
Waseda University Doctoral Dissertation

Study on Robustness and Adaptability of
Genetic Network Programming with

Reinforcement Learning
for Mobile Robot

Siti SENDARI

Graduate School of Information, Production and Systems
Waseda University

February 2013

Abstract

In the real implementation of autonomous mobile robots, the environments change
dynamically with unknown and inexperienced situations, which make agents do tasks
inappropriately. In order to behave appropriately, the agents should be robust to un-
known environments and also have the adaptability mechanisms to change the struc-
tures/parameters of their controllers adaptively when inexperienced situations occur.

In the classical methods, designing the controllers of the agents using differential
equations or conventional network structures have problems, where those methods
are difficult to represent all the actual agent behaviors in the dynamic environments.
Generally speaking, although the experiences of an expert are needed to design the
controllers, the evolutionary algorithms, such as Genetic Algorithm (GA), Genetic
Programming (GP) and Genetic Network Programming (GNP) can generate the opti-
mized programs for robot controllers. In order to get the robust controllers, the agents
should be trained with a lot of data and the exploration ability should be improved,
furthermore, introducing noises may generate various data which improve the ability
of the agents to face uncertainty of the environments. On the other hand, the ability
of learning the environments using Reinforcement Learning (RL) improves the adapt-
ability to inexperienced troubles in the implementations.

The objectives of this thesis are to study the robustness and adaptability of Ge-
netic Network Programming with Reinforcement Learning (GNP-RL), so that the au-
tonomous mobile robot behaves appropriately in the unknown environments and de-
termines its behaviors appropriately to adapt to the troubles caused by broken sen-
sors. Here, GNP is one of evolutionary algorithms to automatic program generation,
which generates intelligent rules for the agent behaviors. The structures of GNP are
constructed and optimized in the evolution, then the experiences of an expert are not
needed. GNP has some advantages compared to the other methods which make GNP
suitable for implementing the robots, that is, (1) re-usability of the nodes which make
the structures more compact and use small memory; and (2) applicability to Partially
Observable Markov Decision Process (POMDP). Furthermore, GNP was enhanced to
GNP with Reinforcement Learning (GNP-RL), which has the ability to learn the node
transitions and change the functions adaptively by selecting the appropriate sub nodes
when troubles occur. Therefore, GNP-RL is applicable for dynamic environments and
suitable for robot control.

The adaptability of GNP-RL using the Sub node Selection method (SS method)
has been analyzed, however, the adaptability mechanism of GNP-RL is not enough
when severe troubles occur. In addition, the robustness of GNP-RL in the noisy envi-
ronments has not been analyzed yet. In order to improve the robustness and adapt-
ability of GNP-RL, this thesis studies 4 topics, that is, (1) Fuzzy GNP with Reinforce-
ment Learning (Fuzzy GNP-RL) which is trained with noises to improve the robust-

iii

ness; (2) Fuzzy GNP with Two-Stage Reinforcement Learning, i.e., Fuzzy GNP-TSRL
(BS) which improves the adaptability mechanism by combining the Sub node Selec-
tion (SS method) of Fuzzy GNP-RL with Branch connection Selection (BS method),
thus, Fuzzy GNP-TSRL (BS) can change functions and determine the appropriate next
nodes, while Fuzzy GNP-RL can only determine the appropriate functions; (3) the
adaptability of Fuzzy GNP-TSRL (BS) is studied furthermore by changing parame-
ters of ϵ greedy policy and learning rate α in order to balance the exploration and
exploitation; and (4) another method to improve the adaptability is Fuzzy GNP with
Two-Stage Reinforcement Learning, i.e., Fuzzy GNP-TSRL (CS) which combines the
Sub node Selection (SS method) of Fuzzy GNP-RL with Credit branch Selection (CS
method) of credit GNP, here, Fuzzy GNP-TSRL (CS) has the ability to skip harmful
nodes which cannot be done by Fuzzy GNP-RL and Fuzzy GNP-TSRL (BS).

For evaluating the performances, the wall following problem is used as a bench-
mark method. The performances are studied in the training phase and implementa-
tion phase. From the results, Fuzzy GNP-RL improves the exploration ability of the
conventional GNP-RL to determine the node transitions more appropriately. In addi-
tion, introducing Gaussian noises to the sensors also improves the exploration ability.
As a result, the robustness of Fuzzy GNP-RL in unknown environments is improved
using probabilistic node transitions and noises during the training phase. Fuzzy GNP-
TSRL (BS) can improve the adaptability of Fuzzy GNP-RL, which can determine the
appropriate functions and next nodes. Furthermore, the performance of Fuzzy GNP-
TSRL (BS) is improved more by changing parameters of ϵ-greedy policy and learning
rate α instead of using fixed parameters, which can balance the exploration and ex-
ploitation ability. Fuzzy GNP-TSRL (CS) shows the superior performance comparing
with Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL, where Fuzzy GNP-TSRL (CS) can
change the functions and skip harmful nodes, while the other methods can not avoid
harmful nodes of the node transitions. Therefore, the adaptability of Fuzzy GNP-TSRL
(CS) has the best performance.

Contents

Abstract ii

1 Introduction 1
1.1 Research Background and Motivation . 1
1.2 Objectives and Frameworks . 3
1.3 Related Works on Fuzzy Logic and Integrating EA with RL 4
1.4 Contents of this Research . 13

2 Fuzzy GNP-RL 15
2.1 Introduction . 15
2.2 Motivation of Fuzzy GNP-RL . 15
2.3 Algorithm of Fuzzy GNP-RL . 16
2.4 Comparison between Fuzzy and Non-Fuzzy GNP-RL 23
2.5 Simulations . 24
2.6 Summary . 31

3 Fuzzy GNP-TSRL (BS) with
Fixed ϵ-greedy Policy and Learning Rate α 33
3.1 Introduction . 33
3.2 Motivation of GNP-TSRL (BS) . 33
3.3 Algorithm of Fuzzy GNP-TSRL (BS) . 34
3.4 Comparison between Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL 40
3.5 Simulations . 40
3.6 Summary . 45

4 Fuzzy GNP-TSRL (BS) with
Changing ϵ-greedy Policy and Learning Rate α 47
4.1 Introduction . 47
4.2 Motivation of Changing Parameters of Fuzzy GNP-TSRL (BS) 48
4.3 Mechanism of Changing Parameters . 48
4.4 Comparison between Fuzzy GNP-TSRL (BS) with Changing and with

Fixed ϵ-greedy Policy and Learning Rate α 51
4.5 Simulations . 51
4.6 Summary . 56

5 Fuzzy GNP-TSRL (CS) 58
5.1 Introduction . 58
5.2 Motivation of GNP-TSRL (CS) . 58
5.3 Algorithm of Fuzzy GNP-TSRL (CS) . 59

Contents v

5.4 Comparison between Fuzzy GNP-TSRL (CS), Fuzzy GNP-TSRL (BS)
and Fuzzy GNP-RL . 65

5.5 Simulations . 65
5.6 Summary . 70

6 Conclusions 71

Bibliography 72

Acknowledgments 78

List of Publications 79

List of Figures

1.1 Frameworks for improving the robustness and adaptability of GNP-RL . 3
1.2 Interacting the agent with its environment 5
1.3 Q-learning algorithm . 6
1.4 Sarsa learning algorithm . 7
1.5 EARL algorithm . 7
1.6 Process of integrating EA with RL . 8
1.7 An example of optimization using GP for partitioning the environment

(K. L. Downing [59]) . 9
1.8 An example of optimization of the structure of GP (S. Kamio [34]) 9
1.9 An example of crossover operation on GP (T. Braunl [66]) 10
1.10 An example of mutation operation on GP (T. Braunl [66]) 11
1.11 Basic Structure of GNP . 11
1.12 GNP as a robot controller . 13

2.1 Phenotype and genotype of Fuzzy GNP-RL 17
2.2 Fuzzy membership function of Fuzzy judgment node 18
2.3 An example of node transition of GNP . 19
2.4 Sarsa learning of Fuzzy GNP-RL . 20
2.5 Flowchart of Fuzzy GNP-RL . 21
2.6 Khepera robot . 24
2.7 Training and implementation environments 25
2.8 Fitness curves of Fuzzy GNP-RL comparing with non-Fuzzy GNP-RL

in the training environment without noises 28
2.9 Fitness curves of Fuzzy GNP-RL comparing with non-Fuzzy GNP-RL

in the training environment with noises 29

3.1 Node structures of Fuzzy GNP-TSRL (BS) 35
3.2 Gene structures of Fuzzy GNP-TSRL (BS) 35
3.3 Learning process of Fuzzy GNP-TSRL (BS) 37
3.4 Recovery process by changing the function 39
3.5 Recovery process by changing the connection 40
3.6 Average fitness of Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL in the

training phase . 43
3.7 Average reward in each time step when 1 sensor breaks in the imple-

mentation phase . 43
3.8 Trajectory path of Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL when 1

sensor breaks in the implementation phase 44

List of Figures vii

3.9 Average reward of Two-Stage RL and One-Stage RL after several sen-
sors break in the implementation phase 45

3.10 Trajectory path of Two-Stage RL and One-Stage RL when five sensors
break in the implementation phase . 45

4.1 Changing of ϵ-greedy policy and learning rate α generation by generation 49
4.2 Changing of ϵ-greedy policy and learning rate α during the life time (T) 50
4.3 Average fitness of TSRLch, TSRLco(A) and TSRLco(B) in the training

phase . 54
4.4 Average fitness of TSRLch, TSRLco(A) and TSRLco(B) in the implemen-

tation phase . 56
4.5 Average fitness of TSRLch with several broken sensors in the implemen-

tation phase . 57

5.1 Node structures of GNP-TSRL (CS) . 60
5.2 Gene of GNP-TSRL (CS) . 60
5.3 An example of a node transition of GNP-TSRL (CS) 62
5.4 An example of recovery process of Fuzzy GNP-TSRL (CS) 64
5.5 Average fitness in the training phase . 68
5.6 Average reward of Fuzzy GNP-TSRL (CS), Fuzzy GNP-TSRL (BS) and

Fuzzy GNP-RL during the life time in the implementation phase 69
5.7 Average reward in the implementation phase with several broken sensors 70

List of Tables

1.1 Behaviors of the robot . 12

2.1 NTi and di of node i . 18
2.2 Noises for Fuzzy GNP-RL during the training and implementation phase 25
2.3 Node functions used in the function library 26
2.4 Simulation conditions . 27
2.5 Average rewards of individuals trained without introducing noises (WNTrain)

in the implementation . 28
2.6 Average reward of individuals trained with noises and evaluated in the

implementation . 30

3.1 Simulation conditions of Fuzzy GNP-TSRL (BS) comparing with Fuzzy
GNP-RL . 42

4.1 Simulation conditions of Fuzzy GNP-TSRL with changing parameters
comparing with fixed parameters . 52

4.2 Performances of TSRLch with various parameter n 53
4.3 Average reward of TSRLch, TSRLco(A) and TSRLco(B) implemented

under TSRL/TESTco . 55
4.4 Average reward of TSRLch, TSRLco(A), TSRLco(B) implemented under

TSRL/TESTch . 56

5.1 Simulation conditions . 67

Chapter 1

Introduction

1.1 Research Background and Motivation

In the real implementation, the environments of autonomous mobile robots (agents)
change dynamically with unknown environments and inexperienced situations, which
make the agents do the tasks inappropriately. In the classical method, the controllers of
the agents were modeled using Differential Equations (DE), where DE has difficulties
when representing the actual behaviors in the dynamically changing environments.
These difficulties can be solved easily by using network structures representing arti-
ficial knowledge behaviors [1]. Various controllers based on network-structures are
increasingly used to solve the problems in the dynamic environments, e.g., Fuzzy
Logic Controller (FLC) [2], Fuzzy Cognitive Map (FCM) [3], Neuro Evolution through
Augmenting Topologies (NEAT) [5], Evolutionary Acquisition of Neural Topologies
(EANT) [6], Genetic Programming (GP) [7], Genetic Network Programming (GNP) [8].

In order to do the tasks successfully in the dynamic environments, the agents
should be robust to the uncertain environments and have the adaptability to the changes
of the environments caused by inexperienced situations [9–12].

The robustness is defined as the generalization ability of the agents using existing
structures to face inexperienced changed of the environments. In order to improve the
robustness, the agent can be trained with the following several mechanisms.

1. To use a large number of the training data [13], then the agent can learn various
situations, which improves the generalization ability. This mechanism takes a
long time to train the agent.

2. To improve the exploration ability [14], which may avoid early premature con-
vergence.

3. To introduce noises when training the systems [15], which implies a large num-
ber of training data.

On the other hand, the adaptability of the controller of an agent can be improved
by using mechanisms to change the structures/parameters adaptively in inexperi-
enced situations, such as breaking sensors in the implementations. Here, the agent
should have learning ability to observe the changes of the environments. Supervised
Learning (SL) [16–18] and Unsupervised Learning (UL) [19, 20] were mostly used as
the adaptability mechanisms of the systems in the neural network. While SL aims to

2 Introduction

learn a mapping from the inputs to outputs whose the correct values are provided by a
supervisor, UL aims to find the regularities to map the inputs using a structure, where
the appropriate behaviors are decided without using a supervisor. Rather than relying
SL using correct and incorrect behaviors, interacting experiences of an agent with its
environments are more attracting to infer a strategy for solving the tasks. Reinforce-
ment Learning (RL) is a kind method of UL, which studies the interaction between an
agent and its environments based on trial and error, where the objective of the agent
is to maximize the reward [21]. Many research show that RL is suitable to learn the
control policies for mobile robot navigations [22–29].

While RL improves the performance of the agent using local optimization, Evolu-
tionary Algorithm (EA) [30] is a method to improve the performance of the agents us-
ing the global optimization. In EA, the structures and their parameters are represented
as the individuals which are optimized by the mechanisms of selection, crossover and
mutation.

The integration of EA and RL is studied in many research [31–35], where the in-
dividuals use RL to estimate the local rewards from the current generation. The in-
dividuals are evaluated for generating the new individuals in the next generation to
obtain the global optimization. Thus, the integration of EA and RL improves the per-
formances of the agents to do the task in the dynamically changing environments.

GNP [8] is one of EAs to program generation for efficient agent behaviors, which
imitates the human decision making by using if-then rules like GP [7]. While the
individuals of GP are represented by tree structures, the individuals of GNP are rep-
resented by graph based structures, that is, the individuals of GNP are represented
by directed graph structures consisting of three kind nodes, i.e., a start node, judg-
ment nodes and processing nodes, where the nodes are connected to each other by
directed links. The behaviors of the agents based on GNP are determined by the
node transitions in the structures. The performances of GNP are better compared with
GP [8], where GNP has advantages such as, (1) re-usability of the nodes, which makes
GNP more compact and (2) applicability to Partially Observable Markov Decision Pro-
cess (POMDP) [36], while the tree structures of GP can bring bloat problems [37, 38].
GNP was successfully applied to the problems in the dynamically changing environ-
ments [39–42].

GNP was extended to GNP with Reinforcement Learning (GNP-RL) which was
successfully implemented to navigate the mobile robots [43]. In GNP-RL, the node
structures are modified, so that each node has several sub nodes representing the al-
ternative functions. GNP-RL combines evolution and reinforcement learning, where
the structures (functions and connections) are constructed by evolution, while the
node transitions are learned by RL. This combination has some advantages, that is,
speed up the learning process and use small memory which are suitable for the sys-
tems like robots. In addition, GNP-RL has improved the robustness and adaptability
of GNP, that is, the robustness is achieved by training the individuals with several
start positions of the robot, then the generalization ability is improved when the robot
is implemented in different environments [43]; the adaptability of GNP-RL has been
analyzed [44], i.e., when inexperienced situations occur like sensors’ break in the im-
plementation, GNP-RL has mechanisms to adapt to the changes of the environments
by adaptively changing the alternative functions.

The features of GNP-RL for mobile robots should be studied furthermore because
the environments of the robot are very dynamic, for example noises and inexperi-

Objectives and Frameworks 3

enced situations like sensors’ sudden break occur in the real implementation. In or-
der to overcome these problems, the robustness and adaptability of GNP-RL need to
be improved and studied more in this thesis, because the adaptability mechanism of
GNP-RL is not enough when severe troubles occur.

1.2 Objectives and Frameworks

The objectives of this thesis are to study the robustness and adaptability of GNP-RL.
Here, two problems of dynamical changing environments are studied, that is, (1) the
unknown environments which is determined by using different environments and (2)
inexperienced situations which are caused by broken sensors in the implementation.

In order to deal with these problems, how to improve the robustness and adapt-
ability of GNP-RL is proposed as shown in Fig.1.1.

Figure 1.1: Frameworks for improving the robustness and adaptability of GNP-RL

1.2.1 Robustness

The robustness id defined as the generalization ability of the agents using existing
structures to face inexperienced changes of the environments.

The robustness of GNP-RL to unknown environments is studied firstly. In order to
improve the robustness of GNP-RL to unknown environments, it is proposed to inte-
grate Fuzzy logic to the judgment nodes of GNP-RL, which is named Fuzzy GNP-RL.
While the conventional GNP-RL determines the node transitions based on the thresh-
old values, Fuzzy GNP-RL determines the node transitions probabilistically, which
overcomes the sharp boundary problems and improves the exploration ability.

In addition, the robustness of Fuzzy GNP-RL is also improved by introducing
noises to the sensors during the training phase, where noises can generate more var-
ious data for training Fuzzy GNP-RL. Thus, Fuzzy GNP-RL has more generalization
ability when implemented in the noisy environments.

4 Introduction

1.2.2 Adaptability

The adaptability is defined as the ability of the agents to work adaptively by changing
their structures or parameters depending on the changing of the systems.

In order to improve the adaptability to inexperienced situations which are caused
by broken sensors in the implementation, Two-Stage Reinforcement Learning meth-
ods are proposed. Since the adaptability mechanism of GNP-RL and Fuzzy GNP-
RL is the same, that is, One-Stage Reinforcement Learning for Sub node Selection (SS
method), the functions are changed adaptively using the SS method when troubles oc-
cur. The adaptability mechanisms using Two-Stage Reinforcement Learning is studied
in 2 methods, that is, (1) Fuzzy GNP with Two-Stage Reinforcement Learning using
Branch connection Selection method, i.e., Fuzzy GNP-TSRL (BS) and (2) Fuzzy GNP
with Two-Stage Reinforcement Learning using Credit branch Selection method, i.e.,
Fuzzy GNP-TSRL (CS).

Fuzzy GNP-TSRL (BS)

In this method, the structures of Fuzzy GNP-RL are enhanced to Fuzzy GNP-TSRL
(BS) by combining the SS method and BS method which are learned in the first stage
and second stage of RL, respectively. Thus, Fuzzy GNP-TSRL (BS) can change the
programs adaptively by changing function and/or connections when troubles occur,
which may improve the adaptability in inexperienced situations. Here, Fuzzy GNP-
TSRL (BS) uses two kinds of Q-tables, i.e., QSS table and QBS table, so that the size
of Q tables is increased. Thus, the exploration parameters of ϵ-greedy policy and
learning rate α should be considered more carefully in order to balance the exploration
and exploitation. Then, Fuzzy GNP-TSRL (BS) is studied furthermore using changing
parameters of ϵ-greedy policy and learning rate α, which is compared to that with
fixed parameters. The effects of changing parameters are studied in the training phase
and implementation phases.

Fuzzy GNP-TSRL (CS)

In this method, the structures of Fuzzy GNP-RL are enhanced to Fuzzy GNP-TSRL
(CS) combining the SS method and CS method which are learned in the first stage and
second stage of RL, respectively. Different from GNP-TSRL (BS), Fuzzy GNP-TSRL
(CS) can change the programs adaptively by skipping the nodes which are considered
as harmful nodes.

1.3 Related Works on Fuzzy Logic and Integrating EA with RL

This section introduces the related works of this research.

1.3.1 Fuzzy Logic

Fuzzy logic has capabilities to represent uncertain situations using human-based deci-
sion rules named Fuzzy Inference Systems (FIS), which maps inputs x1, ..., xk to output
y as follows.

Rj : If x1 is Xh
1 and... xi is Xh′

i and... xk is Xh”
k , then y is al and... am and... an, (1.1)

Related Works on Fuzzy Logic and Integrating EA with RL 5

where, Rj is j-th rule of the rule base, Xh
i is h-th linguistic value of input i and

h = 1, 2, ..., q, where q is the number of Fuzzy membership functions. y denotes the
output of the system with am is possible value for y where m = 1, ..., n.

