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Chapter 1

Introduction

Orthogonal Arrays (OAs) are essential in statistics and are used in fields such as computer

science and cryptography [1, 7, 22, 23]. In statistics, they are primarily used in experimental

designs, that is, they are immensely important in all areas of human investigation such as

medicine, agriculture, and manufacturing. Further, the mathematical theory of OAs is beautiful

and related to combinatorics, finite fields, geometry, and error-correcting codes [4, 7]. Therefore,

many studies contributed on OAs from various points of view.

The definition of OAs is as follows: An OA is defined as an N × k array with entries from

GF (s) and every N × t sub-array contains each t-tuple based on GF (s) exactly the same number

of times as a row. This is called an OA with a strength t. Given below is an example of an OA

of strength 2:

0 0 0

0 1 1

1 0 1

1 1 0

Let us pick any two columns, say the first and the last:

0 0

0 1

1 1

1 0

We can observe that all 2-tuples, i.e.,

0 0, 0 1, 1 0, and 1 1,

appear, and they all appear the same number of times (i.e., once).

On the basis of this observation, the construction problem for OAs can be formulated as

follows:

• Find the OA with a minimum number of rows N , given the number of columns k, the

order of the Galois field s, and the strength t.

1



2

It is important to find the lower bounds for OAs for this construction problem. The problem

for finding the lower bounds for OAs is as follows:

• Find the lower bound for the number of rows N , given the number of columns k, the order

of the Galois field s, and the strength t.

The lower bounds calculated for the number of rows are useful not only for evaluating OAs but

also for the construction of OAs.

As stated above, the main applications of OAs are in experimental designs. Experimental

designs are techniques that are employed to acquire more information using fewer experiments.

For example, the following case is studied using an experimental design.

• In the manufacture of iron, the hardness of iron may be influenced by factors such as

temperature, pressure, and the catalyst. Let us assume that certain manufacturers want

to analyze how these factors and their interactions influence the hardness of iron. In this

case, candidates, called levels, are set for each factor. For example, the temperatures can

be of two levels 800 or 1000 degrees C, pressure can be 2 or 3 atmospheres and the catalyst

can be from company A or B.

In this thesis, we consider only that case in which each factor has the same number of levels.

In experimental designs, it is important to design experiments that can estimate all the effects

of different factors and various interactions that could affect the response variable of interest

such as the hardness of iron, and where the number of experiments is kept as few as possible.

For example, all the effects due to the factors and interactions can be estimated by conducting

experiments all possible level combinations as given by the following.

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

In this table, each row represents one level combination. For example, the first row represents

the experiment where the temperature is 800 degrees C, pressure is 2 atmospheres, and the

catalyst is from company A. However, the number of experiments that need to be performed for

all level combinations is too large; therefore, it is important to reduce the number of experiments.

We know that the number of experiments that need to be conducted can be reduced by using

OAs. When an OA is used in experimental designs, each row of the OA corresponds to one

level combination. Therefore, the number of columns, the number of rows, and the order of

the Galois field in the OA correspond to the number of factors, the number of experiments,
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and the number of levels, respectively. Moreover, the strength of the OA corresponds to the

interactions between factors. More specifically, an OA with the strength 2r is needed when all

the interactions between r number of factors may affect the response variable.

OAs are also closely related to error-correcting codes. Error-correcting codes are coding

techniques that can be used to correct errors in digital data transmission. In the study of

error-correcting codes, the construction of codes is one of the most basic problems.

The definition of codes is as follows: A code is a subset of a k-dimension vector space over

GF (s), and when the size of the code is N and the Hamming distance of any two elements in the

code is greater than d, it is called an s-nary code with the code length k, size N , and minimal

distance d. The construction problem for codes can be formulated as follows:

• Find the code with the maximum size N , given the code length k, the order of the Galois

field s, and the minimal distance d.

For the above construction problem, it is important to find the upper bounds for the codes using

the following problem:

• Find the upper bound for the size N , given the code length k, the order of the Galois field

s, and the minimal distance d.

In the past, OAs and codes had been developed in different fields, but the relationship

between the two was clarified by Delsarte [4] and Hedayat and Sloane et al. [7]. In particular,

the relationship between the strength of an OA and the dual distance of a code, which is one

of the parameters used to characterize a code, is very important. Thus, some results from OAs

can be applied to error-correcting codes and vice versa.

In previous work, Delsarte proposed the use of linear programming (LP) bounds to solve

the problem of finding lower bounds for OAs (and upper bounds for codes) [4]. Consequently,

the process of finding lower bounds for OAs (and upper bounds for codes) reduces to solving

LP problems. Moreover, Hedayat and Sloane et al. actually solved these LP problems using

a computer and compared the obtained LP bounds with other lower bounds [7]. From these

results, it was found that the LP bounds are the tightest lower bounds.

In this thesis, we extend the definition of the strength t to the partial strength T (⊆ {0, 1}k)
and introduce OAs with partial strength (POAs). In the study of POAs, the following construc-

tion problem is important.

• Find the POA with a minimum number of rows N , given the number of columns k, the

order of the Galois field s, and the partial strength T .

Further, the following problem used to find the lower bound for POAs is also important.

• Find the lower bound for a number of rows N , given the number of columns k, the order

of the Galois field s, and the partial strength T .

We address these problems in this thesis.

We introduce POAs for the following reasons:
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1. POAs are more suitable for experimental designs than OAs because POAs can be used

with a complicated model.

2. A subclass of POAs is related to unequal error protection (UEP) codes.

Let us discuss the first reason. As stated above, an OA with a strength 2r is needed if all

interactions between r number of factors may affect the response variable. In an experimental

design, it is, however, natural to assume a more complicated model, such that some interactions

between the r factors may affect the response variable. POAs can be used with such a model,

whereas OAs cannot be used. Next, we discuss the second reason. UEP codes were proposed by

Masnick et al. [12]. UEP codes are useful for transmitting data having a different magnitude in

each bit. In this thesis, we show that a subclass of POAs is related to UEP codes. From this

relation, we can apply some results of POAs to UEP codes.

In this thesis, we define POAs and present the applications of POAs in experimental designs.

Also, we describe the relationship between POAs and error-correcting codes. We propose finding

the LP bounds for POAs by extending the method for finding LP bounds for OAs, as given by

Delsarte. Consequently, the process of finding lower bounds for POAs reduces to solving LP

problems. Therefore, we solve the LP problems using a computer and provide some numerical

examples of LP bounds for POAs.

However, the number of variables or constrains in the LP problems is very high and the LP

problems cannot be solved if the number of factors k is large. Thus, it is important to consider

the subclasses of the POAs, such that the LP problems corresponding to the subclasses can be

solved easily and such that the subclasses are important in applications involving experimental

designs or error-correcting codes. Hence, we define OAs with different strengths in each column

as a subclass of POAs. We then show that the LP problems corresponding to this subclass

can be solved easily and that this subclass is important in applications involving experimental

designs and error-correcting codes. We especially clarify the relation between this subclass and

UEP codes and propose LP bounds for UEP codes. Moreover, we compare the obtained LP

bounds for UEP codes with other bounds for UEP codes as proposed by Masnick et al. [12].

Lastly, we propose some construction methods for OAs with different strengths in each

column. These methods use the relation between POAs and error-correcting codes and also use

the construction methods for UEP codes as proposed by Masnick et al. [12] and Boyarinov et

al. [2].

This thesis is organized as follows. In Chapter 2, we present some basic notations and

provide previous studies as preliminaries. We first define some basic notations and OAs. Next,

we discuss the application of OAs in experimental designs and the relation between OAs and

error-correcting codes. Lastly, we present LP bounds for OAs (and error-correcting codes).

In Chapter 3, we discuss POAs. We first define POAs and present some basic properties

of POAs. Next, we discuss the application of POAs in experimental designs and the relation

between POAs and error-correcting codes. Lastly, we propose LP bounds for POAs and provide

some numerical examples of LP bounds for POAs.
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In Chapter 4, we describe OAs with different strengths in each column and also provide UEP

codes. We first define OAs with different strengths in each column and provide UEP codes, and

then propose their LP bounds. Further, we compare the LP bounds obtained for UEP codes

with other upper bounds observed for UEP codes.

In Chapter 5, we present the construction methods for OAs with different strengths in each

column. After proposing the construction methods for OAs with different strengths in each

column, we provide some numerical examples of POAs constructed using the proposed methods.

In Chapter 6, we conclude this thesis and discuss our future studies.





Chapter 2

Preliminaries

In this chapter, we present some basic notions and provide previous studies as preliminaries.

we first define some basic notations used in the whole of this thesis. Next, we define OAs

and provide some basic properties of OAs. Next, we discuss the the applications of OAs. In

particular, we provide details about the application of OAs in experimental designs. Next, we

show the relation between OAs and error-correcting codes and provide some properties of OAs

from the relation. Lastly, we present LP bounds for OAs (and error-correcting code).

2.1 Basic Notation

In this section, we define some basic notations used in the whole of this thesis. Let GF (s) be the

Galois field of order s. Let ⊕ be the exclusive-or operation, and · be the and operation. For any

x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ {0, 1}k, let x⊕y = (x1⊕y1, x2⊕y2, . . . , xn⊕yn), and

x ·y = x1 · y1⊕x2 · y2⊕ · · ·⊕xn · yn. Let w(x) be the Hamming weight of x = (x1, x2, . . . , xk) ∈
{0, 1}k, so defined by

w(x) =
∣∣∣{i|xi ̸= 0}

∣∣∣. (2.1)

The Hamming distance dist(u,v) between two vectors u,v ∈ {0, 1}k is defined to be the number

of positions where they differ, or in other words

dist(u,v) = w(u⊕ v). (2.2)

For any set A, let |A| be the number of elements of A. Let

(
x

m

)
=


x(x−1)···(x−m+1)

m!
if m is a positive integer ,

1 if m = 0,

0 otherwise ,

(2.3)

where x is any nonnegative integer, and m! = 1 · 2 · · · · · (m− 1) ·m, 0! = 1.

7
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2.2 Orthogonal Arrays

In this section we define OAs and provide some basic properties of OAs. At first, OAs can be

defined as follows.

Definition 2.1 [7, Definition 1.1] An N × k array A with entries from GF (s) is said to be an

Orthogonal Array with strength t if every N × t sub-array of A contains each t-tuple based on

GF (s) exactly same times as row. We will denote such an array by OA(N, k, s, t). �

In the following, unless mentioned explicitly, we will consider the case that s = 2 for simplicity.

Also, we will consider OAs whose rows are all distinct. These are called simple OAs. The next

two examples give examples of OAs.

Example 2.1 The array in Table 2.2 is an OA(8, 4, 2, 3). �

Table 2.1: An OA(8, 4, 2, 3)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Example 2.2 The array in Table 2.2 is an OA(4, 3, 2, 2). �

Table 2.2: An OA with 2 levels and strength 2:OA(4, 3, 2, 2)

0 0 0

0 1 1

1 0 1

1 1 0

An OA(N, k, 2, t) is said to be linear if the rows of OA(N, k, 2, t) form a linear vector space.

If an OA(N, k, 2, t) is linear, the OA(N, k, 2, t) has a basis for the linear vector space. This basis

is usually given in the form of a (log2N) × k matrix called a generator matrix whose rows are

the basis.
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Example 2.3 The OA(8, 4, 2, 3) given in Table 2.2 is linear, and has the generator matrix 1 0 0 1

0 1 0 1

0 0 1 1

 . (2.4)

�

Example 2.4 The OA(4, 3, 2, 2) given in Table 2.2 is linear, and has the generator matrix[
0 1 1

1 0 1

]
. (2.5)

�

Moreover, the generator matrix of an OA(N, k, 2, t) has the following properties.

Lemma 2.1 [7, Theorem 3.27 and 3.29] Let A be an N ×k linear array with 0,1 entries, and G

be a generator matrix of A. A is an OA(N, k, 2, t) if and only if any t columns of G are linearly

independent over {0, 1}. �

The next lemma gives a necessary and sufficient condition for an array to be an OA, which

does not assume linearity.

Lemma 2.2 [7, Theorem 3.30] An N × k array A with 0, 1 entries is an OA(N, k, 2, t) if and

only if ∑
v=row of A

(−1)u·v = 0, (2.6)

for all 0, 1 vectors u containing w 1’s, for all w in the range 1 ≤ w ≤ t, where the sum is over

all rows v of A. �

2.3 Applications of Orthogonal Arrays

2.3.1 Applications of Orthogonal Arrays

OAs are mainly used in experimental designs [1, 22]. This means that they are immensely

important in all areas of human investigation such as medicine, agriculture, and manufacturing.

