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Chapter 1

Introduction

1.1 Background

Computer technologies, i.e., how to accelerate the processing power, how to expand the
capability, and how to realize an application, have been developed on both hardware and
software aspects. High performance computing models, such as high throughput comput-
ing [5] and grid computing [6, 8, 9] have been taking a critical role in such developments.
One of objectives of those computing models is typically to minimize the response time.
On the other hand, a high throughput computing [5] focuses on maximizing computing
throughput (the amount of computation per a time unit). This means that an objective of
a high performance computing model depends on the situation and the environment to be
assumed.

In the light of realization for a high performance computing model, a number of pro-
gramming models and middlewares exist. In the case of programming models, a program-
ming standard (MPI [13]) and API sets (PVM [14], MPICH [15]) are applied for realizing
interprocessor communications. By using such programming models and middlewares, the
program can be transformed into the one which can be executed in parallel or concurrently
among processors in the computer and/or over the network. As for the common termi-
nologies, the program submitted into the system is defined as “a job,” and each execution
unit consisting the job is defined as “task.” How to schedule each task is generally known
as task scheduling problem [4]. Though whether the optimal schedule can be obtained or
not depends on the task execution model, at least how to schedule the job composed of the
set of tasks is known as a NP-complete problem [4]. Many researches have tried to find a
near-optimal solution within the practical running time.

As for a real situation, one of major trends in task execution models is to divide the
required data into several pieces and then distribute them to workers such as “a master
‐worker model.” In contrast to such a data intensive job, how to divide a computation
intensive job into several execution units for parallel execution is under discussion from
theoretical points of view. If we take task parallelization into account in a grid environment
such as a computational grid [7, 10, 11], a task scheduling strategy should be established to
achieve effective use of processors, which means to maximize the degree of contribution per
a processor to the reduction of the response time. However, every conventional approach
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CHAPTER 1. INTRODUCTION

has no criterion to achieve the goal. For example, one method to decide the set of processors
is to merge several tasks into one assignment unit [17, 18, 24, 26, 27, 29, 32, 42–44]. In such a
method, each assignment unit is generated according to the specific criterion. Hence, both
the response time and the number of processors obtained depends on the criterion. The
problem in conventional approaches to achieve effective use of processors is that the number
of generated assignment unit can be too many because such approaches try to minimize the
response time only.

1.2 Research target

The objective of the dissertation is to propose the theoretical method for achieving effective
use of processors in distributed systems, where each processor is connected to others over
the network. In a real situation, the system to be assumed is roughly classified into two
types, i.e., a homogeneous distributed system and heterogeneous distributed systems. In
the former, both each processing speed and each communication bandwidth are identical,
while in the latter their values are arbitrary. Thus, the dissertation mainly consists of two
parts in terms of the system to be assumed, i.e., how to achieve effective use of proces-
sors in homogeneous distributed systems (chapter 3) or heterogeneous distributed systems
(chapter 4). The basic concept behind the research is to impose the lower bound to each as-
signment unit (cluster) size for effective use of processors, thereby the number of processors
is limited to some extent. Thus, in both two parts, the main issue to be solved is how to
theoretically derive the lower bound.

1.3 Abstract of each chapter

Figure 1.1 shows relationships among chapters. Before describing those two parts, the job
model is defined (chapter 2). The job is the one which is abstracted from a program, in
which each statement and function call are handled as a task. On the other hand, each data
exchanged among tasks corresponds to a communication over the network. If we assume
a general purpose job, which can be modeled as a DAG (Directed Acyclic Graph), where
a task corresponds to a node and a data corresponds to an edge. The specific model we
assume is how to parallelize the DAG type job over the completely connected network for
effective use of processors. In the first part (chapter 3), i.e., in homogeneous distributed
systems model, the lower bound for every asignment unit (cluster) is statically derived be-
fore each task is scheduled. In other words, we have no way to decide the response time at
the derivation phase. Hence, it is necessary to derive the lower bound with estimating the
response time. The assumed procedure is to estimate the response time using the indicative
value, while each cluster is generated by a task merging step. We define the indicative value
as WSL (Worst Schedule Length, denoted as slw(Gscls)) which means the largest value the
response time can take when every task is executed as late as possible after s task merging
steps. Gscls means the state that the set of clusters and communications after s task merg-
ing steps have been performed. Since the variation of indicative value must have effect on
the minimization of the response time, we theoretically analyze the relationship between
slw(Gscls) and the response time decided after a task scheduling. As a result, two theorems
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CHAPTER 1. INTRODUCTION

are proved, i.e., the one is that the reduction of slw(Gscls) can lead to the reduction of the
lower bound of the response time, and the other is that the reduction of slw(Gscls) can lead
to the reduction of the upper bound of the response time. Then we estimate the task com-
bination in an cluster when slw(GRcls) is effectively reduced (where R is the number of task
merging steps when every cluster size exceeds the lower bound δ ). By considering δ as a
variable, we derive the value of δ as δopt when slw(GRcls) can be minimized. The processes to
generate each cluster are as follows.

1. Derive the lower bound δopt by assuming the ideal structure for each cluster after R
task merging steps.

2. Generate each cluster until every cluster size exceeds δopt with minimizing slw(GRcls).

As the second process, we propose the task clustering algorithm (the set of task merging
steps) which has the low time complexity and is capable of effectively reducing slw(GRcls).
Then we prove the following points by experimental simulations.

1. The generated clusters by the proposal have the task combination for each of them for
minimizing slw(GRcls).

2. The response time can be effectively reduced with the reduction of slw(GRcls) by the
proposal.

3. The derived lower bound, i.e., δopt has a good impact on the reduction of the response
time.

4. The algorithm running time is practical.

5. Applicability of the proposal in realistic jobs such as a Gaussian Elimination DAG and
a FFT DAG.

From results shown by the experiments, we make conclusion that the proposal can achieve
effective use of processors in homogeneous distributed systems.

As the second part (chapter 4), we propose how to achieve effective use of processors in
heterogeneous distributed systems. Specifically, we present three points as follows.

(1) The lower bound of a cluster execution time (sum of each task execution time in the
cluster on a processor) is derived with taking the processor’s capability into account.

(2) The policy for selecting the processor to be assigned.

(3) A task clustering algorithm to generate the cluster which is assigned to the processor
selected in (2). As a result, the generated cluster execution time exceeds the lower
bound derived in (1).

In contrast to the case of homogeneous distributed system, each task execution time de-
pends on not only each processing speed, but also each communication bandwidth. Thus,
the lower bound of each cluster execution time should be decided according to the proces-
sor which has been selected as the assignment target. At (1), at first we define the indicative
value for the response time as slw(Gscls, ϕs) , where ϕs means the mapping state between

3
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each cluster and each processor after s task merging steps. Then we prove that the reduc-
tion of slw(Gscls, ϕs) can lead to the reduction of the lower bound of the response time. Also
we prove that so is true for the upper bound of the response time. Hence, the fundamental
objective of the proposal is to minimize slw(GRcls, ϕR) by imposing the lower bound for each
cluster execution time decided according to each processor and the processor assignment.
Then we derive the lower bound of the cluster execution time for the selected processor as
the next assignment target. The lower bound is expressed as δsopt(Pp) , where Pp is selected
before s‐th task merging step, and then we estimate the lower bound for every cluster execu-
tion time on the path dominating slw(Gs−1

cls , ϕs−1), i.e., by which slw(Gs−1
cls , ϕs−1) is decided.

That is, we derive the lower bound by temporally assuming the homogeneous distributed
system by the set of Pp . At the same time, the upper bound of slw(Gscls, ϕs) is derived as
∆sls−1

w,up. Since δsopt(Pp) is a function of Pp , both the processing speed and the communication
bandwidth are variables. Furthermore, ∆sls−1

w,up is a function of the lower bound for a cluster
execution time. Hence, the actual processor to be assigned after s‐th task merging step is
decided by assigning every processing speed and communication bandwidth in the set of
unassigned processors to ∆sls−1

w,up. The processor by which ∆sls−1
w,up is minimized is selected

as the next assignment target. Each cluster is generated by the task clustering algorithm
for each derived lower bound. Experimental comparisons are conducted to confirm, (i) the
reduction of slw(Gscls, ϕs) can lead to the reduction of the response time, (ii) optimality of
δsopt(Pp) , and (iii) optimality of the processor assignment. As a conclusion, the contribution
of the dissertation is to propose a new theoretical approach for effective use of processors in
distributed systems. The main achievement is to decide how large each assignment unit size
should be set. As a future work, more realistic aspects such as communication bottlenecks
by hops should be taken into consideration.
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Chapter 2

Preliminary

2.1 Job model

We assume a job to be executed among distributed processor elements (PEs) can be ex-
pressed as a Directed Acyclic Graph (DAG), which is one of task graphs. At first, let
Gscls = (Vs, Es, V s

cls) be the DAG after s task merging steps. Merging steps will be discussed
in the later part of the dissertation. Vs is the set of tasks after s task merging steps, Es is the
set of edges (data communications among tasks) after s task merging steps, and V s

cls is the
set of clusters which consists of one or more tasks after s task merging steps. An i-th task is
denoted as nsi . Let w(nsi ) be the task size of nsi , i.e., the time a reference processor takes to
execute the task. A reference processor is the one selected for measuring the processing time
of a task, while the reference communication link is the one selected for measuring the data
transfer time of a data. Thus, the processing time for each task and the data transfer time
for each data are derived by taking ratios in terms of the processing speed and the commu-
nication bandwitdh. We denote data dependency and direction of data transfer from nsi to
nsj with esi,j . And c(esi,j) is used to denote the data size, i.e., the time to transfer the data from
nsi to nsj over the reference communication link.

One constraint imposed by a DAG is that a task can not be started execution until all
data from its predecessor tasks arrive. For instance, esi,j means that nsj can not be started
until data from nsi arrives at the PE which will execute nsj . And let pred(nsi ) be the set
of immediate predecessors of nsi , and suc(nsi ) be the set of immediate successors of nsi . If
pred(nsi ) = ∅, nsi is called START task, and if suc(nsi ) = ∅, nsi is called END task. If there are
one or more paths from nsi to nsj , we denote such a relation as nsi ≺ nsj .

Figure 2.1 shows a DAG example. In (a), it is assumed that each task corresponds to
one statement. On the other hand, in (b), each task is assumed to be one function call. In
general, a DAG, i.e., a task graph can be generated from a dominance tree [3], which rep-
resents data dependencies and control dependencies among tasks. If we assume that one
task corresponds to one statement (e.g., only a variable assignment), the total number of
tasks in the DAG becomes very large, so that both the total communication overheads and
the time taken for a task scheduling become large. Thus, typically many program paral-
lelization compilers adopt the transformation from small granularity to larger granularity
in terms of the task structure. For example, in HTG (Hierarchical Task Graph [1, 2]), each
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(a) 1 task :1 statement (b) 1 task :1 function call

Figure 2.1: Example of a DAG.

task corresponds to one execution block, e.g., one looping or one function call in order to
reduce both the number of tasks and communication overheads. Thus, in this dissertation
we assume that each task corresponds to one function call (i.e., (b) at Figure 2.1).

2.2 Task clustering

The i-th cluster in V s
cls is denoted as clss(i). If nsk is included in clss(i) by “the s-th task merg-

ing step,” we formulate one task merging step as clss+1(i)← clss(i) ∪ {nsk}. If any two tasks,
i.e., nsi and nsj , are included in the same cluster, they are assigned to the same PE. Then the
communication between nsi and nsj is localized, so that we define c(esi,j) becomes zero. Task
clustering is a set of task merging steps, that is finished when a certain criteria has been sat-
isfied. Let one task merging step for clss(i) and clss(k) be defined as merge(clss(i), clss(k)).
This procedure is expressed as

clss+1(i)← clss(i) ∪ clss(k);
V s+1
cls ← V s

cls − {clss(k)}, Es+1 ← Es;
c(es+1

p,q )← 0 for ∀ns+1
p , ns+1

q ∈ clss+1(i), es+1
p,q ∈ Es+1;

return clss+1(i); (2.1)

Then one cluster is one assignment unit for a PE.
Let the input DAG for task clustering be Gscls = (Vs, Es, V s

cls), where s is the number of
task merging steps. Let the set of tasks in Vs be {ns1, ns2, . . . }, and let the set of edges in Es
be {. . . , esk,l, . . . }. This means that Gscls is the DAG just after s task merging steps have been
performed to G0. At the initial state, let s = 0 and let V0 ← V,E0 ← E. Furthermore, let
cls0(1) = {n0

1}, cls0(2) = {n0
2}, . . ., V 0

cls ← {cls0(1), cls0(2), . . . }. The sum of each task size in
clss(i) is defined as w(clss(i)), and in this dissertation w(clss(i)) is called “cluster size” of
clss(i).

Throughout this dissertation, we denote that clss(i) is “linear” if and only if clss(i) con-
tains no independent task [24], i.e., every task in clss(i), has precedence relationships with
other tasks. Note that if one cluster is linear, at least one path among any two tasks in the
cluster exists and the task execution order is unique.

7
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2.3 System model

We have two assumptions in terms of the system in this dissertation, i.e., homogeneous
distributed systems described in chapter 3 and heterogeneous distributed systems described
in chapter 4.

In both chapters, every PE can independently execute a task and send/receive data at
the same time in a completely connected network. Every PE has its local memory space to
store data required to execute programs. The communication model among PEs is based on
a message passing model such as MPI [13]. In such a communication model, it is assumed
that multiple data are communicated at the same time with a constant communication band-
width. This means that communication bandwidth is time invariant1.

In chapter 3, we assume the number of PEs is unbounded. On the other hand, in chapter
4, there are limited number of PEs and each PE has a non-identical processing speed and a
non-identical communication bandwidth. The set of PEs is expressed asP = {P1, P2, . . . , Pm},
and let the set of processing speeds as α, i.e.,

α = {α1, α2, . . . , αm}. (2.2)

Let the set of communication bandwidths as β, i.e.,

β =


∞ β1,2 β1,3 . . . β1,m

β2,1 ∞ β2,3 . . . β2,m

β3,1 β3,2 ∞ . . . β3,m
...

...
...

...
...

βm,1 βm,2 βm,3 . . . ∞

 . (2.3)

βi,j means the communication bandwidth from Pi to Pj . The processing time in the case
that nsk is processed on Pi is expressed as tp(nsk, αi) = w(nsk)/αi. The data transfer time of
esk,l over βi,j is tc(esi,j , βk,l) = c(esi,j)/βk,l. This means that both processing time and data
transfer time are not changed with time, and suppose that data transfer time within one
PE is negligible. Since every processing speed and communication bandwidth are the same
among PEs in homogeneous distributed systems, without loss of generality both αi and βi,j
are set to 1, i.e., w(nsk) and c(esi,j) are considered as the processing time and the data transfer
time. Such assumptions are applied in chapter 3.

2.4 Schedule length

Each task can be executed after every data from its immediate predecessors have been ar-
rived. At first, let the start time (scheduled time) of nsj be ts(nsj), and let the completion time
of nsj be tf (nsj). Then tf (nsj) is defined as follow.

tf (nsj) = ts(nsj) + tp(w(nsj), αp). (2.4)

1Since our study is based on the classical communication model, we do not focus on multiple data transmis-
sion at one time [40], one-port model [40]
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When every data from pred(nsj) has been arrived, nsj can be executed immediately. However,
even if every data from pred(nsj) has been arrived at nsj , n

s
j can not be started until the

execution of another task in the same cluster is finished.
In this dissertation, the time when every data from every immediate predecessor tasks

has been arrived is named as Data Ready Time (DRT [16, 41]). DRT of nsj(n
s
j ∈ clss(k)) is

defined as follow.

tdr(nsj) = max
ns

i∈pred(ns
j)

{
tf (nsi ) + tc(c(esi,j), βp,q)

}

= max

 max
ns

i∈pred(ns
j),

ns
i∈clss(k)

{tf (nsi )} , max
ns

i∈pred(ns
j),

ns
i /∈clss(k)

{
tf (nsi ) + tc(c(esi,j , βp,q))

} . (2.5)

From eq.(2.5), it can be seen that tdr(nsj) is derived from the maximum completion time of
a task in pred(nsj) included in the same cluster and the maximum data arrival time from a
task in pred(nsj) included in other clusters. In the former case, data transfer time between
pred(nsj) and nsj is zero, because they are included in the same cluster. On the other hand, the
latter case requires data transfer time of c(esi,j). If execution of every immediate predecessor
task has been completed but every data from one or more tasks from other clusters has
not arrived, the task must be wait for delay its execution. In such a case, the data waiting
time exists. The data waiting time of nsj in clss(k) is defined as I(nsj , k), which is derived as
follow.

I(nsj , k) =


0, if max

ns
i∈pred(ns

j),

ns
i∈clss(k)

{tf (nsi )} ≥ max
ns

i∈pred(ns
j),

ns
i /∈clss(k)

{
tf (nsi ) + tc(c(esi,j), βp,q)

}
,

max
ns

i∈pred(ns
j),

ns
i /∈clss(k)

{
tf (nsi ) + tc(c(esi,j), βp,q)

}
− max

ns
i∈pred(ns

j),

ns
i∈clss(k)

{tf (nsi )} , otherwise.
(2.6)

Even if tdr(nsj) is known, the scheduled time of nsj may be varied by the execution order
(i.e., the scheduling policy) when some tasks are independent from nsj in the same cluster
have not been scheduled. Thus, we have tdr(nsj) ≤ ts(nsj) [16, 41]. From the relationship, it
follows the fact that the completion time of each task depends on the scheduling policy. In
this dissertation, the schedule length of Gscls is defined as sl(Gscls).

sl(Gscls) = max
ns

j∈clss(k),clss(k)∈V s
cls

{
tf (nsj)

}
. (2.7)

In eq.(2.7), it is assumed that the start time of a START task is set to 0.
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Chapter 3

Task clustering in homogeneous
distributed systems

3.1 Introduction

In distributed systems where each PE sends or receives data over the network, scheduling
tasks to minimize schedule length is very important [12, 18, 27–29]. It is known that a task
graph which consists of a DAG, has been considered as an NP-complete problem [27]. If
the number of PEs is given and every PE must be used, a priority for scheduling order is
adopted by conventional approaches. Such approaches have been named as “list schedul-
ing.” On the other hand, if the number of PEs is not given or not all PEs must be used,
we must derive not only execution order for each task, but also the number of PEs in or-
der to obtain a good schedule length. As one approach in such a case, task clustering [17]
has been known. One fundamental feature of a task clustering is to merge several tasks
into one cluster by localizing communication overhead among them, so that each cluster
corresponds to each assignment unit per one PE. However, if the smaller communication
overhead among tasks becomes, the longer schedule length becomes, thereby the sched-
ule length can be prolonged. In distributed systems such as grid where several application
programs can be processed simultaneously, effectively using computational resources is a
key factor to achieve short schedule lengths for all executing applications. To achieve ef-
ficient utilization of computational resources, it is important to derive the execution order
to minimize schedule length, while to reduce the number of clusters as much as possible.
There are several heuristic approaches whose purposes are to reduce the number of clus-
ters by merging several clusters into a larger one after a task clustering. Pyrros compiling
infrastructure [25] adopts a criterion for equalizing each cluster size. Liou et al. proposed
two task merging approaches, i.e., LB(Load Balancing) and CTM (Communication Traffic
Minimizing) [26]. The merging criterion of LB is the same as the cluster merging adopted in
Pyrros [25] except that LB does not consider data dependencies among tasks. On the other
hand, the criterion of cluster merging performed by CTM is that sum of data transfer time
among clusters to be merged is minimized as much as possible. According to the results
of performance comparisons between LB and CTM, both of cluster merging approaches
have bad effects on the schedule length when they are performed after a task clustering,
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e.g., CASS-II [26]. According to the literature [26], by using LB after CASS-II, the schedule
length is prolonged up to 19 % compared with the schedule length obtained by only CASS-
II. In the case of performing CTM after CASS-II, the schedule length is prolonged up to 55
%. This means that a cluster merging approach which sacrifices task parallelism can pro-
long the schedule length. Thus, a cluster merging strategy for maintaining task parallelism
with the small number of clusters is required.

In this chapter, we present a cluster size determination method in order to obtain a good
schedule length with the small number of clusters in homogeneous distributed systems. As
one heuristic for reducing the number of clusters generated by a task clustering, we impose
the lower bound “δ” of every cluster size.

The fundamental objective is to minimize the schedule length. Hence, we derived the
lower bound of every cluster size while effectively minimizing the schedule length. Then
we present requirements and the algorithm for a task clustering heuristic, and then experi-
mental comparisons by simulations are presented.

3.2 Problem definition and assumptions

3.2.1 Cluster merging

If the number of generated clusters by a task clustering is smaller than that of actual existing
PEs, every cluster can be assigned to a PE. Otherwise, it is necessary to reduce the number
of clusters by merging them such that each PE can be assigned to one cluster [25,26]. In this
dissertation, cluster merging means to a procedure for merging several clusters generated
by a task clustering.

Figure 3.1 shows an example of a task clustering and cluster mergings. In this figure, (a)
represents the initial state of the DAG, and (b) represents the state after a task clustering has
been finished. The schedule length in (a) is equal to the critical path length (the maximum
path length including both every task size and every data size on a path), i.e., 23 by tracing
n0

1 → n0
3 → n0

5 → n0
7. On the other hand, in (b), no task scheduling is required because every

cluster is linear. Hence, the schedule length in (b) is uniquely determined to be 20.
If the number of clusters must be reduced to two due to the fact that there are only two

PEs, a cluster merging such as figure 3.1 (c), (d), and (e) is needed. As for each cluster
generated in (b), if cls4(1) and cls4(2) are merged by LB [26], some independent tasks exist,
e.g., “n5

2 and n5
3” and “n5

2 and n5
5” in (c), (d) and (e). As a result, the schedule length in the

order of n5
2 → n5

3 → n5
5 in (c) is 23. In (d), the schedule length in the order of n5

3 → n5
2 → n5

5

is 24, because the data arrival time of e52,7 at n5
7 is delayed by the increase of the start time

of n5
2. In (e), the schedule length is larger than that of (c) and (d) by scheduling n5

2 in cls5(2)
at the latest execution order. From those examples, it can be concluded that the schedule
length after a cluster merging can become larger than that after a task clustering, because
the number of tasks which can be executed at the same time may be reduced by a cluster
merging. It can also be concluded that the schedule length is varied depending on the
execution order for each task, even if the set of tasks belonging to the cluster is same among
(c), (d), and (d).
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Figure 3.1: Derivation of the schedule length by task clustering and cluster merging (SL:
Schedule Length)
(appears in [22]).

3.2.2 Problems in conventional approaches

The objective of conventional task clustering heuristics [17, 18, 24, 27, 29–33] mainly derive
the number of clusters (PEs) when the schedule length is minimized. In such approaches,
some heuristics adopt criteria that a task merging step is not accepted if the schedule length
is increased, otherwise the task merging step is accepted [18, 27, 29, 30]. In Convex Cluster-
ing [32], tasks having the ”convex” relationship each other are selected for a task merging
step. Thus, only precedence relationships are considered in Convex Clustering. Other ap-
proaches are based on the optimization methods [31,33]. Those approaches described above
do not impose any constraint for limiting the number of clusters to be generated, so that the
number of obtained clusters may become huge depending on not only each cluster struc-
ture, but also criteria for each task merging step. If the objective of the task clustering is to
minimize the schedule length, the larger the number of generated clusters is, the lower the
speed up ratio (the degree of contribution for reducing the schedule length) per one PE may
become.

As for the cluster merging, in the literature [25] mentions “Cluster Merging(CM),” which
performs cluster mergings based on the criterion that every cluster size is equalized until the
number of clusters is equal to that of PEs, while it does not take the precedence relationship
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between tasks. As a result, several tasks without precedence relationships belong to the
same cluster, so that the schedule length can be larger like figure 3.1(c), (d), and (e).

Load Balancing(LB) described in the literature [26] and Communication Traffic Minmiz-
ing (CTM) [26] are cluster merging heuristics which are performed after one of task clus-
tering heuristic, i.e., CASS-II [29]. Those two cluster mergings try to merge two clusters,
in which at least one precedence relationship exists. However, LB and CTM are performed
after a task clustering, so that a cluster required for cluster merging can have two or more
tasks. Thus, some tasks may have no precedence relationship in a merged cluster like figure
3.1(c), (d), and (e).

With those points described above, it can be said that conventional approaches have two
problem as follows.

• The number of required PEs derived by a conventional task clustering exceeds the
number of actual PEs.

• There is no criterion for minimizing the increase of the schedule length by a cluster
merging.

3.2.3 Proposal

The objective of our proposal is to minimize the schedule length with the small number of
PEs. Our proposals are as follows.

1. Derivation of the lower bound of every cluster size (defined as δopt), by which the
schedule length can be minimized.
From figure 3.1 (c) and (d), it can be said that the schedule length after a cluster merg-
ing is longer due to the fact that independent tasks are included in the same cluster.
Thus, a criterion for minimizing the schedule length with the small number of clusters
is needed. In this chapter, the lower bound of each cluster size is imposed as δ for lim-
iting the number of PEs, and we study how to decide δ for minimizing the schedule
length. Then we derive δopt, which is the value of δ when the schedule length can be
minimized.

2. The policies for task merging steps under the constraint that every cluster size is
δopt or more.
Even if δopt is decided before a task merging step, the schedule length can be varied
by a task merging policy and an execution order for each task. We present a task
clustering algorithm, which performs task merging steps until each cluster size is δopt
or more and which tries to minimized the schedule length.

3.3 Derivation of the lower bound of every cluster size

In this section, we present details about the first proposal in sec.3.2.3. For GRcls, which is the
state after R task merging steps have been performed, the following condition is assumed
to be satisfied.
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w(clsR(i)) ≥ δ s.t., ∀clsR(i) ∈ V R
cls. (3.1)

Eq.(3.1) means that every cluster size is δ or more. When s < R, at least one cluser size is
smaller than δ. In this chapter, the range of s is defined as 0 ≤ s ≤ R. In this section, we
study how to decide δ for minimizing the schedule length.

3.3.1 Policies for deriving the lower bound of every cluster size

If each task in V s
cls is scheduled, the schedule length varies by the execution order for each

task. Even if the scheduling policy is decided, the schedule length is also changed by the
combination of tasks in each cluster. This fact leads to that to find the optimal schedule is
said to be NP -hard problem [27]. Furthermore, each cluster can not be generated before the
lower bound has been derived. This means that each combination in a cluster, the execution
order for each task, and DRT of each task (defined at eq.(2.6)) are unknown before a task
clustering, and the schedule length is also unknown before the lower bound of every cluster
size has been decided. Hence, it is necessary that an indicative value, which can have effect
on the schedule length by varying the lower bound of every cluster size, must be derived.
Thus, we define the indicative value as slw(Gscls), which is the maximum schedule length,
provided that each task is executed as late as possible without data waiting time (defined
in sec.3.3.2). We define the lower bound of every cluster size when the upper bound of
slw(GRcls) is minimized as δopt(defined in sec.3.3.7). In sec.3.3.8, how the variation of slw(GRcls)
has effect on the actual schedule length is described.

3.3.2 Definition of WSL

Table 3.1 shows notations and definitions for deriving slw(Gscls). In the i-th cluster, we define
the set of tasks which can firstly be executed as tops(i). The set of tasks in the i-th cluster
which requires incoming data communication from other clusters is defined as ins(i). On
the other hand, The set of tasks which requires outgoing data communication with other
clusters is defined as outs(i), and the set of tasks which can be executed at the last in the i-th
cluster is defined as btms(i).