The expert can design as many FIS rules as necessary. However, these rules may be
robust for only the specific systems and lack of generalization ability [45]. Then, de-
termining the number of rules and parameters of Fuzzy membership functions for
the system is the main problem in designing FIS. EA can overcome this problem,
where the number of rules and parameters of the Fuzzy membership functions can
be optimized [46]. Furthermore, Fuzzy logic can be integrated to NN structures to en-
hance the adaptability, where the adaptation involves the tuning of the control rules
by changing the control actions and adjusting output gains [28, 32].

Another implementation of Fuzzy systems to deal with uncertainties of the envi-
ronments is a Probabilistic Fuzzy Logic (PFL) approach, which works in a similar way
as regular FIS, but improves the stochastic capability [47–49]. In PFL, Eq. 1.1 is modi-
fied with the probability of success as follows.

al with the probability of Pjl,
am with the probability of Pjm,
an with the probability of Pjn.

1.3.2 Reinforcement Learning (RL) in POMDP

RL is a learning framework which provides adaptation mechanisms in the dynamic
environments through trial and error. Instead of using a supervisor, the outputs of
the controller are determined using the rewards which are given by the environments
depending on the actions taken by the agent. The agent and its environment interact
at discrete time steps, t = 0, 1, 2, At time step t, the agent receives the information
from the environment representing state s ∈ S, where S is the set of states and selects
action a ∈ A, where A is the set of actions as depicted in Fig. 1.2. One time step later,
the agent receives reward rt ∈ R after taking an action and perceives the new state
s′ ∈ S.

Figure 1.2: Interacting the agent with its environment

The objective of the agent is to maximize the rewards received during the life time
by improving a policy to select an action in each state. While the sequence of the

6 Introduction

rewards received after time step t are denoted as rt+1, rt+2, rt+3, ..., the expected total
reward until the end of the life time T, i.e., Rt is defined as a specific function of the
reward sequence, that is,

Rt = rt+1 + rt+2 + rt+3 + ... + rT. (1.2)

In order to make a good estimation of Rt in the dynamic environments, the agent
should improve its policy π(s, a) which is represented as action-value function (Q(s, a))
by selecting action a at state s to maximize Rt as Eq. 1.3,

Qπ(s, a) = Eπ{Rt|st = s, at = a},

= Eπ{
∞

∑
k=0

γkrt+k+1|st = s, at = a}, (1.3)

where, γ is a discount rate (0 ≤ γ ≤ 1). If γ = 0 means the agent maximizes the
immediate reward, while γ approaches 1, the agent takes future rewards into account
more strongly.

There are two classes of RL for learning the optimal behavior in Markovian do-
mains, that is, Q-learning [50] which is called as off-policy method and Sarsa-learning
as on-policy method [51], where the expected values are represented as the Q-value.

• Q-Learning. The agent is in state s, it does action a, then reward r is received and
the state is transferred into state s′. Here, the actions are selected using a policy
according to the Q values, where the Q values are updated by the estimated max
Q values. Q-learning is carried out as shown in Fig. 1.3.

Figure 1.3: Q-learning algorithm

• Sarsa Learning. The agent is in state s, it does action a, then reward r is received
and the state is transferred into state s′ from which it decides action a′. As on-
policy, the agent selects the actions using a policy according to the Q values,
while Q values are updated by the estimated Q values. Sarsa learning algorithm
is carried out as shown in Fig. 1.4.

Related Works on Fuzzy Logic and Integrating EA with RL 7

Figure 1.4: Sarsa learning algorithm

In the RL framework, the agent makes decisions as a function of a signal from
the environment called environment’s state. In particular, a property of the environ-
ments and their state signals should be the Markov property and a RL that satisfies
the Markov property is a called Markov Decision Process (MDP). Furthermore, Par-
tially Observable Markov Decission Process (POMDP) provides an essential model
for agent operating under uncertainties/incomplete information, [52–54]. A standard
POMDP model assumes a discrete state, observation, an action space for the agent,
and a reward that the agent gets in each time step. J. Loch [55] confirmed that Sarsa is
the best policy for estimating the reward in POMDP.

1.3.3 Integrating EA with RL

EA is an optimization technique to create potential solutions using genetic operators,
i.e., selection, crossover and mutation, where the potential solutions are selected on the
basis of their quality/fitness. EA is used in various tasks, such as connection weight
training, architecture design, learning rule adaptation, input feature selection, rule
extraction, etc., where the evolution process of EA is shown in Fig. 1.5.

Figure 1.5: EARL algorithm

Recently, the researchers are attracted to integrate EA with RL (EA-RL) to improve

8 Introduction

the adaptability of the agent in the dynamically changing environments.
The integration of GA with RL (GA-RL) is widely used to optimize the architec-

tures of ANN, which is called Evolutionary Artificial Neural Network (EANN) [56–58]
and can also be used to optimized Fuzzy Inference System (FIS) [28, 60]. This integra-
tion shows the effectiveness to optimize the structural and parametric characteristics
without any priory knowledge on the system.

Another EA method which can directly generate programs to dynamic problems
is GP. There are two different methods to integrate GP with RL (GP-RL), that is, (1)
the individuals are optimized in the evolution phase, but RL is used outside of the
evolution process, that is, for the implementation with continuous states and actions
[33], (2) the other method uses RL inside of the evolution process with discrete states
and actions [34]. The second method can speed up the learning process of RL for
learning more different situations and is widely used in the training phase as shown
in Fig. 1.6.

Figure 1.6: Process of integrating EA with RL

In the first time step of EA-RL, the individuals of a population should be cre-
ated. The representation of the individuals can be changed depending on the tasks.
The individuals of GA are represented as numerical strings of the weights of ANN,
as used by Fuzzy Q-Learning Genetic Algorithm (FQLGA) [60], Neuro Evolution of
Augmenting Topologies (NEAT) [5] and GeNeralized Acquisition of Re-current Links
(GNARL) [61]. On the other hand, the individuals of GP are represented by tree struc-
tures which consist of function nodes and terminal nodes [7].

The training phase of EA-RL can be grouped into two parts, that is, learning part
and evolution part.

Learning part

In papers [28, 33, 34, 56–60], the problems have the Markov properties and Q tables
are used to estimate the state-action pairs, where the optimization is divided into two
methods, that is, (1) partitioning of the environments and (2) partitioning the struc-
tures of the agents.

Related Works on Fuzzy Logic and Integrating EA with RL 9

The optimization of EA-RL using partitioning of the environment is shown in Fig.
1.7, where the positions in the environment represent the states and the agent be-
haviors to move in the environment represent the actions. The generalization ability
of this method should be confirmed, because different environments need different
representation of Q tables. Furthermore, the Q tables also should be large when the
environment is more complex, then the Q table take a long time to converge.

Figure 1.7: An example of optimization using GP for partitioning the environment (K.
L. Downing [59])

The other method is the optimization of EA-RL using partitioning the structures of
the agents. While the structure of the agent is NN, then the nodes represent the states
while the weights or parameters represent the actions [28, 60]. On the other hand,
while the structure of the agent is a tree structure of GP, the terminal nodes represent
the states which consist of several variables representing the actions [34] as shown in
Fig. 1.8. Thus, using this method, the Q table can converge faster and the agent has
more generalization ability for implementation in unknown environments.

Figure 1.8: An example of optimization of the structure of GP (S. Kamio [34])

10 Introduction

Evolution part

While RL works on each individual to make local optimization, the evolution process
works on individuals in a population to make the global optimization using selection,
crossover and mutation operators.

The selection method is used to select good individuals in the population as par-
ents. The selection methods which are commonly used are roulette wheel selection and
tournament selection. In the roulette wheel selection method, each individual has a
chance to become a parent using the proportion to its fitness, where the individuals
with larger fitness (slot sizes) have more chances to be selected. On the other hand, the
tournament selection method selects a number of the individuals randomly, where the
individual with the highest fitness becomes the parent. J. Zhong [62] found that the
tournament selection method works more efficiently than the roulette wheel selection
method to encounter the problems of prematurity when the size of the population is
large enough.

Crossover combines the structures of two individuals to generate two offspring
and serves as an accelerator to generate behaviors. On the other hand, mutation works
on an individual to generate an offspring and serves to create random diversity in the
population. The example of crossover operation is shown in Fig. 1.9 and mutation
operation is shown in Fig. 1.10.

Figure 1.9: An example of crossover operation on GP (T. Braunl [66])

Crossover probability, i.e., Pc and mutation probability, i.e., Pm are known to
critically affect the behavior and performance of EA. Instead of using the uniform mu-
tation and crossover, the adaptive probabilities of crossover and mutation is proposed
to improve the performance of EA [63]. On the other hand, when the individuals
have numerical parameters, the nonuniform mutation [64] shows better performance
than the adaptive mutation [65]. Thus, the nonuniform mutation [64] is used in this
research.

Related Works on Fuzzy Logic and Integrating EA with RL 11

Figure 1.10: An example of mutation operation on GP (T. Braunl [66])

1.3.4 Genetic Network Programming

Standard Genetic Network Programming (Standard GNP) has been proposed [8], which
has the ability to generate problem solving programs. The individuals of standard
GNP are represented by directed graph structures as shown in Fig. 1.11, which consist
of a start node and a fix number of the judgment nodes and processing nodes.

Figure 1.11: Basic Structure of GNP

Standard GNP has been extended as follows.

1. Standard GNP was integrated with RL which improves the adaptability in the
dynamic environments, that is, GNP-RL [35]. GNP-RL has several sub nodes
in each of the judgment nodes and processing nodes representing the alterna-
tive functions which are learned using Sarsa learning. The agent behaviors are
determined directly using node transitions.

2. Standard GNP has been extended to Fuzzy GNP [67, 68], that is, Fuzzy logic is
integrated to the judgment nodes to deal with the continuous values. The Fuzzy
parameters are evolved using non uniform mutation only, but this method lacks
of the global optimization, because the individuals use the same Fuzzy parame-
ters. Fuzzy GNP has been used to generate rules and they are stored in the rule
pool during the training phase to be used in the implementation.

3. Standard GNP has been extended to Credit-GNP [69], where the credit branch
is implemented to GNP with rules [70]. Here, Credit-GNP with rules has the
ability to skip harmful nodes during the training phase to be used in the imple-
mentation.

This research is enhancing of GNP-RL which can determine the agent behaviors di-
rectly using node transitions, therefore, this method uses small memory. In addition,

12 Introduction

the programs of GNP-RL have the ability to change adaptively when the environ-
ments are changed. Thus, GNP-RL is suitable for the implementation in the dynamic
environments, such as mobile robot applications.

1.3.5 GNP as a Mobile Robot Controller

A mobile robot is an automatic machine which has capabilities to move in the envi-
ronments. In this research a wheeled robot is used to study the proposed method,
i.e., a Khepera robot. In the evolutionary robots, many individuals should be trained
and evaluated in the training phase, which are difficult to use the real robot, then, the
robots are trained using robot simulator. Webots [71] is a robot simulator, which is
widely used in the field of autonomous systems, intelligent robotics and evolutionary
robotics [72].

Actually, the environments in the real implementation are different from the those
in the training environments, where inexperienced changes of the environments are
included. Then, the robot should have the robustness and adaptability to these changes.

A Khepera robot has characteristics as follows.

• 8 infra red distance sensors, which return values from 0 to 1023, that is, when the
sensor touches the wall, then it returns 1023, while far from the wall it returns 0.

• 2 differential wheels (the right and left wheels, i.e., VR and VL, respectively),
where the speed of the wheel can be set from -10 to 10.

The behaviors of the robot can be determined as shown in Table. 1.1. If the speed of
the wheels, that is, the right and left wheels have the same and positive values, then,
the robot moves forward, the robot moves backward while the values are negative.
On the other hand, while the speed of the right wheel (VR) is larger than that of the
left wheel (VL), then, the robot turns left, vice versa.

Table 1.1: Behaviors of the robot

Behavior
VR = VL(+) move forward
VR = VL(−) move backward
VR > VL turn left
VR < VL(+) turn right

GNP is an automatic program generation for efficient agent behaviors, which is
suitable as robot controllers. GNP as a robot controller is shown in Fig. 1.12, which is
represented by a directed graph structure consisting of

• a start node, which determines the first node to be executed,

• judgment nodes, which judge the assigned inputs and return the judgment re-
sults to determine the next nodes to be executed,

• processing nodes, which set the speed of the wheels.

Contents of this Research 13

Figure 1.12: GNP as a robot controller

The nodes are connected each other by directed links, where the connections, func-
tions and parameters of the nodes are changed in the evolution part.

The behaviors of the agents are determined by the node transitions of GNP. Here,
the unique definitions are used in the case of GNP, as follows.

• Node Transitions mean the sequences of executing the judgment nodes and pro-
cessing nodes, for example : J4→ J1→ J3→ VL.

• 1 step is defined as the least delay time spent by the node transitions, for exam-
ple: 8 time units.

• time unit means the delay time for executing a node, for example: a judgment
node spends 1 time unit and a processing spends 5 time units.

If the node transitions are J4(1) → J1(1) → J3(1) → VL(5). Then, the node transi-
tions spend 8 time units, which mean that 1 step is obtained.

1.4 Contents of this Research

This thesis includes four topics to be studied based on the objectives as follows.
In Chapter 2, Fuzzy Genetic Network Programming with Reinforcement Learning

(Fuzzy GNP-RL) has been proposed. The structures of Fuzzy GNP-RL are based on
GNP-RL, where Fuzzy Logic is integrated to the judgment nodes, then the node tran-
sitions of Fuzzy GNP-RL can be determined probabilistically. The proposed method is
simulated using Webots simulator [71] and evaluated for the wall following behaviors
of a Khepera robot. The robustness of Fuzzy GNP-RL is carried out by using different
training and implementation environments. As a result, Fuzzy GNP-RL improves the
robustness in unknown environments. Furthermore, the robustness of Fuzzy GNP-RL
in the dynamic environments is also studied by introducing Gaussian Noises during
the training phase. The results show that Fuzzy GNP-RL with noises improve the ro-
bustness in inexperienced environments. Based on the results, the Fuzzy judgment
nodes will be used for the next methods in Chapter 3, 4 and 5 and the Fuzzy judgment
nodes are named as the judgment nodes for simplicity.

In Chapter 3, Fuzzy Genetic Network Programming with Two-Stage Reinforce-
ment Learning using Branch Selection Method, i.e., Fuzzy GNP-TSRL (BS) has been

14 Introduction

proposed. Fuzzy GNP-TSRL (BS) combines the Sub node Selection method (SS method)
like Fuzzy GNP-RL and Branch connection Selection method (BS method). The SS
method and BS method are learned in the first stage and in the second stage of RL,
respectively. In Fuzzy GNP-TSRL (BS), the actions are divided into two groups using
two kinds Q tables, that is, QSS table and QBS table. Fuzzy GNP-TSRL (BS) enhances
the adaptability mechanism of Fuzzy GNP-RL, which can adaptively change the pro-
grams by selecting not only the appropriate functions, but also the appropriate next
node connections. The adaptability Fuzzy GNP-TSRL (BS) is evaluated when inexpe-
rienced troubles occur by making several sensors break in the implementation. The
adaptability of Fuzzy GNP-TSRL (BS) which uses Two-Stage Reinforcement Learn-
ing is compared with that of Fuzzy GNP-RL which uses One-Stage Reinforcement
Learning. The results show that the adaptability mechanism of Fuzzy GNP-TSRL (BS)
works effectively and efficiently so the performance of Fuzzy GNP-TSRL (BS) is better
than Fuzzy GNP-RL.

In Chapter 4, Changing ϵ-greedy and learning rate α for improving the perfor-
mance of Fuzzy GNP-TSRL (BS) is studied. ϵ-greedy and learning rate α are set at a
larger value in early generations and decreased gradually in latter generations. Thus,
a larger exploration is carried out in early generations, however, a larger exploitation
is carried out in last generations. Changing ϵ-greedy and learning rate α is also stud-
ied in the implementation phase, that is, when sudden changes occur, the exploration
is increased and gradually decreased until the end of the life time. The performance
of Fuzzy GNP-TSRL (BS) with changing parameters of ϵ-greedy and learning rate α is
studied by comparing that with fixed parameters of ϵ-greedy and learning rate α. As
a result, changing ϵ-greedy and learning rate α can improve the performance of Fuzzy
GNP-TSRL (BS), which means that the balance of the exploration and exploitation can
be controlled efficiently and effectively.

In Chapter 5, another method of Two-Stage Reinforcement Learning based on GNP
is studied, that is, Fuzzy Genetic Network Programming with Two-Stage Reinforce-
ment Learning using Credit branch Selection method (Fuzzy GNP-TSRL (CS)). The
proposed method combines the Sub node Selection method (SS method) of Fuzzy
GNP-RL and Credit branch Selection method (CS method). While Fuzzy GNP-TSRL
(BS) provides the alternative functions and alternative connections, Fuzzy GNP-TSRL
(CS) provides the alternative functions as Fuzzy GNP-RL, but this method can skip
harmful nodes. The results show that Fuzzy GNP-TSRL (CS) is superior than Fuzzy
GNP-TSRL (BS) and Fuzzy GNP-RL, because skipping harmful nodes, which cannot
be done by Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL may recover the troubles more
quickly. Thus, Fuzzy GNP-TSRL (CS) determines node transitions more efficiently
and effectively, as a result the adaptability can be improved.

Chapter 2

Fuzzy GNP-RL

2.1 Introduction

The integration of Fuzzy logic to standard GNP (Fuzzy GNP) has been introduced
in [67,68], where the Fuzzy membership functions are used for extracting class associ-
ation rules. In these methods, each individual in the population uses the same Fuzzy
parameters which are mutated generation by generation. Although these methods
can improve the performance of standard GNP, but the Fuzzy parameters lack of the
global optimization.

Based on these studies, the proposed method integrates Fuzzy logic to GNP-RL,
which is named Fuzzy GNP-RL. Like the conventional Fuzzy GNP, Fuzzy GNP-RL
also integrates Fuzzy logic to the judgment nodes, then the node transitions of Fuzzy
GNP-RL can be determined probabilistically. However, the different points between
Fuzzy GNP-RL with the conventional Fuzzy GNP [67, 68] are

• each node of each individuals has several sub nodes which are characterized by
their own Fuzzy parameters,

• the Fuzzy parameters are evolved generation by generation by using selection,
crossover and mutation operations to get the global optimal Fuzzy parameters,

• Sarsa learning is implemented to learn the optimal Fuzzy parameters of the Sub
node Selection method (SS method),

• the agent behaviors are determined directly by using the probabilistic node tran-
sitions based on the Fuzzy membership values.

2.2 Motivation of Fuzzy GNP-RL

The idea of integrating Fuzzy logic to GNP-RL is to deal with the continuous val-
ues of sensors. While the conventional non-Fuzzy GNP-RL divides these values into
two categories, that is, Yes/No using the threshold values, Fuzzy GNP-RL divides
the sensor values into Yes/No category based on the degrees of truth using Fuzzy
membership functions, which means the probabilistic node transitions. In addition,
the idea of Fuzzy GNP-RL is to explore the structures more appropriately when the
values of sensors are near to the threshold values, then Fuzzy GNP-RL improves the
robustness of non-Fuzzy GNP-RL in the dynamic environments. The judgment nodes

16 Fuzzy GNP-RL

of the proposed method are characterized by the Fuzzy membership functions and the
node transitions are determined probabilistically.

Many applications of Fuzzy logic for mobile robot navigations were studied to
provide more precise distance information in uncertain environments by reducing the
effects of noises [9, 12, 18]. In Fuzzy GNP-RL, Gaussian noises are introduced to the
structures in order to improve the robustness. As a result, Fuzzy GNP-RL with noises
is robust in unknown environments.

The objective of this chapter is to study the robustness of Fuzzy GNP-RL compared
with non-Fuzzy GNP-RL in uncertain environments. The effects of introducing noises
for improving the robustness are also studied in the training phase and implemen-
tation phase. These methods are evaluated using the wall following behaviors of a
Khepera robot.

2.3 Algorithm of Fuzzy GNP-RL

The new point of Fuzzy GNP-RL is to determine the node transition probabilistically.
In order to realize the proposed method, Fuzzy logic is integrated to the judgment
nodes, while the start node and processing nodes works like the conventional GNP-
RL. The node structures of Fuzzy GNP-RL are described in subsection 2.3.1, where the
probabilistic node transition is described in subsection 2.3.2. In addition, the evolution
phase is explained in subsection 2.3.3. In subsection 2.3.4, introducing noises to Fuzzy
GNP-RL is described.

2.3.1 Structure Representation

The individual of Fuzzy GNP-RL is represented as a directed graph structure like the
standard GNP as shown in Fig. 1.11, which consists of 3 kind nodes, that is, start node,
judgment node and processing node. These nodes have the following functions.

