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Abstract

The Java™ programming language has gained widespread popularity in the industry, offering
many benefits to programmers such as dynamic class loading and reflections. Unfortunately the
dynamic nature of the language presents a number of challenges for implementing an efficient
Java Virtual Machine (JVM), and especially a Just-In-Time (JIT) compiler. However, at the
same time this dynamic execution environment presents opportunities for potential performance
advantages over the traditional static compilation model, because dynamic optimizations can
exploit runtime profile information. Although there are currently several Java implementations
that claim to include dynamic optimizations, few of these JVMs have released detailed infor-
mation about their internal designs. This dissertation presents a comprehensive study of the
dynamic optimizations for Java that were designed for and implemented in an industry-leading,
high performance IBM Java JIT compiler.

The first contribution of this dissertation is to describe the design and implementation of
a dynamic optimization framework for Java. Our system uses a multi-level execution model
divided between a mixed-mode interpreter and a recompilation framework. The mixed-mode
interpreter allows the efficient mixed execution of interpreted and compiled code, and covers a
large number of unimportant methods without incurring any compilation costs. The dynamic
compiler supports three levels of optimization to provide a balanced steps for the tradeoff be-
tween the compilation overhead and the compiled code quality. We also designed a reliable and
lightweight program profiling system, combining three different techniques, depending on the
profiler characteristics and target compilation levels; a counter-based profiler, a sampling-based
profiler, and an instrumentation-based profiler. We implemented and evaluated our framework
in the IBM JVM and JIT. Our results demonstrate that our configuration provides significant
advantages in terms of performance and compilation overhead compared to other strategies,
including the compile-only approach, both in the program startup and steady state phases.

The second contribution of this dissertation is to describe the design and implementation of
two profile-directed optimizations, profile-directed method inlining and dynamic code special-
ization, both built on top of the dynamic optimization framework described in the above. For
method inlining, we rely solely on the runtime profile information on call site distribution and
invocation frequencies to decide which methods should be inlined along which call paths. In
our experiments, we obtained significant improvements in both performance and compilation
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overhead across a variety of benchmarks. For code specialization, which takes advantage of a
program’s runtime invariant or semi-invariant behavior for optimizations, we employ an impact
analysis technique to estimate the benefit of specialization, and collect value profile information
only when the optimization on a variable is deemed beneficial. Our experiments show a modest
performance improvement with this technique.

The third contribution of this dissertation is to describe the design and implementation of
a region-based compilation technique, consisting of region formation, partial inlining, region
exit handling, and region-aware optimizations, which are effective in dynamic compilation en-
vironments. This implementation is also built on top of the dynamic optimization framework
described in this dissertation. Our system employs a dataflow-based intra-method region selec-
tion algorithm that uses both static heuristics and a dynamic profile, and then integrates the
algorithm in the inlining process to extract effective inter-procedural regions. When the program
attempts to exit from a region boundary at runtime, we trigger recompilation and perform on
on-stack replacement (OSR) to continue the execution from the corresponding entry point in
the recompiled code. Our empirical evaluation demonstrates that our system can improve the
performance and reduce the compilation overhead significantly.
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Chapter 1

Introduction

Java™ [51, 8] has gained widespread popularity in the industry since its advent in 1995,
and it is now regarded as one of the most important programming languages, on a par
with such established languages as C and C++. Java is a very popular choice for creating
server side applications, such as Web Services based on the J2EE standard [102]. On the
client side, although there have been some stumbling blocks inhibiting the adoption of
Java, it is now being used for IDE platform development, as in Eclipse [49], and for some
rich client applications [65] as well.

Java offers a number of advantages to programmers, such as lazy class loading and dy-
namic installation of software components, through such innovative features as dynamic
class loading [78] and reflection [103], which are both integral parts of the language. Un-
fortunately, some of these advantages come at the cost of decreased performance, because
it is more difficult or even impossible to perform certain optimizations when an optimizing
compiler cannot assume certain knowledge about the whole program. Thus, in order to
overcome the challenges due to the dynamic nature of the language, many of today’s Java
Virtual Machines (JVMs) employ a Just-in-Time (JIT) compiler to dynamically com-
pile and optimize Java bytecode into native code for the underlying running platform at
runtime .

There have been many research projects devoted to developing efficient dynamic com-
pilers for Java. Since the compilation time overhead of a dynamic compiler, in contrast
to that of a conventional static compiler, is included in the program’s execution time,
dynamic compilation systems have to reconcile the conflicting requirements between fast
compilation speed and fast execution performance. The system needs to generate highly
efficient code for high performance, but at the same time, the compilations should be
lightweight enough to avoid startup delays or intermittent execution pauses that may
occur due to the runtime overhead of the dynamic compilations. This tradeoff between
the compilation overhead and the performance benefit is a crucial issue for dynamic com-
pilation systems.

However, at the same time this dynamic compilation environment offers potential
performance advantages over the traditional static compilation model, since dynamic
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compilers can exploit the runtime profile information from the current execution of a pro-
gram. This allows them to seek opportunities for higher performance, and is a significant
advantage over static compilers.

The uses of profile information can be divided into two categories. One is for detecting
the programs’ hot spots for applying optimizations (to decide what to optimize), and the
other is for determining a strategy for better executing optimizations from current pro-
gram behaviors (to decide how to optimize). The first type of profile usage allows us to
avoid the overhead of optimizing all methods, and thus is particularly beneficial for focus-
ing the compilation resources only on a limited number of performance critical methods.
Many state-of-the-art JVMs [10, 38, 87] indeed employ this selective optimization mech-
anism. The second type of profile usage, however, requires more advanced mechanisms

for runtime profiling and optimizing programs, and thus only one Java implementation,
Jikes RVM, has explored the challenges to date [14].

This dissertation presents a comprehensive study of dynamic optimizations for Java,
and our implementations of both what-to-optimize and how-to-optimize features with
runtime profile information. Our system has been designed and implemented in the
industry-leading high performance IBM Java JIT compiler.

We first construct a simple, but efficient and high-performance dynamic optimization
framework, which provides an infrastructure for later profile-directed optimizations. Our
approach is to employ a multi-level execution model divided between a mixed mode in-
terpreter and a recompilation framework. The mixed mode interpreter allows the efficient
mixed execution of interpreted and compiled code by supporting a lightweight mechanism
of calling and being called by dynamically compiled code. It can cover a large number of
methods that are not frequently invoked or computationally intensive in the target appli-
cation programs without incurring any compilation costs. The dynamic compiler supports
three levels of optimization to provide balanced steps for the tradeoff between the compi-
lation overhead and the compiled code quality. We combine two different techniques for
the program profiling mechanisms in the compiled code. One is a continuously operat-
ing, lightweight, sampling-based profiler to detect the hot methods of a given program,
and the other is an instrumentation-based profiler that can dynamically install profiling
code into selected target code to collect detailed runtime value information. This code-
instrumentation technique does not involve target code recompilation, and is reasonably
lightweight and effective for collecting a fixed amount of sampled data for a program’s
hot regions.

We then describe several optimizations designed and implemented on top of the dy-
namic optimization framework: profile-directed method inlining, dynamic code specializa-
tion, and region-based compilation. All of these are fully automated with no programmer
intervention required for profiling and performing the optimizations.

Method inlining, a well-known and very important technique in optimizing compilers,
expands the target procedure body at the method invocation call sites, and it defines
the scope of the compilation boundary. Thus it is one of the optimizations that have
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a significant impact on both system performance and total compilation overhead. The
dynamic compilation systems have the advantage of being able to apply this expensive but
effective optimization selectively, rather than statically, based on the dynamic program
execution behavior, and therefore only at the program locations that are demonstrably
shown to provide performance benefits. We can rely on the online profile information
about call site distribution and invocation frequencies to decide as to which methods
should be inlined along which call paths. Among the many existing static heuristics for
method inlining, the only one we use is to always inline very small methods.

Code specialization is another example of profile-directed optimization implemented
in our system. This is a technique to take advantage of the program’s runtime invariant
or semi-invariant behavior [25] for exploiting further optimizations. We first employ an
impact analysis at a lower optimization level to evaluate the optimization opportunities
and to estimate the benefit of specialization regarding how much better code we would be
able to generate if we knew a specific value or the type of the variables. When the method
is reoptimized at the highest optimization level, the system collects runtime information
for those variables deemed beneficial in the impact analysis, and then generates code for
a specialized version if the values are sufficiently biased and the result seems profitable.

Region-based compilation is a speculative optimization technique using profile infor-
mation. With this optimization, we no longer treat methods as the unit of compilation, as
in traditional method-based or function-based compilation. Instead, we select only those
portions that are identified as non-rare paths. The term region refers to a new compila-
tion unit, which results from collecting code from several methods of the original program
but excludes the evidently rarely executed portions of these methods. This technique is
especially useful for a dynamic compiler, because 1) we can use profile information from
currently executing code for the region selection, 2) we can expect significant reductions
of compilation overhead, and 3) we can defer code generation for unselected regions until
the code is actually executed at runtime. We explored several strategies to find those
that are most effective for the dynamic compilation environment, and designed three key
components to support the technique: region selection, partial inlining, and the region
exit handler.

1.1 Thesis Contributions

The specific contributions of this dissertation can be divided into the following three areas.