More specifically, tops(i) is the set of tasks whose all immediate predecessor tasks belong
to other clusters. Every task in ins(i) has at least one immediate predecessor task which
belongs to another cluster. Every task in outs(i) has at least one immediate successor task
which belongs to another cluster. Every task in btms(i) has one or more successor tasks all
of which belong to other clusters. Thus, every task in btms(i) is included in outs(i).

desc(nsk, i) is the union of the set of tasks executed after nsk in clss(i) and nsk itself. S(nsk, i)
is the sum of task size which can be executed before nsk, provided that nsk is scheduled as
late as possible in clss(i). Next, we define tlevel(nsk), which is the scheduled time of nsk
when clss(i) is executed as late as possible. If nsk ∈ tops(i)(where nsk ∈ cls(i)), tlevel(nsk) is
the time every data from immediate predecessor tasks of nsk arrives, since those immediate
predecessor tasks belong to other clusters. TLs(i) is the maximum value of tlevel(nsk), where
nsk ∈ tops(i). If TLs(i) = tlevel(nsk) for nsk ∈ tops(i), every task (except nsk) which belongs to
tops(i) is not executed until the completion time of nsk.
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Table 3.1: Parameter definition which is related to slw(Gscls) (nsk ∈ clss(i))
(appears in [22]).

Parameter Definition
tops(i) {nsk|∀nsl ∈ pred(nsk)s.t., nsl /∈ clss(i)}∪ START Tasks ∈ clss(i).
ins(i) {nsk|∃nsl ∈ pred(nsk)s.t., nsl /∈ clss(i)}∪ START Tasks ∈ clss(i).
outs(i) {nsk|∃nsl ∈ suc(nsk)s.t., nsl /∈ clss(i)}∪ END Tasks ∈ clss(i).
btms(i) {nsk|∀nsl ∈ suc(nsk), s.t., nsl /∈ clss(i)}∪ END Tasks ∈ clss(i).

desc(nsk, i) {nsl |nsk ≺ nsl , nsl ∈ clss(i)} ∪ {nsk}
S(nsk, i)

∑
ns

l∈clss(i)
w(nsl )−

∑
ns

l∈desc(n
s
k,i)

w(nsl )

tlevel(nsk)

{
max

ns
l∈pred(n

s
k)
{tlevel(nsl ) + w(nsl ) + c(el,k)} , where nsk ∈ tops(i),

TLs(i) + S(nsk, i), otherwise.
TLs(i) max

ns
k∈tops(i)

{tlevel(nsk)}

blevel(nsk) max
ns

l∈suc(n
s
k)

{
w(nsk) + c(esk,l) + blevel(nsl )

}
level(nsk) tlevel(nsk) + blevel(nsk)
BLs(i) max

ns
k∈outs(i)

{S(nsk, i) + blevel(nsk)}

LVs(i) TLs(i) +BLs(i) = max
ns

k∈clss(i)
{level(nsk)}

slw(Gscls) max
clss(i)∈V s

cls

{LVs(i)}

Next, we define tlevel(nsk) in the case of nsk /∈ tops(i). From eq.(2.6), the data waiting time
I(nsk, i) for nsk depends on the scheduling policy(i.e., execution order of every task). That is,
I(nsk, i) is unknown before a task clustering. Thus, we define tlevel(nsk) = TLs(i) + S(nsk, i)
for nsk /∈ tops(i), which means that the start time of nsk when I(nsk, i) is neglected. Let
blevel(nsk) the maximum path length from nsk to the END task. That is, blevel(nsk) is the
maximum value of the time taken if every task which has precedence relationships with nsk
from nsk to the END task is executed. BLs(i) is the time taken from the start time of a task in
cls(i) to the completion time of the END task, i.e., the maximum of the sum of S(nsk, i) and
blevel(nsk). LVs(i) is the sum of TLs(i) and BLs(i). If we define

level(nsk) = tlevel(nsk) + blevel(nsk),

we have

LVs(i) = TLs(i) +BLs(i) = TLs(i) + max
ns

k∈outs(i)
{S(nsk, i) + blevel(nsk)}

= max
ns

k∈outs(i)
{TLs(i) + S(nsk, i) + blevel(nsk)}

= max
ns

k∈clss(i)
{level(nsk)} . (3.2)

For each cluster clss(i) ∈ V s
cls, the maximum of LVs(i) is slw(Gscls). From this value, it

can be seen that slw(Gscls) is derived by deciding which cluster takes the maximum of LV ,
i.e., which task in a cluster is scheduled as late as possible.
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Figure 3.2: Example of each defined symbols
(appears in [22]).

Example 1. Figure 3.2 shows an example for deriving slw(G5
cls). The DAG in this figure is identical

to that of 3.1 (c),(d) and (e). In figure 3.2, LV5(1) is equal to level(n5
2), and LV5(4) is equal to

level(n5
4). From this fact, it can be said that the schedule length becomes large when n5

2 is scheduled
as the last task in cls5(1). On the other hand, the execution order in cls5(4) is unique because
cls5(4) is linear. Since LV5(1) = 28 and LV5(4) = 20, we have slw(G5

cls) = LV5(1). If the data
waiting time (defined at eq.(2.6)) is neglected, the maximum schedule length is obtained when n5

2 is
scheduled as late as possible in cls5(1). This fact holds in figure 3.1 (e). sl(G5

cls) = 29 in figure 3.1
(e), while slw(G5

cls) = 28 because the data waiting time(9− 8 = 1 unit time at 3.1 (e) ) from n5
4 is

neglected at n5. �

3.3.3 Preliminary for the analysis of WSL

Since slw(GRcls) is the value decided after R task merging steps (R is defined by eq.(3.1)),
slw(GRcls) is unknown before a task clustering. Thus, we study the upper bound of slw(GRcls),
for different cluster structure (precedence relationships among tasks in a cluster and the set
of tasks in a cluster). In particular, we try to find the lower bound of the cluster size when
the upper bound of slw(Gscls) is minimized. Then we determin the objective of our task
clustering by clearify the relationship between slw(GRcls) and the schedule length.

Table 3.2 shows definitions for the analysis of the upper bound of slw(GRcls). Let the set
of tasks included in the execution path be seqs, by which slw(Gscls) is decided after s(s ≤ R)
task merging steps. That is, seqs is the union of the set of tasks by which tlevel(nRk ) is
decided for nRk such that slw(Gscls) = LVR(i) = level(nRk ) and the set of tasks which belong
to the path by which blevel(nRk ) is decided (detailed in example 2).

Next, in seqs let the path p in which every task has precedence relationships be seq≺s .
seq≺s is the union of tasks and edges in a path p, in which nsk, n

s
l and esk,l satisfy the following
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Table 3.2: Parameter definitions which are used in analysis on slw(Gscls) (0 ≤ s ≤ R)
(appears in [22]).

Parameter Definition

seqs Set of tasks by which slw(Gs
cls) is derived.

p One path of G0
cls, i.e., {n0

0, n
0
1, n

0
2, . . . , n

0
k} ∪ {e

0
0,1, e

0
1,2, . . . e

0
k−1,k},

by which a sequence < n0
0, n

0
1, n

0
2, . . . , n

0
k > is constructed, where e0l−1,l ∈ E0,

n0
0 is a START task and n0

k is an END task.
p′ One subpath of G0

cls, i.e., {n0
0, n

0
1, n

0
2, . . . , n

0
k} ∪ {e

0
0,1, e

0
1,2, . . . e

0
k−1,k},

by which a sequence < n0
0, n

0
1, n

0
2, . . . , n

0
k > is constructed, where e0l−1,l ∈ E0,

n0
0 is not a START task or n0

k is not an END task.
seq≺s One path in which every task belongs to seqs.
seq≺s (i) Set of subpaths in each of which every task in cls(i) belongs to seq≺s .
wmax max

clsR(i)∈V R
cls

{w(clsR(i))} − δ

ϕ ♯ of clusters in which at least one task belongs to seq≺s .
cp Critical path length of G0

cls.

cpw max
p∈G0

cls

 ∑
n0

k
∈p

w(n0
k)

.

gmin [16, 24] min
n0

k
∈V 0

cls


min

n0
j
∈pred(n0

k
)

{
w(n0

j )
}

max
n0

j
∈pred(n0

k
)

{
c(e0

j,k
)
} ,

min
n0

l
∈suc(n0

k
)
{w(n0

l )}

max
n0

l
∈suc(n0

k
)

{
c(e0

k,l
)
}
.

gmax(ns
k) max


max

n0
j
∈pred(n0

k
)

{
w(n0

j )
}

min
n0

j
∈pred(n0

k
)

{
c(e0

j,k
)
} ,

max
n0

l
∈suc(n0

k
)
{w(n0

l )}

min
n0

l
∈suc(n0

k
)

{
c(e0

k,l
)
}
.

∆slw slw(GR
cls)− slw(Gorg) = slw(GR

cls)− cp.
∆slw,up An upper bound of ∆slw .

len(seq≺s (i))
∑

ns
k
∈seq≺

s (i)

w(ns
k) +

∑
ns

k,ns
l ∈seq≺

s (i),

e0
k,l∈E0

c(e0k,l).

len(seq≺s )
∑

ns
k
∈seq≺

s

w(ns
k) +

∑
ns

k,ns
l ∈seq≺

s ,

e0
k,l∈E0

c(e0k,l).

∆Li
∑

nR
k
∈clsR(i)∩seqR

w(nR
k )− len(seq≺R (i)).

∆Lw slw(GR
cls)− len(seq≺R ).

∆Lw,up An upper bound of ∆Lw .

condition.

nsk ∈ seqs, nsl ∈ seqs, nsk ∈ pred(nsl ).

Note that more than one of seq≺s can exist for each task in seqs, because seq≺s is defined by
tracing tasks with precedence relationships. For example, if seqs is {ns1, ns2, ns3, ns4} and there
are two paths, e.g., {ns1, ns2, ns4} ∪ {es1,2, es2,4} and {ns1, ns3, ns4} ∪ {es1,3, es3,4}, those two paths
are one of seq≺s , respectively.

In seq≺s , let seq≺s (i) be the union of the set of tasks belonging to clss(i) and the set of
edges among them. That is, seq≺s (i) is the subset of the path p′(defined in table 3.2) and
satisfying the following condition. nsk, n

s
l in seq≺s (i) are expressed as follow.

nsk ∈ seq≺s , nsl ∈ seq≺s , nsk ∈ pred(nsl ), nk, nl ∈ cls(i).

seq≺s (i) is a subset of seq≺s . Thus, there is only one seq≺s (i) in seq≺s . If there are two or
more seq≺s , two or more seq≺s (i) exist.
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The schedule length of G0
cls is the critical path length, which is expressed as cp. The

maximum of the summation for every task size on a path is expressed as cpw.
Let gmax(n0

k) be the maximum granularity of n0
k, and let gmin be the minimum granular-

ity for every task in G0
cls [24].

Example 2. In this example, the meanings of seqs and seq≺s are described. From figure 3.2, we have
slw(G5

cls) = level(n5
2). Since {n5

1} is executed before n5
2 in cls5(1) and {n5

1} has the precedence
relationship with n5

2, we have seq≺5 (1) = {n5
1, n

5
2} ∪ {e51,2}. Furthermore, we have

blevel(n5
2) = w(n5

2) + c(e52,7) + blevel(n5
7), seq

≺
5 (4) = {n5

7}.

Hence, the following result is obtained.

seq≺5 = {n5
1, n

5
2, n

5
7} ∪ {e51,2, e52,7}.

On the other hand, in cls5(1), any one of {n5
1, n

5
3, n

5
5} can be executed before n5

2. Since we have

blevel(n5
2) = w(n5

2) + c(e52,7) + blevel(n5
7)

as described above, we have seq5 = {n5
1, n

5
2, n

5
3, n

5
5, n

5
7}. �

Example 3. Figure 3.3 is another example for deriving seqs and seq≺s . In this figure, at (1) clss(i)
and clss(i+ 1) are linear, and (2) shows the cluster structure in the case of slw(Gscls) = level(ns9)
with both clss(i) and clss(i+ 1) being non-linear. Furthermore, dashed lines mean the execution
order of tasks dominating slw(Gscls).

At (1), execution orders in clss(i+ 1) and clss(i) are unique because those clusters are linear.
As a result, {ns1, ns2, ns3, ns4, ns5} belong to both seqs and seq≺s . (2) shows that tasks in both dashed
arrows and dashed lines belong to seqs. Here, if slw(Gscls) = level(ns9), we have the following result.

tlevel(ns9) = tlevel(ns5) + w(ns6) + w(ns8) + w(ns7),
blevel(ns9) = w(ns9) + c(es9,11) + blevel(ns11).

The start time of ns4 is delayed as late as possible by scheduling ns4 after ns2, n
s
3 in the dashed

circle, i.e., tlevel(ns4) = tlevel(ns1) + w(ns2) + w(ns3). Since every task in ns1, n
s
2, n

s
4 has precedence

relationships each other, seq≺s (i) is {ns1, ns2, ns4} ∪ {es1,2, es2,4}.
In clss(i+ 1), since every task in ns5, n

s
7, n

s
9 has precedence relationships each other and belongs

to seqs, we have seq≺s (i+ 1) = {ns5, ns7, ns9} ∪ {es5,7, es7,9}. �

3.3.4 Relationship between δ and WSL after R task merging steps

As described in sec.3.2, only one task belongs to a cluster in G0
cls and then we obtain the

schedule length of G0
cls = Gorg as cp. Moreover, since {n0

k} = cls0(i) ∈ V 0
cls in G0

cls = Gorg,
from eq.(3.2) we have

slw(Gorg) = slw(G0
cls) = max

cls0(i)∈V 0
cls

{LV0(i)}

= max
n0

k∈V0

{
level(n0

k)
}

= max
n0

k∈V0

{
tlevel(n0

k) + blevel(n0
k)
}
. (3.3)
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Figure 3.3: Concept of the upper bound of slw(Gscls)
(appears in [22]).

From definitions of tlevel(nRk )(nRk ∈ topR(i)) and blevel(nRk ) in table 3.1, with eq.(3.3) we
have

slw(Gorg) = cp = sl(Gorg). (3.4)

Hence, if we define the difference between slw(GRcls) and slw(Gorg) as ∆slw(defined in table
3.2), ∆slw is equal to the difference between slw(GRcls) and cp (defined in table 3.2). How-
erver, as described in sec.3.3.3, the combination of tasks for each cluster depends on the task
merging policy, ∆slw can not be derived before a task clustering. Thus, we derive the upper
bound of ∆slw, i.e., ∆slw,up(defined in table 3.2).

At first, let a cluster in which at least one task belongs to seqR be clsR(i). Let assume
that clsR(i) such that clsR(i), w(clsR(i)) ≥ δ is generated. Then let the difference between
“the summation of sizes of tasks which belongs to seqR but does not belong to seq≺R(i)” and
“the summation of data size localized in seqR” be ∆Li(defined in 3.2). That is, ∆Li can be
obtained by taking the difference between “the summation of sizes of tasks without prece-
dence relationship any one task in seq≺R(i)” and “the summation of data size localized in
seq≺R(i).” Let the length of the subpath which consists of tasks in seq≺R(i) and communica-
tion among them in the initial state be len(seq≺R(i)).

As presented in sec.3.3.3, there can be one or more combinations in seq≺R . Since seq≺R is
not always the critical path in Gorg, we have

len(seq≺R) ≤ cp. (3.5)
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Then if we define ∆Lw as the difference between slw(GRcls) and len(seq≺R)(defined in table
3.2), we have

∆slw = slw(GRcls)− cp
≤ slw(GRcls)− len(seq≺R)
= ∆Lw,
⇔ ∆slw ≤ ∆Lw. (3.6)

If we define the upper bound of ∆Lw as ∆Lw,up(defined in table 3.2), ∆Lw,up is an upper
bound of ∆slw. Thus, we derive ∆Lw,up and then we define the upper bound of ∆slw, i.e.,
∆slw,up = ∆Lw,up.

Next, we describe the policy for deriving ∆Lw,up. At first, the upper bound of ∆Li is
derived. By summing the upper bound for each cluster which has tasks in seqR belong to,
we derive ∆Lw,up.

The more tasks without precedence relationship each other exist in a cluster, the larger
the value of tlevel of a task not included in topR(i) becomes. As a result, it can be conceivable
that the upper bound of ∆Li depends on whether each cluster in which at least one task
belongs to seq≺R is linear or not. Thus, we derive the upper bound of ∆Li for each linear
cluster clsR(i) and the upper bound of ∆Lj for each non-linear cluster clsR(j), respectively.
Then we derive ∆Lw,up by summing the upper bound of ∆Li and the upper bound of ∆Lj
for each linear cluster and each non-linear cluster.

Example 4. At figure 3.3 (1), if we assume s = R, then we have

∆Li = w(ns1) + w(ns2)) + w(ns3))− len(seq≺s (i)) = −(c(es1,2) + c(es2,3)),
∆Li+1 = w(ns4) + w(ns5)− len(seq≺s (i+ 1)) = −c(es4,5).

On the other hand, at figure 3.3 (2), if we assume s = R, then we have

∆Li =
4∑

k=1

w(nsk)− len(seq≺s (i)) = w(ns3)− (c(es1,2) + c(es2,4)),

∆Li+1 =
9∑

k=5

w(nsk)− len(seq≺s (i+ 1)) = w(ns6) + w(ns8)− (c(es5,7) + c(es7,9)).

�

3.3.5 Derivation of the upper bound of the increase of WSL by generating one
cluster

At first, we derive the upper bound of ∆Li of a linear cluster and non-linear cluster, respec-
tively as 1 and 2 described as follows.

1. The case that a cluster clsR(i), in which at least one task belongs to seq≺R , is linear
The communication among tasks in seq≺R(i) is localized by generating clsR(i),
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Figure 3.4: An example of nsEND(i) and nsSTART (i)

(appears in [22]).

w(clsR(i)) ≥ δ. Here, we define

ψi = seq≺R(i) ∪ {nRSTART (i+1)|n
R
END(i) ∈ seq

≺
R(i),

nREND(i) ⊀ nRk for ∀nRk ∈ seq≺R(i),

nRSTART (i+1) ∈ seq
≺
R(i+ 1), nRSTART (i+1) ∈ suc(n

R
END(i)),

eREND(i),START (i+1) /∈ seq≺R(i),

eREND(i),START (i+1) /∈ seq≺R(i+ 1)}. (3.7)

That is, in eq.(3.7), nREND(i) is the last executed task in seq≺R(i). Also, it means that the
communication between nREND(i) and nRSTART (i+1) is not localized. For example, at
figure 3.4, nsEND(i) = ns6, nsSTART (i+1) = ns9.

∆Li is expressed as

∆Li = −
∑

eR
m,n∈seq≺max,S(i)

c(eRm,n). (3.8)

Also, if gmax(nRk ) in table 3.2 is applied to eq.(3.8), we have

−∆Li =
∑

eR
m,n∈seq≺R (i)

c(eRm,n) ≥
∑

nR
m,n

R
n∈seq≺R (i),

nR
n∈suc(nR

m)

w(nRn )
gmax(nRm)

=
∑

nR
k ∈seq

≺
R (i),

nR
l ∈ψi,n

R
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

−
w(nRSTART (i+1))

gmax(nREND(i))
, (3.9)
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where ψi is defined in eq.(3.7). Hence, the following relationship holds.

∆Li ≤
w(nRSTART (i+1))

gmax(nREND(i))
−

∑
nR

k ∈seq
≺
R (i),

nR
l ∈ψi,n

R
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

. (3.10)

2. The case that a cluster clsR(i), in which at least one task belongs to seq≺R , is non-linear
Let the maximum cluster size be δ + wmax(wmax is defined in table3.2) and we de-
rive the upper bound of ∆Li. In clsR(i), if every task not included in seq≺R(i) has no
precedence relationship with any task included in seq≺R(i), we have

∆Li ≤ (δ + wmax)−
∑

nR
k ∈seq

≺
R (i)

w(nRk )−
∑

eR
p,q∈seq≺R (i)

c(eRp,q)

≤ (δ + wmax)−
∑

nR
k ∈seq

≺
R (i)

w(nRk )

+
w(nRSTART (i+1))

gmax(nREND(i))
−

∑
nR

k ∈seq
≺
R (i),

nR
l ∈ψi,n

R
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

. (3.11)

3.3.6 Derivation of ∆Lw,up

To derive ∆Lw,up, it is necessary to decide the number of clusters in each of which at least
one task belongs to seqR. seq≺R is the set of tasks having precedence relationships with each
other, i.e., the set of tasks which belong to a path. Thus, at first we derive the upper bound
of the number of clusters on a path. If it holds that the summation of sizes of tasks in seq≺R(i)
is δ or more for any one of clusters, e.g., clsR(i), we have the following relationship with the
upper bound of the number of clusters on the path seqR(i), ϕ, as ϕmax.

ϕ ≤
⌊cpw
δ

⌋
≤ cpw

δ
= ϕmax, (3.12)

where cpw is the maximum summation of sizes of tasks on the path. On the other hand,
for any one of seq≺R(i), let assume that the summation of sizes of tasks in seq≺R(i) is smaller
than δ. If every task which belongs to seqR is included in a different clusters whose size are
smaller than δ, only tasks which belong to the same path belong to seqR. Thus, ϕmax is the
maximum number of tasks which belong to the same path.

(a) The case that the summation of sizes of tasks in seq≺R(i) is δ or more for any cluster
clsR(i).
On the path, let the number of non-linear clusters be y, ϕ− y is the number of linear
clusters on the path seqR(i). Then ∆Lw is bounded by the upper bound obtained at
eq.(3.10) multiplied by ϕ− y, plus the upper bound obtained at eq.(3.11) multiplied
by y. For simplicity, if we define indices satisfying eq.(3.10) as i = 1, 2, . . . , ϕ− y and
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indeces satisfying eq.(3.11) as j = ϕ− y + 1, ϕ− y + 2, . . . . , ϕ, we have the following
result.

∆Lw ≤
ϕ−y∑
i=1


w(nRSTART (i+1))

gmax(nREND(i))
−

∑
nR

k ∈seq
≺
R (i),

nR
l ∈ψi,n

R
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

+ y(δ + wmax)

−y
∑

nR
k ∈seq

≺
R (j)

w(nRk )

+
ϕ∑

j=ϕ−y+1


w(nRSTART (j+1))

gmax(nREND(j))
−

∑
nR

k ∈seq
≺
R (i),

nR
l ∈ψi,n

R
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

 (3.13)

By developing eq.(3.13), we have

∆Lw ≤
ϕ∑
i=1

w(nRSTART (i+1))

gmax(nREND(i))
−

ϕ∑
i=1

∑
nR

k ∈seq
≺
R (i),

nR
l ∈ψi,n

R
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

+ y(δ + wmax)

−y
∑

nR
k ∈seq

≺
R (j)

w(nRk ). (3.14)

At eq.(3.14), we have the following relationship.

ϕ∑
i=1

w(nRSTART (i+1))

gmax(nREND(i))
≤ ϕmax max

nR
k ∈VS


max

nR
l ∈V

R
cls

{
w(nRl )

}
gmax(nRk )

 ,

min
p∈G0

cls


∑

n0
k,n

0
l ∈p,

nR
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

 ≤
ϕ∑
i=1

∑
nR

k ∈seq
≺
R (i),

nR
l ∈ψi,n

R
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

,

y
∑

nR
k ∈seq

≺
R (j)

w(nRk ) ≥ 0. (3.15)

Thus,

∆Lw ≤ ϕmax max
nR

k ∈VS


max

nR
l ∈V

R
cls

{
w(nRl )

}
gmax(nRk )

− min
p∈G0

cls


∑

n0
k,n

0
l ∈p,

nR
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )


+y(δ + wmax) = ∆Lw,up. (3.16)
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From eq.(3.6) and the definition of ϕmax at eq.(3.12), we have

∆slw,up =
cpw
δ

max
nR

k ∈VS


max

nR
l ∈V

R
cls

{
w(nRl )

}
gmax(nRk )

− min
p∈G0

cls


∑

n0
k,n

0
l ∈p,

nR
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )


+y(δ + wmax), (3.17)

where the second term is the minimum of the summation of the lower bound for each
data size on a path in G0

cls. Thus, it does not depend on δ. With considering this fact,
by differenciating eq.(3.17) with respect to δ, ∆slw,up has the local minimum (and the
global minimum) value when δ takes the following value.

δ =

√√√√√√cpw max
nR

k ∈VS


max

nR
l ∈V

R
cls

{
w(nRl )

}
gmax(nRk )y

 =

√√√√√√cpw max
n0

k∈V0


max
n0

l ∈V
0
cls

{
w(n0

l )
}

gmax(n0
k)y

.(3.18)

From eq.(3.18) if y > 0, ∆slw,up has the local minimum value in terms of ∆slw,up. How-
ever, if wmax is increased while δ is fixed, ∆slw,up is increased. �

(b) The case that the summation of sizes of tasks in seq≺R(i) is smaller than δ. Let the
number of clusters on seq≺R be ϕ and let the maximum value of the number of tasks in
a path p be Tmax. Then it follows that ϕ ≤ Tmax. Tmax is decided from Gorg and does
not depend on δ. Hence, in this case we have

ϕ ≤ Tmax = ϕmax, (3.19)

where ϕ is defined in table 3.2 and ϕmax the upper bound of ϕ. At eq.(3.14), the fol-
lowing conditions are satisfied.

ϕ∑
i=1

w(nRSTART (i+1))

gmax(nREND(i))
≤ Tmax max

nR
k ∈VS


max

nR
l ∈V

R
cls

{
w(nRl )

}
gmax(nRk )

 ,

min
p∈G0

cls


∑

n0
k,n

0
l ∈p,

nR
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

 ≤
ϕ∑
i=1

∑
nR

k ∈seq
≺
R (i),

nR
l ∈ψi,n

R
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )

,

y
∑

nR
k ∈seq

≺
R (j)

w(nRk ) ≥ 0 (3.20)

Hence, we have

∆slw,up = Tmax max
nR

k ∈VS


max

nR
l ∈V

R
cls

{
w(nRl )

}
gmax(nRk )

− min
p∈G0

cls


∑

n0
k,n

0
l ∈p,

nR
l ∈suc(n

R
k )

w(nRl )
gmax(nRk )


+y(δ + wmax). (3.21)
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Thus, in this case ∆slw,up is increased with the increase of δ. �

3.3.7 Decision of δopt

From retuls in the previous section, it is found that the behavior of ∆slw,up differs depending
on whether the summation of sizes of tasks in seq≺R(i) is larger than δ or not for each cluster
cls(i) in which at least one task belongs to seqR.

In sec.3.3.6 (a), ∆slw,up has the local minimum (and the global minimum) value if y > 0
and wmax is constant. However, in sec.3.3.6 (b), ∆slw,up is increased with increasing of δ.
From those two characteristics, it can be concluded that merging a task without precedence
relationship with a task in seq≺s (i) can lead to the increase of ∆slw,up.

At eq. (3.18), if y = 0, it corresponds to the case every cluster in which at least one task
belongs to seq≺R is linear, and then ∆slw,up is monotonically decreasing. However, how δ
should be set when at least one cluster becomes non-linear is unknown before a task merg-
ing step. If y ̸= 0, ∆slw,up is minimized when δ is equal to the right side of eq.(3.18). At the
right side of eq.(3.18), if y increases, the number of non-linear clusters is increased, so that
the upper bound of slw(GRcls) is also increased. Thus, here we set y = 1 by assuming that the
upper bound of slw(GRcls) is minimized as much as possible. Hence, δopt is set as follow.

