for all w € X and A € [0, 1].
(BPS6) For each n € N, there exists a continuous odd map ~; : S"~ ' — H!(Q) such that

max Zy(7: (o)) < dn(N).

ocesn—1

Here

d,(A) ;== inf maxZ,(y(0)),

yel}, oeD™

I*:={y€C(D,,E):visodd and v = on "'}

The following proposition holds from the arguments in [91].

Proposition 6.5.2. Suppose (BPS1)—-(BPS3), (BPS5)—~(BPS6). Then, for almost every
A € [0, 1], there exists a bounded (PS) sequence of I, at level d,(\) for all n € N.

Next, we show that we can apply Proposition 6.5.2 for I, to obtain a bounded (PS)
sequence of 1.

Lemma 6.5.3. Under the assumption (Hsz), for almost every X € [0,1], I has a bounded
(PS) sequence at level b,(\) for all n € N.

Proof. Set X :=E, v 1=,
1
Alw) i= S llullz,  BOw) / M2 4 Gl u) + AH (u)de.

It is easily seen that (BPS1), (BPS3) and (BPS5) are satisfied. Moreover, by Lemmas
6.4.1 and 6.4.4, (BPS6) holds. As to (BPS2), by Lemma 6.3.1, we have

B(Au) < (1+ ) / H(u)dx

On the other hand, it follows that

oB
5()\7“) :/QH(u)dx

which implies (BPS2). Then by Proposition 6.5.2, for almost every A € [0,1], I, has a
bounded (PS) sequence at level b, () for all n € N. O

Combining Lemmas 6.3.2 and 6.5.3, we have the following:

Proposition 6.5.4. Suppose that (Hs) is satisfied. Then for almost every A € (0,1],
there is a critical point uy, € E such that I (uy,) = b,(\) for all n € N.

From Proposition 6.5.4, it follows that for each n € N, there exist (A, x) C [0,1],
(unx) C E such that A, — 0 and

(651) ]>\n,k (un7k‘) = bn<)\n,k)7 ];\n,k<un7k) - O

129



6.5.2 Pohozaev type inequality

To show that (u,,) in (6.5.1) is bounded, we introduce the following Pohozaev type
inequality.

Proposition 6.5.5. Assume that the conditions (6-gl)—(6-g6) are satisfied. Let uy € F
be a solution of

0
—Au = g(|z|,u) + Ah(u) in Q, % =0 on 012,
where v is the outward normal vector of 0S). Then uy satisfies the following:
N -2

(6.5.2) Tuqunzz —N/G}qu,u]v)dxz/ Ga(|), uy)dS.
Q o0

Here G(|z],s) :== G(|z],s) + NH(s).
Proof. Note that under the conditions (6-gl)—(6-g6), uy has an exponential decay:
lun ()| + |ty (r)| + [un (r)] < Crexp(—Cor) for all r > 1.

Therefore z - Vuy € H'(2) and the curve n(t) := uy(tz) : [1,2] — H(Q) is of class C*.
Since I§(uy) = 0, we have

d

(6.5.3) Eh(n(t))’t:l = I\ (un(x))(z - Vuy(x)) = 0.
On the other hand, it holds that
(6.5.4)
—tiNH uy(z)Pde —t™ mu Y un |z T
no) == [ vus@par = [ 6 (SLuded) « ey
By (6-g2), it follows that
(6.5.5)
L) = It = 5 /|>t|VuN($)|2diE—tN | |>tG(!x|7uN(|ﬂfD)+AH(UN(!5E\))dSC-

~

Noting that I(n(1)) = Ix(1), from (6.5.5), we infer

L) = L) L(t) = L(1)

(6.5.6) 1 1

for all t € (1,2].

By (6.5.3),
I(n(t)) — In(n(1))
t—1
On the other hand, since Juy/Jv = 0 on 0f), it is easily seen that

L\(t) — 1(1)
t—1
N -2 )
— — THVUNHLQ + N | G(|z|,un) + NH (uy)dz + G(|z|,un) + NH (uy)dS
Q o0

—0 ast—1+0.
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ast — 1+ 0. Thus, from (6.5.6), we conclude that

N -2
2

/ G(|z|,un) + AH(uy)dS < ||VuN||%2 - N/ G(|z],un) + AH (uy)dzx.
a0 Q

]

Remark 6.5.6. If we suppose that g is of class C! with respect to r in addition to (6-gl)-
(6-g6), then the Pohozaev Identity holds:

(6.5.7)
N -2

THVuNH%z(Q)—N/C;'A(|x|,uN)dx:/x.VG(|:B|,uN)d:B—|—/ G|, uy)ds.
Q Q o0

Thus from (6.5.7) and (6-g2), we can see that (6.5.2) holds. Noting that the right hand
side of (6.5.4) is differentiable with respect to ¢ and combining (6.5.3), we can obtain
(6.5.7). See also Lemma 1.4 in Chapter III of Struwe [98].

Here we also state the Pohozaev type inequality for (Pr~) and (Pp).

Proposition 6.5.7. Assume that (6-g1)—(6-g6) are satisfied. Let up € Hy,(Q) ( resp.
ugny € HY(RY) ) be a solution of

—Au = g(|z|,u) + A h(v) inQ, u=00n0Q (resp. —Au = g(|z|,u)+Ah(u) in RY).