• The start node has no function and its only role is to determine the first node to
be executed.

• The judgment node has if-then type conditional branch decision functions to
judge the assigned inputs from the environments. The decision functions are
carried out probabilistically to determine the next node connected.

• The processing node has no if-then type conditional branch decision functions
and its function is to determine the agent behaviors.

The structure of Fuzzy GNP-RL has n nodes consisting of a start node and a fix
number of the judgment nodes and processing nodes.

In order to enhance the ability of the conventional GNP-RL in the dynamic envi-
ronments, each node of Fuzzy GNP-RL also has several sub nodes representing the
alternative functions which are evolved and learned like the conventional GNP-RL. It
is supposed that node i ∈ {0, 1, ..., n− 1} has m sub nodes, where the structure of node
i and its gene structure are shown in Fig. 2.1. The gene structure is divided into macro
node part and sub node part.

Algorithm of Fuzzy GNP-RL 17

Figure 2.1: Phenotype and genotype of Fuzzy GNP-RL

18 Fuzzy GNP-RL

Macro node part

The macro node part of node i is defined by NTi and di. Where NTi represents a node
type and di represents the time delay spent on executing node i, where NTi and di are
shown in Table 2.1.

Table 2.1: NTi and di of node i

Node NTi di (time unit)
Start node 0 0
Judgment node 1 1
Processing node 2 5

Sub node part

The sub node part is composed of two parts, i.e., function part and connection part.
The function of sub node p ∈ {1, ..., m} of node i is defined by IDip, aip and QSS(i, ip) as
follows.

• IDip is a code number of the judgment/processing sub node p of node i encoded
by a unique number shown in the function library.

• aip is a parameter of the judgment/processing sub node p of node i.
When the node is a judgment node, aip = {βip, αip} is used to determine the
parameter of a Fuzzy membership function as shown in Fig. 2.2.
On the other hand, when the node is a processing node, aip is used to determine
the speed of the wheel of a Khepera robot.

Figure 2.2: Fuzzy membership function of Fuzzy judgment node

• QSS(i, ip) means the Q value for the SS method which is assigned to each pair of
state s and action a, here, s is the current node i and a is the selection of sub node
ip.

The connection part of sub node p of node i shows the next node connected from
this sub node. If node i is a judgment node, each sub node has 2 connections, i.e., CA

ip

and CB
ip, here, A and B correspond to the judgment results of Yes/No. On the other

hand, the processing nodes have no conditional branch, then the connection part is
defined by CA

ip only.

Algorithm of Fuzzy GNP-RL 19

2.3.2 Probabilistic Node Transition

The node transitions are sequences of the judgment nodes and processing nodes,
which determine the agent behaviors. The example of the node transition is shown
in Fig. 2.3, that is, P1 → J6 → J5 → P3. At first, the agent behavior is determined by
executing P1, after executing rules ”if (J6∧ J5), then P3”, the behavior will be changed
by executing processing node P3. When the current node is a judgment node, the next
node is determined probabilistically, as follows.

1. Sensor value xip is mapped into the Fuzzy values using the Fuzzy membership
functions as shown in Fig. 2.2.

2. The judgment nodes have 2 branches, i.e., A and B. The next node of the judg-
ment node is determined probabilistically using Eq. 2.1 and Eq. 2.2,

PA
ip = µip(xip), (2.1)

PB
ip = 1− PA

ip . (2.2)

(a) The next node shown by CA
ip is selected, i.e., where branch A of sub node p

of node i is selected by the probability of PA
ip.

(b) The next node shown by CB
ip is selected, i.e., where branch B of sub node p

of node i is selected by the probability of PB
ip.

3. In the case of the processing node, the next node is always CA
ip.

Instead of using the threshold values, branch A and branch B can be determined
using the probabilistic node transitions, where input xip of sub node p of judgment
node i judges has a value between βip and αip. Thus, the exploration ability of the
judgment nodes can be improved.

The learning process of Fuzzy GNP-RL using Sarsa learning is explained as shown
in Fig. 2.4.

Figure 2.3: An example of node transition of GNP

1. At time step t, the current node is node i and the number of sub node is m. Refer-
ring to all Q values of the sub nodes, i.e., QSS(i, i1), ..., QSS(i, im), one sub node is
selected based on ϵ-greedy policy. The sub node which has maximum Q value is

20 Fuzzy GNP-RL

Figure 2.4: Sarsa learning of Fuzzy GNP-RL

selected by the probability of 1− ϵ, or random one is selected by the probability
of ϵ. When sub node p of judgment node i is selected, the corresponding node
function becomes IDip, aip = {βip, αip} and QSS(i, ip).

2. The corresponding node function at time step t is executed, then the next node
is determined probabilistically as explained above.

3. After executing the node function, reward rt is given.

4. At time t + 1, the current node i is transferred to the next node j selected at time
step t + 1. Then, one sub node is selected using the same way in step 1. It is
supposed QSS(j, jp′) is selected.

5. Then, QSS(i, ip) is updated by

QSS(i, ip)← QSS(i, ip) + α(rt + γQSS(j, jp′)−QSS(i, ip)), (2.3)

where, α is learning rate 0 < α ≤ 1 and γ is discount rate 0 ≤ γ ≤ 1.

6. i← j, p← p′ and t← t + 1, then return to step 2.

2.3.3 Genetic Operator

The evolution process of Fuzzy GNP-RL starts from the initialization of individu-
als. Using the tournament selection, good parents are selected and evolved using
crossover and mutation generation by generation. This process is done as [35]. The
Flowchart of Fuzzy GNP-RL is shown in Fig. 2.5.

Initialization of individuals

Each individual is initialized as follows.

• Function IDip is assigned by a unique number which is shown in the function
library.

Algorithm of Fuzzy GNP-RL 21

Figure 2.5: Flowchart of Fuzzy GNP-RL

22 Fuzzy GNP-RL

• Parameter aip is set at a randomly selected integer. When the node is a processing
node, its parameter is set between -10 and 10, While the node is a judgment node,
its parameter is aip = {βip, αip}, where αip should be larger than βip , that is, αip
is set between 0 and 1023, while βip is set between 0 and αip.

• QSS(i, ip) value is set at 0.

• The connection nodes of CA
ip and CB

ip of sub node p of node i are determined
randomly in the graph structure.

Crossover and Mutation

Crossover and mutation are carried as the conventional GNP-RL, as follows.
Crossover. Crossover is executed between two parents, and two offspring are

generated. The crossover process is described as follows.

1. Two parents are selected by the tournament selection.

2. Node i is selected as a crossover node with the probability of Pc.

3. Two parents exchange the genes of the corresponding crossover node (i.e., with
the same node number).

4. Generated new individuals become the new ones in the next generation.

Mutation. Mutation is executed in one individual, and a new individual is gener-
ated. The mutation process is described as follows.

1. One individual is selected by the tournament selection.

2. In Fuzzy GNP, three mutations are used.

(a) Connection. Each node branch is re-connected to another node with the
probability of Pm.

(b) Function. Each node function is changed to another one with the proba-
bility of Pm. For example, in the Fuzzy judgment node, IDip = 1 which
corresponds to sensor number 1 is changed to IDip = 3 which corresponds
to sensor number 3, or in the processing node, IDip = 0 which corresponds
to the right wheel is changed to IDip = 1 which corresponds to the left
wheel.

(c) Parameter. The mutation Fuzzy parameters are explained next.

3. Generated new individual becomes the new one in the next generation.

Mutation of Fuzzy Parameters

In order to deal with continuous values, mutation of parameters of Fuzzy GNP-RL is
done as follows.

• Parameter aip of the processing node is changed randomly selected integer be-
tween -10 and 10.

Comparison between Fuzzy and Non-Fuzzy GNP-RL 23

• Parameter aip = {βip, αip} of the judgment node is changed using non uniform
mutation [64], which makes long jump mutation at early generations and fine tun-
ing at later generations, as shown Eq. 2.4.

a′ip =

{
aip + ∆(g, UB− aip) if ξ = 0,
aip − ∆(g, aip − LB) if ξ = 1,

(2.4)

where, a′ip = {β′ip, α′ip} is a parameter of Fuzzy GNP-RL after mutation, ξ is a
random digit, LB is lower bound (0) and UB is upper bound (1023) in the case of
αip, while UB = αip in the case of βip. ∆(t, y) is described in the following

∆(g, y) = y
(

1− r(1− g
G)

b
)

, (2.5)

where, g is the current generation number, G is the total generation number and r
is a random number between 0 and 1. b is a system parameter which determines
the degree of dependency on the iteration number (Here, b = 2 is used).

2.3.4 Introducing Noises

Generally, the robustness could be done by (1) increasing the number of training data,
(2) reducing the redundant structures or (3) adding noises in the training phase, where
the last one is a simple way. In this chapter, the robustness of Fuzzy GNP-RL is im-
proved by introducing Gaussian noises in the training phase.

Introducing noises for Fuzzy GNP-RL is carried out as follows.

• In the training phase, random Gaussian noises are added to the sensor values.
It is supposed that the current node i is a judgment node, and sub node p is
selected. When noise xn is added to sensor value xip, then the sensor value is
changed to x′ip by Eq. 2.6. In this case, the judgment nodes learn incorrect infor-
mation.

x′ip = xip + xn. (2.6)

• Sensor value x′ip is mapped into the Fuzzy values using the Fuzzy membership
functions in Fig. 2.2, and these Fuzzy values are used to determine the prob-
ability of selecting CA

ip and CB
ip using Eq. 2.1 and Eq. 2.2. Because the sensor

values change dynamically, then the probability of selecting the connections can
be changed. As a result, flexible variation of node transitions are learned for
improving the generalization ability in the implementation phase.

2.4 Comparison between Fuzzy and Non-Fuzzy GNP-RL

The difference between Fuzzy GNP-RL and non-Fuzzy GNP-RL has been explained
in section 2.1, that is, the node transitions are determined probabilistically. While
the input values of non-Fuzzy GNP-RL are divided into crisp values based on the
threshold values to determine the connections, those of Fuzzy GNP-RL are mapped
into the Fuzzy values to determine the probability of selecting the connections.

24 Fuzzy GNP-RL

2.5 Simulations

The performance of Fuzzy GNP-RL is studied in the benchmark of the wall following
behaviors for a Khepera robot using Webots simulator [71].

2.5.1 Khepera Robot

The simulated Khepera robot is shown in Fig.2.6. It has eight infrared distance sensors
which are used to perceive objects in front of it, behind of it, to the right and left of it by
its reflection. Each sensor returns a value ranging between zero and 1023. Zero means
that no object is perceived, while 1023 means that an object is very close to the sensor
(almost touching the sensor). Intermediate values may give an approximate idea of
the distance between the sensor and object. Two motors turn the right and left wheels
of the robot, respectively. The speeds of the right wheel, i.e., vR and the left wheel, i.e.,
vL are between -10 to +10. Negative values rotate the wheel backward, while positive
values rotate the wheel forward.

Figure 2.6: Khepera robot

2.5.2 Reward and Fitness in the Wall Following Behavior

In each time step, the judgment nodes judge the values of the sensors and the pro-
cessing nodes determine the speed of the wheels according to node function IDip and
parameter aip, while the robot moves in the environment and gets rewards. Each indi-
vidual works during the life time T, then the fitness is calculated. In this simulation,
Fuzzy GNP-RL learns the wall following behaviors, i.e., the robot must move along
the wall as fast as and as straight as possible. Reward rt at time step t and fitness is
calculated by

rt =
vR(t) + vL(t)

20
×
(

1−
√
|vR(t)− vL(t)|

20

)
× C, (2.7)

Fitness =
T

∑
t=1

rt/T. (2.8)

If all the sensors have the values less than 1000 and at least one of them is more
than 100, then C is equal to 1, otherwise C is equal to 0.

Simulations 25

2.5.3 Simulation Environments

The performance of Fuzzy GNP-RL is evaluated using the following 4 simulation con-
ditions comparing with non-Fuzzy GNP-RL, as follows.

Figure 2.7: Training and implementation environments

1. In simulation 1, Fuzzy GNP-RL and non-Fuzzy GNP-RL are trained without
Gaussian noises (WNTrain), where the individuals are trained for the wall follow-
ing behaviors for a Khepera robot in the environment shown in Fig 2.7(a). Each
method is simulated 10 times to study the generalization ability in the training
phase. In each simulation, the start positions of robot are determined randomly
from 10 different start positions.

2. Simulation 2 is done like simulation 1, but Gaussian noises are introduced dur-
ing the training phase. Various Gaussian noises are used as shown in Table 2.2.
Mean µ of noises is usually taken to be 0, but standard deviation σ is set at
various values, that is, σ = 50 (named NTrain50), σ = 100 (NTrain100), σ = 150
(NTrain150) and σ = 350 (NTrain350).

Table 2.2: Noises for Fuzzy GNP-RL during the training and implementation phase

Phase Symbol µ σ

NTrain50 0 50
Training NTrain100 0 100

NTrain150 0 150
NTrain350 0 350
NImpl.50 0 50

Implementation NImpl.100 0 100
NImpl.150 0 150
NImpl.350 0 350

3. In simulation 3, the best individuals from 10 independent training simulations of
simulation 1 are selected. The individuals trained without introducing Gaussian

26 Fuzzy GNP-RL

noises WNTrain are implemented in the different implementation environment
as shown in Fig 2.7(b). The implementation simulations are carried out in two
different cases,

(a) Case 1, i.e., the implementation without introducing Gaussian noises WNImpl..
The generalization ability of Fuzzy GNP-RL is compared with non-Fuzzy
GNP-TSRL.

(b) Case 2, i.e., the implementation with introducing Gaussian noises NImpl.,
where various noises for implementation are set as shown in Table 2.2, that
is, NImpl.50, NImpl.100, NImpl.150 and NImpl.350.

The fitness is averaged over 3000 trials, that is, each individual is implemented
300 times for 10 different start positions.

4. In Simulation 4, the best individuals of simulation 2 which are trained with in-
troducing Gaussian noises are implemented in the environments shown in Fig
2.7(b). The implementations are done to study the robustness of Fuzzy GNP-RL
like simulation 3.

2.5.4 Simulation Conditions

The node functions of the judgment nodes and processing nodes are shown in Table
2.3. Each judgment function J0, ..., and J7 judges the sensor values and determines the
next node as explained in Section 2.3.2. Each processing node determines the speed of
the left or right wheel. The parameters of evolution and learning are shown in Table
2.4. These values are selected appropriately through the simulations. At the end of
each generation, 300 individuals are generated to form a new population in the next
generation; 179 individuals are generated by mutation, 120 individuals are generated
by crossover, and one individual is the elite individual. Each individual uses 61 nodes
including 40 judgment nodes (5 for each kind), 20 processing nodes (10 for each kind)
and one start node. Each of the judgment nodes and processing nodes has 2 sub nodes.
The initial individuals in a population are determined as explained in section 2.3.3. To
consider future rewards and to keep the balance of the exploration and exploitation,
the learning parameters of α = 0.1, γ = 0.9 and ϵ = 0.1 are given.

Table 2.3: Node functions used in the function library

Symbol ID Functions
j0, ...J7 0, ...7 judge the value of the sensor 1,2,..., 8

P0 0 determine the speed of the right wheel
P1 1 determine the speed of the left wheel

2.5.5 Simulation Results

Result of Simulation 1

The idea of integrating Fuzzy logic to GNP-RL is to deal with the continuous values
of sensors. While non-Fuzzy GNP-RL divides these values into two categories, that is,

Simulations 27

Table 2.4: Simulation conditions

Fuzzy GNP-RL non-Fuzzy GNP-RL
The number of individuals (300)

mutation: 179,
crossover: 120,

elite: 1
The number of nodes (61)

20 processing nodes,
40 Fuzzy judgment nodes,

and 1 start node
The number of sub nodes 2 for each Fuzzy judgment

and processing nodes
Parameter of evolution Pc = 0.1,

Pm = 0.01,
tournament sizes = 7

Parameter of learning α = 0.1,
γ = 0.9, ϵ =0.1

The life time 1000 time steps
(Training & Implementation)

Yes/No using the threshold values, Fuzzy GNP-RL divides these values into Yes/No
category based on the degrees of truth using Fuzzy membership functions. Fig. 2.8
shows the fitness curves of the best individual of Fuzzy GNP-RL compared with non-
Fuzzy GNP-RL in the training environment without noise (WNTrain). The fitness of
Fuzzy GNP-RL converges faster and higher than that of non-Fuzzy GNP-RL. It con-
firms that the node transitions which are determined probabilistically can improve the
search ability for determining the agent behaviors more appropriately.

Result of Simulation 2

Various Gaussian noises are used during the training phase as shown in Table 2.4, that
is, mean µ of noises is usually taken to be 0, but the standard deviation is set at various
values; σ = 50 (named NTrain50), σ = 100 (NTrain100), σ = 150 (NTrain150) and σ = 350
(NTrain350). The effects of introducing noises on Fuzzy GNP-RL and non-Fuzzy GNP-
RL are shown in Fig. 2.9.

The noises change the sensor values, which make Fuzzy GNP-RL and non-Fuzzy
GNP-RL determine inappropriate node transitions for the agent behaviors, then the
fitness of the individuals trained with noises (Fig. 2.9) is lower than the fitness of
the individuals trained without noises (Fig. 2.8). Here, larger noises make the fitness
smaller as shown in Fig. 2.9. Larger noises make the judgment nodes more difficult
to determine Yes/No category appropriately, as a result, various node transitions are
determined and the individuals have more experiences to determine the behaviors.
Thus, noises increase the exploration ability. However, because the incorrect informa-
tion is included, inappropriate behaviors also occur, which decreases the fitness.

28 Fuzzy GNP-RL

Figure 2.8: Fitness curves of Fuzzy GNP-RL comparing with non-Fuzzy GNP-RL in
the training environment without noises

Result of Simulation 3

In this simulation, the individuals which are trained without introducing noises (WNTrain)
are implemented in new environments without noises (Case 1) and also with noises
(Case 2). The average rewards are calculated over 10 individuals from 10 independent
training simulations as explained in sub-section 2.5.3 (Simulation 3), where the indi-
viduals are implemented 3000 times, that is, each individual is implemented 300 times
for 10 different start positions of the robot. The average rewards in the implementation
phase are shown in Table 2.5.

Table 2.5: Average rewards of individuals trained without introducing noises
(WNTrain) in the implementation

Implementation
Training without Noises Case 1 Case 2

WNImpl. NImpl.50 NImpl.100 NImpl.150 NImpl.350
WNTrain Fuzzy GNP-RL 0.383 0.143 0.089 0.067 ∗

non-Fuzzy GNP-RL 0.370 0.401 0.237 0.125 ∗

From Table 2.5 in Case 1, the average reward of Fuzzy GNP-RL is higher compared
with that of non-Fuzzy GNP-RL in the implementation without noises (WNImpl.). In
this case, when the sensor values are less than βip or higher than αip, Fuzzy GNP-RL
works in the same way as non-Fuzzy GNP-RL. However, when sensor values are in
the range between αip and βip, Fuzzy GNP-RL has more flexibilities to determine the
appropriate next nodes. Thus, the probabilistic transitions of Fuzzy GNP-RL improve
the exploration ability.

However in Case 2, the average rewards of Fuzzy GNP-RL become worse com-
pared with non-Fuzzy GNP-RL in the implementation with noises (NImpl.50, NImpl.100,
NImpl.150, etc.). In this case, Fuzzy GNP-RL which is trained without noises (WNTrain)
learns and evolves with insufficient data. Then, when these individuals are imple-

Simulations 29

Figure 2.9: Fitness curves of Fuzzy GNP-RL comparing with non-Fuzzy GNP-RL in
the training environment with noises

30 Fuzzy GNP-RL

mented with noises, the probability to determine the Yes/No categories becomes dif-
ficult to learn/exploit the good connections, because the noises change the sensor val-
ues which make various probabilities. In order to overcome this problem, Fuzzy GNP-
RL should be also trained with more data, but it takes a long time. Then, a simple way
to solve this problem is to use artificial data, such as adding noises during the training
phase.

On the other hand, non-Fuzzy GNP-RL trained without noises has better average
reward than that of Fuzzy GNP-RL. When small noises (NImpl.50) is used in the im-
plementation, although the noises change the sensor values over the threshold, the
node transitions are not changed so much. However, when larger noises (NImpl.150)
is used, the noises frequently change the sensor values over the threshold, then non-
Fuzzy GNP-RL cannot learn the good connections for determining the appropriate
node transitions. Thus, larger noises also decrease the average reward of non-Fuzzy
GNP-RL.