δopt =

√√√√√√cpw max
n0

k∈V0


max
n0

l ∈V
0
cls

{
w(n0

l )
}

gmax(n0
k)

. (3.22)

3.3.8 Relationship between WSL and the schedule length

In this section, we study the effect that slw(GRcls) has on sl(GRcls). At first, we denote two
lemmas proved in the literature [16].

Lemma 1. cp ≤ (1 + 1
gmin

)cpw.

Lemma 2. cpw ≤ sl(GRcls).

Next, we describe the relationship between ∆slw,up and sl(GRcls). From eq.(3.6), we have

∆slw = slw(GRcls)− cp ≤ ∆slw,up. (3.23)

From lemma 1, eq.(3.23) becomes

slw(GRcls)−
(

1 +
1

gmin

)
cpw ≤ slw(GRcls)− cp ≤ ∆slw,up. (3.24)

From lemma 3, we have

slw(GRcls)−
(

1 +
1

gmin

)
sl(GRcls) ≤ slw(GRcls)−

(
1 +

1
gmin

)
cpw. (3.25)
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Hence, we obtain the following result.

slw(GRcls)−
(

1 +
1

gmin

)
sl(GRcls) ≤ ∆slw,up

⇔ sl(GRcls) ≥
slw(GRcls)−∆slw,up

1 + 1
gmin

. (3.26)

At eq.(3.17), ∆slw,up is varied with δ. Thus, by deciding δopt, ∆slw,up is fixed at eq.(3.17).
From eq.(3.26), it can be said that task merging steps in order to minimize ∆slw,up after
δopt has been decided can lead to minimize the lower bound of the schedule length. As
defined in sec.3.3.2, the data waiting time at nsk is not considered for each task nsk such that
nsk ∈ inR(i), nsk /∈ tops(i) in each cluster, clss(i). It is necessary for tasks in a cluster to have
precedence relationships in order to minimize the upper bound of slw(GRcls).

In this case, slw(GRcls) is the schedule length when each task is executed as early as pos-
sible without data waiting time for each task. Thus, this fact leads to the result at eq.(3.26)
since the reduction of slw(GRcls) corresponds to reducing the ideal schedule length such that
no data waiting time exists. Edges belonging to seq≺R have two types, i.e., localized edges
and not localized edges. Moreover, edges belonging to seq≺R is not necessary on the critical
path. Hence, we have the following relationship.

− max
p∈G0

cls


∑

n0
k,n

0
l ∈p,

n0
k∈pred(n

0
l )

c(e0k,l)

 ≤ slw(GRcls)− cp. (3.27)

The following relationship holds if and only if sl(GRcls) ≤ cp.

slw(GRcls)− cp ≤ slw(GRcls)− sl(GRcls)

⇔ − max
p∈G0

cls


∑

n0
k,n

0
l ∈p,

n0
k∈pred(n

0
l )

c(e0k,l)

 ≤ slw(GRcls)− sl(GRcls)

⇔ sl(GRcls) ≤ slw(GRcls) + max
p∈G0

cls


∑

n0
k,n

0
l ∈p,

n0
k∈pred(n

0
l )

c(e0k,l)

 , if sl(GRcls) ≤ cp. (3.28)

From eq.(3.28), it can be concluded that minimizing slw(GRcls) leads to minimize the upper
bound of sl(GRcls), under the constraint that slw(GRcls) is smaller than the critical path length.

3.4 Task clustering algorithm

3.4.1 Requirements for the algorithm

In sec.3.3, we derived the lower bound of every cluster size when slw(GRcls) is minimized.
Furthermore, in the section, we proved that the schedule length can be minimized by merg-
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INPUT: Gorg

OUTPUT: GR
cls

Define UEXs as a set of clusters which satisfy eq.(3.29).;
Define RDYs as a set of clusters which statisfy eq.(3.31).;
For each nk ∈ V , let n0

k ← nk, cls0(k) = {n0
k} and put cls0(k) into V 0

cls.
0. Derive δopt by eq.(3.22).
1. E0 ← E,UEX0 ← V 0

cls, RDY0 ← {cls0(k)|cls0(k) = {n0
k}, pred(n

0
k) = ∅};

2. WHILE UEXs ̸= ∅ DO
3. pivots ← getP ivot(RDYs); /* detailed in Sec.3.4.5. */
4. targets ← getTarget(pivots); /* Detailed in Sec.3.4.6. */
5. RDYs+1 ← clustering(pivots, targets); /* Detailed in Sec.3.4.7. */
6. ENDWHILE
7. RETURN GR

cls;

Figure 3.5: Whole procedures of our proposing task clustering
(appears in [22]).

ing tasks by which slw(GRcls) is minimized. Thus, the following points are needed for imple-
menting a task clustering.

(i) Perform task merging steps until each cluster size is δopt or more.
By performing task merging steps so that each cluster size is δopt or more defined at
eq.(3.22), at least a set of clusters, by which the upper bound of slw(GRcls) is minimized,
is obtained.

(ii) For each task in seq≺s , merge them with precedence relationships.
From the result obtained in sec.3.3.6 (a), it is necessary to merge tasks which have
precedence relationships with a task in seq≺s (i) for each cluster clss(i) such that the
size of clss(i)) is smaller than δ in order to minimize the upper bound of slw(GRcls).

(iii) Minimize slw(Gscls) as much as possible by each task merging step.
From the result obtained in sec.3.3.8, minimizing slw(GRcls) by task merging steps can
lead to the minimization of the lower bound of the schedule length. Moreover, by
satisfying the requirement (ii), the upper bound of slw(GRcls) can be minimized, but
the actual increase or decrease of slw(GRcls) is unknown before task merging steps.
Thus, during task merging steps, just like (ii), a task in seq≺s should be selected as a
candidate for a task merging step, and then another task, by which slw(Gs+1

cls ) can be
minimized, should be selected for the task merging step.

3.4.2 Summary of the algorithm

Figure 3.5 shows the summary of the proposed task clustering algorithm. At the initial
stage, the initial DAG is put into G0

cls, i.e., G0
cls ← Gorg. Then let each task in V 0

cls belong to a
cluster having only one task. That is, for cls0(k) ∈ V 0

cls, let cls0(k) = {n0
k}, where we assume

that {cls0(1) = {n0
1}, cls0(2) = {n0

2}, . . . }. It is necessary to specify which cluster size is δopt
or more in order to satisfy the requirement sec.3.4.1 (i). Hence, we define UEXs, which
contains the set of clusters satisfying the following condition.

{clss(i)|w(clss(i)) < δopt}. (3.29)
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We assume that each cluster in V s
cls(where each cluster has only one task) belongs to UEXs

before a task merging step.
The main procedures of the algorithm correspond to the range from line 2 - 6 in fig-

ure.3.5. From sec.3.4.1 (ii) and (iii), one of policies of the task clustering algorithm is to select
two clusters such that at least one task in them belong to seq≺s and both sizes are smaller
than δopt in order to reduce slw(Gs+1

cls ) by a task merging step, i.e., slw(Gscls) > slw(Gs+1
cls ).

Then the algorithm try to make each cluster size larger by merging those two tasks into a
cluster.

Here let the cluster selected according to a certain priority from the set of clusters ex-
pressed as RDYs (defined in sec.3.4.4) be pivots (line 3 in figure 3.5). Then let the cluster
which has precedence relationships with at least one task in pivots be targets (defined in
sec.3.4.6) be targets. The algorithm merges pivots and targets into a cluster (line 5 in figure
3.5). After such a task merging step, every task in targets comes to be included in pivots,
so that they are not included in UEXs+1 and RDYs+1 (if targets ∈ RDYs). At line 5 in fig-
ure 3.5, pivots is removed from both UEXs+1 and RDYs+1 if the sum of cluster size among
pivots and targets is δopt or more. At the (s+ 1)-th task merging step, update procedures of
the selecting priority for pivots+1 and procedures of adding clusters into RDYs+1 at line 5
in figure 3.5 are described in sec.3.4.7.

When every cluster size is δopt, i.e., UEXS = ∅, the algorithm is finished. It is necessary
to decide following points to minimize slw(GRcls) by the algorithm.

1. The policy for task merging steps with considering the time complexity.

2. Criteria for selecting pivots (at line 3 in figure 3.5).

3. Criteria for selecting targets (at line 4 in figure 3.5).

4. Update policy for the selection priority of pivots (at line 5 in figure 3.5).

3.4.3 Policy for task merging steps

After a task in seqs and a task having a precedence relationship with it are merged, at most
slw(Gs+1

cls ) is reduced by communication data size, i.e., slw(Gscls) > slw(Gs+1
cls ). If tasks having

no precedence relationship each other are included in the same cluster, slw(Gs+1
cls ) may be

increased, i.e., slw(Gscls) < slw(Gs+1
cls ). Thus, if the cluster in which at least one task in seqs is

used for the task merging step as pivots, slw(Gs+1
cls ) may be increased or decreased.

Here, before the (s+ 1)-th task merging step, let assume the polilcy to select the cluster
as targets which has the maximum LVs value in clusters each of which has at least one task
in seqs, and by which slw(Gs+1

cls ) can be minimized. In this case, it occurs two problems
when each cluster’s LVs is updated to select one task in seqs.

1. Problems in terms of the time complexity
After the (s− 1)-th task merging steps between pivots−1 and targets−1, there is no way
to know the set of seqs without tracing every task in the DAG. It takes |Vs|+ |Es| steps
to update both tlevel value and blevel for each task in Vs. Then it takes log |tops(i)|
steps to derive TLs(i) andBLs(i) for a cluster clss(i). Thus, by updating LVs value for
every cluster in V s

cls it takes |V s
cls|(log |tops(i)|+ log |outs(i)|) steps. Those procedures
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are repeated until every cluster size is δopt or more. As a result, the time complexity
taken by updating LVs value for each cluster in the DAG is

Oall = O(|V |(|V |+ |E|) + |V |2 log |V |), (3.30)

even if pivots is removed from UEXs by only one task merging step.

In general, one point for reducing the time complexity in a task clustering is how to
reduce that taken by updating the task selection priority. The priority in conventional
task clustering is the schedule length. One algorithm requires the time complexity
of O(|E|(|V |+ |E|)) for updating the schedule length by the full tracing [27], and the
another one requires the time complexity of O(|E| log |V |) or O(|V | log |V |) by limiting
the tracing area in order to reduce the time complexity. On the other hand, there is one
algorithm which does not perform updating the schedule length [29].

The time complexity ofOall taken to updatingLVs by the full tracing can become a crit-
ical problem in terms of the time complexity, because it is higher thanO(|E|(|V |+ |E|))
required to updating the schedule length by the full tracing.

2. It does not always lead to the decrease of slw(Gscls)
When size of every cluster in which at least one task belongs to seqs is δopt or more,
other cluster’s sizes may be smaller than δopt. In such a case, it is necessary to make the
cluster in which every task does not belong to seqs pivots in order to satisfy sec.3.4.1
(i). As a result, seqs+1 is updated by the task merging step between the selected pivots
and targets, and then slw(Gs+1

cls ) can be increased, i.e., slw(Gscls) < slw(Gs+1
cls ). That

is, even if a cluster in which at least one task belongs to seqs is selected as pivots
for every task merging step, there is no guarantee that slw(Gs+1

cls ) is decreased, i.e.,
slw(Gscls) > slw(Gs+1

cls ).

From problems described above, the policy in our proposal is to select pivots in a certain
set of clusters without specifying and updating seqs. Then the proposal updates LVs+1 for
each cluster in the set of clusters after the s-th task merging step. Even if every cluster in
which at least one task in seqs has precedence relationships with each other, it is possible
that a task included in seqs and a task not included in seqs are merged in a cluster, and then
tasks without precedence relationships are included in the cluster. That is, repeating task
merging steps until every cluster size is δopt or more leads to the increase of slw(Gs+1

cls ), i.e.,
slw(Gscls) < slw(Gs+1

cls ). Thus, the point in terms of performance of the algorithm is that how
to reduce slw(Gs+1

cls ), i.e., slw(Gscls) > slw(Gs+1
cls ) by selecting pivots and targets, provided

that both seqs and slw(Gscls) are not specified for every task merging steps.

3.4.4 Definition of the range for selecting pivots and its effect

In the light of facts described above, the algorithm select pivots from the set of cluster satis-
fying the following condition.

{clss(r)|clss(r) ∈ UEXs, pred(nsr′) = ∅, clss(r) = {nsr′}}

∪
{
clss(r)|clss(r) ∈ UEXs, clss(q) /∈ UEXs,
nsq′ ∈ clss(q), nsq′ ∈ pred(nsr′) for ∀nsr′ ∈ tops(r)

}
. (3.31)
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In RDYs, the set of clusters satisfying the condition of eq.(3.31) is retained. That is, RDYs
at line 3 in figure 3.5 is the set of clusters included in UEXs and at the same time in which
only one START task is included, or the set of clusters in each (let clss(i)) of which immediate
predecessor tasks of any task in tops(i) belong to a cluster whose size is δopt or more.

Before the (s+ 1)-th task merging step, at line 3 in figure 3.5 size of every cluster in
RDYs+1 is smaller than δopt by the update procedure from RDYs to RDYs+1 at line 5 (de-
tailed in sec.3.4.7). That is, the algorithm makes only the set of clusters that are indexed
as s← s+ 1 belong to RDYs+1 by the procedure at line 5 in figure 3.5. At line 1 in figure
3.5, all clusters are added into UEXs. At this time, the set of clusters in each of which only
START task is included is added into RDYs(At line 1 in figure 3.5, the number of tasks in
each cluster is 1).

Next we describe how the policy to select pivots from clusters in RDYs effects on the
behavior of LVs+1 for each cluster. At first, assume that a cluster clss(r) in RDYs is selected
as pivots. Then according to sec.3.4.1 (ii), let a cluster selected from the set of clusters clss(t)
defined as follow be targets (As for the detailed selection policy for targets, see sec.3.4.6).

TGTs(r) = {clss(t)|nt′ ∈ suc(nr′), clss(t) = {nt′}, clss(t) ∈ UEXs,∃nr′ ∈ outs(r)}.
(3.32)

As a result, the following theorem holds.

Thorem 3.1. If clss+1(r)← clss(r) ∪ clss(t), then we have TLs+1(r) = TLs(r).

Proof 1. It must be satisfied that nst′ ≺ nsr′ for each task nsr′ in tops(r) with task nst′ in clss(t) in
order to satisfy TLs+1(r)− TLs(r) ̸= 0. Thus, we prove the theorem in two cases.

Case 1: The case of nst′ ∈ pred(nsr′).
From eq.(3.31), any immediate predecessor task of tops(r) belongs to the cluster whose size is
δopt or more, but this assumption conflicts with w(clss(t)) < δopt.

Case 2: The case that it is assumed that nst′ /∈ pred(nsr), nst′ ≺ nsr′
For a cluster clss(l), it is assumed that there is one immediate predecessor task of tops(r) in
clss(l). Then from the definition ofRDYs, it can be said that w(clss(l)) ≥ δopt. It is necessary
that nst′ is an immediate predecessor task of a task in tops(l), or nst′ must be executed before a
task in tops(l) in order to to satisfy TLs+1(r)− TLs(r) ̸= 0.

In the former case, clss(l) does not belong to UEXs, and size of the cluster in which a task
is one of immediate predecessor tasks of tops(l) is δopt or more. Hence, similar to case 1, this
assumption conflicts with w(clss(t)) < δopt. Moreover, in the latter case, the confliction can
be derived by repeating case 2 until nst′ is one of immediate predecessor tasks of tops(l).

From both cases, the theorem is proved. �

Also, the following theorem 3.2 is proved by the same manner as 3.1.

Thorem 3.2. Let clss(r), clss(s) ∈ RDYs. If we assume that pivots is clss(r) and a cluster clss(t)
in TGTs(r) is merged as targets, we obtain TLs+1(s) = TLs(s).
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Proof 2. For a task nsr′ in clss(r) with a task nss′ in tops(s), if it holds nsr′ ≺ nss′ , it is assumed that
TLs+1(s)− TLs(s) ̸= 0 is possible. Thus, it is enough to prove the conflict of this assumption by
considering two cases as follows.

Case 1: The case that we assume nsr′ ∈ pred(nss′)
Before the task merging step, both clss(r) and clss(t) belong to UEXs. Thus, it conflicts with
clss(s) ∈ RDYs.

Case 2: The case that it is assumed that nsr′ /∈ pred(nss′), nsr′ ≺ nss′
For a cluster clss(l), assume that a task in clss(l) is an immediate predecessor task of a task in
tops(s). Then we have w(clss(l)) ≥ δopt. To satisfy TLs+1(s)− TLs(s) ̸= 0, nsr′ must be an
immediate predecessor task of tops(l), or nsr′ must be executed before a task in tops(l).

In the former case, clss(l) does not belong to UEXs, and size of the cluster in which any
immediate predecessor task of tops(l) is δopt or more. Threfore, size of both clss(r) and targets
δopt or more, which conflicts with the assumption. In the latter case, by repeating case 2 until
nsr′ is an immediate predecessor task of tops(l), the conflict is derived. �

From theorem 3.1 and 3.2, for each cluster in RDYs, TLs+1 equals to TLs, even if the al-
gorithm performs a task merging step with selecting clss(r) in RDYs as pivots and selecting
the cluster clss(t) in TGTs(r) as targets. Thus, by doing such a task merging step, it is not
necessary to update TLs+1 values for both a cluster in RDYs and a cluster whose size is δopt
or more. The policy to select pivots from RDYs can have an advantage than the policy that
updating LVs+1 by a full tracing in terms of the time complexity.

Next, we describe how the policy that selects pivots from RDYs and select targets based
on eq.(3.32) has effect on slw(Gs+1

cls ). Obviously, at line 1 in figure 3.5, initially every START
task belongs to RDY0. At that moment, at least one START task belongs to seq0, since every
task in seq0 belongs to the critical path. However, it is not always that at least one task in
seqs belongs to a cluster in RDYs after s task merging steps. Threfore, it is necessary to
study how LVs+1 value is varied for each cluster in which at least a task seqs+1 by a task
merging step in order to clarify the increase and decrease of slw(Gs+1

cls )− slw(Gscls) after the
(s+ 1)-th task merging step. Here, the following theorem holds by defining a cluster as
clss(i) in which at least one task belongs to seqs.

Thorem 3.3. For a cluster clss(i) in which at least one task belongs to seqs, let clss(i) = {nsi′} and
clss(i) /∈ RDYs. Let the cluster clss(r) selected from RDYs be pivots, and let the cluster clss(t)
included in TGTs(r) be targets, where any task in pivots and targets does not belong to seqs. Here,
if we assume ∆TLs+1 = TLs+1(i)− TLs(i),∆BLs+1 = BLs+1(i)−BLs(i), then the following
relationships hold.

(A). nsr′ ≺ nsi′ for ∃nsr′ ∈ clss(r) ∪ clss(t)⇒ ∆TLs+1(i) ≥ 0,∆BLs+1(i) = 0.

(B). nsi′ ≺ nsr′ for ∃nsr′ ∈ clss(r) ∪ clss(t)⇒ ∆TLs+1(i) = 0,∆BLs+1(i) = 0.

Proof 3. At first, we prove (A). Since only one task belongs to clss(i), abviously TLs(i) = tlevel(nsi′),
BLs(i) = w(nsi′) + blevel(nsi′). If tasks without precedence relationships in clss(r) and clss(t) are
included in clss+1(r) by a task merging step, tlevel(ns+1

r′ ) can be increased, i.e.,

tlevel(nsr′) < tlevel(ns+1
r′ ).
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Thus, tlevel(ns+1
i′ ) is also increased, i.e., tlevel(nsi′) < tlevel(ns+1

i′ ). On the other hand, if clss+1(r)
is linear after the task merging step, every task in clss+1(r) has precedence relationships. Thus,
TLs+1(i) is not increased, i.e., TLs(i) ≥ TLs+1(i). Also, BLs+1(i) is not varied, i.e., BLs(i) is
equal to BLs+1(i) because nsr′ ≺ nsi′ .

Next we prove (B). Since nsi′ ≺ nsr′ , tlevel(n
s+1
i′ ) is not varied by a task merging step. In

clss+1(r), the localized data between clss(r) and clss(t) has effect on blevel value for each task
in clss+1(r). Thus, blevel value for each task clss+1(r) is not varied. Also, both clss(r) and clss(t)
do not have a task which belongs to seqs, and then the variation of blevel value for each task in those
two clusters does not effect on the variation of blevel(ns+1

i′ ). Hence, the theorem is proved.�

Thorem 3.4. For each cluster in which at least one task belongs to seqs, let |clss(i)| ≥ 2. Also,
let the cluster clss(r) selected from RDYs be pivots, let the cluster clss(t) in TGTs(r) be targets,
and assume that any task in pivots and targets does not belong to seqs. At that moment, if the
increase and decrease of TLs+1(i) and BLs+1(i), are defined as ∆TLs+1(i) and ∆BLs+1(i) by the
task merging of clss+1(r)← clss(r) ∪ clss(k), for ∃nsi′ ∈ clss(i) the following relationships hold.

(A). nsr′ ≺ nsi′ for ∃nsr′ ∈ clss(r) ∪ clss(t)⇒ ∆TLs+1(i) = 0, ∆BLs+1(i) = 0.

(B). nsi′ ≺ nsr′ for ∃nsr′ ∈ clss(r) ∪ clss(t)⇒ ∆TLs+1(i) = 0, ∆BLs+1(i) = 0.

Proof 4. Since the number of tasks in clss(i) is two or more, clss(i) belongs to RDYs or its size is
δopt or more. Thus, any immediate predecessor task of tops(i) also belongs to a cluster whose size is
δopt or more. Here, it hold that ∆TLs+1(i) = 0 in both case (A) and (B) from theorem 3.2.

Next, we prove ∆BLs+1(i) = 0 at (A). Though the number of tasks in clss(i) is two, ∆BLs+1(i)
is equal to 0, which is similar to theorem 3.3 because nsr′ ≺ nsi′ .

Finally, we prove ∆BLs+1(i) = 0 at (B). Similar to theorem 3.3 (B), clss(r) and clss(t) do not
have any task in seqs. Thus, the variation of blevel values of tasks in those two clusters do not have
effect on blevel value for each task in clss+1(i). �

From theorem 3.3 and 3.4, it can be said that the policy that selecting the cluster clss(r)
from RDYs as pivots and selecting the cluster clss(t) from TGTs(r) as targets can lead to
the increase of TLs+1 value of a cluster to which only one task belongs, i.e., TLs < TLs+1.
On the other hand, the policy does not have effect on LVs+1 value for each cluster having
two or more tasks. Also, for any cluster clss(i) in which at least one task belongs to seqs the
policy does not have effect on its BLs+1(i) value.

Example 5. Figure 3.6 shows an example of theorem 3.4. In this figure, a dashed line means a
precedence relationship, while a dashed area means that tasks in the area belong to seqs. Assume that
a task in clss(1) belong to seqs, and clss(4), clss(6), clss(7) and clss(9) belong to UEXs. Here, we
assume two task merging steps, i.e., the one is that pivots is clss(4) and targets is clss(6), and the
other is that pivots+1 is clss+1(7) and targets+1 is clss+1(9).

(b) means the state after those two task merging steps have been performed. In this state, size
of the cluster to which the immediate predecessor task of tops(1) (i.e., ns1) belongs is δopt or more,
since clss(1) has been generated before the state of (a). Thus, any task in both clss(4) and clss(6)
is not an immediate predecessor task of ns1. As a result, the variation of tlevel value of every task
in clss+2(4) at figure 3.6 (b) does not have effect on TLs+2(1). On the other hand, after the task
merging step between clss(4) and clss(6) at figure 3.6 (a), at (b) we have BLs+2(7)−BLs(7) ̸= 0
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Figure 3.6: Effect on LVs+1 value of every cluster after one task merging step of pivots and
targets
(appears in [22]).

by the task merging step between clss+1(7) and clss+1(9). However, blevel value of any task in
clss+2(7) is decreased but not increased by the data localization with compared to the state after the
s-th task merging step. As a result, any task in clss+2(7) at figure 3.6 (b) does not belong to seqs+2,
and Hence we have BLs+2(1) = BLs+1(1) = BLs(1). �

3.4.5 Selection of pivots

In this section we describe getP ivot(RDYs) at line 3 in figure 3.5. If we define the cluster in
which at least one task belongs to seqs as clss(i), it is possible that clss(i) does not belong
to RDYs. If clss(i) belong to RDYs, its LVs value takes the maximum in RDYs. In such
a case, to make LVs+1(i) decreased (i.e., LVs(i) > LVs+1(i)) by the task merging step with
clss(i) being pivots leads to the decrease of slw(Gs+1

cls ) (i.e., slw(Gscls) > slw(Gs+1
cls )). However,

if clss(i) does not belong to RDYs, from theorem 3.3 and 3.4 the task merging step with the
cluster selected fromRDYs being pivots and the cluster selected from TGTs(r) being targets
can lead to the increase of TLs+1(i), i.e., TLs(i) < TLs+1(i). Here, let the cluster having the
maximum LVs vlaue in RDYs, and let clss(r) be pivots. If the cluster clss(t) is selected from
TGTs(r) as targets, from theorem 3.3 and 3.4 the following theorem holds.

Thorem 3.5. Assume that clss(r) ∈ RDYs and the cluster in seqs is clss(i). Any task in clss(r)
does not belong to seqs, while clss(r) is pivots and the cluster selected from TGTs(r) is targets.
If clss(r) is linear, and clss+1(r) is linear after those clusters have been merged, from theorem 3.3
and 3.4 TLs+1(i) is not increased, i.e., TLs(i) ≥ TLs+1(i). Also, BLs+1(i) is not varied, i.e.,
BLs(i) = BLs+1(i).
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Thorem 3.6. Assume clss(r) ∈ RDYs. If at least one task in clss(r) belongs to seqs, the increase or
decrease of LVs+1(r) by a task merging step with clss(r) being pivots, slw(Gs+1

cls ) is also increased
or decreased.

The reason that theorem 3.5 holds is that both TLs(r) and BLs(r) are unchanged after
a task merging step has been performed, due to the fact that clss(r) is linear. Also, from
theorem 3.6, it is necessary to select the cluster having the maximum LVs value in RDYs
as pivots to decrease slw(Gs+1

cls ), i.e., slw(Gscls) > slw(Gs+1
cls ). Hence, we define the cluster

satisfying the following condition as pivots.

clss(p) ∈ RDYs, LVs(p) = max
clss(r)∈RDYs

{LVs(r)} (3.33)

3.4.6 Selection of targets

In this section, we describe the procedure of getTarget(pivots) at line 4 in figure 3.5.

Condition for selecting targets

If any task in pivots does not belong to seqs, from theorem 3.5 it is necessary to merge only
tasks which have precedece relationships with any task in pivots. On the other hand, if
pivots has a task which belongs to seqs, from theorem 3.1 and 3.2 it is necessary to select
the cluster as targets by which BLs+1 value of pivots is decreased, i.e., BLs > BLs+1 or
minimize the increase by a task merging step. Also, from theorem 3.5, it is necessary to use
the policy such that it maintains a cluster remains linear to decrease or minimize the increase
of LVs+1 for each cluster. Thus, as for a task merging step with a linear cluster being pivots,
we prove the following theorem.

