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SUMMARY 
 

 

 

The conventional Internet architecture is designed in a static environment: wired-line 

with stable electronic signals and low-speed stationary desktops not suitable for complex 

networking processing. In this rather stable environment, there is no meaningful control of 

the networking subsystem (NS) by communication applications. This results in the 

layering principles of the TCP/IP protocol stack, in which a protocol in a certain layer 

keeps the functions and internal states to itself.  

While the layering principle facilitates well the development of the TCP/IP protocol 

stack as well as simple communication services such as email, news group, World Wide 

Web pages and real-time IRC, it does not provide any support for flexible or reliable 

services, such as fault-intolerant session-based application for which service developers 

must rely on special and often very complex mechanisms due to the almost zero support 

from the networking stack. Things get even worse when less reliable wireless access 

technologies, together with them are nomadic-related issues, become widely available.  

These changes in networking environment, together with advances in processing power 

even for handheld devices, signal that the conventional model of self-contained, status-

hiding layering approach of the Internet needs to be revised to provide applications with 

more cross-layer information and control to better adapt to the developments of the 

Internet realm.  

In general, there are two objectives of a cross-layer system: 

(obj-a) To allow exchange of information and possibly commands among layers so that 

a protocol instance of a layer can harmonize its activities with the condition of 

other layers. 

(obj-b) To allow for the safe update (modification) of a protocol’s parameter so that the 

internal state of a protocol can be altered and adapts to the changes of external 

environment.  
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While (obj-a) can optimize the performance of a protocol in particular or the whole 

system in general, (obj-b) allows the protocol to change its working environment from 

one setting/configuration to another, which in many cases means the protocol has 

evolved to another protocol. However, because the settings/configurations can be 

different from session to session, (obj-b) requires the cross-layer system to be able to 

identify and access an individual instance of a protocol (in the case the protocol has 

several instances running in the networking subsystem). 

The purpose of this research is to propose a new TCP/IP architecture called the 

InterLay model that can facilitate the sharing and manipulation of information across 

layers’ borders in a general, comprehensive and secure manner to support both obj-a&b 

discussed above. Some examples on the applications and coverage for future 

development of the new architecture (in Chapter 5) show that it can provide more service 

flexibilities over existing approaches. Moreover, because the control is not limited to 

local entities, it also opens the possibility of better service coordination with external 

entities. In addition, the research proposes a methodology using the test questions to 

identify and categorize the type of parameters suitable for cross-layer manipulation. 

Details of the organization of the dissertation are explained as follows: 

Chapter 1: Introduction 

This chapter introduces the history of the development of the conventional TCP/IP 

architecture, and how the principle of layering has facilitated the development of the 

Internet. This chapter also explores the recent changes to the Internet world, which makes 

the requirements of the layering principle too stringent. Finally, the objectives of the 

research are specified, which focuses on addressing the above mentioned problems.  

Chapter 2: Limitations of Conventional TCP/IP Architecture and Related Works  

This chapter first explores the limitations of the layering principle in today 

communication environment, which prevent high layers from synchronizing their 

operations with the condition of lower ones. Because of the development of new services 

and hardware, there are cases where these limitations are not preferable. The chapter then 

explores results and also limitations the existing works that try to overcome the 

inadequacy of the TCP/IP layering principle. Some of these works focus on making 

changes to the architecture to adapt to a new feature on a case-by-case basis. Others, 
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although of cross-layer information exchange approach, only support (obj -a) because 

they are not designed to identify an individual protocol instance or to support a secure 

way to access and alter the value of a parameter. 

Chapter 3: InterLay Model for Cross-Layer Information Manipulation 

This chapter provides the detailed design of the new InterLay model for TCP/IP 

architecture. The InterLay model will have to support both objectives explained above. 

First, the reasons to use Object-Oriented (OO) Technology as the tool to analyze and 

design the new architecture are provided. The main advantage for using OO Technology 

in the InterLay model is that individual protocol instances are main players, 

implementing the protocol as an independent entity (i.e. object in OO Technology) 

makes it easier for the protocol instances to maintain their states as well as issue request 

to or react to request from other layers. 

Next the detailed design of the InterLay entity which is consisted of three distinct 

functional groups, namely the Policy Element (PE), the Enforcer and the Informer, is 

explained. The PE is the checkpoint to authorize requests that can potentially affect the 

TCP/IP protocol stack (namely the update of paramter‘s value, executing a networking 

protocol procedures and registering for an event), as well as to authenticate the request 

from external entity. The Informer is in charge of returning the current value of the 

parameter, as well as informing the requester of the occurnence of a registered event. The 

Enforcer carries out the actual update or alternation of parameter value, as well as 

executing networking procedures. The InterLay model uses the Enforcer to support (obj-

b) described above. The Enforcer also contains security measures to safeguard its actions.  

This chapter also provides the specifications of new system calls that allow the user 

application to control the underlying NS. Finally, the interaction scenarios between 

InterLay and various entities are provided. 

Chapter 4: Test Questions for Selection of Fine-Tunable Parameter List  

This chapter explains the need to find all the right parameters which will assist the 

developers in the service and protocol development process which can save development 

time for cross-layer services. Test questions are defined and used as a method to find 

those parameters. The test questions are then applied to various protocols in each layers 
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of the TCP/IP protocol family. The parameters that are found are summarized for each 

layer. 

One important aspect of the test question approach is that its methodology and results 

can be applied not only the InterLay but to any other systems that provide cross-layer 

control. 

Chapter 5: Discussion and Analyses 

This chapter first discusses the coverage of the InterLay model over the existing and 

potential future requirements toward the conventional TCP/IP architecture. It explores 

how InterLay supports mobility (including route optimization), fault-tolerance and 

insertion of SHIM Layer header. Advantages and benefits of the Interlay model are 

analyzed in comparison with related systems.  The deployment strategies for the new 

architecture are also provided in two modes, namely disruptive and non-disruptive 

deployment. Some related issues on overhead in OO programming, performance and 

security are also discussed.  

Chapter 6: Conclusions and Future Works  

This chapter concludes the research, summarizing the major contributions of the 

research. One of the most notable contributions of the research is that the InterLay model 

is the only solution for cross-layer manipulation that supports the “write” operation of 

protocols’ parameters. As a result the InterLay model can support new features by just 

using the programming skill instead of requiring a new protocol to be developed. And as 

recommended in Request For Comment 1958: “Nothing gets standardised until there are 

multiple instances of running code”, the InterLay can be used in this sense to implement 

and monitor various aspect of a new feature, and the information obtained from this 

process can serve to speed up the development of the correspondent protocol. So the 

InterLay model can be used as a testbed to develop protocols for the TCP/IP architecture!  

Future works to fulfill the potential of the proposed architecture are also suggested.  

Lastly, some supplement information related to the operation of InterLay model as 

well as comparing its performance with and other proposals on maintaining TCP sessions 

over address changes are provided, analyzed and discussed in Appendix 1 and Appendix 

2 respectively.  
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CHAPTER 1. INTRODUCTION 
 

 

 

 

1.1. Research Background 
At the inception of the Internet, the main concern was connectivity [1]. Therefore, 

much effort has been spent in designing a simple networking stack with the main 

objective of providing end-to-end data transfer capability.  

Until the beginning of the last decade, the main access method to the Internet was 

wired-line with stable electronic signals, and types of end devices were mainly low-speed 

desktops which are stationary and not suitable for processing complex supplementary 

networking activities. This means that conditions of the underlying networking subsystem 

(NS) in end hosts are rather stable and there is no meaningful control of the NS for end 

user communication applications to carry out. As the kernel hides the underlying 

workings of the networking subsystem, communication application development is rather 

simple. The application just requests to open the connection and the rest are managed by 

the subsystem without the knowledge of the application. Since services were composed of 

non-real time and mainly static and low volume content, namely text and low resolution 

pictures which have no stringent requirements on the performance of the NS, there is no 

need for end user applications and different protocols within the NS to interact regarding 

the current status or adaptation to future changes of the network. 

The above conditions result in the original design of the Internet using the layering 

principles, in which a protocol in a certain layer keeps its functions and internal states to 

itself, while basically providing only the service of sending/receiving Protocol Data Unit 

(PDU) to adjacent layers. Each protocol will try its best to perform its duty without 

relying on or finding the conditions of other layers. 

The main advantage of this layering architecture is that it facilitates the incremental 

development and improvement of communication services, because it helps localize the 
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scope of change to a single layer, making it easier to find, try and implement 

improvements or corrections in each layer individually without the need to concern about 

the effects from/to other protocols. This makes the development of protocols and 

especially user applications simple, because all the applications have to do is to send the 

data to the networking subsystem to transmit to the other end, without concern for 

controlling or configuring the underlying NS. 

This localization of changes and incremental developments were very important in the 

early development stage when there was almost no prior information on how the 

architecture would behave in different settings and environment. For example, as the 

network experiences various new types of communications services and networking 

technologies, the TCP congestion control algorithm has been refined many times but the 

protocols in other layers remained intact. Another example is when IPv4 experiences the 

depletion of address space and other limitations, the next generation IPv6 is developed 

and introduced without requiring any changes to both higher layers and lower layer. 

However, over the last decade the Internet has undergone a great deal of change. A 

plethora of Wireless access technologies has been introduced and Wireless access is 

becoming the prevailing choice for last-mile access. Together with this development, 

some mobility-related problems introduced with Wireless access and mobile devices, such 

as the change of IP address and disruption due to handover, cannot be solved without 

modification to the conventional IP networking architecture.  As discussed in various 

research works such as MIH in [8] or MIP in [9] and [10], in the new networking 

environment, a communication protocol of a layer now needs more support from other 

layers to better fulfill its tasks.  

At the same time, with the introduction of various delay- and lost-sensitive applications 

like multimedia or gaming, applications now need to be able to customize and/or fine-tune 

lower layers to best suit their needs. On the other hand, mobile terminals now are mostly 

equipped with fast processors that can easily support more complex processing at the 

networking subsystem without negatively affecting the performance of end user 

applications. These developments of the Internet paradigm can be summarized in Table 1. 
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Attribute Conventional Internet Advanced Internet 

Characteristics Access technology, end devices, 
and services are fixed and/or static

Wireless and handheld devices create 
mobility-related issues. Also contents 
become more bandwidth-consuming and 
diversified. 

End devices Big, heavy and poor performance 
desktops and work stations 

Small, light but powerful smart phones 
and tablets. They also carry multiple hi-
res cameras, relatively  hi-res and multi-
touch screen, with gaming capabilities 

Access 
technologies 

Access technologies are wired 
cabling such as PPP over telephone 
line, leased line, Frame Relay, 
xDSL, and rather slow speed and 
very difficult to deploy. 

Wireless technologies come in variety of 
choices such as Wireless LAN (Wi-Fi 
a/b/g/n), Wireless MAN (Wimax) with 
fast speed (54Mbps ~) and very easy to 
deploy. 

Contents and 
Traffic 

Contents are rather homogenous 
and static such as text and low-
resolution images. The traffic for a 

session is low. 

Contents come in heterogeneous media, 
with dynamic content and with very high 
volume traffic (HD videos or high-
resolution images etc.) 

Services Mainly text- based informational 
services such as email, IRC, 
bulletin board etc… 

Plethora of real-time interactive 
multimedia services such as online-video, 
high definition multiplayer interactive 
games … 

Table I. The development of the Internet paradigm 

While the original focus on connectivity of the conventional TCP/IP networking 

implementation facilitates very well the phenomenal development of the Internet, all of 

the developments in Table 1 indicate it is time to allow the modification of current and/or 

the creation of new TCP/IP architecture with more openness to cross-layer 

communication to meet quickly evolving communication demands and there have 

already existed necessary and sufficient conditions to realize this architecture in terms of 

service evolution, end-device performance and access technologies. 

 3



Moreover, the Coupling Principle [2] states that as things (in this context they are 

communication services) get larger, they often exhibit increased interdependence 

between components (here components are layers). As the TCP/IP architecture has 

already matured and been tested thoroughly (even IP next Generation, IPv6, is being 

rolled out in large scale),  it is reasonable now to reduce the rigid requirements of the 

strict layering principle, and allowing layers to expose more internal data/states to other 

layers to provide user applications with more flexibility and customization. 

1.2. Research Objectives 
As explained later in chapter 2, in existing approaches whenever a new development 

requiring a new capability from the TCP/IP networking architecture, some solutions will 

be proposed to specifically address the problem, normally through making changes to the 

architecture. As these problems are carried out on a case-by-case basis, and not 

compatible with each other, namely the changes made for a problem cannot be used to 

solve later problems. 

There are also some proposals on general cross-layer information exchange scheme to 

provide a broader range of service optimization and customization. In general, there are 

two objectives for a cross-layer system: 

(obj-a) To allow exchange of information and possibly commands among layers so that 

a protocol instance of a layer can harmonize its activities with the condition of 

other layers. 

(obj-b) To allow for the safe update (alternation) of a protocol’s parameter so that the 

internal state of a protocol can be altered and adapts to the changes of external 

environment. 

While (obj-a) can optimize the performance of a protocol in particular or the whole 

system in general, (obj-b) allows the protocol to change its working environment from 

one setting/configuration to another, which in many cases means the protocol has 

evolved to another protocol. However, because the settings/configurations can be 

different from session to session, (obj-b) requires that the cross-layer system to be able to 

identify and access an individual instance of a protocol (in the case the protocol has 
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several instances running in the networking subsystem). Because existing works are not 

designed to meet this requirement, they are not able to support (obj-b). 

The purpose of this research is to propose a new TCP/IP networking architecture 

called the InterLay model that can facilitate the sharing and manipulation of information 

across layers’ borders in a general, comprehensive and secure manner to support both 

obj-a&b discussed above. The architecture includes the core TCP/IP stack and a separate 

InterLay entity that provides the cross-layer manipulation capabilities to the various 

protocols in the TCP/IP networking architecture. To implement the Interlay, the OO 

programming will be used as designing tool. In addition, a special methodology (namely 

using test questions) will be used to define right parameters to be exposed for cross-layer 

manipulation.   

In the new model, cross-layer manipulation of protocols’ information will have the 

following characteristics: 

- Allowing the access to and modification of not only control information (i.e. 

networking parameters) but also the actions of the networking protocols. The 

new model has to be able to access an individual instance of a protocol and alter 

its parameters without affecting other instances to support (obj-b). 

- The provision of these manipulations is not limited to local entities but also 

available to external servers 

- There will be many check points to apply authentication, authorization, and 

integrity testing procedures to provide more secure and reliable operations. 

With such characteristics, the new model helps overcome some limitations and 

shortcomings of the conventional TCP/IP implementation and those that of  existing 

works on a case-by-case basis, and would bring about some extra benefits including:   

- Supporting faster service development by covering new developments in a single 

model 

- Allowing the “intelligent use” of underlying network status and functions by the 

end-user applications. 
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- Its principles and methodologies are general enough to be extended to other 

networking models that use layering approach. 

1.3. Structure of the Dissertation 
This dissertation consists of six chapters: Chapter 1 introduces the research 

background and objectives; Chapter 2 describes the current limitation of the conventional 

TCP/IP and related works to address the problems; Chapter 3 discusses in details the 

InterLay entities;  Chapter 4 explains the methodology to find the parameters to be 

exposed to external protocols; Chapter 5 discusses and analyses various aspects of the 

proposed architecture, and Chapter 6 concludes the research by summarizing main 

contributions of the dissertation  and suggesting some future works to further develop the 

scheme. 

Details of the organization of the dissertation are explained as follows: 

Chapter 1: Introduction 

This chapter introduces the history of the development of the conventional TCP/IP 

architecture, and how the principle of layering has facilitated the development of the 

Internet. This chapter also explores the recent changes to the Internet world, which makes 

the requirements of the layering principle too stringent. Finally, the objectives of the 

research are specified, which focuses on addressing the above mentioned problems.  

Chapter 2: Limitations of Conventional TCP/IP Architecture and Related Works  

This chapter first explores the limitations of the layering principle in today 

communication environment, which prevent high layers from synchronizing their 

operations with the condition of lower ones. Because of the development of new services 

and hardware, there are cases where these limitations are not preferable. The chapter then 

explores results and also limitations the existing works that try to overcome the 

inadequacy of the TCP/IP layering principle. Some of these works focus on making 

changes to the architecture to adapt to a new feature on a case-by-case basis. Others, 

although of cross-layer information exchange approach, only support (obj -a) because 

they are not designed to identify an individual protocol instance or to support a secure 

way to access and alter the value of a parameter. 
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Chapter 3: InterLay Model for Cross-Layer Information Manipulation 

This chapter provides the detailed design of the new InterLay model for TCP/IP 

architecture. The InterLay model will have to support both objectives explained above. 

First, the reasons to use Object-Oriented (OO) Technology as the tool to analyze and 

design the new architecture are provided. The main advantage for using OO Technology 

in the InterLay model is that individual protocol instances are main players, 

implementing the protocol as an independent entity (i.e. object in OO) make it easier for 

the protocol instances to maintain their states as well as issue request to or react to 

request from other layers. 

Next the detailed design of the InterLay entity which is consisted of three distinct 

functional groups, namely the Policy Engine (PE), the Enforcer and the Informer, is 

explained. The PE is the central point for receiving commands on the local networking 

parameters (including looking-up or updating the value) and networking procedures. The 

Enforcer carries out the actual update or alternation of parameter value, as well as 

executing networking procedures. The InterLay model uses the Enforcer to support (obj-

b) described above. The PE and the Enforcer contain security measures to safeguard the 

update of the parameters. Finally, the Informer is in charge of informing the requester of 

the value of the parameter (i.e. returns the result for the look-up request), as well as 

informing the requester of network events.  

This chapter also provides the specifications of new system calls that allow the user 

application to control the underlying NS. Finally, the interaction scenarios between 

InterLay and various entities are provided. 

Chapter 4: Test Questions for Selection of Fine-Tunable Parameter List  

This chapter explains the need to find all the right parameters which will assist the 

developers in the service and protocol development process which can save development 

time for cross-layer services. Test questions are defined and used as a method to find 

those parameters. The test questions are then applied to various protocols in each layers 

of the TCP/IP protocol family. The parameters that are found are summarized for each 

layer. 
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One important aspect of the test question approach is that its methodology and results 

can be applied not only the InterLay but to any other systems that provide cross-layer 

control. 

Chapter 5: Discussion and Analyses 

This chapter first discusses the coverage of the InterLay model over the existing and 

potential future requirements toward the conventional TCP/IP architecture. It explores 

how InterLay supports mobility (including route optimization), fault-tolerance and 

insertion of SHIM Layer header. Advantages and benefits of the Interlay model are 

analyzed in comparison with related systems.  The deployment strategies for the new 

architecture are also provided in two modes, namely disruptive and non-disruptive 

deployment. Some related issues on overhead in OO programming, performance and 

security are also discussed.  

Chapter 6: Conclusions and Future Works  

This chapter concludes the research, summarizing the major contributions of the 

research. One of the most notable contributions of the research is that the InterLay model 

is the only solution for cross-layer manipulation that supports the “write” operation of 

protocols’ parameters. As a result the InterLay model can support new features by just 

using the programming skill instead of requiring a new protocol to be developed. And as 

recommended in Request For Comment 1958: “Nothing gets standardised until there are 

multiple instances of running code”, the InterLay can be used in this sense to implement 

and monitor various aspect of a new feature, and the information obtained from this 

process can serve to speed up the development of the correspondent protocol. So the 

InterLay model can be used as a testbed to develop protocols for the TCP/IP architecture!  

Future works to fulfill the potential of the proposed architecture are also suggested.  

Lastly, some supplement information related to the operation of InterLay model as 

well as comparing its performance with and other proposals on maintaining TCP sessions 

over address changes are provided, analyzed and discussed in Appendix 1 and Appendix 

2 respectively.  
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CHAPTER 2.  LIMITATIONS OF CONVENTIONAL 
TCP/IP ARCHITECTURE AND RELATED WORKS 

 

 

 

 

2.1. Limitations of conventional TCP/IP architecture 
The ARPAnet (predecessor of the Internet) began with just one core protocol, the TCP 

(which stands for Transmission Control Program), which was formally described in 

Request for Comments 675 in 1974. In 1977, it was proposed that TCP should be further 

divided in a layered and modular way into two protocols, one serves as host level end to 

end transport protocol (the TCP layer), and the other for routing packets through the 

network to the destination (the IP layer) [5]. The result was the creation of the TCP/IP 

architecture using layering principles [1]. 

The disadvantage of layer enclosure is that except the Protocol Data Unit (PDU), 

higher layers have virtually no status information from lower layers therefore they have 

to accept general assumption that lower layers are doing their jobs well, without knowing 

how well the lower layers are doing their job, or whether any critical changes have 

happened to the lower layers. This prevents the higher layers from choosing the operation 

mode that is most appropriate to the current condition, which hinders the development of 

more flexible, optimized and customizable applications. 

The conventional model supports well simple services such as email, news group, 

World Wide Web pages or real-time IRC and multimedia. However, for flexible or 

reliable services, such as fault-intolerant session-based applications, service developers 

must rely on special and often very complex mechanism [13][16][25][26] due to the 

almost zero support from the networking stack. Things get even worse when less reliable 

wireless access technologies, together with it are nomadic and packet loss-related issues, 

become widely available. The TCP/IP architecture was originally built on the assumption 

that the terminal's access point to the network was static, with stable electrical signals, 
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therefore IP addresses are used for both routing and identification, and loss is due mostly 

to congestion.  

For example, in Mobile IP, the cross-layer information of a prominent L2 handoff 

from the Data-Link layer helps IP layer to prepare for the handoff to a new Foreign 

Agent in advance, so that the handoff process is faster and possibly seamless [6]. Another 

example is that due to data-hiding, buffer size between layers were not  synchronized, 

therefore small chunks of data were being written to the TCP buffer, which led to sub-

optimal performance [7]. If there is a way for the application to be informed that the TCP 

layer is constantly experiencing congestion, it can cooperate by reducing its transmission 

rate for example by using a slower codec. 

On the other hand, the lower layer such as the Data Link layer can make a better 

decision when performing a handover if it knows the preferences of the above 

applications. However, in the current TCP/IP architecture, there is no means for higher 

layers to influence the operations of lower layers. 

Moreover, the encapsulation of information among different layers also leads to 

redundancy of information and operation. An obvious example is the proposal of the 

IPv4 header compression technique [36] [37]. This shows that the conventional of 

separation among layers create a large ratio of overhead in some popular applications. 

Also, because of the separation between IPv4 and Transport layer, the checksum 

operation of IP header and Transport header is done separately, which can be a big 

overhead. The same line of optimization techniques are [45] [46]. 

The above cases indicate that it might be beneficial for higher layers to obtain and 

control information from lower layers, to optimize as well as to provide seamless 

operations to end-user communication services. 

2.2. Related works 
There are two way to copes with the changes explained above to the Internet. The first 

approach, called the evolutionary approach, tries to solve new issues by modifying a 

certain protocol or added a new protocol, while keeping the original TCP/IP architecture 

intact. The second approach, called the clean-slate approach, tries to develop a new 
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architecture that take into account all the changes in networking environment, to replace 

the current TCP/IP protocol stack.  