Result of Simulation 4

This simulation learns the effects of introducing noises during the training phase and
implementation phase. In this simulation, the individuals which have been trained
with noises (NTrain50, NTrain100, NTrain150 and NTrain350) are implemented in the envi-
ronment without noises (Case 1) and with noises (Case 2) to study the generalization
ability. The simulation results are shown in Table 2.6.

Table 2.6: Average reward of individuals trained with noises and evaluated in the
implementation

Implementation
Training with Noises Case 1 Case 2

WNImpl. NImpl.50 NImpl.100 NImpl.150 NImpl.350
NTrain50 Fuzzy GNP-RL 0.396 0.470 0.391 0.216 ∗

non-Fuzzy GNP-RL 0.372 0.434 0.340 0.199 ∗
NTrain100 Fuzzy GNP-RL 0.383 0.465 0.449 0.360 ∗

non-Fuzzy GNP-RL 0.337 0.389 0.365 0.275 ∗
NTrain150 Fuzzy GNP-RL 0.355 0.411 0.415 0.374 0.078

non-Fuzzy GNP-RL 0.296 0.365 0.362 0.348 0.115
NTrain350 Fuzzy GNP-RL 0.240 0.292 0.308 0.313 0.254

non-Fuzzy GNP-RL 0.195 0.283 0.288 0.313 0.223

When the individuals of Fuzzy GNP-RL are trained with noises, they learn more
different situations because noises change the sensor values, which make various
probabilities to determine Yes/No categories. During the training phase, the appropri-
ate Fuzzy parameters are evolved and Yes/No categories are determined with various
probabilities. Then, Fuzzy GNP-RL carries out more various node transitions. In the
training phase, larger noises make Fuzzy GNP-RL face more various situations, how-
ever, larger noises also make Fuzzy GNP-RL difficult to exploit the good connections,
then the fitness decreases as shown in Fig. 2.9. The advantages of introducing noises

Summary 31

during the training are confirmed in the implementation as shown in Table 2.6.

• Case 1. In the implementation without noises (WNImpl.), the results confirm that
the exploration ability of Fuzzy GNP-RL is better than non-Fuzzy GNP-RL. The
average reward of individuals of Fuzzy GNP-RL and non-Fuzzy GNP-RL which
are trained with noises (NTrain50) in Table 2.6 is larger than those without noises
(WNTrain) in Table 2.5. In the other words, introducing noises during the training
phase increases the average reward in the implementation without noises. In
this case, (NTrain50) can improve the exploration ability and determine the good
connections which are useful for implementation.

• Case 2. In the implementation with noises, the individuals of Fuzzy GNP-RL
which have been trained with noises (NTrain50, NTrain100, NTrain150 and NTrain350)
have average reward larger than those of non-Fuzzy GNP-RL. In this case, in-
troducing noises to Fuzzy GNP-RL improve the robustness, then the average
rewards are better than those of non-Fuzzy GNP-RL. The individuals of Fuzzy
GNP-RL trained with noises gets more explorations during the training phase
and the node transitions learn various situations. Then, when they are imple-
mented in the noisy environments, they have larger average rewards than those
of Fuzzy GNP-RL trained without introducing noises during the training phase
(WNTrain). The individuals with NTrain50 have the largest average reward in the
implementation. Actually, the individuals trained with small noises (NTrain50)
have more advantage to make explorations to determine the appropriate node
transitions, then the average reward of NTrain50 is the largest. The larger noises
make more exploration ability, however, the good connections are difficult to be
determined. Thus, the average reward is decreased.

Overall, Fuzzy GNP-RL using the probabilistic node transitions improves the ro-
bustness of non-Fuzzy GNP-RL, because more various node transitions are learned by
Fuzzy GNP-RL. In addition, introducing noises during the training phase gives more
experiences for finding the appropriate node transitions in unknown environments.
But, as too much noises in the training phase generate more changes of the training
data, it decreases the fitness and also decreases the average reward in the implemen-
tation.

2.6 Summary

Fuzzy GNP-RL has been proposed to improve the robustness in the uncertain envi-
ronments. The important part of Fuzzy GNP-RL is the judgment nodes, where Fuzzy
logic is integrated. The training and implementation results show that Fuzzy GNP-
RL can explore more various appropriate node transitions by using probabilistic node
transitions.

In addition, introducing noises can also improve the robustness of Fuzzy GNP-RL,
where the noises can change the sensor values and make more various node transi-
tions. Then, noises increase the exploration ability and improves the robustness of
Fuzzy GNP-RL in uncertain environments.

Thus, the robustness of Fuzzy GNP-RL with noises is confirmed in this chapter.
The advantage of the integrating Fuzzy logic to judgment nodes is also used for the

32 Fuzzy GNP-RL

next chapters. So, improving the adaptability of Fuzzy GNP-RL under the changes of
environments is considered in the next chapter.

Chapter 3

Fuzzy GNP-TSRL (BS) with
Fixed ϵ-greedy Policy and Learning
Rate α

3.1 Introduction

In Chapter 2, integrating Fuzzy logic to GNP-RL confirmed that Fuzzy GNP-RL im-
proves the robustness in uncertain environments. In this Chapter, improving the
adaptability Fuzzy GNP-RL is studied. The structures of Fuzzy GNP-RL are similar to
the conventional GNP-RL, that is, the node structures consist of several sub nodes to
represent functions, which are selected by a policy learned using Sarsa learning. GNP-
RL has advantages to adaptively change the programs when inexperienced troubles
occur, that is, sensors’ break suddenly in the implementation [44]. In this case, Fuzzy
GNP-RL has the same mechanism to adapt to the changes of environments.

Actually, when sensors’ troubles occur, the robot can perceive the environments
incorrectly and create inappropriate behaviors which may be dangerous. In this case,
Fuzzy GNP-RL has an adaptation mechanism to change the programs adaptively us-
ing the Sub node Selection method (SS method), that is, sub nodes/functions of judg-
ment and processing nodes are determined without directly detecting broken sensors,
but indirectly by detecting the troubles through the changes of the QSS values.

In paper [44], the adaptability to cope with the sudden changes of the environ-
ments were studied with various number of sub nodes. A larger number of sub nodes
makes more alternative functions which can be selected according to the QSS values.
However, a larger number of sub nodes has difficulties to exploit good sub nodes, then
GNP-RL takes longer times to recover from the troubles. Thus, this chapter aims to
enhance the adaptability of Fuzzy GNP-RL, when the sudden changes of the environ-
ments occur by broken sensors.

3.2 Motivation of GNP-TSRL (BS)

In order to enhance the adaptability of Fuzzy GNP-RL when some sensors break in the
implementation, Fuzzy GNP with Two-Stage Reinforcement Learning using Branch
connection Selection, i.e., Fuzzy GNP-TSRL (BS) is studied.

The basic concept is that when the functions of the current node give inappropriate

34 Fuzzy GNP-TSRL (BS) with
Fixed ϵ-greedy Policy and Learning Rate α

agent behaviors, executing the next nodes properly may recover the troubles more
quickly. Then, beside using the alternative functions like Fuzzy GNP-RL, the ability
to search the next nodes is increased using a larger number of connections in order
to quickly recover the troubles. Due to the increase of the number of connections, the
Branch connections Selection method (BS method) is used, that is, the selection of the
branch connections should be learned using Reinforcement Learning. Then, Fuzzy
GNP-TSRL (BS) has two-stage learning, that is, the Sub node Selection method (SS
method) and Branch connection Selection (BS method) which are learned in the first
stage and in the second stage of RL, respectively.

Therefore, the structures and learning processes of Fuzzy GNP-RL are enhanced
in Fuzzy GNP-TSRL (BS). While the SS method works in the same way as Fuzzy
GNP-RL, the BS method selects branch connections to determine the next nodes, that
is, when the current node determines inappropriate functions, the proposed method
should select another connections to determine the next nodes which may recover the
troubles quickly. The BS method can change the programs adaptively by selecting the
branch connections and determining the next nodes to be executed.

In order to study the adaptability, the performance of Fuzzy GNP-TSRL (BS) which
uses Two-Stage Reinforcement learning is compared with Fuzzy GNP-RL which uses
One-Stage Reinforcement Learning in the training phase and implementation phase.

3.3 Algorithm of Fuzzy GNP-TSRL (BS)

In order to realize Fuzzy GNP-TSRL (BS), the judgment nodes and processing nodes
should be modified. The node structures of the proposed method are described in
subsection 3.3.1. The mechanisms of determining the node transitions and learning
processes are described in sub-section 3.3.2. In addition, the recovery process is ex-
plained in sub section 3.3.3 to show the advantages of the proposed.

3.3.1 Structure Representation

The individual of Fuzzy GNP-TSRL (BS) is represented by a directed graph structure
as the standard GNP shown in Fig. 1.11, which consists of 3 kind nodes, that is, start
node, judgment node and processing node. The functions of these nodes have been
introduced in section 2.3.1. The combination of the SS method and BS method are
realized on the judgment nodes and processing nodes as shown in Fig. 3.1.

In order to learn these nodes efficiently and effectively, the learning processes are
carried out into 2 stages, that is, the SS method and BS method are learned at the first
stage and second stage of RL, respectively using two kinds of Q tables, i.e., QSS table
and QBS table. Therefore, the genes of Fuzzy GNP-TSRL (BS) are also modified as
shown in Fig. 3.2.

It is supposed that node i ∈ {0, 1, ..., n− 1} has m sub nodes. The gene structure of
node i is divided into macro node part and sub node part.

Macro Node Part

The macro node part of node i is defined by NTi and di. Where NTi represents a node
type and di represents the time delay spent on executing node i, where NTi and di are
shown in Table 2.1.

Algorithm of Fuzzy GNP-TSRL (BS) 35

Figure 3.1: Node structures of Fuzzy GNP-TSRL (BS)

Figure 3.2: Gene structures of Fuzzy GNP-TSRL (BS)

36 Fuzzy GNP-TSRL (BS) with
Fixed ϵ-greedy Policy and Learning Rate α

Sub Node Part

The sub node part of Fuzzy GNP-TSRL (BS) is composed of 3 parts, i.e., function part,
connection part and branch connection part. While the function part and connection
part are the same as Fuzzy GNP-RL, the new part is the branch connection part, that
is, each connection has U branch connections.

The function of sub node p ∈ {1, ..., m} of node i is defined by IDip, aip and QSS(i, ip),
as explained in sub-section 2.3.1. The SS method of Fuzzy GNP-TSRL (BS) is deter-
mined based on ϵ-greedy policy according to the QSS(i, ip) value at the first stage of
RL. Here, the state is the current node i and the action is sub node ip selection, that is,
sub node p of node i.

Here, the definitions of the connections and branch connections are defined as
follows.

• Definition 3.1: Connection. Generally, the judgment nodes have several branches
connected to the other nodes. Here, each sub node of the judgment nodes uses
2 branches which are determined by the judgment results, that is , sub node p
of judgment node i has connections CA

ip and CB
ip which are selected probabilisti-

cally (see sub-section 2.3.2). On the other hand, the processing nodes have only
one branch, which determines the next node to be executed, then sub node p of
processing node i has connection CA

ip only.

• Definition 3.2: Branch Connection. The idea of Fuzzy GNP-TSRL (BS) is to
increase the search ability by increasing the number of connections to deter-
mine the next nodes. Therefore, each connection (in Definition 3.1) is enhanced
by adding U branch connections, then connection CA

ip has branch connections

{bA(1)
ip , ..., bA(U)

ip } and connection CB
ip has branch connections {bB(1)

ip , ..., bB(U)
ip }.

In order to determine the appropriate next nodes, the selection of branch connec-
tions which connects the current node to the next node should be also learned. It
is supposed that sub node p of node i selects connection CA

ip, then branch connec-

tion bA(u)
ip ∈ {bA(1)

ip , ..., bA(U)
ip } can be selected based on ϵ-greedy policy according to

QBS(CA
ip, bA(u)

ip) value. Here, the state is connection CA
ip and action is branch connec-

tion selection bA(u)
ip . On the other hand, while sub node p of node i selects connec-

tion CB
ip, then branch connection bB(u)

ip ∈ {bB(1)
ip , ..., bB(U)

ip } can be selected based on ϵ-

greedy policy according to QBS(CB
ip, bB(u)

ip) value, here, the state is connection CB
ip and

action is branch connection selection bB(u)
ip . The Branch connection Selection method

(BS method) is done at the second stage of RL.

3.3.2 Learning Process of Fuzzy GNP-TSRL (BS)

The learning process of Fuzzy GNP-TSRL (BS) implements two kinds of Sarsa learning
algorithms, that is, the Sub node Selection (SS method) at the first stage and the Branch
connection Selection (BS method) at the second stage of RL. When a good action is
taken with a positive reward at a certain state, the action is reinforced and will be
selected with higher probability when the state is visited again. Using Fig. 3.3, the
process of two kinds of Sarsa learning is explained as follows.

Algorithm of Fuzzy GNP-TSRL (BS) 37

Figure 3.3: Learning process of Fuzzy GNP-TSRL (BS)

1. At time t, it is supposed that the current node is node i, and Fuzzy GNP-TSRL
(BS) refers to all QSS values for sub node selection, i.e., {QSS(i, i1), ..., QSS(i, im)},
and selects one of them based on ϵ-greedy policy. It is supposed that Fuzzy
GNP-TSRL (BS) selects QSS(i, ip) ∈ {QSS(i, i1), ..., QSS(i, im)}, and the correspond-
ing node function IDip and parameter aip are selected. This step is the first stage
of RL.

2. Then, Fuzzy GNP-TSRL (BS) executes function IDip using parameter aip and de-
termines a node connection. When the current node is a judgment node, the
node connection is determined by the judgment result which can be CA

ip or CB
ip,

however, when the current node is a processing node the the connection is only
CA

ip. After executing the function, Fuzzy GNP-TSRL (BS) gets reward rt.

3. In this step, the second stage of RL is started, i.e., the BS method. Fuzzy GNP-
TSRL (BS) refers to all QBS of the branch connections which are connected to
connection CA

ip or CB
ip resulted from step 2 and selects one of them based on ϵ-

greedy policy. When connection CA
ip is resulted from step 2, a branch connection

is selected referring to {QBS(CA
ip, bA(1)

ip), ..., QBS(CA
ip, bA(u)

ip), ..., QBS(CA
ip, bA(U)

ip)}. On
the other hand, when connection CB

ip is resulted from step 2, a branch connection

is selected referring to {QBS(CB
ip, bB(1)

ip), ..., QBS(CB
ip, bB(u)

ip), ..., QBS(CB
ip, bB(U)

ip)}. It is

supposed that QBS(CA
ip, bA(u)

ip) is selected, then branch connection bA(u)
ip of connec-

tion CA
ip is determined. Here, the branch connection shows that the next node is

node j.

4. At time t + 1, Fuzzy GNP-TSRL (BS) gets reward rt+1 and repeats step 1 to 3 for
node j. Here, it is supposed that QSS(j, jp′) and QBS(CB

jp′ , bB(u′)
jp′) are selected.

5. Then, the Q values are updated by the following procedures. Updating QSS-
values at the first stage of RL is

38 Fuzzy GNP-TSRL (BS) with
Fixed ϵ-greedy Policy and Learning Rate α

QSS(i, ip)← QSS(i, ip) + α(rt + γQSS(j, jp′)−QSS(i, ip)), (3.1)

and updating QBS-values at the second stage of RL is

QBS(CA
ip, bA(u)

ip)← QBS(CA
ip, bA(u)

ip) +

α(rt+1 + γQBS(CB
jp′ , bB(u′)

jp′)−QBS(CipA , bA(u)
ip)), (3.2)

where, α is a learning rate (0 < α ≤ 1) and γ is discount rate (0 ≤ γ ≤ 1).

6. t← t + 1, i← j and p← p′. Then, it returns to step 1.

3.3.3 Recovery Process of Fuzzy GNP-TSRL (BS)

Definition 3.3: Recovery process. The recovery process of Fuzzy GNP-TSRL (BS) has
the adaptability mechanisms to adaptively change the programs in order to revise
incorrect behaviors of the agent.

In order to explain the recovery process understandability, an example of wall be-
haviors for a Khepera robot is used, where the characteristic of a Khepera robot has
been described in sub-section 2.5.1 and the reward is calculated by Eq. 2.7. The be-
haviors of a Khepera robot can be explained as follows according to the speeds of the
right wheel (VR(t)) and left wheel (VL(t)) at time step t.

• Move forward. The robot moves forward when VR(t) = VL(t).

• Turn right. The robot turns right when VR(t) < VL(t).

• Turn left. The robot turns left when VR(t) > VL(t).

Fuzzy GNP-TSRL (BS) can adaptively change the programs (1) by changing the
functions and/or (2) by changing the connections. It is supposed that each node of
Fuzzy GNP-TSRL (BS) has 2 functions represented by 2 sub nodes and each connection
of a sub node has 2 branch connections (see Fig. 3.1).

If the robot moves forward in the current situation, where the robot faces the wall
in front of it and on the right side, then the appropriate behavior decided by the robot
is to turn left. In order to adapt to this situation, Fuzzy GNP-TSRL (BS) may make
recovery processes as follows.

Recovery Process by Changing the Function

It is supposed that the speeds of the robot are VR = 7 and VL = 7 as shown in Fig. 3.4,
where Fuzzy GNP-TSRL (BS) executes processing node i which has 2 functions, i.e.,
sub node i1 sets the speed of the left wheel to VL = −10 and sub node i2 sets the speed
of the right wheel to VR = −3. In the current situation, the Q values of sub nodes are
QSS(i, i1) = 80 and QSS(i, i2) = 100. It is supposed that sub node i2 is selected by ϵ-
greedy policy. After executing the function, the speeds of the robot are to be VR = −3
and VL = 7, which make the robot turns to right and hits the wall, so that QSS(i, i2) is
decreased to 60.

Algorithm of Fuzzy GNP-TSRL (BS) 39

The the recovery process is carried out as shown in Fig. 3.4. After executing several
nodes, processing node i maybe visited again. In this case, the Q values of sub nodes
of node i are QSS(i, i1) = 80 and QSS(i, i2) = 60, where the alternative function, that
is, sub node i1 may be selected by ϵ-greedy policy. After executing the function, the
speeds of the robot become VR = −3 and VL = −10 which make the robot change
the direction and turn to left, so that a large reward is given to increase the value of
QSS(i, i1).

Figure 3.4: Recovery process by changing the function

Recovery Process by Changing the Connection

The recovery process may take a longer time step when changing the functions, be-
cause visiting the same node in the node transitions is difficult. The simple way for
recovering the process is carried out by selecting the appropriate next node which may
change the agent behavior appropriately.

It is supposed that the situation is the same as above, that is, the wheel speeds of
the robot are VR = 7 and VL = 7. Then, Fuzzy GNP-TSRL (BS) executes processing
node i which has 2 functions, i.e., sub node i1 sets the speed of the left wheel to VL =
−10 and sub node i2 sets the speed of the right wheel to VR = −3. In the current
situation, the Q values of sub nodes are QSS(i, i1) = 80 and QSS(i, i2) = 100. It is
supposed that sub node 2 is selected by ϵ-greedy policy. After executing the function,
the speeds of the robot are VR = −3 and VL = 7 which make the robot turn right and
hits the wall, so that a small reward is given.

The the recovery process is carried out as shown in Fig. 3.5. After executing sub
node i2 of node i, Fuzzy GNP-TSRL (BS) determine the next node by selecting the
appropriate branch connections. It is supposed that branch connection bA(1)

i2 is selected

by ϵ-greedy policy according to Q value QBS(CA
i2, bA(1)

i2). Here, node i is transfered to
node j, where sub node i1 of node j is selected, then the wheel speeds of the robots
become VR = −10 and VL = −3 which make the robot change the direction and turn
left, so a large reward is given to increase the value of QBS(CA

i2, bA(1)
i2).

Thus, the combination of SS method and BS method of Fuzzy GNP-TSRL (BS) may
recover the troubles quickly than only using SS method as Fuzzy GNP-RL.

40 Fuzzy GNP-TSRL (BS) with
Fixed ϵ-greedy Policy and Learning Rate α

Figure 3.5: Recovery process by changing the connection

3.4 Comparison between Fuzzy GNP-TSRL (BS) and Fuzzy
GNP-RL

Fuzzy GNP-TSRL (BS) is an enhancement of Fuzzy GNP-RL. While Fuzzy GNP-RL
uses One-Stage RL of the SS method, GNP-TSRL uses Two-Stage RL of the SS method
combined with BS method. Thus, the recovery process of Fuzzy GNP-TSRL (BS) is
also enhanced when severe troubles occur, that is, Fuzzy GNP-TSRL (BS) can adap-
tively change the programs by changing the functions like Fuzzy GNP-RL, in addition,
Fuzzy GNP-TSRL (BS) can adaptively change the programs by selecting the appropri-
ate next nodes. Then, the recovery process of Two-Stage RL can work faster than that
of One-Stage RL. As a result, the performance of Fuzzy GNP-TSRL (BS) also can be
enhanced, especially when severe troubles occur.