Thorem 3.7. Let pivots by eq.(3.33) be clss(p). Also, for a task nst′ , let nst′ ∈ suc(nsp′), nsp′ ∈ btms(p),
clss(t) = {nst′}. If clss(p) is linear, clss+1(p) is still linear after clss+1(p)← clss(p) ∪ clss(t).

Proof 5. Let consider that the case clss+1(p) becomes non-linear after a task merging step. In such a
case, it is true that nsk such that nst′ ⊀ nsk and nsk ⊀ nst′ , n

s
k ∈ clss(p) exists. However, clss(p) before

a task merging step, any task in clss(p) can be executed before nsp′ . Thus, we have nsk ≺ nsp′ . As a
result, we have nsk ≺ nsp′ ≺ nst′ , i.e., nsk ≺ nst′ , which has the conflict. �

Next, at the case that both TLs+1 value andBLs+1 value are increased, i.e., TLs < TLs+1,
BLs < BLs+1 for the cluster which has been pivots, the following theorem holds.

Thorem 3.8. Let pivots selected by eq.(3.33) be clss(p). Also, let the cluster clss(t) to which an
immediate successor task of outs(p) belongs and whose size is smaller than δopt be targets, i.e.,
targets ̸= pivots. Then if |clss(t)| ≥ 2, we have nsp′ /∈ suc(nst′) and nsp′ /∈ pred(nst′) for nsp′ , n

s
t′

such that ∀nsp′ ∈ tops(p), ∀nst′ ∈ tops(t).

Proof 6. It is true that clss(t) ∈ RDYs by the fact that |clss(t)| ≥ 2 and w(clss(t)) < δopt. Thus,
in this case two cluster in RDYs are merged.

At first, assume nsp′ ∈ suc(nst′). However, it conflicts with clss(p) ∈ RDYs because we have
clss(t) ∈ RDYs. Next, assume nsp′ ∈ pred(nst′). However, it conflects with clss(t) ∈ RDYs because
clss(p) ∈ RDYs.

From those conflicts, the theorem is proved.�
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Figure 3.7: Pattern of selecting targets(where let pivots = clss(p))
(appears in [22]).

From theorem 3.8, the number of tasks in tops+1(p) is increased when the cluster which
has two or more tasks is selected as targets and pivots is clss(p). That is, this fact means that
tasks without precedence relationships are included in the same cluster. As a result, not only
tlevel value for each task not included in tops+1(p) in clss+1(p), but also both TLs+1(p) value
and BLs+1(p), i.e., LVs+1(p) are increased, i.e., BLs(p) < BLs+1(p). On the other hand, like
theorem 3.1, if the cluster having only one task is selected as targets, TLs+1 of the cluster
which remains pivots after a task merging step is not increased, i.e., TLs ≥ TLs+1. Thus, it
is necessary to select the cluster satisfying the following condition as targets.

Cond. 1. The cluster which makes BLs+1 value of the cluster which has been pivots decreased,
i.e., BLs > BLs+1, or which minimizes the increase ofBLs+1 value (from theorem 3.1,
3.2, and 3.8).

Cond. 2. The cluster which has precedence relationships with any task in pivots (from theorem
3.5, 3.7, and 3.8).
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Selection of targets

Based on conditions described in the previous section, in this section we present the proce-
dure for selecting targets. In the procedure at line 4 in figure 3.5, at first it search for the set
of clusters whose tasks have precedence relationships with pivots, and then in such clusters
it select the one by which slw(Gs+1

cls ) is decreased (or its increase is minimized) is selected as
targets. The criterion for selecting targets depends on the state of each immediate successor
task of pivots and the state of pivots itself (i.e., linear or non-linear). Figure 3.7 shows all
patters of selecting targets. In figure 3.7, let pivots be clss(p), and let the set of candidate
clusters for targets be TGTc(clss(p)). Then the procedure means which cluster is selected
as targets from TGTc(clss(p)). In the figure, if the selection policies for targets among the
cases of linear and non-linear are the same irrespective of whether clss(p) is linear or not,
only the one case is shown. At line 4 in figure the order of the search for targets is (a), (b),
(c), (d), and (e). For example, if TGTc(clss(p)) is not found at (a), then the algorithm tries
to find TGTc(clss(p)) in (b), otherwise the procedure goes to (c) . . .. When TGTc(clss(p)) is
found, the algorithm select targets from it, and then line 4 in figure 3.5 is finished.

(a) The case that in an unmerged cluster there is the immediate successor task of btms(p),
where btms(p) = {nsp′}, privided that pivots = {clss(p)}. (figure 3.7 (a)).
In immediate successor tasks of btms(p), where btms(p) = {nsp′}, let the task in an un-
merged cluster be nsu′ , and let the cluster to which nsu′ belong be clss(u), i.e., we have
clss(u) = {nsu′}. Then let such a set of clss(u) be TGTc(clss(p)). If we define the cluster
clss(t) in which tasks satisfying the following condition be targets, which is selected
from TGTc(clss(p)).

c(esp′,t′) + blevel(nst′) = max
nu′∈clss(u),
clss(u)∈TGTs(clss(p))

{
c(esp′,u′) + blevel(nsu′)

}
,

where nst′ ∈ clss(t), clss(t) ∈ TGTc(clss(p)), btms(p) = {nsp′},
TGTc(clss(p)) = {clss(u)|clss(u) = {nsu′}, nsu′ ∈ suc(nsp′)}. (3.34)

In this case, after the task merging step, clss+1(p) is linear, so that every precedence
relationship among any tasks in clss+1(p) is maintained. This fact satisfies the con-
dition 2. We have −c(esp′,u′) ≤ BLs+1(p)−BLs(p) ≤ 0 by the task merging step with
targets being selected based on eq.(3.34). That is, LVs+1(p) is not increased by the task
merging step, i.e., LVs(p) ≥ LVs+1(p).

(b) The case that pivots = {clss(p)} is linear and every immediate successor task of btms(p)
where btms(p) = {nsp′} belongs to a cluster having two or more tasks (figure 3.7 (b)).
In this case, if targets is selected by tracing immediate successor tasks of btms(p) based
on the policy (a), it is possible that clss+1(p) becomes non-linear after a task merging
step. Thus, the objective in this case is to minimize the increase of BLs+1(p) based
on condition 1. From the definition in table 3.1, BLs(p) is derived by tasks in outs(p).
Thus, let define the task which has immediate successor tasks in an unmerged cluster
be nsk. Then, assume such a set of tasks nsk is out′s(p) and then the algorithm select the
task which has the maximum S(nsk, p) + blevel(nsk) value in out′s(p) (let the task be nsp′).
Moreover, let the set of unmerged clusters to which immediate successor tasks of nsp′
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belong as TGTc(clss(p)). Let a cluster clss(t) to which tasks satisfying the following
condition be targets.

c(esp′,t′) + blevel(nsk′) = max
ns

u′∈clss(u),

clss(u)∈TGTc(clss(p))

{
c(esp′,u′) + blevel(nsu′)

}
,

where nst′ ∈ clss(t), clss(t) ∈ TGTc(clss(p)), nst′ ∈ suc(nsp′),
S(nsp′ , p) + blevel(nsp′) = max

ns
k∈out′s(p)

{S(nsk′ , p) + blevel(nsk)} ,

out′s(p) =
{
nsk|nsk ∈ outs(p), cls(q) = {nsq′}for∃nsq′ ∈ suc(nsk), nsq′ ∈ cls(q)

}
,

TGTc(clss(p)) =
{
clss(u)|clss(u) = {nsu′}, nsu′ ∈ suc(nsp′)

}
. (3.35)

If we define ∆BLs+1(p) = BLs+1(p)−BLs(p), by the localization of esp′,t′ we have
−c(es+1

p′,t′) ≤ ∆BLs+1(p) in case of BLs(p) = S(nsp′ , p) + blevel(nsp′). On the other hand,
we have nst′ ∈ clss(p) after the task merging step, and then we have ∆BLs+1(p) ≤ w(nst′).
Hence, the increase of LVs+1(p) after a task merging step is within from −c(esp′,t′) to
w(nst′).

(c) The case that pivots = {clss(p)} is not linear and there are immediate successor tasks
of outs(p), and they are included in unmerged clusters (figure 3.7 (c)).
Since clss(p) is not linear, it is not linear after a task merging step. Even if an unmerged
cluster, in which a task is an immediate successor task of btms(p), is selected as targets,
the number of tasks without precedence relationships may be increased after a task
merging step. Hence, this case does not satisfy condition 2. Thus, the objective of this
procedure is to minimize the increase of BLs+1(p) by tracing immediate successor
tasks of outs(p). Similar to (b), let the task which is an immediate successor task of
un unmerged cluster be nsk, and then let the set of nsk be out′s(p). Then the algorithm
selects the task having the maximum of S(nsk, p) + blevel(nsk) value (let the task be
nsp′). Moreover, in clusters to which immediate successor tasks of nsp′ belong, let an
unmerged cluster be clss(u) = {nsu′} and let the set of clss(u) be TGTc(clss(p)). Then
the cluster clss(t) satisfying the following condition is selected from TGTc(clss(p)).

c(esp′,t′) + blevel(nsk′) = max
ns

u′∈clss(u),

clss(u)∈TGTc(clss(p))

{
c(esp′,u′) + blevel(nsu′)

}
,

S(nsp′ , p) + blevel(nsp′) = max
ns

k∈out′s(p)
{S(nsk′ , p) + blevel(nsk)} ,

out′s(p) =
{
nsk|nsk ∈ outs(p), cls(q) = {nsq′}for∃nsq′ ∈ suc(nsk), nsq′ ∈ cls(q)

}
,

TGTc(clss(p)) =
{
clss(u)|clss(u) = {nsu′}, nsu′ ∈ suc(nsp′)

}
. (3.36)

As a result, similar to (b), the increase of LVs+1(p) is within from −c(esp′,t′) to w(nsu′),
since ns+1

t′ is included in clss+1(p).

(d) The case every immediate successor task of outs(p) belong to a cluster having two or
more tasks, irrespective of whether pivots = {clss(p)} is linear or not (figure 3.7 (d)).
In this case, the objective of the algorithm is to minimize the increase of LVs+1(p),
since there is no unmerged cluster even if every immediate successor task of outs(p)
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is traced. If clss(p) is linear, it is preferable that clss+1(p) is also linear. To do this,
it is necessary to select targets from a cluster which is not clss(p) and to which an
immediate predecessor task of ins(p) belongs. From the definition in table 3.1, since
ins(p) has both tasks included in tops(p) and tasks not included in tops(p), at first it
is necessary to decide which immediate predecessor tasks should be traced in ins(p)
and tops(p). Let assume that the task in which ins(p) does not belong to tops(p), and
the cluster to which an immediate predecessor task of nsk belongs is targets. In this
case, there may be a task in targets which has no precedence relationship with tops(p).
As a result, after a task merging step, |tops+1(p)| is increased and then LVs+1(p) is also
increased, i.e., LVs(p) < LVs+1(p). This is because every task in tops is executed before
other tasks in the same cluster, so that BLs+1(p) is increased, i.e., BLs(p) < BLs+1(p).
Thus, to maintain precedence relationships in clss+1(p), it is necessary to select the
cluster targets to which an immediate predecessor task of tops(p) belongs.

Next let describe about the criterion to reduce LVs+1(p), i.e., LVs(p) > LVs+1(p), or
minimize the increase of it. If clss+1(p) is generated based on either (a) or (b) or (c),
we have |tops+1(p)| = 1 (as for the case the number of tasks in tops+1(p) is increased,
we describe in (e)). As a result, if |tops(p)| = 1 before a task merging step, TLs+1(p) is
equal to TLs value of targets which is the cluster to which an immediate predecessor
task of tops(p) belong, because tops+1(p) is the set of tasks in tops of targets. Thus, the
objective is to minimize the increase of LVs+1 at clss+1(p). For any task nsp′ ∈ tops(p)
before a task merging step, let the immediate predecessor task of nsp′ be nsu′ , and as-
sume nsu′ ∈ clss(u). Assume the set of clss(u) is defined as TGTc(clss(p)), and then the
cluster clss(t) having the maximum LVs value in TGTc(clss(p)) is defined as targets.

LVs(t) = max
clss(u)∈TGTc(clss(p))

{LVs(u)} ,

where nst′ ∈ pred(np′), nst′ ∈ clss(t), clss(t) ∈ TGTc(clss(p)),
TGTc(clss(p)) = {clss(u)|nsu′ ∈ pred(nsp′), nsu′ ∈ clss(u)}, nsp′ ∈ tops(p),
TLs(p) = tlevel(nsp′). (3.37)

In this case, the increase of LVs+1(p) after a task merging step depends on not only
TLs of targets before a task merging step, but also precedence relationships among
tasks dominating BLs(p).

(e) tops(p) has only a START task and every immediate successor task of outs(p) belongs
to a cluster having two or more tasks, irrespective of pivots = {clss(p)} is linear or not
(figure 3.7 (e)).
Since tops(p) has only a START Task, targets can not be selected by policies of figure
3.7 (a), (b), (c), and (d), i.e., there is no candidate for targets. Since the number of tasks
in targets is two or more, from theorem 3.8 tasks without precedence relationships are
included in clss+1(p) by the task merging step between clss(p) and targets. On the
other hand, since tops(p) has only a START task, we have TLs(p) = 0. Moreover, from
theorem 3.8 the number of tasks in tops+1(p) is increased by a task merging step. As a
result, TLs+1(p) is equal to TLs value of targets, andBLs+1(p) depends on precedence
relationships among tasks which belong to clss+1(p). Thus, the objective in this case is
to minimize the increase of BLs+1(p) after a task merging step.
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As eq.(3.38) presented below, the algorithm specifies the task having the maximum
S(nsk′ , p) + blevel(nsk′) value in the set of nsk′ each of which belongs to outs(p). Then
the algorithm selects the cluster clss(t) to which immediate successor tasks (defined
as nst′) of nsp′ which dominate blevel(nsp′) belong as targets.

c(esp′,t′) + blevel(nst′) = max
ns

u′∈clss(u),

clss(u)∈TGTc(clss(p))

{
c(esp′,u′) + blevel(nsu′)

}
,

where BLs(p) = S(nsp′ , p) + blevel(nsp′),
nsp′ ∈ outs(p), nst′ ∈ clss(t), clss(t) ∈ TGTc(clss(p)),
TGTc(clss(p)) = {clss(u)|nst′ ∈ clss(u), nst′ ∈ suc(nsp′)}. (3.38)

Thus, the objective is to minimize the increase of BLs+1(p) by decrease c(esp′,t′) as
much as possible.

3.4.7 Task merging steps and update procedures for merging priorities

In this section we describe procedures of clustering(pivots, targets) at line 5 in figure 3.5.
figure 3.8 shows detailed procedures of clustering(pivots, targets). As defined at line 0 in
figure 3.8, pivots is the cluster clss(p), which is selected by eq.(3.33), while targets is clss(t)
which is selected by either figure 3.7 (a) or (b) or (c) or (d) or (e). clstering(pivots, targets)
has three kinds of procedures, i.e., task merging steps, update procedures for selection pri-
orities of pivots, and update procedures for RDYs.

At first, let describe a task merging step. This procedure corresponds to line 1-6 in figure
3.8. If the size of cluster of clss+1(p) is δopt or more by a task merging step, clss+1(p) does
not belong to RDYs+1andUEXs+1. On the other hand, the cluster which was clss(t) is re-
moved from RDYs+1, UEXs+1 , since clss(t) belongs to clss+1(p). By these procedures, it is
guarantee that a cluster whose size is δopt or more does not belong to RDYs+1.

Next, let describe update procedures for selection priorities of pivots. This procedure
corresponds to line 5-25 in figure 3.8. If targets is selected by figure 3.7 (d) or (e), TLs+1(p)
can be increased. Thus, at line 5-7, the algorithm updates both tops+1(p) and TLs+1(p).
Also, if clss+1(p) belongs to RDYs+1 by subsequent update procedures(described later) of
RDYs+1, it is necessary to maintain LVs+1(p) as the latest value. Even clss+1(p) /∈ RDYs+1,
a cluster to which immediate successor tasks of outs+1(p) belong can be added intoRDYs+1.
Thus, at line 8 in figure 3.8, the algorithm updates tasks in outs+1(p), btms+1(p) at line 8 in
figure 3.8 and tasks in outs+1(p) at line 10 in figure 3.8. There can be some clusters which
belong to RDYs+1 in the set of clusters to which immediate predecessor tasks of ins+1(p)
belong. Thus, it is necessary to update BLs+1 value for such clusters. Hence, the algorithm
updates blevel values of tasks in ins+1(p) at line 17-19 in figure 3.8, and then at line 23 the
algorithm updates blevel value for each task in such a cluster.

Finally, let describe update procedures for RDYs+1. After a task merging step, there
can be some clusters to which immediate successor tasks of outs+1(p) belong and which
satisfy the condition expressed as eq.(3.31). To specify such a cluster, at line 13 in figure
3.8 the algorithm labels to each outgoin edge of tasks in outs+1(p) as “checked,” only if we
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INPUT: pivots, targets
OUTPUT: RDYs+1

0. Let pivots clss(p) which has been obtained by eq.(3.33);
0. Let targets clss(t) which has been obtained by Fig. 3.7 (a) or (b) or (c) or (d) or (e);
0. Let RDYcandidate,s+1 ← ∅ ;/* Set of clusters to which immediate successor tasks of outs+1(p) in case of
w(clss+1(p)) ≥ δopt */

0. RDYs+1 ← RDYs, UEXs+1 ← UEXs and s← s+ 1 for every cluster in both RDYs+1 and
UEXs+1.;/*Increment s, i.e., the state of clusters belonging to RDYs+1 or UEXs+1.*/

/******** Task merging steps (procedures of merge function is defined at eq.(2.1). ********/
1. clss+1(p)← merge(clss(p), clss(t)) and remove clss+1(t) from RDYs+1 and UEXs+1 if exists;
2. IF w(clss+1(p)) ≥ δopt THEN
3. Remove clss+1(p) from RDYs+1 and UEXs+1;
4. END IF

/******** Update procedures for the selection priority of pivots ********/
5. IF clss(t) has been obtained by Fig. 3.7 (d) or (e) THEN
6. Update tops+1(p) and TLs+1(p); /*If TLs+1(p) is varied, update TLs+1(p).*/
7. END IF
8. update ins+1(p), outs+1(p) and btms+1(p); /*Update the set of tasks which require data communica-

tions with other clusters.*/
9. FOR EACH ns+1

p′ ∈ outs+1(p) DO

10. update S(ns+1
p′ , p) and tlevel(ns+1

p′ );/*Update tlevel value for each task.*/
11. IF w(clss+1(p)) ≥ δopt THEN
12. FOR EACH ns+1

k′ ∈ suc(ns+1
p′ ), ns+1

k′ ∈ clss+1(k) ̸= clss+1(p) DO
/*The procedure for specifying the cluster which can be added intoRDYs+1 by tracing immediate

successor tasks of ns+1
p′ .*/

13. mark “checked” on es+1
p′,k′ and put clss+1(k) into RDYcandidate,s+1;

14. END FOR
15. END IF
16. END FOR
17. FOR EACH ns+1

p′ ∈ ins+1(p) DO

18. update blevel(ns+1
p′ ); /* Required for procedures at line 20, 21-25.*/

19. END FOR
20. Update BLs+1(p) by tracing outs+1(p); /*Required for the case that clss+1(p) ∈ RDYs+1 after a task
merging step.*/
21. FOR EACH ns+1

p′ ∈ ins+1(p) DO

22. FOR EACH ns+1
k′ ∈ pred(ns+1

p′ ), ns+1
k′ ∈ clss+1(k) ̸= clss+1(p), clss+1(k) ∈ RDYs+1 DO

23. update blevel(ns+1
k′ ); /*Required for updating BLs+1(k) value*/

24. END FOR
25. END FOR

/******** Update procedures for RDYs+1 ********/
26. FOR EACH clss+1(k) ∈ RDYcandidate,s+1 DO
27. IF ∀ns+1

q′ ∈ pred(ns+1
k′ ),∀ns+1

k′ ∈ tops+1(k) s.t., es+1
q′,k′ is “checked” THEN

28. UpdateLVs+1(k) and put clss+1(k) intoRDYs+1;/*If clss+1(k) satisfies the condition ofRDYs+1,
it is added into RDYs+1.*/
29. END IF
30. END FOR
31. RETURN RDYs+1;

Figure 3.8: Procedure of task clustering at Fig. 3.5 line. 5
(appears in [22]).
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have w(clss+1(p)) ≥ δopt after a task merging step. Then the cluster which has possibility
to be added into RDYs+1 is added into RDYcandidate,s+1. At line 26-30 in figure 3.8, the
algorithm traces every cluster in RDYcandidate,s+1 and check if each cluster satisfies eq.(3.31)
or not. At line 27 in figure 3.8, for each task in tops+1(k), if every incoming edge is labeled
as “checked”, clss+1(k) is added into RDYs+1. This is because any immediate predecessor
task of tops+1(k) belongs to a cluster whose size is δopt or more.

On subsequent selection of pivots+1 (at line 3 in figure 3.5), the algorithm compares
LVs+1 values among tasks in RDYs+1. Thus, at line 28 in figure 3.8 LVs+1(k) is updated in
advance. By doing this, a cluster which is newly added into RDYs+1 becomes a candidate
for selecting pivots+1. From the theorem described below, pivots can always be selected
during the algorithm, thereby we have UEXs = ∅ by repeating a task merging step and
then the algorithm can end.

Thorem 3.9. Except the end of the algorithm, there are one or more clusters in RDYs.

Proof 7. Assume RDYs = {∅}. For any task clss(i) in V s
cls, at least one immediate predecessor task

of tops(i) belongs to a cluster whose size is δopt or more. Thus, let define a cluster to which immedi-
ate predecessor tasks of tops(i) belong as clss(h), and assume w(clss(h)) < δopt, clss(h) /∈ RDYs.
Then we obtain two cases, i.e., the number of tasks in clss(h) is “one” or “two or more.”

If |clss(h)| = 1, it corresponds to the case that the number of tasks in every cluster is one. Thus,
we have V s

cls = V 0
cls. However, this conflicts with that a cluster having a START task belongs to

RDYs at line 1 in figure 3.5.
If |clss(h)| ≥ 2, it corresponds to the case that clss(h) is generaged by at least one task merging

step. However, from eq.(3.31) it is not true that clss(h) /∈ RDYs, since a cluster having two or more
tasks belongs to RDYs until its size becomes δopt or more.

Hence, the theorem is proved. �

As described in sec.3.4.3, LVs+1 value for every cluster in RDYs+1 can be maintained
as the latest value by tracing every task. However, due to the problem related to the time
complexity, the algorithm updates only LVs+1 values of clusters which is newly added into
RDYs+1. From theorem 3.2, TLs+1 values of clusters in RDYs+1 is not varied, excpet newly
added clusters, i.e., TLs = TLs+1. On the other hand, blevel values of tasks which belong
to such clusters can be decreased. Thus, BLs value of a cluster to be selected as pivots may
not be latest, i.e, actual value can be smaller than BLs, because the blevel value of the task
is decreased. However, from theorem 3.3 and 3.4, a task merging step does not have effect
on BLs values of clusters to which tasks in seqs belong. Hence, if a task in seqs belongs to a
cluser selected as pivots (i.e., the cluster having the maximum LVs value in RDYs), its LVs
value is latest. That is, such a policy does not have problem in terms of the performance in
the point that it tries to decrease slw(Gscls).

3.4.8 Complexity analysis

In this section, we analyze the time complexity of the algorithm. The number a task is traced
depends on the number it is merged into a cluster until the cluster size exceeds δopt. Let the
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upper bound of the number be ε(G0
cls), and then we have

ε(G0
cls) =


δopt

min
n0

k∈V0

{
w(n0

k)
}
 . (3.39)

Time complexity at line 3-5 in figure 3.5 is multiplied by the number a cluster is traced, i.e.,
ε(G0

cls). We describe time complexities of procedures in 3.5.

• Time complexity of pivots selection (line 3 in figure 3.5)
The procedure at line 3 in figure 3.5 corresponds to the procedure for selecting pivots
from RDYs. if each cluster in RYDs is sorted according to nonincreasing order of LVs
value, one selection of pivots requires only one step. Thus, from eq.(3.39) the time
complexity at line 3 in figure 3.5 is O(ε(G0

cls)|V |).

• Time complexity of targets selection (line 4 in figure 3.5)
The procedure at line 4 in figure 3.5 corresponds to the procedure for searching targets
in the order of figure 3.7 (a), (b), (c), (d), and (e). At (a) in figure 3.7, the algorithm
search for the task nst′ which satisfies eq.(3.34) from suc(nsp′). This procedure requires
to sort each cluster cls(u) = {nsu′} in TGTc(clss(p)) at eq.(3.34) in nonincreasing or-
der of c(esp′,u′) + blevel(nsu′). Thus, this requires |suc(nsp′)| log |suc(nsp′)| steps, and as a
whole the time complexity of (a) is O(ε(G0

cls)|E| log |E|).
At figure 3.7 (b), it is necessary to specify out

′
s(p) at eq.(3.35). This procedure requires

to trace both each task and each edge among tasks in clss(p) at once, and the total num-
ber of steps is the sum of |clss(p)| and the number of edges among tasks in clss(p). Se-
lecting the task nsp′ having the maximum S(nsk′ , p) + blevel(nsk′) value in the set of tasks
nsk′ in out

′
s(p) requires |out′s(p)| log |out′s(p)| steps by the merge sorting. After that, for

each task nsu′ in suc(nsp′), selecting the task having the maximum c(esp′,u′) + blevel(nsu′)
value requires |suc(nsp′)| log |suc(nsp′)| steps by the merge sorting. The dominating part
in the targets selection procedure at figure 3.7 (b) is the procedure for selecting nst′ at
eq.(3.35) if |V | ≤ |E|. Hence, the time complexity of (b) is O(ε(G0

cls)(|E| log |E|)). This
is as same as figure 3.7 (c).

At figure 3.7 (d), at first nsp′ is selected at eq.(3.37). If TLs(p) has already been de-
cided, nsp′ can be selected by only one step. Then the cluster having the maximum LVs
value is selected from the set of clusters to which each task in pred(nsp′) belong. This
requires |pred(nsp′)| log |pred(nsp′)| steps by the merge sorting. Hence, as a whole the
time complexity of (d) is O(ε(G0

cls)(|E| log |E|)).
At figure 3.7 (e), at first nsp′ is selected at eq.(3.38). If BLs(p) has already been decided,
nsp′ is selected by only one step. Then the task having the maximum c(esp′,u′) + blevel(nsu′)
value in tasks nsu′ which belong to suc(nsp′). This requires |suc(nsp)| log |suc(nsp)| steps
by the merge sorting. Thus, the time complexity of (d) is O(ε(G0

cls)(|E| log |E|)). The
time complexity at line 4 in figure 3.5 is O(ε(G0

cls)(|E| log |E|)).