We will look into each approach in the following subsections. 

2.2.1. Evolutionary approach to address issues of the TCP/IP architecture 

Cross-layer exchange of protocol data has been extensively researched to optimize the 

utility function of end to end throughput in ad-hoc network [19] [20] or optimize the 

exchange of information and conserving energy in sensor network [21] [22].  

Ad-hoc network related approach generally combines information from different 

layers to coordinate the transmission among peers to maximize the utility function for all 

participants. For example in [19], the authors propose a practical cross-layer optimization 

(CLO) design that take into consideration some components namely source rate control, 

hop-by-hop flow control, MAC scheduling and prioritization, link-aware and congestion-

aware routing to maximize the utility function of the whole network close to theoretical 

level.  

An optimization agent is proposed in [21] in Wireless sensor network, as a medium 

for layers to communicate. It contains a database to store essential information about the 

network condition such as node identification number, hop count, energy level, link 

status. The information will be accessible and used by protocols in all layers to optimize 

its operation for parameters such as transmit power, coding rate or data rate transmission 

to suit a specific application. The research in [22] proposes a new sensor network 

architecture called X-Lisa, which standardizes cross-layer information-sharing and 

organizes the information shared between layers. In X-Lisa, protocols are provided with 

status of active queries in the network so that they can adapt their behaviors accordingly, 

which improves the overall performance. 

In [23] the authors investigate the combination of APP-MAC-PHY layers to find 

optimal modulation scheme for multimedia data, as well as to optimize power 

consumption.  

The research in [52] uses the information that is conventionally closed to Layer 2 to 

provide application with more information on the condition of the access link, so that 

 11



user can have a better service experience. However the limitation of [52] is that it utilizes 

only the support from Data Link layer, and it is designed for use with SIP services.  

Traditionally the TCP layer does not change its static information (e.g. the address) 

during its operation. However, the research in [108] shows that by letting an external 

entity change the configuration of the TCP protocol (in this case the IP address) it can 

overcome mobility constrains that normally would tear down the connection. 

Apart from case-by-case solutions, there are also some proposals on using a cross-

layer information exchange approach as a general solution to support a wide range of 

service optimization through learning and harmonizing among protocols at different 

layers. 

Media Independent Hanover (MIH) architecture [106] is being developed by the IEEE 

802.21 Working Group to enable the smooth handover between IEEE 802 technologies 

and other access technologies by introducing new function entities to allow higher layers 

to interact with layer 2 (namely IEEE 802 access technologies) during handover process. 

One problem with MIH is that it supports only the interaction between higher layers and 

layer 2, not among higher layers. Therefore in [107] the authors propose the Control 

Information Exchange between Arbitrary Layers (CEAL) designed to provide similar 

cross-layer functionalities to that of Media Independent Handover, but not confining to 

layer 2 but extending to other layers as well. 

The common weakness of MIH and CEAL is that they can not support the alternation 

of protocol’s parameters because they are not designed to identify an individual protocol 

instance, or to support a secure way to access and alter the value of a parameter, so they 

can support only (obj-a) of a cross-layer system described in section 1.2 of chapter 1. 

We can see that the existing researches using the evolutionary approach mostly 

examine the benefit of cross-layer design from the performance aspect by asking 

different layers to adapt themselves according to current status of the network. With a 

different broader perspective, the research in this paper focuses on providing and 

manipulation of information from lower layers so that applications not only be able to 

adapt their performance according to lower layers status, but they can also (i) make more 

choices beside performance (such as arbitration decision route optimization as explained 
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in section 5.1 below ) and (ii) be able to support (obj-b) described in section 1.2 to adapt 

better with future changes (for example, in the MobiSocket proposal [18], if the approach 

of this research were adopted in the beginning of the TCP/IP architecture, then it would 

be feasible to maintaining of TCP session across IP address changes without difficulty).  

2.2.2. Clean-slate  design approach for the Internet 

The Internet was designed with only the telephone network as a reference. Therefore 

the communication model in TCP/IP architecture is a conversational session between 

locations, i.e. the user has to know and connect to the storage location in order to retrieve 

the desire information content.  

However, as the Internet evolves, techniques such as caching allows for a content to 

be available at several places, and the location known to the user might not be the closest 

or easiest to retrieve. 

There are already some researches on how to find the most appropriate location for a 

resource.  

Most existing works solve the problem by proposing to modify or establish an 

alternation of DNS. Data-Oriented Network Architecture (DONA) [109] involves a 

clean-slate redesign of Internet naming and name resolution. It replaces DNS names with 

flat, self-certifying names and a name-based anycast primitive above the IP layer. The 

content in DONA must first be published, or registered, with a tree of trusted resolution 

handlers (RHs) to enable retrieval, which provide the next hop information for the 

content. The requester then uses normal IP connection to retrieve the content. 

A second approach is Content Centric Network [110], which is meant to replace 

TCP/IP as the transportation mechanism for the Internet. In Content Centric Network, 

content chunks are used as the basic information exchange unit, equal to the IP data 

packet in TCP/IP networking. When a certain content is first requested and returned to 

the requester, a copy of it is also temporarily stored at the intermediate node (i.e. router), 

and if another request for the same content arrives at the intermediate node while the 

copy is still cached, the copy is returned to the requester without having to traverse back 

all the way to the content originator. This mechanism can save a lot of network traffic for 
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content that is popular. And while CCN works well for non-real-time content,  it can also 

support real-time conversational applications [111]. 

With regard to the research on cross-layer manipulation of TCP/IP architecture, the 

solutions of the first approach (namely DNS-based) still use TCP/IP to exchange 

information, therefore the research in this dissertation is still beneficial for these 

researches. 

On the other hand, whether the second approach (i.e. CCN) will eventually replace IP 

networking is still an open question, because IP is still doing its job well. Moreover, even 

if the networking environments changes to the point that IP must be replaced by CCN, 

the sheer size of the infrastructure and application base will make the transition a very 

lengthy process. And because a new architecture does not necessarily suspend researches 

on existing architecture if the deployment of the latter is large, during the transitional 

process to CCN, the IP networking architecture still needs to be supported when new 

needs arise. On example of the old architecture needs to be supported during the 

transition to a new architecture is that even though IPv6 has been standardized since 

1998, but until 2003 a RFC [31] is still being established to solve the problem that SIP 

experience that is specific  to IPv4 only. 

The discussion in [116] suggests that clean slate and evolutionary research are not at 

odds with each other, but clean slate networking research can help guide the evolution of 

the Internet. However, we would like to stress the reverse is also true, namely by 

studying the evolution process of the current Internet architecture, the future clean slate 

architecture can avoid problems that might arise in the future. As a more concrete 

example, as CCN also has a layering architecture, the InterLay can provide some useful 

insight on cross-layer to CCN, such as how to cope with link layer disconnections. 

Therefore, the research in this dissertation will be useful for Internet networking for a 

long time to come. 

 14 



CHAPTER 3. INTER-LAY MODEL FOR CROSS-LAYER 
INFORMATION MANIPULATION 

 

 

 

 

In this part, we discuss the proposal of a new model for cross-layer TCP/IP layering 

architecture called InterLay. In InterLay model, protocol instances from lower layers will 

reveal selected internal information to higher layers, either adjacent or several layers 

away. The networking stack can also interact with external entities to receive external 

instructions in the form of policy exchange.  

As the openness of network layers is unavoidable, it would be more beneficial to 

communication service developers if there is a way to provide cross-layer manipulation 

in a safe and protected way. The InterLay is proposed to fulfill this requirement, with 

several layers of protection (namely through the InterLay object and the intrinsic 

protection through the get()/set() method of object oriented technology) to eliminate the 

risk associated with opening the internal mechanism of the network protocols. 

As a practical guideline for real-world development of the networking stack, the 

discussion of the new architecture will be based on the implementation of TCP/IP 

networking stack for Linux, as Unix-like systems are becoming more and more popular 

especially to mobile devices, and the fact that modern OSs are similar in capabilities so it 

can be extended easily to other platforms. 

Moreover, the new architecture will be analyzed and designed using object oriented 

technology, and the reasons for this selection are explained in section 3.1 below. 

3.1. Selection of object oriented design for the cross-layer architecture 
 Currently the TCP/IP networking stack is implemented in structured procedural 

programming fashion, where the operations are carried out in sequential procedures. 

Comparing to Object Oriented (OO) programming, procedural programming has smaller 

executable code and higher performance due to no overhead from object invocation.  
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Because accessing the network parameters has the potential of destabilizing the 

networking subsystems, the new model should be designed so that the possibility that 

network parameters of a communication protocol be mistakenly altered by other entities 

should be avoided as much as possible. However, keeping the existing procedural 

programming model, and adding codes to expose a layer’s internal parameters will be 

risky as variables representing networking parameters are accessed directly, there is no 

way to guarantee the integrity of networking parameters even in a read-only procedure 

with structured programming, therefore unwarranted changes to the internal states of the 

networking subsystem might happen with unpredictable consequences. 

If OO Programming is used then the get() method for accessing the attributes 

associated with the networking parameter will natively allow the exposure of internal 

data of a layer without the danger of (mistakenly) altering the attributes. Another aspect 

is that with conventional procedural programming, whenever the parameter is accessed 

or updated, the codes for basic protection mechanism (for authorization, integrity check 

etc.) will have to be repeated; while in OO programming, all of these basic protections 

are inserted only once in the set() and get() method for the parameter, and whenever the 

parameter is accessed or updated, all of these protection mechanism will be automatically 

applied.  

So implementing the architecture in OO programming not only reduces the complexity 

of the implementation, workload and potential errors, but it also has the potential to 

reduce the size of the executable code. 

There are also some other advantages in applying OO paradigm to the new cross-layer 

communication model as follows.  

- The foremost advantage of implementing the InterLay model in OO is that 

because the model allows a protocol in a certain layer to interact with other 

protocols in different layers, implementing the protocol as an independent entity 

(i.e. object in OO) make it easier for the protocol instances to maintain their 

states as well as issue request to or react to request from other layers. 

- The layering approach and OO technology have the same principles, namely self-

contained internal attributes, interactions using pre-defined interface, the 
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modification of one entity does not affect other existing entities. As the 

data/operation of networking protocols are extensively analyzed and documented, 

converting TCP/IP layer to object should be straightforward.  

- The new InterLay cross-layer manipulation architecture concentrates on data 

(namely networking parameters of networking protocols) to be provided cross-

layer. This data-centric purpose is obviously compatible with OO Programming. 

Moreover, the data requires utmost discretion when accessed and modified, and 

this is already taken into account by OO Technology. 

- The cross-layer model is dynamic, and is expected to be updated when new 

features or capabilities become available. To include a new feature, it is much 

easier to add an extra attribute or a method to a protocol class in OO 

Programming than to find the right place and right mechanism in procedural 

programming. 

- For look-up (i.e. read-only) operations of network parameters’ value, the OO 

programming ensures the possibility of inadvertently alternating the parameter to 

be reduced to zero, while for update (i.e. write) operations of network 

parameters’ value, it provides as many protection and authorization layers as 

possible. So the utmost discretion required by data when accessed and modified 

has been already taken into account by OO Technology. 

- The development process for OO programming is also smoother because 

protocols in a layer share many similar characteristics, therefore once the base 

class of a layer has been developed, the development of its derivative protocols 

can also be smoother via inheritance and polymorphism. 

- As new protocols are being constantly introduced into TCP/IP to accommodate 

new communication requirements, the ability of OO to reuse common codes with 

inheritance and polymorphism will makes it easier when realizing these new 

protocols into real codes. For example, a common class for reliable transport 

layer protocol with all the common virtual methods (such as bind(), listen(), 

accept(), connect() … with the connect() method containing the virtual hand-

shake() method) can be  used as a template to develop the TCP and the newer 
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SCTP (Stream Control Transmission Protocol) of which the original methods 

will be overridden with the correct input parameter using polymorphism. This 

process can speed up the implementation process of new protocols. 

- Moreover, as new protocols and features are constantly introduced, the 

networking subsystem will have to be actively and continuously developed and 

maintained for a very long period of time. The advantage of modulation of OO 

Programming creates a better documentation repository and makes the process of 

passing codes among programmers more smoothly.  

- Because the query and update activities are carried out independently among 

classes, we can place each entity (in Figure 1 below) in a separate thread; and as 

multi-processor CPUs are popular nowadays, each object can be executed in a 

separate processor which will improve the overall performance. 

- By using OO design translation tools, as well as consulting existing OO 

reference framework for protocols such as one described in [9], the 

implementation of this new layering architecture would be made easier. 

For the above arguments, we will use OO technology in the analysis and design of the 

InterLay cross-layer enabled networking architecture.  

3.2. The Cross-Layer communication model for TCP/IP networking 
architecture 

The new model is composed of two parts: the InterLay object handling the 

manipulation of parameters across layers, and the conventional TCP/IP protocol stack 

handling the actual sending/receiving of data. 

The overall system of the new TCP/IP architecture is depicted in Figure 1. The model 

also needs some supplement entities such as buffers for PDUs which are not depicted in 

the figure for simplification. 
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Figure 1. The new TCP/IP architecture 

3.3. The conventional TCP/IP stack 
In the InterLay model, the conventional TCP/IP protocol stack fulfills the fundamental 

job of the networking subsystem, namely sending user application data to remote host, 

and receiving data from remote host to user application. 

When implementing in OO programming, each layer will be represented by a generic 

virtual class with all the basic parameters and functionalities of that layer.  

The networking parameters of that layer will be implemented as the corresponding 

attributes of the class. In the InterLay model, these networking parameters are called real-

time parameters (more details on real-time and event parameters are discussed in section 

3.5).  Note that while the class contains all parameters of the protocol, in this research we 

only concern the parameters that should be revealed across layers.   

The functionalities performed by the layer become the methods for its corresponding 

class. The methods of a layer class either contain some generic processing that is 

common for all protocols of that layer (and will be reused when an actual protocol class 

is developed), or it might only be the place holder (i.e. implemented as virtual functions) 

to be replaced by an inheriting class representing a specific protocol.  
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To enable reusing of code, the actions performed by these functionalities would be 

decomposed as much as possible into atomic components, and a certain functionality of 

the layer can be constructed by making use one of these components.  

The class that represents a protocol of a layer may inherit directly the generic class 

representing the layer, or inherit the corresponding layer via a hierarchy, with additional 

attributes and methods corresponding to parameters and functionalities specific to the 

protocols. In the case of hierarchical inheritance, an intermediate common class that 

contains the shared common major properties of the protocols of the same family, and a 

specific protocol will inherit the layer class via this intermediate class. For example, the 

IEEE 802.11 a, g family may be mapped into an immediate class called IEEE80211, with 

all the common attributes, except, for example, speed, frequency, modulation techniques 

etc. 

For Data Link layer, the object might be designed as a wrapper object of the device 

driver. For the application layer, as the applications interact with the networking 

subsystems via the socket, the application layer of the TCP/IP stack will be represented 

by the socket class.  

In the InterLay model, real-time parameters of a protocol that meet the requirements 

explained in chapter 4 will be exposed to be queried or updated by other entities. An 

extra get() method is implemented for the parameter that is opened for querying the value, 

while the set() method is implemented only if the parameter is opened for updating by 

other entities. The set() and get() method will be implemented in the class that represents 

the protocol, not in the class that represents the layer. 

Apart from real-time parameters, certain functionalities of a protocol will be exposed 

via the InterLay to other entities, by letting these entities to invoke the methods 

corresponding to those functionalities. The methods that are exposed to other entities are 

called action() methods (more detail discussion of action() method is discussed in section 

3.6).  

3.4. On the extra functionalities of the TCP/IP stack 
When implementing in OO programming, the existing procedural code of the 

networking subsystem (i.e. the TCP/IP stack) can be reused, for example the TCB 
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(Transmission Control Block) can be reused as the main structure to construct the TCP 

protocol class, and code and algorithms which perform the processing of TCP protocol 

can be reused in the action() method of the TCP protocol class. 

In addition to the above basic functionalities, comparing with the conventional TCP/IP 

stack, the TCP/IP stack of the InterLay model should be equipped with the following 

two extra groups of functionalities: 

- Group A relates to exposing intrinsic capabilities of the protocols of the TCP/IP 

stack, including functionalities for querying networking parameters or actions 

that the protocols will perform according to standardization documents of the 

protocols. 

- Group B provides extra functionalities that are not required or specified by the 

standardization documents. These functionalities will allow more flexibility and 

customization for communication services. 

Specifically, Group A includes the extra functionalities as follows: 

- An extra get() method for each real-time parameter, as well as a set() method if the 

parameter is allowed to be updated by other entities. 

- In the InterLay model, the lower layers (i.e. Layer 2 to Layer 4) can also make 

requests to the InterLay to learn and manipulate the status of real-time parameters 

and events or to execute action() methods. As the original documentations of the 

TCP/IP protocol stack do not dictate these new functionalities, if the protocols 

from lower layers want to utilize InterLay to manipulate protocols from other 

layers, they have to be equipped with extra codes to explicitly make use of 

InterLay. 

For Group B, because the purpose of the InterLay model is to manipulate the operation 

of the TCP/IP stack for service flexibility and customization, the TCP/IP stack should 

also provide the InterLay with more control in terms of management aspects of TCP/IP 

protocols objects themselves, or their main task (i.e. the sending/receiving of data), 

including: 
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- The ability to protect or destroy protocol objects arbitrarily by other entities. This 

feature is used, for example, to protect TCP session from automatically being 

terminated in order to support TCP mobility as described later in section 5.1.2. 

- The ability to start or stop processing incoming and outgoing data for an individual 

session at each layer, namely at the IP object or Transport Layer object (such as 

TCP or UDP). This provides the ability to freeze a Transport Layer which is 

important when a connection is being restored, transferred or handed-off, as 

described in section 5.1 and 5.2.  

- A similar ability to the above is the ability to accept or reject certain types of PDU. 

This can be used to  provide security-related functionality.  

- The ability to append/prepend extra header before or after a certain PDU. 

Moreover, because InterLay allows more flexible control of the TCP/IP stack, in order 

to make better use of the InterLay model, Group B also includes the ability for other 

entities to make choices whenever alternations are available in TCP/IP stack. For 

example, many congestion control algorithms have been developed for TCP, each of 

which is suitable for a certain type of network link, such as algorithms for wireless access 

technologies [75] or satellite link [76-77]. However, in current TCP/IP implementation 

the congestion control is predefined and fixed, and the user application cannot choose the 

most suitable algorithm for its TCP session. If the TCP protocol object provides an 

action() method that allows the user application to choose the algorithm (for example a 

method with the name of cc_select(algorithm to use)) then better performance of TCP 

session might be achieved. The implementation of such an example can be done either by 

implementers of the TCP/IP stack in anticipating of its usefulness in an ad hoc manner 

(i.e. without specification from standard documentation), or officially by altering the 

concerned standard documentation for the protocol.  

All of these functionalities will be used to provide some new customization and 

flexibilities for TCP/IP networking via the InterLay model as explained in section 5.1. 
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3.5. Real-time vs. event parameters 
The InterLay model defines and separates two types of information regarding the 

condition/status of a protocol that are of interest to other partners: real-time and event.  

3.5.1. Real-time Parameters 

Real-time parameter corresponds to parameters of a networking protocol, and in this 

research we will concern only those of which immediate value is of importance (i.e. 

should be read or updated by other entities).  

As stated in 3.3, this kind of network parameter for a layer (and its specific protocols) 

will be implemented as a corresponding attribute of the corresponding class; therefore in 

this research attribute and network parameter are exchangeable: attribute is the 

representation of the network parameter of a protocol in the corresponding protocol class. 

The attribute value will be modified and retrieved using the associated set() and get() 

methods. The attribute stores the value of the corresponding network parameter that is 

used during the operation of the concerned protocol. For example the TCP class will 

contain, among others, a smoothed Round-Trip Time (RTT) (called rTTT) attribute that 

stores the current value of the smoothed RTT value. 

Real-time parameter can either be static or dynamic. An example of static real-time 

parameter is the IP address or port number of the source or destination of a connection 

and in normal condition the value of this type of parameter stays unchanged. Dynamic 

real-time parameter can be, for example, the current sequence number of a TCP 

connection, where the value of such parameter will be updated according to the progress 

of the communication session. However the application developer should bear in mind 

that for fast changing dynamic real-time parameter, the value may already be obsolete 

when it reaches the requester, so that value is true only sometime between the time of 

sending the request and the time receiving the reply, but not the value of the parameter at 

the time the reply reaches the requester. 

3.5.2. Event Parameters 

In contrary to real-time, event parameters can not be really be read at an arbitrary time, 

and normally do not represent a specific value. Rather, it indicates that a critical point has 
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been reached inside the protocol, which will potentially change the behavior of the 

protocol and when other entities are informed of the event they can react accordingly.  

While the real-time parameter exists for a certain period of time (normally for the 

entire lifetime of the owner protocol), an event will appear only at a specific point of time, 

and normally it will cause a series of reactions at the owner protocol, and these reactions 

can be implemented as action() method of the protocol class. 

Even though it does not represent a value but rather the start of a reaction process, an 

event is still classified as a parameter in the InterLay model, because it can also be 

requested by and notified to other networking protocol objects or applications just like 

real-time parameter. 

An event can be associated with a real-time network parameter, but in this case the 

importance is not in the immediate value, but whether that value has crossed above or 

below a certain value which in general will generate an event in real world. The 

concerned network parameter will be represented by two entities in the corresponding 

protocol class: one is the real-time attribute that stores the immediate numeric value, and 

the second is the event that is generated when the value is over/under a certain threshold.  

One example of this kind of event is the Retransmission Time Out (RTO) event, 

which is based on the absolute value of the round-trip time (RTT) of a packet. The 

intermediate value of an RTT is not important even if it varies greatly from packet to 

packet. The absolute value of the RTT is taken into consideration only if it is greater than 

that of RTO. In this case, the TCP protocol will start the RTO loss recovery by setting 

the congestion window (cwnd) to 1. But even when the timeout event happens, the exact 

value of the absolute RTT is of no importance, but what’s important is how the system 

reacts to such event. 

Event parameters can also be received externally, such as the Explicit Congestion 

Notification (ECN) received from the communication peer, which indicates that the 

network experiences congestion in the Tx direction. The event might also come from 

policy exchange with external entities on the network. 
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3.5.3. Implementation of real-time and event parameters 

The type of a parameter (i.e. real-time or event) will decide how it is implemented in 

the cross-layer communication model.  

For real-time parameter, the value of real-time parameter is that of the corresponding 

attribute of the protocol class, namely the returned value of the associated get() method. 

Because a read-only operation does not alter the status of the networking subsystem, 

when a look-up request for the current value of the parameter is made to the InterLay 

object, it will return the direct reading of the parameter (or in some cases through some 

conversions) without the need for any authorization.  

On the other hand, updating the value of a network parameter is potentially dangerous 

to the stability of the networking subsystem, and may cause troubles to it if the update is 

not implemented correctly. Therefore, when the InterLay object receives a request to 

fine-tune (i.e. modify) a certain parameter (i.e. attribute), it will have to perform all 

necessary permission and integrity checks to guarantee that the update will not negatively 

affect the networking subsystem or other processes that are relying on the networking 

subsystem. Moreover, for parameter of which value is obtained through probation or 

negotiation such as MSS (Maximum Segment Size), its value should not be modified 

directly but should be carried out through a suitable re-execution of the 

probation/negotiation process. 