1.1.1 Dynamic Optimization Framework

The first contribution of this dissertation is to describe the design and implementation of a
dynamic optimization framework for Java. Our system uses a multi-level execution model
divided between a mixed mode interpreter and a recompilation framework. The mixed
mode interpreter allows the efficient mixed execution of interpreted and compiled code,



and covers a large number of unimportant methods without incurring any compilation
cost. The dynamic compiler supports three levels of optimization to provide a balanced
steps for the tradeoff between the compilation overhead and the compiled code quality.
We also designed a reliable and lightweight program profiling system, combining three
different techniques, depending on profiler characteristics and target compilation levels; a
counter-based profiler, a sampling-based profiler, and an instrumentation-based profiler.
We implemented and evaluated our framework with the IBM JVM and JIT compiler.
The results demonstrate that our configuration provides significant advantages in terms
of performance and compilation overhead compared to other strategies, including the
compile-only approach, both in the program startup and steady state phases.

1.1.2 Profile-Directed Optimizations

The second contribution of this dissertation is to describe the design and implementation
of two profile-directed optimizations built on top of the dynamic optimization framework
described in the above: profile-directed method inlining and dynamic code specialization.
For method inlining, we solely rely on the runtime profile information on call site dis-
tribution and invocation frequencies in order to decide which methods should be inlined
along which call paths. In our experiments, we obtained significant improvements in both
performance and compilation overhead across a variety of benchmarks. For code special-
ization, which takes advantage of program’s runtime invariant or semi-invariant behavior
for optimizations, we employ an impact analysis technique to estimate the benefit of spe-
cialization, and collect a variable’s profile information only when an optimization on that
variable is deemed likely to be beneficial. Our experiment shows a modest performance
improvement with this technique.

1.1.3 Region-Based Compilation

The third contribution of this dissertation is to describe the design and implementation
of a region-based compilation technique effective for dynamic compilation environments,
which consists of region formation, partial inlining, region exit handling, and region-aware
optimizations. This implementation is also built on top of the dynamic optimization
framework described in this dissertation. Our system employs a dataflow-based intra-
method region selection algorithm that uses both static heuristics and dynamic profiles,
and then integrates the algorithm into the inlining process to extract effective inter-
procedural regions. Our empirical evaluation demonstrates that our system can improve
the performance and reduce the compilation overhead significantly.
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1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 gives a brief overview of
the system characteristics and features of our Java JIT compiler that are closely related
to this dissertation. Since method inlining is one of the key optimizations in the following
chapters, it gives a detailed description of the inlining decision heuristics. Chapter 3 de-
scribes in detail the design and implementation of the system architecture of the dynamic
optimization framework, presents some problems that required special consideration, and
gives a detailed evaluation of the system in terms of both performance and compilation
overhead, using a variety of applications and industry-standard benchmarking programs.

The following two chapters describe our optimizations designed and implemented on
top of the dynamic optimization framework. Chapter 4 describes our design and im-
plementation of the profile-directed optimizations, that is, the dynamic instrumentation
profiling mechanism followed by the detailed description of the profile-directed method
inlining and the dynamic code specialization. The impact on both performance and com-
pilation overhead when applying these techniques is also presented, for each technique
alone and for their combination. Chapter 5 presents the region-based compilation tech-
nique, describing the detailed design decisions on region formation, partial inlining, and
region exit handling. It also presents extensive experimental results on the impact of the
technique for both performance and compilation overhead.

Chapter 6 summarizes the related work for the topics of dynamic optimizations, in-
strumentation, profile-directed optimizations, and code specialization, for both Java and
non-Java systems. Finally, Chapter 7 presents our conclusions, and outlines future re-
search directions.






Chapter 2

Background: Structure of Our JIT
Compiler

This chapter gives a brief overview of the underlying Java JIT compilation system, and
provides a detailed description of those components that are directly relevant to this
dissertation.

The overall structure of the JIT compiler is shown in Figure 2.1. We employ three
different intermediate representations (IRs) to perform a variety of optimizations. At
the beginning, the given bytecode sequence is converted to the first IR, called extended
bytecode (EBC).! The EBC is stack-based and very similar to the original bytecode, but
it annotates additional type information for the destination operand in each instruction.
Most EBC instructions have a one-to-one mapping with the corresponding bytecode in-
structions, but there are additional operators to explicitly express some operations result-
ing from method inlining and devirtualization. For example, if we inline a synchronized
method, we insert OPC_SYNC_ENTER and OPC_SYNC_EXIT instructions at the entry and exit
of the inlined code, respectively. This allows us to easily identify any opportunity to
optimize redundant synchronization operations exposed by several stages of inlining syn-
chronized methods. The instruction OPC_CHA_PATCH is used to indicate the code location
for the runtime patch when unguarded devirtualized code is invalidated due to dynamic
class loading [66].

Method devirtualization and method inlining are the two most important optimiza-
tions applied on this IR. The class hierarchy is constructed and used, together with the
results of the object typeflow analysis, to identify the compile-time monomorphic virtual
call sites. The devirtualized call sites and static/nonvirtual call sites are then considered
for inlining. Since EBC is a compact representation, method inlining is performed on this
IR. It expands the target procedure body at the corresponding call sites, and defines the
scope of each compilation target. A detailed description of the inlining policy is provided
later in this chapter. All of the optimizations on the EBC following the method inlining

I'EBC was used in an earlier version of our compiler as the sole IR.
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8 CHAPTER 2. BACKGROUND: STRUCTURE OF OUR JIT COMPILER

! :
| EBC to Quad conversion | | Quad to DAG conversion
| v v

| BC to EBC conversion

¢ Quad Optimizations DAG-based Optimizations
EBC Optimizations Constant/Copy propagation Loop versioning
Dead code elimination Loop simplification
Method devirtualization Privatization/Commoning _ Prepass code scheduling
Method inlining Escape analysis ~ ~ |q
Switch stmt optimization /E)t(rclfc?vtvlcmlﬂ:ﬁ;k elimination v
Typeflc_)w analysis N —{ DAG to Quad conversion
Exception check elimination

v

Code Generation

Architecture mapping

Reg. constraint propagation
Native code generation
Code scheduling

Figure 2.1: Structure of the JIT compiler. Three IRs, EBC, Quad, and DAG, are employed to
perform a variety of optimizations.

are then performed to simplify the control flow or to eliminate redundant code to reduce
the target code size before converting the code to the second IR.

The EBC is then translated to the second IR, called quadruples. This is a register
semantic IR. The quadruples are n-tuple representations with an operator and zero or
more operands. We have a set of fine-grain operators in quadruples for subsequent op-
timizations. For example, the exception checking operations implicitly assumed in some
bytecode instructions are explicitly expressed in this IR for optimizers to easily and effec-
tively identify redundant exception checking operations. Similarly, the class initialization
checking operation is also explicitly expressed, in case a target class is resolved but not yet
initialized for the relevant bytecode instructions. Another example is the virtual method
invocation. The single bytecode instruction (OPC_INVOKEVIRTUAL) is separated into sev-
eral operations: the operation for setting each argument, the null pointer check of the
receiver object, the method table load, the method block load, and finally the method
invocation itself. This will increase the opportunities for performing the optimization of
common subexpression elimination for some of these operations between successive virtual
method invocations.

The translation from EBC to quadruples is based on an abstract interpretation of the
stack operations. In this process, we treat both local variables and stack variables in the
same way to convert to symbolic registers. Figure 2.2 shows a simple example of the
translation. The direct translation of stack operations produces many computationally
redundant copy operations as shown in Figure 2.2(b). We apply copy propagation and



ALOAD 1 AMOVE LA3 =LAl
NULLCHECK LA3 NULLCHECK LA1
IGETFIELD IGETFIELD LI3 = LA3, offset IGETFIELD LI3 = LA1, offset
ILOAD 2 — | IMOVE L4 =LI2 —>
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(a) Extended Byte Code (b) Conversion to Quadruples (c) After Copy Propagation

Figure 2.2: An example of translation from EBC to Quadruples: (a) Extended bytecode; (b)
conversion to Quadruples; (c) after copy propagation.

dead code elimination immediately after the translation, and most of the redundancies
that result from the direct translation of the stack operations can be eliminated, as shown
in Figure 2.2(c).

We apply a variety of dataflow-based optimizations to the quadruples. Some dataflow
analyses, exception check elimination, common subexpression elimination, and privatiza-
tion of memory accesses are iterated to take advantage of the fact that the application of
one optimization creates new opportunities for the other optimizations. The maximum
number of iterations is limited by consideration of its impact on the compilation overhead
(with different threshold values used between the methods containing loops and those
without loops). The other optimizations on this IR include escape analysis, synchroniza-
tion optimization, and athrow inlining.

The third IR is called a directed acyclic graph (DAG). This is also a register-based
representation and is in the form of static single assignment (SSA) [41]. It consists of nodes
corresponding to quadruple instructions and edges indicating both data dependencies
and exception dependencies. Figure 2.3 shows an example of constructing the DAG for
a method containing a loop. This simply indicates how the DAG representation looks
and ignores all of the exception checks necessary for the array accesses within the loop.
The actual DAG includes the nodes for exception checking instructions and the edges
representing exception dependencies.

This IR is designed to perform optimizations, such as loop versioning and prepass code
scheduling, that are more expensive but sometimes quite effective. The IR is converted
back to quadruples before entering the code generation phase. Thus the conversion to
DAG and applying the DAG-based optimization is a completely optional phase, and we
need to apply the set of these optimizations judiciously and only to those methods that
can benefit from the transformation.