Also, OAs are used in computer science and cryptography. For example, there are reports in

which OAs are applied to secret sharing [19], authentication codes [20] and so on. In this study,

the application in experimental designs is especially important, so we give a detailed explanation

about experimental designs in Section 2.3.2.

Moreover, the mathematical theory of OAs is related to other combinatorics, such as error-

correcting codes, difference schemes, Hadamard matrices, and Latin squares [4, 7]. In particular,

OAs are closely related to error-correcting codes. Therefore, some results of OAs can be applied

to these fields, and vice verse. In this study, the relation between OAs and error-correcting codes

is especially important, so we provide details about the relation in Section 2.4.
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2.3.2 Experimental Designs

Let F1, F2, . . . , Fk denote the k factors to be included in the experiment. In this thesis, we

consider only the case that the number of levels for each factor is two. Therefore, the levels of

each factor can be represented by 0 and 1, and the level combinations can be represented by the

k-tuples (x1, x2, . . . , xk) ∈ {0, 1}k.
We use y(x) to denote the response of the experiment with the level combination x, and

assume the following model.

y(x) =
∑
a∈I

faχa(x) + e(x), (2.7)

where,

• I(⊆ {0, 1}k) : indexes of main and interactive factors included in the model (For example,

I = {000, 100, 010, 001, 110} suggests main factors of F1, F2, F3 and an interactive factor

of F1F2. ),

• fa : an unknown parameter that represents the effect of a main or interactive factor a ∈ I,

• χa(x) := (−1)a·xT
,

• e(x) : a random error that has mean 0 and constant variance σ2.

Moreover, we assume that the set I in (2.7) satisfies the following monotonicity.

a ∈ I ⇒ b ∈ I for ∀ b (b ⊑ a), (2.8)

where (b1, b2, . . . , bk) ⊑ (a1, a2, . . . , ak) suggests that bi ≤ ai, i = 1, 2, . . . k.

In experimental designs, we are given a model of the experiment. This means that we are

given an I ⊆ {0, 1}k in (2.7). Then, we determine a set of x ∈ {0, 1}k, which is called a design

X ⊆ {0, 1}k. And we experiment according to the design X and estimate the effects fa, a ∈ I

from the results of the experiments {(x, y(x))|x ∈ X}.
In experimental designs, it is especially important to determine a design X so that all effects

of main and interactive factors in the model can be estimated, where the number of experiments

|X| is as few as possible. For example, if we experiment with all level combination, that is

X = {0, 1}k, we can get unbiased estimators for effects of all main and interactive factors by

f̂a =
1

2k

∑
x∈{0,1}k

y(x)χa(x). (2.9)

Example 2.5 In a certain factory, materials(F1), machines(F2) and temperatures(F3) are fac-

tors that may affect a ratio y of defective products. Each factor has two levels:

F1 : F 1
0 (made in A company), F 1

1 (B company)

F2 : F 2
0 (a new machine), F 2

1 (an old machine)
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F3 : F 3
0 (100 deg C), F 3

1 (200 deg C)

Moreover, all interactions between two factors, F1 × F2, F1 × F3, F2 × F3, may affect y. Then,

the model of y is as follows.

y(x) =
∑
a∈I

faχa(x) + e(x), (2.10)

where y(x) is a ratio of defective products with the level combination x ∈ {0, 1}k, and

I = {000, 100, 010, 001, 110, 101, 011}. (2.11)

Then, if we experiment with all level combination as shown in Table 2.3, we can get unbiased

estimators for all fa using (2.9). For example, f̂100 is calculated by

f̂100 =
1

23

∑
x∈{0,1}3

y(x)χ100(x) (2.12)

=
1

8
{y(000) + y(001) + y(010) + y(011)− y(100)− y(101)

−y(110)− y(111)}, (2.13)

so f̂100 is as follows:

y(000) = f000 + f100 + f010 + f001 + f110 + f101 + f011 + e(000),

y(001) = f000 + f100 + f010 − f001 + f110 − f101 − f011 + e(001),

y(010) = f000 + f100 − f010 + f001 − f110 + f101 − f011 + e(010),

y(011) = f000 + f100 − f010 − f001 − f110 − f101 + f011 + e(011),

−y(100) = −f000 + f100 − f010 − f001 + f110 + f101 − f011 + e(100),

−y(101) = −f000 + f100 − f010 + f001 + f110 − f101 + f011 + e(101),

−y(110) = −f000 + f100 + f010 − f001 − f110 + f101 + f011 + e(110),

−y(111) = −f000 + f100 + f010 + f001 − f110 − f101 − f011 + e(111),

f̂100 = f100 + ē100,

where ē100 =
1
8

∑
x∈{0,1}k e(x).

�

If we experiment with all level combinations, we can get unbiased of all fa, but the number

of the experiments is too large. Therefore, we reduce the number of experiments using OAs.

Let A′(⊆ {0, 1}k) be a set whose elements are rows of an OA(N, k, 2, 2r), so |A′| = N .

Suppose that we can assume that at most r interactive factors are included in the model, that

is

I = {e ∈ {0, 1}k|w(e) ≤ r}, (2.14)

in (2.7). Then, if we experiment according to the design A′, we can get unbiased estimators for

fa, a ∈ I using the following calculation:

f̂a =
1

|A′|
∑
x∈A′

y(x)χa(x). (2.15)
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Table 2.3: Experiment conditions and data

Experiment no. F1 F2 F3 y [%]

1 0 0 0 0.5

2 0 0 1 0.4

3 0 1 0 0.1

4 0 1 1 0.1

5 1 0 0 1.2

6 1 0 1 1.5

7 1 1 0 0.7

8 1 1 1 0.6

Example 2.6 In Example 2.5, suppose that we know that no interaction of factors affect y.

Then, we can assume the following model

y(x) =
∑
a∈I

faχa(x) + e(x), (2.16)

where

I = {000, 100, 010, 001}. (2.17)

Then, we experiment according to A′ = {000, 011, 101, 110}, as shown in Table 2.4. This design

A′ is from the OA(4, 3, 2, 2) in Table 2.2 . Then, we can get the unbiased estimators for fa,

fa ∈ I by (2.15). For example, f̂100 is calculated by

f̂100 =
1

4

∑
x∈A′

y(x)χ100(x) (2.18)

=
1

4
{y(000) + y(011)− y(101)− y(110)}, (2.19)

so f̂100 is as follows:

y(000) = f000 + f100 + f010 + f001 + e(000),

y(011) = f000 + f100 − f010 − f001 + e(011),

−y(101) = −f000 + f100 − f010 + f001 + e(101),

−y(110) = −f000 + f100 + f010 − f001 + e(110),

f̂100 = f100 + ē100,

where ē100 =
1
4

∑
x∈A′ e(x).

�
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Table 2.4: Experiment conditions and data using an OA

Experimental no. F1 F2 F3 y(%)

1 0 0 0 0.5

2 0 1 1 0.1

3 1 0 1 1.5

4 1 1 0 0.7

2.4 Properties of Orthogonal Arrays from Relations with

Error-Correcting Codes

In this section, we introduce error-correcting codes and their relation with OAs. Moreover, we

provide some properties of OAs from the relation. These properties are useful for leading to LP

bounds in Section 2.5.

2.4.1 Error-Correcting Codes

An error-correcting code or simply code is any collection C of vectors in GF (s)k. The vectors

in C are called codewords. In this thesis, we consider only the case that s = 2 as well as OAs.

We define the minimal distance d of a code C to be the minimal Hamming distance between

distinct codewords:

d = min
u,v∈C,u ̸=v

dist(u,v).

If C(⊆ {0, 1}k) contains N codewords and the minimal distance of C is d, then we say that it is

a code of the length k, size N , and minimal distance d over GF (2) or simply (k,N, d)2 code.

Example 2.7 C1 = {000, 011, 101, 110} is an (3, 4, 2)2 code. �

Example 2.8

C2 = {0000000, 0110100, 1110010, 1000110, 1010001, 1100101, 0100011, 0010111,
1101000, 1011100, 0011010, 0101110, 0111001, 0001101, 1001011, 1111111, } (2.20)

is a (7, 16, 3)2 code. This code is a member of the class of codes called Hamming codes. �

C is said to be linear if C is a linear vector subspace. As well as linear OAs, a linear code is

specified by a basis for linear vector space, given in the form of (log2 N) × k generator matrix.

Moreover, a linear code C is also specified by a parity check matrix, which is (k − log2N) × k

matrix H defined by

HxT = 0, (2.21)

for any x ∈ C.
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Example 2.9 The code C1 in Example 2.7 is linear and has the generator matrix[
0 1 1

1 0 1

]
, (2.22)

and has the parity check matrix [
1 1 1

]
. (2.23)

�

Example 2.10 The code C2 in Example 2.8 is linear and has the generator matrix
1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1

 , (2.24)

and has the parity check matrix  1 0 1 1 1 0 0

1 1 1 0 0 1 0

0 1 1 1 0 0 1

 . (2.25)

�

Further, if C is linear, then its dual code C⊥ is defined by the set of vectors which are orthogonal

to all codewords of C:

C⊥ := {u|u · v = 0 for all v ∈ C}. (2.26)

We note that a generator matrix of C⊥ is a parity check matrix of C. Let d⊥ be the minimal

distance of C⊥. Then d⊥ is said to be the dual distance of C.

Further, the minimal distance can be defined using the distance distribution. Next, we define

the distance distribution. In order to define the distance distribution, we introduce the next

notation.

Definition 2.2 For any positive integer k, W
(k)
i (= Wi), i = 0, 1, . . . k, are defined by

W
(k)
i := {w ∈ {0, 1}k|w(w) = i}. (2.27)

If there is no danger of confusion we omit the k. �

Then, the distance distribution of a code C(⊆ {0, 1}k) is defined as (k+1)-tuple (A0, A1, . . . , Ak),

where

Ai =
1

|C|
∑
x∈C

∣∣∣{y ∈ C|x⊕ y ∈ Wi}
∣∣∣, i = 0, 1, . . . , k. (2.28)
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Moreover, the minimal distance of a code C is the largest positive integer d such that

A1 = A2 = · · · = Ad−1 = 0. (2.29)

Further, if C is a linear code, the distance distribution Ai is equal to the weight distribution A′
i,

that is

Ai = A′
i

(
=
∣∣∣{y ∈ C|y ∈ Wi}

∣∣∣) , i = 0, 1, . . . , k. (2.30)

2.4.2 Delsarte Theorem

Next, we provide some properties of the distance distribution. For this, we define the Krawtchouk

polynomial in the next Definition 2.3.

Definition 2.3 For any positive integer k, the Krawtchouk polynomial Pi(z; k)(= Pi(z)) is de-

fined by

Pi(z; k) :=
i∑

r=0

(−1)r

(
z

r

)(
k − z

i− r

)
, i = 0, 1, . . . k, (2.31)

where z is an indeterminate. If there is no danger of confusion we omit the k. �

The Krawtchouk polynomial satisfy the following Lemma 2.3.

Lemma 2.3 [7, Theorem 4.10] If v ∈ Wj, then∑
u∈Wi

(−1)u·v = Pi(j), (2.32)

where i, j ∈ {0, 1, . . . , k}. �

Lemma 2.3 is useful for proving Theorem 2.1 and Theorem 2.2.

The next Theorem 2.1 is called MacWilliams Theorem. MacWilliams Theorem provides an

important property of the distance distribution.

Theorem 2.1 [11, Ch.5 Theorem 1] Let C(⊆ {0, 1}k) be a linear code, and C⊥ be the dual code

of C. Let Ai and A⊥
i , i = 0, 1, . . . , k, be the distance distribution of C and C⊥. Then,

A⊥
i =

1

|C|

k∑
j=0

AjPi(j), i = 0, 1, . . . , k. (2.33)

�

The C is constrained to a linear code in Theorem 2.1, but the MacWilliams Theorem holds if

C is a nonlinear code [11]. However, we do not use these results directly, and we use (2.33) to

define the dual distance in the same way as [7]. We give a detailed explanation about this in

Section 2.4.3.