The procedure to interact with event parameters will be completely different from that 

of real-time. Firstly, because the event does not correspond to a real value, it is not 

possible to issue a read or write operation on the parameter (i.e. the parameter is not 

associated with the set() and get() method). To the networking subsystem the occurrence 

of an event is equal to the execution of the series of reactions associated with that event.  

Secondly, because the exact moment that an event occurs cannot be predicted 

beforehand, protocol objects from other layers cannot request to “get” it at an arbitrary 

time. Instead, it has to register in advance to be notified of the event, and the registration 

might be associated with a certain lifetime which is the period of time that the requester 

is interested in the event. As a result, the event parameter in the InterLay object is 

implemented as a notification list, and the list stores a handler for each and every 
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requester that registers for the event (more on the operation of the notification list is 

discussed in subsection 3.7.4). The handler might be a means to inform the requester of 

the occurrence of the event, or the actions that the requester wants the InterLay object to 

perform when the event takes place. 

And how the requesting entity is informed of the event will depend on whether the 

requester resides in the user space or kernel space. This will be further discussed in 

subsection 3.7.4 and 3.9.4. 

The InterLay object also contains a list of predefined reactions, and the entity that 

registers for an event can request the InterLay object to perform some of these reactions 

at the time of the occurrence of the event. 

In the InterLay model, each parameter (both real-time and event) will be given a 

unique predefined ID (for example of data type DWORD), and the InterLay object will 

use this ID in the incoming requests to identify the concerned parameter. 

3.6. The action() methods 
As explained in 3.3, a protocol class will contain many methods. In this research, we 

divide them into two categories: the auxiliary methods and action() methods. 

The auxiliary methods do not directly fulfill the functionalities of protocol as specified 

by standard documents for that protocol. 

On the contrary, action() methods are those that represent the actions or procedures 

that a protocol performs to fulfill its duty as specified in standard documents. For 

example the Mobile IP class contains, among others, an RO() method that once called, it 

will perform route optimization procedure to a given destination. The TCP class contains, 

among others, the timeout_recovery() method that once called, it will set the cwnd to 1 

MSS and change the congestion control state to slow-start.  

In the InterLay model, apart from the above real-time and event parameters, the 

action() methods can also be invoked by external entities as well.  In InterLay, in 

addition to the action() methods that represent activities as documented for the protocol, 

a protocol class will also include a new type of action() methods that manipulate the 

PDUs in each layer, including changing the protocol headers before it is sent to the next 
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protocol entity in the data flow, or prepend/append certain information to the PDU. 

These methods are beneficial in the case the applications want to insert or remove a 

SHIM header into the data packet. 

And because the action() method also has the potential to affect the operation of the 

system, their invocation will be discussed in more details in section 3.9 together with the 

set() method.  

The action() method should be divided into atomic actions. Because of  the 

philosophy of InterLay that application has the most knowledge about the needs of itself, 

an action() method should not call others when carrying out it duties, but such service 

logic will be carried out by the calling application. For example, in the service scenario 

described in section 5.1.2.1, informing of IP address change to the Corresponding Node 

is not called by the set_PCB() function of the TCP/IP stack but by the application at the 

Mobile Node. 

In the InterLay model, each action() method will also be given a unique predefined ID 

(and for example of data type DWORD), and the InterLay object will use this ID in the 

incoming requests to identify the concerned action() method. The name domain for the 

ID of the action() method is different from that of the parameter, therefore an action() 

method and a parameter can be assigned the same ID. 

3.7. The InterLay object 
In the proposed model, all activities related to cross-layer communications will be 

handled by the object of the InterLay class. Through the InterLay object, protocol objects 

of any higher layers (i.e. not limited to the Application layer) or external servers can 

manipulate certain parameters and actions of protocol objects from lower layers. 

3.7.1. Composition/structure of the InterLay entity 

The InterLay should support the following requests toward the TCP/IP stack 

(i). Query of value of real-time parameter 

(ii). Updating value 

(iii). Executing an action 
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(iv). Notification of event 

As the action of (i) is of read-only type, there is no security risk associated with this 

type of action, and therefore in general it does not require any authorization. 

On the other hand, as the action of (ii) alters the internal state of the TCP/IP stack, it 

has the potential of negatively affecting the working of the networking subsystem. 

Therefore there should be some authorization and integrity checking mechanisms to 

guarantee the safe operation of (ii). 

The action of (iii) requires the TCP/IP stack to perform certain actions of a protocol, 

and these actions also have the potential to alter the state of the networking subsystem. 

For example, if the RO() action method of the IP protocol object is invoked, it might 

change how the packets for a certain IP session are routed in the Internet. Therefore 

similar to (ii) the action of (iii) also requires extra authorization, integrity checking and 

any other extra security measures deemed suitable. 

Finally, the action of (iv) at first glance is similar to that of (i) (i.e. read-only action) 

however due to the fact that the notification of an event might be associated with extra 

processing, making it similar to the case of (iii), therefore these requests also need to be 

authorized like the case of (ii) and (iv). 

From the above discussion, we can divide the functionalities of InterLay into three 

functional groups: 

- Request handling functional group: this group receives request and performs 

necessary authorization activities upon receiving the request. 

- Information gathering and provisioning: this group gathers information (value of 

real-time parameter or occurrence of event) and then returns the information in 

appropriate form to the requesters (i.e. the value of the real-time parameter or the 

notification/reaction of the event). 

- Enforcing of value update and action() method execution: this group updates the 

value of real-time parameter and execute an action() method of a protocol.  

In the InterLay model, these functional groups are implemented in the following three 

entities respectively: the Policy Engine (PE), the Informer and the Enforcer, as shown in 
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Figure 2. These three functional entities can either be implemented as a single object (i.e. 

in this case the InterLay is a real object) or as three separate and independent objects (i.e. 

in this case the InterLay is a nominal entity, representing the three objects: the PE object, 

the Enforcer object and the Informer object). The advantage of implementing as a single 

object is that the methods inside the InterLay object can invoke each other directly, 

without the overhead of locating the correct object as in the case of implementing as 

three separate objects. However, implementing as three distinctive objects helps localize 

the changes made to each entity and simplify the modeling process of the InterLay, and it 

will also simplify the implementation of threading for each functional groups, which can 

improve performance when each entity is programmed (using multi-threading 

techniques) to run on a single processor in the case the InterLay model is implemented in 

a multi-processors device (this is a very realistic assumption in the near future since 

currently quad-core CPU are being used even in portable devices). Apart from the 

advantage of easier multi-threading programming, dividing the functionalities of 

InterLay into groups can respond to requests from various sources in a unified and 

consistent manner. 

As explained above, the Policy Engine (PE) functional group serves as the central 

point of collecting and authorizing requests from other local and external entities. 

Therefore the PE will contain the necessary authorization mechanisms that can be 

applied to different types of requests from various sources. The InterLay model proposes 

one authorization mechanism based on priority, which will be discussed in 3.7.2. 

The requests that need to be authorized (namely those of type (ii), (iii) and (iv) above) 

are sent to the PE. For the requests to update real-time parameter or execute action() 

methods, after being authorized at the PE they are forwarded to the Enforcer which will 

update the value for the parameter, or executing the action() accordingly. The Enforcer 

may again validate the request, such as checking whether the new value is of valid type 

and range. On the other hand, requests to register for event are sent to Informer after 

being authorized, and the Informer, which serves as the central point for collecting data 

regarding real-time parameters and events, will respond to the registration request by 

acting accordingly whenever the concerned event takes place. 
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Figure 2. The InterLay Object 

As all other requests go through the PE, it would look more logical for the PE to also 

handle requests to query value of real-time parameter, as it would give developers a more 

consistent requesting pattern. However, letting the Informer to serve this type of request 

directly has the following advantages: 

- Firstly because the request for value is a read-only activity, it does not pose any 

security risk. Therefore it does not require the security checking specialty of the PE.  

- Secondly, because queries for value of real-time parameters from local system (i.e. 

user applications and objects from the TCP/IP stack) are expected to have the 

highest rate, letting the Informer handling this type of request would share the load 

between the PE and the Informer, which might prove useful in the case both objects 

are implemented as individual objects and are running on different processors (the 

computing trend shows  that  in the near future multiprocessor end devices will be 

ubiquitous).  
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- Thirdly, in the case the request is handled by the PE, it is just an extra function call 

to the corresponding method of the Informer, therefore if due to possible future 

extension there is a need to transfer the role of receiving this type of local query 

operation between the Informer and the PE, it could be done trivially. Also, calling 

the query request through the PE introduces an extra function call, which clearly is 

an overhead.  

In this research, the request for query of value of real-time parameter (i.e. the action of 

(i) above) is handled by the Informer due to the above advantages. 

Finally, the recipients of the requests, namely the PE and the Informer, should be 

equipped with a rate control mechanism to protect the performance of the TCP/IP 

networking stack from being abused with excessive requests. 

The three functional entities will be discussed in more details in the following sections. 

In this discussion, it is assumed that the PE, the Informer and the Enforcer are 

implemented as separated objects. 

3.7.2. The Policy Engine 

In more details, the Policy Engine (PE) performs the following functions: 

- Receiving instructions/requests, providing the service of accessing and 

manipulating of internal parameters and actions of the local networking subsystem. 

- Authorizing the requests from user applications, using the priority mechanism 

(described later) as well as authenticating requests that it receives from external 

servers. 

- Dispatching requests to appropriate handling entities, namely the Informer and 

Enforcer. 

- Returning the results of the request. 
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Figure 3. The Policy Engine 

The PE accepts the requests from the follow three types of entities: end-user 

applications (in the user space), lower layer protocol objects (layer 2 to layer 4, in the 

kernel space), and external policy servers (outside the local system).  

The PE contains four helper methods to deal with requests, namely (i) the set_param() 

method to process update requests for real-time parameters, (ii) the request_retrieve() 

method to process look-up requests for values of real-time parameters, (iii) the 

request_register() method to process registration requests for event parameters, and (iv) 

the ivk_action() method to process the requests to execute an action() method. These 

methods will either be invoked directly by entities residing on the same kernel space 

(including the Message Handler which serves external systems), or be mapped to system 

calls used by entities residing in the user space.  

These methods might be overloaded with OO techniques to serve the different types of 

requesters with different types of input arguments. The PE may also contain primitive 

methods, which are basic building blocks that perform supplementary actions to assist in 

the processing of incoming requests. These primitive methods may perform, for example, 

integrity or authentication checks.  
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As explained previously, the Policy Engine can also be equipped with a rate-control 

mechanism to monitor and limit the request rate for a certain parameter from a requester 

(i.e. rate of requesting the get()/set() for that parameter), as well as the overall number of 

requests sent to the InterLay object from that requester to a reasonable number in a 

certain period. This number can be decided based on the nature of the parameter, for 

example the upper limit for fast changing parameter can be set higher for slow changing 

parameter, or the limit is higher when the network activities is low than when the 

activities is high. Any request that arrives after the rate reaches the limit will be discarded 

by the PE. This will help to prevent the InterLay object from being abused by the user 

applications and by the networking protocol objects themselves. This is a safeguard 

mechanism to protect the performance of the new cross-layer enabled TCP/IP 

architecture. 

Within the PE, the processing of requests from local systems is different from external 

ones, and will be discussed in details as follows. 

3.7.2.1. PE and the external systems 
A) The Message Handler 

The PE relies on a Message Handler to communicate with external entities for 

supplement policies and information using standard protocols (such as Diameter, COPS, 

MIH etc.). 

Because these protocols are running in the application level, while the Message 

Handler (MH) resides inside the PE (and thus it will run in the kernel space), there are 

two solutions for the MH to receive the requests from external systems, which are: 

- The first solution is to tweak a special version of TCP/UDP socket that runs 

directly in the kernel. In this case the user provides the necessary authentication 

information (namely the address of the server and the user account information 

used to access that server) through some interface provided by the OS. However, 

the development of such socket might be cumbersome.  

- The second solution is to implement a policy exchange application in the user 

space, and the Message Handler will exchange these messages with the user-
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space application via NetLink [35] [39] (see Appendix I for a discussion of how 

to use NetLink for kernel-user space communication). 

The external systems will exchange requests with the MH to fulfill the following tasks:  

- retrieving value of real-time parameter 

- updating value of real-time parameter 

- registering for an event 

- invoking an action() method 

- exchanging of policy to authorize actions 

- providing supporting data to the networking subsystem 

When the MH receives requests from external system, first it has to authenticate the 

request. Normally the external system would want to learn about the conditions of the 

local system within the context of some communication services. In this case, the client 

application (corresponding to the communication service) residing at the local system 

would maintain some kind of share-secrets with the external system. The client 

application and the MH can then cooperatively authenticate the request from the external 

system in one of the following two scenarios: 

Scenario #1: The client informs the MH (through some pre-defined API) regarding 

the information to authenticate the request from the external system (address, share 

secrets, authentication mechanisms etc.) and the MH will performs the authentication 

accordingly. In this scenario, the priority of the request is equal to that of the MH, or 

is assigned explicitly by the user through a system interface depending on the origin 

of the request (priority is explained later in this section). 

Scenario #2: The client application authenticates the request by itself. In this case the 

MH and the client application are preconfigured with two-way APIs so that the MH 

can pass the information related to the request to the application and receive the 

decision of the application on whether the request is authentic or not. In this scenario, 

the priority of the request is equal to that of the client application. 
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In these scenarios, the roles in the exchange of authentication protocol are reversed: 

the external system (normally a server) acts as the client or the originator of the request, 

while the client application/MH acts as the server of the request. 

The advantage of the first scenario is that the MH does not have to invoke the client 

application every time a request arrives at the MH, which saves some processing 

overhead. Moreover, only the first scenario allows for the remote monitoring of local 

status without the need for an agent at the local system. The advantage of the second 

scenario is that the client application can reuse any existing security associations with the 

server to authenticate the request. However, the second scenario can be substitute by 

letting the server to communicate the request directly with the client application, and the 

client application will relay the request to the InterLay. The drawback is that in this case 

the client application has to both authenticate and relay the result to the external server, 

which will increase the workload for the application developer. 

If the request passes the authentication check, the MH will parse it to get the requested 

action, then map it to one of the four helper methods described above, and subsequently 

invoke either the Informer or the Enforcer to fulfill the request. The detail operations 

regarding each type of actions are further explained in the following sections. 

B) Querying value of real-time parameter 

The external system can make a request for information on a real-time parameter of 

the networking subsystem, or issue requests to modify the parameters. The format of the 

request and reply message will depend on the communication protocol being used, but it 

must contain the ID of the concerned parameter and in the case of an update request it 

should also include the new value to be assigned.  

Because it is difficult for the external system to single out a single Transport layer 

session in the local system, the exchange between the external servers and the PE will 

mostly concern the parameters of the Network layer and the Data Link layer. However, 

in the case the external system needs to indicate a Transport layer session, it can use the 

address tuple (i.e. the source and destination IP address and ports). 

When the request is to retrieve the value of a parameter, the PE will call the 

get_param() function of the Informer (described later in subsection 3.7.4) with the ID of 
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the parameter as the input, and forward the returned value by the Informer back to the 

external system. 

C) Updating value of real-time parameter 

When the request is to update the value of a real-time parameter, the PE first compares 

the priority of the requester with the priority of the parameter. The update request is only 

authorized if the priority of the requester is equal or higher than that of the parameter. 

The PE might perform any other authorization actions deemed necessary for the request. 

If the request is authorized, then the PE will call the update() method of the Enforcer  

(described later in 3.7.3), with the ID of the real-time parameter and the new value to be 

updated as the input, and the Enforcer will call the appropriate update method for the 

parameter. The priority of the request and the parameter is discussed in section 3.7.2.3 

below. 

D) Invoking an action() method 

When the external system wants to execute a specific action() method, it sends a 

request to the Message Handler an invocation request with the ID of the action() method. 

The PE first compares the priority of the requester with the priority of the action() 

method. The execution request is only authorized if the priority of the requester is equal 

or higher than that of the action() method. The PE might perform any other authorization 

actions deemed necessary for the request.  

If the request fails the authorization, it will be discarded. Otherwise, the PE will call 

the execute() method of the Enforcer  with the ID of the action() method and optionally 

the input arguments for the action() method to carry out the execution. The priority of the 

request and the parameter is discussed in section 3.7.2.3 below. 

E) Registering for an event 

For event parameter, the external system will send to the Message Handler a 

registration request message together with the ID of the event. The message might 

optionally contain some extra actions that it wishes the InterLay object to perform at the 

time of the occurrence of the event. These extra actions are predefined in the Informer. 

The PE will perform any authorization actions deemed necessary. If the request is 
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authorized the PE will inform the Informer of the registration by calling the 

event_registration() method (described later in section 3.7.4), with the following input 

arguments: 

- The ID of the event 

- A string represents the address of the external system 

- The handler for the requester in the form of the pointer to the callback function 

send_event() from the Message Handler. The send_event() function basically 

contains the codes to notify the external system of the event. 

- The ID of any extra predefined actions that the external system wants the local 

system to perform at the time the event occurs. 

- A value that indicates to the Informer that this request comes from the external 

system. 

When the event takes place, the Informer will invoke the send_event(), using the event 

ID as well as the address string to correctly inform the external system of the occurrence 

of the event ID. 

F) Requesting information from the networking subsystem to the external system 

The protocol object in the networking subsystem of the local system can use the PE 

(namely the services of MH) to query the information from external systems to better 

fulfill its job. In this case the external server will be given a special parameter ID, and the 

PE will just act as an intermediate agent, sending the request from the requesting 

protocol object to the external system and forward the reply to the requesting protocol 

object.  

The request and reply messages contain the information that informs the external 

system of what information the protocol object of the local system is interested in. In 

specific, the request message normally contains the parameter ID of the external server 

(that will be used by the PE to find the actual address) and the indication of the type of 

information that is requested. The reply message contains the reference to the request 

message so that the receiver knows what information is being returned. Moreover, the 

InterLay should be able to find the right local protocol object to send the reply message 
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to. However, this is an extra functionality that is out of scope of this study and is left for 

further study, but this functionality can be used by the local networking subsystem to 

request and execute externally received scripts. 

3.7.2.2. PE and the local system 
The local system includes the OS and the applications running above it. Because end-

user applications (in the user space) reside in different memory space from the InterLay 

object, it will interact with PE through the system calls of the Service Access Point 

(namely the SAP-1), and these system calls will be mapped to the four helper methods 

(the system calls will be discussed later in  3.9.)  

 On the other hand, because Transport and Lower Layer protocol objects reside in the 

same kernel space as the PE, they can issue requests directly to the four helper methods 

of the PE.  

PE receives requests from the application and lower layer protocols to (i) update value 

of real-time parameter, (ii) register for an event, and (iii) invoke an action() method, and 

these operations will be discussed in more details as follows. 

A) Updating value of real-time parameter 

When the PE receives a request to change value of a real-time parameter, it first 

authorizes the request using the priority mechanism by comparing the priority of the 

requester with the priority of the parameter. The update request is only authorized if the 

priority of the requester is equal or higher than that of the parameter. In this case the PE 

will call the update() method of the Enforcer, with the ID of the real-time parameter and 

the new value to be updated as inputs, and the Enforcer will call the appropriate set() 

method for the parameter. 

Otherwise, if the request is not authorized it is discarded.  

B) Registering for an event 

When the PE receives the registration request for an event with its ID, it will perform 

any authorization actions deemed necessary. If the request is authorized, the PE will 

inform the Informer by invoking the event_registration() method to register the requester 

to the event notification list. 
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For the request from a user application, the PE includes in the call to the 

event_registration() method with the following input arguments: 

- The ID of the event 

- Any information that helps locating the right owner of the event (optional) 

- The process ID of the application 

- The ID of any extra predefined actions that the external server wants the local 

system to perform at the time the event occurs. 

- A value that indicates to the Enforcer that this request comes from user application. 

If the request comes from the networking subsystem, the PE includes in the call to the 

event_registration()method with the following input arguments: 

- The ID of the event 

- Any information that helps locating the right owner object of the event (optional) 

- The pointer to the callback function that handles the event 

- The ID of any extra predefined actions that the external server wants the local 

system to perform at the time the event occurs. 

- A value that indicates to the Enforcer that this request comes from networking 

subsystem.  

C) Invoking an action() method 

When the PE receives a request from the application or lower layer protocols to 

execute a specific action() method with the ID of the action() method, the PE first 

compares the priority of the requester with the priority of the action() method. The 

execution request is only authorized if the priority of the requester is equal or higher than 

that of the action() method. The PE might perform any other authorization actions 

deemed necessary for the request.  

If the request is authorized, then the PE will call the execute() method of the Enforcer 

(described later in 3.7.3, with the ID of the action() method and optionally the input 
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arguments for the action() method to carry out the execution. The priority of the request 

and the parameter is discussed in section 3.7.2.3 below. 

Otherwise, if the request is not authorized, the request is discarded. 

3.7.2.3. Priority of requests for updating real-time parameter or invoking 
action() method 

The PE contains the priority values of all requesting parties, as well as for each real 

time parameter and action() method. 

For real-time parameters, each is associated with a certain priority. A requesting 

network protocol object of the local networking subsystem will also be assigned with a 

certain priority. When the networking subsystem is initialized, the parameters and 

networking protocol objects are assigned a default priority. 

 Excluding the application layer, in general higher layer protocol has higher priority 

than lower one because it has more comprehensive view of the current condition. For an 

object in the application layer, its priority is highest for parameter that is dedicated to 

itself (i.e. parameters from Layer 4 (L4) protocol object which are created by the 

application) but it has a default lowest priority for parameters of Layer 2 (L2) and Layer 

3 (L3). On the other hand, the priority of requests coming from external policy server can 

be set on a case-by-case basis. 

An update request for the value of a parameter is served only if the priority of the 

requester is higher than or equal to the current priority of the parameter, and requests 

from requesters with equal priority will be executed in chronological order of arrival (i.e. 

late request overrides earlier one). As higher priority overrides lower ones, the kernel can 

protect a certain parameter from being altered by setting the parameter priority to the 

exclusive (highest) priority with infinite lifetime.  
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Figure 4. The operation of priority mechanism 

The priority of a parameter is set to equal to that of the last accepted request (however 

a request is given a certain lifetime, and after that period the request’s veto right on the 

parameter is obsolete, and the priority of the parameter returns to that of the default 

value). 

For action() method, each method is also associated with a priority. Each networking 

protocol object and application is also given a priority, normally the default priority. The 

priority of requests coming from external policy server can be set on a case-by-case basis. 

An action() method is executed if the priority of the requester is higher  than that of the 

concerned action() method. The kernel can prevent a certain parameter from being 

executed by setting the method’s priority to the exclusive (highest) priority with infinite 

lifetime.  

The networking subsystems may provide an interface for the users to explicitly set the 

priority of a certain application or protocol object. 

