LG H R RFEBE RAE S AT DFFER

-

bl

im0 B

m X =& H

p={{{[!
]

Genetic Network Programming
Based Rule Accumulation for
Agent Control

H ]
Lutao WANG

TEMAEE Y AT LT EHIK

2012 # 11 H



Agent control is a hot but challenging research topic which covers many
research fields, such as evolutionary computation, machine learning, neural
networks, etc.. Various approaches have been proposed to guide agents’
actions in different environments. Evolutionary Computation (EC) is often
chosen to control agents' behaviors since it can generate the best control
policy through evolution.

Genetic Network Programming is a newly developed EC method which
chooses the directed graph structure as its chromosome. High expression
ability of the graph structure, reusability of nodes and realization of partially
observable processes enable GNP to deal with many complex problems in
dynamic environments. One of the disadvantages of GNP is that its gene
structure may become too complicated after generations of the training. In
the testing phase, it might not be able to adapt to the new environment easily
and its generalization ability is not good. This is because the implicit
memory function of GNP is not enough when dealing with dynamic agent
control problems. Therefore, explicit memory should be associated with GNP
in order to explore its full potential.

Various research has revealed that memory schemes could enhance EC in
dynamic environments. This is because storing the wuseful historical
information into the memory could improve the search ability of EC. Inspired
by this idea, a GNP-based memory scheme named "Genetic Network
Programming with Rule Accumulation™ (GNP-RA) is proposed in this thesis.
Focusing on this issue, it is studied in the following chapters of this thesis
how to create action rules and use them for agent control, how to improve the
performance for agent control in Non-Markov environments, how to prune the
bad rules to improve the quality of the rule pool, how to build a rule pool
adapting to the environment changes and how to improve the robustness of
the rule pool by creating more general rules. The organization of this thesis
is as follows.

Chapter 1 describes the research background, problems to be solved and
outline of the thesis. Some classical methods in the domain of evolutionary
computation and reinforcement learning are reviewed.

Chapter 2 designs the general framework of GNP-RA, which contains two

stages. In the training stage, the node transitions of GNP are recorded as
2



rules and stored into the rule pool generation by generation. In the testing
stage, all the rules in the rule pool are used to determine agents' actions
through a unique matching degree calculation. The very different point of
GNP-RA from the basic GNP is that GNP-RA uses a great number of rules to
determine agents’ actions. However, GNP could wuse only one rule
corresponding to its node transition. Therefore, the generalization ability of
GNP-RA is better than that of GNP. Moreover, GNP-RA could make use of the
previous experiences in the form of rules to determine agents’ current action,
which means that GNP-RA could learn from agents’ past behaviors. This also
helps the current agent to take correct actions and improve its performance.
Simulations on the tile-world demonstrate that GNP-RA could achieve higher
fitness values and better generalization ability.

Chapter 3 aims to solve the perceptual aliasing problem and improve the
performance for agent control in non-Markov environments. The perceptual
aliasing problem refers to that different situations seem identical to agents,
but different optimal actions are required. In order to solve this problem, a
new rule-based model, "GNP with multi-order rule accumulation™
(GNP-MRA) is proposed in this chapter. Each multi-order rule records not
only the current environment information and agent's actions, but also the
previous environment information and agent's actions, which helps agents to
distinguish the aliasing situations and take proper actions. Simulation results
prove the effectiveness of GNP-MRA, and reveal that the higher the rule
order is, the more information it can record, and the more easily agents can
distinguish different aliasing situations.

Chapter 4 focuses on how to improve the quality of the rule pool. Two
improvements are made in order to realize this. One of them is that during
the rule generation, reinforcement learning is combined with evolution in
order to create more efficient rules. The obtained knowledge during the
running of the program could be used to select the proper processing for
judgments, i.e., better rules. The second approach is that after the rule
generation, a unique rule pruning approach using bad individuals is proposed.
The basic idea is that good individuals are used as rule generators and bad
individuals are used to filter the generated bad rules. Four pruning methods
are proposed and their performances are discussed and compared. After
pruning the bad rules, the good rules could stand out and contribute to better
performances. Simulation results demonstrate the efficiency and effectiveness
of the enhanced rule-based model.



Chapter 5 is devoted to improving the adaptability of GNP-RA depending on
the environment changes. GNP-RA has poor adaptability to the dynamic
environments since it always uses the old rules in the rule pool for agent
control. Generally speaking, the environment keeps changing all the time,
while the rules in the rule pool remain the same. Therefore, the old rules in
the rule pool become incompetent to guide agents’ actions in the new
environments. In order to solve this problem, Sarsa-learning is used as a tool
to update the rules to cope with the inexperienced situations in the new
environments. The basic idea is that when evolution ends, the elite individual
of GNP-RA still execute Sarsa-learning to update the Q table. With the
changes of the Q-table, the node transitions could be changed in accordance
with the environment, bringing some new rules. These rules are used to
update the rule pool, so that the rule pool could adapt to the changing
environments.

Chapter 6 tries to improve the generalization ability of GNP-RA by pruning
the harmful nodes. In order to realize this, "Credit GNP-RA™ is proposed in
this chapter. Firstly, Credit GNP-RA has a unique structure, where each node
has an additional "credit branch™ which can be used to skip the harmful nodes.
This gene structure has more exploration ability than the conventional
GNP-RA. Secondly, Credit GNP-RA combines evolution and reinforcement
learning, i.e., off-line evolution and on-line learning to prune the harmful
nodes. Which node to prune and how many nodes to prune are determined
automatically considering different environments. Thirdly, Credit GNP-RA
could select the really useful nodes and prune the harmful ones dynamically
and flexibly considering different situations. Therefore, Credit GNP-RA
could determine the optimal size of the program along with the changing
environments. Simulation results demonstrated that Credit GNP-RA could
generate not only more compact programs, but also more general rules. The
generalization ability of GNP-RA was improved by Credit GNP-RA.

Chapter 7 makes conclusions of this thesis by describing the achievements of
the proposed methods based on the simulation results.