The next Theorem 2.2 is called Delsarte Theorem. Delsarte Theorem also provides an im-

portant property of the distance distribution.
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Theorem 2.2 [11, Ch.5 Theorem 6] Let C(⊆ {0, 1}n) be a code, and Ai, i = 0, 1, . . . , k be the

distance distribution of C. Then,

1

|C|

k∑
j=0

AjPi(j) ≥ 0, i = 0, 1, . . . , k. (2.34)

�

Delsarte Theorem is a strong linear constraint of the distance distribution. Therefore, Delsarte

Theorem is useful for leading to LP bounds.

2.4.3 Relations between Orthogonal Arrays and Error-Correcting

Codes

For a nonlinear code, we still define the dual distance distribution by (2.33), calling the numbers

(A⊥
0 , A

⊥
1 , . . . , A

⊥
k ) the MacWilliams transform of the distance distribution. Then, it is still ture

that A⊥
i ≥ 0 for all i from (2.34), and we define the dual distance to be the largest positive

integer d⊥ such that

A⊥
1 = A⊥

2 = · · · = A⊥
d⊥−1 = 0. (2.35)

Thus, if A⊥
1 = A⊥

2 = · · · = A⊥
k = 0, we define d⊥ to be k + 1. It also follows that A⊥

0 = 1 from

(2.33).

Theorem 2.3 [7, Theorem 4.9] If C is a (k,N, d)2 code over {0, 1} with dual distance d⊥, then

the codewords of C form the rows of an OA(N, k, 2, d⊥−1) with entries from {0, 1}. Conversely,
the rows of an OA(N, k, 2, t) over {0, 1} form a (k,N, d)2 linear code over {0, 1} with dual

distance d⊥ ≥ t+ 1. If the OA has strength t but not t+ 1, d⊥ = t+ 1. �

Example 2.11 Let C = {000, 011, 101, 110}. This is a (3, 4, 2)2 code. Then C⊥ = {000, 111},
so the dual distance of C is 3. Therefore, the OA corresponding to the code C, that is in Table

2.2, is an OA(4, 3, 2, 2). �

2.4.4 Properties of Orthogonal Arrays from the Relations with Error-

Correcting Codes

From Theorem 2.3, an OA can be regarded as a code. So, let C̄ be an OA(N, k, 2, t) and

C be a code formed by C̄ in the same way as Theorem 2.3. Then, the distance distribution

(A0, A1, . . . , Ak) of the C̄ is defined by (2.28), and satisfy

N = A0 + A1 + · · ·+ Ak. (2.36)
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Moreover, the distance distribution of the C̄ satisfy

A0 = 1, (2.37)

Ai ≥ 0, i = 1, 2, . . . , k, (2.38)
k∑

j=0

AjPi(j) ≥ 0, i = 0, 1, . . . k, (2.39)

k∑
j=0

AjPi(j) = 0, i = 1, 2, . . . t, (2.40)

where (2.39) is from Theorem 2.2 and (2.40) is from Theorem 2.3. These properties are useful

for leading to LP bounds in Section 2.5.

2.5 Main Problems in Orthogonal Arrays

2.5.1 Main Problems in Orthogonal Arrays

Construction problem for OAs and problem for finding lower bounds for OAs can be formulated

as follows.

• Find the OA with a minimum number of rows N , given the number of columns k and the

strength t.

• Find the lower bound for the number of rows N , given the number of columns k and the

strength t.

These are two main problems in the study of OAs, so there are many studies for the two problems

[7]. Delsarte proposed linear programming (LP) bounds to solve the problem of finding lower

bounds [4]. And now, it is known that LP bounds are very good lower bounds for OAs. We give

a detailed explanation of the LP bounds in the next Section 2.5.2.

2.5.2 Linear Programming Bounds for Orthogonal Arrays

Next, we present the LP bounds as proposed by Delsarte [4]. The next Theorem 2.4 provides

the LP bounds for OAs.

Theorem 2.4 [7, Theorem 4.15] Let NLP (k; d
⊥) be the solution to the following linear program-

ming problem: choose real numbers A0, A1, . . . Ak so as to

minimize

k∑
i=0

Ai (2.41)
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subject to the constraints

A0 = 1, (2.42)

Ai ≥ 0, i = 1, 2, . . . , k, (2.43)
k∑

j=0

AjPi(j) ≥ 0, i = 0, 1, . . . k, (2.44)

k∑
j=0

AjPi(j) = 0, i = 1, 2, . . . t, (2.45)

where t = d⊥ − 1. Then the size of any orthogonal array OA(N, k, 2, t) satisfies

N ≥ NLP (k; d
⊥). (2.46)

�

We can obtain these LP bounds for OAs from the properties in Section 2.4.4. Further, we can

obtain analogous result for codes as follows.

Theorem 2.5 Let MLP (k; d) be the solution to the following linear programming problem: choose

real numbers A0, A1, . . . , Ak so as to

maximize
k∑

i=0

Ai (2.47)

subject to the constraints

A0 = 1, (2.48)

Ai = 0, i = 1, 2, . . . , d− 1, (2.49)

Ai ≥ 0, i = d, d+ 1, . . . , k, (2.50)
k∑

j=0

AjPi(j) ≥ 0, i = 0, 1, . . . k. (2.51)

Then the size N of any (k,N, d)2 code satisfies

N ≤ MLP (k; d). (2.52)

�

Theorem 2.4 and 2.5 have the drawback that one usually needs a computer to apply it, or

to verify bounds that someone else has obtained from it. Furthermore, since the coefficients

in (2.33) are large and alternate in sign, one must always worry about the reliability of the

computer’s answer.

The following Theorem 2.6 removes some of these drawback. In particular, bounds obtained

from it can be verified with much less effort than those obtained from Theorem 2.4 and 2.5.

(Instead of running the simplex algorithm, one need only check that certain numbers have the

correct sign) We state this result for both OAs and codes.
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Theorem 2.6 [7, Theorem 4.17] (i) Orthogonal arrays. Suppose we can find a polynomial f(x)

of the form

f(x) = 1 +
k∑

i=1

fiPi(x) (2.53)

such that the following conditions hold:

fi = 0 for i = 1, 2, . . . , t, (2.54)

fi ≤ 0 for i = t+ 1, t+ 2, . . . , k, (2.55)

f(j) ≥ 0 for j = 0, 1, . . . , k. (2.56)

Then the size of any OA(N, k, 2, t) satisfies

N ≥ f(0). (2.57)

(ii) Codes. Suppose we can find a polynomial f(x) of the form (2.53) such that the following

conditions hold:

fi ≥ 0 for i = 1, 2, . . . , k, (2.58)

f(j) ≤ 0 for j = d, d+ 1, . . . , k. (2.59)

Then the number of distinct codewords in any (k,N, d)2 code satisfies

N ≤ f(0). (2.60)

�





Chapter 3

Orthogonal Arrays with Partial

Strength

3.1 Introduction

In this Chapter 3, we introduce orthogonal arrays with partial strength (POAs), which are

extended from OAs. POAs are more suitable for the application in experimental designs. More-

over, a subclass of POAs is related to UEP codes as proposed by Masnick et al. [12]. Therefore,

some results in POAs can be applied to UEP codes.

In this chapter, we first define POAs and discuss the application of POAs in experimental

designs. Next, we extend error-correcting codes and clarify the relation between POAs and the

extended error-correcting codes. From the relations, we derive some properties of POAs, which

are useful for leading to LP bounds for POAs. Next, we propose LP bounds for POAs and

provide some numerical examples of these bounds. In Chapter 4, we provide details about the

application of POAs to UEP codes.

This chapter is organized as follows. In Section 3.2, we define POAs and provide some

basic properties of POAs. In Section 3.3, we discuss the application of POAs, especially in

experimental designs. In Section 3.4, we extend error-correcting codes and clarify the relation

between POAs and the extended error-correcting codes. Further, we derive some properties

of POAs from the relation. In Section 3.5, construction problem for POAs and problem for

finding lower bounds for POAs are formulated and we propose LP bounds for POAs to solve the

problem for finding lower bounds for POAs. Moreover, we provide some numerical examples of

the proposed bounds.

3.2 Orthogonal Arrays with Partial Strength

In this section, we define POAs and provide some basic properties of POAs. Let v(a) := {i|ai ̸=
0}, where a = (a1, a2, . . . , ak). POAs are defined as follows.

21
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Definition 3.1 Let k be any positive integer. Let T ⊆ {0, 1}k and T ′ = {v(a)|a ∈ T}. Then

an N ×k array A with entries from {0, 1} is said to be an Orthogonal Array with partial strength

T if the A has the following property; for any {i1, i2, . . . , il} ∈ T ′, N × l sub-array formed from

the i1, i2, . . . , il-th columns of A contains each l-tuple based on {0, 1} exactly same times as

row. We will denote such an array by POA(N, k, 2, T ). �

We note that an POA(N, k, 2, T ) is equal to an OA(N, k, 2, t) if T = {a ∈ {0, 1}k|w(a) ≤ t}.

Example 3.1 The array in Table 3.1 is an POA(8, 4, 2, T ), where

T = {0000000, 100000, 010000, 001000, 000100, 000010, 000001, 110000, 101000,
100100, 100010, 100001, 011000, 010100, 010010, 010001, 001100, 001010,

001001, 000110, 000101, 000011, 111000, 110100, 110010, 110001}. (3.1)

�

Table 3.1: An OA with the strength T defined by (3.1)

0 0 0 0 0 0

0 0 1 1 1 1

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 0 1 0

1 1 0 1 1 0

1 1 1 0 0 1

As well as OAs, if the rows of a POA(N, k, 2, T ) form a linear vector space, this POA is said

to be linear and has a (log2 N × k) generator matrix.

Example 3.2 The POA given in Table 3.1 is linear and has the generator matrix 0 0 1 1 1 1

0 1 0 0 1 1

1 0 0 1 0 1

 . (3.2)

�

Moreover, the generator matrix of an POA(N, k, 2, T ) has the following properties.

Lemma 3.1 Let A be an N × k linear array with 0,1 entries, and G = [g1, g2, . . . , gk] be a

generator matrix of A. A is an POA(N, k, 2, T ) if and only if G satisfy

gi1 + gi2 + · · ·+ gil
̸= 0, (3.3)

for any {i1, i2, . . . , il}(∈ {v(a)|a ∈ T}). �
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The next Lemma gives a necessary and sufficient condition for an array to be an POA, which

does not assume linearity.

Lemma 3.2 An N × k array A with 0, 1 entries is an POA(N, k, 2, T ) if and only if∑
v=row of A

(−1)u·v = 0, (3.4)

for all u ∈ T , where the sum is over all rows v of A.

Proof: If A is an POA(N, k, 2, T ) then it is easy to see that (3.4) hold. Next, we will prove

the converse statement. For any {i1, i2, . . . , il} ∈ T , let n(i1, i2, . . . , il) denote the number of

occurrences of the l-tuple (i1, i2, . . . il) in l columns under consideration, where each ir ∈ {0, 1}.
By choosing the vector v to have all possible 2l different values in these l coordinates, and to be

zero elsewhere, we obtain 2l equations for the 2l unknown n(i1, i2, . . . , il). If v identically zero

the right-hand side of the equation is N , otherwise it is 0. Certainly setting all n(i1, i2, . . . , il)

equal to N/2l is a solution. The coefficient matrix is the character table of elementary abelian

group of type 2l, which (by the orthogonality of characters) is an invertible matrix. Therefore

the solution is unique, and the proof is complete. �

3.3 Applications of Orthogonal Arrays with Partial Strength

We introduce POAs for the following reasons:

1. POAs are more suitable for experimental designs than OAs because POAs can be used

with a complicated model.

2. A subclass of POAs is related to UEP codes.

We give detailed explanations about the first reason in the remain of this section and about the

second reason in Chapter 4.

In Chapter 2, we showed that an OA(M,n, 2, t) can be used if indexes of main and interactive

factors in the model can be described by (2.14). For example, an OA(M, 6, 2, 4) can be used if

indexes of main and interactive factors in the model can be described by

I = {e ∈ {0, 1}6|w(e) ≤ 2}, (3.5)

= {000000, 100000, 010000, 001000, 000100, 000010, 000001, 110000,
101000, 100100, 100010, 100001, 011000, 010100, 010010,

010001, 001100, 001010, 001001, 000110, 000101, 000011, }. (3.6)

However, more complicated interactive factors are often assumed in experimental designs, for

example

I = {000000, 100000, 010000, 001000, 000100, 000010, 000001, 110000}. (3.7)
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This means that six main factors F1, F2, . . . , F6 and one interactive factor F1 × F2 are included

in the model. Of course, all effects of factors can be estimated by using an OA(M, 6, 4, 2) in this

case. However, by using an POA, all effects of factors can be estimated with fewer number of

experiments.