All of the instructions of these three IRs are grouped into basic blocks (BBs). Our BBs
are extended in the sense that they are not terminated by instructions which constitute
potential exceptions, as in the factored control flow graph [35]. The BBs are ordered using
the branch frequencies collected during the mixed mode interpreter (MMI) execution.
Since the branch history information is limited to the first few executions in the MMI,
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inti, n; a: faload f5=a,i
float a[], b[], <[], d[1; b: faload f6=d, i
float f1, £2, 3, f4: ¢ fmul 7 =15,f6
d: fadd fl1=f1,f7
for (i=0; i<n; i++) { e: faload f8 =1b,i

f1 += a[i*d[i]; f: faload f=c, i

£2 += b[i]*c[il; g: fmul 10 = 8, f9

£3 += a[i]*c[il; h: fadd f2 =2, f10

f4 += b[i]*d[i]; i fmul 11 =1f5,
} i fadd  f3=f3, fil
v = fL; ki fmul 12 =18, 6
= 12; l: fadd f4 = f4, f12
. =13; m: jadd i=i,1
..=f4; n: iflt i,n

(a) Original Code (b) Quadruples for the Loop Body (c) DAG for the Loop Body

Figure 2.3: Example of constructing a DAG for a loop-containing method.

we do not use the technique of code positioning guided solely by profile information [88].
Instead, we combine the use of this information with some heuristics so that we can place
backup blocks generated by versioning optimizations at the bottom of the code. We also
use the profile information to select the depth first order for the if-then-else blocks. This
separates the BBs of frequently and infrequently executed paths.

The compiler is designed to be very flexible so that each optimization can be enabled
or disabled for a given method. At a minimum, we need to perform bytecode-to-EBC con-
version, EBC-to-quadruple translation, and native code generation from the quadruples,
even if all of the optimizations are skipped. Method inlining can be applied either for tiny
methods only or based on more aggressive static heuristics. The number of iterations of
the dataflow analyses can be adjusted. The generation of a DAG representation and the
optimizations on the DAG are optional as mentioned above. We exploit these capabilities
in the design of the dynamic optimization framework as described in the next chapter.

Method Inlining

Object-oriented languages encourage data encapsulation through the use of methods, re-
sulting in frequent method invocations. In addition, object-oriented languages support
dynamically dispatched (virtual) calls, where the method called depends on the runtime
type of the receiver object. Efficient implementations of virtual dispatch [60] help re-
duce the direct overhead of virtual method invocation, but method inlining remains an
important optimization for effective implementations of object-oriented languages.

Our dynamic compiler is able to inline any method regardless of the contexts of the
call sites and the types of the caller or callee methods. For example, there is no restriction
in inlining synchronized methods or methods with try-catch blocks (exception tables), nor
against inlining methods into call sites within a synchronized method or a synchronized
block. For the runtime handling of exceptions and synchronizations, we create a data
structure indicating the inline context tree within the method, and map each potentially
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excepting instruction or call site address to a corresponding node in the tree structure.
Using this information, the runtime system can identify the associated try region identi-
fication or any necessary object-unlocking actions based on the current program counter.
Thus the inlining decision can be made purely from the cost-benefit estimate for the
method being compiled.

There are many methods in Java that simply result in a few instruction codes when
compiled, such as accessor methods. We call these tiny methods. A tiny method is
one whose estimated compiled code is equal to or less than the corresponding call site
code sequence (argument setting, volatile registers saving, and the call itself). That is,
the entire body of the method is expected to fit into the space required for the method
invocation. Our implementation identifies these methods on the basis of the estimated
compiled code size.

Since the invocation and frame allocation costs outweigh the execution costs of the
method bodies for these methods, inlining them is considered completely beneficial and
unable to cause any harmful effects in either compilation time or code size expansion. In
fact, an empirical study showed that the tiny-only inlining policy has very little effect
on compilation time, while it produces significant performance improvements over the
no-inline case [99]. Thus, these methods are always inlined without any qualification. For
non-tiny methods, we employ static heuristics to perform method inlining in an aggressive
way while keeping the code expansion within a reasonable limit.

The inliner first builds a possibly large call tree of inlined scopes based on allowable
call tree depths and callee method sizes using optimistic assumptions, and then looks
at the total cost by checking each individual decision to come up with a pruned final
tree. Whenever it performs inlining on a method, the inliner updates the call tree to
encompass the new possible inlining targets within the inlined code. When looking at
the total cost, we manage two separate budgets proportional to the original size of the
method: one for tiny methods, and the other for any type of method. The inliner tries to
greedily incorporate as many methods as possible from the given tree using static heuristics
until the predetermined budget is used up. Currently the static heuristics consist of the
following rules:

e If the total number of local variables and stack variables for the method being
compiled (both caller and callees) exceeds a threshold, reject the method for inlining.

e If the total estimated size of the compiled code for the methods being compiled
(both caller and callees) exceeds a threshold, reject the method for inlining.

e If the estimated size of the compiled code for the target method being inlined (callee
only) exceeds a threshold, reject the method for inlining. This is to prevent wasting
the total inlining budget due to a single excessively large method.

e If the call site is within a basic block that has not yet been executed at the time of
the compilation, then it is considered a cold block of the method and the inlining is
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not performed. On the other hand, if the call site is within a loop, it is considered
a hot block, and extra efforts are made to inline the deeply nested call chains.

Throughout the process, the inliner devirtualizes dynamically dispatched call sites
using both class hierarchy analysis (CHA) [46] and typeflow analysis. It produces ei-
ther guarded code (via a class test or a method test [47]) or unguarded code (via code
patching on invalidation [66]), depending on whether the call site can be assumed to be
monomorphic or a single implementation. When more than two target methods are found,
it performs devirtualization only when their profiles are available and the most beneficial
target can be selected. A backup path is generated for both the guarded and unguarded
devirtualization cases to execute when the compile-time assumption is invalidated at run-
time. Thus it produces a diamond-shaped control flow with the nonvirtual call on the
fast path and the backup path on the other. The nonvirtual call sites in the fast path
then may or may not be inlined according to the static rules described above.

As a result of method inlining, a data structure called an inlined method frame (IMF')
is produced for each call site to provide information about the inlining context for the
runtime system, which needs to know the exact call stack and call context prior to inlining.
For example, the security manager requires the correct depth of the current call-chain on
the stack, or a runtime exception is raised. The exception handler also requires the inlining
context of the call sites in order to keep track of the handlers for catching exceptions from
the current context.



Chapter 3

Dynamic Optimization Framework

3.1 Introduction

Some of the very early Java Virtual Machines (JVM) provided Just-In-Time (JIT) com-
pilation in a single-level execution model, employing a simple strategy of compiling every
method with a fixed set of optimizations the first time it was invoked. The JIT compilers
at this level were in general immature and implemented relatively simple and inexpensive
optimizations only, and therefore they typically resulted in a limited level of performance.
The compilation time was not an issue given the level of optimizations applied, but they
could suffer from problems with large amounts of compiled code because of the simple all-
methods compilation strategy. The JVMs in this category include Intel’s early research
JVM [2], Cacao [75], LaTTe [118], and the early version of the IBM JIT compilation
system.

As more effective but time consuming optimizations were added to JIT compilers to
improve the Java execution performance, the negative aspects of the dynamic compilation
started to become problematic. Compilation overhead, typically in the form of application
startup delays and unacceptable code size growth could no longer be ignored. Thus, the
next generation of JVMs supported a two-level execution model, consisting of an inter-
preter and a single level of compilation or two different optimization levels of compilation.
This type of JVM can bring higher performance in both application startup and steady
state runs over the earlier generation of JVMs, while mitigating the compilation overhead
by focusing the optimization efforts on a subset of the executed methods of the given
program. Examples of JVMs in this category are the Intel JUDO system [38], version 3.0
of the IBM JIT compiler [96], and Sun’s JDK for version 1.1.x.

The two-level execution model, however, still imposes some limitations. As we add
yet more expensive optimizations, sometimes comparable to those employed by static
compilers, the system cannot manage to balance the optimization effectiveness with the
compilation overhead due to the increasing gap in the trade-off level between the two
execution modes. Also, as the level of optimizations in the JIT compilation technology

13
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matures, the runtime profile information is being exploited for new optimization oppor-
tunities. Thus a sophisticated framework for online profile collection and a feedback
system has become required. This is one of the advantages of the dynamic compilation
system that cannot be used by conventional static compilers. In this context, the high
performance implementations of recent JVMs and JIT compilers are moving toward the
exploitation of adaptive compilation techniques on the basis of online runtime profile
information [10, 87, 97, 98].

Typically these systems have multiple execution modes. They begin the program
execution using an interpreter or a baseline compiler as the first execution mode. When
the program’s frequently executed methods or critical hot spots are detected, they use
the optimizing compiler for those selected methods to run in the next execution mode for
higher performance. Most systems of this type have several different optimization levels
to select from based on the invocation frequency or relative importance of the target
methods. The higher-level optimizations may exploit some forms of profile information
collected in the lower execution mode to generate better code.

In this chapter, we present detailed discussions of the design and evaluation of our
dynamic optimization framework as implemented in a production-level Java JI'T com-
piler. Our approach is to employ a mixed-mode interpreter and a three-level optimizing
compiler, each of which has a different set of tradeoffs between compilation overhead and
execution speed. A lightweight sampling profiler operates continuously during the en-
tire period while applications are running to monitor the programs’ hot spots. Detailed
information on runtime behavior can be collected by an instrumentation profiler that dy-
namically installs and uninstalls the instrumentation code into and out of the specified
target code. This provides value profiling mechanism available to follow-on profile-directed
optimizations at a minimum runtime overhead. The experimental result shows that this
configuration can provide significant advantages in terms of performance and compila-
tion overhead compared to other strategies, including the compile-only approach, both at
program startup and in steady state phases.