• Time complexity of a task merging step and update procedures for merging priorities
(line 5 in figure 3.5)
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The procedure at line 5 in figure 3.5 corresponds to the procedure in figure 3.8. At
line 2-4 in figure 3.8, it is necessary to specify clss(p) from RDYs, UEXs, i.e., the time
complexity of this is O(ε(G0

cls) log |V |).
At line 5-7 in figure 3.8, the set of tasks which belong to tops+1(p). This requires toi
trace each task and each edge among tasks in tops(p) ∪ tops(t) at once, as a whole the
time complexity is O(ε(G0

cls)(|V |+ |E|)).
Then tlevel values of tasks in tops+1(p) is updated by tracing their incoming edges.
Thus, as a whole the time complexity is O(ε(G0

cls)(|V |+ |E|)). After that, from tlevel
vlaues of tasks in tops+1(p), it is necessary to decide the maximum, i.e., TLs+1(p). This
requires |tops+1(p)| log |tops+1(p)| steps by the merge sorting, and Hence as a whole
the time complexity is O(ε(G0

cls)|V | log |V |).
The time complexity at line 5-7 in figure 3.8 is O(ε(G0

cls)|V | log |V |). At line 8 in fig-
ure 3.8, the procedure traces both incoming edges and outgoing edges among tasks
in clss+1(p) after a task merging step, whose time complexity is O(ε(G0

cls)|E|). It is
necessary to specify the set of tasks without precedence relationships with ns+1

p′ for
updating tlevel value of each task ns+1

p′ in outs+1(p) at line 10 in figure 3.8. This re-
quires to trace tasks and edges among them in clss+1(p) for each task in outs+1(p), so
that as a whole the time complexity is O(ε(G0

cls)|V |(|V |+ |E|)). Then it is necessary to
add size of each task which precedes ns+1

p′ in clss+1(p) in order to update tlevel value
for each task in outs+1(p), which requires |outs+1(p)| steps. The time complexity of the
procedure at line 10 in figure 3.8 is O(ε(G0

cls)|V |(|V |+ |E|)). At line 12-14 in figure 3.8,
it is necessary to trace outgoing edges of each task in outs(p), whose time complexity
is O(ε(G0

cls)|E|).
At line 18 in figure 3.8, each task in edges among tasks in clss(p) is traced at once, and
then such a task ’s bevel value is updated, whose time complexity isO(ε(G0

cls)(|V |+ |E|)).
At line 21-25 in figure 3.8, for each task ns+1

p′ such that ns+1
p′ ∈ ins+1(p), blevel value for

each task ns+1
k′ in pred(ns+1

p′ ) is updated. Thus, it is necessary to trace tasks and incom-
ing edges among them in ins+1(p), and tasks and edges among them in pred(ns+1

p′ ),
whose time complexity is O(ε(G0

cls)(|V |+ |E|)).
At line 26-30 in figure 3.8, for each cluster clss+1(k) in RDYcandidate,s+1, each task in
ns+1
k′ ∈ tops+1(k) is checked whether it is added into RDYs+1 or not, which requires
|pred(ns+1

k′ )| steps. If every task in RDYs+1 is sorted by the nonincreasing order of
LVs+1, a cluster is added into RDYs+1 by log |RDYs+1| steps. Thus, as a whole, the
time complexity is O(ε(G0

cls)|E| log |V |). Hence, the time complexity at line 5 in figure
3.5 is dominated by the procedure at line 10 in figure 3.8, whose time complexity is
O(ε(G0

cls)|V |(|V |+ |E|)).

From the analysis described above, the time complexity of the algorithm is dominated by
the procedure at line 5 in figure 3.5, whose time complexity is O(ε(G0

cls)|V |(|V |+ |E|)).

3.5 Experimental comparison

In this section, we present the experimental comparison results by simulations.
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3.5.1 Comparison points

Objectives of this comparison is to confirm that decreasing slw(GRcls) based on δopt can lead
to the decrease of the schedule length sl(GRcls), and that how effectively each PE can be
utilized by the proposal. Here, R satisfies eq.(3.1). Thus, we compared the following points.

1. Comparison of the combination of tasks for each cluster.

2. Comparison of both slw(GRcls) and sl(GRcls) when CCR [16, 41] is varied according to a
DAG, where every approach has the same number of generated clusters.

3. Comparison of sl(GRcls) with CCR being varied (the number of generated clusters is
varied).

4. Comparison of the schedule length by different scheduling policies.

5. Evaluation of the optimality of δopt.

6. Comparison of algorithm running time among several task clustering algorithms.

7. Comparison of effective use of processors (defined in sec.3.5.10) using a realistic ap-
plication DAG.

As one indication representing characteristics of a DAG, CCR(Communication to Com-
putation Ratio) [16, 41] is well known. CCR is defined as the ratio of data size among tasks
to the task size, or as the ratio of the average data size to the average task size. Various
kinds of DAGs can be defined by changing CCR from 0.1 to 10.0 [16,41]. In this experiment,
a DAG is generated by changing CCR.

One objective of the proposed task clustering is to minimize the schedule length with
small number of PEs by doing task merging steps until each cluster size is δopt or more.
At (1), the comparison is about the combination of tasks by which slw(GRcls) is minimized,
which is one objective of the proposal. From this comparison, we prove the reason why
slw(GRcls) is reduced (or increased).

At (2), slw(GRcls) and sl(GRcls) are compared among several approaches by the number of
PEs decided by the proposed task clustering. However, whether the number of PEs decided
at (2) is optimal for minimizing the schedule length or not is unknown. Thus, at (3) it is con-
firmed that how the number of PEs decided by the proposal and sl(GRcls) is optimal. That is,
we confirm that how the number of PEs obtained by the proposal is small with compared to
that obtained by conventional approaches with the same sl(GRcls) value. Also, the schedule
length depends on the execution order for each task, i.e., the scheduling policy. Hence, at
(4) we compared the schedule length by several scheduling policies after the proposed task
clustering. By using the result at (4), we prove the relationship between the proposed task
clustering and the scheduling policy. At (5), how the schedule length can be reduced by the
lower bound δopt with compared to other lower bounds is evaluated. At (6), we compared
each running time by several task clustering algorithms. At (7), we compared the degree of
utilization for each PE in cases of Gaussian Elimination (GE) DAG [34] and FFT DAG [36]
in order to evaluation the practicability of the proposal.
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Table 3.3: Configuration policies for each parameter in a random DAG
(appears in [22]).

Parameter Policy for Assigning Value

w(n0
k), n0

k ∈ V0 Max/Min Ratio = 100
c(e0k,l), e

0
k,l ∈ E0 Max/Min Ratio = 100

Parallelism Factor (PF) [38, 39]
√

|V0|
α

, where α is selected randomly from 0.5, 1.0 and 2.0
Out Degree of each Task Randomly selected from 1 to 5 for each Task.

CCR [16, 41] Each random DAG’s CCR is within [0.1, 10].

3.5.2 Simulation environment

As for sec.3.5.1 (1) to (6), we generated a random DAG as an input data, and at (7) we
generated a GE DAG [34] and FFT DAG [36].

At first, we describe how to generate a random DAG. Table 3.3 shows the policy for
generating a random DAG. When a random DAG is generated, we set the ratio of maximum
to minimum of each task size and each data size as 100. At (1) we set those parameters by
uniform distribution, at (2) we set them by uniform distribution and normal distribution, at
(3) to (6) we set them by uniform distribution.

The degree of parallelism of a DAG is defined as α by Parallelism Factor (PF), while

the depth, i.e., the maximum number of tasks on one path, is defined as
√
|V0|
α [38, 39]. α

is set from the set of 0.5, 1.0, 2.0 [39], by which the depth of a DAT according to uniform
distribution is decided. Also, as the literature [39], we generated a DAG by deciding the
number of outgoing edges for each task from 1 to 5 according to uniform distribution.

In a task scheduling is performed, one critical issue is to how to minimize the commu-
nication latencies among tasks, especially when each task in an application which requires
large number of communication is scheduled. Thus, each data size does not depend on the
number of edges on generating a random DAG. In this experiment, CCR is defined as the
ratio of the average data size to the average task size, and CCR is within 0.1 to 10.0.

The simulation environment was developed by J2SE1.6 03. The simulation runtime en-
vironment is, JRE1.6.0 03, OS is Windows XP SP3, CPU is Intel Core 2 Duo 2.66GHz, and
memory size is 2.0GB.

3.5.3 Comparison targets

Comparison targets in sec.3.5.1 is decided based on two criteria, i.e., 1. cluster merging is
performed after a task clustering, 2. only cluster merging (task merging steps) is performed.
As the first criterion, the one approach is that Load Balancing (LB) [26] is performed after
the task clustering by CASS-II [29] (CASS-II+LB), and the other is that Cluster Merging(CM)
is performed after the task clustering by DSC [18] (DSC+CM) [25]. On the other hand, as
the second criterion there are two approaches, i.e., the proposal and LB.

Throughout this section, assume that every cluster size becomes δ = δopt or more after R
task merging steps have been performed. On the other hand, at experiments by sec.3.5.1 (2),
(3), (4), (6), and (7), conventional approaches perform task merging steps until the specified
number of clusters (PEs) is reached.
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From eq.(2.1), we can see that the number of clusters is decremented by one task merg-
ing step. Thus, if the number of clusters generated by R task merging steps of the proposal
is equal to that of conventional approaches, the number of task merging steps of those con-
ventional approaches is also R. Of course every cluster size after R task merging steps by
conventional approaches is not always δopt or more. Hence, we commonly denote the DAG
after R task merging steps for every approaches as GRcls.

At sec.3.5.1 (2), (3), (5), and (7), sl(GRcls) of each approach is derived by RCP(Ready Crit-
ical Path) [28] scheduling algorithm.

3.5.4 Comparison of the combination of tasks for each cluster

Comparison of precedence relationships among tasks

The objective of the algorithm described in sec.3.4 is to minimize slw(GRcls) while every clus-
ter size is δopt or more. At sec.3.4.1 (ii), we described that it is important to maintain prece-
dence relationships among tasks as a task merging policy. Thus, for each generated cluster,
we evaluate the degree of precedence relationships among tasks for each cluster. From def-
inition in table 3.1, slw(Gscls) is derived from LVs(i) of a cluster clss(i). Moreover, for each
task nsk in clss(i), if independent tasks with nsk are included in clss+1(i) by a task merging
step, S(ns+1

k , i) is increased, i.e., S(nsk, i) < S(ns+1
k , i).

tlevel(ns+1
k ) is also increased, i.e., tlevel(nsk) < tlevel(ns+1

k ). Especially, if tlevel val-
ues of tasks in outs+1(i) is increased, TLs+1 values of clusters can also be increased, i.e.,
TLs < TLs+1. Thus, we compared that the maximum number of tasks which are executed
before every task in outR(i) for each cluster clsR(i). To do this, a random DAG is gener-
ated according to the policy described in sec.3.5.2, NS,ave defined as follow is used for the
comparison with conventional approaches.

NS,ave =
1

waverage

∑
clss(i)∈V R

cls

∑
nR

k ∈outs(i)

S(nRk , i)
|outs(i)|

. (3.40)

waverage is the average of task size, and NS,ave is the average number of tasks included in
S(nRk , i) for each task nRk in each cluster clsR(i). If this value becomes larger, more indepen-
dent tasks are included in the same cluster, which leads to the increase of tlevel of tasks in
outR(i), i.e., the increase of BLR(i). Figure 3.9 shows the comparison results of NS,ave. As
can be seen from figure 3.9, NS,ave value by the proposal is the lowest. Thus, it can be con-
cluded that the proposal can merge tasks with precedence relationships in the same cluster
as far as possible.

Comparison of the number of tasks which can be executed at the earliest start time for
each cluster

For each cluster clss(i), if multiple tasks belong to tops(i), they have no precedence rela-
tionships each other. Thus, if we have |tops+1(i)| > |tops(i)| by a task merging step, tlevel
values of tasks except tops+1(i) can be increased. It is conceivable that this fact has effect on
the increase of slw(GRcls). We compared the number of tasks in topS for each cluster obtained
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Figure 3.9: Comparison of NS,ave

(appears in [22]).
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Figure 3.10: Comparison of |topR| for each clus-
ter
(appears in [22]).

by both the proposal and conventional approaches. Figure 3.10 shows the comparison re-
sults of the number of tasks in topS for each cluster. In the figure, y-axis corresponds to the
average number of tasks in topS for each cluster. As can be seen from the figure, though the
number of tasks topS is around 1 with low CCR value for every approach, it is increased ac-
cording to larger CCRs. In the case of the proposal, the number of tasks in topS is increased
at figure 3.7 (e). In the proposal, it checks whether targets can be selected or not by one of
conditions, i.e., figure 3.7 (a) or (b) or (c) or (d). If not, the algorithm selects targets by (e).

By using such a policy, the number of tasks in tops+1 can not be increased, so that tlevel
values of tasks except tops+1(i) can be minimized. As a result, tlevel values for each task in
V R
cls is minimized as much as possible, and then it is conceivable that NS,ave value in figure

3.9 becomes lower than that of conventional approaches.

3.5.5 Comparison of WSL and the schedule length with changing CCR

In this experiment, we compared slw(GRcls) and sl(GRcls) in a DAG with CCR being varied.
In the proposal, the number of clusters, i.e., the number of PEs can be decided after task
merging steps have been performed in order to achieve that every cluster size is δopt or
more. Under those conditions, 100 random DAGs are generated and then we compared
both averaged slw(GRcls) and averaged sl(GRcls). CCR is decided by each task size and each
data size. We performed the evaluation with assigning two patterns of random values to
each task size and data size, i.e., uniform distribution and normal distribution.

Table 3.4 shows the comparison results in the case that both each task size and each data
size are set according to uniform distribution.

The number of tasks |V | is set by 500 or 1000, and we changed CCR. The column “|V R
cls|”

means the number of clusters obtained by taks merging steps with every cluster size being
δopt or more. The column “slw(GScls) Ratio to A” means the ratio of slw(GScls) values of
conventional approaches to that of the proposal. From table 3.4, slw(GScls) obtained by the
proposal is lower than that of other approaches. Even if CCR is very low such as No.1 and
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Table 3.4: Comparison of slw(GRcls) and sl(GRcls) with varying CCR (Each task size and data
size is assigned according to random value in uniform distribution)
(appears in [22]).

No. |V | CCR |V R
cls| slw(GS

cls) Ratio to A sl(GS
cls) Ratio to A

A B C D A B C D

1 500 0.1 147 1.000 1.235 1.517 1.422 1.000 1.008 1.112 1.032
2 500 1.0 45 1.000 1.315 1.506 1.359 1.000 1.192 1.230 1.274
3 500 3.0 26 1.000 1.219 1.301 1.416 1.000 1.162 1.065 1.555
4 500 5.0 22 1.000 1.237 1.432 1.579 1.000 1.281 1.334 1.797
5 500 8.0 17 1.000 1.268 1.339 1.435 1.000 1.186 1.288 1.813
6 500 10.0 16 1.000 1.348 1.340 1.401 1.000 1.280 1.438 1.949
7 1000 0.1 271 1.000 1.316 1.439 1.506 1.000 1.021 1.114 1.042
8 1000 1.0 82 1.000 1.382 1.484 1.342 1.000 1.176 1.185 1.340
9 1000 3.0 48 1.000 1.222 1.442 1.429 1.000 1.219 1.326 1.614
10 1000 5.0 38 1.000 1.374 1.391 1.443 1.000 1.327 1.262 1.688
11 1000 8.0 31 1.000 1.237 1.288 1.378 1.000 1.248 1.350 1.796
12 1000 10.0 28 1.000 1.272 1.324 1.377 1.000 1.231 1.477 1.916

7 (CCR=0.1), sl(GRcls) by the proposal is low, while the difference with other approaches is
lower than other cases. In the case of CCR=0.1, the number of generated clusters is higher
than other cases. Thus, the number of tasks for each cluster is lower than other cases, this
leads to the fact that the degree of parallelism is also lower. Hence, in this case parallelism
is retained and data transfer latencies have a little effect on the schedule length for every
approach. We can see that a good schedule length can be obtained for every approach than
other cases, by which it can be concluded that each schedule length is asymptotic. As a
whole, we found that the schedule length by the proposal is lower than other approaches
with the decided number of clusters by the proposal.

Next, we present the comparison result in the case that each task size and each data size
are assigned by normal distribution. It is conceivable that the distribution of those values
has a deviation.

Thus, we firstly decided the maximum value and the minimum value of task size and
data size. These values follow to table 3.3 and the ratio of the maximum value to the mini-
mum value is 100 in advance. Then we decided the standard deviation σtask, σdata and the
average µtask, µdata as follows.

µtask = min
n0

k∈V0

{
w(n0

k)
}

+

(
max
n0

k∈V0

{
w(n0

k)
}
− min
n0

k∈V0

{
w(n0

k)
})

α,

µdata = min
e0k,l∈E0

{
c(e0k,l)

}
+

(
max
e0k,l∈E0

{
c(e0k,l)

}
− min
e0k,l∈E0

{
c(e0k,l)

})
β,

σtask =
1
3

max

{
µtask − min

n0
k∈V0

{
w(n0

k)
}
, max
n0

k∈V0

{
w(n0

k)
}
− µtask

}
,

σdata =
1
3

max

{
µdata − min

e0k,l∈E0

{
c(e0k,l)

}
, max
e0k,l∈E0

{
c(e0k,l)

}
− µdata

}
. (3.41)

As a next step, we derived slw(GRcls) and sl(GRcls) with changing both α and β as 0.1,
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Table 3.5: Comparison of slw(GRcls) and sl(GRcls) with varying CCR (Each task size and data
size is assigned according to random value in normal distribution, and A. Proposal, B.
CASS-II+LB, C. DSC+CM, D. LB)
(appears in [22]).

No. |V | α β CCR |V R
cls| slw(GS

cls) Ratio to A sl(GS
cls) Ratio to A

A B C D A B C D

1 1000 0.1 0.1 0.1 205 1.000 1.510 1.450 1.366 1.000 1.049 1.104 1.056
2 1000 0.1 0.1 3.0 39 1.000 1.197 1.351 1.348 1.000 1.163 1.183 1.571
3 1000 0.1 0.1 10.0 22 1.000 1.161 1.207 1.269 1.000 1.335 1.329 1.898
4 1000 0.1 0.9 0.1 276 1.000 1.285 1.451 1.333 1.000 1.020 1.090 1.024
5 1000 0.1 0.9 3.0 59 1.000 1.277 1.490 1.389 1.000 1.214 1.313 1.522
6 1000 0.1 0.9 10.0 34 1.000 1.415 1.412 1.475 1.000 1.398 1.519 1.966
7 1000 0.5 0.5 0.1 300 1.000 1.270 1.365 1.492 1.000 1.000 1.073 1.027
8 1000 0.5 0.5 3.0 56 1.000 1.256 1.567 1.599 1.000 1.187 1.240 1.632
9 1000 0.5 0.5 10.0 30 1.000 1.412 1.311 1.374 1.000 1.256 1.393 1.890
10 1000 0.9 0.1 0.1 251 1.000 1.484 1.375 1.383 1.000 1.019 1.086 1.048
11 1000 0.9 0.1 3.0 47 1.000 1.197 1.310 1.380 1.000 1.128 1.208 1.540
12 1000 0.9 0.1 10.0 25 1.000 1.294 1.333 1.440 1.000 1.299 1.512 2.100
13 1000 0.9 0.9 0.1 357 1.000 1.236 1.448 1.458 1.000 1.002 1.048 1.022
14 1000 0.9 0.9 3.0 61 1.000 1.278 1.494 1.561 1.000 1.213 1.212 1.727
15 1000 0.9 0.9 10.0 36 1.000 1.287 1.414 1.459 1.000 1.213 1.585 2.026

49



CHAPTER 3. TASK CLUSTERING IN HOMOGENEOUS DISTRIBUTED SYSTEMS

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  50  100  150  200  250  300  350  400  450

S
L

 R
a

ti
o

 t
o

 A

# of Clusters

Proposal
CASS-II+LB

DSC+CM
LB

261 378

(a) CCR = 0.1

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  50  100  150  200  250  300  350  400

S
L

 R
a

ti
o

 t
o

 A

# of Clusters

Proposal
CASS-II+LB

DSC+CM
LB

84

0.982

325

(b) CCR = 1.0

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  50  100  150  200  250

S
L

 R
a

ti
o

 t
o

 A

# of Clusters

Proposal
CASS-II+LB

DSC+CM
LB

48 255
0.898

(c) CCR = 3.0

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  50  100  150  200  250

S
L

 R
a

ti
o

 t
o

 A

# of Clusters

Proposal
CASS-II+LB

DSC+CM
LB

39

(d) CCR = 5.0

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  50  100  150  200

S
L

 R
a

ti
o

 t
o

 A

# of Clusters

Proposal
CASS-II+LB

DSC+CM
LB

31 179
0.897

(e) CCR = 8.0

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  50  100  150  200

S
L

 R
a

ti
o

 t
o

 A

# of Clusters

Proposal
CASS-II+LB

DSC+CM
LB

26 111

0.979

(f) CCR = 10.0

Figure 3.11: Comparison of the schedule length with changing the number of PEs
(|V | = 1000)

(appears in [22]).
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0.5, and 0.9. Table 3.5 shows the comparison results. In the figure, slw(GRcls) value by the
proposal is the lowest as a whole. On the other hand, as for sl(GRcls), the difference in the
case that CCR is 1 or more is larger than that in the case that CCR is 0.1 (i.e.,No. 1, 4, 7, 10 and
13). Similar to the case that CCR is 0.1 in table 3.4, this is because that the task parallelism is
retained and that the communication latency is little.

From results described above, even if a DAG has the task size and the data size with
deviation, sl(GRcls) is low if CCR is within 0.1 to 10.0.

3.5.6 Comparison of the required PEs

In this experiment, we compared that the number of PEs obtained by the proposal and that
obtained by conventional approaches with the same schedule length. Thus, firstly the num-
ber of required PEs and sl(GRcls) by the proposal is derived. After that, by using conventional
approaches, i.e., B. CASS-II+LB, C. DSC, D. LB, the required PEs is varied in order that the
experiment has two cases, i.e., the number of clusters is lower or larger in those conven-
tional approaches than that in the proposal. Then each cluster is merged until the number
of clusters reaches the required number of clusters at B, C, and D. We generated 100 random
DAGS by the policy in sec.3.5.1, and then for the number of required PEs and sl(GRcls), those
averaged values are compared. Here, let define the degree of effective use of processors
as “the schedule length / the number of PEs.” We compared the degree of effective use of
processors among the proposal and conventional approaches.

Figure 3.11 shows the comparison result in terms of the required number of PEs and
sl(GRcls). In the figure, DAGs are used with CCR being larger from (a) to (f). In (a) - (f), the
x-axis corresponds to the number of clusters, while the y-axis corresponds to the ratio of
sl(GScls) of a conventional approach to that of the posposal. Also, in (a) - (f), the number of
clusters obtained by the proposal is 261, 84, 48, 39, 31, 26, respectively. At (a), sl(GRcls) ob-
tained by the proposal is about the same as that obtained by B (CASS+LB) with the number
of PEs being 378. Hence, the degree of effective use of processors by the proposal is better
than B by 378/261;1.45 times. On the other hand, at (b) when B (CASS-II+LB) is performed
with the number of PEs being 325, it becomes 0.982 times of sl(GRcls) by the proposal. Thus,
the ratio of the degree of effective use of processorsis is 325×0.982/84;3.80. At (c), when
C is performed with the number of PEs being 255, sl(GRcls) is 0.898 times of that by the pro-
posal. Thus, the ratio of the degree of effective use of processors is 255×0.898/48=4.77. We
do not find that the case that sl(GRcls) by (d) is lower than that of the proposal. At both (e)
and (f), sl(GRcls) by them is lower than that of the proposal when the number of PEs is 179,
111, respectively. The ratio of the degree of effective use of processors at (e) is about 5.18,
and that at (f) is about 4.18.

From those results, it is found that the schedule length becomes lower than other ap-
proaches with small number of PEs.

3.5.7 Comparison of the schedule length by different scheduling policies

As described in sec.3.5.3, comparisons in sec.3.5.1 (2), (3), (5), and (7) derives the schedule
length by RCP scheduling algorithm. Since the schedule length is varied according to the
execution order for each task, we evaluated the effect of both the proposal and conventional
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Table 3.6: Comparison of schedule length with two scheduling policies (A. Proposal, B.
CASS-II+LB, C. DSC+CM, D. LB)
(appears in [22])

No. CCR Scheduling |V R
cls| sl(GS

cls) Ratio to A
A B C D

1 0.1 Down-Rank [18] 267 1.000 1.029 1.121 1.033
2 0.5 115 1.000 1.055 1.146 1.157
3 1 83 1.000 1.122 1.145 1.281
4 3 50 1.000 1.202 1.182 1.561
5 5 40 1.000 1.184 1.255 1.571
6 7 33 1.000 1.166 1.202 1.678
7 10 28 1.000 1.190 1.436 1.872
8 0.1 Up-Rank [27, 30, 39] 277 1.000 1.059 1.112 1.068
9 0.5 119 1.000 1.152 1.192 1.205

10 1 85 1.000 1.205 1.239 1.388
11 3 50 1.000 1.295 1.527 1.678
12 5 39 1.000 1.391 1.555 1.870
13 7 33 1.000 1.429 1.422 1.926
14 10 28 1.000 1.411 1.391 1.932

approaches on the schedule length. Some conventional task clustering heuristics decide the
task merging priority [18,27,30]. In those conventional task clustering heuristics, the sched-
ule length is reculculated for every task merging step. We compared several scheduling
policies, which assign “Down-Rank” (the maximum path length from a START task to the
target task) and “Up-Rank” (the maximum path length from the target task to a END task)1.

Then, each task is scheduled according to nonincreasing order of Down-Rank or Up-
Rank.

We generated 100 random DAGs according to table 3.3, and then the average schedule
length is compared. Table 3.6 shows the comparison result. In this table 3.6, the comparison
result of the schedule length when each task is scheduled according to two patterns, i.e., the
nonincreasing order of Down-Rank and nonincreasing order of Up-Rank.

In every CCR, we can see that the schedule length of the proposal has the best. However,
if CCR=0.1, every schedule length is asymptotic. This is because that the task parallelism is
retained and the effect on communication latencies is small, similar to the case that CCR=0.1
in table 3.4.

From results described above, it is found that better schedule length other than RCP can
be obtained.

3.5.8 Optimality of δopt

δopt is obtained by eq.(3.22) befored the task clustering, and that is assumed to be a near-
optimal value. Thus, with compared to other lower bounds for a cluster size, how δopt is
better for the schedule length is evaluated.

Lower bounds for each cluster size to be compared were decided as 0.25δopt, 0.5δopt,
0.8δopt, 1.2δopt, 2δopt, 3δopt. The comparison result is shown in figure 3.12. In this figure,

1Some scheduling policies define other names except Down-Rank/Up-Rank. In this dissertation, we name
them as Down-Rank/Up-Rank for convenience.
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Figure 3.12: Optimality about δopt
(appears in [22]).

(a) is the case of |V | = 500, while (b) is the case of |V | = 1000. The x-axis corresponds to
CCR, and the y-axis corresponds to the ratio of the schedule length between the schedule
length of other lower bounds to that of the proposed lower bound (i.e., δopt). If CCR=7.0 at
(a), the schedule length in the case of 0.8δopt is smaller than that in the case of δopt, while in
other cases each schedule length is about the same, or the schedule length in the case of δopt
becomes slightly smaller. The same results are obtained in the case of CCR=3.0 at (b).

Table 3.7: Breakout of ♯ of non-linear clusters after the task Clustering
(appears in [22]).