Example 3.3 Suppose that six main factors F1, F2, . . . , F6 and one interactive factors F1 × F2

are included in the model, that is the following model can be assumed.

y(x) =
∑
a∈I

faχa(x) + e(x), (3.8)

where

I = {000000, 100000, 010000, 001000, 000100, 000010, 000001, 110000}. (3.9)

In this case, all effects of factors, fa, a ∈ I, can be estimated by using the POA in Table 3.1.

For example, f̂100000 is calculated by

f̂100000 =
1

23

∑
x∈{0,1}3

y(x)χ100000(x) (3.10)

=
1

8
{y(000000) + y(001111) + y(010011) + y(011100)

−y(100101)− y(101010)− y(110110)− y(111001)}, (3.11)

so f̂100 is as follows.

f000000 + f100000 + f010000 + f001000 + f000100 + f000010 + f000001 + f110000 + e(000000),

f000000 + f100000 + f010000 − f001000 − f000100 − f000010 − f000001 + f110000 + e(001111),

f000000 + f100000 − f010000 + f001000 + f000100 − f000010 − f000001 − f110000 + e(010011),

f000000 + f100000 − f010000 − f001000 − f000100 + f000010 + f000001 − f110000 + e(011100),

−f000000 + f100000 − f010000 − f001000 + f000100 − f000010 + f000001 + f110000 + e(100101),

−f000000 + f100000 − f010000 + f001000 − f000100 + f000010 − f000001 + f110000 + e(101010),

−f000000 + f100000 + f010000 − f001000 + f000100 + f000010 − f000001 − f110000 + e(110110),

−f000000 + f100000 + f010000 + f001000 − f000100 − f000010 + f000001 − f110000 + e(111001),

f100000 + ē100000,

where ē100000 =
∑

x∈A′′ e(x), and A′′ is the design from the POA in Table 3.1. On the other

hand, the best OA with the column number 6 and strength 4 is an OA(32, 6, 2, 4) [7]. Thus, the

number of experiments by the POA is fewer than OAs. �

In general, the following can be said. Suppose that the following model can be assumed as

the response variable.

y(x) =
∑
a∈I

faχa(x) + e(x), (3.12)
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where the I only satisfy the monotonicity. Let A′′(⊆ {0, 1}k) be a set whose elements are rows

of an POA(N, k, 2, T ), where T (⊆ {0, 1}k) satisfy

{e1 ⊕ e2|∀e1, e2 ∈ I} ⊆ T. (3.13)

In this case, if we experiment according to the design A′′, we can obtain unbiased estimators of

fa, a ∈ I using the following calculation:

f̂a =
1

|A′′|
∑
x∈A′′

y(x)χa(x). (3.14)

3.4 Properties of Orthogonal Arrays with Partial Strength

from Relations with Extended Error-Correcting Codes

In this section, we extend error-correcting codes and clarify the relation between POAs and the

extended error-correcting codes. Further, we derive some properties of POAs from the relation.

These properties are extensions of the results in Section 2.4.3 and are useful for leading to LP

bounds for POAs.

3.4.1 Extension of Error-Correcting Codes

We extend (k,N, d)2 codes and define extended codes as follows.

Definition 3.2 Let k be any positive integer and D ⊆ {0, 1}k. If a code C ⊆ {0, 1}k satisfies

|C| = N, (3.15)

∀x,y ∈ C(x ̸= y),∀z ∈ D, x⊕ y ̸= z, (3.16)

then C is called a (k,N,D)2 extended code. �

We note that a (k,N,D)2 extended code is equal to a (k,N, d)2 code if D = {a ∈ {0, 1}k|w(a) ≤
d− 1}.

Next, we introduce m split distance distribution, which is extended from the distance distri-

bution. In order to introduce m split distance distribution, we define the following notation.

Definition 3.3 Let k, m, κ1, κ2, . . . , κm be any positive integers, where 1 ≤ m ≤ k and

k = κ1+κ2+ · · ·+κm. Then W
(κ1,κ2,...,κm)
i1,i2,...,im

(= Wi1,i2,...,im), ij = 0, 1, . . . , κj, 1 ≤ j ≤ m are defined

by

W
(κ1,κ2,...,κm)
i1,i2,...,im

:= {w = (w1,w2, . . . ,wm) ∈ {0, 1}κ1 × {0, 1}κ2 × · · · × {0, 1}κm

|wt(w1) = i1, wt(w2) = i2, . . . , wt(wm) = im}. (3.17)

If there is no danger of confusion we omit the κ1, κ2, . . . κm. �

Then the m split distance distribution is defined as follows.
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Definition 3.4 Let k, m, κ1, κ2, . . . , κm be any positive integers, where 1 ≤ m ≤ k and

k = κ1 + κ2 + · · · + κm. Then, the m split distance distribution Ai1,i2,...,im, ij ∈ {0, 1, . . . , κj},
1 ≤ j ≤ m of a code C(⊆ {0, 1}k) is defined by

Ai1,i2,...,im =
1

|C|
∑
x∈C

∣∣∣{y ∈ C|x⊕ y ∈ Wi1,i2,...,im}
∣∣∣,

i1 = 0, 1, . . . , κ1, i2 = 0, 1, . . . , κ2, . . . , im = 0, 1, . . . , κm. (3.18)

�

Like the distance distribution, if C is a linear code, the m split distance distribution Ai1,i2,...,im

is equal to the m split weight distribution A′
i1,i2,...,im

, that is

Ai1,i2,...,im = A′
i1,i2,...,im

(
=
∣∣∣{y ∈ C|y ∈ Wi1,i2,...,im}

∣∣) ,
i1 = 0, 1, . . . , κ1, i2 = 0, 1, . . . , κ2, . . . , im = 0, 1, . . . , κm. (3.19)

Moreover, the D(⊆ {0, 1}k) of a (k,N,D) extended code is defined using k split distance

distribution. If the k split distance distribution of a extended code C (C ⊆ {0, 1}k, |C| = N)

satisfy

Ai1,i2,...,ik = 0 for ∀(i1, i2, . . . , ik) ∈ D, (3.20)

then C is (k,N,D)2 extended code. Thus, D is called k split distance in what follows.

3.4.2 Extension of Delsarte Theorem

Next, we provide some properties of the m split distance distribution. The results in this section

are extended from theorems in Section 2.4.2.

The next definition is extended from the Krawtchouk polynomial as defined in Definition

2.3.

Definition 3.5 For any positive integers κ1, κ2, . . . ,κm a polynomial Pi1,i2,...,im(z1, z2, . . . , zm;

κ1, κ2, . . . , κm) (= Pi1,i2,...,im(z1, z2, . . . , zm)) is defined by

Pi1,i2,...,im(z1, z2, . . . , zm;κ1, κ2, . . . , κm) := Pi1(z1;κ1)Pi2(z2;κ2) . . . Pim(zm;κm),

i1 = 0, 1, . . . , κ1, i2 = 0, 1, . . . , κ2, . . . , im = 0, 1, . . . , κm. (3.21)

where z1, z2, . . . , zm are indeterminate and Pi1(z1;κ1), Pi2(z2;κ2), . . . , Pim(zm;κm) are the Krawt-

chouk polynomials. If there is no danger of confusion we omit the κ1, κ2, . . . , κm. �

Also, the extended Krawtchouk polynomial satisfy the following property, which corresponds to

Lemma 2.3.
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Lemma 3.3 If v ∈ Wj1,j2,...,jm, then∑
u∈Wi1,i2,...im

(−1)u·v = Pi1,i2,...,im(j1, j2, . . . , jm), (3.22)

where i1, j1 ∈ {0, 1, . . . , κ1}, i2, j2 ∈ {0, 1, . . . , κ2}, . . . , im, jm ∈ {0, 1, . . . , κm}.

Proof: Let v ∈ Wj1,j2,...,jm . Then we can write v = (v1,v2, . . . ,vm) ∈ W
(κ1)
j1

×W
(κ2)
j2

×· · ·×W
(κm)
jm

.

Therefore, ∑
u∈Wi1,i2,...,im

(−1)u·v

=
∑

(u1,u2,...,um)∈W (κ1)
i1

×W
(κ2)
i2

×···×W
(κm)
im

(−1)(u1,u2,...,um)·(v1,v2,...,vm) (3.23)

=
∑

u1∈W
(κ1)
i1

∑
u2∈W

(κ2)
i2

∑
um∈W (κm)

im

(−1)(u1·v1)⊕(u2·v2)⊕···⊕(um·vm) (3.24)

=
∑

u1∈W
(κ1)
i1

(−1)u1·v1

∑
u2∈W

(κ2)
i2

(−1)u2·v2 · · ·
∑

um∈W (κm)
im

(−1)um·vm (3.25)

= Pi1(j1;κ1)Pi2(j2;κ2) . . . Pim(jm;κm) (3.26)

= Pi1,i2,...,im(j1, j2, . . . , jm). (3.27)

where (3.26) is from Lemma 2.3. �
The next Theorem 3.1 is extended from Macwilliams Theorem as shown in Theorem 2.1.

Theorem 3.1 provides an important property of the m split distance distribution.

Theorem 3.1 Let C(⊆ {0, 1}k) be a linear code, and C⊥ be the dual code of C. Let Ai1,i2,...,im

and A⊥
i1,i2,...,im

, ij = 0, 1, . . . , κj, 1 ≤ j ≤ m, be the m split distribution of C and C⊥. Then,

A⊥
i1,i2,...,im

=
1

|C|

κ1∑
j1=0

κ2∑
j2=0

· · ·
κm∑

jm=0

Aj1,j2,...,jmPi1,i2,...,im(j1, j2, . . . , jm),

i1 = 0, 1, . . . , κ1, i2 = 0, 1, . . . , κ2, . . . , im = 0, 1, . . . , κm. (3.28)

�

Before the proof of Theorem 3.1, we present the next Lemma 3.4. In Lemma 3.4, let f be any

mapping defined on {0, 1}n, and f̂ be the Hadamard transform of f , that is

f̂(u) =
∑

v∈{0,1}n
(−1)u·vf(v),u ∈ {0, 1}n. (3.29)

Lemma 3.4 [11, Ch.5 Lemma 2] Let C be a linear code, and C⊥ be the dual code of C. Then∑
u∈C⊥

f(u) =
1

|C|
∑
u∈C

f̂(u). (3.30)

�
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Proof of Theorem 3.1: Let the mapping fWi1,i2,...,im
be

fWi1,i2,...,im
(u) =

{
0, u ̸∈ Wi1,i2,...,im ,

1, u ∈ Wi1,i2,...,im ,

i1 = 0, 1, . . . κ1, i2 = 0, 1, . . . κ2, . . . , im = 0, 1, . . . κm. (3.31)

If (3.31) is used as the mapping f in (3.30), the left-hand side of (3.30) is

∑
u∈C⊥

fWi1,i2,...,im
(u) = A⊥

i1,i2,...,im
, (3.32)

because C⊥ is a linear code.

Further, the right-hand side of (3.30) is

1

|C|
∑
u∈C

f̂Wi1,i2,...,im
(u)

=
1

|C|
∑
u∈C

∑
v∈Wi1,i2,...,im

(−1)u·v (3.33)

=
1

|C|

κ1∑
j1=0

κ2∑
j2=0

· · ·
κm∑

jm=0

∑
u∈C∩Wj1,j2,...,jm

∑
v∈Wi1,i2,...,im

(−1)u·v (3.34)

=
1

|C|

κ1∑
j1=0

κ2∑
j2=0

· · ·
κm∑

jm=0

Aj1,j2,...,jmPi1,i2,...,im(j1, j2, . . . , jm), (3.35)

where (3.35) is from Lemma 3.3. Thus, we can obtain (3.28). �
As well as MacWilliams Theorem, we use Theorem 3.1 to define m split dual distance of linear

and nonlinear codes.

The next Theorem 3.2 is extended from Delsarte Theorem as shown in Theorem 2.2. Theorem

3.2 provides an important property of the m split distance distribution.