Section 3.2 describes the design and implementation of the system architecture of
our dynamic optimization system in detail, and Section 3.3 presents some problems that
required special consideration. Section 3.4 gives the detailed evaluation of the dynamic
optimization system in terms of both the performance and compilation overhead, using
a variety of applications and industry-standard benchmarking programs. Finally, Sec-
tion 3.5 gives the summary of this chapter.

3.2 Design of the Dynamic Optimization Framework
The goals of our dynamic optimization system are twofold:

e To achieve the best possible performance using the same set of existing optimization
capabilities for varying phases of application programs, including program startup,



3.2. DESIGN OF THE DYNAMIC OPTIMIZATION FRAMEWORK 15

Level-1 Level-2 and Level-3

Bytecode Mixed Mode Compile | Dynamic Compiler |, Compile Requests Leue Compile Plan
Interpreter Requests (level-1 to level-3) [ q

Start
———————————————————————————————————————————— ) Profiling o
: - Raw Profile Data ! o| Instrumenting |« Recompilation
| nstrucr:mgt(ajr;tatlon ! Profiler o|  Controller
1 « 1
! - Enable/Disable Profiling ! Profile
| Jume/ | Hot Method Data
1 Back Compiled Method Promotion 1 Hot Metho
! : Sampling
! Level-1 Level-2 Level-3 | Sampling Hot Method
I Compiled Compiled Compiled — P Profiler List
: Code Code Code | Raw
! | Profile Data

_____________________________________________

Figure 3.1: System architecture of our dynamic optimization system.

steady state, and phase shifts, while minimizing the compilation overhead.

e To provide a base framework that is highly extensible to allow adding various profile-
directed optimizations, by employing practical and effective means of online profile
information collection and a feedback system.

In order to achieve these goals, we need the system to be very selective about which
methods it decides to compile and when and how it decides to compile them. The system
should compile methods only if the extra time spent in compilation can be amortized by
the performance gain expected from the compiled code. Once program hot regions are
detected, however, the system should respond aggressively to identify good opportunities
for optimizations that can bring higher total performance. The two key elements for this
requirement are: 1) a well-balanced multi-level recompilation system, and 2) a reliable
and low overhead profiling system for method promotion. We addressed these points in
the design of our system.

The overall architecture of our dynamic optimization system is as depicted in Fig-
ure 3.1. This is a multi-level compilation system, with a mixed mode interpreter (MMTI)
and three optimization levels (level-1 to level-3). In this section, we first describe each of
the major components of the system in the following five subsections, and then discuss
some of the design points we gave special consideration to in order to achieve our goals.

3.2.1 Mixed Mode Interpreter

Most of the methods executed in Java applications are neither frequently called nor loop
intensive as shown by the measurements in Section 3.4.4, and the approach of compiling
all methods is considered inefficient in terms of both compilation time and code size.
The mixed mode interpreter (MMI), written in assembler code, allows the efficient mixed
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execution of interpreted and compiled code by sharing the execution stack and exception
handling mechanism between the two execution modes. It is roughly three times faster
than an interpreter written in C.!

Initially, all methods are interpreted by the MMI. A counter for accumulating both
method invocation frequencies and loop iterations is provided for each method and initial-
ized with a threshold value. The counter is decremented whenever the method is invoked
or loops within the method are iterated. When the counter reaches zero, we recognize
that the method has been invoked frequently or is computation intensive, and the first
JIT compilation is triggered for the method. Thus the JIT compilation can be invoked
either from the top entry point of the method or from a backward-branch within a loop.
In the backward-branch case, the control is directly transferred to the JIT compiled code
from the partially interpreted code, by dynamically changing the frame structure for JIT
use and jumping to specially generated compensation code. The JIT compilation for such
methods can be done without sacrificing any optimization features.

If the method includes a loop, it is considered to be very performance sensitive and
special handling is provided to initiate compilation sooner. When the interpreter detects
a loop’s backward branch, it snoops the loop iteration count on the basis of a simple
bytecode pattern matching sequence, and then adjusts the amount by which the counter is
decremented depending on the loop iteration count. If the iteration count is large enough,
the JIT compilation is immediately invoked without waiting for the counter value to reach
zZero.

The collection of runtime trace information is another benefit of the MMI for use in
JIT compilation. For any conditional branches encountered, the interpreter keeps track
of whether or not it is taken to provide the JIT compiler with a guide for the branch
direction at basic block boundaries. The trace information is then used by the JIT
compiler for ordering the basic blocks in a straight-line manner according to the actual
program behavior, and for guiding branch directions in performing partial redundancy
optimizations [71].

3.2.2 Dynamic Compiler

The dynamic optimizing compiler in our system has the following three optimization levels.
The compilation with level-1 optimization is invoked from the MMI and is executed as an
application thread, while the level-2 and level-3 optimizations are performed by a separate
compilation thread in the background.

1. Level-1 (L1) optimization employs only a limited set of the optimizations available
in our system. Basically, it considers only those optimizations having very low

I This is based on comparisons against an interpreter written in C and compiled with a normal C com-
piler. Using GCC'’s label variables as specifically designed for interpreters should make the performance
advantage smaller.
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compilation overhead in terms of both compilation time and code size expansion.
For example, it performs method inlining only for tiny methods. This can reduce the
total compilation overhead significantly, as shown in a later section. It performs the
devirtualization of dynamically dispatched call sites based on the class hierarchy
analysis (CHA), and produces either guarded code or unguarded code [66]. The
resulting devirtualized call sites are inlined only when the target method is tiny.
Also, of the many dataflow-based optimizations, this level of optimization only uses
very basic copy and constant propagation.

2. Level-2 (L2) optimization enhances level-1 by employing additional optimizations,
including more aggressive full-fledged method inlining based on static heuristics (as
described in Chapter 2), a wider set of dataflow optimizations, and an additional
pass for code generation for improved code quality. It performs type-flow and pre-
existence analysis [47] to safely remove guard code and back-up paths that resulted
from devirtualization without requiring an on-stack replacement mechanism. The
maximum number of iterations in the dataflow-based optimizations is still limited.
These optimizations involve iterations over several components, such as copy prop-
agation, array bound check elimination, null pointer check elimination, common
subexpression elimination, and dead code elimination.

3. Level-3 (L3) optimization is augmented with all of the remaining optimizations
available in our system. Additional optimizations enabled at this optimization level
include escape analysis (including stack object allocation, scalar replacement, and
synchronization elimination), code scheduling, and DAG-based optimizations, such
as pre-pass code scheduling and loop versioning. The maximum iteration count
allowed for dataflow-based optimizations is increased.

The register allocation in our system is based on on-the-fly local allocation that works
in parallel with code generation, not an independent single pass used for global allocation,
as described in [96, 95]. We use a simple and fast algorithm for assigning registers. The
same policy is used for all three optimization levels.

The internal representation is the same for all of these optimization levels. The relative
differences in compilation time, generated code size, and the generated code’s performance
quality for each optimization level are shown in Section 3.3.

3.2.3 Sampling Profiler

The sampling-based profiler [113] gathers information about the program threads’ execu-
tion. This profiling collector keeps track of the methods where the application threads
are using the most CPU time by periodically snooping the program counters of all of
the threads, identifying which methods they are currently executing, and incrementing a
hotness count associated with each method. The priority of the sampling profiling thread
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is set higher than normal application threads to ensure periodic sampling at regular in-
tervals.

Since the MMI has its own counter-based profiling mechanism, this sampling profiler
only monitors compiled methods for reoptimizations. The profiler keeps the current hot
methods in a linked list, sorted by the hotness counter values, and then groups them
together and gives them to the recompilation controller at every fixed time interval to
consider upgrade method recompilations. The sampling profiler operates continuously
during the entire period of program execution to adapt effectively to the dynamic changes
of the program’s behavior. To minimize the bottom-line overhead, this profiler focuses
only on detecting hot methods and does not collect other information such as the call
context of the given method. Instead, additional information is collected by a different
profiler for only selected hot methods, as described in the next section.

3.2.4 Instrumenting Profiler

There is another profiler, an instrumenting profiler, available when detailed information
needs to be collected from a target method. The instrumenting profiler, according to an
instrumentation plan from the recompilation controller, dynamically generates code for
collecting specified data from the target method, and installs it into the compiled code
by rewriting the entry instruction of the target. In order to minimize the performance
impact, after collecting a predetermined amount of profile data, the generated instrumen-
tation code automatically uninstalls itself from the target code by restoring the original
instruction at the entry point.

Unlike the instrumentation sampling framework [15] used in Jikes RVM, our instru-
menting profiler records specified data in a bursty manner for a certain interval of the
program’s execution. This mechanism allows the profiler to collect the information fairy
quickly, and is therefore suitable to use when the recompilation controller identifies the
hot methods and specifies the profile targets before recompiling those methods.

Thus the compiler can take advantage of the online profile information dynamically
collected at runtime for the higher-level optimizations. This dynamic value profiling mech-
anism allows the intensive monitoring of the runtime behavior for a certain interval of the
program’s execution, and the dynamic installation and uninstallation of the instrumen-
tation code is done without recompilation of the target code. This instrumenting profiler
is used for collecting profile information on call site distributions, parameter values, and
basic block execution frequencies to drive profile-directed optimizations and region-based
compilation, as described in detail in Chapters 4 and 5.