3.7.2.4.      Other extra security checks 
Apart from priority check for the update of a parameter, the PE might also perform 

any other necessary permission and integrity checks before calling the update() method 

of the Enforcer to update the value of a network parameter. Normally the check aims at 

guaranteeing that the update will not negatively affect the networking subsystem or other 

communication applications. One example is to check whether the requester of an event 

registration is eligible for the extra reactions included in the registration message for an 

event. 
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3.7.3. The Enforcer 

The Enforcer performs two type of actions, one is to update real-time parameters and 

the other is to execute action() methods. 

The Enforcer may also contain other primitive methods which are basic building 

blocks that perform supplementary actions that are common for all set() or action() 

methods, such as general integrity check or authorization. 

The InterLay model uses the Enforcer to support (obj-b) described in section 1.2 of 

chapter 1. 

3.7.3.1.  Updating real-time parameter 
The Enforcer performs actual changes of real-time parameters as requested by the PE. 

It contains an update() method that receives the ID of the parameter and the new value to 

be updated as input arguments (see Figure 5.) 

  

 

Figure 5. Enforcer and updating real-time parameters 

The Enforcer also maintains a list of constrains on each parameter. When the update 

request is sent to the Enforcer, it may further validate the request, such as checking the 
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new value against the constrains of the parameter to see whether the new value is of valid 

type and range. 

The Enforcer maintains a mapping between the ID of a real-time parameter and the 

set() method (or method to renegotiate/probe the value in the case the parameter obtains 

its value through negotiation/probing) of that parameter. The update() method will 

implement this mapping by using, for example a switch-case structure using the ID for 

selection. Any other actions (including security authorization) specific to the parameter 

that need to be performed, as well as action to locate the right object (in case several 

object instances of the protocol exist at the same time) can be performed in this switch-

case (see table II). 

3.7.3.2. Executing action() method 
The Enforcer contains an execute() method that the PE calls to request the Enforcer to 

execute an action() method. 

The Enforcer maintains a mapping between the ID of a action() method and the actual 

method. The execute() method will implement this mapping by using, for example a 

switch-case structure using the ID for selection. Any other actions (including security 

authorization) specific to the parameter that need to be performed, as well as action to 

locate the right object (in case several object instances of the protocol exist at the same 

time) can be performed in this switch-case, which is demonstrated in table II. 
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  case 123456: 

//Any pre check or object location is done here 

MIP.RO((string *) val);// in this case val is the address of 

                       // Corresponding Host  

//Any post set(); // check is done here 

  break; 

  … 

  } 

}; 

 

} Enforcer; 

  switch (ID) { 

 void execute(DWORD ID; void * val) { 
}; 

  … 

  } 

//Any post set(); // check is done here 

  break; 

TCP.setDPort(newVal); 

//Any pre set()check or object location is done here 

  case 111111: 

//Any post set(); // check is done here 

  break; 

//via renegotiation process, //not 

directly 

//Any pre set()check or object location is done here 

TCP.changeMSS(newVal);//the MSS should be updated 

  switch (ID) { 

  case 123456: 

 void update(DWORD ID, DWORD *newVal) { 

public: 

class Enforcer { 

Table II. The switch-case of the update() method 

Note: in the Table II the data type of newVal parameter is pointer to DWORD, however, the update() 

method can be overloaded to serve other data type, especially DWORD type for  faster performance (most 

of the networking parameter will be of numeric type) 

The example of the update() and execute() switch-case in C++ is explained in table II 

(suppose that the Enforcer is implemented as a separate object), while the operation of 

the Enforcer when executing action() method is depicted in Figure below. 
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Figure 6. Enforcer and executing action() method 

3.7.4. The Informer 

As the name implies, the Informer is the entity that (i) returns the value of the real-time 

parameter, and (ii) notifies the requester or responses accordingly when a registered 

event occurs. 

3.7.4.1. Returning the value for the real-time parameter 
For real-time parameter, the Informer contains the get_param() method that returns the 

current value of real-time parameters at invoked time. Note that for fast changing 

parameter, the returned value might be outdated when reaching the requesting object. 

The Informer maintains a mapping between the ID of a real-time parameter and the 

get() method of that parameter in the get_param() method. Similar to the update() 

method of the Enforcer, the get_param() method will implement this mapping by using, 

for example a switch-case structure using the ID for identifier. In general, there is no 

need for security check for a read operation, but it might be necessary to locate the right 

object in advance if there exist several protocol object instances of the same layer at the 

same time (for example several sockets are active – equaling to several TCP object exist). 

The example of the switch-case in C++ is described in Table III (suppose that the 

Informer is implemented as a separate object). 
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Because we expect that frequency of the request for get() method will be much higher 

than other type of request, to improve the performance of the networking subsystem, the 

Informer may choose to cache the value of the parameter that is judged to be static (for 

example the Home Address in Mobile IP protocol) so that it has to call the get() function 

for that parameter only once at the first time the parameter is requested.  

How the requests to query value of real-time parameters are dispatched and served 

depends on where the requesters reside. 

If the requesters are the protocols of the TCP/IP stack, they can call the get_param() 

function directly because they reside on the same kernel space with the InterLay. By 

contrast, end-user applications (in the user space) reside in different memory space from 

the InterLay object, and therefore they will interact with the Informer through the Service 

Access Point, namely the SAP-2 in figure 7. In the case the request for value of a real-

time parameter comes from an external entity (i.e. an external server), the request will 

come through the PE.  

When the Informer receives a request for value of a real-time parameter with the ID of 

that parameter through the get_param() method, the corresponding get() method of the 

parameter belonging to the target object will be invoked, and the Informer then returns 

the value to the requester, either directly if the requester resides in the kernel space, or 

through the SAP-2 interface if the requester is an end-user application. If the request 

comes from external server, the Informer returns the value to the PE, which then 

forwards the result to the external entity. 
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class Informer { 

 public: 

 DWORD * get_param(DWORD ID) { 

      switch (ID) { 

  case 222222:  

//object location is done here if required 

return TCP.getMSS() ; 

  break; 

  case 444444:  

//object location is done here if required 

return TCP.getDPort() ; 

  break; 

  case 666666:  

//object location is done here if required 

return MIP.getCCoA() ; 

  break; 

  … 

  } 

}; 

} Informer; 

Table III. The switch-case of the get_param() method 

Note: in the Table III the returned data type of newVal parameter is pointer to DWORD, however, the 

get_param() method can be overloaded to serve different data types, especially with DWORD type for faster 

performance (most of the networking parameter will be of numeric type) 

The operations of the Informer regarding querying value of real-time parameters are 

depicted in Figure 7 below. 
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Figure 7. Informer and returning value of real-time parameters 

3.7.4.2. Registering and notifying of the occurrence of an event.  
Apart from real-time parameters, the Informer also handles event notification activities. 

It contains a event_registration() method for this purpose. The method is overloaded 

using OO technique to serve the different type of requesters with different types of input 

arguments. 

For each event, the Informer will create and maintain a separate notification chain [27]. 

The Informer maintains a mapping between the event ID and the corresponding 

notification chain. The appropriate information (i.e. the handler which dictates the 

reaction when the event occurs) received from the PE through the call to the 

event_registration() method will be registered to the notification chain corresponding to 

the event ID. For the extra actions coming with the request to the PE, only the extra 

actions that are not registered yet will be registered.  

For each notification request, the Informer keeps a timer, so that when the request 

expires, the requester will be purged from the list. This will reduce the overhead that is 

caused by notification that is no longer needed by the requester. 
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When the event occurs, the handlers registered in the notification chain will be 

executed as discussed previously in 3.5.2, the type of reactions indicated by the handler 

will be different depending whether the requesters reside in the kernel space and user 

space. 

3.7.4.3.  Registering and notifying requester in kernel space 
The requesters in the kernel space include both the Message Handler of the PE 

(namely the MH to serve external systems) as well as protocol objects of the TCP/IP 

networking subsystem. As explained above, upon receiving the registration request from 

the PE, the Informer will register the handler to the appropriate notification chain, using 

the event ID. In this case the handler is the send_event() function of the PE or the 

callback function pointer from the protocol objects.  

There are two ways to register the handler to the notification chains. First, the callback 

function pointer is registered directly into the notification chain. This requires no extra 

processing at the InterLay object, which is suitable for simple and sequential activities 

that simply require a linear chain of reactions.  

However, as registering a function to a notification chain may require some extra 

efforts, the second option is to create a method at the InterLay that will takes care of 

invoking all of the callback function, and only this method is registered to the chain. The 

method will take care of removing expired registration. In this case only a single 

registration of that method to the notification chain is required. This option has another 

advantage that it is easier to manage/modify/maintain the notification chain because it is 

confined to a single method. Moreover, it can not only support linear processing of the 

callback function chains, but also support processing with condition and loop etc. 

Upon the occurrence of the event, for the registration made by external system through 

the MH, the send_event() method is called with the ID of the event and the address of the 

server. This method will send the event ID to the external system, informing it of the 

occurrence of the event at the local system. For registration from local protocol objects 

(i.e. in the kernel), the corresponding call back function is executed. 

The operations of notifying to requesters from inside the kernel space are illustrated in 

Figure 8 below. 
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Figure 8. Registration and notification for events from inside the kernel 

3.7.4.4. Registering and notifying requester in user space 
For registration from the user application, the Informer carries out the following 

actions: 

1. The Informer maintains a list of process ID for each event. 

2. When an application registers for an event, the Informer adds the process ID to the list, 

after confirming that no such ID is already in the list. 

3. The Informer maintains one separate notify() method for each event. When invoked, 

this function will go through the process ID list, and performing the notification to 

each and every application in the list.  

4. The Informer then registers this method to the notification chain of the concerned 

event parameter. When the even occurs, the notify() method will be called, and it 

will notify all the applications in turn. 

The registration for events from user applications is illustrated in Figure 9 below. 
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Figure 9. Registering for events from user applications 

Notifying the user application from the kernel in a timely manner is difficult in 

InterLay because: 

- The application needs several information to identify the correct event, namely 

the ID of the event and optionally the socket identifier (the address tuple) that the 

event belongs to. 

- The only standard IPC (Inter Process Communications) mechanism that the 

kernel supports for notifying user application is through the kernel signal [34] 

[38]. There are two types of signals: normal and real-time, of which only real-

time allows for an extra 32bits data, but the number of signal that is available is 

limited. In the case the application needs more information, signal will be used 

along with some other IPC mechanism such as mmap[47]. Another solution is to 

use NetLink socket. 

We will discuss each user space – kernel space communication solution in Appendix I.  
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3.7.4.5. Other issues 
Like the PE and the Enforcer, the Informer class also contains primitive methods, 

which are basic building blocks that perform supplementary actions to assist the 

invocation of the get() methods of the protocol objects, as well as to maintain the 

notification chain.  

The Informer object also contains a list of predefined extra actions, each is given an 

ID. The entity that registers for an event can also specify in the registration request for 

the event some of these extra actions (apart from the even notification sent to the entity 

itself) that it wants the InterLay object (here namely the Informer) to perform when the 

event occurs.  

And similar to the case of PE, the Informer can also be equipped with a rate-control 

mechanism to monitor and limit the request rate from a requester for a certain parameter 

(i.e. rate of calling the get()/set() for that parameter)  as well as the overall number of 

requests sent to the Informer object from a certain requester, to a reasonable number in a 

certain period. This number can be decided based on the nature of the parameter, for 

example the upper limit for fast changing parameter can be set higher for slow changing 

parameter, or the limit is higher when the network activities are low than when they are 

high. Any request that arrives after the rate reaches limit will be discarded by the 

Informer. This will help to prevent the Informer object from being abused by the user 

applications and by the networking protocol objects themselves, in order to protect the 

performance of the new cross-layer enabled TCP/IP architecture. 

3.8. On selection of the right protocol object  
The TCP/IP implementation has the hour-glass shape, in which the IP layer is 

essentially the n-to-m multiplexer [71] between multiple Layer 4 and Layer 2 protocol 

instances. If the Interlay is requested to perform an action on all instances of Layer 4 and 

Layer 2, then it can walk through all instances and perform the requested action. 

However, in the case the requester of an action wants to target a specific Layer 4 or 

Layer 2 protocol instance, the InterLay needs to locate the right protocol object. 

There may existed several instances of the same Layer 4 protocol at a time, and 

normally these instances are linked together in a link-list. For example, each UDP socket 
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will create an UDP instance at the networking subsystem, and these sockets are linked 

together in a link-list. There is one link-list per protocol, for example the link-list for 

UDP is separated from that of TCP and other Layer 4 protocols. 

Instances of Layer 4 protocols are basically identifiable via the tuple (source + 

destination IP addresses and ports). Therefore when an entity (e.g. the user application or 

external system) wants to either manipulate a parameter or execute an action on a 

specific Layer 4 instance, the InterLay (namely the Informer or the Enforcer) will need 

the identifier of the instance (i.e. the tuple), and it will walk through the link-list of the 

concerned protocol in the networking subsystem until it finds the right instance, and 

execute the requested get() or set() or action() method. 

On the other hand, Layer 2 protocol instances, which are basically controller object of 

network interfaces, can be identified by several means.  The most popular means of 

identifying a network interface is to use the IP address associated with it. If network alias 

is used, then several IP addresses can be mapped to a network interface, but essentially a 

network interface will be unambiguously identified using an IP address. If the interface 

utilizes a technology from the IEEE 802 networking family, then the associated MAC 

address can be used by the InterLay to find the associated interface. Requesters from 

local system can also use the interface name to identify the interface they want to 

manipulate. 

3.9. New system calls to enable SAP-1 and SAP-2 
The division of the service access points into SAP-1 and SAP-2 is nominal, because to 

the user applications they are just a group of kernel system calls. Moreover, if the 

InterLay is implemented as one instead of three objects, then the division is purely 

logical. And as explained in section 3.7.4, SAP-2 can be easily combined with SAP-1 if 

we let the PE receives the request for looking-up value of real-time parameter from local 

system. 

To realize these SAPs, several new system calls should be defined that carry out the 

interactions between the socket and the InterLay objects. As explained in section 3.5 and 

3.6, each network parameters or action() method that is exposed by the InterLay will be 

given a unique predefined (DWORD) ID to be used with the system calls. 
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The kernel defines several new system calls to be used by the applications to invoke 

the functionalities of the InterLay object as follows. 

3.9.1. The new net_set_param() socket API 

A new net_set_param() socket API function is used at the SAP-1 interface, which 

allows the application to assign new values to the real-time attributes of lower layer 

objects (normally the Transport) through PE. net_set_param() requires a set of 2 input 

arguments: {the predefined ID of the real-time parameter; the new value for that 

parameter}.  

net_set_param() will invoke the set_param() method of the PE functional group with 

two more additional input parameters to correctly identify L3 and L4 protocol objects: 

the caller’s Process ID and the socket identifier (i.e. the socket type and socket’s address 

tuple.)  

The set_param() method will use the Process ID to find the priority of the request 

(either the default value for application or a explicit value set by the user) and perform 

priority test or any other necessary authorization test and if everything is OK it will ask 

the Enforcer to invoke the set() method for the parameter that corresponds to the 

requested parameter ID and the socket’s identifier (i.e. the L4 session), and the result of 

set() method (namely SUCCESS or FAILURE) is returned to the caller of the 

net_set_param(). 

3.9.2. The new net_get_param() socket API 

A new net_get_param() socket API function is used at the SAP-2 interface, which 

allows the socket object to query the value of a real-time parameter of lower layer objects  

through the Informer. The net_get_param() requires the predefined ID of the real-time 

parameter as input parameter.  

net_get_param() will invoke the get_param() method of the Informer functional group 

with two more additional input parameters to correctly identify L3 and L4 protocol 

object: the caller’s Process ID and the socket identifier (i.e. the socket type and the 

socket’s address tuple).  
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get_param() method will invoke the get() method for the protocol object’s attribute 

that corresponds to the requested real-time parameter’s ID and socket’s identifier (i.e. the 

L4 session) and the  returned value is subsequently returned to the requesting application. 

3.9.3. The new net_invoke_action() socket API 

A new net_invoke_action() socket API function is used at the SAP-1 interface to allow 

the application to invoke an action() method of a protocol object, with one function 

parameter which is {the predefined ID for the concerned action() method}.  

The net_invoke_action() system call will be mapped to the ivk_action() of the PE with 

two more additional input parameters to correctly identify L3 and L4 protocol object: the 

caller’s process ID and the socket identifier (i.e. the socket type and the socket’s address 

tuple).  

The net_invoke_action() system call will be called by the application by indicating a 

predefined ID. The ivk_action() method will use the caller’s Process ID to find the 

priority of the request (either the default value for application or an explicit value set by 

the user) and perform priority test or any other necessary authorization test and if 

everything is OK the PE will ask the Enforcer to invoke the action() method of the 

appropriate  protocol object. 

Optionally the application can call a sequence of action() method  by indicating the 

corresponding sequence of ID. 

3.9.4. The new net_reg_event() socket API 

A new net_reg_event() system call is used at the SAP-1 interface to allow the 

application to register for a specific event. The net_reg_event() function will take as 

input arguments the predefined ID of the concerned event and optionally the socket 

identifier (i.e. the socket’s address tuple) if the event belongs to Transport protocol object. 

The net_reg_event() system call will be mapped to the request_register() of the PE 

with two more additional input parameters to correctly identify L3 and L4 protocol 

object: the caller’s Process ID and the socket identifier (i.e. the socket type and the 

socket’s address tuple).  
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After the request is authorized, request_register() of the PE will invoke the 

event_registration() method of the Informer. Subsequently the Informer will register the 

process ID to the notification chain and will inform the application when the event occurs. 

As the name implies, the job of the net_reg_event() is only to notify the InterLay 

object of the request to learn about the event by the application. The actual notification 

process will be carried out by the Informer as described in Appendix I. 

3.9.5. Implementation of the system calls 

The four system calls net_set_param(), net_get_param(), net_reg_event() and 

net_invoke_action() can be implemented either as socket API functions or generic system 

calls. The advantage of implementing system calls as socket API calls is that there is no 

need for socket identifier to be included as input arguments. In the case the system calls 

are implemented as generic system calls, there is no need for  new socket, so deployment 

might be faster, but socket identifier (the address tuple) might be needed. 

3.10. Illustrations of InterLay operations 
In this section we will provide some illustrations of how the InterLay works to provide 

services to various requesters. 

In the following sections, we will consider the following interactions between:  

- InterLay and lower layers 

- InterLay and user applications  

- InterLay and external systems 

For each interaction, we will consider the following scenarios: 

- Querying value of real-time parameter 

- Setting value of real-time parameter  

- Invoking action() method 

- Event registration    
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3.10.1.

St

 InterLay and lower layers 

Lower layers mean transport layer and those below. Interlay and lower layers belong 

to the same kernel module, therefore it can call directly set() and get() method for real-

time attributes.  

A.  Querying value of real-time parameters  

Figure 10 explains how a lower layer returns the data for real-time parameters to 

another lower layer. 

ep 1: Lower layers call the get_param() method with the parameter ID 
Step 2: Informer calls the get() method  corresponding to the parameter ID 
Step 3: Informer returns value from the get() method to the caller of get_param() 

 

Figure 10. Querying value by lower layers 

B.  Updating value of real-time parameter  

Figure 11 explains how a lower layer updates the data for real-time parameters to 

another lower layer. 
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Step 1: Lower layers call the set_param() method with the parameter ID 
Step 2: Policy Engine authorizes the request and calls the update() method 
Step 3: Enforcer calls set() method to update value of the parameter ID 

 

Figure 11. Updating value by lower layers 

C.  Invoking action() methods  

Figure 12 explains how lower layers invoke an action() method. 

Step 1: Lower layers call the ivk_action () method with the action ID 
Step 2: Policy Engine authorizes the request and calls the execute() method 
Step 3: Enforcer calls action() method corresponding to the action ID 
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Figure 12. Invoking action() methods 

 

D.  Event registration and notification 

Figure 13 explains how lower layer objects register and be notified for an event  

Step 1: Lower layers call the request_register() method with the event ID and callback 
function 
Step 2: Policy Engine calls the event_registration() method 
Step 3: Informer puts the call back function to the notification chain.  
Step 4: The event occurs. 
Step 5: The notification chain invokes the callback function for the lower layer object. 
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Figure 13. Registration for events from lower layers 

3.10.2.

St

  InterLay and user applications  

The InterLay will interact with higher layers through the system calls of SAP-1 and 

SAP-2.  

A.  Querying value of real-time parameters 

For real-time parameters, the application can query directly the Informer through the 

standardized interfaces as depicted in Figure 14  

ep 1: Applications call the net_get_param() socket call with the parameter ID 
Step 2: Informer calls the get() method corresponding to the parameter ID 
Step 3: Informer returns value from the get() method to the caller of net_get_param() 

 60 



 

Figure 14. Querying value by user applications 

B.  Updating value of real-time parameters 

Figure 15 explains how the applications update the value for real-time parameters by 

user applications. 

Step 1: Applications call the net_set_param() socket call with the parameter ID 
Step 2: Policy Engine calls the update() method   
Step 3: Enforcer performs necessary integrity check and calls set() method  to update 
value of the parameter ID 
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Figure 15. Updating value by user applications 

C.  Invoking action() methods  

Figure 16 explains how the applications invoke an action() method. 

Step 1: Applications call the net_invoke_action () with the action ID 
Step 2: Policy Engine calls the execute() method  
Step 3: Enforcer call action() corresponding to the action ID 
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Figure 16. Invoking action() methods 

D.  Event registration and notfication using NetLink socket 

Figure 17 explains how user applications register and get notification for an event 

using NetLink socket. 

Step 1: The kernel registers the protocol family for the event, and InterLay and 
applications create the NetLink socket with the right protocol family. 
Step 2: The event occurs. 
Step 3: Notification chain asks NetLink to send notification to the NetLink socket in the 
kernel. 
Step 4: The notification message reaches the NetLink socket in the application. 
Step 5: The callback function that is registered with the NetLink socket in the application 
is invoked to handle the event. 
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Figure 17. Event registration and notification (using NetLink socket) 

E.  Event registration and notfication using signals 

Figure 18 explains how user applications register and get notification for an event 

using signals. 

Step 1: Applications call the net_reg_event() system call with the event ID. 
Step 2: Policy Engine authorizes the request and calls the event_registration() method 
with the process ID. 
Step 3: Informer puts the process ID in the notify() method and register the notify() 
method to the notification chain.  
Step 5: The event occurs. 
Step 4: The notification chain invokes the notify() method and sends the signals to all 
process IDs that are contained in the notify() method. 
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Figure 18. Event registration and notification (using signals) 

3.10.3.

St

  InterLay and external systems 

The InterLay will interact with external systems through the Message Handler of the 

PE. 

A.  Querying value of real-time parameters  

The external server queries real-time parameters as depicted in Figure 19.  

ep 1: External system sends a message requesting the local system to query the value 
of parameter with certain ID. 
Step 2: The message is mapped to the request_receive() method . 
Step 3: The get_param() of the Informer is called 
Step 3: Informer returns value from the get() method to the MH which in turn composes 
a message and sends the value to the external system 
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Figure 19. Querying value by external servers 

B.  Updating value of real-time parameters 

The external system updates real-time parameters as depicted in Figure 20.  