Theorem 3.2 Let C(⊆ {0, 1}k) be a code and Ai1,i2,...,im, ij = 0, 1, . . . , κj, 1 ≤ j ≤ m, be the m

split distribution of C. Then,

1

|C|

κ1∑
j1=0

κ2∑
j2=0

· · ·
κm∑

jm=0

Aj1,j2,...,jmPi1,i2,...,im(j1, j2, . . . , jm) ≥ 0,

i1 = 0, 1, . . . , κ1, i2 = 0, 1, . . . , κ2, . . . , im = 0, 1, . . . , κm. (3.36)



Chapter 3. Orthogonal Arrays with Partial Strength 29

Proof: For i1 = 0, 1, . . . , κ1, i2 = 0, 1, . . . , κ2, . . . , im = 0, 1, . . . , κm,

1

|C|

κ1∑
j1=0

κ2∑
j2=0

· · ·
κm∑

jm=0

Aj1,j2,...,jmPi1,i2,...,im(j1, j2, . . . , jm)

=
1

|C|2
κ1∑

j1=0

κ2∑
j2=0

· · ·
κm∑

jm=0

∑
(x,y) ∈ C2,

x⊕ y ∈ Wj1,j2,...,jm

Pi1,i2,...,im(j1, j2, . . . , jm) (3.37)

=
1

|C|2
κ1∑

j1=0

κ2∑
j2=0

· · ·
κm∑

jm=0

∑
(x,y) ∈ C2,

x⊕ y ∈ Wj1,j2,...,jm

∑
u∈Wi1,i2,...,im

(−1)u·(x⊕y) (3.38)

=
1

|C|2
∑
x∈C

∑
y∈C

∑
u∈Wi1,i2,...,im

(−1)u·x(−1)u·y (3.39)

=
∑

u∈Wi1,i2,...,im

(
1

|C|
∑
x∈C

(−1)u·x

)2

(3.40)

≥ 0, (3.41)

where (3.38) is from Lemma 3.3. �

3.4.3 Relations between Orthogonal Arrays with Partial Strength

and Extended Error-Correcting Codes

For a nonlinear, we still define them split dual distance distribution by (3.28), calling the number

A⊥
i1,i2,...,im

, ij ∈ {0, 1, . . . , κj}, 1 ≤ j ≤ m the MacWilliams transform of the m split distance

distribution. Then it is still true that A⊥
i1,i2,...,im

≥ 0 for all i1, i2, . . . , im from (3.36). Here, we

use the k split dual distance distribution for a code C ⊆ {0, 1}k, that is

A⊥
i1,i2,...,ik

=
1

|C|

1∑
j1=0

1∑
j2=0

· · ·
1∑

jk=0

Aj1,j2,...,jkPi1,i2,...,ik(j1, j2, . . . , jk),

ij ∈ {0, 1}, 1 ≤ j ≤ k. (3.42)

Further, we define the k split dual distance to be a set D⊥ such that

A⊥
i1,i2,...,ik

= 0, for ∀(i1, i2, . . . , ik) ∈ D⊥. (3.43)

Theorem 3.3 If C is a (k,N,D)2 extended code over {0, 1} with the dual k split distance

D⊥, then the codewords of C form the rows of an POA(N, k, 2, D⊥) with entries from {0, 1}.
Conversely, the rows of an POA(N, k, 2, T ) over {0, 1} form a (k,N,D)2 extended code over

{0, 1} with the dual k split distance T .

Proof: If C has the dual k split distance D⊥, then

A⊥
i1,i2,...,ik

= 0, for ∀(i1, i2, . . . , ik) ∈ D⊥. (3.44)
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From (3.40), this implies ∑
x∈C

(−1)x·u = 0 (3.45)

for all u ∈ D. Therefore, by Lemma 3.2, the matrix of codewords of C forms an orthogonal

array with the partial strength D⊥. Conversely, if the orthogonal array has the partial strength

T , from Lemma 3.2 and (3.40) we have

A⊥
i1,i2,...,ik

= 0, for ∀(i1, i2, . . . , ik) ∈ T. (3.46)

�

3.4.4 Properties of Orthogonal Arrays with Partial Strength from

Relations with Extended Error-Correcting Codes

From Theorem 3.3, a POAs can be regarded as an extended code. Thus, let C̄ be a POA(N, k, 2, T )

and C be an extended code formed by C̄ in the same way as Theorem 3.3. Then, the k distance

distribution Ai1,i2,...,ik , (i1, i2, . . . , ik) ∈ {0, 1}k of the C̄ is defined by (3.18), and the k split

distance distribution satisfy

N =
1∑

i1=0

1∑
i2=0

· · ·
1∑

ik=0

Ai1,i2,...,ik . (3.47)

Moreover, the k split distance distribution of the C̄ satisfy

A0,0,...,0 = 1, (3.48)

Ai1,i2,...,ik ≥ 0, (i1, i2, . . . , ik) ∈ {0, 1}k, (3.49)
1∑

j1=0

1∑
j2=0

· · ·
1∑

jk=0

Aj1,j2,...,jkPi1,i2,...,ik(j1, j2, . . . , jk) ≥ 0, (i1, i2, . . . , ik) ∈ {0, 1}k, (3.50)

1∑
j1=0

1∑
j2=0

· · ·
1∑

jk=0

Aj1,j2,...,jkPi1,i2,...,ik(j1, j2, . . . , jk) = 0, (i1, i2, . . . ik) ∈ T. (3.51)

where (3.50) is from Theorem 3.2 and (3.51) is from Theorem 3.3. These properties are useful

for leading to LP bounds for POAs in Section 3.5.

3.5 Main Problems in Orthogonal Arrays with Partial

Strength

3.5.1 Main Problems in Orthogonal Arrays with Partial Strength

Construction problem for POAs and problem for finding lower bounds for POAs can be formu-

lated as follows.
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• Find the POA with a minimum number of rows N , given the number of columns k, and

the partial strength T (⊆ {0, 1}k).

• Find the lower bound for a number of rows N , given the number of columns k, and the

partial strength T (⊆ {0, 1}k).

As well as OAs, these are main problems in the study of POAs. In the past, many construct

methods for POAs were already proposed [1, 3, 13, 22]. However, there are no studies for the

problem for finding lower bounds for POAs. Therefore, we propose LP bounds for POAs, which

are extended from LP bounds for OAs, as given in Section 2.5. We show the LP bounds for

POAs in the next section 3.5.2.

3.5.2 Linear Programming Bounds for Orthogonal Arrays with Par-

tial Strength

We propose LP bounds for POAs in the next Theorem 3.4.

Theorem 3.4 For any T ⊆ {0, 1}k, let NLP (k;T ) be the solution to the following linear pro-

gramming problem: choose real numbers Ai1,i2,...,ik , (i1, i2, . . . , ik) ∈ {0, 1}k, so as to

minimize
1∑

i1=0

1∑
i2=0

· · ·
1∑

ik=0

Ai1,i2,...,ik (3.52)

subject to the constraints

A0,0,...,0 = 1, (3.53)

Ai1,i2,...,ik ≥ 0, (i1, i2, . . . , ik) ∈ {0, 1}k, (3.54)
1∑

j1=0

1∑
j2=0

· · ·
1∑

jk=0

Aj1,j2,...,jkPi1,i2,...,ik(j1, j2, . . . , jk) ≥ 0, (i1, i2, . . . , ik) ∈ {0, 1}k, (3.55)

1∑
j1=0

1∑
j2=0

· · ·
1∑

jk=0

Aj1,j2,...,jkPi1,i2,...,ik(j1, j2, . . . , jk) = 0, (i1, i2, . . . ik) ∈ T. (3.56)

Then the size of any orthogonal array POA(N, k, 2, T ) satisfies

N ≥ NLP (k;T ). (3.57)

�

We can obtain the LP bounds for POAs from the properties in Section 3.4.4. Further, we can

obtain analogous result for extended codes as follows.

Theorem 3.5 For any D ⊆ {0, 1}k, let MLP (k;D) be the solution to the following linear pro-

gramming problem: choose real numbers Ai1,i2,...,ik , ij ∈ {0, 1}, 1 ≤ j ≤ k, so as to

maximize

1∑
i1=0

1∑
i2=0

· · ·
1∑

ik=0

Ai1,i2,...,ik (3.58)
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subject to the constraints

A0,0,...,0 = 1, (3.59)

Ai1,i2,...,ik = 0, (i1, i2, . . . , ik) ∈ D, (3.60)

Ai1,i2,...,ik ≥ 0, (i1, i2, . . . , ik) ̸∈ D, (3.61)
1∑

j1=0

1∑
j2=0

· · ·
1∑

jk=0

Aj1,j2,...,jkPi1,i2,...,ik(j1, j2, . . . , jk) ≥ 0, (i1, i2, . . . , ik) ∈ {0, 1}k. (3.62)

Then the size N of any (k,N,D)2 code satisfies

N ≤ MLP (k;D). (3.63)

�

Moreover, we can obtain the following Theorem as well as Theorem 2.6.

Theorem 3.6 (i) Orthogonal arrays. Suppose we can find a polynomial f(x1, x2, . . . xk) of the

form

f(x1, x2, . . . , xk) = 1 +
∑

(i1, i2, . . . , ik) ∈ {0, 1}k,
(i1, i2, . . . , ik) ̸= 0

fi1,i2,...,ikPi1,i2,...,ik(x1, x2, . . . , xk) (3.64)

such that the following conditions hold:

fi1,i2,...,ik ≤ 0 for (i1, i2, . . . , ik) ̸∈ T, (3.65)

f(j1, j2, . . . , jk) ≥ 0 for (j1, j2, . . . , jk) ∈ {0, 1}k. (3.66)

Then the size of any POA(N, k, 2, T ) satisfies

N ≥ f(0, 0, . . . , 0). (3.67)

(ii) Codes. Suppose we can find a polynomial f(x1, x2, . . . , xk) of the form (3.64) such that the

following conditions hold:

fi1,i2,...,ik ≥ 0 for (i1, i2, . . . , ik) ∈ {0, 1}k, (3.68)

f(j1, j2, . . . , jk) ≤ 0 for (j1, j2, . . . , jk) ̸∈ D. (3.69)

Then the number of distinct codewords in any (k,N,D)2 code satisfies

N ≤ f(0, 0, . . . , 0). (3.70)

Proof: The dual linear program to the linear program defined by (3.52)-(3.56) is to choose real

numbers fi1,i2,...,ik , (i1, i2, . . . ik) ∈ {0, 1}k, (i1, i2, . . . ik) ̸= 0 so as to

maximize 1 +
∑

(i1, i2, . . . , ik) ∈ {0, 1}k,
(i1, i2, . . . , ik) ̸= 0

fi1,i2,...,ikPi1,i2,...,ik(0, 0, . . . , 0) (3.71)
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subject to the constraints

fi1,i2,...,ik ≤ 0 for (i1, i2, . . . , ik) ̸∈ T, (3.72)∑
(i1, i2, . . . , ik) ∈ {0, 1}k,

(i1, i2, . . . , ik) ̸= 0

fi1,i2,...,ikPi1,i2,...,ik(j1, j2, . . . , jk) ≥ −1

for (j1, j2, . . . , jk) ∈ {0, 1}k. (3.73)

It follows from the duality theorem of linear programming that any feasible solution to the dual

problem gives a lower bound on the optimal solution to the primal problem. So if fi1,i2,...,ik
satisfy (3.72) and (3.73), then

NLP ≥ 1 +
∑

(i1, i2, . . . , ik) ∈ {0, 1}k,

(i1, i2, . . . , ik) ̸= 0

fi1,i2,...,ikPi1,i2,...,ik(0, 0, . . . , 0) (3.74)

With f(x1, x2, . . . , xk) as in (3.64), the first assertion of the theorem follows. The proof for the

codes case is analogous. �
Next, we provide two examples to illustrate Theorem 3.4.

Example 3.4 We consider the case that that k = 4 and

T1 = {0000, 1000, 0100, 0010, 0001, 1100, 1010, 1001, 0110, 0101, 0011, 1110, 1101}. (3.75)

In this case, we can obtain the optimal solution NLP (k;T1) = 8 using a computer. In fact, the

POA in Table 3.2 is an POA(4, 8, 2, T1), and the generator matrix of this POA is 0 0 1 1

0 1 0 1

1 0 0 0

 . (3.76)

�

Table 3.2: An POA(8, 4, 2, T1)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0
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Example 3.5 We consider the case that that k = 5 and

T2 = {00000, 10000, 01000, 00100, 00010, 00001, 11000, 10100,
10010, 10001, 01100, 01010, 01001, 00110, 00101, 00011,

11100, 11010, 11001, 10110, 01110, 00111, 11110}. (3.77)

In this case, we can obtain the optimal solution NLP (k;T2) = 16 using a computer. In fact, the

POA in Table 3.3 is an POA(4, 8, 2, T2), and the generator matrix of this POA is
0 0 0 1 1

0 0 1 0 0

0 1 0 0 1

1 0 0 0 0

 . (3.78)

�

Table 3.3: An POA(8, 4, 2, T2)

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 0

3.6 Concluding Remarks

In this Chapter, we defined POAs and proposed LP bounds for POAs. Moreover, we provided

numerical examples of the proposed bounds.
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We first defined POAs and provided some basic properties of POAs. Next, we discussed

the application of POAs, especially in experimental designs. Next, we defined extended error-

correcting codes and clarified the relation between POAs and the extended error-correcting codes.