3.2.5 Recompilation Controller

The key to our system is to make correct and reasonable decisions to selectively and adap-
tively choose methods for each level of optimization. The recompilation controller, which
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is the brain of the recompilation system, takes as input from the sampling profiler the
list of hot methods at every fixed interval and makes decisions regarding which methods
should be recompiled with which optimization levels. The recompilation requests, the
results of these decisions, are put into a queue for a separate compilation thread to pick
up and compile asynchronously.

The upgrade recompilation from level-1 compiled code to higher-level optimized code
is triggered on the basis of the hotness count of the compiled method as detected by
the timer-based sampling profiler. Depending on the relative hotness level, the controller
promotes the method from level-1 compiled code to either level-2 or directly to level-3
optimized code. This decision is made based on different thresholds of the hotness level
for each level-2 and level-3 method promotion.

The controller utilizes a decaying mechanism for the methods’ hotness counters so that
the system can check the application behavior most effectively. The decay parameter,
which ranges from zero to one, controls how much of the hotness data should be carried
from the previous interval to the next. A value of zero means the system purges all the
previous data, and this should result in quick responses to changes in the application’s
behavior. A value of one means the system accumulates all of the previous hotness counts,
and this is expected to detect hot methods more effectively for stable running programs.
We set an appropriate fixed value for this decay parameter based on a wide range of
experimental results.

The controller can also direct the instrumenting profiler to install instrumentation code
for collecting further profile information such as parameter values and call site distribution
for those hot methods. The additional profile data can be used for recompilations to guide
more effective optimizations at the higher optimization levels. This function is enabled
when the profile-directed optimization is turned on.

3.3 Discussion

Figure 3.2 shows a summary of the four execution modes in our system divided into the
interpreter execution and compiled code with the three optimization levels. A different
profiling system is used for each of the execution modes for promoting methods and for
collecting additional information. In what follows, we describe some design issues and
special considerations that affect several important points in our overall system architec-
ture.

3.3.1 Tiny Methods

Method inlining is one of the optimizations that can significantly impact both compilation
overhead and performance. In level-1 optimization, we consider method inlining only for
extremely small target methods. This is based on the observation that there are a number
of methods in Java that simply result in a single instruction of code when compiled, such
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Figure 3.2: Four execution modes divided into the interpreter execution and three optimization
levels of compiled code. A different profiling mechanism is used depending on the execution
mode for promoting methods and for collecting additional information.

as just returning an object field value, or other methods that may turn out to be a very
small number of instructions for their procedure body after compilation.

We identify tiny methods based on the estimated compiled code size.? Tiny methods
are defined as those for which the estimated compiled code is equal or less than the
corresponding call site code sequence (argument setting, volatile registers saving, and the
call instruction itself). Therefore, the entire body of the method is expected to fit into the
space required for the method invocation. This can save compilation overhead not only
for the method inlining process, but also for the later optimization phases that traverse
the entire resulting code block.

Figure 3.3 shows both the compilation overhead and performance impact with three
different policies of method inlining when running two industry standard benchmarks.
The data was collected based on our system configuration described in the above and
using the methodology described in Section 3.4.1. In these charts, full-inline indicates
using our static heuristics for inlining in level-2 and level-3 compilation, tiny-only means
inlining only tiny methods in level-2 and level-3 as well as level-1 compilation, and no-
inline performs no method inlining at any level of compilation regardless of the size of the
target methods. Note that devirtualization is still enabled for all three cases.

In the top left chart, each bar gives a breakdown of where in the optimization phase
time is spent for compilation. Flow-graph indicates the time for basic block generation,
inlining analysis to determine the scope of the compilation boundary, and flow graph
construction for the expanded inlined code. Dataflow-opt is the time for a variety of
dataflow-based optimizations, such as constant and copy propagation, and redundant null-
pointer and array-bound check elimination. DAG-opt is for DAG-based loop optimization
and pre-pass code scheduling. Code-gen includes the time for register assignment, code

2This estimate excludes the prologue and epilogue code. The compiled code size is estimated based on
the sequence of bytecodes, each of which is assigned an approximate number of instructions generated.
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Figure 3.3: Compilation time and performance impact for SPECjvm98 and SPECjbb2000
benchmarks with three different inlining policies: full-inline, tiny-only, and no-inline. Top left
chart indicates the compilation time breakdown and top right chart is the peak performance
difference. Two charts in the bottom show the ratios of the code size expansion and the compile
time memory usage. The data was collected using the methodology described in Section 3.4.1.

generation, and code scheduling. Others denotes the memory management costs and
any other code transformations, including live analysis and peephole optimizations, each
costing less than 5% of the total compilation time.

The top right chart shows the peak performance differences. This is based on the best
time for each of the three inlining policies with minimum effect on compilation times.
The two charts in the bottom show the ratios of the code size expansion and the compile
time peak work memory usage for both the full-inline and the tiny-only policies over the
no-inline policy.

As we can see in these charts in Figure 3.3, method inlining has significant impact on
both compilation time and performance. With the full-inline policy, the time spent for
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inlining analysis and flow graph construction itself is not a big part of the total overhead,
but optimizations in later phases, the dataflow optimizations in particular, cause a major
increase of the compilation time due to the greatly expanded code that has to be traversed.
The code size expansion and the peak compiler memory use also have similar increases
with this inlining policy.

The tiny-only inlining policy, on the other hand, has very little impact on compilation
time, as expected, while it produces significant performance improvements over the no-
inline case. For some benchmarks, it provides a majority of the performance gain that
can be obtained using the full-inline policy. On average, it contributes a little over half of
the performance improvement compared to the full-inline policy. From these two charts,
our current policy of always inlining tiny methods is clearly justified.

3.3.2 Optimization Levels

The reason that we provide three optimization levels in our dynamic compiler is twofold.
First, one level of compilation model is, in our experience, simple and still effective until
a certain level of optimization in the presence of an MMI. However, as more sophisticated
and time-consuming optimizations are added for pursuing higher performance, more of
the negative side of the dynamic compilation (that is, the compilation overhead and code
size growth problems) starts to dominate. Even if more expensive optimizations are
implemented, the return for invested resources is diminishing and the net performance
gain becomes marginal.

This is considered to be due primarily to the larger gap between the interpreter and
the compiler regarding the level of tradeoff between compilation cost and the resulting
performance. If we set a lower threshold for triggering compilation, we may have better
performing compiled code earlier but more compilation costs. If we set a higher threshold
value, we may miss some opportunities for gaining performance for some methods due to
delayed compilation. There is also a problem with application startup performance degra-
dation with one level of a highly optimizing compiler. It is therefore desirable to provide
multiple, reasonable steps in the compilation level with well-balanced tradeoffs between
the cost and the expected performance, from which an adequate level of optimization can
be selected corresponding to the current execution context.

Second, it is not clear whether it would be effective to have a larger number of opti-
mization levels in the dynamic compilation system, without knowing the exact relation-
ship between each component of the optimization on performance and compilation cost.
Having more levels of optimization would make more choices available for recompilation.
However it would in general complicate the selection process and more informative profil-
ing data would be necessary to make correct decisions, which might add more overhead.

Thus, the actual number of optimization levels within a given system should be deter-
mined by experiments. A number of factors, such as optimization capabilities within the
system, the tradeoff between the performance and the compilation overhead for each op-
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Figure 3.4: Comparisons of peak performance, compilation time, compiled code size, and peak
compiler memory use between level-1 to level-3 optimizations. Level-0 compilation is used as a
baseline in these graphs, in which we disable all the optimizations and generate code directly
from the intermediate code. The benchmarks were run in the single execution mode without
using MMI and profiling system.
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Figure 3.5: MMI performance for both startup applications and steady state benchmarks
(SPECjvm98 and SPECjbb2000) over the level-0 execution. A geometric mean is computed
separately for each category of applications.

timization, the classification of optimizations to each level, and the profiling and method
promotion system, can affect the decisions. In our work, we conducted a number of ex-
periments for evaluating the performance contribution and the compilation overhead for
each optimization [67].

Figure 3.4 shows various data for compilation overhead such as compilation time, com-
piled code size, and peak compiler memory use for the three optimization levels. It also
shows how much performance improvement comes from each of the optimizations. These
measurements were done by running the SPECjvm98 and SPECjbb2000 benchmarks in
the single execution mode for each level of optimization (without the MMI and the pro-
filing system). The scores for level-0 (L0O) compilation are used as the baseline of these
graphs, where we disable all of the optimizations and just generate code directly from
the intermediate code. This alternative level-0 execution mode is used for evaluating our
system against the compile-only approach in Section 3.4.

Figure 3.5 shows MMI performance for both startup applications and steady state
benchmarks (SPECjvm98 and SPECjbb2000) over the level-0 execution. The JIT com-
piler was not used throughout the program execution in this measurement. The graph
shows that the performance of our MMI is nearly two times faster on average than that of
the level-0 execution mode for startup applications. This means that our MMI is reason-
ably fast and performs comparable to the level-0 execution mode when the target methods
are executed only a few times.