No. |V | CCR ♯ of non-lienar clusters on slw(GR
cls)/♯ of all clusters on slw(GR

cls)
0.25δopt 0.5δopt 0.8δopt δopt 1.2δopt 1.5δopt 2.0δopt 3.0δopt

1 500 0.1 5/30 4/23 3/19 3/16 3/14 3/11 2/7 2/5
2 500 0.5 3/26 3/17 2/13 2/11 1/9 2/7 2/5 1/3
3 500 1.0 3/20 3/14 2/11 2/8 2/6 1/5 1/3 1/2
4 500 3.0 3/15 3/12 1/8 1/6 2/5 2/4 1/3 1/1
5 500 5.0 2/13 2/10 2/7 2/5 1/4 1/3 1/2 1/1
6 500 7.0 2/11 2/8 2/6 2/4 2/4 1/2 1/2 1/1
7 500 10.0 3/10 2/7 1/5 1/4 1/3 1/2 1/1 1/1
8 1000 0.1 2/48 5/36 7/29 5/26 5/19 4/15 3/12 3/10
9 1000 0.5 5/36 6/31 4/25 3/22 2/14 2/12 2/9 2/8

10 1000 1.0 7/31 4/27 3/21 2/18 3/16 1/9 2/7 2/5
11 1000 3.0 5/26 3/22 2/18 2/15 2/13 3/8 2/5 1/3
12 1000 5.0 3/22 2/18 1/14 1/12 2/10 2/6 1/5 2/3
13 1000 7.0 3/18 3/15 2/11 2/10 2/8 2/5 1/4 1/2
14 1000 10.0 2/14 2/12 1/10 1/8 1/6 2/4 1/3 1/1

Table 3.7 shows the number of non-linear clusters in the set of clusters of slw(GRcls).
Eq.(3.22) is the value of δ when y = 1 in eq.(3.18). The case that the lower bound is smaller
than δopt corresponds to the case of y > 1, otherwise it corresponds to the case of y < 1. For

53



CHAPTER 3. TASK CLUSTERING IN HOMOGENEOUS DISTRIBUTED SYSTEMS

Table 3.8: Comparison of running time of each algorithm(Each task and data size is assigned
according to random value in uniform distribution)
(appears in [22]).

No. |V | CCR ε(G0
cls) |V R

cls| Algorithm Running Time(ms)
A B C D

1 500 0.1 122 147 10 17 29 29
2 500 1.0 420 45 19 33 31 38
3 500 3.0 723 26 24 29 33 38
4 500 5.0 924 22 27 29 38 36
5 500 8.0 1200 17 29 33 38 43
6 500 10.0 1287 16 29 34 38 44
7 1000 0.1 147 271 27 64 97 112
8 1000 1.0 460 82 43 88 102 140
9 1000 3.0 795 48 53 83 109 151
10 1000 5.0 1000 38 57 83 112 143
11 1000 8.0 1310 31 65 84 110 151
12 1000 10.0 1401 28 69 85 112 156

example, 0.25δopt and 0.5δopt can be interpreted as y = 16 and y = 4 in eq.(3.18), respectively.
In table 3.7, the number of non-linear clusters is larger than 1 in the case of the lower bound
is δopt. Thus, it can be said that the number of non-linear clusters is not always equal to the
value of y.

At first, let describe the case that the lower bound of the cluster size is larger than δopt,
i.e., 1.2δopt, 1.5δopt, 2.0δopt, and 3.0δopt. From the result in 3.12, this case has the larger sched-
ule length than that in the case of δopt for every CCR value. The larger CCR becomes, the
larger the number of independent tasks in cases of other lower bounds becomes larger than
that in the case of δopt. This fact becomes one of reasons that the schedule length becomes
larger with CCR. When CCR=0.1, 0.5, 1.0, 3.0 at figure 3.12 (a) and CCR=0.1, 0.5, 1 at fig-
ure 3.12 (b), the ratio of the schedule length is increasing, while in other cases the schedule
length is decreasing. From those results, it can be seen that the increase of independent tasks
in non-linear clusters has an impact effect on the schedule length. The larger CCR becomes,
the larger the number of independent tasks is, while each communication localization has
a great effect on the schedule length because of the larger lower bound for each task. As a
result, it can be concluded that the ratio of the schedule length is decreased with CCR being
increased.

On the other hand, from table 3.7, both the number of clusters in whith at least one
task belongs to seqR and the number of non-linear clusters are lower than the number of
non-linear clusters in the case of δopt. Moreover, from figure 3.12, even if CCR is low, e.g.,
CCR=0.1 or 0.5, the schedule length is larger than that in the case of δopt. Even if CCR is low,
the degree of task parallelism is lower than that in the case of δopt due to the small lower
bound for each cluster size, which leads to the larger schedule length than that in the case
of δopt. Thus, we can see that the schedule length in the case that the lower bound for each
cluster size is 1.2δopt, 1.5δopt, 2.0δopt, 3.0δopt (i.e., y < 1) is larger than that in the case of δopt.

Next, let assume the case that the lower bound for each cluster size is smaller than δopt,
i.e., 0.25δopt, 0.5δopt, 0.8δopt. In those cases, communications among tasks are less localized,
while it is conceivable that the number of independent tasks in a non-linear cluster is less
than the case of δopt. Thus, the larger CCR becomes, the larger the effect of unlocalized
communication on the schedule length becomes. As a result, in cases of 0.25δopt, 0.5δopt in
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figure 3.12, the schedule length tends to be increased. From table 3.7, the number of clusters
in which at least one task belongs to seqR and the number of non-linear clusters is larger
or equal to that in the case of δopt. On the other hand, from figure 3.12, in cases of 0.25δopt,
0.5δopt the schedule length is larger than that in the case of δopt even if CCR is 0.1, 0.5. In
those two cases, the reasons are that the degree of task parallelism is not retained due to
the large number of non-linear clusters and advantages of the communication localization
is not obtained. Also, if the case that the lower bound for each cluster size is 0.8δopt, the
schedule length is larger than that in the case of δopt, except cases of figure 3.12 (a) (CCR=7.0)
and (b) (CCR=3.0) Especially, in the case of CCR=10.0, the schedule length is larger than
that in the case of δopt. Thus, in the case of 0.8δopt, the larger CCR becomes, the more the
communication localization is needed, i.e., it is necessary to make the lower bound larger.
From those results, it can be concluded that the schedule length in almost all cases is larger
than that in the case of δopt. If eq.(3.18) is applied to eq.(3.17), eq.(3.17) is monotonically
increasing. Thus, if y is increased, the upper bound of slw(GRcls) is also increased, thereby
slw(GRcls) after the task clustering is increased. From results in sec.3.3.8, this fact leads to
the increase of both the lower bound and the upper bound of the schedule length. From
those characteristics and results in fiure 3.12 and table 3.7, it can be said that δopt with y = 1
at eq.(3.18) is the near-optimal lower bound for each cluster size to minimize ths schedule
length. On characteristic of the proposal is to decide the lower bound for each cluster size
before each task merging step.

If the lower bound for the “next cluster” to be generated by the next task merging step, in
which each task size, each data size and precedence relationships among tasks is considered,
is dynamically decided, the better schedule length may be obtained. However, this requires
to additional procedures for deriving the lower bound for each task merging step. Such
a dynamic approach impose the problem that how to suppress the time complexity of the
algorithm, which is one of our future works.

From results describe above, we can obtain a better schedule length by applying δopt,
though it is not always minimized.

3.5.9 Comparison of the running time

We compared the proposed algorithm to other conventional algorithms in order to confirm
that the proposal is a practical method or not.

The range of procedures to be measured is from line 0 to 7 in figure 3.5, i.e., procedures
for deriving δopt and slw(GRcls) is included in the range. In conventional approaches, CASS-
II+LB and DSC+CM are included as comparison targets, because they adopt to derive the
critical path length as preprocesses. That is, the running time to be measured is the time
duration from the start time of preprocesses to the time that GRcls is obtained for every ap-
proach. Also, as a cluster generation policy, it is the same as that described in sec.3.5.5, i.e.,
the same number of clusters with CCR being varied. Then by using 100 random DAGs with
each task size and each data size being set according to uniform distribution, we compared
the averaged running time.

Table 3.8 shows the comparison result in terms of the running time. In this figure, ε(G0
cls)

is the value at eq.(3.39). If this value becomes larger, the upper bound of the number of
reference to the same cluster (the number of task merging steps for each cluster, i.e., the
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Table 3.9: Comparison of running time of each algorithm(Each task and data size is assigned
according to random value in normal distribution)
(appears in [22]).

No. |V | α β CCR ε(G0
cls) |V R

cls| Algorithm Running Time(ms)
A. B. C. D.

1 500 0.1 0.9 0.1 87 104 23 32 31 39
2 500 0.1 0.9 3.0 488 35 31 54 39 55
3 500 0.1 0.9 10.0 876 14 54 86 67 47
4 500 0.9 0.1 0.1 121 114 25 38 39 43
5 500 0.9 0.1 3.0 664 22 34 41 44 49
6 500 0.9 0.1 10.0 1083 13 36 46 51 56
7 1000 0.1 0.9 0.1 103 267 39 94 101 134
8 1000 0.1 0.9 3.0 195 58 79 118 124 169
9 1000 0.1 0.9 10.0 328 36 110 162 187 172
10 1000 0.9 0.1 0.1 41 246 31 85 94 125
11 1000 0.9 0.1 3.0 226 49 71 93 109 156
12 1000 0.9 0.1 10.0 413 23 94 117 111 162

number of selection as pivots) becomes larger, thereby the running time is also increased.
At the proposal (A at table 3.8), the number of clusters is decreased with δopt being larger.
Thus, the fact that |V R

cls| is less corresponds to the increase of the number of task merging
steps and ε(G0

cls) becomes larger.
In every cases of |V | is 500 and 1000, the running time becomes lower with the number of

clusters being decreased. Also, time complexities of CASS-II and DSC areO(|E|+ |V | log |V |)
[29], O((|V |+ |E|) log |V |) [18], while the time complexity of the proposed task clustering is
O(ε(G0

cls)|V |(|V |+ |E|)) as described in sec.3.4.8. CASS-II has the least time complexity.
However, the running time of CASS-II+LB becomes larger than that of the proposal, be-
cause each cluster is merged by LB after CASS-II has performed. The same reason is applied
to DSC, which has the larger running time than that of the proposal. As for LB, the running
time is larger because every task is traced for each task merging step. On the other hand,
the proposal has the smaller running time than other approaches in every case in table 3.8.
From the result in sec. 3.5.5, sl(GRcls) by the proposal can be made lower than that by other
approaches with CCR being larger. Thus, it is concluded that the proposal provide the low
schedule length with the low running time.

In table 3.8, each task size and data size are assigned according to uniform distribution.
Hence, for a cluster generated by R task merging step (i.e., clsR(i)), the number of task
merging steps among all approaches required for generating clsR(i) is almost the same.
Thus, it is conceivable that the actual number of task merging steps is not reached to ε(G0

cls).
Next, we compared the running time in the case that a DAG has a deviation on the

number of reference to a cluster (the number of task merging steps required for each cluster,
i.e., the number of selection for pivots). In this experiment, let |V | = 500, 1000 and each task
size and each data size are set according to normal distribution. Table 3.9 the comparison
result. In this table, α and β correspond to them at eq.(3.41), while A, B, C, D correspond to
them in table 3.8, respectively. In table 3.9, when α = 0.1 (No. 1, 2, 3, 7, 8, 9), each task size
tend to be deviated to the minimum value. Thus, tasks with small size tend to belong to the
same cluster, thereby the long running time is required for update procedures of S(ns+1

p′ , p)
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Figure 3.13: An example of Gaussian Elimination DAG structure when N = 6
(appears in [22]).

at line 10 in figure 3.8. Thus, in the proposal, the running times at No. 1, 3, 6, 7, 9, 12 are
longer than them in table 3.8. However, B, C, and D in table 3.8 have longer running time
than the proposal. From results described above, the running time by the proposal is lower
than that in other conventional approaches, even if each task size and each data size have a
deviation.

3.5.10 Comparison of the degree of effective use of processors in specific appli-
cations

CCR is generally derived from each task size (task execution time) and each data size (com-
munication time). That is , CCR depends on the information about the DAG and the exe-
cution environment (processor speeds, communication bandwidths and so on). In this ex-
periment, how efficiently each PE is utilized by the proposal in specific DAGs. Those DAGs
are Gaussian Elimination DAG [34] and FFT DAG [36], which are used for evaluation of the
task scheduling [38,39]. The degree of effective use of processors is defined as the following
evaluation formula, by which we compared with other approaches.

E(|V R
cls|, Algorithm) =

schedule length by 1 processor
|V R
cls| × (sl(GRcls) by the Algorithm)

. (3.42)

If the value at eq.(3.42) becomes larger, it can be said that each PE is more efficiently utilized.
The execution model in this experiment also complies with that defined in sec.3.2.
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Table 3.10: Comparison of E(|V R
cls|, Algorithm) in Gaussian Elimination DAG

(appears in [22]).

No. |V | tp : tc : β |V R
cls| E(|V R

cls|, Algorithm)
A. Proposal B. CASS-II+LB C. DSC+CM

1 1770 1:10:500 9 0.6369 0.4215 0.5232
2 1770 1:20:1000 5 0.7015 0.5624 0.4790
3 1770 1:20:2000 4 0.6655 0.4269 0.3902
4 1770 1:40:2000 4 0.5812 0.5539 0.3152
5 3160 1:10:500 14 0.6097 0.4352 0.5348
6 3160 1:20:1000 11 0.5073 0.3390 0.3626
7 3160 1:20:2000 7 0.6187 0.4975 0.3652
8 3160 1:40:2000 7 0.5157 0.4393 0.2826

Comparison of the degree of effective use of processors with a Gaussian Elimination
DAG

In the Gaussian Elimination DAG, the total number of tasks is increased with the order of
O(N3) in the matrix size N by the triple for loop if one assignment statement is handled
as one task. It follows that the number of edges is increased, thereby each communication
latency becomes large. Thus, we use a kji Gaussian Elimination without pivoting, in which
the second inner loop procedure (i.e., for(j = k + 1; j ≤ N ; j + +)) is handled as one task
[34]. Then the structure in the Gaussian Elimination (in the case of N = 6) is shown in
figure 3.13. In this figure, let denote a task n0

k,j , where k (1 ≤ k ≤ N − 1) is a level index,
and j (k + 1 ≤ j ≤ N ) is a column index. If the processing time of n0

k,j is defined as w(n0
k,j)

and the data transfer time from n0
k,j to n0

k+1,m(j + 1 ≤ m ≤ N) is defined as c(e0(k,j),(k+1,m)),
each value is independent from j,m as follow [34].

w(n0
k,j) = (2(N − k) + 1)tp, c(e0(k,j),(k+1,m)) = β + (N − k + 1)tc. (3.43)

In eq.(3.43), β is the start-up time (data transfer time required for procedures among PEs
[45]) performed before the data transfer among tasks. Also, tp is the time required for one
arithmetic operation, and tc is the time required for data transfer per one data size unit. In
the literature [34], it is shown that the value ofm (the value based on the ratio of tc to tp [34])
when the highest speed up ratio is theoretically obtained and m when the highest speed up
ratio is obtained in the Intel iPSC/860 system are similar. In the literature [35], it is proved
that the model, where the data transfer time is linearly behaves with β being considered, is
a good approximation to same extent. Thus, in this dissertation we define both each task
execution time and data tansfer time as eq.(3.43) using β, tc, tp. Though β, tp, tc depend on
the system to be applied, generally tc is larger than tp [35, 45], the communication latency
by β has effect on the schedule length [45].

In the literature [34], it is defined that tc/tp ; 18, β/tc ; 42.5 with assuming the cluster
environment Intel iPSC/860 of the literature [35]. Also, in the cluster environment by Ncube
6400 in the literature [35], it is defined that tc/tp = 12, β/tc ; 41.672

2In the literature [34], “REAL*4 *+*+*” value at table 3 in the literature [35] is assigned to tp. β is the value at
table 6 in the literature [35], while tc is the value, which is 8 times of the data transfer time for 1 byte at table 6
in the literature [35]. Hence, as for Ncube 6400 we decided values of tp, tc, β according to the policy.
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In this experiment, we set tc/tp and β/tc in order to accommodate Intel iPSC/860 and
Ncube 6400 with assuming those environments. Generally, both tc and β is larger than
tp, which can be varied with the communication condition. Thus, we set tc/tp and β/tc
higher than them in those two environments in the literature [35]. However, at eq.(3.43)
c(e0(k,j),(k+1,m)) is much larger than w(n0

k,j), i.e., β or tc is much larger than tp, the schedule
length can not be reduced, in this experiment we set tp : tc : β as 1 : 10 : 500, 1 : 20 : 1000,
1 : 20 : 2000, 1 : 40 : 2000, respectively.

From results in sec.3.5.5, sec.3.5.6, and sec.3.5.9, sl(GRcls) by “D (LB)” is obviously larger
than that by other three approaches (the proposal, CASS-II+LB and DSC+CM), and also the
running time is larger. Thus, comparison targets are selected as “the proposal,” “B. CASS-
II+LB,” and “C. DSC+CM.” Under the condition, we compared eq.(3.42) with the number
of PEs being decided by the proposal.

Table 3.10 shows the comparison result of the degree of effective use of processors in
cases of |V | = 1770, 3160. The column “tp : tc : β” corresponds to the ratio of each value de-
fined at eq.(3.43). In every case, E(|V R

cls|, Algorithm) of the proposal has the highest in all
cases. From this result, it is concluded that the proposal provides a high degree of effec-
tive use of processors in the environment similar to Intel iPSC/860 and Ncube 6400 in the
literature [35].

Comparison of the degree of effective use of processors with a FFT DAG

We compared eq.(3.42) using a FFT DAG. In this experiment, we generated a FFT DAG ac-
cording to the literature [36, 37]. In this case, the number of tasks is |V | = N logN [36, 37],
where N is the matrix size. In a FFT DAG, arithmetic additions and multiplications of com-
plex numbers are performed and then the result is sent to the immediate successor tasks. In
the literature [36], if FFT is executed in a real environment, each task size and each data size
is approximated to w(n0

k) = c(e0k,l), n
0
k, n

0
l ∈ V0, respectively. However, various task sizes

and data sizes can be considered depending on the execution environment. Similar to the
literature [39], in this experiment we generated FFT DAGs with CCR being varied from 0.1
to 10.0. Also, the maximum/minimum ratio in terms of each task size and data size is set to
100, and then 100 DAGs are generated. We compared by the averaged E(|V R

cls|, Algorithm)
derived for each DAG. Table 3.11 shows comparison results in cases of |V | = 2048, 4608. In
both cases of |V | = 2048, 4608, the degree of effective use of processors of the proposal is
low when CCR=0.1, though higher than other approaches. Also, in the case of |V | = 2048,
the degree of effective use of processors shifts from the increasing to the decreasing at the
boundary as CCR=1.0. However, it is increased when CCR=3.0 or more. On the other hand,
in the case of |V | = 4608, the degree of effective use of processors shifts from the increasing
to the decreasing at the boundary as CCR=3.0, though higher than other approaches. From
results described above, in a FFT DAG with CCR is ranged from 0.1 to 10.0, the proposal
provides a high degree of effective use of processors.

3.5.11 Discussion

From experimental results obtained from previous sections, a good schedule length can
be obtained with the small number of PEs by the proposal, if CCR is ranged from 0.1 to
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Table 3.11: Comparison of E(|V R
cls|, Algorithm) in FFT DAG

(appears in [22]).

No. |V | CCR |V R
cls| E(|V R

cls|, Algorithm)
A. Proposal B. CASS-II+LB C. DSC+CM

1 2048 0.1 275 0.2549 0.1053 0.1222
2 2048 1 129 0.3555 0.1558 0.1649
3 2048 3 79 0.2997 0.2439 0.2503
4 2048 5 62 0.3207 0.2911 0.2473
5 2048 8 44 0.3501 0.3030 0.2406
6 2048 10 32 0.3975 0.2866 0.2245
7 4608 0.1 789 0.2260 0.1026 0.1139
8 4608 1 276 0.2934 0.1450 0.2602
9 4608 3 189 0.3634 0.1746 0.1982
10 4608 5 138 0.3347 0.1462 0.1809
11 4608 8 97 0.3368 0.1654 0.2330
12 4608 10 93 0.3273 0.1513 0.1889

10.0. At first, from the result in sec.3.5.4, it is found that precedence relationships among
task in a cluster are retained by the proposal. As a result, slw(GRcls) is reduced by the task
clustering, which is lower than that by other approaches with the number of PEs decided by
the proposal (from the result in sec.3.5.5). That is, from eq.(3.26), it can be said that the lower
bound of the schedule length by the proposal is more reduced than that of other approaches.
Thus, if the same scheduling policy is applied to every approach, the lower bound of the
schedule length by the proposal is lowest. It is conceivable that this fact can lead to the
decrease of the schedule length.

Next, we describe the reason why slw(GScls) of conventional approaches is higher than
that of the proposal. In both CASS-II+LB, DSC+CM, each cluster is merged after the task
clustering has been finished. At CASS-II and DSC, each task is scheduled according to the
specific scheduling policy. If the schedule length is increased by a task merging step because
independent tasks are included in the same cluster, the task merging step is rejected [18,29].
As a result, a cluster having only one task can be obtained in the output DAG, thereby
the number of clusters may be large. Thus, for a DAG having many tasks, each cluster
may be merged by LB or CM. However, the criterion for selecting a cluster to be merged
is the cluster size in LB and CM, and no precedence relationship is considered. Hence, in
CASS-II+LB, DSC+CM and LB, the number of tasks in tops can be increased as figure 3.10.
Moreover, from figure 3.9, it can be concluded that the more independent tasks are included
in the same cluster, the larger slw(GScls) becomes.

δopt derived by eq.(3.22) is the lower bound for each cluster size when the upper bound
of slw(GRcls) is minimized. This value is derived by each task size, each data size, and sum
of task size on the path in the DAG. Thus, δopt can be varied with the relationship between
each task size and data size. Note that the maximum of the sum of each task size is the lower
bound of the schedule length. If this value is larger in the DAG, δopt takes a large value. This
fact means that many communications should be localized as much as possible. As a result,
to perform task merging steps with the lower bound can lead to that the schedule length
is reached to the lower bound of sl(GRcls). According to the proposal, the task clustering is
performed under the condition that the lower bound for each cluster is δopt. As a result, as
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the result in sec.3.5.6, the comparable sl(GRcls) can be obtained with the small number of PEs
by the proposal. This can hold true to a specific DAG.

One objective of the proposal is to decide the number of PEs. Hence, ideally the proposal
can be applied to the case that the number of PEs is unknown or unbounded in an identical
system, where the number of PEs must be decided before a task scheduling. Also, the
proposal can be applied to the case that the schedule length must be minimized with the
small number of PEs in a system where unbounded number of identical processors exist.

However, in real cases, it is not feasible that the unbounded number of identical PEs
exist. In the proposal, each cluster size to be assigned to a PE is δopt or more by eq.(3.22).
Before the task clustering, the number of PEs to be assigned is defined as follow.⌊∑|V |

k=1w(nk)
δopt

⌋
(3.44)

Thus, in the environment described in sec.3.2, if the number of PEs defined at eq.(3.44) is
available, the proposal has advantages in terms of effective use of processors.

If we assume a broadband network, e.g., the Internet, processing speeds, communica-
tion bandwidths, and communication latencies are heterogeneous. If we try to decide the
number of required PEs, it becomes more difficult to derive the lower bound for each clus-
ter, because each task execution time can be varied according to an assigned PE’s ability.
However, if we can decide the required number of PEs in such heterogeneous distributed
systems, every household PCs in the world can be utilized like a grid system. Expanding
the proposal in order to apply it to heterogeneous distributed systems, is one of challenging
issue.

3.6 Conclusion

In this chapter, a method for deciding the number of identical PEs to minimize the schedule
length with the small number of PEs is described. In the proposal, the lower bound for
each workload to be assigned to a PE is decided before a task scheduling. Moreover, an
indicative value slw(Gscls), which has effect on the schedule length, is defined in order to
decide the lower bound for each workload before the task clustering. Then the lower bound
is derived, by which both the lower bound and the upper bound of the schedule length is
proved to be minimized. Then we proposed the task clustering algorithm which performs
task merging steps until every workload size exceeds the lower bound. From experimental
results by simulatins, it is proved that the proposal can provide the high degree of effective
use of processors.
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Chapter 4

Task clustering in heterogeneous
distributed systems

4.1 Introduction

In the execution model, where several computational resources, i.e., PEs (Processor Ele-
ments) collaboratively execute the job with communicating each other, how to minimize
the schedule length with suppressing communication latencies is one of critical issues for a
task scheduling [12, 16]. Also, if multiple applications (jobs) are processed by the set of PEs
in a certain range of network, it is important to minimized the completion time for every
job. To achieve the goal, for example it is conceivable that the number of PEs is limited for
executing a job with minimizing the schedule length, thereby multiple jobs are executed in
parallel.

In the previous chapter, we proposed the method for minimizing the schedule length
with the small number of identical PEs in a completely connected network [19]. In this
method, the number of required PEs is decided by performing a task clustering [17] under
the constraint that each assignment unit (cluster) size is bounded by the lower bound. How-
ever, in the real situation each processing speed and each communication bandwidth among
PEs are quite different. In such heterogeneous distributed systems, the schedule length can
be varied depending on not only each cluster’s structure, but also each processing speed
and each communication bandwidth. Also, when a task clustering is performed in hetero-
geneous distributed systems, in general two phases, i.e., task merging steps and selection
for each PE to be assigned, are needed in order to decide the mapping between each cluster
and each PE [42–44]. However, in conventional approaches, there is no criterion for limiting
the number of computational resources. For example, let assume the case that three jobs are
executed with a ten PEs. If we assume two cases, i.e., (1) each job is sequentially executed
with all PEs, (2) each job is executed with three PEs, the completion time in (2) can be lower
than that in (1). This reason depends on the policy for deciding how many clusters should
be generated and which PE should be assigned for each cluster. That is, it is important to
minimize the schedule length by executing jobs in parallel. Thus, our goal is to decide the
PE to be assigned which can contribute on the minimization of the schedule length and to
impose a certain constraint to each cluster size with considering communications among
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PEs. Such a policy is a fundamental issue to achieve effective use of processors.
In this chapter, we present how to derive the lower bound for each cluster to be assigned

to a PE when a task clustering is performed in heterogeneous distributed systems.
Experimental results by simulations shows that the schedule length can be minimized

by the decided set of PEs by the task clustering in which each cluster size is bounded by the
lower bound.

4.2 Related works

In a distributed environment, where each PE is completely connected, task clustering [17,
18,29] has been known as one of task scheduling methods. In a task clustering, two or more
tasks are merged into one cluster by which communication among them is localized, so that
each cluster becomes one assignment unit to a PE. As a result, the number of clusters be-
comes that of required PEs. On the other hand, if we try to perform a task clustering in
heterogeneous distributed systems, the objective is to find an optimal PE assignment, i.e.,
which PE should be assigned to the cluster generated by a task clustering. Furthermore,
since the processing time and the data communication time depend on each assigned PE’s
performance, each cluster should be generated with taking that issue into account. As re-
lated works for task clustering in heterogeneous distributed systems, CHP [42], Triplet [43],
and FCS [44] have been known.