Then up (resp. ugy € H}(RYN) ) satisfies the following:

N —2 5 1 dup\’
N —2 .
(6.5.9) < resp. THVURNH%Q(RN) — N/ Gi(|z|, ug~)dx > O> :
RN

Remark 6.5.8. As in Remark 6.5.6, if g(r,s) is of class C! with respect to r, then the
following Pohozaev identity holds:

(6.5.10)

N -2 2 A 1 oup 2
——|IVupl|z: = N | Gi(Jz|,up)dx = | x-VG(|z|,up)dx + — ] dS,

2 Q Q 2 Joo \ v
(6.5.11)

N —2 .
(resp. THVURNH%Q(RN) —N/RN Gi(|z], upn)dx = /RNx-VG(|x|,uRN)dx) :

By (6-g2), we can show (6.5.8) and (6.5.9) from (6.5.10) and (6.5.11).

Proof of Proposition 6.5.7. We only show for up since a proof for ug~ is similar to the
one of Proposition 6.5.5.

For the Dirichlet problem, critical points of I € C*(H{ (), R) corresponds to solu-
tions. However, for technical reasons, we regard I, € C'(H'(Q),R) in this proof. We
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set 7(t) := up(tx) € CY([1,2], H(2)) and as in the proof of Proposition 6.5.5, we shall
calculate J

EL\( )|t:1'

Since up satisfies —Aup = g(]xL p)+ Ah(up) in Q, up = 0 on 0F2, using integration
by parts, for any ¢ € H'(2) N C*()), we have

I (up)y / Vup - Vodr — /Q(g(|x|,uD) + AM(up))pdr = — /89 Vup - zpdS

Noting 77/(1) = = - Vup(z) € HY(Q) N C*(Q), it follows that

d _ Oup ?
(6.5.12) EIA( N, = —/m (E) ds.

On the other hand, set

t*NJrQ
L) = / Vup(e)Pdz — - | G|l un) + \H (up)dz,
|z[>t

2 o>t

then we have

2
(6.5.13) 1(1) = =X =2 Tup|2, — 1/ 9un ) g+ N/ (2], up) + NH (up)da.
2 2 o0 3V Q

Since 1(7(t)) > I,(t) and I(77(1)) = I,(1), by (6.5.12) and (6.5.13), it follows that

8uD

1 ? N—2
—/ —= ) dS < |Vupl32 — N/ G(|z],up) + AH (up)dz.
2 el 81/ 2 Q

6.5.3 Proof of Theorem 6.2.1

Now we prove Theorem 6.2.1. Suppose that the conditions (6-gl)—(6-g7) are satisfied.
Let (un ) be a sequence satisfying (6.5.1) and set

buo = lim b,(A) = lim I, (thns) € [bn(1),b,(0)]
A—0 ’

k—o0

Proposition 6.5.9. There exists a C,, > 0 such that ||upi||p < C,, for all k € N.

Proof. First, we prove that (V)2 is bounded in L*(Q). Since I} (uni) = 0, by
Proposition 6.5.5, we have 7

N —
—/ G(|z|, unk) + Mg H (upp)dz > — 5N HVunkHLz
(6.5.14) X
+ = G(1,un k) + Ak H (1) dx.
N Jaq
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From (6.5.14), we obtain

1
bn(An k) :§|lvun,k”%2(ﬂ) - / G(|2|, unk) + A i H (wnp)dx
(6.5.15) 5

1 1

Noting that H(s) > 0 for all s € R, limy_, by, (An ) = bno < b,(0) and (6-g7), we deduce
from (6.5.15) that there exists a C}, > 0 such that ||V, k| 2 < C, for all k € N.

Next, we show ||u, ||z < C, for all k£ € N. First, we consider the case N > 3. By
Lemma 6.3.1, it holds

1 m
bn(Ang) = In, . (Unk) = —||Un,kH%E - / —2u? o+ G(|2], wne) + Ao H () dx
(6.5.16)

1 o
> lumalfy = (1 Aa) [ Hlwdo = Sl - o

From (6.3.4) and (6.5.16), it holds that

1
(6.5.17) bn(Ank) > HunkHE

2*
L2(Q)

Since by, (Anx) and (|| Vil r2(0))i2, are bounded, taking C,, sufficiently large, ||u, x|z <
C,, follows from (6.5.17).

Next we consider the case N = 2. Following the arguments in [61] (cf. Proof of
Proposition 5.5 in [56]), we prove indirectly. Assume that rj := ||unk||221(m — 0. Set

we(@) = (T, 00) (@), (@) = tny (f—k) . Q= {z e RY |z > 1),

where T, defined by (6.3.2). From ||V r2(0,) = | Vur| 2@), |0kl 220, = 1 and (6.3.3),
(vg) is bounded in H'(R?). Therefore, we may assume

v — vy weakly in H'(R?) and wi(z) = v(x) a.a. z € R

Next, we show vy = 0. We remark that since vi(z) = Ux(x) in Qf, vy, satisfies

_rkAUk =g (m Uk> —+ )\n,kh(vk) in Qk,

Tk
vy, (ry) = 0.