Overall, these results show a reasonable trade-off between the compilation costs and
the benefits from the optimizations. At the lower optimization level, the performance
benefit is large relative to the cost of the optimizations, which means the optimizations are
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Figure 3.6: Two-stage profiling in our dynamic optimization framework. Each circle represents
a compiled method, with a letter indicating the method name and a number indicating the
optimization level. The instrumentation profiling is applied only for the compiled methods
that are selected by the sampling profiler (methods A, B, C, and D). When the method A is
recompiled, however, it may include code from non-instrumented methods (methods E, G, and
K) as a result of method inlining.

applicable for a broader set of methods. However as we move to the higher optimization
levels, the cost for applying each new set of optimizations is increasing compared to
the corresponding return in performance gain. We can conclude from these results that
assuming an effective profiling and method promotion system, the current 4-mode system
(interpretation and three levels of optimization) can provide an adequate trade-off for
recompilation decisions.

3.3.3 Profiling System

We combine three different profiling techniques in our system as shown in Figure 3.2,
namely the counter-based MMI profiler and the sampling-based timer ticking profiler are
used for hot methods detection, and the instrumentation-based profiler is used for value
sampling.

From the mixed mode interpreter to the level-1 compilation, the transfer is made
on the basis of the dynamic count on invocation frequencies and loop iterations, with
additional special treatment for certain types of loops. The request for level-2 and level-3
recompilation from lower level compiled code is through the sampling profiler.

The reason we chose two different ways of method promotion comes from the consid-
eration of the advantages and disadvantages of the two mechanisms: sampling-based and
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counter-based. For the interpreter, the cost of counter updates is not an issue, given the
inherently higher overhead of interpreted execution, compared to the additional code for
counter maintenance. Instead, the accuracy of the profiling information is rather impor-
tant, because the large gap in performance between interpreted and compiled code means
the performance penalty could be large if the system misses the optimum point to trigger
the first level compilation. This tradeoff between efficiency and accuracy can be measured
using counter-based profiling.

On the other hand, compiled code is very performance sensitive, and inserting counter
updating instructions in this compiled code could have quite a large impact on total
performance.® Lightweight profiling is much better for continuous operation. Since the
target method is already in a compiled form, a certain loss of accuracy in identifying
program hot regions, which may cause a delay in recompilation, is allowable. Sampling-
based profiling is superior for this purpose. Our implementation of the sampling profiler
shows that the overhead introduced can be below the noise while retaining sufficient
accuracy for identifying recompilation candidates by using an appropriate timer interval.

After methods are promoted to compiled code, the sampling profiler and the instru-
menting profiler are used. The profiling work is split between these two profilers, one
detecting the program’s hot methods and the other collecting the detailed information on
those methods detected by the first profiler.

This is the two-stage profiling design employing two different techniques for efficient
online profiling,* as shown in Figure 3.6. With this design, we can benefit from several
beneficial properties of online profiling.

First, the sampling profiler can be as lightweight as possible with virtually no perfor-
mance penalty, which is a requirement for continuous monitoring operations throughout
the entire program execution. Second, the instrumenting profiler also takes advantage
of low overhead, because we can limit the duration of the profiling by uninstalling the
instrumentation code after a preset number of samples are collected. We can also limit
the targets of the instrumentation to only those selected methods we are interested in
for value profiling. Without these mechanisms, the value profiling would be prohibitively
expensive for use in dynamic execution environments. Third, we can expect reliable pro-
filing results, because we can obtain representative and fine-grained profile information
for real applications by delaying the instrumentation installation until the program hot
regions are discovered.

On the other hand, when a selected method is recompiled, it is not necessarily the case
that the profile information is available for all of the target code. This is because the inliner
uses its own static heuristics to perform method inlining, and it may include a method

3There are some compilation techniques available to decrease the cost of counter updates in compiled
code such as exploiting instruction-level parallelism or using loop unrolling.

4As stated in [14], this approach can be generalized to multiple stages of profiling schemes, where
each subsequent profiler provides additional information on a smaller part of the application, but incurs
additional overhead.
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Figure 3.7: A lazy code patching mechanism for updating directly bound call sites to switch
from the old version code to the new recompiled code. The dotted arrows show the flow of the
first execution after the recompiled code is generated and installed, updating the target address
of the corresponding call site. The code replacement is done atomically.

that has not been selected by the sampling profiler and thus has no instrumentation.
Figure 3.6 includes a call tree example constructed for method inlining when recompiling
the method A. The method C within the tree was instrumented and thus the profile
information is available, but the inlined code from other methods in the tree does not
have any profile information. Thus, the dynamic optimization system may not rely solely
on the profile information for guidance, depending on the nature of the optimizations.

3.3.4 Recompilation and Code Management

Since the level-1 optimization inlines only tiny methods, the sampling profiler collects
information on the set of hot methods as individual methods. A simple-minded recom-
pilation request for those methods can result in unnecessary recompilations, since some
methods included in the list may be inlined into another during the higher level opti-
mizations. This can happen because the hot methods appearing in the list come from
sampling during the same stage in the program’s execution, and therefore can be closely
interrelated. This problem is addressed in the profile-directed method inlining described
in Section 4.3.

After the recompilation is done for a method, it is registered by a runtime system
called the compiled code manager, which controls and manages all of the compiled code
modules by associating them with their corresponding method structures and with in-
formation such as the compiled code optimization level and specialization context. This
means all of the future invocations of this method through indirect method lookup will
be automatically redirected to the new version of the code, instead of to the existing
compiled code. Static and nonvirtual call sites are exceptions, where direct binding call
instructions to the old version code have already been generated.
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A lazy code patching technique is used in order to change the target of the direct
binding call. This is done by putting a jump instruction at the entry point of the old code
to a runtime routine, which then modifies the call site instruction to direct the flow to the
new code using the return address available on the stack, so that the direct invocation
to the new code will occur from the next call. Figure 3.7 shows a graphic example of
this. In order to ensure thread safety, the code patching is performed with an atomic
operation as follows. For replacing the old version entry code, we generate at compile
time an unconditional jump instruction into the runtime routine for any versions of code
that can be promoted to the next level. This kind of jump instruction is placed in the
code header at a location several bytes ahead of the entry address. Thus we can put a
short jump instruction (2 bytes long) atomically at the entry point to form the cascading
jump into the runtime. For updating the call sites, we generate the directly bound call
instructions in an address that fits in a single cache line in order to ensure that the call
target (4 bytes long) can be replaced atomically. We add padding (nop) instructions if
necessary to adjust the address for the call instruction generation.

For those threads currently executing old version code, the new optimized code will
be used from the next invocation. We currently do not employ a mechanism for on-
stack replacement [62], the technique of dynamically rewriting stack frames from one
optimization version to another. Also the problem of cleaning up the old version code
still remains in our system. The major difficulty with reclaiming old code is how to
guarantee that no execution is currently in progress or will occur in the future using the
old compiled code. The apparent solution would be to eagerly patch all the directly bound
call sites, rather than to patch them lazily as in our current implementation, and then to
traverse all of the stack frames to ensure no activation record exists for this old code. This
traversal could be done at some appropriate time (like garbage collection time). Kistler
and Franz [73] took this approach in implementing their continuous program optimization
system.

3.4 Experimental Evaluation

This section presents detailed experimental results showing the effectiveness of our dy-
namic optimization framework. We outline our experimental methodology first, describe
the benchmarks and applications used for the evaluation, and then present and discuss
our performance results.

3.4.1 Methodology

All the measurement results presented here were obtained on an IBM IntelliStation M Pro
6850 (Intel Xeon 2.8 GHz processor with 1,024 MB memory), running Windows XP SP1,
and using the JVM of the IBM Developer Kit for Windows, Java Technology Edition,
Version 1.3.1 prototype build. We conducted two sets of measurements for evaluating our
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Table 3.1: List of applications used for start-up evaluation.

‘ Program ‘ Description
SwingSet GUI component demo, version 1.1
Java2D 2D graphics library specified with -delay=0 -runs=1
IchitaroArk Japanese word processor
HotJava HotJava browser, version 1.1.5
WebSphere Studio | Java IDE platform, version 5.0

Table 3.2: List of benchmarks used for steady-state evaluation.

‘ Program ‘ Description
227 mtrt Multi-threaded image rendering
_202_jess Java expert system shell
201 _compress | LZW compression and decompression
-209.db Database function execution
_222 mpegaudio | Decompression of MP3 audio file
_228_jack Java parser generator
_213_javac Java source to bytecode compiler in JDK 1.02

SPECjbb2000 Transaction processing benchmarks, version 1.02

dynamic compilation system, startup runs and steady state runs. The benchmarks we
chose for each category are shown in Table 3.1 and Table 3.2. For the startup perfor-
mance evaluation, we selected a variety of real-world applications, ranging from a simple
Internet browser to a complex Java IDE platform. For evaluating the steady state perfor-
mance, we used two industry standard benchmark programs for Java, SPECjvm98-1.04
and SPECjbb2000-1.02 [94].

There are different requirements for the best performance in the two phases of ap-
plication execution, program startup and steady state. During the startup time, many
classes are loaded and initialized, but typically these methods are not heavily executed.
When the program enters a steady state, a working set of hot methods will appear. In
our experiment, we evaluated the startup performance by running each of the listed ap-
plications individually and measuring the time from the issuing of the command until the
time the initial window appeared on the screen. For Java2D with the options indicated in
the table, each tab on the window is automatically selected and the execution proceeds
until the whole component selection is done. That is, we measured the time from the
issuing of the command until the program terminated. For WebSphere Studio [64] and
IchitaroArk [69], we used an empty workspace and measured the time to bring up the
initial console window. For the steady state measurements, we took the best time from
10 repetitive autoruns for each test in SPECjvm98 running in test mode with the default
large input size, with the initial and maximum heap size of 128 MB. Each distinct test
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was run with a separate JVM unless otherwise stated. SPECjbb2000 was run in the fully
compliant mode with 1 to 8 warehouses, with the initial and maximum heap size of 256
MB, and we reported the best scores among these runs.