Further, we derived some properties of POAs from the relation. In the derivation, we used the

m split distance distribution and derived some properties of the m split distance distribution,

which are extended from MacWilliams Theorem and Delsarte Theorem. Lastly, we proposed LP

bounds for POAs and provided some numerical examples of the proposed bounds.





Chapter 4

A Subclass of Orthogonal Arrays with

Partial Strength and its Applications to

Unequal Error Protection Codes

4.1 Introduction

In Chapter 3, we proposed LP bounds for POAs. Consequently, the process of finding lower

bounds for POAs reduces to solving LP problems. However, these LP problems has 2k variables

or constraints, so these LP problem cannot be solved if k is large. Therefore, it is important

to consider the subclasses of the POAs such that the LP problems corresponding to the sub-

classes can be solved easily and such that the subclasses are important in applications involving

experimental designs and error-correcting codes.

In this Chapter 4, we introduce OAs with different strengths in each column as a subclass

of POAs. The LP problems corresponding to this subclass can be solved easily. Further, this

subclass is important in applications in experimental designs and error-correcting codes. In

particular, the application in error-correcting codes are important because this subclass is related

to UEP codes [12, 2].

In this chapter, we first define OAs with different strengths in each column and propose

its LP bounds. Next, we propose LP bounds for UEP code using the result. Next, we verify

the effectiveness of the proposed LP bounds for UEP codes. More specifically, we compare the

proposed bounds with the modified Hamming bound for UEP codes as proposed by Masnick et

al. [12], and provide some numerical examples of the proposed bounds.

This chapter is organized as follows. In Section 4.2, we define OAs with different strengths

in each column, and propose its LP bounds. In Section 4.3, we define UEP codes and propose

LP bounds for UEP codes. In Section 4.4, we verify the effectiveness of the LP bounds for UEP

codes.

37
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Bounds

4.2 A Subclass of Orthogonal Arrays with Partial Strength

and its Linear Programming Bounds

At first, we define OAs with different strengths in each column as a subclass of POAs. The

definition of OAs with different strengths in each column is as follows.

Definition 4.1 Let m, k, κ1, κ2, . . . , κm, t1, t2, . . . , tm be positive integers, where k = κ1 + κ2 +

· · ·+ κm. If an array A is an POA(N, k, 2, T ), where

T = {z = (z1, z2, . . . , zm) ∈ {0, 1}κ1 × {0, 1}κ2 × · · · × {0, 1}κm |
(z1 ̸= 0, w(z) ≤ t1) or (z2 ̸= 0, w(z) ≤ t2) or . . .

or (zm ̸= 0, w(z) ≤ tm)}, (4.1)

then A is called an OAs with different strengths in each column and denoted by

POA(N, (κ1, κ2, . . . , κm), 2, (t1, t2, . . . , tm)). (4.2)

�

In applications in experimental designs, an POA(N, (κ1, κ2, . . . , κm), 2, (t1, t2, . . . , tm)) can be

used when the following model is assumed.

y(x) =
∑
a∈I

faχa(x) + e(x), (4.3)

where

I = {e = (e1, e2, . . . , em) ∈ {0, 1}κ1 × {0, 1}κ2 × · · · × {0, 1}κm|

(e = 0) or (e1 ̸= 0, w(e) ≤ ⌊t1
2
⌋) or (e2 ̸= 0, w(e) ≤ ⌊t2

2
⌋)

or . . . or (em ̸= 0, w(e) ≤ ⌊tm
2
⌋}. (4.4)

For example, if m = 2, κ1 = 1, κ2 = 4, t1 = 4, and t2 = 2, then

I = {00000, 10000, 01000, 00100, 00010, 00001, 11000, 10100, 10010, 10001}. (4.5)

This means that there are five factors F1, F2, . . . F5 and all interactive factors of order two

including F1, that is F1 × F2, F1 × F3, F1 × F4 and F1 × F5.

Next, we propose LP bounds for POA(N, (κ1, κ2, . . . , κm), 2, (t1, t2, . . . , tm)). In what follows,

the notation T is defined by

T := {(i1, i2, . . . , im) ∈ {0, 1, . . . , κ1} × {0, 1, . . . , κ2} × . . . {0, 1, . . . , κm}|

(i1 ̸= 0,
m∑
j=1

ij ≤ t1) or (i2 ̸= 0,
m∑
j=1

ij ≤ t2) or

. . . or (im ̸= 0,
m∑
j=1

ij ≤ tm)}. (4.6)

Then, LP bounds for POA(N, (κ1, κ2, . . . , κm), 2, (t1, t2, . . . , tm)) are as follows.
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Theorem 4.1 Let NLP (κ1, κ2, . . . , κm; t1, t2, . . . , tm) be the solution to the following linear pro-

gramming problem: choose real numbers Ai1,i2,...,im, ij = 0, 1, . . . , κj, 1 ≤ j ≤ m, so as to

minimize

κ1∑
i1=0

κ2∑
i2=0

· · ·
κm∑

im=0

Ai1,i2,...,im (4.7)

subject to the constraints

A0,0,...,0 = 1, (4.8)

Ai1,i2,...,im ≥ 0, ij = 0, 1, 2, . . . , κj, 1 ≤ j ≤ m, (4.9)
κ1∑

j1=0

κ2∑
j2=0

· · ·
κm∑
jk=0

Aj1,j2,...,jmPi1,i2,...,im(j1, j2, . . . , jm) ≥ 0, ij = 0, 1, . . . , κj, 1 ≤ j ≤ m, (4.10)

κ1∑
j1=0

κ2∑
j2=0

· · ·
κm∑
jk=0

Aj1,j2,...,jmPi1,i2,...,im(j1, j2, . . . , jm) = 0, (i1, i2, . . . im) ∈ T . (4.11)

Then the size N of any POA(N, (κ1, κ2, . . . , κm), 2, (t1, t2, . . . , tm)) satisfies

N ≥ NLP (κ1, κ2, . . . , κm; t1, t2, . . . , tm). (4.12)

�

Note that LP problems in Theorem 4.1 has at most κ1×κ2×· · ·×κm variables and constraints,

whereas LP problems in Theorem 3.4 has 2k variables or constraints. Therefore, LP problems

in Theorem 4.1 can be solved easier than those in Theorem 3.4.

4.3 An Application to Unequal Error-Protection Codes

Next, we apply the result in Section 4.2 to UEP codes and propose LP bounds for UEP codes.

UEP codes were proposed by Masnick et al. [12] and have been studied by many researchers

[5, 6, 2]. UEP codes are divided to two types. The one is bit-wise UEP codes [12, 2], and the

other is message-wise UEP codes [5, 6]. In this thesis, we focus on bit-wise UEP codes.

The definition of (bit-wise) UEP codes is as follows.

Definition 4.2 Let m, k, κ1, κ2, . . . , κm, d1, d2, . . . , dm be positive integers, where k = κ1 + κ2 +

· · ·+ κm. If a code C is a (k,N,D) extended code, where

D = {z = (z1, z2, . . . , zm) ∈ {0, 1}κ1 × {0, 1}κ2 × · · · × {0, 1}κm |
(z1 ̸= 0, w(z) ≤ d1 − 1) or (z2 ̸= 0, w(z) ≤ d2 − 1) or . . .

or (zm ̸= 0, w(z) ≤ dm − 1)}, (4.13)

then C is called a ((κ1, κ2, . . . , κm), N, (d1, d2, . . . , dm))2 unequal error protection (UEP) code.

�
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Next, we propose LP bounds for UEP codes. In what follows, the notation D is defined by

D := {(i1, i2, . . . , im) ∈ {0, 1, . . . , κ1} × {0, 1, . . . , κ2} × . . . {0, 1, . . . , κm}|

(i1 ̸= 0,
m∑
j=1

ij ≤ d1 − 1) or (i2 ̸= 0,
m∑
j=1

ij ≤ d2 − 1) or

. . . or (im ̸= 0,
m∑
j=1

ij ≤ dm − 1)}. (4.14)

UEP codes are corresponding to OAs with different strengths in each column. Therefore, we

can obtain LP bounds for UEP codes in the same way as Theorem 4.1.

Theorem 4.2 Let MLP (κ1, κ2, . . . , κm; d1, d2, . . . , dm) be the solution to the following linear pro-

gramming problem: choose real numbers Ai1,i2,...,im, ij = 0, 1, . . . , κj, 1 ≤ j ≤ m, so as to

maximize

κ1∑
i1=0

κ2∑
i2=0

· · ·
κm∑

im=0

Ai1,i2,...,im (4.15)

subject to the constraints

A0,0,...,0 = 1, (4.16)

Ai1,i2,...,im = 0, (i1, i2, . . . , im) ∈ D, (4.17)

Ai1,i2,...,im ≥ 0, (i1, i2, . . . , im) ̸∈ D, (4.18)
κ1∑

j1=0

κ2∑
j2=0

· · ·
κm∑
jk=0

Aj1,j2,...,jmPi1,i2,...,im(j1, j2, . . . , jm) ≥ 0, ij = 0, 1, . . . , κj, 1 ≤ j ≤ m. (4.19)

Then the size N of any ((κ1, κ2, . . . , κm), N, (d1, d2, . . . , dm))2 UEP code satisfies

N ≤ MLP (κ1, κ2, . . . , κm; d1, d2, . . . , dm). (4.20)

�

4.4 Verification of Linear Programming Bounds for Un-

equal Error Protection Codes

In this section, we verify the effectiveness of the LP bounds for UEP codes as shown in Theorem

4.2. For this verification, we compare the LP bounds for UEP codes with the modified Hamming

bounds and provide some numerical examples of the LP bounds for UEP codes.

4.4.1 Comparison with Modified Hamming Bounds

Next, we compare the LP bounds for UEP codes as shown in Theorem 4.2 with the modified

Hamming bounds as proposed by Masnick et al. [12]. The modified Hamming bounds can be

described as follows.
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Theorem 4.3 Let

E = {e = (e1, e2, . . . , em) ∈ {0, 1}κ1 × {0, 1}κ2 × · · · × {0, 1}κm |(e = 0) or

(e1 ̸= 0, w(e) ≤ ⌊d1 − 1

2
⌋) or (e2 ̸= 0, w(e) ≤ ⌊d2 − 1

2
⌋)

or . . . or (em ̸= 0, w(e) ≤ ⌊dm − 1

2
⌋}. (4.21)

Then, any ((κ1, κ2, . . . , κm), N, (d1, d2, . . . , dm))2 UEP code satisfy

N ≤ 2κ1+κ2+···+κm

|E|
. (4.22)

�

Further, the LP bounds for UEP codes and the modified Hamming bounds satisfy the following

relation.

Theorem 4.4 Let MLP (κ1, κ2, . . . , κm; d1, d2, . . . , dm) be the solution to the LP problem in The-

orem 4.2 and let E be defied by (4.21). Then

MLP (κ1, κ2, . . . , κm; d1, d2, . . . , dm) ≤
2κ1+κ2+···+κm

|E|
. (4.23)

�

Theorem 4.4 shows that the LP bounds for UEP codes are tighter than the modified Hamming

bounds. We prove Theorem 4.4 in the next section 4.4.2.

4.4.2 Proof of Theorem 4.4

For simplicity, we prove Theorem 4.4 in the case m = 2. The generalization to m, 1 ≤ m ≤ k

can be done easily.

In order to prove Theorem 4.4, we provide some lemmas. The next Lemma 4.1 and 4.2

provide properties of the Krawtchouk polynomial.