By the boundedness of (v;) in H*(R?), for any ¢ € C5°(R?) with supp ¢ C R*\{0}, we
can show

(6.5.18)

(6.5.19) / h(vg)edz — h(vo)pdzx, / g (m,vk) edr — Joo (Vo) pdx.
Q. R2 Q Tk R2

By (6.5.18) and (6.5.19), we obtain
/ Joo(v0)ipdz = 0 for any o € C3°(R?) with supp ¢ C R*\{0},
R2
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which implies
(6.5.20) goo(vo(2)) =0 a.a. r€ R

Since vy € H}(R?) C C(R*\{0}), (6-g4) and (6.5.20), we infer that vy = 0.
On the other hand, by (6.5.18), we have

(6.5.21) r? |V |2 de = / g (m,vk> Uk + A ph(vg)vpda.
Qe Qe Tk

Therefore it follows from (6.5.21), 1 = ||0x||2(q,) = ||vkll22(0,) and Lemma 6.3.1 that

m1 my
0 <55 = SHlonlZan) < VRl + SHlvellEao,)

_Uk +9 < al k) v, + Ah(vg)vpde < (1+ )\mk)/ h(vg)vgdz.
Qp k Q

Since A, < 1 and h(s)s > 0 for all s € R, we obtain

(6.5.22)

my
2

R2

On the other hand, since v, — 0 weakly in H'(R?), by Lemma 6.3.2 (i), we have

/ h(vg)vrdx — 0.
R2

This contradicts to (6.5.22), therefore it holds that ||uy x|/ z2(q) < Cn, which completes the
proof. O]

By virtue of Proposition 6.5.9, we have
Corollary 6.5.10. The sequence (un ;)52 is a bounded (PS) sequence at level by, o for I.

Proof. We remark that it holds that

[Lo(unge) = D (ne)| < Mo (unge)s [ (U)o — I3, (g )@l < Al [ K ()|

E* <P||E-

By Lemma 6.3.2 and A, — 0, we can prove Io(uyx) — bno and I} (u, ) — 0 as k — oo.
Thus (un k)52, is a bounded (PS) sequence at level b, o for I. O

Now we complete a proof of Theorem 6.2.1.

Proof of Theorem 6.2.1. For each n € N, by Corollary 6.5.10, there exists a bounded
sequence (U )5, C E

Io(ung) = bno,  Iy(ungk) = 0 as k — oo.
Thus by Lemma 6.3.2 (ii), there exists a u, o € E such that
Io(uno) = bno,  Io(unp) = 0.
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On the other hand, by Lemmas 6.4.4 and 6.4.5, b, o — 00 as n — oo. Therefore we can
show the existence of infinitely many radial solutions.
In order to obtain positive solutions, we modify g(r, s) as follows:

(r.s) = g(r,s) if s >0,
P00 s <o,

Then any nontrivial radial solution of
—Au=gy(lel,u) nQ W(1)=0

is positive on {|z| > 1} by the maximum principle. Thus we will find a critical point of

1
L(w) = 5 Vulfe = [ Golel.u)ds,

We can prove that /. has a mountain pass geometry as in Lemma 6.4.1. Moreover, using
the monotonicity method as before, we can show that I, has a nontrivial critical point.
Thus we complete a proof. O

6.5.4 Outline of proof of Theorem 6.2.2

In this subsection, we give an outline of proof of Theorem 6.2.2. Throughout this subsec-
tion, we assume the conditions (6-g1)—(6-g6).
As in the Neumann case, we define the following functionals: for each A € [0, 1],

1
Ipa(v) = S [IVullia —/QG(leyv) +AH(v)dz € C'(H,y,(Q), R),

1
() = 5Vl = [ Gl w)+ AH(w)do € O (1} (RY).R),

1
Jrw (W) = §||Vw||2LQ(RN) — 2/RN H(w)dr € C*(HHRN), R).

Then, noting H;,(2) C H}(RY), we can see that
Jry(v) < Ipa(v),  Jrv(w) < Ijw s(w)

for all A € [0,1], v € Hj,(Q), w € H}(RY). Furthermore Ip , Inn~ ) satisfy (6.3.5).
Let v, € C(S"', Hy,(Q)) appear in Lemma 6.4.1. Then ~, € C(S"', H}(R")) and
we can define minimax values for Ip \, Ig~ \ and Jgn:

bup()i=_ It maxIpa(1(0)), burv(Y) = dnf ima Texa(7()

CpRN ‘= ’Yeli—‘riiN max Jrv (v(0)),

where
Lop ={y € C(Dy, Hy,(Q)) : 7=, on S" '},

L,rv = {y € C(D,, H}(RY)) : v =4, on S"7'}.
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It is easily seen that all lemmas in sections 6.3 and 6.4 hold if we replace I, J, b, (), ¢, by
Ipx, Irv .y, bpp(N), byry(A), ¢, rv. Moreover, we can apply the monotonicity method
for Ip and Igw~ , (cf. Lemma 6.5.3). Therefore for each n € N there are sequences
(An) € [0,1], (vnk) C Hy,(Q), (wnx) C HY(RY) such that A, — 0 and

Ip i (Ung) = b p(Ank), I/D,)\nyk(vn,k) =0,

]RN’)\n’k(wnJg) = bn,RN (/\mk), I{:{N)\n,k (wmk) =0.