The following parameters were used throughout the experiments.

e The threshold in the mixed mode interpreter to initiate first dynamic compilation
(with level-1 optimization) was set to 500.

e The timer interval for the sampling profiler for detecting hot methods was 3 mil-
liseconds. The controller examined the list of hot methods every 200 sampling ticks
for recompilation decisions. The decay parameter was set to 0.3.

e No profile-directed optimization was employed in these measurements, and thus no
instrumentation profiling code was generated or installed.

e The priority of the sampling profiler thread and the compilation thread was set
above that of the application threads.

In the next two subsections, we compare performance and compilation overhead (mea-
sured in compilation time, peak compiler memory use, and the compiled code size) on
several different configurations to see how well our system behaves for the execution of
a variety of applications and benchmark programs compared to other configurations. To
simulate a compile-only approach in our system, we provided the level-0 (LO) compilation
as an alternative to the level-0 execution with MMI. In the LO compilation, the intermedi-
ate representation (IR) is commonly used, but the native code is generated directly after
constructing the IR without applying any optimizations. This L0 compilation is used as
the baseline of the comparisons. We tried the following sets of compilation schemes.

1. No MMI configurations (compile-only approach)

— Level-1 optimization after level-0 compilation (L0-L1)
— Level-2 optimization after level-0 compilation (L0-L2)
— Level-3 optimization after level-0 compilation (L0-L3)
— Level-1 to 3 optimizations for adaptive recompilation after level-0 compilation (LO-

all)
2. With MMI configurations

— Level-1 optimization with MMI (MMI-L1)
— Level-2 optimization with MMI (MMI-L2)
— Level-3 optimization with MMI (MMI-L3)
— Level-1 to 3 optimizations for adaptive recompilation with MMI (MMI-all)
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For the no MMI configurations, the MMI was not used and all methods were L0
compiled at their first invocations. Then the hot methods identified by the sampling
profiler were reoptimized with the corresponding optimization levels. The performance
and compilation overhead of our LO compilation relative to other optimization levels are
shown in Figure 3.4, however, this may have different characteristics from the baseline
compiler or the fast code generator in other systems using the compile-only strategy,
especially because our LO compilation is not by a separate compiler, while theirs are
designed and implemented differently from the optimizing compilers. Nevertheless, we
think the comparison with this configuration can be an indication as to how well our
system can compete against a compile-only system.

When we measured the compilation times, we instrumented the compiler with several
hooks for each part of the optimization process to record the value of the processor’s time
stamp counter. Since the priority of the compilation thread is set higher than normal
application threads, the difference between each value from the time stamp counter is
guaranteed to provide the time spent performing the corresponding optimization work,
and also the difference in the value between the beginning and the end of the compilation
should be the total compilation time.

As we mentioned in Section 3.3.4, our current implementation does not reclaim the old
version of code after the recompiled new version is made available. Thus, the compiled
code size in the following results as an accumulated value from all of the optimization
levels shows the total memory requirements for our system.

The peak compiler memory use is the maximum amount of memory allocated for
compilation activity. Our memory management routine allocates and frees memory in
1 Mbyte blocks for compiling each method. We measured the maximum usage of the
memory for all of the compilations.

3.4.2 Application Startup Time Performance

Figure 3.8 shows the comparisons of both performance and compilation overhead in the
application startup phase. The top graph indicates that the performance of our dynamic
optimization system, MMI-all, is almost comparable to that of the lightweight config-
uration of MMI-L1. On the other hand, the four configurations with the compile-only
approach show poor performance for all of the programs apparently due to the bottom-
line overhead of compiling all of the executed methods. Even L0-all, the recompilation
system with the compile-only approach, does not perform better than level-0 compilation
only (baseline), and has no advantages over the other compile-only configurations.

Part of the reason for this performance difference between the MMI and no-MMI
configurations is that we used the sampling profiler to promote methods from level-0
compiled code to higher optimizations in the compile-only configurations, while our MMI
used a counter for method invocation and loop iterations to trigger the compilations. In
fact, the number of methods that are compiled at each optimization level between each
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Table 3.3: Percent of the compilation time to the execution time for start-up applications.

| Program | LO-L1 | LO-L2 | LO-L3 | L0-all | MMI-L1 | MMI-L2 [ MMI-L3 | MMI-all |
SwingSet 179 176 179 16.5 20.3 36.4 51.0 19.4
Java2D 11.0| 10.8| 108 | 10.7 8.0 18.0 27.7 7.9
Ichitaro 166 | 166 | 16.6| 16.6 12.1 29.7 42.0 12.3
HotJava 196 | 196 | 19.6 | 19.6 11.1 22.7 38.8 10.6
WebSphere | 159 | 151 134 ] 16.1 8.4 18.7 28.2 9.8

Table 3.4: Percent of the code size (upper row) and the peak compiler memory use (lower row)
to the maximum live object size for start-up applications.

| Program | LO-L1 | LO-L2 | LO-L3 | L0-all | MMI-L1 | MMI-L2 | MMI-L3 | MMI-all |
SwingSet 285 | 285] 285 | 285 1.6 2.6 3.0 1.6
194 194] 194[ 194 15.5 62.7 66.0 15.5
Java2D 48.0 | 48.0 | 480 48.0 3.4 5.8 6.0 3.4
289 289 289 289 27.6 90.9 117.9 27.6
Ichitaro 659 | 659| 659 65.9 1.8 3.7 4.2 1.9
393 393 393 393 31.3 126.8 159.7 313
HotJava 308 | 308 308 30.8 0.9 L5 1.8 0.9
326 | 326 326 | 326 19.4 25.9 777 19.4
WebSphere | 27.0 | 271 | 27.1[ 27.0 1.1 1.7 2.0 1.3
83| 11.6] 93] 83 5.8 10.5 314 5.8

pair of corresponding configurations with and without MMI (such as LO-L1 and MMI-L1)
shows that the sampling profiler did not select as many methods as the counter based
system in MMI in this application startup phase. This verifies our previous reasoning
regarding the tradeoff for the two profiling systems in Section 3.3.3. However, apart from
this problem, the MMI configurations still outperform the compile-only configurations,
reflecting that the performance of our MMI-only configuration is nearly two times faster
on average than that of the LO-only configuration, as stated in Section 3.3.2.

The other three graphs in the figure show the significant advantages for all three
compilation overhead metrics of the MMI configurations over the compile-only approaches,
especially for MMI-L1 and MMI-all. The compilation time with MMI-L.3 sometimes shows
a larger overhead relative to the other MMI configurations. This is because a few methods
that triggered compilation from the MMI caused large overheads due to the aggressive
inlining and other optimizations applied, but those methods were not promoted in the
corresponding compile-only configuration (L0-L3). This also explains the higher overhead
of the peak compiler memory use with MMI-L2 and MMI-L3. MMI-all, however, avoids
this anomaly by employing level-1 optimization at the time of the first compilation.

As for the generated code size, it is an order of magnitude larger with compile-only
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configurations than with the MMI configurations. The code expansion factor from the
bytecode size can actually be up to 10x without the MMI, while it is less than 1x for the
MMI configurations.

Table 3.3 shows the ratios of the compilation time to the execution time for the start-
up applications. The ratios for the no-MMI configurations are not very high (10% to
20%), but the compilation times are actually quite large because of the long execution
times. For MMI configurations, the ratio consistently increases as we move from MMI-L1
to MMI-L3, and the execution time increases accordingly. MMI-all is almost at the same
level as MMI-L1.

Table 3.4 shows the ratios of the compiled code size and the peak compiler memory
use to the maximum size of the live object data in the Java heap. We measured the
maximum live object size using the -verbosegc command line option. While the size was
measured reflecting the granularity of the GC events and thus is not exact, the ratios
shown in the table indicate approximately how much of the space was consumed for both
compiled code and compiler work memory in terms of the live objects in the heap for each
application. Please note that the baseline for comparison is fixed for each application
across all configurations, unlike Table 3.3.

3.4.3 Steady State Performance

Figure 3.9 shows the comparisons of performance and compilation overhead in the steady
state program runs. From the top graph of this figure, four configurations, L0-L3, L0-all,
MMI-L3, and MMI-all, are the top performers in this category. These are all configu-
rations involving level-3 optimization, and it shows the sampling profiler appropriately
selected performance-critical methods for LO-L3, L0-all, and MMI-all configurations.

For the compilation overhead, the differences between the corresponding compile-only
and MMI configurations (such as L0-all and MMI-all) are relatively small for both com-
pilation time and peak memory use compared to the application startup phase. But the
compile-only approach still shows a problem with the large size of the compiled code,
although it is less dramatic than the comparison in the application startup phase. This
means that the extra overhead of level-0 compilation for all methods is essentially negligi-
ble, for both compilation time and memory use, when compared to the cost of recompila-
tion with higher optimization levels, especially level-2 and level-3. However, the code size
has a cumulative effect and thus cannot be hidden by the cost with higher optimization
levels.