3.5 Simulations

The performance of Fuzzy GNP-TSRL (BS) is studied in the benchmark of the wall
following behaviors of a Khepera robot using Webots simulator [71], where the speci-
fication of the robot and calculation of the reward has been introduced in section 2.5.1
and section 2.5.2, respectively.

3.5.1 Simulation Environments

The performance of Fuzzy GNP-TSRL (BS) which uses Two-Stage RL is evaluated
and compared with Fuzzy GNP-RL which uses One-Stage RL. These methods have
advantages to adaptively change the programs to recover from the troubles. Then,
in order to confirm the advantages of the proposed method, the performance of Two-
Stage RL is studied compared with One-Stage RL in two aspects, that is, in the training
phase and in the implementation phase using the environments shown in Fig. 2.7.

1. Simulation 1. In the training phase, the individuals of Fuzzy GNP-TSRL (BS)
and Fuzzy GNP-RL are evaluated and evolved generation by generation, where
the functions, parameters, and branch connections are changed by crossover and
mutation. The life time for evaluation of each individual is 1000 time steps in
each generation. In this simulation Fuzzy logic is integrated to the judgment

Simulations 41

nodes of Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL. Gaussian noises (µ = 0,
σ = 50) are introduced as was done in chapter 2.

2. Simulation 2. In order to study the adaptability of Fuzzy GNP-TSRL (BS) and
Fuzzy GNP-RL, the best individuals from the training phase are implemented in
the implementation environments, where the life time for the implementation of
the individuals is 3000 time steps which are separated as follows.

• From the first time step to the 500th time step, the individuals is imple-
mented in the normal situations where Gaussian noises (µ = 0, σ = 50) are
also introduced.

• In order to study the adaptability of Fuzzy GNP-TSRL (BS) comparing with
Fuzzy GNP-RL, an inexperienced sudden changes occur by making a sen-
sor to break at the 500th time step, after that the adaptability of recovering
the troubles is analyzed.

3. Simulation 3. The adaptability of Fuzzy GNP-TSRL and Fuzzy GNP-RL is stud-
ied furthermore when severe troubles occur. The same simulation is done as
simulation 2, however, the inexperienced sudden changes occur by making sev-
eral sensors break at the 500th time step, that is, 2, 3, 4 and 5 sensors break. The
performances of the proposed method for recovering the troubles are analyzed
from the 500th time step to the life time step.

3.5.2 Simulation Conditions

The functions of the nodes in this chapter are the same as the the previous chapter
which is shown in Table 2.3. On the other hand, the simulation conditions of Fuzzy
GNP-TSRL (BS) are shown in Table. 3.1 comparing with Fuzzy GNP-RL .

In the training phase, 300 individuals are evolved, where at the end of each gen-
eration, 300 individuals are generated to form a new population for the next gener-
ation; 179 individuals are generated by mutation, 120 individuals are generated by
crossover, and one individual is the elite. The evolution parameters are Pc = 0.1, Pm =
0.01 and tournament sizes = 7. Each individual uses 61 nodes including 40 judgment
nodes (5 for each kind), 20 processing nodes (10 for each kind) and one start node.
Each judgment node and processing node of Fuzzy GNP-TSRL (BS) has 2 sub nodes,
and each node connection of the sub node has 2 branch connections (2SS&2BS) deter-
mined by the evolution, while those of Fuzzy GNP-RL have 4 sub nodes (4SS). Here,
Fuzzy GNP-TSRL (BS) recovers the troubles by changing functions and connections
according to the QSS table and QBS table, while Fuzzy GNP-RL recovers the troubles
by changing the functions only according to the QSS table. The learning rate α = 0.1,
discount rate γ = 0.9, ϵSS = 0.1 and ϵBS = 0.1 are given to consider future rewards
and to keep the balance of the exploration and exploitation.

3.5.3 Simulation Results

The performance of the Two-Stage RL compared with the One-Stage RL is confirmed
in these simulation results.

42 Fuzzy GNP-TSRL (BS) with
Fixed ϵ-greedy Policy and Learning Rate α

Table 3.1: Simulation conditions of Fuzzy GNP-TSRL (BS) comparing with Fuzzy
GNP-RL

Fuzzy GNP-TSRL (BS) Fuzzy GNP-RL
The number of individuals (300)

mutation: 179,
crossover: 120

elite: 1
The number of nodes (61)

20 processing nodes
40 judgment nodes

1 start node)
Kinds of Q tables 2 1
Actions (2SS & 2BS) (4SS)
Number of Sub Nodes 2 4
Number of Branch Connections 2 -
Recovery mechanisms Changing functions Changing functions only

and connections
Parameter of evolution Pc = 0.1, Pm = 0.01, tournament sizes = 7
Parameter of learning α = 0.1, γ = 0.9, ϵSS =0.1, ϵBS =0.1,

Results of Simulation 1

In this simulation, the performances of Fuzzy GNP-TSRL (BS) using the Two-Stage RL
are studied comparing with Fuzzy GNP-RL using One-Stage RL in the training phase.
Fig. 3.6 shows the average fitness of these methods, where each curve is averaged
over 10 best individuals from 10 independent training simulations in each generation.
Each individual is trained with 1000 time steps and evolved until 1000 generations.
The structures of the individuals are determined by evolution and they contain the
learning information saved in the Q tables.

The combination of the SS method and BS method in Fuzzy GNP-TSRL (BS) im-
proves the search ability, because the number of connections from each node is to be
twice as many as One-Stage RL, when the number of sub nodes in the nodes is the
same. Then, to make fair comparison, Fuzzy GNP-TSRL (BS) uses 2SS&2BS, while
Fuzzy GNP-RL uses 4SS. Actually, using these structures the size of Q tables of the
Two-Stage RL becomes larger than that of One-Stage RL, which can make the Q val-
ues of the Two-Stage RL take longer times to converge. However, as shown in Fig.
3.6, the curve of Fuzzy GNP-TSRL (BS) converges faster and higher than that of Fuzzy
GNP-RL, because the process can recover incorrect situations quickly. It is confirmed
that the learning process of Fuzzy GNP-TSRL (BS) combining the SS method and BS
method is carried out more efficiently and effectively than Fuzzy GNP-RL.

Results of Simulation 2

In this simulation, the adaptability of Fuzzy GNP-TSRL (BS) in the implementation
phase is studied comparing with Fuzzy GNP-RL . In this case, one sensor breaks at the

Simulations 43

Figure 3.6: Average fitness of Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL in the train-
ing phase

500th time step. Then, the performances of the Two-Stage RL are analyzed before and
after the sensor breaks comparing with the One-Stage RL. Fig. 3.7 shows the average
rewards in each time step over 3000 simulations and Fig. 3.8 shows the behaviors
which are carried out by Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL, when one sensor
breaks at the 500th time step.

Figure 3.7: Average reward in each time step when 1 sensor breaks in the implemen-
tation phase

In the normal situation, that is, no sensor breaks in the implementation, the indi-
viduals learn different environments from the training phase, which means they face
inexperienced situations and should determine the appropriate behaviors. It is seen
from Fig. 3.7 that the average reward of Fuzzy GNP-TSRL (BS) is higher than that of
Fuzzy GNP-RL in each time step (time step 1-500). It means that Fuzzy GNP-TSRL
(BS) determines the behaviors appropriately, that is, the learning process to determine
the node transitions using combination of the SS method and BS method is more ef-
ficient and effective than only using the SS method by Fuzzy GNP-RL. In the other

44 Fuzzy GNP-TSRL (BS) with
Fixed ϵ-greedy Policy and Learning Rate α

Figure 3.8: Trajectory path of Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL when 1 sen-
sor breaks in the implementation phase

words, Fuzzy GNP-TSRL (BS) has more adaptability . It is also confirmed from the
Fig. 3.8 that the trajectory path of Fuzzy GNP-TSRL (BS) shows longer than that of
Fuzzy GNP-RL before a sensor breaks.

After a sensor breaks at the time step 500th, the robot has problems to determine
its behaviors which may hit the wall or move away from the wall so these behaviors
make the reward smaller than in the normal situations as shown in Fig. 3.8. However,
the average reward of Fuzzy GNP-TSRL (BS) is still higher than that of Fuzzy GNP-RL
in each time step as shown in Fig. 3.7. As explained in sub-section 3.3.3, the recovery
processes of the Two-Stage RL are done by changing functions and the connections
adaptively when troubles occur. These recovery processes make Fuzzy GNP-TSRL
(BS) can revise the robot behaviors faster and more appropriately than Fuzzy GNP-
RL. As a result, the trajectory path of Fuzzy GNP-TSRL (BS) is longer to follow the
wall than that of Fuzzy GNP-RL. Thus, the combination of the SS method and BS
method works more efficiently and effectively to determine the appropriate behaviors
in the implementation where inexperienced troubles occur.

Results of Simulation 3

The efficiency and effectiveness of the combination of the SS method and BS method
are also studied when severe troubles occur, that is, when several number of sensors
break in the implementation. A larger number of broken sensors make large troubles
in the environments, which means that the recovery processes are hard, then the av-
erage reward decreased as shown in Fig. 3.9. However, Fuzzy GNP-TSRL (BS) could
determine the behaviors more appropriately when severe troubles occur comparing
with Fuzzy GNP-RL.

The trajectory path of Fuzzy GNP-TSRL (BS) is shown in Fig. 3.10. When severe
troubles occur, the trajectory becomes shorter than when only one sensor breaks in
the implementation, which means that the recovery processes are difficult to deter-
mine the appropriate behaviors. In addition, the trajectory of Fuzzy GNP-RL almost
fail to follow the wall in this situation, because the recovery processes of One-Stage
take longer time by only changing the functions, then good functions are hard to be

Summary 45

Figure 3.9: Average reward of Two-Stage RL and One-Stage RL after several sensors
break in the implementation phase

learned.

Figure 3.10: Trajectory path of Two-Stage RL and One-Stage RL when five sensors
break in the implementation phase

3.6 Summary

Fuzzy GNP-TSRL (BS) has been proposed to improve the adaptability of Fuzzy GNP-
RL which combines the SS method and BS method in the implementation with inex-
perienced troubles, such as broken sensors. Using the combination of the SS method
and BS method, the learning process of Fuzzy GNP-TSRL (BS) works more efficiently
and effectively than Fuzzy GNP-RL. Then, the recovery process of Fuzzy GNP-TSRL
(BS) is faster.

Adding learning for the branch connection selection makes the size of Q tables of
Fuzzy GNP-TSRL (BS) larger than that of Fuzzy GNP-RL, when the number of sub
nodes is the same, then the Q values usually takes longer time to converges. In this

46 Fuzzy GNP-TSRL (BS) with
Fixed ϵ-greedy Policy and Learning Rate α

case, a method to make the balance of the exploration and exploitation is needed to
improve the performance of Fuzzy GNP-TSRL. This method will be studied in the
next chapter.

Chapter 4

Fuzzy GNP-TSRL (BS) with
Changing ϵ-greedy Policy and
Learning Rate α

4.1 Introduction

The objective of the agent is to maximize the reward accumulated using a policy to se-
lect an action for each state. In Reinforcement Learning (RL), the balance between the
exploitation and exploration is an important issue [73] , where the environments must
be sufficiently explored for action selections during learning. The basic exploration
technique is realized by using the randomness of the exploration, that is, the actions
are selected with a probability distribution. The basic policy for the action selection
is ϵ-greedy policy [21] which allows a certain degree of random explorations with the
probability of ϵ.

In chapter 3, Fuzzy GNP-TSRL (BS) has been proposed to improve the adaptability
of Fuzzy GNP-RL using two-stage action selection of the SS method and BS method,
that is, the SS method is carried out in the first stage and BS method in the second
stage of RL. These action selections are carried out using fixed parameters of ϵ-greedy
policy and learning rate α. These fixed parameters are used in general, where a small
value of ϵ means that the agent makes small explorations, while a large value means
that the agent will make large explorations and learn from them. However, large
explorations make the agent not use what it has learned previously. On the other hand,
the exploration of the environments impacts on the speed of the learning process,
which may result in inefficient learning time. Then, balancing the exploration and
exploitation should be considered carefully.

Generally, the agent knows nothing about the environment at the first step, there-
fore, larger random action selections are carried out to explore behaviors at the be-
ginning. When the agent learns more about the environments, it becomes possible to
estimate which actions are suitable. Then, decreasing ϵ value seems appropriate to
estimate the good actions more. Changing ϵ value is motivated to control the balance
of the exploration and exploitation in order to improve the performance of the agent.

48 Fuzzy GNP-TSRL (BS) with
Changing ϵ-greedy Policy and Learning Rate α

4.2 Motivation of Changing Parameters of Fuzzy GNP-TSRL
(BS)

The size of Q tables of Fuzzy GNP-TSRL (BS) is larger than Fuzzy GNP-RL for the
same number of sub nodes, thus a policy for action selection for Fuzzy GNP-TSRL (BS)
is to be studied furthermore to maximize the reward accumulated. Then, a method of
changing ϵ-greedy for Fuzzy GNP-TSRL (BS) is considered in this chapter.

Fuzzy GNP-TSRL (BS) does the learning process in both of the training phase and
implementation phase. Then, the changing method is studied as follows.

1. In the training phase, both of the QSS values and QBS values are initialized at zero
in the first generation. Then, firstly Fuzzy GNP-TSRL (BS) determines the node
transitions with larger random action selections to make large explorations. Be-
cause the size of Q tables of Fuzzy GNP-TSRL (BS) which is grouped as the QSS
table and QBStable is larger than Fuzzy GNP-RL, larger explorations are needed
to learn the good structures. On the other hand, the ability of estimating the ac-
tion selections should be improved in later generations by decreasing the explo-
ration. In addition, learning rate α determines to what extent the newly acquired
information will override the old information. Then, when learning rate α is
larger in early generations, the Q values of Fuzzy GNP-TSRL (BS) are updated
considering the recent information more, when learning rate α is decreased in
later generations, the Q values of Fuzzy GNP-TSRL (BS) are updated consider-
ing the old information more. Thus, changing ϵ-greedy policy and learning rate
α generation by generation may improve the performance of Fuzzy GNP-TSRL
(BS).

2. In the implementation phase, as Fuzzy GNP-TSRL (BS) has the ability to change
the programs adaptively when troubles occur, increasing the exploration may
recover the troubles quickly and may determine the behaviors more appropri-
ately. However, the exploration should be decreased after Fuzzy GNP-TSRL (BS)
recovers the troubles, which may increase the ability to estimate the good struc-
tures. Changing learning rate α also may stabilize the learning by updating Q
values appropriately in order to improve the performance of Fuzzy GNP-TSRL
(BS).

Thus, the objective of Fuzzy GNP-TSRL (BS) with changing ϵ-greedy policy and
learning rate α is to improve the adaptability more when the changes of environments
occur.

4.3 Mechanism of Changing Parameters

In chapter 3, Fuzzy GNP-TSRL (BS) enhanced the performances of Fuzzy GNP-RL
when sudden changes occur in the environments. In order to improve the perfor-
mances of Fuzzy GNP-TSRL (BS) more, the parameters of ϵ-greedy policy and learn-
ing rate α are changed during the training phase and these performances are con-
firmed in the implementation phase.

Mechanism of Changing Parameters 49

4.3.1 Changing ϵ-greedy Policy and Learning Rate α in the Training Phase

Fuzzy GNP-TSRL (BS) uses the SS method and BS method as explained in sub-section
3.3.2. In order to make an effective and efficient learning of the SS method and BS
method, the exploration ability and exploitation ability should be controlled to make
the balance, that is, the exploration should be carried out, on the other hand the good
actions also should be exploited. Therefore, ϵ-greedy is set at a large value (ϵmax

ev) at
the first generation to make large explorations of the state space for learning the en-
vironments. After some generations, the random selection should be decreased until
ϵmin

ev generation by generation to reinforce good actions more. In addition, learning
rate α is also set at a large value (αmax

ev) at the first generation to speed up the learning
and is decreased until αmin

ev in later generations to stabilize the learning. The changes
of ϵ-greedy policy and learning rate α are shown in Fig. 4.1, that is, they are controlled
by Eq. 4.1 and Eq. 4.2.

Figure 4.1: Changing of ϵ-greedy policy and learning rate α generation by generation

ϵev =
(

ϵmax
ev − ϵmin

ev

) (
1− g

G

)n
+ ϵmin

ev , (4.1)

αev =
(

αmax
ev − αmin

ev

) (
1− g

G

)n
+ αmin

ev , (4.2)

where, ϵmax
ev and ϵmin

ev are the upper and lower bound of ϵ-greedy policy in the
evolution phase, respectively, while αmax

ev and αmin
ev are the upper and lower bound of

learning rate α in the evolution phase, respectively. n is a constant for changing ϵ-
greedy policy and learning rate α, where if n < 1 means that more explorations are
carried out, while n > 1 means less explorations and n = 1 means the gradual de-
crease in the case of the changing ϵ-greedy policy. g is the current generation and G
is the maximum number of generations. In this case, the parameter values are deter-
mined by experiments.

4.3.2 Changing ϵ-greedy Policy and Learning Rate α in the Implementation
Phase

The adaptability of Fuzzy GNP-TSRL (BS) with changing ϵ-greedy policy and learning
rate α in the training phase is studied by implementing the selected individuals in two
cases.

50 Fuzzy GNP-TSRL (BS) with
Changing ϵ-greedy Policy and Learning Rate α

1. In the first case, the individuals are implemented during their live time (T) using
fixed ϵ-greedy policy and learning rate α. The aim is to study the impact of
changing ϵ-greedy policy and learning rate α in the implementation phase.

2. In the second case, the individuals are implemented with changing ϵ-greedy
policy and learning rate α during their live time (T). Here, the improvement
of the on-line learning ability in the dynamical changing environments is stud-
ied, where the changes of the environments are carried out by setting sensors to
break at time step t′. When the environments are suddenly changed, the individ-
uals should explore the environments to find the better reward by increasing the
exploration ability and reinforce the good actions after several time steps. The
changing ϵ-greedy policy and learning rate α are controlled by the following

ϵt =
(

ϵmax
t − ϵmin

t

)(
1− t− t′

T − t′

)n

+ ϵmin
t , (4.3)

αt =
(

αmax
t − αmin

t

)(
1− t− t′

T − t′

)n

+ αmin
t , (4.4)

where, ϵmax
t and ϵmin

t are the upper and lower bound of ϵ-greedy policy in each
time step, respectively, while αmax

t and αmin
t are the upper and lower bound of

learning rate α, respectively. t, t′, T are the current time step, the time step when
sensors break and the life time step during the implementation, respectively. n
is a constant for changing ϵ-greedy policy and learning rate α, where if n < 1
means that more explorations are carried out, while n > 1 means less explo-
rations and n = 1 means that the gradual decrease in the case of the changing
ϵ-greedy policy. The parameter values are determined by experiments.

In the second case, changing ϵ-greedy policy and learning rate α is carried out
when the changes of the environments occur [73]. In order to make the agent quickly
adapts to the new situations caused by the changes of the environments, larger ϵ-
greedy policy and learning rate α are used at the first and they are decreased after
several time steps. The parameters of ϵ-greedy policy and learning rate α are carried
out as Fig. 4.2.

Figure 4.2: Changing of ϵ-greedy policy and learning rate α during the life time (T)

Comparison between Fuzzy GNP-TSRL (BS) with Changing and with Fixed ϵ-greedy
Policy and Learning Rate α 51

4.4 Comparison between Fuzzy GNP-TSRL (BS) with Chang-
ing and with Fixed ϵ-greedy Policy and Learning Rate α

Fuzzy GNP-TSRL (BS) is the Two-Stage RL combining the SS method and BS method,
where the recovery process can be implemented for severe troubles. However, the size
of Q tables of Fuzzy GNP-TSRL (BS) is larger than Fuzzy GNP-RL, then a mechanism
to balance the exploration and exploitation improves the performance of the Two-
Stage RL.

Fuzzy GNP-TSRL (BS) with changing ϵ-greedy policy and learning rate α makes
larger explorations in early generations, but makes more exploitations in later gen-
erations. Thus, balancing the exploration and exploitation could enhance the perfor-
mances of GNP-TSRL (BS) trained with fixed ϵ-greedy policy and learning rate α.
In addition, the enhancement can also be done with changing ϵ-greedy policy and
learning rate α in the implementation, which can quickly adapt to the changes of the
environments.