As in the Neumann case, it is sufficient to show that (v, )72, (resp. (w,x)52,) is bounded
in Hj, () (resp. H}(RY)). Using (6.5.8) and (6.5.9) instead of (6.5.2), it is easily seen
that (vn)52; (resp. (wn)2,) is bounded in Hy () (resp. H}(RY)) in a similar way to
the proof of Proposition 6.5.9.

The remaining part of proof of Theorem 6.2.2 is the same as the proof of Theorem
6.2.1, so we omit it.

6.5.5 Proof of Theorem 6.2.4

In this subsection, we prove Theorem 6.2.4 and let g(r,s) = =V (r)s + g(s). We only
consider (Py), since proofs in other cases are similar. As mentioned before, we can
suppose 2 := {x € RN : |z| > 1}. Furthermore, as in [7, 15, 16, 48], instead of (g3), we
can assume

(83) tim 28 g,

§—00 52*_1

Indeed, set

¢y := inf {s € [Co, 00) : G(s) = 0}

where {y > 0 appearing in (g4). If §(s) > 0 for all s > (o, then we set ¢; = co. We define
g(s) as follows:

N ECRELS

Then g satisfies (g1), (§2), (g3') and (g4). Moreover, any solution of

(6.5.23) —Au+ V(|z])u =g(u) in Q, % =0 on 01,
v

satisfies ||ul|z() < ¢ by the maximum principle. Therefore any solution of (6.5.23)

satisfies (Py) with g(r,s) = —V(r)s + g(s), which implies that we can assume (g3')
instead of (g3) without loss of generality.

As stated in the above, we prove Theorem 6.2.4 under
(H3) N > 3, the conditions (g1), (§2), (g3'), (84), (g5), (6-V1)—(6-V3) are satisfied.
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Under the condition (H3) we will find infinitely many critical points of

. 1 1 5 5 -
T(u) == < | Vul2aq + —/ (v<|xy) + @> uldz —/ M2 4 Gu)da
2 2 /g 2 a0, 4
_ 1 2 my 2 ~
= 2HuH /Q i + G(u)dz,

where 7, appears in (g2) and G(s =5 a(

In this case, we can define h E C(R) satlsfylng Lemma 6.3.1. Thus we define an
auxiliary functional J and parametrized functional I, for each A € [0,1]. We note that
all lemmas and propositions in section 6.4 hold for these functionals. Moreover, noting
V(r) — 0 as r — oo and a proof of Proposition 6.6.1 in subsection 6.6.1, we can also
prove that I, J have a symmetric mountain pass structure and define by ()\) and ¢, as in
Definition 6.4.3. Furthermore, we see that all lemmas in section 6.3 hold. By Proposition
6.5.2, for each n € N there exist (A, )32, and (,4)7>, C HN(Q) such that \,; — 0 as
k — oo and

Iy, (ing) = bag)s I (i) =0
Next, we show that (@, k)32, is bounded in H}(Q).
Lemma 6.5.11. There exists a C,, > 0 such that ||, .| < C, for all k > 1.

Proof. As in Proposition 6.5.9, firstly we show that (Vi, ;)52 is bounded in L?(Q2). By
Remark 6.5.6, @, satisfies

1 ~ -
—/V(\x|)ﬁi7kd1’—/G(ﬁmk)—i—)\n’kH(ﬂn,k)dx
Q Q

2
Lo 1 o
1 _ .
onN
By (g5) and Holder’s inequality, there exists a C' > 0 such that

- 1, 1 . - - .
Iy, (i) = §Hvun,k\|i2(m+§ /Q V(|a|)ay jdo — /Q G (i) + Mg H (1 )d

1 1
= L Va2 ——/x.vvqxpag di
N B 9N Jq ok

X ) i
+ /aﬂ ~5 VO g+ G i) + MooH ()5

1. 1 .
> IVl — 5l YV ()| -C.

L%(Q) ||/a"7ql€ |’i2* (Q)

We extend ,,, as follows:

np(1) if |z < 1.

A Gup(lal) i |2l > 1
Up () =
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Then it is clear that 4, € H}(RY), Vi il 2myy = [[Vingllz2) and ||t el p2e @) <
[[in 1 || 2 mvy.  Furthermore, since H'&n,kHiQ*(RN) < HVﬁn’kH%Q(RN)/SN holds, we obtain
[ ]| @ < Vi 1|72/ Snv- Here, from (6-V3), we can take an o > 0 such that

Gz - VV (J2])) < 25N — €o.

+
HL%(Q)

Then we have

125y —¢ . -
—== ° ||Vun,k|]%2(9) —-C> 51||Vun,k||2L2(Q) -C

~ B 1 B 9
I;\n’k(un,k) > NHvun,kng(Q) - NW

for some £; > 0. Thus there exists a C;, > 0 such that ||V, |2y < C, for all k € N.
Since a proof of the boundedness of (i, )72, in L*(Q) is similar to the one of Propo-
sition 6.5.9, we omit it. (]

Now we complete a proof of Theorem 6.2.4.