Lemma 4.1 [11, Ch.5 Theorem 16] For any a, b ∈ {0, 1, . . . , k},

k∑
c=0

(
k

c

)
Pa(c)Pb(c) = 2k

(
k

a

)
δa,b, (4.24)

where δa,b = 1, if a = b, δa,b = 0, if a ̸= b is the Kronecker symbol. �

Lemma 4.2 [11, Ch.5 Theorem 17] For any a, b ∈ {0, 1, . . . , n},(
n

a

)
Pb(a) =

(
n

b

)
Pa(b). (4.25)

�
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Moreover, Lemma 4.1 and 4.2 can be extended to Lemma 4.3 and 4.4.

Lemma 4.3 For any a1, b1 ∈ {0, 1, . . . , κ1}, a2, b2 ∈ {0, 1, . . . , κ2},

κ1∑
c1=0

κ2∑
c2=0

∣∣Wc1,c2

∣∣ Pa1,a2(c1, c2) Pb1,b2(c1, c2) = 2κ1+κ2
∣∣Wa1,a2

∣∣ δa1,b1δa2,b2 , (4.26)

where δa1,b1, δa2,b2 are the Kronecker symbols.

Proof: For any a1, b1 ∈ {0, 1, . . . , κ1}, a2, b2 ∈ {0, 1, . . . , κ2},

κ1∑
c1=0

κ2∑
c2=0

∣∣Wc1,c2

∣∣ Pa1,a2(c1, c2)Pb1,b2(c1, c2)

=

κ1∑
c1=0

κ2∑
c2=0

(
κ1

c1

)(
κ2

c2

)
Pa1(c1;κ1)Pa2(c2;κ2) (4.27)

= 2κ1

(
κ1

a1

)
δa1,b1 × 2κ2

(
κ2

a2

)
δa2,b2 (4.28)

= 2κ
∣∣Wa1,a2

∣∣ δa1,b1δa2,b2 , (4.29)

where (4.28) is from Lemma 4.1. �

Lemma 4.4 For any a1, b1 ∈ {0, 1, . . . , κ1}, a2, b2 ∈ {0, 1, . . . , κ2},∣∣Wb1,b2

∣∣ Pa1,a2(b1, b2) =
∣∣Wa1,a2

∣∣ Pb1,b2(a1, a2). (4.30)

Proof: For any a1, b1 ∈ {0, 1, . . . , κ1}, a2, b2 ∈ {0, 1, . . . , κ2},∣∣Wb1,b2

∣∣ Pa1,a2(b1, b2)

=

(
κ1

b1

)(
κ2

b2

)
Pa1(b1;κ1)Pa2(b2;κ2) (4.31)

=

(
κ1

a1

)(
κ2

a2

)
Pb1(a1;κ1)Pb2(a2;κ2) (4.32)

=
∣∣Wa1,a2

∣∣ Pb1,b2(a1, a2), (4.33)

where (4.32) is from Lemma 4.2. �
Furthermore, the Krawtchouk polynomial has the following properties.

Lemma 4.5 If h+ i < j, then

k∑
l=0

(
k

l

)
Ph(l)Pi(l)Pj(l) = 0. (4.34)
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Proof: The left-hand side of (4.34) is the coefficient of xhyizj in

n∑
l=0

(
k

l

)
(1 + x)k−l(1− x)l(1 + y)k−l(1− y)l(1 + z)k−l(1− z)l (4.35)

= {(1 + x)(1 + y)(1 + z) + (1− x)(1− y)(1− z)}k (4.36)

= 2k(1 + xy + yz + zx)k, (4.37)

where (4.36) is from binomial theorem. If h+ i < j, the coefficient of xhyizj in (4.37) is 0. Thus,

we can obtain Eq. (4.34). �
Next, we define the dual problem of the LP problem in Theorem 4.2, which is important to

prove Theorem 4.4.

Problem 4.1 Choose real numbers αi1,i2, i1 = 0, 1, . . . , κ1, i2 = 0, 1, . . . , κ2, so as to

minimize

κ1∑
i1=0

κ2∑
i2=0

(
κ1

i1

)(
κ2

i2

)
αi1,i2 (4.38)

subject to the constraints

α0,0 = 1, (4.39)

αi1,i2 ≥ 0, i1 = 0, 1, . . . , κ1, i2 = 0, 1, . . . , κ2, (4.40)
n1∑

i1=0

n2∑
i2=0

αi1,i2Pi1,i2(j1, j2) ≤ 0, ∀(j1, j2) ∈ {0, 1, . . . , κ1} × {0, 1, . . . , κ2} \ D. (4.41)

�

From the duality theorem of LP [11, Ch.17 Theorem 15, 16], it follows that any feasible

solution to the dual problem gives an upper bound on the optimal solution to the primal problem.

Therefore, we can prove Theorem 4.4 as follows.

Proof of Theorem 4.4: In what follows, let

E := {(i1, i2) ∈ {0, 1, . . . , κ1} × {0, 1, . . . , κ2}|(i1 ̸= 0, i1 + i2 ≤ ⌊d1 − 1

2
⌋)

or (i1 + i2 ≤ ⌊d2 − 1

2
⌋)}, (4.42)

In Problem 4.1, let

αi1,i2 =

{∑
(a1,a2)∈E Pa1,a2(i1, i2)

|E|

}2

. (4.43)

Then α0,0 = 1, and αi1,i2 ≥ 0, i1 = 0, 1, . . . , κ1, i2 = 0, 1, . . . , κ2. Further, for any (j1, j2) ∈
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{0, 1, . . . , κ1} × {0, 1, . . . , κ2} \ D,

κ1∑
i1=0

κ2∑
i2=0

{∑
(a1,a2)∈E Pa1,a2(i1, i2)

|E|

}2

Pi1,i2(j1, j2)

=
1

|E|2
κ1∑

i1=0

κ2∑
i2=0

∑
(a1,a2)∈E

∑
(b1,b2)∈E

Pa1,a2(i1, i2)Pb1,b2(i1, i2)Pi1,i2(j1, j2) (4.44)

=
1

|E|2 · |Wj1,j2 |
∑

(a1,a2)∈E

∑
(b1,b2)∈E

κ1∑
i1=0

κ2∑
i2=0

∣∣Wi1,i2

∣∣Pa1,a2(i1, i2)Pb1,b2(i1, i2)Pj1,j2(i1, i2) (4.45)

=
1

|E|2 · |Wj1,j2 |
∑

(a1,a2)∈E

∑
(b1,b2)∈E

{
κ1∑

i1=0

∣∣W (κ1)
i1

∣∣Pa1(i1;κ1)Pb1(i1;κ1)Pj1(i1;κ1)

}

×

{
κ2∑

i2=0

∣∣W (κ2)
i2

∣∣Pa2(i2;κ2)Pb2(i2;κ2)Pj2(i2;κ2)

}
(4.46)

= 0. (4.47)

where (4.45) is from Lemma 4.4 and (4.47) is from (4.14), (4.42), and Lemma 4.5. Thus, we can

see that (4.39)-(4.41) hold.

Therefore, the following is a feasible solution to Problem 4.1.

κ1∑
i1=0

κ2∑
i2=0

(
κ1

i1

)(
κ2

i2

){∑
(a1,a2)∈E Pa1,a2(i1, i2)

|E|

}2

=
1

|E|2
κ1∑

i1=0

κ2∑
i2=0

(
κ1

i1

)(
κ2

i2

) ∑
(a1,a2)∈E

∑
(b1,b2)∈E

Pa1,a2(i1, i2)Pb1,b2(i1, i2) (4.48)

=
1

|E|2
∑

(a1,a2)∈E

∑
(b1,b2)∈E

2κ1+κ2

(
n1

a1

)(
n2

a2

)
δa1,b1δa2,b2 (4.49)

=
2κ1+κ2

|E|2
∑

(a1,a2)∈E

|Wa1,a2 | (4.50)

=
2κ1+κ2

|E|
, (4.51)

where (4.49) is from Lemma 4.3. We can obtain (4.23) because any feasible solution to the dual

problem is upper bound on the optimal solution to the primal problem. �

4.4.3 Numerical Examples

Next, we provide two examples to illustrate Theorem 4.2.

Example 4.1 We consider the case that m = 2, κ1 = 6, κ2 = 3, d1 = 3 and d2 = 5. In this

case, we can obtain the optimal solution MLP (6, 3; 3, 5) = 16 using a computer. Moreover, this

optimal solution has A0,0 = A6,3 = 1, A3,0 = A3,3 = 4, A4,0 = A2,3 = 3 and the other Ai1,i2 = 0.
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Table 4.1: ((κ1, κ2),M, (5, 3)) UEP codes (0 ≤ κ1, κ2 ≤ 15)

κ1 κ2 LP bounds Construction

0 15 2048.00 2048 (Hamming)

1 14 1024.00

2 13 585.14

3 12 585.14

4 11 390.10

5 10 390.10

6 9 336.84

7 8 318.58

8 7 290.59

9 6 280.70

10 5 273.07

11 4 263.49

12 3 262.76

13 2 260.06

14 1 260.06

15 0 260.06 256 (Preparata)

In fact, the UEP code with the parity check matrix
0 0 0 1 1 1 1 0 0

0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1

 , (4.52)

is a ((6, 3), 16, (3, 5))2 UEP code and has these 2 split distance distribution. �

Example 4.2 We consider ((κ1, κ2),M, (5, 3)) UEP codes, where κ1+κ2 = 15 and 0 ≤ κ1 ≤ 15.

Note that a ((0, 15),M, (5, 3)) UEP code is a (15,M, 3) code and a ((15, 0),M, (5, 3)) UEP code

is a (15,M, 5) code. In this case, the optimal solutions MLP ((κ1, κ2), (5, 3)) obtained using a

computer are in the column “LP bounds” of Table 4.1. In Table 4.1, the column “Construction”

means the size of the best code with these parameters [11, p.675]. From Table 4.1, we can say

that there can be useful UEP codes in the parameter κ1 = 1, 2, . . . , 14. �

4.5 Concluding Remarks

In this Chapter, we defined OAs with different strengths in each column and proposed its LP

bounds. Moreover, we proposed LP bounds for UEP codes and showed the effectiveness of the
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LP bounds for UEP codes.

We first defined OAs with different strengths in each column as a subclass of POAs and

proposed its LP bounds. Further, we showed that the LP problems corresponding to this subclass

had few variables and constraints. Next, we proposed LP bounds for UEP codes. Lastly, we

compared the LP bounds for UEP codes with the modified Hamming bounds and provided some

numerical examples of the LP bounds for UEP codes.



Chapter 5

Construction of Orthogonal Arrays

with Partial Strength from Unequal

Error Protection Codes

5.1 Introduction

As stated in Chapter 3.5, main problems in the study of POAs are as follows.

• Find the POA with a minimum number of rows N , given the number of columns k and

the partial strength T (⊆ {0, 1}k).

• Find the lower bound for a number of rows N , given the number of columns k and the

partial strength T (⊆ {0, 1}k).

In previous works, many construction methods for POAs were proposed by researchers of exper-

imental designs [1, 3, 13, 22]. Most of these methods are algorithmic and it is hard to construct

POAs with a large number of columns and partial strength T whose size |T | is large.
On the other hand, in the study of OAs, there are many construction methods for OAs [7].

Some of these methods use the relation with error-correcting codes in Theorem 2.3. Further,

these methods can construct OAs with the large number columns and large strength easily.

In this Chapter 5, we propose construction methods for OAs with different strengths in

each column, which was defined as a subclass of POAs in Chapter 4. We first propose two

construction methods , construction method 1 and construction method 2, for linear OAs with

different strengths in each column. These two methods use the relation between POAs and

extended codes as shown in Theorem 3.3. Moreover, construction method 1 and construction

method 2 use the construction methods for UEP codes as proposed by Masnick et al. [12]

and Boyarinov et al. [2], respectively. Next, we propose construction method 3 for nonlinear

OAs with different strengths in each column. The construction method 3 is an extension of

the construction method 1. Lastly, we provide some numerical examples of these construction

methods.
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Figure 5.1: The construction method of linear OA

This chapter is organized as follows. In Section 5.2, we propose construction methods for

linear and nonlinear OAs with different strengths in each column. In Section 5.3, we provide

some numerical example of these proposed methods.

5.2 Construction from Unequal Error Protection Codes

5.2.1 Linear Orthogonal Arrays with Partial Strength

From Theorem 3.3, Definition 4.1, and Definition 4.2, we can make a linear POA((κ1, κ2, . . . κm),

N, 2, (t1, t2, . . . , tm)) from the dual code of a linear ((κ1, κ2, . . . κm), N
′, (t1+1, t2+1, . . . , tm+1))2

UEP code directly. The next Construction Method 1 is from the construction method for UEP

codes as proposed by Masnick et al. [12].