CHP [42] firstly assumes that “virtual identical PEs,” whose processing speed is the
minimum among the given set of PEs. Then CHP performs task clustering to generate a
set of clusters. In the processor assignment phase, the cluster which can be scheduled in
earliest time is selected, while the PE which has possibility to make the cluster’s completion
time earliest among other PEs is selected. Then the cluster is assigned to the selected PE.
Such a procedure is iterated until every cluster is assigned to a PE. In CHP algorithm, an
unassigned PE can be selected as a next assignment target because it has no waiting time.
Thus, each cluster is assigned to different PE, so that many PEs are required for execution
and Hence CHP can not lead to the effective use of processors.

In Triplet algorithm [43], task groups, each of which consists of three tasks, named as
“triplet” according to data size to be transferred among tasks and out degree of each task.
Then a cluster is generated by merging two triplets according to its execution time and data
transfer time on the fastest PE and the slowest PE. On the other hand, each PE is grouped as
a function of its processing speed and communication bandwidth, so that several processor
groups are generated. As a final stage, each cluster is assigned to a processor groups ac-
cording to the processor group’s load. The processor assignment policy in Triplet is that one
cluster is assigned a processor groups composed of two or more PEs. Thus, such a policy
does not match with the concept of effective use of processors.

In FCS algorithm [44], it defines two parameters, i.e., β: total task size to total data size
ratio (where task size means that the time unit required to execute one instruction) for each
cluster and τ : processing speed to communication bandwidth ratio for each PE. During task
merging steps are performed, if β of a cluster exceeds τ of a PE, the cluster is assigned to
the PE. As a result, the number of clusters depends on each PE’s speed and communication
bandwidth. Thus, there is one possibility that “very small cluster” is generated and then
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Table 4.1: Parameter definition telated to slw(Gscls) (Here nsk ∈ clss(i)).

Parameter Definition
tops(i) {nsk|∀nsl ∈ pred(nsk)s.t., nsl /∈ clss(i)}∪ {START Tasks ∈ clss(i)}.
ins(i) {nsk|∃nsl ∈ pred(nsk)s.t., nsl /∈ clss(i)}∪ {START Tasks ∈ clss(i)}.
outs(i) {nsk|∃nsl ∈ suc(nsk)s.t., nsl /∈ clss(i)}∪ {END Tasks ∈ clss(i)}.
btms(i) {nsk|∀nsl ∈ suc(nsk), s.t., nsl /∈ clss(i)}∪ {END Tasks ∈ clss(i)}.

desc(nsk, i) {nsl |nsk ≺ nsl , nsl ∈ clss(i)} ∪ {nsk}
S(nsk, i)

∑
ns

l∈clss(i)
tp(nsl , αp)−

∑
ns

l∈desc(n
s
k,i)

tp(nsl , αp).

tlevel(nsk)

{
max

ns
l∈pred(n

s
k)
{tlevel(nsl ) + tp(nsl , αp) + tc(el,k, βq,p)} , if nsk ∈ tops(i).

TLs(i) + S(nsk, i), otherwise.
TLs(i) max

ns
k∈tops(i)

{tlevel(nsk)} ..

blevel(nsk) max
ns

l∈suc(n
s
k),ns

l /∈clss(i)

{
tp(nsk, αp) + tc(esk,l, βp,q) + blevel(nsl )

}
.

level(nsk) tlevel(nsk) + blevel(nsk).
BLs(i) max

ns
k∈outs(i)

{S(nsk, i) + blevel(nsk)}.

LVs(i) TLs(i) +BLs(i) = max
ns

k∈clss(i)
{level(nsk)}.

ϕs {. . . , < clss(i), Pp >, . . . }.
slw(Gscls, ϕs) max

clss(i)∈V s
cls

{LVs(i)}.

FCS can not match with the concept of effective use of processors.

4.3 Indicative value for the schedule length

In the policy described in the literature [19], it limits the number of PEs by imposing the
lower bound for each cluster execution time (sum of each task size divided by the processing
speed)1. In this chapter, we present how to derive the lower bound for each cluster execution
time in order to minimize the schedule length with limiting the number of PEs to some
extent in heterogeneous distributed systems.

4.3.1 Indicative value slw(Gs
cls, ϕs)

The schedule length is decided by each task execution time, each data transfer time, and the
execution order for each task. Moreover, whether the data transfer time among tasks exists
or not depends on the structure in a cluster. Our proposal in this chapter is to generate a
cluster after the lower bound of the cluster has been estimated. The indicative value which

1In the literature [19], since the assumed system is the set of identical PEs, every processing speed can be set
as 1. Hence, in identical PEs, a cluster size is equal to a cluster execution time. The same thing is applied to each
data transfer time and each data size.
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Table 4.2: Parameter definitions which are used in analysis on slw(Gscls, ϕs). (0 ≤ s ≤ R)

Parameter Definition

p One path of G0
cls, i.e., {n0

0, n
0
1, n

0
2, . . . , n

0
k} ∪ {e

0
0,1, e

0
1,2, . . . e

0
k−1,k},

by which a sequence < n0
0, n

0
1, n

0
2, . . . , n

0
k > is constructed, where e0l−1,l ∈ E0,

n0
0 is a START task and n0

k is an END task.
len(p, ϕ0)

∑
n0

k
∈p

tp(n0
k, max

αi∈α
{αi}) +

∑
e0

k,l
∈p

tc(c(e0k,l)), max
βi,j∈β

{βi,j})

proc(ns
k) The processor to which ns

k has been assigned.

cp max
p

 ∑
n0

k
∈p

w(ns
k) +

∑
e0

k,l
∈p

c(es
k,l)

 .

cp(ϕs) max
p

 ∑ns
k
∈p

tp(ns
k, αp) +

∑
es

k,l
∈p

tc(c(es
k,l), βp,q)

, where ns
k , ns

l are assigned to Pp, Pq , respectively.

cpw max
p∈G0

cls

 ∑
n0

k
∈p

w(n0
k)

.

cpw(ϕs) max
p∈Gs

cls

{ ∑
ns

k
∈p

tp(ns
k, αp)

}

gmin [16, 24] min
n0

k
∈V 0

cls


min

n0
j
∈pred(n0

k
)

{
w(n0

j )
}

max
n0

j
∈pred(n0

k
)

{
c(e0

j,k
)
} ,

min
n0

l
∈suc(n0

k
)
{w(n0

l )}

max
n0

l
∈suc(n0

k
)

{
c(e0

k,l
)
}
.

gmin(ϕs) min
ns

k
∈V s

cls


min

ns
j
∈pred(ns

k
)

{
tp(ns

jαp)
}

max
ns

j
∈pred(ns

k
)

{
tc(es

j,k
,βp,q)

} , min
ns

l
∈suc(ns

k
)
{tp(ns

l ,αr)}

max
ns

l
∈suc(ns

k
)

{
tc(es

k,l
,βq,r)

}
.

ϕs,identical A mapping of clusters to identical processors after s task merging steps.

can be the upper bound of the schedule length is estimated in advance, and then the lower
bound for each cluster execution time by which the indicative value can be minimized is
derived. Let define the indicative value as slw(Gscls, ϕs), where ϕs is the set of mappings
between a cluster to a PE). More specifically, this indicative value is the maximum of the
execution path length (the sum of each task execution time and each data transfer time on
the execution path), provided that each task is executed as late as possible and every data is
arrived at a task (PE).

Also, slw(Gscls, ϕs) is the value decided after both the each cluster generation is com-
pleted and each cluster is assigned to a PE, and the value does not depend on the scheduling
policy. Table 4.1 shows definitions for deriving slw(Gscls, ϕs). In the table, let target PE to be
assigned to clss(i), clss(j) be Pp, Pq, respectively. From slw(Gscls, ϕs), we can specify the task
by which the schedule length can be maximized if the task is execute as late as possible. For
example, for nsk such that slw(Gscls, ϕs) = level(nsk), the schedule length can be maximized if
nsk is executed as late as possible.

4.3.2 Relationship between WSL and the lower bound of the schedule length

In an initial DAG, i.e., G0
cls = (V0, E0, V

0
cls), let assume that each task belongs to a different

cluster, i.e., every cluster has only one task. From the condition, we analyze the relationship
between slw(GRcls, ϕR) and the schedule length after R task merging steps in heterogeneous
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distributed systems. At first, two lemmas are presented in terms of an identical processor
system, which is proved in the literature [16].

Lemma 3. In an identical processor system, if cpw and gmin are values according to defini-
tions at table 4.2, we have

cp ≤
(

1 +
1

gmin

)
cpw. (4.1)

�

Lemma 4. In an identical processor system, we have the following relationship.

cpw ≤ sl(GRcls), (4.2)

where sl(GRcls) is the schedule length after R task merging steps have been performed in an
identical processor system. �

Moreover, figure 4.1 shows the state after clusters have been generated as our assump-
tion. In this figure, (a) is the initial state, and (b) is the state after five task merging steps
have been performed. In (a), each task belongs to an individual cluster. Let assume that
the processor Pmax is virtually assigned to each cluster at the initial state in order to de-
cide both eath task execution time and each data transfer time. Let define the state as ϕ0,
where the processing speed and the communication bandwidth are the maximum of α and
β, respectively. By using the state, the following lemma holds.

Lemma 5.

cpw(ϕ0) ≤ sl(Gscls, ϕs).� (4.3)

At the state after a cluster mapping is finished in heterogeneous distributed systems, if
each task execution time and each data transfer time are assigned to each node and each
edge in Gscls, following corollaries hold by lemma 3, 4, and 5.

Corollary 1.

cp(ϕs) ≤
(

1 +
1

gmin(ϕs)

)
cpw(ϕs),

where gmin(ϕs) is the value defined in table 4.2. �

Corollary 2.

cpw(ϕ0) ≤ cpw(ϕs) ≤ sl(Gscls, ϕs).�

The following definition is derived from corollary 1 and 2.
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Figure 4.1: Assumed condition during cluster generation procedures
(appears in [23]).

Thorem 4.1. In heterogeneous distributed systems, let the DAG after R task merging steps
have been performed be GRcls, and assume that every cluster in V R

cls is assigned to a PE
in P . At this time, the schedule length is sl(GRcls, ϕR). If we define ∆slw,up such that
slw(GRcls, ϕR)− cp(ϕ0) ≤ ∆slw,up, the following relationship hold.

sl(GRcls, ϕR) ≥
slw(GRcls, ϕR)−∆slw,up

1 + 1
gmin(ϕ0)

.

Proof 8. From the condition and corollary 1, the following relationship holds.

slw(GRcls, ϕR)−
(

1 +
1

gmin(ϕ0)

)
cpw(ϕ0)

≤ ∆slw,up. (4.4)

Also, from corollary 2, we have cpw(ϕ0) ≤ sl(GRcls, ϕR). By applying this fact into eq.(4.4),
we have

slw(GRcls, ϕR)−
(

1 +
1

gmin(ϕ0)

)
sl(GRcls, ϕR) ≤ ∆slw,up

⇔

sl(GRcls, ϕR) ≥
slw(GRcls, ϕR)−∆slw,up

1 + 1
gmin(ϕ0)

.

�
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∆slw,up in theorem 4.1 is the upper bound of the increase of the schedule length from
the critical path length at the initial state. If each cluster is generated and the mapping
ϕR is decided, both gmin and ∆slw,up take fixed values. That is, if ∆slw,up is decided, the
lower bound of the schedule length can be minimized by generating a cluster such that
slw(GRcls, ϕR) is minimized as much as possible by a task clustering. In sec.4.4.1, we present
one example of derivation of ∆slw,up.

4.3.3 Ralationship between WSL and the upper bound of the schedule length

From definitions in table 4.1, tlevel(nsk) is decided based on the data waiting time for each
task in tops(i) (where let nk /∈ tops(i)), thereby slw(GRcls, ϕR) is also decided based on the
data waiting time for each task in tops(i). On the other hand, the schedule length is decided
based on not only tasks in tops(i), but also the data waiting time for tasks except in tops(i).
Thus, the magnitude relation between slw(Gscls, ϕs) and the schedule length depends on the
magnitude relation between tlevel(nsk) and the start time of nsk for each task nsk ∈ clss(i). If
tlevel(nsk) is larger than the start time of nsk, slw(Gscls, ϕs) becomes larger than the schedule
length. That is, slw(Gscls, ϕs) becomes the upper bound of the schedule length, then the up-
per bound of the schedule length can be shorter if slw(Gscls, ϕs) is small. Even if tlevel(nsk)
is earlier than the start time of nsk, the schedule length can be suppressed because the com-
pletion time of its predecessor tasks can be suppressed by the minimization of slw(GRcls, ϕR).
Hence, to make slw(Gscls, ϕs) smaller leads to the decrease of the schedule length. In a spe-
cific case, the following lemma is proved.

Thorem 4.2. In a heterogeneous distributed sytem, if and only if sl(Gscls, ϕs) ≤ cp(ϕ0) = sl(G0
cls, ϕ0),

we have

sl(Gscls, ϕs) ≤ slw(Gscls, ϕs) + ζ − λ− µ, (4.5)

where
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ζ = max
p


∑

n0
k,n

0
l ∈p,

n0
k∈pred(n

0
l ),

tc(es
k,l, max

βi,j∈β
{βi,j})=0

tc(e0k,l, max
βi,j∈β

{βi,j})


, (4.6)

λ = min
p


∑

n0
k∈p,
proc(ns

k)=pm

(
tp(nsk, αm)− tp(n0

k,max
αi∈α
{αi})

) , (4.7)

µ = min
p


∑

n0
k,n

0
l ∈p,proc(n

s
k)=Pi,

proc(ns
l )=Pj ,

n0
k∈pred(n

0
l )

(
tc(esk,l, βi,j)− tc(e0k,l, max

βi,j∈β
{βi,j})

)

. (4.8)

p and proc(n0
k) are defined in table 3.2. That is, ζ, λ, µ is derived by scanning every path in the

DAG.

Proof 9. After s task merging steps, there may be both localized edges and not localized edges which
compose slw(Gscls, ϕs). Obviously, we have slw(G0

cls, ϕ0) = cp(ϕ0), such edges are not always ones
which belongs to cp(ϕ0). Hence the lower bound of slw(Gscls, ϕs)− cp(ϕ0) can be derived by three
factors, i.e., decrease of the data transfer time by localization in one path, increase of the processing
time by task merging steps (from ϕ0 to ϕs), and increase of data transfer time for each unlocalized
edges (from ϕ0 to ϕs). The localized data transfer time is derived by taking the sum of localized data
transfer time for one path. On the other hand, if increase of the processing time is derived by taking
the minimum of the sum of increase of task processing time from ϕ0 to ϕs for each path, this value is
λ or more. The unlocalized data transfer time is expressed as µ. Then we have

− ζ + λ+ µ ≤ slw(Gscls, ϕs)− cp(ϕ0). (4.9)

If sl(Gscls, ϕs) ≤ cp(ϕ0) = sl(G0
cls, ϕ0), we obtain

−ζ + λ+ µ ≤ slw(GRcls, ϕR)− sl(GRcls, ϕR) (4.10)
⇔ sl(GRcls, ϕR) ≤ slw(GRcls, ϕR) + ζ − λ− µ.� (4.11)

4.4 Derivation of the lower bound for each cluster execution time

4.4.1 Assumed situation

In heterogeneous distributed systems, let the set of unmerged tasks after s task merging
steps (1 ≤ s ≤ R) be V s

ucls, where each task in V s
ucls is assigned to Pmax, respectively. Let seqs
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be the set of tasks by which slw(Gscls, ϕs) is decided, which is similar to table 3.2. seq≺s is the
path in which every task in seqs has precedence relationships with other tasks in seqs.

Here, let assume the situation that the PE Pp is selected as an assignment target before
the s-th task merging step. At first, every task in seq≺s−1 is regarded as “unmerged.” Then
several clusters is virtually generated by temporarily assuming that task merging steps have
been performed to tasks in seq≺s−1 in an identical processor system. Let define the lower
bound for a cluster execution time in this time as δ. That is, δ is the lower bound for the
cluster execution time in the case that the system is temporarily assumed as an identical
processor system. By varying δ, the lower bound of the cluster execution time is decided for
the set of tasks in seq≺s−1. This is described in sec.4.4.2. Moreover, let define the upper bound
of slw(Gscls, ϕs,identical)− slw(G0

cls, ϕ0) as ∆sls−1
w,up, where ϕs,identical is the mapping when the

PE Pp is assigned to each cluster in seq≺s−1.
That is, ∆sls−1

w,up is the value derived by estimating the state after the s-th task merging
step has been performed after s− 1 task merging steps2.

Example 6. Figure 4.2 shows one example for how to derive δsopt(Pp), where s = 5. (a) corresponds
to the state after the 4-th (i.e., (s− 1)-th) task merging step. Four clusters have been generated
with their cluster execution times exceeding each lower bound. Further, those clusters have already
been assigned to each processor. On the other hand, in (b), it is assumed that all tasks in the path
dominating slw(G4

cls, ϕ4) (i.e., slw(Gs−1
cls , ϕs−1)) are merged into several clusters. At the same time,

every cluster execution times is assumed to be δ5opt(α, β(p) or more over the identical processors. This
means that in the set of tasks denoted as “Path of slw(G4

cls, ϕ4) at (a),” we try to find the lower bound
for every cluster and the number of those clusters with virtually assuming the identical processors.
(c) is the state after 6 task merging step, where one cluster with size is δ5opt(α, β(p) has been generated
by (b). �

4.4.2 Policy for deriving the lower bound for each cluster execution time

Let δ when ∆sls−1
w,up is minimized be δopt(Pp), where δ is a variable. Then assume that one

cluster whose execution time is δopt(Pp) or more is generated in the set of unmerged tasks in
seq≺s−1 after the s− 1-the task merging step. From the condition described in sec.4.4.1, the
following relationship hold.

Corollary 3. Let 1 ≤ s ≤ R. Then if

slw(Gscls, ϕs,identical)− slw(G0
cls, ϕ0) ≤ ∆sls−1

w,up

is satisfied and in terms of ∆sls−1
w,up decided before the s-th task merging step, we have

slw(GRcls, ϕR)− cp(ϕ0) ≤ ∆sls−1
w,up,

at s-th task merging step,

sl(GRcls, ϕR) ≥
slw(GRcls, ϕR)−∆sls−1

w,up

1 + 1
gmin(ϕ0)

.

holds. �
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(a) State after 4 task mergings.
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assign

assign

assign

(c) State after 6 task mergings.

pP

opt ( (p)) cluster sizeδ β ≤
opt ( (p)) cluster sizeδ β ≤

opt ( (p)) cluster sizeδ β ≤

4
w cls 4Path of  sl (G , )φ

4
w cls 4

p

(b) Try to minimize sl (G , ) 

      over the identical network of  P .

φ

Unmerged
tasks

Figure 4.2: Example of δsopt(Pp) derivation (where s = 5)
(appears in [23]).

Before each task merging step, e.g., before the s-th task merging step (1 ≤ s ≤ R), ∆sls−1
w,up

takes the fixed value if δsopt(Pp) is decided. Thus, if slw(GRcls, ϕR) is small under the condition
of δsopt(Pp), the lower bound of the schedule length can be small. Also, if the lower bound
for each cluster execution time is set as except δsopt(Pp), ∆sls−1

w,up takes larger value than the
case of δsopt(Pp). At this time, from corollary 3 the upper bound of slw(GRcls, ϕR) can become
large. As a result, at corollary 3 the lower bound of sl(GRcls, ϕR) become larger, this may not
lead to the minimization of the schdule length. Thus, at every task merging step, i.e., at
1 ≤ s ≤ R, by deciding ∆sls−1

w,up under the condition of δsopt(Pp), ∆sls−1
w,up is minimized.

Note that seq≺s is unknown before the s-th task merging step. Thus, one of policy is to
minimize slw(Gscls, ϕs) as much as possible by merging tasks in seq≺s−1. Here, let assume the
situation that the cluster clss−1(i) is generated by the s-th task merging step and thereby
the cluster execution time is δ or more. Also, let assume Pp is assigned to clss−1(i). Then
we derive the upper bound of LVs(i) (defined in table 4.1) of clss−1(i) after the s-th task
merging step. The derivation is conducted by dividing two cases, i.e., the cluster clss−1(i) is
(i) linear (∆Llnr(i)), or (ii) non-linear ∆Lnlnr(i). Then the maximum number of clusters on a
path is derived as Nmax

s . Let the number of non-linear clusters on the path be y, and let the
upper bound of (Nmax

s − y)∆Llnr(i) + y∆Lnlnr(i) be ∆sls−1
w,up. Finally, let δ when ∆sls−1

w,up is
minimized be δsopt(Pp).

Example 7. Figure 4.3 shows the set of tasks which dominate slw(Gscls, ϕs). In the figure, (1)
corresponds to the case that each cluster is linear, while (2) corresponds to the case that every
cluster is non-linear, where dashed lines means the execution order for each task dominating
slw(Gscls, ϕs). At (1), the execution order of each task is unique because every task in a

2Since ∆sls−1
w,up is the value decided after s − 1-th task merging step, the superscripts − 1 is put on it.
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Figure 4.3: Example of an execution route which compose slw(Gscls, ϕs)
(Modified figure 3 from Kanemitsu et. al [22]).

linear cluster has precedence relationships. On the other hand, at (2) an independent task
is executed in advance, because each task is executed as late as possible according to the
definition of slw(Gscls, ϕs). For example, in clss(i+ 1) the start time of ns7 is delayed by
executing ns6, n

s
8 before ns7. As a result, ns9 is executed after every task except ns9 in clss(i+ 1)

has been completed.

4.4.3 Decision of the lower bound of the cluster execution time

According to the policy described in sec.4.4.1, we describe how to derive δsopt(Pp) after s task
merging steps.

(a) The case that a cluster clss(i) in which at least one task belong to seq≺s−1(i) is linear
If we define the processing speed of the PE which is assigned to clss(i) as αp, we have

∆Llnr(i) =
∑

ns−1
k ∈seq≺s−1(i)

w(ns−1
k )
αp

−
w(ns−1

k )
max
αp∈α

{αp}


−

∑
es−1
k,l ∈seq

≺
s−1(i)

c(es−1
k,l )

max
βp,q∈β

{βp,q}
. (4.12)

(b) The case a cluster clss(i) in which at least one task belong to seq≺s−1(i) is non-linear
Let the lower bound of the cluster execution time be δ (defined in sec.4.4.1). Then if
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we define the processing speed of the PE which is assigned to clss(i), we have

∆Lnlnr(i) =

δ +

max
ns−1

k ∈Vs

{
w(ns−1

k )
}

αp

− ∑
ns−1

k ∈seq≺s−1(i)

w(ns−1
k )

max
αp∈α

{αp}

−
∑

es−1
k,l ∈seq

≺
s−1(i)

c(es−1
k,l )

max
βp,q∈β

{βp,q}
. (4.13)

Then let the number of clusters generated by the s-th task merging step on tasks in
seq≺s−1 be Ns. If the number of non-linear clusters is y and slw(Gscls, ϕs)− slw(G0

cls, ϕ0)
is defined as ∆slsw, we have

∆slsw = slw(Gscls, ϕs)− slw(G0
cls, ϕ0)

≤
Ns−y∑
i=1

∆Llnr(i) +
Ns∑

i=Ns−y+1

∆Lnlnr(i).

By applying eq.(4.12), (4.13), and

min
p
{len(p, ϕ0)} ≤

Ns∑
i=1

∑
ns−1

k ∈seq≺s−1(i)

 w(ns−1
k )

max
αp∈α

{αp}
+

w(ns−1
k )

max
βp,q∈β

{βp,q}


to it, we have

∆slsw ≤
max
n0

k∈V0

{
w(n0

k)
}

αp
(Ns − y) +

max
e0k,l∈E0

{
c(e0k,l)

}
β(p)

(Ns − 1)

+y

δ +
max
n0

k∈V0

{
w(n0

k)
}

αp

−min
p
{len(p, ϕ0)} , (4.14)

where

β(p) = min

 min
1≤q≤m,
q ̸=p

{βp,q} , min
1≤q≤m,
q ̸=p

{βq,p}

 .

If the sum of each task execution time in seq≺s−1(i) is δ or more, the maximum number
of clusters generated on a path Nmax

s is
∑

ns−1
k ∈seq≺s−1

w(ns−1
k )

αpδ

 ≤

∑
ns−1

k ∈seq≺s−1

w(ns−1
k )

αpδ
= Nmax

s . (4.15)
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On the other hand, the sum of each task execution time in seq≺s−1(i) is smaller than δ,
eq.(4.14) is monotonically increasing, thereby the upper bound of slw(Gscls, ϕs) can not
be suppressed. Thus, if Nmax

s is applied to eq.(4.14), we have

∆slsw ≤


max
n0

k∈V0

{
w(n0

k)
}

αp
+

max
e0k,l∈E0

{
c(e0k,l)

}
β(p)


∑

ns−1
k ∈seq≺s−1

w(ns−1
k )

δαp

+yδ −
max
e0k,l∈E0

{
c(e0k,l)

}
max
βp,q∈β

{βp,q}
−min

p
{len(p, ϕ0)}

= ∆sls−1
w,up. (4.16)

Also, we have

∂∆sls−1
w,up

∂δ
= 0, (4.17)

∂2∆sls−1
w,up

∂δ2
=

2γ
∑

ns−1
k ∈seq≺s−1

w(ns−1
k )

αpδ3
> 0, (4.18)

where

γ =
max
n0

k∈V0

{
w(n0

k)
}

αp
+

max
e0k,l∈E0

{
c(e0k,l)

}
β(p)

.

∆sls−1
w,up takes the local minimum in the case of eq.(4.17), since δ > 0. Though ∆sls−1

w,up is
increased with y being increased, y depends on not only δ, but also the task clustering.
Thus, here we set y = 1 and from eq.(4.17) we define

δsopt(Pp) =

√√√√√√√
∑

ns−1
k ∈seq≺s−1

w(ns−1
k )

αp


max

ns−1
k ∈V0

{
w(n0

k)
}

αp
+

max
e0k,l∈E0

{
c(e0k,l)

}
β(p)

.(4.19)

From those results, if the task clustering and the processor mapping which satisfy the con-
dition in corollary 3, ∆sls−1

w,up in theorem 4.1 exists and can be decreased. After the PE to be
assigned is selected, the task merging steps are repeated on the cluster until its execution
time is δsopt(Pp) or more, slw(GRcls, ϕR) can be decreased. This characteristic means that both
the lower bound and the upper bound of the schedule length sl(GRcls, ϕR) can be decreased,
respectively.

4.5 Processor assignment

According to eq.(4.16), since δsopt(Pp) is varied as a function of αp and β(p), it is necessary
to decide the PE by assigning δsopt(Pp) to ∆sls−1

w,up and to find the best combination of the
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processing speed and the communication bandwidth. In this case, let the assignment as
∆sls−1

w,up(δ
s
opt(αp, β(p))) as follow.

∆sls−1
w,up(δ

s
opt(αp, β(p))) =

2
αp

√√√√√√√ ∑
ns−1

k ∈seq≺s−1

w(ns−1
k )


αp max

e0k,l∈E0

{
c(e0k,l)

}
β(p)

+ max
n0

k∈V0

{
w(n0

k)
}

−
max
e0k,l∈E0

{
c(e0k,l)

}
max
βp,q∈β

{βp,q}
−min

p
{len(p, ϕ0)} . (4.20)

From eq.(4.20), the larger both αp and β(p) become, the smaller ∆sls−1
w,up(δ

s
opt(αp, β(p))) be-

comes. Hence, the next PE to be selected can be decided by comparing for each
∆sls−1

w,up(δ
s
opt(αp, β(p))) , then the PE which has minimum value of ∆sls−1

w,up(δ
s
opt(αp, β(p)))

should be selected as the next assignment target.