Proof of Theorem 6.2.4. From Lemma 6.5.11, we see that (@,x)5>, is a bounded (PS)
sequence for I as in Corollary 6.5.10. Therefore we can show the existence of infinitely
many solutions as in Theorem 6.2.1. For the existence of at least one positive solution,
we replace I by

I (u) = %/Q|Vu]2 + V(x| u’dx — /QCNLF(u)dx

where G (s) = Jy G+(7)7. In this case, we can show the existence of nontrivial critical
point in the similar way to the proof of Theorem 6.2.1. O

6.6 Proofs of Proposition 6.4.1 (ii) and Lemma 6.3.2,
and technical lemma

In this section, we prove Proposition 6.4.1 (ii) and Lemma 6.3.2. Moreover, we state a
useful lemma. First, we give a proof of Proposition 6.4.1 (ii).

6.6.1 Proof of Proposition 6.4.1 (ii)

In this subsection, we prove the following proposition.

Proposition 6.6.1. Let Q = {x € RN : |z| > 1} and (H,) be satisfied. Then for each
n € N, there exists a continuous odd map v, : S~ — Hg () such that

I(y.(0)) <0 for all o € S"*.

Before proving Proposition 6.6.1, we introduce some notations. First, we define G(s)
for s > 0 as follows:
G(s) :== inf G(r,s),

r>Ro
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where Ry appears in (6-g6). By (6-g3) and (6-g6), G(s) is well-defined and satisfies
G(¢p) > 0. We also set

1
I(u) = S| VullZa@yy — | G(u)dz € C(H,(RY),R).
2 RN

Note that if v € H}(Q) and suppu C {|z| > Ry}, then I(u) < I(u). Therefore it is
sufficient to prove that there exists a continuous odd map v, : S~ ! — H!(Q) such that

(6.6.1) L(vn(0)) <0, suppyn(o) C {|z| > Ro} for all ¢ € S™1.

Proof of Proposition 6.6.1. By the arguments of Theorem 10 in [16], for each n € N,
there exists a 7, € C(S" !, H}(R")) such that

Tn(—0) = = (o), |[|mn(0)| oo@yy = Cos / G(mp(0))dx >1 forall o € S™ 1
RN

We modify 7, to obtain =, satisfying the property (6.6.1). Let ¢ € C*([0,00)) be a
cut-off function such that

0 ift<l,

and set pp(t) = @(kt) and ni(o)(x) = @i(|z])m(0)(x) for k € N. Then it holds
supp i (o) C {|z| > 1/k} for all ¢ € S"~! and

/ G(ng(o))dr — G(mp(0))dr as k — oo uniformly w.r.t. o € S"71,
RN RV

since 7, (S"1) is bounded in L>®(RY). Therefore for a large ky € N, we have

for all 0 € S™ 1.

(66.2) | GlnJar=

We consider n,(0)(x/t) for t > 1. By (6.6.2), we see that supp nk,(o)(-/t) C {|z| >
t/ko} and

L (@)/0) = 02 (190, ~ ¢ [ Gl
< (ST~ 5 )

Since ||V, (0)|| 2wy is uniformly bounded with respect to o € S"~!, we can choose a
to > 1 satisfying to/ko > Ry and

I(ne,(0)(-/tg)) <0 for all o € S™ 1.

Set Y, (o) (x) := ng, (o) (x/to), then ~, satisfies (6.6.1). The oddness and continuity of
vn, follows from the ones of 7, which completes a proof. O
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6.6.2 Proof of Lemma 6.3.2

Next we give a proof of Lemma 6.3.2.

Proof of Lemma 6.3.2. (i) First we show that K is weakly continuous. Let uy satisfy
ur, — up weakly in E. Without loss of generality, we may assume

ug(x) = up(z) aa.x e, |ullp <M.

Since (uy) is bounded, by (6.3.1) and Lemma 6.3.1, there exists an R; > 0 such that if
|z| > Ry, then H(ux(z)) = H(uo(z)) =0 for all & > 1. Therefore, it is sufficient to show

/ H () — H(u)|d — 0.
ONBg,

We set Q(s) == [s]* (N > 3), Q(s) := exp(s*/(2M?)) — 1 — s?/(2M?) (N = 2). Then
by Lemma 6.3.1, for each € > 0 there exists an s. > 0 such that if [s| > s., then
H(s) <eQ(s). We define H(s) as follows:

f(s) = H(s) ?f ls] < s,
H(s.) if |s| > s..

Since H is bounded, it is easy to see that

A ~

H(uy) = H(up) in L'(QN Bg,).
On the other hand, since |H(s) — H(s)| < eQ(s) we have
/ |H () — H(uo)|dz
QNBg,
S/ H (ur) = H(ug)| + | H (ug) — H(uo)| + | H(uo) — H(uo)|dz
QﬁBRl
<= [ QM)+ Quuo)de + 1 ur) B ) |uxorn,
QQBRI
Thus to prove the weak continuity of K, it is sufficient to prove

(6.6.3) sup/QQ(uk)dx < 00.

k>1

In the case N > 3, (6.6.3) follows from Sobolev’s inequality and in the case N = 2,
(6.6.3) holds by Lemma 6.6.2 (iii). Therefore K is weakly continuous.
Next we prove that K'(uy) — K'(ug) strongly in E*. Since

K'(up)p = /ﬂh(uk)go dr forall p € E,
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if we can show

2 if N =2,

6.6.4 h h trongly in LV ($ =
( ) (ug) — h(ug) strongly in (), pn {2N/(N—|—2) if N >3,

then K'(ug) — K'(ug) strongly in E*.
We prove (6.6.4). As in the above, there exists an Ry > 1 such that if |z| > Ry, then
h(ug(z)) = h(ug(x)) = 0 for all k > 1. Therefore we only show

h(ug) — h(ug) strongly in LPN (2N Bg,).