Step 1: External system sends a message requesting the local system to update the value 
of parameter with certain ID. 
Step 2: The message is authorized and mapped to the set_param() method. 
Step 3: The update() method of the Enforcer is called. 
Step 3: Enforcer checks the integrity of the update request and calls the associated set() 
method of the concerned parameter. 
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Figure 20. Updating value by external servers 

C.  Invoking action() methods  

Figure 21 explains how the external system invoke an action() method. 

Step 1: External system sends a message requesting the local system to execute an 
action() method with a certain ID. 
Step 2: The message is authorized and mapped to the ivk_action() method. 
Step 3: The execute() method of the Enforcer is called. 
Step 3: Enforcer checks the integrity of the update request and calls the associated 
action() method of the concerned ID. 
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Figure 21. Invoking action() methods 

D.  Event registration and notification 

Figure 22 explains how external system register and be notified for an event  

Step 1: External system sends a message requesting the local system to register for the 
event with a certain ID and the message is authorized and mapped to the 
request_register() method. 
Step 2: The PE calls the event_registration() of the Informer with the function pointer to 
send_event() method of MH. 
Step 3: The send_event() method of MH is registered to the notification chain 
Step 4: The event occurs. 
Step 5: The notification chain invokes the send_event() method of MH, which in turn 
forms a notification message with the ID of the event that has just taken place and sends 
to the external system. 
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Figure 22. Registration for events from external servers 

3.11. Service logic in the InterLay model 
Service logic means how to organize the functionalities provided by the networking 

subsystem to provide a certain service feature. For example, in section 5.1.2.1, the 

service logic to maintain TCP session over IP address changes includes the following 

actions: 

- Learning of the handoff event to a new Access Point (IP address). 

- Freezing the TCP connection to prepare for mobility procedures. 

- Requesting the Corresponding Node to update the destination address to the new 

IP address. 

- Unfreezing the TCP connection and restart exchanging data between both ends. 

The components of the service logic are the set() and get() methods of real-time 

parameters and notification of events, as well as the action() method. 

In the InterLay model, the service logic will be carried out by the application, because 

the application has the most knowledge about the need of itself. The TCP/IP stack would 

merely provide the building blocks for the service logics. The advantage of this approach 
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is that it allows for the unlimited service scenarios; therefore it provides the utmost 

flexibility for communication service customization.  

However, for certain service scenarios that are common or popular among many 

applications or services, forcing the service developers to re-create the same service logic 

each time would be inconvenience and causing unnecessary burden. In this case, when a 

certain service logic is deemed as useful for many services then it can be generalized and 

implemented as either an action() method of the TCP/IP stack or as a system call. 

3.12. On the security of set() and action() methods 
In most cases, real-time attributes are exposed by only a get() method. This read-only 

access protects the networking subsystem from potential error caused by incorrect 

implementation or being mistakenly set to a wrong value.   

However, there are cases where it would be beneficial if the upper layers can change a 

certain attribute with a set() method, because when upper layers know the exact condition 

of the networking subsystem, there might be a need for them to change the state of the 

lower layers to a specific value for optimization or seamless operation. Because kernel 

modules are developed with more stringent quality management and testing, there would 

be no adversary effects when parameters of lower layer protocols are updated by either 

Transport or Network protocol objects (because these objects belongs to the kernel). 

However, there is no such guarantee for the development process of user applications, 

therefore socket objects (i.e. user applications) should be limited to manipulate only 

attributes that affect the specific session created by itself. This ensures that any improper 

use of the set() method will only affect sessions belonging to calling applications but not 

those belonging to other applications. In other words, this means that the socket object 

should normally not be able to manipulate set() method of attributes belonging to layer 3 

(L3) object and below or otherwise it will affect all ongoing sessions. 

Also, it is clear that the set() method should not be applied directly to protocol’s 

attribute that has value obtained through negotiation with the corresponding peer without 

re-negotiation with that specific peer. For example, the TCP protocol should not expose 

set() method for the MSS (Maximum Segment Size) attribute, but a 

 70 



MSS_renegotiate(new size) action method that carries out the re-negotiation of MSS will 

be provided instead. 

For the action() method, it should be exposed by the InterLay only if it does not affect 

other ongoing connections except that belong to the requester. For example, IP protocol 

of Layer 3 can expose the action() method for route optimization procedure, but the 

method should affects only the binding cache for the destination associated with the 

requesting socket/application only.   
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CHAPTER 4. TEST QUESTIONS FOR SELECTION OF 
FINE-TUNABLE PARAMETER LIST 

 

When the InterLay is deployed and implemented, initially the application developers 

might first experience some difficulty because they do not know what kind of information 

is available and how to use them. They need to know the behaviors and possible usages of 

parameters of all lower layer protocols. To reduce the burden of the developers in learning 

the behavior and parameters of all lower layer protocols, we need some mechanism to find 

all the suitable parameters for the InterLay model and document them properly. 

Moreover, the InterLay model must also build a list of parameters from lower layers 

that should be opened for control from protocols of  higher layers, either adjacent or 

several layers away. (we call this the fine-tunable parameter list). 

Naturally, to take advantages of InterLay model, it is needed to cover as many suitable 

parameters to be exposed as possible. It means that the more comprehensive the list is the 

better. However adding a new network parameter to the list would require recompilation 

of the networking subsystems that means more development work, more complexity, 

higher possibility of failure etc.       

Therefore, it is necessary to have a method to identify and categorize only parameters 

that are appropriate and exclude ones that would not be used across layers. In this chapter, 

the test questions are proposed as a method to identify all of relevant parameters, and 

because each test question in general defines a category, based on the test question we can 

roughly identify the usage of the parameter that agrees with a specific test question.  

4.1. The test questions 
The activities associated with the data exchange procedure between end-hosts can be 

divided into two categories of functions as in [3]: (i) data manipulation functions, which 

actually manipulate the data packet (such as read/write from network line, packet error 

detection, buffering for retransmission, encryption etc.) and (ii) transfer control functions, 

which regulate the transfer of the data (such as flow control, detecting network problems, 

acknowledgement etc). In addition, in certain types of protocols (such as reliable transport 
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protocols) connection establishment and termination must be carried out prior to and after 

the exchange of data.  

Of the above two functional categories, intuitively the parameters that should be 

revealed to other layers should be those belonging to the transfer control functions, 

including information that reports changes of the network conditions/states that can affect 

either the transfer of data or the capacity of the networking subsystems received from 

external entities on the network. The test questions are then defined to determine whether 

the  parameter should be exposed or not. 

As depicted in Figure 23, each protocol will be screened to find its parameters, and 

these parameters will be examined with the test questions. The test questions are designed 

to find parameters that can improve performance of the connection or help the connection 

to overcome current problems of TCP/IP model such as mobility or fault-tolerance. The 

parameters that satisfy the test question (i.e. the answer is yes) will be added to the fine- 

tunable list and will be exposed to other protocols of other layers.  

 

Figure 23. Screening of protocol for fine-tunable parameters 

As a rule of thumb, real-time parameter that is associated with an event (i.e. the change 

in value of the parameter might trigger the event) should not be modified by outside 

entities. Also, a direct change to parameter obtained through probation or negotiation with 
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other peer is not preferable. If these types of parameters need to be updated then it is 

preferable to change it through the associated probation/negotiation procedures. 

From current and foreseeable network capabilities vs. service demands, the following 

test questions have been created to examine such parameters based on their type, their role 

in improving performance or flexibility of the connection and their suitability for higher 

layer’s condition and preference.  Parameters that pass the test will be added to the list. 

The usage of the parameter that agrees with a specific test question will also be roughly 

identified. 

4.1.1. For event parameters 

We propose test question #1 as follows:  

Question #1: Does the event parameter (both internally generated and externally 

received) signal a critical change of condition or status of the network?  

The relevance of this question is that if the information about a critical change of 

condition of the network is available, it will allow higher layers (including user 

applications) to tune its activities to the current or near future condition of the 

network.  

The internal generated event can be calculated from local parameters. For example, the 

time-out event happens when the TCP layer calculates that the value of RTT of a 

packet is larger than that of the RTO. Another example is when the Data Link layer 

(namely the network driver) finds that the radio signal of the Wireless interface is 

lower than a predefined value. On the other hand, the event can also be caused by 

the operation of the protocol. For example, the successful change of IP address can 

trigger some appropriate actions from the higher layers, such as updating transport 

layer connection’s parameters or renegotiation of QoS for the existing flow(s), etc. 

The external received event can be either directly or through some policy protocol. An 

example of directly received event is when TCP layer receives an ECN (Explicit 

Congestion Notification) from its peer. Upon receiving the indication that the 

network load is at critical load via the time-out or ECN event, the application can 

cooperate by switching to a slower codec to reduce the sending data rate. Or in the 
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case when the Wireless signal reaches a threshold so that an L2 handoff to another 

base station is imminent, the Mobile IP instance can carry out preparation for a re-

registration to the Home Agent so that the actual re-registration process can be 

shorten. 

4.1.2. For real-time parameters 

We propose the following 4 test questions (the number is continued from the last 

section for convenient reference): 

Question #2: Does the parameter indicate extra capability of individual communication 

session or of the system as a whole?  

By asking protocols belonging to other layers to fine-tune its performance parameter, a 

protocol can synchronize its performance with other protocols to match with 

network status so that optimized performance can be achieved. For example, the 

type of access technologies being used can implicitly inform the application of the 

maximum data rate it can send or receive. If the application is informed that a 3G 

connection is being used, then a network video application should provide standard 

definition version of a movie instead of high definition one. However, this question 

will be more relevant in the future where the use of controlled network such as 

NGN is ubiquitous since the networking subsystem will be provided with more 

detailed information regarding the performance of the network. 

Question #3: Does the parameter indicate the constraint of a configuration of the 

communication session?  

A protocol may have many parameters that indicate upper or lower bounds for certain 

activities. Knowing these boundaries will help optimize or synchronize with 

parameters of other protocols. For example, knowing the value for Maximum 

Segment Size parameter of TCP protocol will help the implementer of Application 

Level Framing scheme [5] to set the Application Data Unit (ADU) size to multiple 

of MSS size, so that there will be no partial-filled packet at the end of each ADU. 
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Question #4: Does the parameter indicate the current progress of the communication 

session? 

Checkpoint and acknowledged sequence number are good examples of markers for 

progress of a communication session. Knowing these values will help to recover a 

session to the exact state before failure for example. Together with parameters 

identified in question 5, it can also help in the process of handover of a connection 

from one machine to another for fault-tolerant/failsafe/failover purposes since it 

provides the state of the connection in the original machine before the handover. 

 Question #5: Does the parameter help to indicate a configuration of or identify the 

connection?  

 This question is relevant with more advanced or future capabilities of the networking 

subsystem, such as fault-tolerance/failsafe/failover of connection, or session 

mobility, security, etc. Currently, a session is still identified by IP addresses. 

However, a separate ID would make it easier for issues such as mobility [6] [7].  

One example of the application of this question is that it is very complicated to provide 

reliable service across failure for TCP sessions within the current model of TCP/IP. 

However, if the application keeps track of the real-time static parameters (those 

from question #3) as well as the current progress (such as last checkpoint, 

sequence number which relate to question #4) then it will be easier for the 

application to restore the relevant session after a reboot. 

The 5 test questions above come from current and foreseeable network’s capabilities 

and services’ demands, and it is needed to be constantly examined to find out new test 

questions and parameters to serve in different types of system or service scenarios. 

However, the principles of the test questions are universal enough so that when new 

service demands/network capabilities arise, new test questions can be introduced to find 

out new suitable parameters for the fine-tunable list. 

4.2. Finding the appropriate network parameters  
Figure 24 shows the TCP/IP protocol umbrella that will be examined with the test 

questions, with some new protocols that were developed and added to TCP/IP to meet 
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new demands. Note that only those protocols that are related to data communications 

connection management are shown. 

 

TCP/IP protocol stack 
 

Transport Layer 

TCP UCP SCTP DCCP

Network Layer 

IPv4 IPv6 MIPv4 MIPv6

ICMPv6 ICMPv4 IPSec 

Data Link Layer 

Wired Wireless Mobile 

Figure 24. The TCP/IP protocol umbrella 

By applying the above questions to each layer, we can summarize the list of some 

major parameters from common networking protocols in each layer that should be 

revealed to the applications and other higher layers in the tables of following sections (if 

the first column is checked then the parameter is an event parameter, otherwise it is a real-

time parameter).  

4.2.1. Lists of parameters for Layer 2 (Data Link Layer)  

Table IV. For all type of Data Link protocols 

R/E Protocol 

Family 

Parameter 

name 

Selected with test 

question # 

Usage/Purpose 

 All Type of 

access 

technology 

Question #2 The general type of access network: 

WIRED/WIRELESS/MOBILE, or 

more detailed such as 
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ETHERNET10M, WI-FI_G, 3G etc. 

From the type of the quest the 

application can infer in general the 

rate, QoS, Security, coverage area etc.

 All MAC #5 Because in general MAC is unique 

globally, therefore MAC can be used 

to support the creation of ID for 

higher layer address, security nonce 

etc. 

Table V. For Wireless access Data Link Protocol 

(Note: these parameters are recompiled from MIH [106]) 

R/E Protocol 

Family

Parameter 

Name 

Selected with test 

question # 

Usage/Purpose 

* Wireless Link Up #1 The link is active and Layer 3 

protocols can start exchange data 

through this link 

* Wireless Link Going 

Up 

#1 Upon receiving this event, the NS 

knows that the time to connect to an 

Access Point (AP) is longer than 

expected then the NS may consider 

connecting to another AP  

* Wireless Link Down #1 This event notifies that a link is not 

active and cannot be used for data 

transmission  

* Wireless Link Going 

Down 

#1 This event notifies that a link down 

event may be fired soon therefore the 
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NS should, for example, prepare for a 

Layer 2 handover  

* Wireless Link quality 

cross 

threshold 

#1 This event notifies that the quality of 

the active link is under a pre-

configured threshold for a sufficient 

time, which means that the NS should 

start preparing for a imminent 

handover 

* Wireless Better quality 

AP available 

#1 An Access Point with a better signal 

is available. The NS may consider to 

handover to this AP because it may, 

for example,  provide higher and 

more stable data rate 

* Wireless Link 

Handover 

Complete 

#1 Notification of a fresh handoff. The 

application may need to readjust its 

data rate or transport layer may 

handover its transport connection to 

the new IP address (if Layer 3 

handover also happens) 

Table VI. For wired line access Data Link Protocol 

R/E Protocol 

Family 

Parameter 

name 

Selected with test 

question # 

Usage/Purpose 

* All 

Wired 

tech. 

Electrical 

Signal 

Instability 

#1 The event of instability of electrical 

signal in an interface may suggest that 

the interface is going to be fail.  Upon 

receiving this event the NS may 

choose to shutdown the interface to 
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prevent  route damping in routers or 

in end devices with more than one 

wired line interfaces 

* Ethernet BCN #1 Receiving the Backward Congestion 

Notification [11]  can signal the 

congestion/non-congestion condition 

in the Ethernet environment 

4.2.2. Lists of parameters for layer 3 (Network Layer) 

Table VII. For all type of Network Layer protocols 

R/E Protocol 

Family

Parameter 

Name 

Selected with test 

question # 

Usage/Purpose 

 IPv4, 

IPv6, 

Source IP 

address 

#5 Useful to restore connection over  

networking subsystem reboot or ad-

hoc handover of transport layer 

connection 

 IPv4, 

IPv6 

Dest. IP 

address 

#5 Useful to restore connection over  

networking subsystem reboot or ad-

hoc handover of transport layer 

connection 

 IPv4, , 

IPv6 

IP packet 

options 

#2 In the future options may be added to 

report network-wide Layer 3 

condition, and this may be of interest 

to higher layers. Higher layers can 

also use options as a command code 

to instruct other ends to perform 

certain action on Layer 3 protocols 
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Table VIII. For Mobile IP protocols 

R/E Protocol 

Family 

Parameter 

Name 

Selected with test 

question # 

Usage/Purpose 

 MIPv4 Foreign Agent 

CoA 

#5 This parameter shows the current 

attachment point that can be used for 

any ad hoc route optimization 

 MIPv4 

MIPv6 

Colocated CoA #5 This parameter shows the current 

attachment point that can be used for 

any ad hoc route optimization (Note: 

MIPv6 is not a separate protocol but a 

part of IPv6 protocol) 

 

Table IX. For IPSec protocols 

R/E Protocol 

Family 

Parameter 

Name 

Selected with test 

question # 

Usage/Purpose 

 IPSec Security 

association 

#5 Useful to restore security connection 

over  NS restart  

Table X. For ICMP protocols 

R/E Protocol 

Family 

Parameter 

Name 

Selected with test

question # 

 Usage/Purpose 

* ICMP-v4 

ICMP-v6 

Destination 

Unreachable 

Event 

#1 This is an external event received 

from the network. Upon receiving this 

report the application may choose to 

connect to another backup destination 
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address or process. Also depending 

on the exact code the application may 

carry out other reconfiguration 

activities such as allowing fragment 

or changing TOS field 

* ICMPv4 

ICMPv6 

Time Exceeded #1 Depending on the code the 

application will learn about the 

problem of either the network or its 

peer host 

* ICMPv4 

ICMPv6 

Source Quench #1 Transport layer and application 

should carry out procedure to reduce 

transmission rate 

4.2.3. Lists of parameters for layer 4 (Transport Layer)  

Table XI. For all Layer 4 protocols 

R/E Protocol 

Family

Parameter 

Name 

Selected with test 

question # 

Usage/Purpose 

 All 

protocols

MSS #5 Knowing this value, the application 

can synchronize the ADU size of 

Application Level Framing protocol 

to that of multiple of MSS to optimize 

the transmission 

 All 

protocols

Source Port #5 Used for ad hoc mobility or fault-

tolerance support for transport layer 

connections 

 All 

protocols

Destination 

Port 

#5 Used for ad hoc mobility or fault-

tolerance support for transport layer 

connections 
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Table XII. For congestion enabled protocols 

R/E Protocol 

Family 

Parameter 

Name 

Selected with test 

question # 

Usage/Purpose 

 TCP, 

SCTP, 

DCCP 

MSS #5 Knowing this value, the application 

can synchronize the ADU size of 

Application Level Framing protocol 

to that of multiple of MSS to optimize 

the transmission 

* 

 

 

TCP, 

SCTP, 

DCCP 

ECN received #1 The event implies congestion in the 

Tx direction. The application can 

respond by tuning its speed by 

changing to lower codec etc. 

* 

 

TCP, 

SCTP, 

DCCP 

RTO event #1 The application knows that a RTO 

just has taken place so it can adjust its 

sending rate  

 

 

TCP, 

SCTP, 

DCCP 

(with 

CCID 2) 

Window size #5 The application can lower the 

windows size to response to network 

congestion report, for example, via 

ECN or ICMP etc. 

 TCP, 

SCTP, 

DCCP 

(with 

CCID 2) 

Sequence 

Number 

#4 Used for fault-tolerance support for 

transport layer connections 
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4.2.4. Lists of parameter for layer 5 

In the TCP/IP layering architecture, there is no official definition and implementation of 

layer 5 (Session). Instead, the features of layer 5 protocol are implemented individually by 

application protocols which require such functionalities. Because in the conventional 

TCP/IP architecture this information resides in the application layer, the parameters are 

basically out-of-scope of the InterLay model. However, finding these parameters using 

the test questions and documenting them is also beneficial to application developers, as 

they have more information on what kind of parameters are available for service 

optimization and customization. 

Table XIII. For parameter of Layer 5 

R/E Protocol 

Family

Parameter 

Name 

Selected with test 

question # 

Usage/Purpose 

 N/A Check-pointing 

value 

#4 This item can be used to mark the 

current status of the connection to use 

with fault-tolerance activities etc… 

 N/A Session ID #4 This item can be used to mark the

current status of the connection to use

with fault-tolerance activities etc… 

4.3. Characteristics of the test questions’ approach 
The test questions approach to identify and categorize parameters in this paper has the 

following characteristics: 

− It provides an appropriate methodology that can identify suitable parameters 

that should be added to the fine-tunable list, while excluding those ones that 

are not suitable. This reduces the amount of parameters that should be opened 

to other layers, resulting in less development time and effort, as well as less 

fault for InterLay scheme. 
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− The test questions can be used as a means to categorize parameters based on 

functionality, therefore it can make the development of specialized systems 

faster with less work, because parameters belonging to the category that are 

not needed will not be opened altogether. For example, embedded system for 

real-time Internet-radio streaming devices can remove the support for all 

parameters related to question #4, because in real-time streaming services there 

is no need for session check-pointing. 

− The methodology of using parameter types and test questions are general 

enough to be applied not only to InterLay scheme, but also to any other 

network architectures that support cross-layer communication among protocols. 

− And because of this well documentation of network parameters, the developer 

does not need to learn about all protocols, he just needs to concentrate on the 

parameters that seem most relevant to the application protocol he wants to 

design.   
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CHAPTER 5.  DISCUSSION AND ANALYSES 
 

 

 

 

5.1. Coverage of InterLay scheme 
In this section we will examine how the InterLay covers existing modifications to the 

TCP/IP networking stack. Due to the development of the Internet that is explained in 

Table 1, mobility, fault-tolerance and security are the new add-ons to the original TCP/IP 

networking model.  

5.1.1. InterLay scheme and TCP fault-tolerance across local networking 

subsystem restart  

The manipulation of the Internet Protocol Control Block (Internet PCB) and TCP 

Control Block (TCB) can be used to save the TCP session over the restart of the 

subsystem. 

To control and manipulate TCP session, the following action() methods should be 

provided by the TCP/IP stack. These methods belong to Group B of extra functionalities 

by the TCP/IP stack as explained in section 3.4: 

- act_freeze() and act_unfreeze(): These two action() methods will act upon on a 

FREEZE_FLG flag. The TCP object will be required to make sure that the 
FREEZE_FLG to be off before sending or receiving a datagram to/from the IP 

object. The act_freeze() method will turn on the FREEZE_FLG which will freeze 

the sending/receiving activities at the TCP and IP protocol object. However, the 

socket will continue to read data that is already in the receiving buffer until it is 

empty because the data have been ACKed. On the other hand, the act_unfreeze() 

method will turn off the FREEZE_FLG which will restart the sending/receiving 

activities at the TCP and IP protocol object. The application can invoke this 

action() method using the net_invoke_action() system call with the FREEZE_ID 
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and UNFREEZE_ID of the act_freeze() and act_unfreeze() action methods, 

respectively. 

Let’s suppose that the networking subsystem (NS) is about to restart due to some 

errors, and that it can communicate with active sockets before restarting, then the 

preservation of the TCP session is carried out as follows (see Figure 25): 

Step 1: The application that wish to have its connections to be fault-tolerant registers for 

the NET-RESTART-EVENT in advance with the InterLay using the socket’s 

net_reg_event()  

Step 2: The NS informs the registering applications with the imminent PRE-NET-

RESTART-EVENT through the InterLay. 

Step 3: The application requests the NS to freeze the sending/receiving activities for the 

socket, by calling the net_invoke_action()  system call with the pre-assigned FREEZE code 

as input argument.  