On the other hand, Fuzzy GNP-TSRL (BS) with fixed ϵ-greedy policy and learning
rate α is used, the exploration and exploitation are carried out by fixed parameters.

4.5 Simulations

Changing ϵ-greedy policy and learning rate α of Fuzzy GNP-TSRL (BS) is studied
in the benchmark of the wall following behaviors of a Khepera robot using Webots
simulator [71], where the specification of the robot and calculation of the reward have
been introduced in section 2.5.1 and section 2.5.2, respectively.

4.5.1 Simulation Conditions

The effects of Fuzzy GNP-TSRL (BS) with changing ϵ-greedy policy and learning rate
α are studied comparing with that with fixed parameters in two aspects, that is, in the
training phase and implementation phase using the environments shown in Fig. 2.7.
The best individual in the last generation is selected for the implementation.

Simulation in the Training Phase

In the training phase, 300 individuals are evolved at the end of each generation, 300
individuals are generated to form a new population for the next generation; 179 in-
dividuals are generated by mutation, 120 individuals are generated by crossover, and
one individual is the elite. Each individual uses 61 nodes including 40 Fuzzy judg-
ment nodes (5 for each kind), 20 processing nodes (10 for each kind) and one start
node. Each of the Fuzzy judgment nodes and processing nodes of Fuzzy GNP-TSRL
(BS) has 2 sub nodes, and each node connection of the sub nodes has 2 branch connec-
tions determined by the evolution.

In order to study the improvement of Fuzzy GNP-TSRL (BS) with changing pa-
rameters, 3 cases are done in the training phase, that is,

• Case 1. The individuals of Fuzzy GNP-TSRL (BS) are evaluated and evolved
generation by generation using changing ϵ-greedy policy and learning rate α

using the curves shown in Fig. 4.1 (it is defined as TSRLch). The individuals learn

52 Fuzzy GNP-TSRL (BS) with
Changing ϵ-greedy Policy and Learning Rate α

the environments using changing ϵ-greedy policy and learning rate α which
start from ϵmax

ev = 0.15 and αmax
ev = 0.70 and gradually decrease to ϵmin

ev = 0.01
and αmin

ev = 0.1. Here, parameter n is simulated to find the best performance.

• Case 2. The individuals of Fuzzy GNP-TSRL (BS) are evaluated and evolved
generation by generation using fixed ϵ-greedy policy and learning rate α of the
minimum values, that is, ϵev = 0.01 and αev =0.10. (it is defined as TSRLco(A)).

• Case 3. The individuals of Fuzzy GNP-TSRL (BS) are evaluated and evolved
generation by generation using fixed ϵ-greedy policy and learning rate α of the
maximum values, that is, ϵev = 0.15 and αev =0.70. (it is defined as TSRLco(B)).

The maximum and minimum values of ϵ-greedy policy and learning rate α are
selected appropriately through the simulations as shown in Table 4.1.

Table 4.1: Simulation conditions of Fuzzy GNP-TSRL with changing parameters com-
paring with fixed parameters

TSRLch TSRLco (A) TSRLco (B)
The number of individuals (300)

crossover: 120,
mutation: 179,

elite: 1
The number of nodes (61)

20 processing nodes,
40 Fuzzy judgment nodes,

1 start node
The number of sub nodes 2 for each judgment and processing node
The number of branch connections 2 for each connection
Parameter of evolution Pc = 0.1, Pm = 0.01, tournament sizes = 7
(Training phase) γ = 0.9, γ = 0.9, γ = 0.9
Parameter of learning ϵmax

ev = 0.15, ϵmin
ev = 0.01 ϵev = 0.01 ϵev = 0.15,

αmax
ev = 0.70 , αmin

ev = 0.10 αev = 0.10 αev = 0.70,
(Implementation phase) γ = 0.9, γ = 0.9, γ = 0.9
Fixed Parameter of learning ϵ

fix
t = 0.010 ϵ

fix
t = 0.010 ϵ

fix
t = 0.010,

α
fix
t = 0.100 α

fix
t = 0.100 α

fix
t = 0.100,

(Implementation phase) ϵmax
t = 0.015, ϵmin

t = 0.000
Changing Parameter of learning αmax

t = 0.150, αmin
t = 0.000

Simulation in the Implementation Phase

The effects of changing ϵ-greedy policy and learning rate α in the training phase are
also studied in the implementation phase in two cases, that is,

• Case 1. The implementation is carried out using fixed values of ϵt = 0.010 and
αt = 0.100 (TSRL/TESTco). In this case, the improvement of the adaptability us-

Simulations 53

Table 4.2: Performances of TSRLch with various parameter n

n Training Phase Implementation Phase
Fitness at the 1000th generation Average Reward of the time step 500th to 3000th

10 0.521 0.131
3 0.555 0.156
1 0.593 0.158

1/3 0.545 0.147
1/10 0.531 0.142

ing changing ϵ-greedy policy and learning rate α during the training phase is
studied.

• Case 2. The implementation is carried out using changing values to study the
adaptability of on-line learning. From the 1st to 500th time steps, the individuals
are implemented with fixed parameters, i.e., ϵfix

t = 0.010 and α
fix
t = 0.100, and after

the sudden changes occur, the values are set higher at ϵmax
t = 0.015 and αmax

t =
0.150 and gradually decreased until the end of the life time to values of ϵmin

t =
0 and αmin

t = 0 (TSRL/TESTch) as shown in Fig. 4.2. Here, parameter n is also
simulated to find the best performance.

In order to study the adaptability in the implementation phase, the sudden changes
are carried out by making sensors break at the 500th time step, where the life time of
each individual is 3000 time steps. The average reward of each method is calculated
after the sensors’ break, where the implementations are done 3000 times, that is, 10
best individuals from 10 independent are implemented 300 times with 10 different
start positions of the robot.

4.5.2 Simulation Results

Before studying the effects of changing ϵ-greedy policy and learning rate α on Fuzzy
GNP-TSRL (BS), parameter n is studied to find the best performance. Table 4.2 shows
the performance of Fuzzy GNP-TSRL (BS) with changing ϵ-greedy policy and learning
rate α (TSRLch), which is simulated with various parameter n.

From Table 4.2, n = 1 shows the best performance in both of the training phase
and implementation phase. Then, this result is used for studying the effectiveness of
Fuzzy GNP-TSRL (BS) with changing parameters of ϵ-greedy policy and learning rate
α.

Simulation Results in the Training Phase

Firstly, the individuals of GNP-TSRL (BS) are trained with changing ϵev-greedy policy
and learning rate αev (TSRLch) and compared with the individuals which are trained
with fixed parameters, i.e., TSRLco(A) and TSRLco(B) as explained in section 4.5.1.
The average fitnesses of these simulations are shown in Fig. 4.3, where each curve is
averaged over 10 best individuals of 10 independent training simulations.

54 Fuzzy GNP-TSRL (BS) with
Changing ϵ-greedy Policy and Learning Rate α

Figure 4.3: Average fitness of TSRLch, TSRLco(A) and TSRLco(B) in the training phase

The average fitness of TSRLco(A) converges faster and higher than that of TSRLco(B).
Small explorations are carried out by TSRLco(A), then the good actions can be rein-
forced well. On the other hand, large explorations are carried out by TSRLco(B), then
the good actions are more difficult to be reinforced. In other words, TSRLco(A) and
TSRLco(B) carry out smaller and larger explorations, respectively. If the random ac-
tion selection is carried out with higher probability, the good actions cannot be rein-
forced well, then the fitnesses are small. On the other hand, If the exploration of action
selections is carried out with lower probability, the good actions can be reinforced well,
but the alternative actions cannot be reinforced well.

In the case of TSRLch, the curve of the average fitness converges slower in earlier
generations, because random action selections are carried out with the high probabil-
ity. However, when the random action selection is decreased in later generations, the
good actions can be reinforced well, so that the fitness becomes as large as TSRLco(A).

The simulation results confirm that TSRLch is trained more efficiently and effec-
tively than TSRLco(A) and TSRLco(B).

Simulation Results in the Implementation Phase

In the implementation phase, the adaptability of Fuzzy GNP-TSRL (BS) is studied
in two cases, i.e., (1) implementation with fixed parameters of ϵt-greedy policy and
learning rate αt (TSRL/TESTco); and (2) implementation with changing parameters
(TSRL/TESTch) as shown in Table 4.1.

Case 1. The individuals which are trained by TSRLco(A), TSRLco(B) and TSRLch,
are implemented in TSRL/TESTco, i.e., ϵfix

t = 0.01 and α
fix
t = 0.10. When the troubles

occur in the implementation phase, the action selections are influenced by incorrect
information, then the agent behaviors are determined inappropriately and the Q val-
ues are decreased, then the alternative actions are selected more frequently due to the
changes of the environments. The average rewards of the implementation with fixed
ϵ-greedy policy and learning rate α (TSRL/TESTco) are shown in Table 4.3.

1. TSRLco(A) has the lowest average reward as shown in Table 4.3, because it was
trained with small explorations, the Q values of the alternative actions are not

Simulations 55

Table 4.3: Average reward of TSRLch, TSRLco(A) and TSRLco(B) implemented under
TSRL/TESTco

Individual Average Stdev T-test one tail
TSRLch 0.158 0.036 -
TSRLco(A) 0.070 0.030 7.25E-06
TSRLco(B) 0.112 0.031 3.97E-03

explored well. Thus, under the changes of the environments in the implementa-
tion, the actions of TSRLco(A) cannot be selected appropriately.

2. TSRLco(B) was trained with large explorations, although its performance is worse
than TSRLco(A) in the training phase, the average reward of TSRLco(B) is higher
than TSRLco(A) in the implementation phase, because the alternative actions are
explored more than TSRLco(A). Thus, under the changes of the environments in
the implementation, the alternative actions of TSRLco(B) can be selected more
appropriately.

3. TSRLch has the highest average reward, which means that changing ϵev-greedy
policy and learning rate αev can reinforce both of the good actions and alter-
native actions more efficiently and effectively comparing with TSRLco(A) and
TSRLco(B) in the training phase. Thus, when troubles occur in the implemen-
tation, TSRLch can determine the actions more appropriately, thus the average
reward is the highest.

Case 2. The individuals which are trained by TSRLco(A), TSRLco(B) and TSRLch,
are implemented in TSRL/TESTch using parameters as shown in Table 4.1. In this case,
after sudden changes occur, large random action selections are carried out in order to
quickly adapt to the new environment and then, the action selections are gradually
decreased in order to reinforce the good actions more appropriately. Using this mech-
anism, TSRLco(A), TSRLco(B) and TSRLch have higher average rewards when they
are implemented in TSRL/TESTch compared with TSRL/TESTco as shown in Fig. 4.4.
It shows that the on-line learning with changing ϵt-greedy policy and learning rate αt
improves the adaptability. Furthermore, TSRLch shows higher average reward than
TSRLco(A) and TSRLco(B) as shown in Table 4.4. It is because TSRLch can reinforce
both the good actions and alternative actions in the training phase and the on-line
learning of TSRL/TESTch can make the balance between the exploration and exploita-
tion to determine the good actions for the implementation.

When severe troubles occur, such as large number of sensors’ break, then incor-
rect information becomes larger. Here, the appropriate behaviors are more difficult to
be determined. Therefore, the average reward also becomes smaller. The average re-
wards of Fuzzy GNP-TSRL (BS) with changing ϵ-greedy and learning rate α show the
superiority than those with fixed values as shown in Fig. 4.5. It confirms that chang-
ing ϵ-greedy and learning rate α in the training phase and implementation phase can
improve the adaptability of Fuzzy GNP-TSRL (BS).

56 Fuzzy GNP-TSRL (BS) with
Changing ϵ-greedy Policy and Learning Rate α

Table 4.4: Average reward of TSRLch, TSRLco(A), TSRLco(B) implemented under
TSRL/TESTch

Individual Average Stdev T-test one tail
TSRLch 0.170 0.035 -
TSRLco(A) 0.083 0.035 1.46E-05
TSRLco(B) 0.115 0.026 6.89E-04

Figure 4.4: Average fitness of TSRLch, TSRLco(A) and TSRLco(B) in the implementa-
tion phase

4.6 Summary

Changing ϵ-greedy policy and learning rate α has been proposed to improve the
adaptability of Fuzzy GNP-TSRL (BS).

1. In the training phase, the high explorations are carried out to determine the ran-
dom action selections in early generations, while the explorations are decreased
in later generations to reinforce the good actions more. The changing parame-
ters make the balance between the exploration and exploitation, then the actions
can be reinforced well to improve the adaptability of Fuzzy GNP-TSRL (BS).

2. In the implementation phase, the on-line learning with changing ϵt-greedy pol-
icy and learning rate αt can improve the adaptability of Fuzzy GNP-TSRL (BS)
more, when the changes of the environments occur.

Summary 57

Figure 4.5: Average fitness of TSRLch with several broken sensors in the implementa-
tion phase

Chapter 5

Fuzzy GNP-TSRL (CS)

5.1 Introduction

In order to deal with severe problems caused by broken sensors in the implementa-
tion, Two-Stage Reinforcement Learning of Fuzzy GNP-TSRL (BS) shows better per-
formance than One-Stage Reinforcement Learning of Fuzzy GNP-RL. Fuzzy GNP-
TSRL (BS) has the ability to change the programs adaptively using alternative sub
nodes/functions and also alternative connections. Fuzzy GNP-TSRL (BS) increases
the search ability in the graph structures, where the next nodes of the node transi-
tions are also learned, then, the recovery process of Fuzzy GNP-TSRL (BS) is faster
than Fuzzy GNP-RL. Although Fuzzy GNP-TSRL (BS) has larger connections, which
means that it can make various node transitions and may reuse the same nodes many
times in the node transitions. Here, if the nodes which create inappropriate behaviors
are executed many times, then the performance of Fuzzy GNP-TSRL (BS) would be
decreased. On the other hand, increasing the branch connections make the size of Q
values larger than Fuzzy GNP-RL if the same number of sub nodes is used. Then, the
Q values take longer times to converge. Thus, instead of using the Branch connection
Selection method (BS method), another method of the Credit branch Selection method
(CS) of Credit-GNP is considered in this chapter.

Another version of enhancing GNP, that is, Credit-GNP has been proposed [69],
where credit branch is implemented to GNP with rules [70] to generate the association
rules and store in the rule pool during the training phase. Then, Credit-GNP can
store more various rules in the rule pool and improves the generalization ability in the
dynamic environments.

The idea of the CS method is to skip harmful nodes and it is combined with
Fuzzy GNP-RL in this chapter. Thus, instead of using the Branch connection Selec-
tion method of Fuzzy GNP-TSRL (BS), skipping harmful nodes which create inappro-
priate behaviors enhances the problems of Fuzzy GNP-TSRL (BS) and improve the
adaptability of Fuzzy GNP-RL.

5.2 Motivation of GNP-TSRL (CS)

Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL have advantages to change programs adap-
tively by changing sub nodes and/or selecting branch connections. In the chapter 3,
Fuzzy GNP-TSRL (BS) can improve the adaptability of Fuzzy GNP-RL when inexpe-

Algorithm of Fuzzy GNP-TSRL (CS) 59

rienced sudden changes occur in the implementation. While the conventional Fuzzy
GNP-RL proposed a recovery method by changing sub nodes when the node is visited
again by the node transitions. It takes a longer time, therefore, Fuzzy GNP-TSRL (BS)
was proposed by changing connections beside of changing sub nodes. In this case, the
next nodes of Fuzzy GNP-TSRL (BS) are also learned to determine the node transi-
tions, therefore, Fuzzy GNP-TSRL (BS) has better performances than Fuzzy GNP-RL.

Both of Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL have advantages to recover the
problems when the nodes are visited again in the next time step. However, this mech-
anism also creates problems when the nodes visited many times are harmful nodes.
Thus, the performance may be decreased. In order to solve this problem, skipping
harmful nodes is the simplest way for the recovering process. Thus, Fuzzy GNP-
TSRL with Credit branch Selection (Fuzzy GNP-TSRL (CS)) is proposed to improve the
adaptability of Fuzzy GNP-RL, when the changes of the environments occur. Fuzzy
GNP-TSRL (CS) combines the Sub node Selection method (SS) of the Fuzzy GNP-RL
and Credit branch Selection method (CS), where these methods are carried using Two-
Stage Reinforcement Learning.

5.3 Algorithm of Fuzzy GNP-TSRL (CS)

In order to realize Fuzzy GNP-TSRL (CS), the judgment nodes and processing nodes
are modified. Instead of using Branch connection Selection method (BS method) as de-
scribed in chapter 3, Fuzzy GNP-TSRL (CS) combines the SS method to determine the
appropriate functions and Credit branch Selection method (CS method) to skip harm-
ful nodes. The node structures of the proposed method are described in sub-section
5.3.1. The mechanisms of determining the node transitions and learning process are
described in sub-section 5.3.2. In addition, the recovery process is explained in sub
section 5.3.3 to show the advantages of the proposed.

5.3.1 Structure Representation of GNP-TSRL (CS)

The basic structure of Fuzzy GNP-TSRL (CS) is the same as the previous chapter
shown in Fig. 2.1 as explained in section 2.3.1. In order to realize the combination
of the SS method and CS method, the node structures of Fuzzy GNP-TSRL (CS) are
revised as Fig. 5.1, where two-kind Q tables are used, that is, QSS-table and QCS-table.
Therefore, the gene of Fuzzy GNP-TSRL (CS) is modified as shown in Fig. 5.2.

It is supposed that node i ∈ {0, 1, ..., n− 1} has m sub nodes. The gene structure of
node i is divided into macro node part, sub node part and branch part.

Macro Node Part

The macro node part of node i is defined by NTi and di. Where NTi represents a node
type and di represents the time delay spent on executing node i, where NTi and di are
shown in Table 2.1.

Sub Node Part

The sub node part describes the function of the sub nodes. The function of sub node
p ∈ {1, ..., m} of node i is defined by IDip, aip and QSS(i, ip), as explained in sub-section

60 Fuzzy GNP-TSRL (CS)

Figure 5.1: Node structures of GNP-TSRL (CS)

Figure 5.2: Gene of GNP-TSRL (CS)

Algorithm of Fuzzy GNP-TSRL (CS) 61

2.3.1. In Fuzzy GNP-TSRL (CS), the function which should be executed is determined
by ϵ-greedy policy according to QSS(i, ip) value by the SS method at the first stage of
RL. Here, the state is the current node i and the action is sub node selection ip, that is,
sub node p of node i.

Branch Part

The different point of Fuzzy GNP-TSRL (CS) is the branch part. While in Fuzzy GNP-
TSRL (BS), each connection of sub node p of the nodes has several branch connections,
the connections of Fuzzy GNP-TSRL (CS) are grouped into the normal branches and
credit branch as follows.

• Normal branches. When the node is judgment node i, sub node p has u nor-
mal branches, i.e., {bip(N1), ..., bip(Nu)}. In this chapter, the number of the normal
branches is two to represent branch connections as described in Fuzzy GNP-RL,
where a branch of the normal is selected by the judgment result like Fuzzy GNP-
RL explained in section 2.3.2. However, when the node is a processing node, the
sub node has only one normal branch, i.e., bip(N1). The normal branches of sub
node p of node i are grouped by a Q value, i.e., QCS(ip, bip(N))

• Credit branch. Each sub node of node i has a credit branch, i.e., bip(C) and the Q
value of the credit branch is represented by QCS(ip, bip(C)).

The selection of the normal branches or credit branch is determined by ϵ-greedy
policy according to QCS(ip, bip(N)) and QCS(ip, bip(C)). If QCS(ip, bip(N)) is selected, then
the function of sub node p of node i is executed as a normal node and the next node
is determined by a normal branch ∈ {bip(N1), ..., bip(Nu)} as Fuzzy GNP-RL. However,
while QCS(ip, bip(C)) is selected, then the function of the node is not executed and it is
considered as a harmful node, that is, the node is skipped and the node transition is
transfered to next node shown by bip(C).

5.3.2 Learning Process of Fuzzy GNP-TSRL (CS)

Fuzzy GNP-TSRL (CS) is proposed to improve the adaptability of Fuzzy GNP-RL
when sudden changes occur, where the Two-Stage Reinforcement Learning is used,
that is, the Sub node Selection method (SS method) and Credit branch Selection method
(CS method) are learned at the first stage and second stage, respectively. Here, two
kinds of Q tables are used, i.e., QSS table and QCS table.

SS Method. The SS method is carried out at the first stage of Fuzzy GNP-TSRL
(CS) and done like Fuzzy GNP-RL . The state is represented by the current node i,
while the action is the selection of sub node p of node i which is determined based on
ϵ-greedy policy according to the QSS value.