Construction Method 1 Let there be two generator matrices of OAs; G1 is the generator

matrix for a linear OA(N1, k1, 2, t1) and G2 is the one for a linear OA(N2, k2, 2, t2), where t2 ≤ t1.

Let G1 and G2 be joined as sub-matrices of G where G1 and G2 overlap, as shown in Fig.5.1.

The array with generator matrix G is an N1N2 × k1 + k2 − k0L array. Let k0L ≤ t2/2. �

The array by Construction Method 1 satisfies the following theorem.

Theorem 5.1 The array by Construction Method 1 is an POA(N1N2, (k1−k0L, k0L, k2−k0L), 2,

(t1, t1 + t2 − k0L, t2)). �

Further, the next Construction Method 2 is from the construction method for UEP codes as

proposed by Boyarinov et al. [2].

Construction Method 2 Let α denote a primitive element of the Galois field GF (22l). Then

β = α2l+1 is a primitive element of the Galois field GF (2l) that is a subfield of the Galois field

GF (22l). Consider an array over {0, 1}, which have the generator matrix

G =

[
1 α · · · α2l α2l+1 α2l+2 · · · α22l−2

1 0 · · · 0 β3 0 · · · 0

]
. (5.1)
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The array with the generator matrix G is a 23l × (22l − 1) array. �

The array by Construction Method 2 satisfies the following theorem.

Theorem 5.2 Let l be an odd integer. Then, the array with the generator matrix in (5.1) is an

POA(23m, (2m − 1, 22m − 2m), 2, (4, 2)). �

The statement of Theorem 5.2 allows for some modifications and generalizations in the same

way as UEP codes (cf. [2, Theorem 2]).

5.2.2 Nonlinear Orthogonal Arrays with Partial Strength

Next, we propose a construction method for nonlinear POA((κ1, κ2, . . . κm), N, 2, (t1, t2, . . . , tm)).

The next Construction Method 3 is extended from Construction Method 1.

Construction Method 3 Let there be two OAs; C̄1 is an OA(N1, k1, 2, t1) and C̄2 is an

OA(N2, k2, 2, t2), where r2 ≤ r1. Note that C̄1 and C̄2 are not needed to be linear. Let C1

be the set of the rows of C̄1 and C2 be the set of the rows of C̄2. Let

C = {(c1,1, . . . , c1,k1−k0L , c1,k1−k0L+1 ⊕ c2,1, . . . , c1,k1 ⊕ c2,k0L , c2,k0L+1, . . . , c2,k2) |
for ∀(c1,1, c1,2, . . . , c1,k1) ∈ C1,∀(c2,1, c2,2, . . . , c2,k2) ∈ C2}. (5.2)

The OA whose rows are formed by the vectors in C is an (N1N2) × (k1 + k2 − k0L) array. Let

k0L ≤ t2/2. �

The array by Construction Method 3 satisfies the following theorem.

Theorem 5.3 The array by Construction Method 3 is an POA(N1N2, (k1−k0L, k0L, k2−k0L), 2,

(t1, t1 + t2 − k0L, t2)).

Proof: Let N = N1N2 and k = k1 + k2 − k0L. Further, let

C ′
1 = {(a1,1, a1,2, . . . , a1,k1 , 0, 0, . . . , 0) ∈ {0, 1}k|∀(a1,1, a1,2, . . . , a1,k1) ∈ C1}, (5.3)

C ′
2 = {(0, 0, . . . , 0, a2,1, a2,2, . . . , a2,k2) ∈ {0, 1}k|∀(a2,1, a2,2, . . . , a2,k2) ∈ C2}. (5.4)

From Lemma 3.2, we should prove∑
v∈C

(−1)u·v = 0 for u ∈ T \ {0}, (5.5)

where

T = {z = (z1, z2,z3) ∈ {0, 1}k1−k0L × {0, 1}k0L × {0, 1}k2−k0L|(z = 0) or

(z1 ̸= 0, w(z) ≤ t1) or (z2 ̸= 0, w(z) ≤ t1 + t2 − k0L) or

(z3 ̸= 0, w(z) ≤ t2)}. (5.6)
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Moreover, ∑
v∈C

(−1)u·v = 0 for u ∈ T \ {0} (5.7)

⇐⇒
∑
v1∈C′

1

∑
v2∈C′

2

(−1)u·(v1⊕v2) = 0 for u ∈ T \ {0} (5.8)

⇐⇒
∑
v1∈C′

1

(−1)u·v1

∑
v2∈C′

2

(−1)u·v2 = 0 for u ∈ T \ {0}, (5.9)

so we will prove (5.9).

1. For the case of u ∈ {z = (z1,z2, z3)|z1 ̸= 0, w(z) ≤ t1}(⊆ T \ {0}).

Then ∑
v1∈C′

1

(−1)u·v1 = 0, (5.10)

from (5.3) and Lemma (3.2). Thus (5.9) holds.

2. For the case of u ∈ {z = (z1,z2, z3)|z3 ̸= 0, w(z) ≤ t2}(⊆ T \ {0}).

In the same way as 1. , ∑
v1∈C′

2

(−1)u·v2 = 0. (5.11)

Thus (5.9) holds.

3. For the case of u ∈ {z = (z1,z2, z3)|z2 ̸= 0, w(z) ≤ t1 + t2 − k0L}(⊆ T \ {0}).

Let u = (u1,u2,u3) ∈ {0, 1}k1−k0L × {0, 1}k0L × {0, 1}k2−k0L . If w(u1,u2) ≤ t1, then∑
v1∈C′

1

(−1)u·v1 = 0, (5.12)

from (5.3) and Lemma (3.2). Further, if w(u1,u2) > t1, then

w(u3) ≤ t2 − k0L ⇒ w(u2,u3) ≤ t2, (5.13)

so ∑
v1∈C′

2

(−1)u·v2 = 0. (5.14)

from (5.4) and Lemma (3.2). Thus (5.9) holds.

�
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5.3 Numerical Examples

5.3.1 Numerical Examples of Construction Method 1 and 3

In this section, we provide some examples of POAs by Construction Method 1 and 3. Further,

we compare them with the optimal OAs [7, Table 12.1].

We first compare the following;

• An OA(214, 16, 2, 8). This is an optimal M × 16 OA with the strength 8, which is in [7,

Table 12.1].

• An POA(213, (8, 1, 7), 2, (5, 8, 4)) by Construction Method 1: G1 in Construction Method

1 is a generator matrix for an OA(27, 9, 2, 5). This is an optimal OA with the number

of column 9 and strength 5, which is in [7, Table 12.1]. G2 is a generator matrix for an

OA(26, 8, 2, 4). This is also an optimal OA with the number of column 8 and strength 4.

And n0L = 1.

In this case, the number of rows of the POA by Construction Method 1 is fewer than the optimal

OA.

Next, we compare the following arrays to discuss the differences between linear and nonlinear

OAs with different strengths in each column.

• (OA) OA(M,k, 2, 4), k = 11, 12, . . . , 32. These are optimal OAs with strength 4, which is

in [7, Table 12.1].

• (Method 1) POA(M, (κ1, 1, 2), 2, (3, 4, 2)), κ1 = 8, 9, . . . , 29 by Construction Method 1:

G1 in Construction Method 1 are generator matrices for the optimal linear OAs with the

number of column κ1 + 1 and strength 3, which is in [7, Table 12.1], G2 is the generator

matrix for a linear OA(4, 3, 2, 2), and n0L = 1.

• (Method 3) POA(M, (κ1, 1, 2), 2, (3, 4, 2)), κ1 = 8, 9, . . . , 29 by Construction Method 3:

C̄1 in Construction Method 3 are the optimal linear or nonlinear OAs with the number

of column κ1 + 1 and strength 3, which is in [7, Table 12.1], C̄2 is a OA(4, 3, 2, 2), and

n0L = 1.

The number of rows of each array is shown in Table 5.1, where k = κ1 + 1+ 2 in Method 1 and

Method 3.

We first compare the POA by Construction Method 1 with the OAs. We can see that the

number of rows of the linear POAs is fewer than that of OAs at many k.

Next, we compare linear and nonlinear POAs by Construction Method 3 with linear POAs by

Construction Method 1. The number of rows of POAs by Construction Method 3 is fewer than

that of POAs by Construction Method 1. This is because Construction Method 3 is extended

from Construction Method 1, so POAs by Construction Method 3 include POAs by Construction

Method 1.
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Table 5.1: The number of rows of OAs

k OA Method 1 Method 3

11 128 128 96

12 128 128 96

13 128 128 96

14 128 128 96

15 128 128 128

16 256 128 128

17 256 128 128

18 256 128 128

19 256 256 160

20 512 256 160

21 512 256 160

22 512 256 160

23 512 256 192

24 1024 256 192

25 1024 256 192

26 1024 256 192

27 1024 256 224

28 1024 256 224

29 1024 256 224

30 1024 256 224

31 1024 256 256

32 1024 256 256

5.3.2 Numerical Examples of the Construction Method 2

Next, we provide an example of an POA by Construction Method 2. Further, we compare it

with an OA by using a BCH code [7, 11].

We compare the following arrays;

• The OA(4096, 63, 2, 4), which has the generator matrix

G =

[
1 α · · · α2l+1 · · · α22l−2

1 α2 · · · α2l+1+2 · · · α22l+1−4

]
.

where l = 3.

• The POA(512, (56, 7), 2, (2, 4)) by Construction Method 2, where let l = 3 in Construction

Method 2.
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In this case, the number of rows of the POA by Construction Method 2 is fewer than that of

the OA.

5.4 Concluding Remarks

In this chapter, we proposed three construction methods for OAs with different strengths in each

column. Further, we provided numerical examples of these construction methods.

We first proposed construction method 1 and construction method 2 for linear OAs with

different strengths in each column. These methods used the relation between POAs and extended

codes and used the construction methods for UEP codes. Next, we proposed construction method

3 for nonlinear OAs with different strengths in each column. This method is an extension of the

construction method 1. Lastly, we provided some numerical examples of these three construction

methods.





Chapter 6

Conclusion

In this thesis, we extended the concept of OAs to POAs and proposed LP bounds for POAs. We

also defined OAs with different strengths in each column as a subclass of POAs and proposed

its LP bounds. Moreover, we proposed LP bounds for UEP codes by using the results obtained

for this subclass. We also proposed construction methods for OAs with different strengths in

each column.

In Chapter 2, we discussed previous studies pertaining to OAs. In particular, we provided

details about the applications of OAs in experimental designs, the relation between OAs and

error-correcting codes, and the LP bounds for OAs.

In Chapter 3, we extended OAs to POAs and showed that POAs were more suitable for

experimental design applications than OAs. We also defined extended codes and clarified the

relation between POAs and extended codes. Additionally, we derived some properties of POAs

from the relation. We further proposed LP bounds for POAs from the properties derived from

the relation with the extended codes and presented some numerical examples of the LP bounds

for POAs.

In Chapter 4, we defined OAs with different strengths in each column as a subclass of POAs

and proposed their LP bounds. Then, we showed that the LP problems corresponding to this

subclass can be solved more easily than those corresponding to POAs. Further, we proposed the

LP bounds for UEP codes by using the results in this subclass. We also compare the LP bounds

for UEP codes with the modified Hamming bounds and provided numerical examples of the LP

bounds for UEP codes.

In Chapter 5, we initially proposed two construction methods, construction method 1 and

construction method 2, for linear OAs with different strengths in each column. In both these

methods, the relation between POAs and extended codes and the construction methods for

UEP codes were used. We also proposed construction method 3 for nonlinear OAs with different

strengths in each column; this method is an extension of construction method 1. We also

provided some numerical examples for these three construction methods.

In the future, we plan to study other subclasses of POAs. In Chapter 4, we stated the

importance of considering subclasses of POAs and introduced OAs with different strengths in

each column as a subclass of POAs. We expect to find other subclasses of POAs for which the
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LP problems corresponding to the subclasses can be solved easily and for which the subclasses

are important in applications involving experimental designs or error-correcting codes.

We also plan to study other construction methods for POAs in the future. As stated in

Chapter 5, many construction methods were proposed for POAs [1, 3, 13, 22]. Most of these

methods can be regarded as search algorithms. Also, the lower bounds for POAs can be useful

for narrowing the search ranges of these algorithms. Thus, we believe that we can find a new

algorithm by combining the search algorithms and the proposed lower bounds (or properties of

POAs to derive these bounds).
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