Step 4: After confirming that the calling socket has the right to the concerned TCP object 

(session), the PE requests the Enforcer to invoke the TCP_object.act_freeze(). This will 

freeze the sending/receiving activities. However, the socket will continue to read data 

that are already in the buffer until it is empty because the data have been ACKed. 

Step 5: The application calls the net_get_param() system call, with the TCP-TCB 

parameter code to get the TCB of the socket.  

Step 6: The Informer will query the TCP_object.get_TCB() and returns the result to the 

application (the returned result contains all the status information of the TCB, as well as 

any unsent buffer) 

Step 7:  The application calls the socket’s net_get_param() with the IP-PCB parameter 

code to get the PCB of the socket  

Step 8: The Informer will query the IP_object.get_PCB() for the concerned socket, and 

returns the result to the application (the returned result contains all the status information 

of the PCB) 
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Figure 25. The interaction diagram for TCP’s fault-tolerance procedure 
(Note: the dotted lines denote returning value for net_get_param()) 
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Step 10: After the NS is restarted, the NET-RESTARTED-EVENT is sent to all 

applications that register for the NET-RESTART-EVENT (the list of those applications is 

saved by the NS before restarting) 

Step 11: The application responses by creating a socket with the socket() function.  

Step 12: The application then requests the InterLay to update the Internet PCB for the 

created socket with the net_set_param() function and 2 input arguments, one is the IP-

PCB parameter code for the PCB and the other is the *pcb value that is returned in step 7 

above. 

Step 13: The PE will inform the Enforcer to invoke the IP_object.update_PCB() 

action method. 

Step 14: The application then requests the InterLay to update the TCP’s TCB for the 

created socket with the net_set_param() system call function and 2 input parameters, one 

is the  TCP-TCB parameter code for the TCB and the other is the *tcb value that is 

returned in step 5 above. 

Step 15: The PE will inform the Enforcer to invoke the TCP_object.set_TCB() action 

method. 

Step 16: Upon receiving the confirmation of successful update of the new socket, the 

application requests the network subsystem to unfreeze the sending/receiving activities 

for the socket, by calling the net_invoke_action()  system call with the pre-assigned 

UNFREEZE code as input argument.  

Step 17: After confirming that the calling socket has the right to the concerned TCP 

session, the PE requests the Enforcer to invoke the TCP_object.act_unfreeze() action 

method that turns off the FREEZE_FLG to restart the sending/receiving activities for the 

socket. 

When the two sides can resume actual sending and receiving data: 

After step 17, the newly created TCP socket is the exact duplicate of the original one, 

and it is ready to send any data that is available at the buffer, and start receiving the data 

from the application residing at the corresponding node.  
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However, at that time the TCP session at the corresponding node side might already 

time out (this is due to the restart of the Networking Subsystem at the local node, NOT 

due to congestion), so even if the TCB is updated, no data exchange is possible until the 

time out is over, which can be very long. The corresponding node can be stimulated to 

send data sooner by letting the local node to send three consecutive ACKs for the last 

received data so that the corresponding node can enter the fast retransmit state. 

When the networking subsystem is in the process of restarting, if the TCP data packets 

from the corresponding node arrive, then the CN will be returned with an ICMP’s 

Unreachable, or the maximum retransmission timeout for the TCP session has been 

reached (e.g. because restarting of the networking subsystem at the local node takes too 

long), which might resets the TCP at the corresponding node. If this is the case, then after 

step 2 the application at the local node can either ask the InterLay directly or through the 

peer application at the corresponding node to not terminate the concerned TCP session 

even if an ICMP’s Unreachable is received or the maximum retransmission timeout for 

the TCP session has been reached. Of course, this protection should only be activated for 

a certain short period so that if the local node does not go back online then the TCP 

session will eventually be terminated. 

Note that this scheme is extendable to the case of UDP (no need for step 5 and 14, and 

any data sent by the other end during the period will be lost) as well as to the case the OS 

reboots provided that the application is given enough time to perform the above 

procedures and the restoration process is fast enough so that the connection is not aborted 

first by the other end.  

5.1.2. InterLay scheme and maintaining TCP session over IP address change 

Mobility in the Internet can be introduced in IP layer [28], or the TCP layer. In this 

section, we will examine how InterLay can maintain a TCP session without underlying 

IP layer’s supports when the mobile node performs a handover to a new IP address, or 

from one interface to another of the same device. There are three scenarios: maintaining 

TCP session over handoff at one end only in 5.1.2.1, between interfaces in 5.1.2.2, and 

over handoff at both ends in 5.1.2.3. 
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Because there are also existing researches that provide the same protection of TCP 

session, the comparison among them is described in Appendix II.  

To provide TCP mobility, the following extra action() methods should be provided by 

the TCP/IP stack. These methods belong to Group B of extra functionalities by the 

TCP/IP stack as explained in section 3.4: 

- act_mobi(): The TCP session is identified by the IP addresses of both ends, 

therefore conventionally when the IP address changes (due to handoff) the TCP 

session will be terminated by the TCP/IP stack. However, InterLay model 

provides the application with an act_mobi() action method in the TCP/IP stack 

that basically turns on a flag that will protect the TCP from being terminated when 

the IP address changes (i.e. maintaining TCP state information, including Internet 

PCB, TCB, and all the necessary buffers). The application can invoke this action 

method using the net_invoke_action() system call with the ACT_MOBI_ID of the 

act_mobi() action method. 

5.1.2.1. Maintaining TCP session over handoff at one end only 
Existing solutions require the modification of TCP protocol or the TCP/IP architecture 

as a whole, while the InterLay approach can support TCP mobility through manipulation 

of the Internet PCB and TCB, as well as events from lower layers. 

In [18] we have proposed the mobile TCP socket that supports mobility for TCP 

session. Basically, this mobile socket is a special version of the InterLay model which 

specializes in supporting only TCP mobility, by providing an interface to change (i.e. the 

set() method) the PCB and TCB parameters to maintain TCP session across address 

change. We have analyzed in [18] that the inter-layer exchange of information provides 

some advantages over other approaches, namely (i) the maintenance of TCP session 

across handoff is carried out only if the application finds it beneficial, and (ii) the 

maintenance process can make use of existing security association, which reduce 

overhead (in terms of both traffic and processing) and latency. 

The operation of TCP mobility will be carried out as follows (Figure 26): 
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Figure 26. The interaction diagram for maintaining TCP session  

over IP address change 

Step 1: An application at Mobile Node (MN) is sharing an active TCP connection with 

another application in the Correspondent Node (CN). The mobile host can query Layer 2 

via the InterLay on the possibility of a near future handoff. The possibility can be 
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decided via for example signal strength or whether the interface has just been handed-off 

more than twice recently, which is a signal that the mobile host is moving fast and hence 

a handoff is imminent. If the mobile host is deemed to experience a handoff in the near 

future, and the application knows that the TCP session would be a long one, then the 

application will call the act_mobi()  method to maintain the socket even in the case the IP 

address is changed due to a handoff. It will also register for the Link-Up event from the 

networking interface. 

Step 2: The interface that is used by the TCP connection at the MN is being handed-

off to another access point, and as a result the IP address changes to a new one. Because 

the act_mobi()  method has been invoked by the application, the TCP session that is 

associated with the socket is maintained. 

Step 3: The application also registers in advance (namely step 1) to the notification of 

address change for the concerned interface. Therefore, the application is notified of the 

address change, and the notification will include the new IP address. 

Step 4: The application requests the network subsystem to freeze the sending/receiving 

activities for the socket, by calling the net_invoke_action()  system call with the pre-

assigned FREEZE code as input argument.  

Step 5: After confirming that the calling socket has the right to the concerned TCP 

object (session), the PE requests the Enforcer to invoke the TCP_object.act_freeze() 

method that turns on a FREEZE_FLG. TCP_object is the TCP object created by the 

concerned socket at the MN. This will freeze the sending/receiving activities at the TCP 

and IP object, but the application can still process any data that is already available at the 

socket’s receiving buffer. 

Step 6: This new address should be informed to the CN. In this service scenario, the 

application at the MN will send a request to the InterLay at the CN to perform the 

net_set_param() action to update the destination IP address (the address of the MN is the 

destination address at the CN side). The request can be relay by any message-exchange 

protocol. 
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The Message Handler (MH) of the InterLay at the CH is the destination of the request 

to update destination address. As explained in section 3.7.2.1, there are two ways to 

authenticate this request: 

A) Authentication by the Interlay: When the application at the MN establishes the 

TCP connection with the peer at the CN, it also exchanges a share secret with the 

CN’s peer and the latter informs the MH of this share secret. The InterLay will 

use this secret to authenticate the request from the MN. In Figure 26 we depict 

case A. 

B) Authentication by the application at CN: Upon receiving the request from the 

MN, the MH at the CN will send the request to the application (in this case the 

MH does not need to understand the request; the application will have to parse 

the request and learn that the application at the MN wants it to update the MN’s 

address). 

Step 7: In this step, the InterLay will ask the Enforcer to update the destination address 

from the old to the new address of the MN. Depending on how the request is 

authenticated in step 6, the request to the Enforcer will come directly from the CN’s 

application using the net_set_param() system call in case B of step 6, or it comes from 

the application at the MN via the Policy Engine in case A. In Figure 26 we depict the 

case A. 

Step 8: If the update of destination address in step 7 succeeds, then either the MH (in 

case A of step 6) or the application (in case B of step 6) will inform the application at the 

MN about this success. In Figure 26 we depict the case A. 

Step 9: Upon receiving the confirmation of successful update of the new IP address 

from CN, the application requests the network subsystem to unfreeze the 

sending/receiving activities for the socket, by calling the net_invoke_action()  system call 

with the pre-assigned UNFREEZE code as input argument.  

Step 10: After confirming that the calling socket has the right to the concerned TCP 

session, the PE requests the Enforcer to invoke the TCP_object.act_freeze() method with 

the UNFREEZE code that turns off the FREEZE_FLG. 
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When the two sides can resume actual sending and receiving data: 

The MN will be ready to receive data after sending the update_pcb() request to the CN 

(in step 7), and it can start sending data (i) after receiving the confirmation of the 

successful update to the new IP address from the CN and unfreezing the sending activity 

(in step 10) or (ii) after receiving the data from the CN (in the case the data from CN 

comes before the confirmation).  

On the other hand, the application at the CN side will be ready to send and receive 

data together with the confirmation of the successful update to the new IP address to the 

MN. 

5.1.2.2. Transferring TCP session between network interfaces 
Supporting handover between multiple interfaces will be an important feature, since 

more and more mobile devices will be equipped with both wireless WAN and wireless 

LAN interfaces. Because InterLay supports the update of both IP address and Port for a 

TCP session, it can support the handover between interfaces of the same device.  

There are two cases where the application might consider a local handoff of TCP 

session between two local interfaces: (case 1) if the signal quality in the currently used 

interface is going below a threshold but another access point is not available and (case 2) 

if an interface more suitable to the application than the currently used one is going up 

(for example a faster nominal speed, or cheaper cost or wider coverage etc). 

In general, the process for the application to switch the TCP session from one to 

another interface is that first it creates a new socket on the target interface, and then uses 

the set_PCB() and set_TCB() action method to copy the information from the old to the 

new socket, in a similar manner to what happens in section 5.1.1. Next, the application 

sends out the notification to the CN to update the new IP address and Port, just like in the 

case explained in 5.1.2.1.  

The detailed procedure for TCP mobility between two local interfaces (interface A and 

B) is explained as follows (see Figure 27). 

Step 1: An application at Mobile Node (MN) is sharing an active TCP connection with 

another application in the Correspondent Node (CN).  
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In case 1 discussed above, the application at the MN needs to register for the Link-

Going-Down event or the Link-Down event from the wireless interface that is used by 

the TCP socket, while in case 2 the application will register for all Link-Up and Link-

Down events (these events are described in table V in chapter 4). 

Step 2: In case 1 above, when the application receives the Link-Down event, if after a 

certain amount of time it does not receive a Link-Up event it will start the procedure to 

handoff the TCP session to another active interface that is available, otherwise the 

session might be closed. The wait-time for a Link-Up event can be decided case-by-case 

depending on the nature of the application, but for example it can be started after the 

application receives a time-out event from the TCP object. 

In case 2, the application constantly monitors the link-up and link-down event and 

maps the available Internet connection at the MN with its characteristics. The mapping 

can be made using information provided in advance by the user, or can be retrieved 

through some kind of policy exchange with the access network, or both. When it receives 

the information of a Link-up event for a network interface that is judged to be better fit 

for the communication session than the existing one for the ongoing session, it will start 

the procedure to handoff the TCP session to the new interface.  

The application might consider the following criteria when making such judgment in 

case 2: 

- The expected remaining lifetime of the session. 

- The expected stability of the current and new network interface connection (by using 

the information mentioned in the above paragraph). 

- The more suitability of the characteristics of the new network interface connection 

compared with the current one. 
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Figure 27. The interaction diagram for maintaining TCP session between interfaces 

Step 3: After making the decision to transfer the TCP session from one interface to 

another, the application starts the procedure by first requesting the network subsystem to 

freeze the sending/receiving activities for the socket by invoking the net_invoke_action()  

system call with the pre-assigned FREEZE code as input argument. 
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Step 4: After confirming that the calling socket has the right to the concerned TCP 

object, the PE requests the Enforcer to invoke the TCP_object.act_freeze() method. This 

will freeze the sending/receiving activities at the TCP and IP object, but the application 

can still process any data that is already available at the socket’s receiving buffer. 

Step 5: The application calls the net_get_param() with socket A, with the TCP-TCB 

parameter code to get the TCB of the socket.  

Step 6: The Informer will query the TCP_object.get_TCB() and returns the received 

*tcb structure to the application (the returned result contains all the status information 

of the TCB for A, as well as any unsent buffer) 

Step 7:  The application creates a TCP socket and binds it to the target network 

interface B.  

Step 8: The application then requests the InterLay to update the TCP’s TCB for the 

newly created socket with the net_set_param() function and 2 input parameters, one is 

the TCP-TCB parameter code for the TCB and the other is the *tcb value that is 

returned in step 5 above. 

Step 9: The PE will inform the Enforcer to invoke the TCP_object.set_TCB() action 

method with the *tcb received in step 5 above. 

Step 10: The application requests to update IP protocol specific parameters, such as 

MTU etc, 

Step 11: The PE will inform the Enforcer to invoke the IP_object.set_PCB() action 

method for socket B.  

After this step we have a ready and identical socket binding to interface B at the MN. 

The only difference is that the data packets will now be routed to/from another IP address 

associated with another interface. 

Step 12: The next step is to update the CN side with the new IP address. Because to 

the application at the CN, the change of the interface is just the change of IP address, 

therefore the step can be fulfilled by repeating step 7 to 11 of 5.1.2.1.  
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After this step the TCP session is ready for exchanging of data, and the two sides can 

resume actual sending and receiving data in the same manner as in the case of section 

5.1.2.1. 

5.1.2.3. Maintaining TCP session in the case both ends handoff 
simultaneously  

When both ends handoff simultaneously, the procedure in 5.1.2.1 cannot be applied, 

because the MN and CN do not know of the new IP address of each other so that they 

can not inform each other of the change of address. In this case, a rendezvous point is 

needed that forwards the request to update the new target IP address from the MN to the 

CN and vice verse. 

The rendezvous point is a fixed node that 

- keeps track of the address of both parties 

- has some security association with both parties (for authentication of requests) 

Because both ends handoff simultaneously, it means that both ends are mobile devices, 

which in normal case both are user devices. Therefore two parties are participating not in 

a client-server communication model, but rather in a peer-to-peer communication service. 

Such a service can be for example, voice call or video phone call between two customers. 

For this type of service, normally a server for the service will act as the intermediary 

agent that helps both users to find each other and to connect to each other. For example 

in SIP (Session Initiation Protocol) service, the SIP server always knows about the 

address of its SIP users through the registration process, and always establishes security 

associations with its SIP clients. 

The major hurdle for maintaining TCP session in the case of simultaneous handoff is 

to find an extra rendezvous point. However, as explained in the above paragraph, in the 

case of simultaneous handoff, both sides are normally involving in a peer to peer 

communication service, and it is intuitive to see that the server for the service satisfies 

the above two requirements for a rendezvous point, so fortunately a rendezvous point is 

always available for this kind of service scenario. 

The procedure to maintain TCP session in simultaneous handoff scenario is described 

as follows: 
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Stage 1: Handoff at end devices 

In this stage both ends invoke the act_mobi() method and register for the LINK-UP 

event. When the interface at each ends finishes a handoff, the SIP application at 

each end will be notified and in turn it will send the request to update the IP address 

for the TCP session to the SIP server using a SIP message (after it re-registers with 

the SIP server at the new IP address). 

The actions related to TCP mobility in this stage are similar to step 1 to 6 in Figure 

26, with an exception that the request to update the IP address is sent to the SIP 

server instead of directly to the other peer. 

Stage 2: Dispatching of IP address update requests to corresponding peer 

After the SIP server receives the request to update the IP address from a SIP 

application, it will forward the request to the other SIP application. There are two 

possibilities regarding the status of the other SIP application: 

- It is reachable at the current registered address: In this case, the IP address that 

the target end node registers with the SIP server is still valid, either because it 

has not experienced a handoff, or just completed a handoff and re-registration 

with the SIP server. In this case the request is relayed using a SIP message as 

normal. 

- It is in the process of being handing-off: The other SIP application is not 

reachable at the moment, and the SIP server will wait for the re-REGISTER 

message from the SIP application to find its new address and then relay the 

request again to the new registered address. 

Stage 3: Updating of the destination IP address at the corresponding peer 

In this stage, after the SIP application at the corresponding peer authenticates the 

SIP message, it will ask the InterLay to update the destination IP address of the 

corresponding TCP session to that of the request. The procedure is similar to step 7 

and 8 (for case B) of Figure 26. After the success of step 8, the SIP application at 

the corresponding peer will send a success notification to the SIP server, and start 

sending data to the new destination IP address. 
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Stage 4: Informing of the update success to the host peer 

Upon receiving the success notification from the corresponding peer, the SIP server 

will notify the host peer that sends out the update request of this result by using a 

SIP message. The SIP application will then activate the TCP session using 

procedures in steps 9 and 10 of Figure 26. After this stage the TCP session is ready 

to be used for exchanging data. 

We can see that the procedure for simultaneous handoff composes of essentially two 

procedures for single handoff (described in section 5.1.2.1), with the exception that the 

notification is not sent directly to the corresponding peer but is relayed through the SIP 

server, which knows the address of both ends even in the case of simultaneously handoff. 

It is also intuitive that the 4-stage procedure above is applicable in the case only one end 

performs a handoff. 

This service scenario can also be applied to the case both ends transfer the TCP 

session from one interface to another, with stage 1 now using steps 1 to 11 of Figure 27. 

Because there are two scenarios for handoff (namely directly between end devices as 

explained in section 5.1.2.1 or via an intermediate server as in this section), with the 

differences in the destination for the request to update address, the criteria to choose a 

suitable scenario are: 

- In client-server communication model, one end (namely the server) normally has a 

fixed IP address; therefore for application that employs this communication model 

the handoff scenario described in section 5.1.2.1 is more suitable. 

- In the peer-to-peer service model, both ends are potentially mobile, and normally 

an intermediate service server is available that can be used as rendezvous point as 

described in this section , therefore the handoff scenario described in this section is 

more suitable. 

5.1.3. InterLay scheme and SHIM layer 

Because the InterLay scheme allows for prepending extra information to the PDU, it 

can easily handle SHIM-layer type of modification, such as that of Host Identity Protocol 
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[29]. Moreover, using this prepending ability, we can create tunnels without the need to 

introduce new protocols such as [49]. 

5.1.4. InterLay scheme and Route optimization 

By exposing the internal activities of a protocol to outside layers, we can provide even 

more flexibility to the end user application. For example, in Mobile IPv6, when route 

optimization (RO) is used then even if the communication session is short and small, RO 

signaling is still being carried out, which creates processing and signaling overhead. This 

is especially can be troublesome if, for example, the Correspondent Host is a popular http 

server with many small html pages, such as microblogging service, or if the Mobile Host 

is moving fast from one access point to another. 

If InterLay scheme is used, then the application will be provided with a interface to a 

action() method at the MIP protocol object, which accepts the destination (CH’s) IP 

address as parameter, that performs the RO procedure to that destination. The advantage 

of this approach is that the application is the one that knows about its communication 

need the most, therefore it can make the best decision. For example RO is activated only 

if the application decides that its communication session is traffic-heavy or long-lived. In 

addition, the Data Link (i.e. network driver) object can provide a get() method to inform 

the application about the handoff frequency, and the application can further decide that if 

the frequency of handoff is high then RO should not be activated. 

5.2. Advantages and benefits of InterLay model  
5.2.1. Advantages of the InterLay model 

The new InterLay model helps overcome some limitations of the traditional TCP/IP 

architecture and shows its superiority over other related schemes which are of narrower 

approach based on a case-by-case basis. This is due to its advantages described as 

follows: 

5.2.1.1. Advantages that come from the approach of separating the cross-
layer activities from the main networking activities 

These advantages include:  
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-  Any changes in the cross-layer communication mechanism will not affect the 

TCP/IP stack and vice versa. 

- The core TCP/IP stack is similar to conventional implementation, performing all 

activities related to sending/receiving data. Therefore, all expertise/code of 

existing implementation can be reused, reducing development time as well as 

possible errors. 

- Because the InterLay entity can be modified, enhanced, and upgraded 

independently in term of cross-layer related functionality/capability without 

requirement to change the core TCP/IP stack, it lessens the chance of the TCP/IP 

stack inadvertently being wrongly modified. 

- The centralization of the management for cross-layer activities in one entity 

allows the uniformed access to a network parameter from all other layers. This 

simplifies the analysis and design process as well as reduces the confusion for 

developers when accessing the parameter from various layers.  

- Moreover, nowadays network policies are widely employed in various forms for 

various purposes, the InterLay model will also allow the exchange with (and 

possible control from) external policy servers to synchronize the operations of the 

local networking subsystem with the conditions of the overall external network. 

5.2.1.2. Advantages that come from the wide coverage of the Interlay model    
The InterLay model is a single implementation but it can support many developments 

of the TCP/IP architecture. 

It allows for networking subsystem and user applications not only to be able to adapt 

the performance according to lower layers status, but also to support for:  

- more choices beside performance (such as arbitration decision for route 

optimization) and  

- coverage for future changes and requirements (for example, it can support new 

extensions to original TCP/IP model such as TCP mobility, SHIM-layer activities, 

IP tunneling … without difficulty). For example the InterLay scheme can support 

new requirements without requiring development of new protocols at the 
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This supports more timely development and deployment of future services, because 

the application designers now do not have to wait first for a new protocol to be 

established, standardized and implemented in the OS kernel to enable the newly emerged 

changes and requirements.  

However, there are cases when eventually a new protocol that standardizes the new 

requirements will be rolled out. In this case the application designers can just update their 

application with the new protocol, and the abilities of the InterLay object will 

continuously be used to serve other newly surfacing problems and requirements. 