CS Method. The CS method is carried out at the second stage of Fuzzy GNP-
TSRL (CS) to select a group of normal branches or a credit branch. The CS method
is done based on ϵ-greedy policy according to the QCS values. In this case, the state
is represented by sub node p of node i, which is selected at the first stage, while the
action is a group of normal branches of {bip(N1), ..., bip(Nu)} or credit branch bip(C) which
is selected by ϵ-greedy policy according to the QCS(ip, bip(N)) value or QCS(ip, bip(C))
value.

62 Fuzzy GNP-TSRL (CS)

Node Transitions of Fuzzy GNP-TSRL (CS)

The mechanism of skipping harmful nodes is explained using an example of node
transitions shown in Fig. 5.3.

Figure 5.3: An example of a node transition of GNP-TSRL (CS)

• It is supposed that the node transitions are J3 → P4 → P3. If the current node
i is judgment node J3, this node judges sensor ip selected by ϵ-greedy policy
according to QSS(i, ip).

• Then, it is supposed that a group of normal branches are also selected by ϵ-
greedy policy according to QCS(ip, bip(N)), then J3 works like Fuzzy GNP-RL, that
is, J3 is executed as a normal judgment node and returns the judgment result, for
example normal branch bip(Nu) is selected.

• After that, the current node is transferred to P4, where ϵ-greedy policy selects
sub node jp′ according to QSS(j, jp′) and credit branch bjp′(C) is selected accord-
ing to QCS(jp′, bjp′(C)). In this case, P4 is skipped which means that the agent
behavior is not changed and the current node is transferred to P3.

• If sub node kp” of P3 and normal branch bkp”(N1) are selected, then the agent
behavior is changed by executing function kp”.

Sarsa Learning of Fuzzy GNP-TSRL (CS)

The procedure of updating Fuzzy GNP-TSRL (CS) using Sarsa learning is explained
as follows.

1. At time t, it is supposed that the current state is node i, and Fuzzy GNP-TSRL
(CS) refers to all QSS values for the SS method, i.e., {QSS(i, i1), ..., QSS(i, im)}, and
selects one of them based on ϵ-greedy policy, that is, the sub node which has the
max Q value is selected by the probability of 1− ϵ, while another sub node can
be selected randomly by the probability of ϵ. It is supposed that GNP selects
QSS(i, ip) ∈ {QSS(i, i1), ..., QSS(i, im)}, and the corresponding node function IDip
and parameter aip are determined.

Algorithm of Fuzzy GNP-TSRL (CS) 63

2. At the next step, Fuzzy GNP-TSRL (CS) checks the conditions of the next node to
be connected considering the Q values of the normal branches, i.e., QCS(ip, bip(N))
and credit branch, i.e., QCS(ip, bip(C)), which are selected based on ϵ-greedy pol-
icy as the second stage of Fuzzy GNP-TSRL (CS). Max Q value between QCS(ip, bip(N))
and QCS(ip, bip(C)) is selected by the probability of 1− ϵ, or random one by the
probability of ϵ.

(a) if the normal branches are selected according to QCS(ip, bip(N)), then Fuzzy
GNP-TSRL (CS) executes function IDip and determines the next node con-
nection by bip(N) ∈ {bip(N1), ..., bip(Nu)}.

(b) else, the credit branch is selected, then Fuzzy GNP-TSRL (CS) considers
that current node i is harmful, so its function is not executed and the next
connection is bip(C).

At this step, it is supposed that normal branch bip(Nu) is selected, then the next
node is node j as shown in Fig. 5.3

3. After taking the action at step 2(a), the reward rt is given. However, when the
credit branch (step 2(b))is selected as the action, the reward rt should be 0 be-
cause the node is skipped.

4. At time t + 1, Fuzzy GNP-TSRL (CS) repeats step 1 to 3 for the next node j.
Here, it is supposed that the SS method determines QSS(j, jp′) and the CS method
determines QCS(jp′, bjp′(C)).

5. Then, the Q value of the SS method in the first stage of RL is updated by the
following procedure,

QSS(i, ip)← QSS(i, ip)
+α(rt+γQSS(j, jp′)−QSS(i, ip)). (5.1)

The Q value of the CS method in the second stage of RL is updated as follows.

When a normal branch is selected in step (2.a),

QCS(ip, bip(N))← QCS(ip, bip(N))+

α(rt+1+γQCS(jp′, bjp′(N))−
QCS(ip, b(ip,N))). (5.2)

When a credit branch is selected in step (2.b),

QCS(ip, bip(C))← QCS(ip, bip(C))+

α(γQCS(jp′, bjp′(N))−
QCS(ip, bip(C))). (5.3)

Where, α is a learning rate (0 < α ≤ 1) and γ is discount rate (0 ≤ γ ≤ 1).

6. t← t + 1, i← j and p← p′. Then, return to step 1.

64 Fuzzy GNP-TSRL (CS)

5.3.3 Recovery Process of Fuzzy GNP-TSRL (CS)

Fuzzy GNP-TSRL (BS) enhanced the recovery process of Fuzzy GNP-RL by selecting
the appropriate next node which may change the agent behavior appropriately. How-
ever, this process still have a problem such as explained in section 5.2.

It is supposed that sub node i1 in Fig. 5.4 is a harmful node and creates inappro-
priate behaviors. Then, executing sub node i1 give a small average reward. In order
to recover this problem, skipping sub node i1 may increase the total average reward
as shown in Fig. 5.4.

Figure 5.4: An example of recovery process of Fuzzy GNP-TSRL (CS)

Recovery Process by Changing the Function

If the current node is node i, sub node i1 is determined based on ϵ-greedy policy
according to QSS(i, i1). As the conventional method, when the function creates inap-
propriate behavior, alternative function i2 may be selected in the next time when node
i is visited again.

Recovery Process by Skipping the Node

The new point in Fuzzy GNP-TSRL (CS) is to skip harmful nodes by using credit
branch. As shown in Fig. 5.1, each sub node has the normal branches and credit
branch, which are selected based on ϵ-greedy policy. It is supposed that a node tran-
sition is determined as shown in Fig. 5.4 and sub node i1 is selected. The recovery
process can be described as follows.

• When normal branch bi1(N) is selected according to QCS(i1, bi1(N)), then function
i1 is executed as a normal normal node. However, if inappropriate behavior is
created after executing this function, the QCS(i1, bi1(N)) is updated smaller.

• When sub node i1 is visited again where QCS(i1, bi1(C)) value is larger than QCS(i1, bi1(N)),
the credit branch is selected by the large probability. If credit branch bi1(C) is se-

Comparison between Fuzzy GNP-TSRL (CS), Fuzzy GNP-TSRL (BS) and Fuzzy
GNP-RL 65

lected according to QCS(i1, bi1(C)), node i is considered as a harmful node and
function i1 is skipped. Then, the agent behavior may be revised by the executing
node k.

5.4 Comparison between Fuzzy GNP-TSRL (CS), Fuzzy GNP-
TSRL (BS) and Fuzzy GNP-RL

Fuzzy GNP-TSRL (CS) is an enhancement of Fuzzy GNP-RL and revise the Fuzzy
GNP-TSRL (BS), while Fuzzy GNP-RL uses One-Stage RL for the SS method, Fuzzy
GNP-TSRL (BS) and Fuzzy GNP-TSRL (CS) uses Two-Stage RL, here Fuzzy GNP-
TSRL (BS) combines the SS method and BS method to select branch connections,
while GNP-TSRL (CS) combines the SS method and CS method to skip harmful nodes.
When harmful nodes are executed many times in the node transitions, Fuzzy GNP-RL
and Fuzzy GNP-TSRL (BS) cannot avoid these nodes, while Fuzzy GNP-TSRL (CS)
has the ability to skip these nodes. Thus, the recovery process of GNP-TSRL (CS) can
improve better than Fuzzy GNP-RL and Fuzzy GNP-TSRL (BS), when severe troubles
occur, that is, Fuzzy GNP-TSRL (CS) can adaptively change the programs by changing
the functions like Fuzzy GNP-RL or skip the functions when they are considered to
create inappropriate behaviors. As a result, the adaptability of Fuzzy GNP-RL can be
improved, especially when sensors break in the implementation.

5.5 Simulations

The effectiveness of the recovery process of Fuzzy GNP-TSRL (CS) is studied in the
benchmark of the wall following behaviors of a Khepera robot using Webots simula-
tor [71], where the specification of the robot and calculation of the reward have been
introduced in section 2.5.1 and section 2.5.2, respectively.

5.5.1 Simulation Environments

The effectiveness of Fuzzy GNP-TSRL (CS) is studied in the training phase and in the
implementation phase comparing with Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL by
using the simulation environments as shown in Fig. 2.7. The simulations are carried
out as follows.

1. Simulation 1. In the training phase, the individuals of Fuzzy GNP-TSRL (CS),
Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL evolved generation by generation
and are evaluated, where the functions, parameters and branches are changed
by crossover and mutation. The life time for evaluation of each individual is
2000 time steps in each generation. In this simulation, Fuzzy logic is integrated
to the judgment nodes and Gaussian noises (µ = 0,σ = 50) are introduced to the
sensor values as was done in Chapter 2. The generalization ability is confirmed
by using 10 different start positions of the robot in the environment shown in
Fig. 2.7(a), where the start positions are selected randomly by the individuals.
Each individual is evaluated for 2000 time steps and the start position of the in-
dividual is changed randomly every 500 time steps. The individuals are evolved
for 1000 generations and the fitness is evaluated generation by generation.

66 Fuzzy GNP-TSRL (CS)

2. Simulation 2. In order to study the effectiveness of the recovery process of Fuzzy
GNP-TSRL (CS), the best individuals from the training phase are implemented
in the environments shown in Fig. 2.7(b), where the life time for the implemen-
tation of the individuals is 3000 time steps which are separated in two cases.

• Case 1. The individuals are implemented in the normal situations, here, no
sensor breaks in the implementation. In order to study the generalization
ability of Fuzzy GNP-TSRL (CS), the individuals are implemented with 10
different start positions of the robot and repeated 300 times for each indi-
vidual.

• Case 2. The individuals are implemented with inexperienced changes of
the environments which are carried out by making a sensor breaks at the
500th time step. The changes are set as follows, from the 1st time step to the
500th time step, the individuals are implemented in the normal situations
(no sensor breaks); a sensor breaks at the 500th time step, after that the
adaptability of Fuzzy GNP-TSRL (CS) to recover the troubles is analyzed.

3. Simulation 3. Furthermore, severe inexperienced troubles are set. In this case,
the simulation is done like simulation 2, however, inexperienced sudden changes
occur by making several sensors break at the 500th time step, that is, 2, 3, 4 and
5 sensors break. The performances of the proposed method for recovering the
troubles are analyzed after the 500th time step.

5.5.2 Simulation Conditions

In order to confirm the advantages of Fuzzy GNP-TSRL (CS), the performance of
Fuzzy GNP-TSRL (CS) is compared with Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL
using parameter settings as shown in Table 5.1.

Firstly, the individuals are initialized to form a population, where the number of
individuals is 300. Each individual has one start node and a fixed number of the
judgment nodes and processing nodes, that is, 61 nodes including 40 Fuzzy judgment
nodes (5 for each kind), 20 processing nodes (10 for each kind) and one start node.
Each node has 2 sub nodes representing different functions, where each sub node of
the judgment node has 2 kinds of connections, that is, normal branches and a credit
branch, while that of the processing node has 1 normal branch and 1 credit branch.
The function of node (IDip) is assigned by an unique number which is shown in the
function library in Table 2.3. The parameter of node (aip) is set at random integers.
When the node is a judgment node, its parameter is aip = {βip,αip}, where αip is
larger than βip; that is, αip is set between 0 and 1023, and βip is set between 0 and
αip, however, when the node is a processing node, its parameter is set between -10
and 10. The initial connections between nodes are determined randomly in the graph
structure. All Q values (QSS and QCS) are set at zero initially.

The learning parameters, i.e., learning rate α = 0.1, discount rate γ = 0.9, and ϵ

greedy policy parameters, i.e., ϵSS = 0.1 and ϵCS = 0.1 are given to consider the future
rewards and to keep the balance between the exploration and exploitation. Gaussian
noises (µ = 0,σ = 50) are added to the sensor values in the training phase and imple-
mentation phase to improve the generalization ability of GNP in noisy environments.

Simulations 67

Table 5.1: Simulation conditions

Fuzzy GNP TSRL (CS) TSRL (BS) RL
The number of individuals (300)

mutation: 179,
crossover: 120,

elite: 1
The number of nodes (61)

20 processing nodes,
40 Fuzzy judgment nodes,

and 1 start node
The number of sub nodes 2 2 4
The number of branch connection
for each connection of a sub node - 2 -
The number of credit branch
for each sub node of judgment nodes 1 - -
for each sub node of processing nodes 1 - -
The kind of Q tables QSS and QCS QSS and QBS QSS
Parameters of evolution Pc = 0.1,

Pm = 0.01,
tournament sizes = 7

Parameters of learning α = 0.1, γ = 0.9,
ϵSS = 0.1, ϵCS = 0.1, ϵBS = 0.1

(ϵ of greedy policy)

5.5.3 Simulation Results

The effectiveness of Fuzzy GNP-TSRL (CS) is confirmed comparing with Fuzzy GNP-
TSRL (BS) and Fuzzy GNP-RL in these simulation results.

Results of Simulation 1

Fig. 5.5 shows the average fitness of Fuzzy GNP-TSRL (CS) comparing with Fuzzy
GNP-TSRL (BS) and Fuzzy GNP-RL, where each of the curves is averaged over 10
best individuals from 10 independent training simulations. The curve of Fuzzy GNP-
TSRL (CS) converges faster and obtains higher fitness values than Fuzzy GNP-TSRL
(BS) and Fuzzy GNP-RL. It shows that updating Q values of GNP-TSRL (CS) is done
more efficiently and effectively than that of the other methods.

Fuzzy GNP-TSRL (CS) uses 2 kinds of Q tables and the actions in the nodes are
grouped into two kinds, then the actions are determined more efficiently and effec-
tively than only using one Q table like Fuzzy GNP-RL. Thus, the average fitness of
Fuzzy GNP-TSRL (CS) and Fuzzy GNP-TSRL (BS) is higher than that of Fuzzy GNP-
RL. Moreover, the average fitness of Fuzzy GNP-TSRL (CS) is still higher than that of
Fuzzy GNP-TSRL (BS), even both of them use two Q tables. In this case, the CS method
of Fuzzy GNP-TSRL (CS) is carried out more efficiently and effectively, because the
normal branches are grouped into one QCS, while each branch of Fuzzy GNP-TSRL
(BS) has their own QBS. In addition, when all of the branches in the nodes of Fuzzy

68 Fuzzy GNP-TSRL (CS)

Figure 5.5: Average fitness in the training phase

GNP-TSRL (BS) fail to determine good connections, the fitness of Fuzzy GNP-TSRL
(BS) is decreased, while Fuzzy GNP-TSRL (CS) can skip this harmful nodes by select-
ing the credit branch. Thus, the average fitness of Fuzzy GNP-TSRL (CS) shows the
highest value among these three methods.

Results of Simulation 2

The adaptability of Fuzzy GNP-TSRL (CS) is studied in this section, when inexperi-
enced sudden changes occur, where the efficiency and effectiveness of the adaptation
mechanisms of Fuzzy GNP-TSRL (CS) are compared with those of Fuzzy GNP-TSRL
(BS) and Fuzzy GNP-RL. In this case, 10 best individuals of 10 independent training
simulations are implemented in a new environment shown in Fig. 2.7(b). Each in-
dividual is implemented 300 times with 10 different start positions in order to study
the adaptability in unknown environments. The sudden changes are carried out by
making one sensor breaks at the 500th time step of the 3000 life time steps for each
implementation.

The average rewards in the environments with normal situation without sudden
changes (case 1) are compared with that in the environments with sudden changes
(case 2) as shown in Fig. 5.6.

• In case 1, Fuzzy GNP-TSRL (CS) shows the highest average reward in each time
step, which means that Fuzzy GNP-TSRL (CS) has the highest generalization
ability in unknown environments among the other methods.

• In case 2, when the sudden changes occur by a broken sensor at the 500th time
step, the average rewards of all the methods decreased after the 500th time step.
It is because the broken sensor damages wall-following behaviors of the robot
so much. However, Fuzzy GNP-TSRL (CS) still has the highest average reward,
which means the adaptability mechanism of Fuzzy GNP-TSRL (CS) works fairly
well.

Simulations 69

Figure 5.6: Average reward of Fuzzy GNP-TSRL (CS), Fuzzy GNP-TSRL (BS) and
Fuzzy GNP-RL during the life time in the implementation phase

70 Fuzzy GNP-TSRL (CS)

Results of Simulation 3

The effectiveness and efficiency of the adaptation mechanism of Fuzzy GNP-TSRL
(CS) is also shown when several sensors break simultaneously, which means that the
recovery processes are more difficult. In this case, the average reward of Fuzzy GNP-
TSRL (CS) is still higher than that of Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL as
shown in Fig. 5.7.

Figure 5.7: Average reward in the implementation phase with several broken sensors

5.6 Summary

Fuzzy GNP-TSRL (CS) has been proposed, which combines the Sub node Selection
method (SS method) and Credit branch Selection method (CS method). Fuzzy GNP-
TSRL (CS) determines the node transitions more appropriately to adapt to the changes
of the environments comparing with Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL, where
Fuzzy GNP-TSRL (CS) has the unique mechanism to avoid harmful nodes by skipping
these nodes in the node transitions. As a result, the adaptability of Fuzzy GNP-TSRL
(CS) shows the excellent average rewards in the implementation, especially when in-
experienced changes of the environments occur.

Chapter 6

Conclusions

The primary aim of this study is to improve the robustness in uncertain environments
and improve the adaptability of Genetic Network Programming with Reinforcement
Learning (GNP-RL) when inexperienced changes occur in the environments for a mo-
bile robot.

For evaluating the performances, a benchmark method of the wall following be-
haviors is used. The performances are studied in the training phase and in the imple-
mentation phase.

Improving the robustness of GNP-RL is studied by integrating Fuzzy logic to the
judgment nodes, i.e., Fuzzy GNP-RL is proposed. Fuzzy GNP-RL improves the explo-
ration ability to determine the node transitions more appropriately. In addition, intro-
ducing Gaussian noises to the sensor values also improved the exploration ability. As
a result, the robustness of Fuzzy GNP-RL is improved in uncertain environments.

Improving the adaptability of GNP-RL is studied by proposing the mechanisms to
recover the troubles. Here, Two-Stage Reinforcement Learning methods are proposed.

• Fuzzy GNP-TSRL (BS) combines Sub node Selection method (SS method) like
Fuzzy GNP-RL and Branch connections Selection method (BS method). Fuzzy
GNP-TSRL (BS) has the abilities to change the programs adaptively by changing
functions and connections to adapt to the changes of the environments.

• Fuzzy GNP-TSRL (BS) with changing ϵ-greedy policy and learning rate α is
studied to improve the balance between the exploration and exploitation when
determining the action selections. Using this method, the on-line learning can
determine the node transitions more appropriately, then the adaptability can be
improved.

• Fuzzy GNP-TSRL (CS) combines Sub node Selection method (SS method) like
Fuzzy GNP-RL and Credit branch Selection method (CS method) of Credit-GNP.
This method proposed a method to skip harmful nodes. Then, the node transi-
tions can determine the agent behaviors more appropriately.

Fuzzy GNP-TSRL (CS) shows the superior performance compared with Fuzzy
GNP-TSRL (BS) and Fuzzy GNP-RL, because Fuzzy GNP-TSRL (CS) can skip harmful
nodes, while the other methods can not avoid harmful nodes. Thus, the adaptability
of Fuzzy GNP-TSRL (CS) has the best performance.

Bibliography

[1] H. Rahmandad and J. Sterman, “Heterogeneity and Network Structure in the
Dynamics of Diffusion: Comparing Agent-Based and Differential Equation
Models”, Management Science, Vol. 54, No. 5, pp. 9981014, 2008.

[2] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part I”,
IEEE Transactions on System and Cybernetics, Vol. 20, No. 2, pp. 404-418, 1990.

[3] E. I. Papageorgiou, C. Stylios and P. P. Groumpos, “Unsupervised Learning
Techniques for Find-Tuning Fuzzy Cognitive Map Causal Links”, Int. J. Human-
Computer Studies, Vol. 64, pp. 727-743, 2006.

[4] K. C. Ng and M. M. Trivedi, “A Neuro-Fuzzy Controller for Mobile Robot Navi-
gation and Multirobot Convoying”, IEEE Transactions on System and Cybernetics,
Vol. 28, No. 6, pp. 829-840, 1998.