Set Q(s) := exp(s?/(8M?)) — 1 — s2/(8M?) (N = 2), Q(s) := |s|N+D/WN=2) (N > 3).
By Lemma 6.3.1, for each ¢ > 0, there exists an s. > 0 such that if [s| > s., then
|h(s)] < eQ(s). Define h(s) as follows:
h(s) if |s] < s,
h(s):=< h(s.) if s> s,
h(—s.) if s < —s..

Then we have h(uy) — h(ug) strongly in LP¥ (Q N Bg,). Therefore, to prove (6.6.4), it is
sufficient to show

(6.6.5) sup/ Q(ug)"Ndx < 0.
Q

k>1
In the case N > 3, by Sobolev’s inequality and py(2* —1) = 2*, (6.6.5) holds. In the case
N = 2, we remark that Q(s)? < Q(2s) for all s € R. By Lemma 6.6.2 (iii), we have

sup/ Q(uk)zdx < sup/ Q(2uy)dx < C'sup HukH% < 0,
Q Q k>1

k>1 E>1

which implies (6.6.5). Therefore K'(uy) — K'(ug) strongly in E*.
(ii) Let (ur) C E be a (PS) sequence at level ¢ for Iy and |lug||p < M. Since (uy) is
bounded, there exist uy € E and subsequence (ug,) such that

ug, — up weakly in F, u,(z) = up(x) a.a.z e

(
Let ¢ € C55.({|z| > 1}) := {¢ € C*({|z] > 1}) : ¢(z) = ¢(]x|) and supp ¢ is compact}.
Set py =2 (N = 2), py :=2N/(N +2) (N > 3). Applying the similar arguments in the
above, we can show

g(J2] we,) — g(Jal, uo(x)) strongly in PN (2 (1 By),
h(ug,) — h(ug) stronlgy in LPN(2)

for all R > 1. Therefore we obtain
(6.6.6) /g(|x|,ukl)<pdx — / g(|z], up)pdz, / h(ug, )ug,de — / h(ug)uodz.
Q Q Q Q
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Noting that I}(ug,) — 0, by (6.6.6), we see that I}(ug)p = 0 for all ¢ € Cg5.({|z| > 1}).
Since CF5.({|z] > 1}) is dense in £, I}(ug)uo = 0 holds, that is,

(6.6.7) uoll% = / —Lu2 + g(|z), uo)uo + Mh(ug)ugd.

On the other hand, since (uy,) is bounded, we have I} (ug,)ur, — 0, which implies
m

(6.6.8) g, |5 — /Q %ui( + g(|z|, ug, Juk, + An(ug,)ug,dx — 0.

Next, we rewrite

/ —u,% + g(|z|, uk, )uk, + A(ug, )ug,dx

my o

=(14+X) /Q h(ug, )ug,dx — /Qh(ukz)uké - 71“14[ — g(|x|, ug, ) ug,dz.

By Lemma 6.3.1 and Fatou’s lemma, we have

(6.6.9)
liminf | h(ug,)ur, — m —ui, — g(|z|, ug, )up,dr > / h(ug)ug — ﬂug — g(|z|, up)updz.
By (6.6.6)—(6.6.9), we obtain
m
hren sup |lug,||% < (1+ /\)/ h(ug)uodx — / h(ug)ug — 71u0 g(|x|, uo)updx
—00 (9]

/ —uo + 9|z, uo)uo + Mh(uo)uodr = ||uol|%-

Thus wy, converges to ug strongly in £, which completes the proof.

(iii) Next we prove that J satisfies the (PS) condition. Let (ux) C E be a (PS) sequence
at level ¢ of J, i.e., J(uy) — c and J'(ur) — 0 strongly in E*. Since h(s) satisfies a
global Ambrosetti-Rabinowitz condition, we can infer that (uy) is bounded. Indeed, the
boundedness of (u) in E comes from

J’(uk)uk

J(ug) — 1

2 1
—(1- == > [ H(u) — ——h(u)und
( p+1> l|ur||z " (ug) . (up)updz

2
> (1 - —— | |luzl/%
> (1= 27 Il
Thus we may assume that taking a subsequence if necessary,
ur — uo weakly in E.

By (i), we have K'(u) — K'(ug) strongly in E*. Therefore by standard arguments we
can conclude that (uy) has a strongly convergent subsequence and this completes the
proof. O]
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6.6.3 A technical lemma

The following lemma is useful and we use it in proofs of Lemmas 6.3.2 and 6.4.1.

Lemma 6.6.2 (cf. Adachi-Tanaka [1], Byeon, Jeanjean and Tanaka [24], Ogawa [84]).