5.2.1.3. Advantages that come from the InterLay model’s ability to coexist 
with other different cross-layer design proposals 

The Interlay model provides not only attributes (and associated set() and get() 

methods) but also action() methods, it can serve as a general platform for other proposals 

to implement their algorithms upon. For example, the algorithms proposed in [19] can be 

inserted as action() methods in relevant protocols in this new TCP/IP architecture, 

together with exposing needed information among layers. 

5.2.2. Benefits of the InterLay model 

With its advantages mentioned above, the InterLay model brings about main benefits 

that can be summarized as follows: 

Firstly, the InterLay model provides a general, comprehensive, secure approach to 

cross-layer manipulation of networking subsystems, which better serves optimization, 

customization of communication infrastructure and services. 

More specifically, the general aspect includes: 

- The information is accessed in a uniform way 
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- The information is accessible by all types of entities, including  

 End-user applications (in the user space) 

 Lower layers protocol objects (in the kernel space) 

 External policy servers (outside the local system) 

The comprehensive aspect includes: 

- The model allows the manipulation of all kind of information: real-time 

parameter, event parameter, and action() method 

- The model allows both read and write operations 

- The model allows manipulation of information from both local and external 

entities 

And the secure aspect includes: 

- Protection using priority 

- Security of set() and action() method (when implementing in OO 

programming) 

- Protection given by get() and set()(when implementing in OO programming) 

- For write (update) operations as well as action() method, there are several 

check points: in the PE, in the Enforcer and in the set() method 

Secondly, the InterLay model supports faster service development because there is: 

- no need  for update to the system every time a new requirement appears  

- no need for the standardization of new protocols but making use of 

programming skill  

Thirdly, by providing fine-tuning capability to other communication applications, the 

new model allows the “intelligent use” of underlying network status and functions by the 

end-user applications. 
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Fourthly, due to its broad coverage, the Interlay is able to replace previous works that 

also use cross-layer communication of network parameter approach but on a case by case 

basis. For example: 

- To maintain a TCP session when a handover to a new IP address takes place, 

existing solutions require the modification of TCP protocol, while InterLay can 

support TCP mobility through manipulation of the PCB (Protocol control blocks) 

and TCB (Transmission Control Block), as well as events from lower layers. From 

section 5.1.2, we can see that the InterLay model can support more flexibility than 

any other existing works, enabling not only TCP mobility over handoff at one end, 

but also support transfer of TCP session across local interfaces as well as in the 

case both ends handoff simultaneously. The latter two cases are not possible in any 

existing works. 

- InterLay model allows for prepending/appending extra information to the PDU, 

therefore it can handle SHIM-layer type of modification and replace Host Identity 

Protocol (HIP) at end devices ( the InterLay provides the feature similar to Virtual 

IP [13] which can replace the functionality of HIP. It can also replace IP in IP 

tunneling protocol 

- By executing action() methods from external entities, the InterLay model can 

replace the functionality of the IEEE 802.21 Media Independent Handover (MIH) 

protocol.  

 MIH’s functions and commands to gather network characteristics and 

seamless handovers can be implemented as action() method of L2 object. 

 Station initiated and network initiated handovers will be implemented by 

calling the appropriated action() method. 

And finally, even though focusing on TCP/IP protocol suite, the principles and 

methodologies of InterLay model are general enough to be extended to other networking 

models that use layering approach. 
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5.3. Comparison of InterLay and related systems 
5.3.1. InterLay and Simple Network Management Protocol (SNMP) system 

5.3.1.1. Overview of SNMP 
SNMP is defined by IETF to be used as a network management protocol for the 

TCP/IP network. It defines the mechanism to manage devices on IP networks, including 

servers, workstations, routers, switches, modem racks and other networking devices. 

SNMP management architecture not only manages the performance and the 

configuration of the hardware but also the software running over it, such as the OS itself, 

web server software, etc…  

The information model of SNMP-based network management includes the Simple 

Network Management Protocol (SNMP) itself, the Structure of Management Information 

(SMI) and the Management Information Base (MIB). 

The SNMP Protocol defines the format of messages exchanged by the management 

systems and agents. It also includes the commands (i.e. operations) to gather and enforce 

data between the manager and the managed using the GET (and other GET -related 

commands), SET and TRAP commands. 

The SMI provides the specifications on the format used to define managed objects on 

the network accessed by the SNMP protocol. In essence, it is a subset of Abstract Syntax 

Notation One (ASN.1) language adapted for use with MIB. 

The MIB is a conceptual repository of management information recorded in a text file. 

It contains the management information (so-called the managed objects) provided by the 

managed device. 

The architecture of network management based on SNMP includes the following three 

key components: 

- Managed device is a device that needs to be monitored and managed. This includes 

both or either the hardware and any applications running on it. 

- Agent is a software application running on managed devices. It gathers and/or 

modifies the information described in the MIB text file and responds to SNMP 
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commands from the NMS (described below) as well as sends notifications to the 

NMS. 

- Manager is a device that runs the network management system (NMS) software 

which generates commands and receives information and notifications from the 

agents on managed devices for management purposes. 

The SNMP protocol contains the following commands (i.e. operations) that are used 

between the NMS and agents to exchange information: 

- The commands to request the managed objects of the MIB sent to the agents by the 

NMS, including the GET, GETNEXT and GETBULK command. 

- The command to change/update the value of a managed object of the MIB sent to 

the agents by the NMS, which is called the SET command. 

- The unsolicited notification sent by the agent to the NMS reporting of an (typically 

unexpected) event in the managed device. The related command is called the TRAP 

command. 

The GET (and related commands) and the SET commands operate in the “client pull” 

fashion, in which the NMS actively “pulls” data from the agent, while the TRAP 

command operates in a “server push” fashion, in which the agent “pushes” out a TRAP 

message to the NMS. 

In the above commands, the concerned managed object is identified by its Object 

Identifier (OID). The OIDs are organized in a tree-like hierarchy, and the OID of a 

specific object is represented by a series of integers separated by a dot, with each integer 

represents the node that must be traversed in order to reach the object, starting from the 

root node. 

SNMP network management architecture is designed to manage configuration of 

devices (and its software), monitor performance as well as react to events from managed 

devices. 

5.3.1.2.  Comparison between SNMP and InterLay 
From the discussion in section 5.3.1.1., we can see that the agent in the SNMP 

architecture runs at the local device that can be used to get various data from the device, 
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to change or update configuration parameters as well as to notify of events in the local 

system. This is similar to what the InterLay is designed for. 

However, the purpose of SNMP is for network management, so its target is the 

information on the performance of OS, application and hardware, while the target of 

InterLay is the networking subsystem specifically. Because of the difference in targets, 

the SNMP and InterLay architecture have the following differences: 

- The SNMP focuses on retrieving statistic data focusing on performance while the 

InterLay focuses on getting real-time value of parameters. 

- The data that are changed/updated by SNMP are typically static configuration 

parameters, while InterLay can change/update both static and dynamic parameters 

of the networking subsystem. 

- Because SNMP uses IP address to address the source and destination of SNMP 

commands, the SNMP agent cannot serves local applications. 

- Moreover, events are notified directly from the InterLay in the kernel to the 

external device, which are more efficient in terms of processing load than that of 

SNMP, because in the SNMP the event must go through an intermediate SNMP 

agent running in the user space.  

- Because of the way SNMP identifies managed information (i.e. the OID), the 

information must be specified in advance between the NMS and the SNMP agent. 

Therefore, SNMP is not suitable for manipulating the networking subsystem where 

certain objects (such as TCP objects) are created and destroyed dynamically. 

- SNMP is not designed with action() methods in mind like InterLay. 

Because of the above differences, SNMP cannot fulfill all the tasks that InterLay must 

do. It is also obvious that because the differences in purposes, InterLay and SNMP do not 

exclude each other, instead they complement each other, in which InterLay provides 

more flexibility in the manipulation of communication sessions, while SNMP better suits 

with network management purposes. 
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5.3.2. InterLay and Media Independent Handover (MIH) system 

5.3.2.1. Media Independent Handover 
Media Independent Handover architecture is being developed by the IEEE 802.21 

Working Group to enable the smooth interaction and media independent handover 

between 802 technologies and other access technologies. 

Central to the architecture is a Media Independent Handover Function (MIHF), which 

is an entity that interacts crossed-layer with multiple layers (IP, transport and application) 

to provide support for mobility when IP sessions are being handed over from one access 

technology (i.e. a network interface) to another.  

The MIFH facilitates the handover process by relaying messages among the Internet 

access technologies and upper layers (namely IP and above). The messages can be 

categorized into three types of services as follows: 

• Event Service which passes notification of events from both local interface as well as 

remote to higher layers. Some examples of event are Link_Up, Link_Down, etc. 

• Command Service which provides a set of commands for the MIH users to control the 

handover process. The MIH commands are similar to action() methods of the 

InterLay model. Some examples of command are MIH_Configure_Link, 

MIH_Connect_3G, MIH_Link_Switch, etc. Similar to the InterLay model, to receive 

an event the requester must subscribe to that event in advance. 

• Information Service provides the mobile device with the ability to query supporting 

information to facilitate it in selecting the correct target interface. Some examples of 

supporting information include list of available networks, link layer information, 

neighbor information, neighbor maps, etc. 

The MIHF only provides the above services to different layers of the network 

subsystem. A mobility management agent is needed at the mobile device, which uses the 

services of the MIHF to calculate and decide which access network the mobile node 

should handover into. IEEE 802.21 does not specify the requirements or operations of the 

mobility management agent. 
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5.3.2.2. Comparison between MIH and InterLay 
MIHF and InterLay object are similar in that they both allow higher layers to learn of 

the events of lower layers and to issue commands to lower layers in reacting to such 

events. 

However, MIH and InterLay have some differences, of which the most prominent 

difference is the scope. MIH concentrates on handover, so its main target is Layer 2 

interface, and it is used only to support handover and related activities. For user 

application, the only benefit that MIH provides is that the requirements for the access 

link (such as speed, QoS etc.) from the application could be taken into account when a 

new access technology is being selected. Meanwhile, InterLay is more comprehensive, in 

the sense that it allows the application not only to have a role in the handover process, 

but also to control and manage the behaviors of the IP and transport layer.  

Another weakness of MIH is that it does not support the update/modification of real-

time parameter due to the lack of means to identify a specific parameter of a specific 

protocol instance, as well as the necessary authorization mechanism to perform a “write” 

operation on the parameter. However, we can see from section 5.1 that this write 

operation is the main enabler for service customization and flexibility. 

Therefore the MIH does not really provide any support in terms of customization and 

flexibility for the communication applications/services, as possible with the InterLay 

model. 

Using the services of the Policy Engine, the Informer and the Enforce (as described in 

section 3.7) the InterLay can also provide the services of the MIH for Layer 2 handover. 

Therefore the InterLay can be said to supersede the MIH. 

5.3.3. InterLay model and Control Information Exchange between Arbitrary 

Layers (CEAL) system 

5.3.3.1. Overview of CEAL 
Control Information Exchange between Arbitrary Layers (CEAL) is designed to 

provide similar cross-layer functionalities to that of Media Independent Handover, but 

not confining to layer 2 but extending to other layers as well [107] [112] [113]. 
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As the name implies, CEAL is designed to exchange information, not to enforce 

changes to the networking subsystem. 

CEAL introduces the Abstract Entity (AE) as the interface to communicate and 

cooperate with the protocol entity (PE). The PE is a representation of a specific protocol 

as a whole. The AE abstracts the protocol-specific information of the PE to some 

common and protocol independent information. Each PE will require a specific AE for 

itself. 

 

Figure  28. CEAL architecture and Primitive Interaction model [107] 

AEs provide services to each other using four primitives: Request (primitive is used to 

request a certain service from another layer), Confirm (acknowledges the Request 

primitive), Indication (notification of the information that is requested by the Request 

primitive), and Response (acknowledges the Indication primitive). 

The four primitives will be used to exchange 3 types of interaction: exchange of 

information of a protocol (similar to the get() method for real-time parameter of the 

InterLay model), notification of events (similar to the event parameter of the InterLay 

model) and exertion of control action (similar to the action() method of the InterLay 

model). 

CEAL contains the Inter-Layer System (ILS) as a dispatcher of message between AEs 

to enable the AEs to exchange cross-layer information. AEs use a data structure called 

“Abstract Entity Parameter Packet” (AEPP) to exchange information with each other 
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through the ILS. The AEPP includes the source layer ID and protocol ID of the source 

and destination AEs, the type of primitive and interaction and other supporting data. 

By using the four primitives and the three interaction types, the AE of a certain 

protocol can learn about the status of another protocol through its respective AE, and 

response correspondently. 

5.3.3.2. Comparison between CEAL and InterLay 
In this part we will compare CEAL and InterLay in 6 different areas. 

1. Centralized vs. Distributed management of cross-layer activities 

In CEAL the cross-layer manipulation tasks are carried out by the AEs, while in the 

InterLay model they are fulfilled by the InterLay object. So in essence CEAL is a 

collection of distributed cross-layer manipulation objects, one for each protocol, while in 

InterLay model the manipulation tasks are centralized in the InterLay object.  

The centralized approach of InterLay model provides the advantage of removing the 

need to duplicate common functionalities such as authentication/authorization of requests 

at each AE, which reduces the size of the cross-layer system. Moreover, when these 

common functionalities must be upgraded or modified, then in InterLay model this action 

must be performed once, while in CEAL it must be repeated for each AE. 

And as experienced in the development of the Intelligent Network [56] of the Telecom 

network or in the Next Generation Network, it is beneficial for a service/application 

provisioning system to employ common service independent building blocks (SIBs) 

[110], and a service can be built up by assembling these SIBs together in a specific order 

(of course there are cases when new SIBs are developed if required by a new service). 

The centralized management of the InterLay makes it possible to create and maintain 

such SIBs for the PE, the Informer and Enforcer. On the other hand the AEs are 

distributed and independent from each other so CEAL does not suit well with the SIBs 

approach. 

One drawback of centralized approach is that it makes the size of the switch 

statements (illustrated in table II and III) of the Informer and Enforcer, which are used to 

find the right protocol instances and set()/get()/action methods, to become larger because 
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they have to deal with all parameters and action() methods. We can remedy this problem 

by assigning the parameters and action() method of each protocol with a consecutive 

range of ID, therefore we can easily identify the owner protocol of a parameter or 

action() method from its ID, and the switch-case now has to deal with finding the right 

parameters/action() method only, which is similar to what AEs has to do in CEAL (that 

uses distributed approach). 

2. Handling newly introduced feature 

In InterLay model parameters are identified individually for each protocol, while in 

CEAL each parameter is abstracted by a common representative for all the protocols of 

the same layer. While this abstraction in CEAL is expected to allow existing protocol 

entities to be able to interact with new ones with ideally no modifications, but in order 

to actually make use of a newly introduced protocol, its new parameters need to be 

abstracted again which ultimately requires the update of the system.  

More concretely, when changes are introduced (either by a new protocol or new 

capabilities such as new events or parameters or actions to existing protocols), for CEAL 

it needs to update the AEs to handle the new aspects for the protocol entity, and for 

InterLay the ID for the new parameter/event/action should be identified, and the new ID 

should be mapped to the right parameter of the right protocol. So the distributed 

architecture in terms of cross-layer manipulation tasks of CEAL does not provide any 

advantages than the centralized architecture of InterLay. 

3. Requirements of knowledge from developers 

In the case of CEAL, the service/system developers need to know about the AE of the 

concerned protocol, as well as what kind of control is available for that protocol, which is 

not readily available. 

In the case of InterLay model, the developers only need to know the ID of the target 

(i.e. the real-time or event parameter, or action() method) and the rest will be taken care 

of by the InterLay object. The information on the list of the target is readily available by 

using the test questions as described in Chapter 4 above. 

4. Working at the instance level vs. the protocol-as-a-whole level 
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In CEAL, the AE is used as the destination to access the concerned protocol as a 

whole. Therefore a requester can access to the protocol as a whole, not to individual 

instances of the protocol. As a result, in CEAL any change will be applied to all instances 

of a protocol, for example a notification of a congestion event might result in the setting 

of cwnd of all TCP sessions to 1, while in reality only the TCP sessions that use the 

congested link should be affected. 

On the contrary, in InterLay model the InterLay object allows for the protocol 

instances to act as the originator and executor of the request, therefore the InterLay 

model can provide more customization to individual services or network protocol. For 

example as explained in subsection 5.1.2, an application can decide whether a single TCP 

session should be maintained over address change or not without affecting other ongoing 

TCP sessions. 

Moreover, working at the instance level also allows the InterLay model to execute an 

internal action of a protocol for a specific instance only. This is beneficial such as in the 

case of route optimization described in subsection 5.1.4 where the route optimization is 

required for a single IP session only. This is not possible with CEAL, because the route 

optimization action will be applied to all IP sessions to a same care of address. 

Therefore the InterLay model provides finer-grained service customizations than that 

of CEAL. An example of the finer-grained of InterLay is the optional Route 

Optimization described in subsection 5.1.4. Because InterLay supports individual 

instance of IP session, it can perform RO for an individual Correspondent Host, while 

calling the Route Optimization method in CEAL will cause all mobile IP sessions to be 

terminated at the same destination Correspondent Host. 

5. The ability to perform a “write” operation on the real-time parameter 

As explained in section 1.2 of chapter 1 the ability to perform a “write” operation is 

the main enabler for (obj-b) of a cross-layer system. 

Because in CEAL, the actual parameter as well as its owner protocol instance are 

abstracted by the AE, there is no way to access to the parameter to change its value. 

Therefore “write” operation is not supported in CEAL.  
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However, as discussed in section 5.1, “write” operation is the key factor for the 

arbitrary manipulation of protocol instances, which equals to inventing a new protocol 

via programming skills. This is an exclusive strength of InterLay model. 

 6. Working with external systems 

Using the Message Handler in the Policy Engine, the InterLay model can easily 

interact directly with external systems.  

CEAL cannot interact directly with external systems, and a separate user application 

will be needed to relay the commands with external system, which will impose more 

overhead than that of Message Handler in the InterLay model. 

5.4. Overhead issues in OO Programming 
In terms of operation speed, comparing with conventional procedural programming, the 

TCP/IP stack experiences the following extra overhead in OO programming:  

(i) The extra overhead to create and destroy the objects belonging to Layer 2, 3, and 4. 

(ii) The extra overhead to look-up the implementation of the virtual functions (in the so 

called v-table) that carry out the sending/receiving data in each respective object.  

(iii) The extra overhead to look-up the implementation of any other virtual function 

that performs any other functions for that protocol. 

Because objects of Layer 2 and Layer 3 are created when TCP/IP Networking 

Subsystem (NS) in the kernel is initiated and destroyed when the networking subsystem  

is shutting down, the overhead of (i) for objects of Layer 2 and Layer 3 does not affect 

the performance of the NS. Layer 4 object is created or destroyed whenever a transport 

session is established or torn down, but because at user terminals new session is created 

sporadically, the effect on the performance is negligible. 

Because the major activities of the TCP/IP stacks are to move the data (PDU) up and 

down the protocol stack, the overhead in (iii) should be negligible, and the main extra 

overhead will come with (ii).  

However, the look-up of the v-table takes only several CPU cycles [50] [51], so the 

impact of this extra load on modern CPU should not be noticeable. Moreover, 
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optimization techniques such as loading the v-table into the CPU cache (which is 

common for Just-In-Time compilers) will reduce the look-up time to one or two cycle, 

further reducing the impact of this overhead. 

To roughly calculate the overhead, suppose that when invoked by a send() system call, 

the network stack receives the amount of data that equals to m segments. We can 

calculate the processing time for the TCP/IP stack as follows 

- For procedural programming, it is:   

m × ttcpPrc + m × tipPrc                                               (1) 

- For OO programming, it is:  

(ttcpLkp + m×ttcpPrc) + (m×tipLkp +  m × tipPrc)            (2) 

[Note: tLkp is the average time to look-up and access the object, while tPrc is the 

average processing time for a segment or packet] 

The calculation for processing time in (2) is based on the assumption that the TCP 

object invokes the IP object for each segment that is ready. If there is a mechanism for 

the TCP object to call the IP object to process a batch of n segments, then (2) would 

become: 

          (ttcpLkp + m×ttcpPrc) + ( (m/n)×tipLkp +  m × tipPrc)      (3)  

[Note: it is obviously that n ≤ m and for simplicity n is chosen to be a factor of m] 

The mechanism to enable (3) can be for example the TCP object to hold call to IP 

object until n segments are ready in the buffer. Therefore n is bounded by for example a 

upper delay time for processing the segment in the IP layer, and this delay is controlled 

by the application as a network parameter (for example non real-time application can 

select larger n than real-time application). 

By comparing with (1), the extra processing time (i.e. overhead) for a packet in the 

case of (2) is 1/m ttcpLkp + tipLkp, and  in case of (3) the extra processing time is [ttcpLkp/m + 

tipLkp/n]. As such the extra processing (overhead) per packet would be reduced 

proportionally to m and n, so for applications with high communication traffic (which 

require more processing power) the overhead is neglected, therefore for end devices with 
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high computing capacity, the affect of OO programming on the performance of the 

TCP/IP networking stack is negligible. 

Moreover, in the case multiprocessor is used at the end devices, then each protocol 

object can be programmed as a single thread and executed by a separated processor. 

Assume that TCP object and IP object execute simultaneously, then (2) becomes  

(ttcpLkp + ttcpPrc) + (m-1) × max{ttcpPrc;(tipLkp + tipPrc)}  + (tipLkp + tipPrc)   (4)  

The performance measurement in [32] shows that ttcpPrc is more than 3 times that of 

tipPrc, so tipLkp + tipPrc is probably less than ttcpPrc, then comparing (1) and (4) is equal to 

comparing [(m-1) ×tipPrc] with [ttcpLkp + tipLkp], and in case m is large (i.e. high traffic 

applications) (4) can even be smaller than (1). 

The same calculation can be done reversely for the receiving activities. 

As for performance of the InterLay object, because this object will be called 

sporadically, and normally via system call, which is already processing intensive, the 

extra overhead incurred by OO programming is negligible. 

OO programming will also cause overhead in creating and destroying TCP objects 

when a TCP session is established and terminated, but this is one time expense for the 

whole duration of the TCP session and not contributes to the processing of actual data. 

However, it should be noted that the InterLay architecture can be implemented in both 

OO and procedural programming, and  in the case performance is strictly needed then 

InterLay architecture can always be implemented in procedure programming,  with extra 

care for actions that alter network parameters because the protection intrinsic with the 

set() method of OO is not available anymore.  

5.5. Deployment strategies 
This section discusses how the InterLay scheme can be rolled out in real world 

deployment. We propose that the deployment can be divided into two modes: disruptive 

and non-disruptive deployment. 

When disruptive mode deployment is used, essentially the usage of existing 

service/application will be suspended until all the parties concerned finished the upgrade 
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to the new architecture, in both the OS and end-user applications. Disruptive deployment 

is further divided into two sub-categories: Complete disruptive and Partial disruptive.  

In complete disruptive mode, all parties have to upgrade either or both the application 

and OS in order to continue using existing service. This also includes those who will not 

communicate with new features. 

In partial disruptive mode, all partners that communicate with new features need to 

upgrade regardless of the features being used together with the OS, but they can still 

communicate with un-upgrade parties using the un-upgrade features. 