[5] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through Aug-
menting Topologies”, Evolutionary Computation, Vol. 10, No. 2, pp. 99-127, 2002.

[6] Y. Kassahun and G. Sommer, “Automatic Neural Robot Controller Design Using
Evolutionary Acquisition of Neural Topologies”, In Proc. of the FACHGESPRCH
AUTONOME MOBILE SYSTEME, pp. 315–321, 2005.

[7] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, The MIT Press, Cambridge, MA 1992.

[8] K. Hirasawa, M. Okubo, H. Katagiri, J. Hu and J. Murata, “Comparison Between
Genetic Network Programming (GNP) and Genetic Programming (GP), In Proc.
of the IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1276-1282, 2001.

[9] C.Chen and T. Xiao, “Probabilistic Fuzzy Control of Mobile Robots for Range
Sensor Based Reactive Navigation”, Intelligent Control and Automation, Vol. 2,
No.2, pp. 77-85, 2011.

[10] J. M. Toibero, F. Roberti and R. Carelli, “Stable Contour-Following Control of
Wheeled Mobile Robots”, Robotica, Vol. 27, pp 1-12, 2009.

[11] I. Ayari and A. Chatti, “Reactive Control Using Behavior Modeling of a Mobile
Robot”, International Journal of Computers, Communications and Control, Vol. II,
No. 3, pp. 217-228, 2007.

[12] O. Motlagh, S.H. Tang, N. Ismail and A.R. Ramli, “An Expert Fuzzy Cognitive
Map for Reactive Navigation of Mobile Robots”, Fuzzy Sets and Systems, Vol. 201,
pp. 105-121, 2012.

Bibliography 73

[13] A. C. Murillo, P. Abad, J. J. Guerrero and C. Sagues, “Improving Topological
Maps for Safer and Robust Navigation”, In Proc. of the IEEE Intelligent Robots and
Systems 2009, pp. 3609-3614, 2009.

[14] H. Kretzschmar, C. Stachniss and G. Grisetti, “Efficient Information-Theoretic
Graph Pruning for Graph-Based SLAM with Laser Range Finders”, In Proc. of
the IEEE Intelligent Robots and Systems 2011, pp. 865-871, 2011.

[15] T. M. Gureckis and B. C. Love, “Learning in Noise: Dynamic Decision-Making in
a variable Environment”, Jornal of Mathematical Psychology, Vol. 53, pp. 180-193,
2009.

[16] P. Reigner, V. hansen and J. L. Crowly, “Incremental Supervised Learning for
Mobile Robot Reactive Control”, Robotics and Autonomous Systems, Vol 19, pp.
247-257, 1997.

[17] W. E. Dixon, D. M. Darren, E. Zergeroglu and A. Behal, “Adaptive Tracking
Control of a Wheeled Mobile Robot via an Uncalibrated Camera System”, IEEE
Transactions on Systems, Man and Cybernetics-PartB: Cybernetics, Vol.31, No. 3,
pp.341-352, 2001.

[18] K. T. Song and L. H. Sheen, “Heuristic Fuzzy-Neuro Network and Its Applica-
tion to Reactive Navigation of a Mobile Robot”, Fuzzy Sets and Systems, Vol. 110,
pp. 331-340, 2000.

[19] E. Zalama, P. Gaudiano and J. L. Coronado, ”A Real-Time, Unsupervised Neu-
ral Network for the Low-Level Control of a Mobile Robot in a Nonstationary
Environment”, Neural Networks, Vol. 8, No. 1, pp. 103-123, 1995.

[20] S. Yamada and M. Murota, “Unsupervised Learning to Recognize Environments
from Behavior Sequences in a Mobile Robot”, In Proc. of the IEEE International
Conference on Robotic and Automation, pp. 1871-1876, 1998.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning - An Introduction, Cambridge,
Massachusetts, London, England, MIT Press, 1998.

[22] L. P. Kaebling, M. L. Littman and A. W Moore, “Reinforcement Learning: A
Survey”, Journal of Artificial Intteligent Research, Vol. 4, pp. 237-285, 1996.

[23] W. D. Smart and L. P. Kaebling, “Effective Reinforcement Learning for Mobile
Robots”, In Proc. of the IEEE on Robotics and Automation, May 2002.

[24] L. Khriji, F. Touati, K. Benhmed and A. Al-Yahmedi, “Mobile Robot Navigation
Based on Q-Learning Technique”, International Journal of Advanced Robotic Sys-
tems, Vol. 8, No. 1, pp. 45-51, 2011.

[25] M. Menegaz and P. M. Engel, “Using the GTSOM Network for Mobile Robot
Navigation with Reinforcement Learning”, In Proc. of the International Joint Con-
ference on Neural Networks, pp. 2073-2077, 2009.

[26] D. Tamilselvi, Dr. S. Mercy Shalinie and G. Nirmala, “Q Learning for Mobile
Robot Navigation in Indoor Environment”, In Proc. of the IEEE International Con-
ference on Recent Trends in Information Technology, pp. 324-329, 2011.

74 Bibliography

[27] K. macek, I. Petrovic and N. Peric, “A Reinforcement Learning Approach to Ob-
stacle Avoidance of Mobile Robots”, In Proc. of the IEEE Advanced Motion Control,
pp. 462-466, 2002.

[28] M. J. Er and Y. Zhou, “Automatic Generation of Fuzzy Inference Systems Via
Unsupervised Learning”, Neural Networks, Vol. 21, Issue 10, pp. 1556-1566, 2008.

[29] B. Q. Huang, G. Y. Cao and M. Guo, “Reinforcement Learning Neural Network
to the Problem of Autonomous Mobile Robot Obstacle Avoidance”, In Proc. of
the Fourth International Conference on Machine Learning and Cybernetics, pp. 85-89,
2005.

[30] J. Holland, Adaptation in Natural and Artificial System, Univ. of Michigan Press,
Ann Arbor, 1975; MIT Press, Cambridge, MA, 1992.

[31] X. Yao, “Evolving Artificial Neural Networks”, In Proc. of the IEEE, Vol. 87, No.
9, pp. 1423-1447, 1999.

[32] O. Obe and I. Dumitrache, “Adaptive Neuro-Fuzzy Controller With Genetic
Training For Mobile Robot Control”, International Journal of Computers, Commu-
nications and Control, Vol. VII, No. 1, pp. 135-146, 2012.

[33] W. K. Wong, H. Y. Chen, C. Y. Hsu and T. K. Chao, “Reinforcement Learning
of Robotic Motion with Genetic Programming, Simulated Annealing and Self-
Organizing Map”, In Proc. of Conf. on Technologies and Applications of Artificial
Intelligence, pp. 292-298, 2011.

[34] S. Kamio and H. Iba, “Adaptation Technique for Integrating Genetic Program-
ming and Reinforcement Learning for Real Robots”, IEEE trans. on Evolutionary
Computation, Vol. 9, No. 3, pp. 318-333, 2005.

[35] S. Mabu, K. Hirasawa and J. Hu, “A Graph-Based Evolutionary Algorithm:
Genetic Network Programming (GNP) and Its Extension Using Reinforcement
Learning”, Evolutionary Computation, Vol. 15, No. 3, pp. 369-398, 2007.

[36] M. L. Littman and A. R. Cassandra, “Learning Policies for Partially Observable
Environments: Salling Up”, In Proc. the 12th Int. Conf. on Machine Learning, San
Francisco, CA, pp. 1-59, 1995.

[37] T. Soule, J. A. Foster and J. Dickinson, “Code growth in Genetic Programming”,
In Proc. of the First Annual Conference on Genetic Programming, pp. 215-223, 1996.

[38] W. Banzhaf and W. B. Langdon, “Some Considerations on Reason for Bloat”,
Genetic Programming and Evolvable Machines, Vol. 3, pp. 81-91, 2002.

[39] Y. Lu, S. Mabu and K. Hirasawa, “Multicar Elevator Group Supervisory Control
System using Genetic Network Programming”, IEEJ Transaction on Electronics,
Information and System, Vol. 6 (SI), pp. 65-73, 2011.

[40] Y. Chen, S. Mabu and K. Hirasawa, “Trading Rules on Stock Markets using Ge-
netic network Programming with Sarsa Learning”, Journal of Advanced Computa-
tional Intelligence and intelligent Informatics, Vol. 12, No. 4, pp. 383-392, 2008.

Bibliography 75

[41] L.Wang, S. Mabu and K. Hirasawa, “Genetic Network Programming with Rule
Accumulation and Its Application to Tile-World Problem”, Journal of Advanced
Computational Intelligence and intelligent Informatics, Vol. 13, No. 5, pp. 551-560,
2009.

[42] C. Yue, S. Mabu and K. Hirasawa, “A Bidding Strategy for Continuous Dou-
ble Auctions Based on Genetic Network Programming with Generalized Judg-
ments”, In Proc. of the IEEE Systems, Man, and Cybernetics (SMC), pp. 144-151,
2011.

[43] S. Mabu, H. Hatakeyama, M. T. Thu, K. Hirasawa and J. Hu, “Genetic Network
Programming with Reinforcement Learning and Its Application to Making Mo-
bile Robot Behavior”, Trans. IEE Japan, Vol. 126. No. 8, pp. 1009-1015, 2006.

[44] S. Mabu, A. Tjahjadi and K. Hirasawa, “Adaptability Analysis of Genetic Net-
work Programming with Reinforcement Learning in Dynamically Changing En-
vironments”, Expert Systems with Application, 2012 (In Press, Corrected Proof)

[45] S. Y. Yi and M. J. Chung, “A Robust Fuzzy Logic Controller for Robot Manip-
ulators with Uncertainties”, IEEE Trans. on Systems, Man and Cybernetics Part-B:
Cybernetics, Vol. 27, No. 4, pp. 706-713, 1997

[46] H. Du and N. Zhang, “Application of Evolving Takagi-Sugeno Fuzzy Model
to Nonlinear System Identification”, Applied Soft Computing, Vol. 8, pp. 676686,
2008.

[47] W. M. Hinojosa, S. Nefti and U. Kaymak, “Systems Control With Generalized
Probabilistic Fuzzy-Reinforcement Learning”, IEEE Trans. on Fuzzy Systems, Vol.
19, No. 1, pp. 51-64, 2011.

[48] S. Chen and C. Chen, “Probabilistic Fuzzy System for Uncertain Localization
and Map Building of Mobile Robots”, IEEE Trans. on Instrumentation and Mea-
surement, Vol. 61, No. 6, pp. 1546-1560, 2012.

[49] L. Jiangrong, L. Junmin and X Zhile, “T-S Fuzzy Stochastic Bilinear Model and
Fuzzy Controller Design Based on Switching Piecewise Lyapunov Functions”,
In Proc. of the 30th Chinese Control Conference, pp. 2825-2829, 2011.

[50] C. J. C. H. Watkins and P. Dayan, “Technical Note Q-Learning”, Machine Learn-
ing, Vol. 8, pp. 279-292, 1992

[51] G. A. Rummery and M. Nirajan, “On-line Q-learning Using Connectionist Sys-
tems”, Cambridge University Engineering Dept., Tech. Rep. CUED/F-INFENG/TR
166, 1994.

[52] K. P. Murphy, “A Survey of POMDP Solution Techniques”, Technical Report, U.
C. Berkeley, 2000.

[53] K. Hsiao, L. P. Kaelbling and T. L. Perez, “Grasping POMDPs”, In Proc. of the
IEEE Int. Conf. on Robotics & Automation, pp. 44854692, 2007.

[54] H. Kurniawati, D. Hsu Wee and S. Lee, “SARSOP: Effcient Point-Based POMDP
Planning by Approximating Optimally Reachable Belief Spaces”, In Proc. of the
Robotics: Science & Systems 2008.

76 Bibliography

[55] J. Loch and S. Singh, “Using Eligibility Traces to Find the Best Memoryless Pol-
icy in Partially Observable Markov Decision Processes”, In Proc. of the Intl. Conf.
on Machine Learning, 1998.

[56] E. Santos and X. Zhong, “Genetic Algorithms and Reinforcement Learning for
the Tactical Fixed Interval Scheduling Problem”, International Journal on Artificial
Intelligence Tools, Vol. 10, No. 1-2, pp. 1-16, 2001.

[57] Y. Sakurai, K. Takada, T. Kawabe and S. Tsuruta, “A Method to Control Param-
eters of Evolutionary Algorithms by using Reinforcement Learning”, In Proc.
of the IEEE Sixth International Conference on Signal-Image Technology and Internet
Based Systems, pp. 64-79, 2010.

[58] S. Goschin, E. Franti, M. Dascalu and S. Osiceanu, “Combine and Compare Evo-
lutionary Robotics and Reinforcement Learning as Methods of Designing Au-
tonomous Robots”, in Proc. of the IEEE Congress on Evolutionary Computation, pp.
1511-1516, 2007.

[59] K. L. Downing, “Adaptive Genetic Programs via Reinforcement Learning”, In
Proc. of the Genetic and Evolutionary Computation Conference, pp. 19-26, 2001.

[60] A. Nemra and H. Rezine, “Genetic Reinforcement Learning Algorithms for On-
line Fuzzy Inference System tuning Application to Mobile Robotic”, Robotics,
Automation and Control, I-Tech, pp. 227-257, 2008.

[61] P. J. Angeline, G. M. Saunders and J. B. Pollack, “An Evolutionary Algorithm
that Constructs Recurrent Neural Networks”, IEEE Trans. on Neural Network,
Vol. 5, No. 1, pp. 54-65, 1994.

[62] J. Zhong, X. Hu, J. Zhang and M. Gu, “Comparison of Performance between
Different Selection Strategies on Simple Genetic Algorithms”, In Proc. of the In-
ternational Conference on Computational Intelligence for Modelling, Control and Au-
tomation and International Conference on Intelligent Agents, Web Technologies and
Internet Commerce (CIMCA-IAWTIC’06), Vol. 02, pp. 1115-1121.

[63] M. Srinivas and L. M. Patnaik, “Adaptive Probabilities of Crossover and Muta-
tion in Genetic Algorithms”, IEEE Trans. on Systems, Man and Cybernetics, Vol.
24, No. 4, pp. 656-667, 1994.

[64] Z. Michalewicz, “Genetic Algorithms + Data Structures”, Springer-Verlag Berlin
Heidelberg New York, 1996.

[65] A. Neubauer, “A Theoretical Analysis of the Non-Uniform Mutation Operator
for the Modified Genetic Algorithm”, In Proc. of the IEEE International Conference
on Evolutionary Computation, pp. 93-96, 1997.

[66] T. Braunl, “Embedded Robotics Mobile Robot Design and Applications with
Embedded Systems”, Springer-Verlag Berlin Heidelberg, 2006.

[67] K. Taboada, S. Mabu, E. Gonzales, K. Shimada and K. Hirasawa, “Mining Fuzzy
Association Rules: A General Model Based on Genetic Network Programming
and Its Applications”, IEEJ Transaction on Electrical and Electronic Engineering,
Vol. 128, No. 5, pp. 343-354, 2010.

Bibliography 77

[68] Y. Yang, S. Mabu, K. Shimada and K. Hirasawa, “Fuzzy Intertransaction Class
Association Rule Mining Using Genetic Network Programming for Stock Mar-
ket Prediction”, IEEJ Transaction on Electrical and Electronic Engineering, Vol. 129,
No. 1, pp. 1-8, 2011.

[69] L. Wang, W. Xu, S. Mabu and K. Hirasawa, “Rule Accumulation Method Based
on Credit Genetic Network Programming”, In Proc. of the IEEE World Congress
on Computational Intelligence, pp. 3651-3658, 2012.

[70] F. Ye, L. Yu, S. Mabu, K. Shimada and K. Hirasawa, “Genetic Network Program-
ming with Rules”, Journal of Advanced Computational Intelligence and Intelligent
Informatics, Vol. 10, pp: 16-24, 2009.

[71] “Cyberbotics”, [Online]. Available: www.cyberbotics.com/

[72] L. F. Wang, K. C. Tan and V. Prahlad, “Developing Khepera Robot Applications
in a Webots Environment”, in Proc of IEEE 2000 International Symposium on Mi-
cromechatronics and Human Science, pp. 71-76, 2000.

[73] S. Ishii, W. Yoshida and J. Yoshimoto, “Control of Exploitation-Exploration
Meta-Parameter in Reinforcement Learning”, Neural Networks, Vol 15, pp. 665-
687, 2002.

[74] D. A. White, D. A. Sofge and S. B. Thrun,“The Role of Exploration in Learning
Control”, Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches,
pp. 1-27, Florence, Kentucky 41022, 1992.

Acknowledgments

My deepest gratitude and support of many people who are gratefully acknowledged
here.

My deepest gratitude goes first and foremost to Professor Hirasawa for encour-
agement, patient guidance, ideas, and constructive comments to improve my research
experiences. His patience and support helped me finish this dissertation. I hope that
one day I would become as good an advisor to my students as he has been to me.

Secondly, I also would like to acknowledge great respect to the committee mem-
bers, Prof. Jinglu Hu, Prof. Yoshie Osamu and Prof. Shigeru Fujimura, for their careful
reviews, constructive advices and helpful suggestions in my work.

Thirdly, I also grateful to Dr. Mabu, whose kindness helped me a lot and gave
invaluable suggestion during discussion in laboratory.

Thanks also to my friends in our laboratory, Ms. Yang Yang, Ms. Nanan Lu, Mr.
Lutao Wang and Mr. Xianeng Li, who gave me encouragement and suggestions.

My heartfelt gratitude especially to my families, my father, my mother, and my
sisters and brothers in Indonesia. Their love and support provided me the energy to
attain my study.

Last my thanks would go to my beloved family, my husband, my daughter and
my son, for love and support in my life.

This work is supported by the Directorate General of Higher Education, Indonesia.

List of Publications

Journals

J1 S. Sendari, S. Mabu and K. Hirasawa, “Two-Stage Reinforcement Learning on Credit
Branch Genetic Network Programming for Mobile Robots, IEEJ Transaction on
Electronics, Information and Systems. (Accepted)

J2 S. Sendari, S. Mabu, A. Tjahjadi and K. Hirasawa, “Fuzzy Genetic Network Pro-
gramming with Noises for Mobile Robot Navigation, Journal of Advanced Compu-
tational Intelligence and Intelligent Informatics, Vol. 15, No. 7, pp. 767-776, 2011.

International Conferences (with Review Process)

C1 S. Sendari, S. Mabu and K. Hirasawa, “Two-Stage Reinforcement Learning Based
on Genetic Network Programming for Mobile Robot, In Proc. of the SICE Interna-
tional Annual Conference, pp. 95-100, Akita, Japan, 2012/8.

C2 S. Sendari, S. Mabu and K. Hirasawa, “Fuzzy Genetic Network Programming with
Reinforcement Learning for Mobile Robot Navigation, In Proc. of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, pp. 2243-2248, Anchorage,
USA, 2011/10.

	Abstract
	1 Introduction
	1.1 Research Background and Motivation
	1.2 Objectives and Frameworks
	1.3 Related Works on Fuzzy Logic and Integrating EA with RL
	1.4 Contents of this Research

	2 Fuzzy GNP-RL
	2.1 Introduction
	2.2 Motivation of Fuzzy GNP-RL
	2.3 Algorithm of Fuzzy GNP-RL
	2.4 Comparison between Fuzzy and Non-Fuzzy GNP-RL
	2.5 Simulations
	2.6 Summary

	3 Fuzzy GNP-TSRL (BS) with Fixed -greedy Policy and Learning Rate
	3.1 Introduction
	3.2 Motivation of GNP-TSRL (BS)
	3.3 Algorithm of Fuzzy GNP-TSRL (BS)
	3.4 Comparison between Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL
	3.5 Simulations
	3.6 Summary

	4 Fuzzy GNP-TSRL (BS) with Changing -greedy Policy and Learning Rate
	4.1 Introduction
	4.2 Motivation of Changing Parameters of Fuzzy GNP-TSRL (BS)
	4.3 Mechanism of Changing Parameters
	4.4 Comparison between Fuzzy GNP-TSRL (BS) with Changing and with Fixed -greedy Policy and Learning Rate
	4.5 Simulations
	4.6 Summary

	5 Fuzzy GNP-TSRL (CS)
	5.1 Introduction
	5.2 Motivation of GNP-TSRL (CS)
	5.3 Algorithm of Fuzzy GNP-TSRL (CS)
	5.4 Comparison between Fuzzy GNP-TSRL (CS), Fuzzy GNP-TSRL (BS) and Fuzzy GNP-RL
	5.5 Simulations
	5.6 Summary

	6 Conclusions
	Bibliography
	Acknowledgments
	List of Publications