(i) Let ®(s) := exp(s) — 1 — s and B € (0,4n). Then there exists a Cs > 0 such that

¥ -
d _ C— for all w € HY(R?)\{0}.
/| ( ) Tl (R2)\{0}

HVUHB R2) R2)

ii) For any M > 0 and 8 € (0,4m), there exists a Cs1 > 0 such that
(i) 8,

4

4
/ i (ﬁ;‘ > dx < éBI—H ‘L\;“R"’) for all u € H'(R?) with ||Vul| 2@z < M.
R2

(iti) For any M >0 and 3 € (0,47), there exists a Cgy > 0 such that

2 4
/ P (26]\122> dz < Cgy lu ||4 for all u € H, () with ||Vu| 72y < M,
Q

where Q := {x € R*: |z| > 1}.

Proof. The inequality in (i) can be proven in the same way to [1]. (ii) is a direct conse-
quence of (i). Indeed, since for each x € R? it follows that

M%(Bu ) Z ,M%J:i%

(Bu(a)) L Bu(a)
< Z—,”V oL = Ivul0 (Hw@) ,

(ii) holds by (i). As to (iii), Using the operator T3 (see (6.3.2)), by (ii) and Sobolev’s
inequality, we can easily obtain (iii). O
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Chapter 7

Appendix

7.1 Assumptions and main statement

The aim of this chapter is to prove that minimax values defined in Chapters 5 and 6
diverge to infinity.

In this chapter, we slightly generalize our settings. Namely, let £ be a Banach space,
| - || denote its norm and I € C'(E, R) satisfy the Palais-Smale condition. Moreover, [
satisfies the following conditions:

(Ip) I(—u) = I(u) forallueE.

There exist p and a > 0 such that
(L) I(u) >« forall u € E with ||u|| = p,
I(u) >0 forall u € E with [Ju]] < p.

For each n € N there exists an h,, € C(S" ', E) such that
(1) hpn(—0) = —=hp(0), I(h,(0)) <0 for all o € S™ 1,
where "' = {z € R" : |z| =1}.

Next, we define minimax values of I: For each n € N, we set

(7.1.1) ¢n := inf max I(v(0)),

~vel, 0€Dn
where D,, ;= {z € R" : |z| < 1} and
T, :={y€C(DyE):v(—0)=—7(0) for all ¢ € D,,, ) = ,(0) for all ¢ € S"7'}.

Note that the auxiliary functionals in Chapters 5 and 6 satisfy (/y)—(/2). Moreover,
the minimax values defined in Chapters 5 and 6 correspond to ¢, in (7.1.1).
Now we will prove the following theorem:

Theorem 7.1.1. Asn — oo, ¢, — 0.
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7.2 Proof of Theorem 7.1.1

We will prove Theorem 7.1.1 using similar arguments in Rabinowitz [92] and need some
preparations.

Definition 7.2.1. For each n,j € N, we define £, g~ and I'; as follows:
E:={AC E\{0}: Aisclosed,—A = A},
Ern :={B C R"\{0} : B is closed, — B = B},
T, :={h(D,\Y):n>j, he€Tl,, Y €&rn, genus(Y) <n—j}
Here genus (V) is Krasnoselski’s genus.
First, we state properties of I';.
Proposition 7.2.2. The following hold:
(i) Forallje N, T;#0.
(ii) If ¢ € C(E, E) satisfies p(—u) = —p(u) for allu € E and p = idg on h,(S™ ')
for alln € N, then ¢ : I'; = I'; for each j € N.
(iti) If B€T;, Z €& and genus (Z) < s < j, then B\Z € T;_,.

Proof. (i) For each n € N, we set h,(0) := |o|hn(c/|o|). Then it is easily seen h, € Iy,
which implies I'; # ) for all j € N.

(i) Let B € I';, B = h(D,\Y), h € T, n > j, Y € Egrn, genus(Y) < n — j. Then
the composite map o o h : D, — E is odd and continuous. Furthermore it holds that
@oh=nh,on S Thus poh €T, and ¢(B) = (poh)(D,\Y) €T}

(ili) Let B =h(D,\Y) €T'j, Z € £, genus (Z) < s < j. If the following equality

(7.2.1) B\Z = h(D,\(Y UL-1(2)))

holds, then we can prove (iii). Indeed, we assume (7.2.1) and prove (iii). By h™*(Z) € Ern
and Y € Ern, we see Y Uh™Y(Z) € Ern. By the mapping property and subadditivity of
the genus, it follows that

genus (Y Uh™(Z)) < genus (V) + genus (b~ (Z)) < genus (Y) + genus (Z)

By (7.2.1) and (7.2.2), we can conclude B\Z € I';_,.
Now we prove (7.2.1). Let b € h(D,\(Y Uh *(Z))). Then, we have

be h(D,\Y)\Z C B\Z C B\Z.

Hence h(D,\(Y Uh™1(Z))) C B\Z.
On the other hand, let b € B\Z and w € D,\Y satisfy b = h(w). Since b ¢ Z,
w & h™Y(Z) holds. Thus we have

we (DY) \h(2) ¢ DAY UAT(Z)).
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which implies B\Z C h(D,\(Y Uh~=1(Z))). Therefore we can infer

B\Z C h(D,\(Y Uh~1(2))).
This completes the proof. m

Next we define another minimax values of 1.

Definition 7.2.3. For each j € N, we define d; by

= )
Note that since genus () = 0, it is easily seen that d; < ¢; for all j € N. Thus in
order to prove Theorem 7.1.1, it is sufficient to show d; — oo as j — oo.
The following proposition shows that d; is well-defined and 0 < a < d; for all j € N.
Here oo > 0 appears in ().