In non-disruptive mode, only the parties that want to use new features provided by the 

InterLay have to upgrade and they can use the new features even with un-upgraded 

parties.  

Let us consider one example of non-disruptive service. Suppose that a voice 

application can originally negotiate to change codec on the fly, and the application at end 

device A is upgraded to utilize cross-layer communication feature. When the application 

at A receives information from the lower layer regarding the possible change of link 

speed (for example Layer 2 can inform of the change from 802.11b to 802.11g, or Layer 

4 inform of ECN or RTO event) then the application can actively negotiate to use a 

higher/lower codec to provide a smoother experience. Therefore, party A can use the new 

feature of InterLay without the requirements of the  

For the example of partial disruptive service, suppose that a TCP application will work 

better if the TCP connection can be preserved across AP handoff. The TCP socket at both 

end device A and B can be upgrade to communicate with lower layers to preserve the 

TCP connection. But because that socket is still a TCP socket, the application can work 

with device with the current version without any trouble.  

The new InterLay networking model proposed in this research can be deployed in 

several steps, depending on the nature of the applications that will be used. This will 

make the acceptance of cross-layer communication model faster and smoother. Also, the 

deployment of InterLay model can start with mobile devices, where the requirement for 

flexible services is more pressing, while the deployment for desktop can be rolled out 

later. 
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Moreover, the deployment of OS and end-user applications can be separated. 

Regarding the OS deployment, the new networking model can be rolled out together with 

OS upgrade. Until every host supports the new networking model, only non-disruptive 

and partial disruptive deployment of services are possible. 

Regarding the application deployment, at first non-disruptive deployment can be 

carried out right away, and then partial disruptive and finally new version of the service 

can be rolled out in full-feature deployment (the two latter cases can be carried out only 

after the InterLay-enabled OS is available at the end device). 

Regarding the IPC mechanisms between the InterLay object and other protocol objects, 

at first we can use existing and proven mechanism such as mmap, so that faster 

development can be achieved (as developers are used to these mechanism). However, 

new APIs (especially for the communication between InterLay ⇔ user-space socket) can 

be introduced later for each specific communication to improve efficiency. These new 

APIs can be developed with reference to existing implementation of other APIs, thus 

reducing the developing time. 

Moreover, this new and more complex architecture could be deployed in end devices 

to support service development, while routers continue to use the traditional version of 

the TCP/IP architecture. The reason for this distinction is because the new model added 

extra capabilities and complexity as well as processing overhead that are indented for 

user applications that do not exist in routers. 

5.6. Other performance and security issues 
User applications can abuse the architecture by constantly issuing requests to InterLay 

to retrieve/alter network parameters, and this may affect the performance of the whole 

system.   

 There are two cases such a problem can happen. The first case is that the application 

is a malicious program intended to negatively affect the user’s device, and the second is 

that the application is poorly written. However, these two cases are common issues of the 

IT world, not specific to the Interlay architecture itself. The solution to the first case is to 

raise the awareness of not using untrusted software, and to eliminate the second case, the 
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user application should be developed by adhering established quality control practice in 

the software industry. 

And the PE and the Enforcer entities of the InterLay object are equipped with rate 

control to minimize the effects of bad applications from abusing the InterLay 

functionalities.



CHAPTER 6. CONCLUSIONS AND FUTURE WORKS 
 

 

 

 

6.1. Major Contributions 
The Internet has the characteristic of “dumb network, intelligent end devices”. 

However, the current layering model does not allow the “intelligent use” of underlying 

network status and functions by the end-user applications. Meanwhile, as explained in 

Chapter 1, communication applications now have the need and the ability to process 

information from lower layers for more customization and optimization. This research 

aims at addressing this problem.  

From the initial idea, through the process of design and implementation, a new TCP/IP 

model – the Interlay – has been envisaged, formed and introduced. In Chapter 3, 4 and 5, 

the design, working mechanism of the new model have been described and illustrated. Its 

wide coverage, multifaceted advantages and noteworthy benefits have also been 

discussed and analyzed. The deployment strategy of new model into real world has also 

been outlined with different modes and steps.   

The new TCP/IP model with InterLay entity as one important part can overcome 

limitations of conventional TCP/IP model and that of existing related works on cross-

layer communication manipulation. It allows the provision of information from lower 

layers so that applications not only be able to adapt their performance according to lower 

layers status, but they can also (i) make more choices beside performance (such as 

arbitrary decision for route optimization) and (ii) adapt better with future changes. It can 

also provides new service scenarios that are not possible with any other proposals, such 

as supporting TCP mobility in the case of handoff simultaneously at both ends or 

between local interfaces. 

The results of the research are discussed in more details as follows: 
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Firstly, the research explores and provides the case for the need of a new architecture 

of TCP/IP which allows protocol’s internal activities and states to be access across layers, 

especially by the user application. We have provided several examples to signify the 

usefulness and advantages of the new architecture in chapter 5. 

The research examines numerous existing works on cross-layer information 

manipulation, which seek benefits of cross-layer design from the performance aspect by 

asking different layers to adapt themselves according to the current status of the network. 

These works have brought about benefits such as optimizing the utility function of end to 

end throughput in ad-hoc network, optimizing the exchange of information and 

conserving energy in sensor networks. For example, Coordination between Layer 2 and 

Layer 3 during a handoff has reduced the interruption time for Mobile IP and SIP 

applications.  

The review of existing works indicates the major limitation of these works: they are 

based on a case by case approach. Every time a new requirement appears, the system has 

to be modified, which makes it slow to develop and introduce new features. 

Secondly, the research provides a new broader approach that better supports the 

exchange and manipulation of cross-layer information without requiring individual 

modification of the TCP/IP stack for each new development. The resulting InterLay 

model has been proposed and is the main topic of this research, which includes: 

- the core conventional TCP/IP stack  

- a separate InterLay entity that handles all activities related to cross-layer 

communications.   

Thirdly,  as the InterLay model allows the ability for the application to invoke internal 

operation of the networking protocol stack, as well as the ability to query and update the 

internal state of the networking subsystem, the new architecture provides the application 

with the ability close to implementing new protocols! 

The InterLay model is the only solution for cross-layer manipulation that supports the 

“write” operation of protocols’ parameters. As illustrated in section 5.1, by using the 

“write” operation, the InterLay model allows for the implementation of new features by 
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just using the programming skill instead of requiring a new protocol to be developed first. 

And as recommended in Request For Comment 1958 [103], “Nothing gets standardised 

until there are multiple instances of running code”, the InterLay can be used in this sense 

to implement and monitor various aspect of a new feature, and the information obtained 

from this process can be used to speed up the development of the correspondent protocol. 

So the InterLay model can be used as a testbed to develop protocols for the TCP/IP 

architecture! 

Moreover, apart from using the priority mechanism to protect the TCP/IP protocol 

stack from disastrous modification of internal state, the new model provides the ability to 

enforce protection mechanisms for any alternation in the following 3 places: (i) the PE 

(upon receipt of the request), (ii) the Enforcer (before the set() is called) and (iii) inside 

the set() method itself. The implementers are free to put any perceivable security and 

integrity mechanism in these checkpoints. This provides better safeguard against 

mistakes that are caused incidentally or by negligence. Also, by making use of the 

Message Handler, the InterLay object can receive the policies from external entities to be 

performed at these checkpoints. 

And by the introduction of the InterLay object, a call made to the set()/get() method of 

a protocol object does not have to interact directly with the protocol stack, which reduces 

the possibility of bugs. 

Fourthly, the model also allows for external servers to monitor and control the 

behaviors as well as learning about critical events of the local networking subsystem. 

This allows for greater service control and optimization. In addition, as explained in 

section 3.7.2.1, the InterLay object allows the possibility of executing scripts provided by 

external server. This is done by the external server to send information to the networking 

subsystem, together with executing the appropriate action() method and updating the 

appropriate real-time parameters or executing selected action whenever an event takes 

place. 

Fifthly, to select the right parameters to be exposed for cross-layer manipulation, five 

test questions are defined and applied to various protocols from layer 2 to layer 5 and 

suitable parameters are identified in Chapter 4, together with the possible usage of these 
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parameters. This methodology can effectively help save resources (manpower, time and 

other costs) in developing the InterLay scheme. It also helps application developers to get 

ideas on what are available and how they can be used to support communication 

applications.  

  And lastly, the OO design turns the proposed new architecture into an 

implementation platform for other ideas on cross-layer design, as explained in Chapter 5.  

Even though the research focuses on TCP/IP protocol suite, its principle and 

methodology are general enough to be extended to other networking model that uses 

layering approach as well. In this sense, the InterLay model is also useful as a reference 

model for the design of new network architectures in the future. Moreover, it is also 

suitable as a guideline for embedded system where customization and optimization are of 

importance. 

6.2. Future works 
Future work includes more detailed specifications to realize the OO design of the new 

architecture using OO conversion tools and other existing OO framework for protocol 

design and development, as well as creation of more applications based on the InterLay 

scheme. 

Moreover, the test questions and parameter list in Chapter 4 should be constantly 

monitored, revised, updated and appended as infrastructure and service demands evolve, 

they need to be constantly examined to find out new test questions and parameters to 

serve in different types of system or service scenarios. The approach of the test questions 

proposed in this research is universal enough to support future expansion with ease. 

As explained in subsection 3.7.2, the mechanisms for the networking subsystem to 

contact and receive information from external servers or devices is a very important issue, 

as it enables the networking subsystem to execute scripts from external entities, which 

enables better service coordination. Therefore further studies on this matter as well as 

service coordination scenarios are highly recommended. 

Finally, there is a need on finding a more generic Inter Process Communication 

between Kernel and User space. One possibility to do this is to provide another kind of 

kernel signal that can carry more data. 
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APPENDIX I. USER SPACE – KERNEL SPACE 
COMMUNICATION SOLUTIONS FOR EVENT 

NOTIFICATION 
 

 

 

 

In section 3.7.4.4, two inter-process communication solutions that can be used by the 

kernel to notify user applications about the occurrence of event are mentioned. They are 

kernel signal and NetLink socket. This appendix explains in details how these solutions 

work. 

I. Solution 1: Using the signal  
In this case, one real-time signal is reserved for the InterLay. When the event occurs, 

the corresponding notify() method will send the signal to the list of registering 

applications, with the event ID as the data. At the application side, one callback function 

that handles all events the application is interested in must be registered as the handler 

for the signal belonging to InterLay. When the signal is sent to the application, the 

callback function will get the event ID from the associated data, and react to this event.  

The advantage of this solution is that it is straight forward and easier to implement at 

both the InterLay and the application. The drawback is that implementing a signal is a 

complicated job, and one dedicated signal is required. And if more data is needed (such 

as identifier of the socket), then another kernel space– user space IPC mechanism has to 

be used, such as mmap [47] 

II. Solution 2: Notifying using the NetLink socket. 
If NetLink is used for event notification in the InterLay model, first a new 

INTERLAY protocol family is declared in the AF_NETLINK address family.   

The InterLay opens one NetLink socket (in the kernel) of INTERLAY protocol to 

communicate with the application of all events (i.e. one socket for all events’ ID). 
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The user application creates one function (for example with the name event_handler()) 

which contains the code to parse the notification from the InterLay, and after identifying 

the specific event the function will handles it correspondingly.  

The user application then creates a NetLink socket of the same INTERLAY protocol. 

It then registers the event_handler() as the callback function for the socket. If the 

application registers for several events, then either all of events are handled in one 

event_handler() function, or the application will have to create the same amount of 

NetLink socket, each is registered with a function that handles one of the event. 

When the event occurs in the kernel, the corresponding notify()method is called. In 

this case the notify()method will send one message containing the event ID to the 

NetLink socket. Due to the characteristic of the NetLink socket, all applications that have 

an open NetLink socket of the same INTERLAY protocol will receive the message, and 

the event_handler() function will be called. The function will read the event ID, and if it 

is waiting for the event, it will process it accordingly, else the notification is ignored. 

The advantage of this approach is that it is very simple. The problem with this 

approach is that the application has to process all events, regardless of whether it is 

interest in the events or not. In the case event is fired constantly, this will greatly reduce 

the performance of the user application. 

One solution for this problem is for the InterLay to declare a protocol type for each of 

the event. In this case it will have to create one kernel socket for each event, using the 

corresponding protocol type. When the notify()method is invoked as the result of the 

occurrence of the event, the kernel socket will send a message. For the application, it 

must create one NetLink socket for each event it is interested to, and register a handler 

function to the socket. When the kernel sends the message, the handler function in the 

application will be invoked, and the event is processed. The advantage of this solution is 

that the application is notified only when the appropriate event happens. The drawback is 

that more sockets must be used at both the kernel and the application.  

Note that because of the characteristic of the NetLink socket, the application does not 

have to register in advance with the InterLay object. This will save some extra overheads.  
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However, one problem of the Netlink approach is that applications will be notified 

arbitrarily about the event, without the authorization of the InterLay object. Nonetheless 

as the event notification is of the type of read-only operation, and local applications can 

be trusted for such read-only operations so normally authorization is just used for 

reducing the load, and the load of NetLink does not depend on the number of registered 

processes.  

Another drawback is that if the application needs to know about the socket associated 

with the event, then the overhead is rather high if many applications are interested in the 

event, because the kernel socket will have to send all socket identifiers to every 

applications (and in this case the application has to make a registration in advance).  
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APPENDIX II. COMPARISON OF PROPOSALS TO 
MAINTAIN TCP SESSION OVER IP ADDRESS CHANGE 
 

 

 

 

In this part we will summarize some existing researches on maintaining TCP session 

across IP address changes, and comparing them with the solution provided by InterLay 

that is described in subsection 5.1.2. 

I. Related works 
In mobile networking, there is a distinction between identifier and locator. An 

application is reached at a specified location and distinguished by a specific identity. The 

location of the application may change but the data can always find the right application 

using the identifier. 

The traditional TCP/IP model does not support mobility (namely, change of PoA 

(Point-of-Attachment)) due to the fact that the model uses address (i.e. location) as the 

identifier to distinguish between sessions. Therefore as a handover (change of PoA) 

changes the location, it also invalidates the identity (and as a consequence, it closes the 

session as well). 

Adding mobile capability can be realized at several layers. In the Session Layer (of 

the OSI model) approach, such as the Session Layer Mobility (SLM) framework [80], or 

the Session Layer migrate approach [10]. These proposals insert a session layer 

management entity between the Applications and the Transport layer, and this entity will 

carry out the job of re-establish the data session to the MN’s new attachment point. The 

drawbacks of this Session Layer approach are (i) because Session Layer is incorporated 

into the application layer in the TCP/IP model, it requires changes to existing 

applications as well as (ii) it is not backward compatible (*) with existing applications. 

(*) In this research, backward compatibility means that the application/system that implements the 

proposal could work/interact with legacy application/system in case the host device does not change its 
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PoA. In other words, the application that employs the new solution can work with existing server, client or 

peer application at the other end. 

There are also proposals to provide mobility at the Network Layer, the most famous 

example is MIP (Mobile IP) [28]. In MIP, locator is the current address of the Mobile 

Node at the foreign network (the Care-of Address), while the identifier is the MN’s 

Home Address. The advantage of this approach is that no changes are required at the 

transport and above layer. The main drawbacks are the overhead due to triangle routing 

and tunneling, as well as the requirement of extra infrastructure (Home-Agent, Foreign-

Agent).  

Other researches propose to add a Shim layer between the Network and Transport 

layer for mobility (in fact, the Session Layer approach above can be said to be a special 

Shim layer between the Application and the Transport layer). This Shim layer will hide 

away the IP layer (including IP address) from the above layers. In Host Identity Protocol 

[29], a Host Identifier (HI) acts as the identifier and hides the change of the locator (i.e. 

IP address) from the Transport layer. A kind of DNS service will map between HI and 

the current IP address, and at the end host the HIP layer will correctly map between the 

HI and the TCP port. Virtual Internet Protocol [13] utilizes a similar approach, and the 

VIP layer will do the same job of the HIP layer, using the VIP address as the identifier to 

hide the changes of IP address from the Transport layer. Both approaches introduce a 

Shim Header between the IP and the TCP/UDP header. 

The drawback of this Shim approach is that it causes overhead because of the Shim 

Header. Also, it requires changes to applications, because sockets are now bound to 

identifiers at the Shim layer, not the actual IP address. Furthermore, HIP requires IPSec 

(ESP) for all data exchange, as well as a kind of DNS service to map between HI and IP 

address. These activities induce certain processing overhead, which reduces battery life at 

the mobile device. Moreover, HIP hosts will not be able to talk with non-HIP host, which 

means that backward compatibility is a big issue. In the VIP case, the interaction between 

VIP host and non-VIP host requires a conversion gateway, but applicable only for a 

limited case of mobility. 
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The third approach is to solve mobility issue at the Transport Layer. Several 

proposals have been proposed, such as (i) creating new transport layer protocol, and an 

example is the SCTP protocol [78], (ii) split-connection approach [86, 87] as well as (iii) 

adding new states and options to existing TCP protocol to support change of attachment 

points [14, 15, 16, 79]. The common advantages of transport layer approach are that we 

can have dedicated congestion control scheme for handoff, no new infrastructure is 

required and no state (except packet routing function) is stored in the network like that of 

MIP.  

More specifically, the advantage of [78] is that it does not only support mobility but 

also multihoming etc. The main problem with [78] is that it does not compatible with 

existing applications using TCP, therefore it could not be used as a solution for existing 

applications. Security is also a problem, because by knowing the vtags (authentication 

code), a third party can not only just inject data into a connection like what happens to 

sequence number of TCP, but also actually steal the whole SCTP session due to the 

mobile feature of SCTP. 

The problems with (ii) are that it requires extra infrastructure, breaking the end-to-end 

syntax of TCP session, and single point of failure. But it allows two different congestion 

control scheme for fix and wireless portion of the link. 

Approach (iii) has the problem that both sides have to perform additional works to 

exchange a share-secret in advance, regardless of whether the Mobile Node will actually 

performs the handover to a new Access Point (AP) or not, or whether the TCP session 

lives long enough to experience a handover. The proposal in [16] relieves this matter 

somewhat by initiating the preparation process only if the TCP connection exists longer 

than a threshold, but if the mobile device performs a handover before that then all 

unprepared TCP connections are lost. On the other hand, in all proposals of (iii) if the 

Mobile Node does not perform a handover, then all of the preparations for the long-live 

connections are wasted. 

II. Comparison of InterLay and related works 
II.1. Specific Pros and Cons of InterLay 
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The general pros and cons of solving IP mobility at different layers are specified in 

section I above. TCP mobility support by InterLay can be regarded as the solution at the 

Transport layer, and more specifically it belongs to approach (iii) therefore it has all the 

pros and cons of approach (iii) at the Transport Layers. 

Some specific pros and cons of InterLay TCP mobility scheme compared to other 

solutions of approach (iii) are: 

- Con-1: To fully take advantage of InterLay scheme the applications have to be 

rewritten. 

- Pro-1: The application is able to perform any necessary extra processing that might 

be needed for the connection to the new IP address. 

- Pro-2: If the applications at both ends establish some security association, then this 

association can be used to authenticate the request to update IP address, which can 

reduce the network and processing load. 

- Pro-3: For specific applications like SIP, both end hosts can simultaneously handover 

to new IP address. In this case, the end applications will be written to use SIP server 

as Rendezvous Point. 

II.2. Summary of different solutions of maintaining TCP session across IP 

address changes 

In this section, different solutions of TCP mobility will be compared using the 

following criteria: 

- Backward Compatibility 

Backward Compatibility with existing TCP-based applications is perhaps the most 

important issue for a solution to be really useful and deployable.  

Solution of InterLay is fully compatible with existing applications in the sense that 

it can perform like existing TCP socket (i.e. it can connect to existing TCP socket) 

when connects with traditional TCP socket. 

- Requirement of new infrastructure or changes to existing infrastructure entities 
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The slow adoption of Mobile IP shows that if new infrastructure is requires for a 

solution to be in effect, then the adoption maybe slow. 

The InterLay model requires no new infrastructure in order to provide mobility to 

TCP session. 

- Requirements of changes to applications 

If a solution requires changes to existing applications then that will also slowdown 

the adoption process considerably. 

In order to fully take advantage of the InterLay model, it is required that 

applications be rewritten to use the InterLay. But this problem can be alleviated 

because the InterLay model is compatible with traditional TCP socket, therefore in 

the case new features are not needed right way the application can use existing 

features without any changes. 

- Support handover between multiple interfaces 

Support handover between multiple interfaces is an important feature, since more 

and more mobile device will be equipped with both wireless WAN and wireless LAN 

interfaces. 

Because InterLay supports the changes of both IP address and Port, it can support 

the handover between interfaces of the same device. 

- Allow for extra processing 

There are cases when it is preferable for the application to be able to perform 

certain pre-/post-update activities regarding changing of IP address. Such actions 

might be critical for premium/critical services. 

InterLay model allows such activities to take place in the case the application is 

rewritten to support InterLay explicitly. 

- Complexity (in both the working of the proposal and implementation) 

The working of proposed solution should be simple in terms of limited exchange of 

control data and algorithm to process such data, and few or no protocol states in the 
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network. Also the amount of code changes to application (if any) should be 

minimized. 

InterLay model does not requires any state at the network, and the changes of 

codes to application is minimized ( only a few function calls to update the IP address 

and send the request to update the IP address). 

- Overhead (in both processing and network load) 

Overhead has close correlation with complexity. Here the overhead is the amount 

of data sent to the network to exchange control messages between end hosts. Also, 

normally Mobile Node runs on battery while on the move, therefore little processing 

at the network stack/applications to reduce power consumption is very important. 

The characteristic of different protocols are summarized in the following table: 
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Session Layer 

SLM [4] No No Yes N/A Yes Much Fair  

SL Migrate 

[10] 

No No Yes N/A Yes Much Fair  

Network Layer 

MIP [1] Yes Yes No No No Fair Much Support UDP at

the same time 

Shim layer between the Network and Transport layer for mobility 

HIP [2] No Yes Yes No No Much Much  

VIP [3] No Yes Yes No No Much Much  

Transport Layer 

SCTP [78] No No Yes Yes No Fair Fair Multi-homing 

etc… 
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MSOCK 

[11] 

Yes Yes No N/A No Much Fair  

I-TCP [12] Yes Yes No N/A No Much Much  

TCP-R [7] Yes No No No No Fair Fair  

End-to-

End [8] 

Yes No No No No Fair Fair  

Preserving 

[9] 

Yes No No No No Fair Fair  

Mobility 

Support 

[10] 

Yes No No No No Fair Fair  

InterLay 
Scheme 

Yes No Yes Yes Yes Fair Fair Simultaneous 
handoff of MH
and CH for
certain services
such as SIP is
possible 

(In column with grey background, a negative value is better, while in column with white background a 
positive value is better.) 

From the above table, we can see that InterLay scheme is almost similar to other 

solution at the Transport Layer in terms of the said criteria, but with the additional 

features of handover between multiple interfaces, allowing for pre- and post-update 

processing of IP address changes and simultaneous handoff of Mobile Node and 

Correspondent Node for certain services such as SIP. 
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