4.5.1 Characteristics of the next PE

In this section we analyze characteristics of the PE to be assigned. We present relationship
between the processing speed and the communication bandwidth of the PE. Then by ex-
pressing β(p)/αp as k, ∆sls−1

w,up(δ
s
opt(αp, β(p))) is defined as

∆sls−1
w,up(δ

s
opt(αp, kαp)) =

2
αp

√√√√√√√ ∑
ns−1

k ∈seq≺s−1

w(ns−1
k )


max
e0k,l∈E0

{
c(e0k,l)

}
k

+ max
n0

k∈V0

{
w(n0

k)
}

−
max
e0k,l∈E0

{
c(e0k,l)

}
max
βp,q∈β

{βp,q}
−min

p
{len(p, ϕ0)} . (4.21)

From eq.(4.21), obviously k should be large in order to minimize ∆sls−1
w,up(δ

s
opt(αp, kαp)) un-

der the condition that αp is not varied. Thus, the variation of β(p) has more critical impact
on ∆sls−1

w,up than that of αp. Hence, even if a PE’s processing speed is not so high, its commu-
nication bandwidth can precede for selecting the next PE. This characteristic is consistent
with the fact that communications among PEs can be a bottleneck in the schedule length in
distributed systems. Generally, the data transfer time between PEs has larger impact on the
schedule length than the processing time, especially for data-intensive DAG.

4.5.2 Overall procedures

The overall procedure for processor assignment consists of three phases: (i) derive the lower
bound for each cluster execution time as eq.(4.19), (ii) decide the PE to be assigned, which
minimize eq.(4.20). Then (iii) merge several task into a cluster until its size exceeds the
lower bound derived in (i). Figure 4.4 shows the whole procedures including those three
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INPUT: G0
cls

OUTPUT: GR
cls

Set the mapping state ϕ0 (each task is single cluster);
Define UEXs as the set of unmerged clusters;
Define RDYs as the set of candidates as pivots;
s← 0;
1. WHILE UEXs ̸= ∅DO
2. Derive δs+1

opt (Pp) by eq.(4.19);
3. Find Pp s.t.,∆sls−1

w,up(δs
opt(Pp)) = min

Pi∈unassigned PEs

{
∆sls−1

w,up(δs
opt(Pi))

}
;

4. pivots ← getP ivot(RDYs) ;
5. WHILE size of pivots < δs+1

opt (Pp) DO
6. targets ← getTarget(pivots);
7. pivots+1 ← merge(pivots, targets) and update RDYs as RDYs+1;
8. s← s+ 1;
9. ENDWHILE
10. Assign Pp to pivots ;
11. ENDWHILE

Figure 4.4: Overall procedures for the processor assignment
(appears in [23]).

phases. At first, the mapping state ϕ0 is applied to the input DAG, G0
cls, where every task

is virtually assigned to a PE Pmax having the maximum processing speed and the maxi-
mum communication bandwidth. Objectives of the procedures presented in figure 4.4 are
as follows.

A. make every cluster execution time exceeds the lower bound.

B. Minimize slw(GRcls, ϕR) , where R is the number of task merging steps taken to satisfy
the objective A.

Our approach to satisfy the objective A is to check whether every cluster execution time
exceeds the lower bound or not. Thus, UEXs, which is the set of clusters whose size is
under the lower bound, is defined. If every cluster execution time exceeds the lower bound,
the procedure is finished. As for the objective B, it complies with theorem 1 and 2, i.e.,
minimizing slw(GRcls) can lead to minimizing the schedule length after R task merging steps.
To achieve this objective, our approach is to select two clusters for each task merging by
which slw(GRcls) is minimized. Thus, At a task merging step (let the step as s-th), slw(Gscls)
should be minimized. In the procedure in figure 4.4, which contains the set of clusters which
may be selected for the (s+ 1)-th task merging step.

4.5.3 Processor selection phase

Before the cluster generation, the processor to be assignment should be selected. Thus,
at line 2 in figure 4.4 δs+1

opt (Pp) is defined before the (s+ 1)-th task merging step. Since
δs+1
opt (Pp) is a function of the processing speed and the communication bandwidth, for each

unassigned PE its αp and β(p) are assigned to ∆sls−1
w,up(δ

s
opt(αp, β(p))) in order to decide the

next PE to be assigned. If the PE which minimizes ∆sls−1
w,up(δ

s
opt(αp, β(p))) is found, it is

selected as Pp at line 3.
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4.5.4 Cluster selection phase

At line 4 in figure 4.4, before (s+ 1)-th task merging step, the cluster dominating slw(Gscls)
is selected as pivots from RDYs . This is based on the heuristic that reducing slw(Gscls) can
lead to the reduction of slw(Gs+1

cls ). Hence, once pivots is selected, the other cluster merged
with pivots should dominate slw(Gs+1

cls ). Such a cluster is named as targets. At line 5-9 in
figure 4.4, this loop is repeated until the size of pivots < δsopt(Pp). During the loop, at first
targets is selected and then pivots and targets are merged into the new cluster, i.e., pivots+1

(line 7). In this merging, every task in targets comes to belong to pivots+1. Then RDYs is
updated to become RDYs+1, which means that the new clusters for the next task merging
belongs to RDYs+1, and both pivots+1 and targets are removed from RDYs+1 if they belong
to RDYs+1. If the size of pivots exceeds δsopt(Pp), the procedure returns to the line 1.

4.5.5 Processor assignment phase

After the next processor, Pp has been decided and the size of pivots exceeds δs+1
opt (Pp) , Pp is

assigned to pivots. Then pivots is removed fromRDYs. If no cluster exists in UEXs, the pro-
cedure ends, and every task in every processor (cluster) is scheduled by a task scheduling
policy to derive the schedule length. Since the proposal in this pa-per focuses on only the
processor assignment, we do not mention about task scheduling policy. After the procedure
at table 4.4 finished, any task scheduling policy can be applied, because every task has been
assigned to a processor at a task scheduling such as list scheduling heuristics [28].

4.6 Experimental comparison

4.6.1 Objective

We conducted the experimental comparison in terms of three points as follows.

(i) To confirm that the schedule length is minimized if slw(Gscls, ϕs) is minimized, pro-
vided that a cluster execution time is δsopt(Pp) or more.

(ii) To confirm that the lower bound for the cluster execution time as δsopt(Pp), by which
the upper bound of slw(GRcls, ϕR) is minimized, is optimal or not.

(iii) Advantages of the processor assignment.

4.6.2 Simulation environment

We describe the experimental environment described at (i) in sec. 4.6.1. In this experiment,
we generated random DAGs and FFT DAGs as a realistic job. As for a random DAG, we
generated it based on CCR (Communication to Computation Ratio) [16, 41]. In this chapter,
CCR is the ratio of the average data size to the average task size, which takes from 0.1 to
10.0. In the DAG, the number of tasks is set to 1000, the out degree for each task is from
1 to 5, the ratio of the maximum to the minimum of both data size and task size is 100,
respectively. In this experiment at (i) in sec.4.6.1, we compared the degree of contribution of
δsopt(Pp) to the minimization of the schedule length. If the ratio of processing speed among
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PE is too large, the variation of the schedule length becomes too large due to the difference
among assigned PEs, thereby the effect of δsopt(Pp) may not be not obtained. Thus, we set
the ratio of the processing speed to the communication bandwidth from 5 to 10. Then the
averaged value in 100 tries is used for the comparison.

As for the generation policy for FFT DAG, we set CCR from 0.1 to 10.0, which is similar
to that in the literature [39]. Also, the number of tasks is set as 2048 or 4096, the ratio in
terms of the processing speed and the communication bandwidth is similar to the case of
random DAGs.

In the second point in sec.4.6.1, we generated random DAGs. The condition for the
generation is similar to (i) in sec.4.6.1. As for the lower bound of every cluster execution
time, we set 0.25δsopt(Pp), 0.5δsopt(Pp), δsopt(Pp), 1.5δsopt(Pp), 2δsopt(Pp), 3δsopt(Pp) in order to
compare the schedule length.

The experimental environment is , JRE1.6.0 03, OS is Windows XP SP3, CPU is Intel
Core2 Duo 2.66GHz, and the memory size is 2.0GB.

4.6.3 Procedures

Procedure at (i) in sec.4.6.1

Procedures for implementing the task clustering and the processor assignment are pre-
sented. At the case A, the lower bound of the cluster execution time with considering the
capability in the PE, while the lower bound is decided without the capability in the case B.

Case A

A-1 Each PE is assigned a cluster according to CHP [42], where the schedule length is
derived by assuming that the many PEs having the smallest processing speed exist in
“virtual identical processor system.”

A-2 Specify seq≺s−1 and then derive δsopt(Pp) for Pp selected in A-1.

A-3 A cluster is generated from the set of task in seq≺s−1 such that the cluster execution time
becomes δsopt(Pp) or more. Then the PE Pp is assigned to the generated cluster. The task
merging policy is similar to that described in the literature [19], in which slw(Gscls, ϕs)
is minimized as much as possible with considering the mapping state ϕs.

A-4 By repeating from A-1 to A-3, the overall procedures is completed when every cluster
is assigned to a PE.

Case B

B-1 Generate the set of clusters whose number is equal to that in the case A and whose size
is δopt or more with assuming an identical processor system. The generation policy is
the same as that in the literature [19]. If the number of generated clusters is larger than
that in the case A, each cluster is merged by Load Balancing algorithm [26], thereby
the number of cluster becomes is the same as case A.

B-2 For each cluster, a PE is assigned according to the processor selection policy of CHP.
The set of PEs is the same as that in the case A.
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Table 4.3: Comparison results in random DAG (♯ of tasks : 1000).

No. α β CCR |V R
cls| slw(GR

cls, ϕR) ratio sl(GR
cls, ϕR) ratio

A B A B
1 5 5 0.1 168 1.000 1.126 1.000 1.038
2 1.0 56 1.000 1.213 1.000 1.021
3 5.0 34 1.000 1.384 1.000 1.098
4 10.0 19 1.000 1.411 1.000 1.245
5 5 10 0.1 160 1.000 1.187 1.000 1.092
6 1.0 49 1.000 1.164 1.000 1.156
7 5.0 30 1.000 1.210 1.000 1.242
8 10.0 16 1.000 1.412 1.000 1.199
9 10 5 0.1 150 1.000 1.032 1.000 1.002
10 1.0 47 1.000 1.095 1.000 1.101
11 5.0 41 1.000 1.271 1.000 1.123
12 10.0 26 1.000 1.209 1.000 1.219
13 10 10 0.1 187 1.000 1.197 1.000 1.098
14 1.0 67 1.000 1.211 1.000 1.160
15 5.0 44 1.000 1.280 1.000 1.287
16 10.0 28 1.000 1.367 1.000 1.302

B-3 The procedure is completed when every cluster is assigned a PE.

In both case A and B, the schedule length is derived by RCP scheduling [28] after every
cluster is assigned to a PE 3．

Procedure at (ii) in sec.4.6.1

In this experiment, the task clustering and the processor assignment by the case A in sec.4.6.3
is performed to the same DAG in every approaches. Only the lower bound for each cluster
execution time is different. 100 DAGs are generated and then we compared by the average
schedule length.

Procedure at (iii) in sec.4.6.1

In this experiment, we generated 100 random DAGs and averaged each slw(GRcls, ϕR) and
the schedule length. Then we compared both averaged values among three approaches as
follows.

A. Our proposal in this dissertation, i.e., each processor is assigned according to the pol-
icy of figure 4.4. Then theDAG is scheduled by RCP scheduling [28]

B. A Conventional processor assignment is performed and the lower bound for each
cluster execution time is decided according to the assigned PE. In this case, PE, Pp , is
assigned according to CHP [42], Then δsopt(Pp) is derived. Finally, the task clustering

3RCP scheduling described in the literature [28] is assumed to be applied to an identical processor system.
However, this scheduling algorithm can be applied to heterogeneous distributed systems because each task
execution time and each data transfer time are known after the processor mapping has been completed. Also,
in this dissertation we do not use a task scheduling for heterogeneous distributed system such as HEFT [39]
because such an algorithm includes the processor mapping. Otherwise, we can not do the accurate comparison
with the fixed processor mapping policy.
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Table 4.4: Comparison results in FFT DAG (♯ of tasks : 2048).

No. α β CCR |V R
cls| slw(GR

cls, ϕR) ratio sl(GR
cls, ϕR) ratio

A B A B
1 5 5 0.1 281 1.000 1.341 1.000 1.018
2 1.0 135 1.000 1.218 1.000 1.089
3 5.0 58 1.000 1.281 1.000 1.175
4 10.0 35 1.000 1.398 1.000 1.219
5 5 10 0.1 274 1.000 1.201 1.000 1.031
6 1.0 126 1.000 1.548 1.000 1.087
7 5.0 55 1.000 1.288 1.000 1.124
8 10.0 31 1.000 1.499 1.000 1.217
9 10 5 0.1 252 1.000 1.182 1.000 1.066
10 1.0 119 1.000 1.211 1.000 1.092
11 5.0 48 1.000 1.298 1.000 1.132
12 10.0 30 1.000 1.365 1.000 1.241
13 10 10 0.1 291 1.000 1.176 1.000 1.044
14 1.0 141 1.000 1.362 1.000 1.124
15 5.0 64 1.000 1.277 1.000 1.173
16 10.0 37 1.000 1.386 1.000 1.279

is performed until every cluster execution time exceeds each lower bound derived for
each task merging step.

C. Conventional processor assignment by CHP [42] and not changing the lower bound
for cluster execution time, i.e., every cluster has the same lower bound.

4.6.4 Comparison result in random DAGs

Table 4.3 shows the comparison result. In the table, α and β correspond to the ratios of the
maximum to the minimum value of the processing speed and the communication band-
width, respectively. |V R

cls| is the number of generated clusters (the number of required PEs),
while slw(GRcls, ϕR) ratio means the one of slw(GRcls, ϕR) of the case B to that of the case A.
sl(GRcls, ϕR) ratio means the one of sl(GRcls, ϕR) of the case B to that of the case A. From re-
sults in 4.3, it is observed that both slw(GRcls, ϕR) ratio and sl(GRcls, ϕR) ratio are increase with
CCR being larger as a whole.

When α is fixed and β is varied, e.g., relationships between “No. 1-4 and No. 5-8,” and
“No. 9-12 and No. 13-16,” it is observed that the schedule length in the case A is the smaller
in β = 10 than the case of β = 5. Since the processor assignment is based on CHP [42], it is
common that an unlocalized data is transferred on a large communication link among case
A and B. Thus, one of reason for the result is that more appropriate cluster execution time
is decided for each PE in the case A than the case B. From this result, it is concluded that
it is more important to decide the lower bound for each cluster with considering the PE’s
capability in the system where CCR of the DAG is high and there is great variability among
communication bandwidths.
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Table 4.5: Comparison results in FFT DAG (♯ of tasks : 4608).

No. α β CCR |V R
cls| slw(GR

cls, ϕR) sl(GR
cls, ϕR)

A B A B
1 5 5 0.1 701 1.000 1.215 1.000 1.071
2 1.0 288 1.000 1.181 1.000 1.127
3 5.0 155 1.000 1.293 1.000 1.094
4 10.0 88 1.000 1.334 1.000 1.192
5 5 10 0.1 692 1.000 1.112 1.000 1.080
6 1.0 271 1.000 1.244 1.000 1.107
7 5.0 149 1.000 1.301 1.000 1.131
8 10.0 81 1.000 1.311 1.000 1.120
9 10 5 0.1 688 1.000 1.139 1.000 1.097
10 1.0 269 1.000 1.201 1.000 1.072
11 5.0 144 1.000 1.212 1.000 1.172
12 10.0 77 1.000 1.339 1.000 1.207
13 10 10 0.1 734 1.000 1.089 1.000 1.098
14 1.0 298 1.000 1.226 1.000 1.136
15 5.0 159 1.000 1.249 1.000 1.127
16 10.0 92 1.000 1.368 1.000 1.183

4.6.5 Comparison result in FFT DAGs

We conducted the experiment in terms of (i) in sec.4.6.1 with FFT DAG. Table 4.4 shows the
comparison result. Similar to the result in the case of random DAG, in this experiment the
difference of the schedule length becomes larger with CCR being larger, and it is found that
slw(GRcls, ϕR) is case A is the lowest. Also, we conducted the experiment when the number
of tasks is 4608 and then the similar result is obtained. From those results described above,
the lower bound for each cluster execution time is derived by the case A is applicable in a
realistic job.

4.6.6 Optimality of the lower bound for each cluster execution time

We compared the schedule length with changing only the lower bound for each cluster
execution time, under the condition that both approaches adopt the task clustering and the
processor assignment by the case A. Figure 4.5 shows comparison results. In those figure,
the x-axis corresponds to CCR (from 0.1 to 10.0), and y-axis corresponds to the ratio of the
schedule length when the schedule length by setting the lower bound, i.e., δsopt(Pp) for each
cluster as 1.0.

In every figure, the ratio becomes larger with CCR being larger in cases of 0.25δsopt(Pp)
and 0.5δsopt(Pp). This is because that the effect of each data transfer time on the schedule
length becomes large due to the small lower bound for each cluster execution time, while
each data size becomes large with CCR being larger. Also, in cases of 1.5δsopt(Pp), 2.0δsopt(Pp),
3.0δsopt(Pp), the ratio becomes the largest when CCR takes a certain value, and then the ratio
is decreasing when CCR becomes larger then a certain value. This is because a large data
communication is localized with CCR being larger due to the larger lower bound for each
cluster execution time. However, the schedule length is still larger than the case of δsopt(Pp)
δsopt(Pp) can be said to be a near-optimal value from the experiment.
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Figure 4.5: Optimality of δsopt(Pp)

4.6.7 Comparison in tems of processor assignment

Table 4.6 and 4.7 show comparison results in a random DAG and a FFT DAG among three
approaches. In both tables, α and β mean the maximum to minimum ratio of the processing
speed and the communication bandwidth, respectively. The larger value means high degree
of heterogeneity. |V R

cls| is the number of clusters in the case of A. To equalize the number in
every approach, in B and C cluster merging steps are performed by LB [26]. “slw(GRcls, ϕR)”
corresponds to the ratio of slw(GRcls, ϕR) values to that of A. Similarly, “sl(GRcls, ϕR) ” corre-
sponds to the schedule length ratio to that of A. Thus, a value over 1 means that the schedule
length is worse than A.

In table 4.6, in every try, our proposal (A) has smaller values in slw(GRcls, ϕR) and sl(GRcls, ϕR)
than other approaches. Although it is not found that the correlation in varying the hetero-
geneity and the schedule length, the correlation in CCR is found. The larger CCR becomes,
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Table 4.6: Comparison in terms of processor assignment in random DAGs (♯ of tasks = 1000)
(appears in [23]).

No. α β CCR |V R
cls| slw(GR

cls, ϕR) sl(GR
cls, ϕR)

A B C A B C

1 5 5 0.1 161 1.000 1.005 1.052 1.000 1.024 1.051
2 1.0 62 1.000 1.012 1.099 1.000 1.063 1.077
3 5.0 47 1.000 1.008 1.143 1.000 1.080 1.138
4 10.0 17 1.000 1.104 1.132 1.000 1.132 1.171
5 5 10 0.1 159 1.000 1.002 1.035 1.000 1.012 1.069
6 1.0 51 1.000 1.051 1.181 1.000 1.077 1.082
7 5.0 28 1.000 1.042 1.124 1.000 1.063 1.124
8 10.0 17 1.000 1.132 1.215 1.000 1.092 1.167
9 10 5 0.1 146 1.000 1.009 1.034 1.000 1.015 1.072

10 1.0 49 1.000 1.018 1.067 1.000 1.056 1.061
11 5.0 38 1.000 1.113 1.133 1.000 1.121 1.132
12 10.0 26 1.000 1.119 1.171 1.000 1.126 1.177
13 10 10 0.1 183 1.000 1.002 1.081 1.000 1.002 1.041
14 1.0 65 1.000 1.108 1.133 1.000 1.042 1.089
15 5.0 43 1.000 1.112 1.177 1.000 1.098 1.075
16 10.0 28 1.000 1.162 1.248 1.000 1.108 1.137

the worse both slw(GRcls, ϕR) and sl(GRcls, ϕR) of C become. This is because a DAG with high
CCR requires huge data communication among PEs. Thus there may be some small clus-
ters despite they are assigned to PEs having wide communication bandwidths. Hence, at
least the lower bound for each cluster execution time should be adjusted according to the
assigned PE’s capability. As for comparison between A and B, it can be said that the pro-
posed processor assignment policy has better impact on the schedule length in a DAG with
high CCR.

In table 4.7, similar results as table 4.6 are obtained. From comparison results in table
4.6 and 4.7, it is concluded that the proposed processor assignment is superior to other
conventional processor assignment methods.

4.6.8 Discussion

From comparison results conducted in previous sections, it is important to decide the lower
bound for each cluster execution time according to each PE’s capability in the system where
variation of each communication bandwidth is large. Before each task merging step, e.g.,
before the s-th task merging step, it is conceivable that deciding δsopt(Pp) to satisfy the con-
dition in corollary 3 leads to the reduction of the schedule length. By specifying However, if
the both the maximum of task size and data size are specified from seq≺s−1, the better lower
bound may be obtained, thereby the schedule length can be more reduced. This issue is one
of our future works.

From theorem 4.1 and 4.2, it can theoretically be seen that an approach for minimizing
slw(GRcls, ϕR) has good impact on the schedule length. However, since δsopt(Pp) is the lower
bound when the upper bound of slw(GRcls, ϕR) can be minimized, the lower bound for each
cluster execution time is “near-optimal” value. Thus, it is necessary to confirm by exper-
iments advantages of the combination of “slw(GRcls, ϕR) minimization” and “adjusting the
lower bound according to the assigned PE’s capability.” From comparison results presented
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Table 4.7: Comparison in terms of processor assignment in FFT DAGs (♯ of tasks = 2048)
(appears in [23]).

No. α β CCR |V R
cls| slw(GR

cls, ϕR) sl(GR
cls, ϕR)

A B C A B C

1 5 5 0.1 277 1.000 1.009 1.077 1.000 1.003 1.023
2 1.0 131 1.000 1.007 1.156 1.000 1.032 1.041
3 5.0 61 1.000 1.018 1.241 1.000 1.044 1.077
4 10.0 36 1.000 1.054 1.351 1.000 1.071 1.109
5 5 10 0.1 273 1.000 1.008 1.062 1.000 1.005 1.021
6 1.0 129 1.000 1.132 1.142 1.000 1.021 1.058
7 5.0 51 1.000 1.073 1.122 1.000 1.077 1.104
8 10.0 29 1.000 1.149 1.281 1.000 1.074 1.122
9 10 5 0.1 252 1.000 1.003 1.221 1.000 1.002 1.049

10 1.0 118 1.000 1.098 1.091 1.000 1.039 1.081
11 5.0 45 1.000 1.117 1.155 1.000 1.091 1.133
12 10.0 30 1.000 1.083 1.182 1.000 1.104 1.176
13 10 10 0.1 290 1.000 1.006 1.032 1.000 1.008 1.003
14 1.0 135 1.000 1.031 1.139 1.000 1.092 1.051
15 5.0 60 1.000 1.136 1.228 1.000 1.092 1.098
16 10.0 35 1.000 1.122 1.243 1.000 1.109 1.127

in table 4.6 and 4.7, superiority of our proposed processor assignment is found. The number
of PEs is limited by imposing the lower bound for each PE (cluster). Further, with taking
heterogeneity of each PE into account, it is found that the lower bound for each PE should
be adjusted to minimize the schedule length. The approach A is the combination of those
two concepts. Thus, it is concluded that those two concepts are necessary for achieving
effective use of processors.

4.7 Conclusion

In this chapter, we presented how to adjust each assignment unit size according to each PE
to be assigned. At first, similar to the chapter 3, we defined the indicative value having
effect on the schedule length. Then we proved the relationships between the indicative
value and the schedule length, i.e., the reduction of the indicative value can lead to both the
reduction of the lower bound and upper bound of the schedule length. Thus, the objective
of our proposal in this chapter is to minimize the indicative value. Then we proposed the
task clustering algorithm and the processor assignment algorithm to achieve effective use
of processors.

Experimental comparisons by simulations show that both the indicative value and the
schedule length can be reduced than other conventional approaches for heterogeneous dis-
tributed systems. Thus, it is concluded that experimental results and the theoretical results
are matched to some extent.

The contribution of this chapter is to theoretically derive the lower bound for each as-
signment unit size for effective use of processors.
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Conclusion

In this dissertation, we proposed methods for achieving effective use of processors in both
homogeneous distributed systems and heterogeneous distributed systems, where each pro-
cessor is completely connected over the network. The fundamental issue in this dissertation
is how to decide each assignment unit size for each processor. Our basic concept is to im-
pose a certain condition to each assignment unit size to achieve effective use of processors.
The constraint in this dissertation is to impose the lower bound for each assignment unit
size. Thus, objective of our proposal is to minimize the response time under the condition
that every assignment unit size exceeds the lower bound.

In chapter 3, homogeneous distributed systems is assumed. We defined the indicaive
value, i.e., slw(Gscls) and then we proved that minimizing slw(Gscls) leads to the minimization
of the response time. Thus, by deriving the lower bound when slw(Gscls) is minimized, the
resultant schedule length can be small to some extent. Then we proposed the task clustering
algorithm, in which every task is merged into one assignment unit until its size exceeds
the lower bound. Experimental comparisons by simulations show that our proposal can
provide better degree of effective use of processors than other conventional approaches.

In chapter 4, heterogeneous distributed systems is assumed. Similar to chapter 3, the in-
dicative value, i.e., slw(Gscls, ϕs) is defined and then we proved that minimizing slw(Gscls, ϕs)
can lead to the minimization of the schedule length. Since each task execution time and
each data transfer time depend on each processing speed and each communication band-
width, the lower bound should be set with considering the assigned processor’s capability.
Thus, our proposal in this chapter is to decide the lower bound on the path dominating
slw(Gscls, ϕs) before the (s+ 1)-th task merging step. Since the lower bound is a function of a
processing speed and a communication bandwidth, the actual lower bound can be obtained
by assigning the lower bound into the upper bound of slw(Gs+1

cls , ϕs+1) and specifying the
processor by which the upper bound of slw(Gs+1

cls , ϕs+1) can be minimized. After those two
procedures have been completed, each task is merged into an assignment unit size (the sum
of execution time for each task in the assignment unit size) until its size exceeds the lower
bound. By repeating those procedures until every assignment unit size exceeds each lower
bound, the task algorithm is completed. From experimental comparisons by simulations, it
is found that the lower bound for each assignment unit size is more appropriate than other
lower bounds decided by other policies. Moreover, similar to results in chapter 3, it is also
found that slw(Gs+1

cls , ϕs+1) by the proposal is smaller than other approaches, and so is true
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for the response time.
From results obtained in chapter 3 and 4, it can be concluded that the new approach

for effective use of processors in distributed systems is established by our proposal. The
contribution by this dissertation is to propose a theoretical model to adjust each assignment
unit size automatically.

The remained works are to expand the proposal to more realistic computing models,
e.g., taking more dynamic communication conditions and the effect by hops into account.
As for how to apply the proposal to realistic situation, the proposal must be implemented
as programming libraries [46] or compiling infrastructures [47].
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