Proposition 7.2.4. For each j € N and B € T';, BN OB, # 0 holds.

Proof. Let B = h(D,\Y), n > j, genus (Y) <n—j. Set O := {x € Int (D,,) : h(z) € B,},
then 0 € O, —O = O and O is open. Let O denote a component of O containing 0, then
we have genus (00) = n. We claim

(7.2.3) h(0O) C OB,

Assuming (7.2.3) for the moment, set W = {x € D,, : h(z) € 9B,}. By (7.2.3), we can
see 0O C W, which implies genus (W) = n. Therefore we have

genus (W\Y) >n — (n—j) = J.

and
genus (h(W\Y)) > genus (W\Y) > j > 0.

Thus it follows that 2(IW\Y) # @. On the other hand, since h(W\Y) € BNAB,, it holds
that BN OB, # 0.

Now we prove (7.2.3). By the property of h,, it holds that I(u) < 0 for all u €
h,(0D,). On the other hand, by (I;), we have I(u) > 0 for all u € B,. Therefore we have
h,(0D,) C (B,)¢. Let z € dO. If x € D,, and h(x) € B,, then there exists an ry > 0
such that h(y) € B, for all y € D, satistying |y — x| < ry. However, this contradicts to
x € 00. Therefore v € 0D,, when h(x) € B,. In this case, since h = h,, on 0D, and
h,(0D,) N B, = 0, this is also a contradiction. This implies h(00) C 0B,. O

Next, we will show that d; is a critical value of I and estimate genus (/y;) where
K..={ue E:I(u)=c, I'(u) =0}.

Proposition 7.2.5.

(i) For each j € N, d; is a critical value of I.

(ii) If there exist pr < p2 < ... < py such that d := d; = dj4p, = -+ = djyp,, then
genus (K4) > pr + 1.
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Proof. (i) Since I satisfies the (PS) condition, it is standard to show that d; is a critical
value of I and we omit its proof.
(ii) First we note that K; € £. Indeed, since I(0) = 0 and d > « > 0 hold, we have
0 € Ky, which implies K; € £. Furthermore, K, is compact since I satisfies the (PS)
condition.

We shall prove indirectly and assume genus (K;) < pg. Then there exists a 6 > 0 such
that genus (Ns(Ky)) < pr where N5(Ky) := K4+ Bs(0). By applying the Deformation
Theorem, there exist ¢ € (0,«/2) and n € C([0,1] x E, E) such that

(7.2.4) n(l,—u) = —n(l,u) forallue £ and  7n(1,As:\O) C A4,

where

O = Ns(Ky), A.:={ueFE:I(u)<c}.

Here we choose a B € I';4,, satisfying max,ep I(u) < d —e. Then by Proposition 7.2.2
(iii), we obtain B\O € T';. On the other hand, for each n € N and u € h,,(0D,,), I(u) < 0
holds, which implies 7(1,-) = id on h,(0D,). By Proposition 7.2.2 (ii), it follows that
n(1, B\O) € I';. However, by (7.2.4), we obtain

max I(u) <d-—g¢,
uen(1,B\O)

which contradicts to the definition of d;. Therefore genus (K4) > pi + 1 holds. ]

In the following proposition, we will prove that d; — oco as j — oo, which completes
a proof of Theorem 7.1.1.

Proposition 7.2.6. As j — oo, d; — o0.

Proof. We prove indirectly and assume that (d;) is bounded. We may assume that there
exists a subsequence (d;,) such that d;, — dp.

If there exists a sequence (k) such that k,, — co and dy = d;, = ---=d;, =---,
then we obtain genus (Kg,) = oo by Proposition 7.2.5 (ii). However, since Ky, is compact
by the (PS) condition, genus (K4,) < oo holds. This is a contradiction.

Therefore we may suppose dy # d;, for all £ € N. For each £ > 0, we set
Ke={ucE:dy—¢<I(u)<dy+¢, I'(u) =0}.
By the (PS) condition, K¢ is compact. We choose a § > 0 such that

s = genus (K¢) = genus (Ns(K¢)), % <dy—E&.
Since dj, is a critical value of I by Proposition 7.2.5 (i), K¢ # 0 for each £ > 0. This
implies s > 1. Set € :=dy — /2 and O := Ns(K¢). Applying the Deformation Theorem,
we obtain € € (0,€) and n € C([0,1] x E, E) such that n(1, Ag+:\O) C Agy—--
Next we take ji, j, and B € I';, 4, satisfying

s <jo, dj, € (do—e,dy+e), %eaécl(u)<do+g.
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Since s < jg, we have B\O € I';, by Proposition 7.2.2 (iii). Furthermore, for each n € N,
it follows that o
I(u) <0 on h,(0D,), 0<§ <dy—¢<dj,

which implies (1, -) =id on h,(0D,,). Therefore n(1, B\O) € T}, .
On the other hand, it follow from the property of n that

dj, < max [I(u) <dy—e <dj,.
uen(1,B\O)

This is a contradiction and we obtain d; — oo as j — oo. [

Proof of Theorem 7.1.1. As we note in the above, it holds d; < ¢; for each j € N. By
Proposition 7.2.6, we can see that ¢; — oo as j — oo, which completes a proof. O
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