From both the performance and compilation overhead in this category, the two re-
compilation configurations, LO-all and MMI-all, are the two best configurations and are
almost comparable for both compilation time and peak compiler memory use. However
LO-all still suffers from the large code size expansion. This is thought not to be specific
to our system that only simulates the compile-only approach, but will be true even with
an actual implementation fully optimized for this approach.
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Table 3.5: Percent of the total compilation time over 10 repetitive runs to the best execution
time when running each test of the SPECjvm98 benchmark in autorun mode. SPECjbb2000 is
excluded, since it does not give us the execution time.

‘ Program ‘ LO-L1 ‘ LO-L2 ‘ LO-L3 ‘ LO-all ‘ MMI-L1 ‘ MMI-L2 ‘ MMI-L3 ‘ MMI-all ‘
_227 mtrt 38.3 58.1 87.6 94.7 23.1 48.2 96.2 54.5
_202_jess 24.5 45.6 67.5 47.5 13.9 50.2 97.9 26.5
_201_compress 6.3 7.6 10.0 8.3 2.5 5.2 10.0 3.8
-209_db 2.7 3.8 5.0 3.7 1.1 2.9 6.0 1.5
_222 mpegaudio 211 23.2 39.3 37.9 7.2 14.8 40.9 22.5
_228_jack 26.8 93.5 73.1 56.3 19.5 38.5 69.3 38.7
_213_javac 26.2 59.2 85.3 77.8 27.1 62.0 96.6 68.2

Table 3.5 shows how much of the compilation time has been spent before obtaining
the best execution performance for the SPECjvm98 benchmark when running each test
10 repetitive times in autorun mode. SPECjbb2000 is excluded from the table because
it does not give us the execution time. This table is different from the corresponding
Table 3.3 in the previous section, since it does not show the compile time ratio actually
occupied within the duration of a single execution. Instead, the table shows how much
effort we needed over 10 repetitive runs to eventually obtain the best execution time. The
ratio varies from one benchmark to another. For example, 201 _compress and _209_-
db have very low ratios, meaning that the working set of these benchmarks is small,
while _213_javac and _228_jack have flat profiles and thus higher ratios due to many
methods being compiled. The high ratio of 227 mtrt and _202_jess is probably due to
the very short execution times of these benchmarks. From this table, when comparing
the corresponding configurations with and without MMI, the MMI configurations have
smaller compilation ratios, except for MMI-L3.

Table 3.6 shows the ratios of the compiled code size and the peak compiler memory use
to the maximum size of the live object data in the Java heap, similar to Table 3.4 in the
previous section. The very high ratios of _202_jess, 222 mpegaudio, and _228_jack are
caused by the very small sizes of the live object data (about 1 MB to 3 MB) throughout
the programs’ executions.

Overall, our dynamic optimization system, MMI-all, shows the best performance with
the minimum compilation overhead among all configurations in both the application
startup and steady-state phases.

3.4.4 Execution Mode Ratios

Figure 3.10 shows the percentage of each of the four execution modes, MMI and level-1
to level-3 compiled code, when running each benchmark with the MMI-all configuration.
Each benchmark has two bars. The first bar is the percentage of the methods executed in
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Table 3.6: Percent of the code size (upper row) and peak compiler memory use (lower row) to
the maximum live object size for steady-state applications.

| Program | LO-L1 [ L0-L2 | L0-L3 | LO-all | MMI-L1 [ MMI-L2 | MMI-L3 | MMI-all |
227 mtrt 52 54| 54| 63 1.2 1.7 1.8 1.9
194 437] 388 437 19.4 29.1 72.8 43.7
202_jess 200 [ 246 | 238] 243 5.4 13.2 14.2 8.0
83.6 | 231.6 [ 310.3 | 100.3 83.6 251.7 210.2 100.3
_201_compress 5.6 5.9 6.0 5.8 0.7 1.1 1.4 0.8
224 224 373] 224 14.9 29.8 44.7 29.8
~209_db 39 43| 43| 43 0.6 1.1 1.4 0.7
141 ] 283| 37.7| 236 14.1 28.3 94.3 18.9
222 mpegaudio | 85.9| 76.6| 768 | 80.8 8.4 12.1 145 13.8
510.3 | 510.3 [ 510.3 [ 510.3 148.4 198.0 4949 | 396.0
_228_jack 46.8 | 61.1[ 60.0 | 59.1 14.0 22.4 24.4 24.4
163.5 | 266.4 | 327.1 | 327.1 163.5 264.4 3925 | 2654
213_javac 56 68| 68] 7.9 2.2 3.4 3.4 4.2
190 59.3| 545]| 593 19.0 57.1 61.0 61.3
jbb2000 25| 26| 25| 28 0.4 0.6 0.7 0.8
29[ 86| 78] 86 2.9 10.0 20.3 10.0

each execution mode, and the second bar is the percentage of the execution time in each
of the four modes.

When counting the number of methods, we classified each method under the highest
optimization level it reached. That is, if a method is executed in MMI first, and then
promoted to level-1, then it is counted only in level-1 execution mode. For the execution
time in each execution mode, we collected the data by using a profiling tool called real-
time arcflow [4]. The tool instruments each method at entry and exit using a JVMPI
interface to collect the time stamp, and then post-processes the collected data to provide
the proportion of the execution time spent in each method. Again, we classified the
execution time for each method according to the highest level the method reached. That
is, if a method is eventually compiled with level-3 optimization, then we attributed all the
time spent in that method to level-3 execution time. Native methods are not included for
both of these data sets.

The number of methods compiled with level-1 optimization is, except for _228_jack
and 213_javac, around 20% of the total number of methods, among which the number of
recompiled methods with higher optimization levels is roughly 15% to 20%. Therefore we
can achieve the best possible performance with the optimization capabilities available in
our system by focusing on merely 3% to 4% of all methods. In comparison, the execution
time spent in level-2 and level-3 execution mode is more than 80% of the total time, again
except for _228_jack.
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Figure 3.10: Statistics showing the percentage of each of the four execution modes for the
SPECjvm98 and SPECjbb2000 benchmarks. The first bar for each benchmark is the number of
methods in each execution mode, and the second bar is the execution time spent in each mode.
Native methods are not included.

This shows the well established rule that programs typically spend most of their exe-
cution time in only a small portion of the code. In this case, it roughly follows the “80/20
rule” meaning that the proportion of the number of methods between MMI and compiled
code is about 80 to 20, while that between level-1 and level-2/3 compiled code is again
close to 80 to 20. In contrast, the proportion of the execution time is roughly 10 to 90
between the level-1 and the level-2/3 compiled code.

As described in [3], 213_javac has a flat profile, involving the execution of many
equally important methods, and thus poses a challenge for any recompilation system. The
same thing is true for 228_jack. This characteristic caused a relatively larger number of
level-1 optimizations in our system, 30% to 40% of the total number of methods executed.
However, the number of level-3 optimized methods is still limited to around 4%, similar
to the other test cases, and those methods cover about 40% to 60% of the execution time.
This shows that our recompilation decision process works quite well.

3.4.5 Compilation Activity

Figure 3.11 shows how the system reacts to changes in the program behavior with our
dynamic optimization system. This was measured by running all the tests included in
the SPECjvm98 in the autorun mode, ten times each with a single JVM. The horizontal
axis of the graph is divided equally for each run of the tests. The bar chart (left vertical
axis) indicates the number of compiled methods at each level of optimization, and the line
graph (right vertical axis) indicates the changes of the execution time from the first to
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Figure 3.11: Change of compilation activity and the program execution as program shifts its
execution phase. The bar chart (left Y-axis) shows the number of compiled methods for level-1
to level-3 optimizations within each run of the tests, and the line graph (right Y-axis) shows
execution time ratio from 1st to 10th runs. For those bars extending out of the visible range,
the number of compiled methods with level-1, level-2, and level-3 are shown at the top of each
bar using the separator “/”.

the tenth run normalized by the time differences. That is, 1 corresponds to the execution
time in the first run and 0 corresponds to that in the tenth run, and the line graph shows
how quickly the execution converges to the best running time for each test. Therefore
this figure shows the relationship between the compilation activity and its impact on the
performance improvement as the program dynamically changes its execution phases.

Overall, the graph shows that the system tracks and adapts to the changes in the
application program behavior quite well. At the beginning of each test, a new set of classes
is loaded and the system uses the level-1 optimization compilation for a fair number of
methods. As the program executes several runs in the same test, the system identifies a
working set of hot methods, and promotes some of them to level-2 or level-3 optimization.
Note that there are some overlaps in the methods across these tests in the SPECjvm98.
A method shared between several tests may be compiled with level-1 optimization first
in an earlier test. Since the sampling profiler monitors all the code compiled so far, the
method can be promoted to a higher level later if it is identified as hot.

The execution time is almost consistently improved after the first run for all of the tests
by successful method promotions from the interpreted code to the level-1, and then to the
level-2 and level-3 compiled code. In some of the tests, the cost of recompilation seems

Execution Time Convergence Ratio (line graph)
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to appear in the execution time. This is partly because we performed the measurement
on a uniprocessor machine and cannot hide the background compilation costs completely.
No significant overhead can be observed for most of the tests, since the execution time
usually decreases steadily. When one test program terminates and another test begins,
the system reacts quickly to drive compilation for a new set of methods.

3.5 Summary

We have described the design and implementation of our dynamic optimization framework
that consists of a mixed mode interpreter, a dynamic compiler with three optimization
levels, a sampling profiler, a recompilation controller, and an instrumenting profiler. The
experimental results show that the system can effectively work to initiate each level of
optimization, and can achieve high performance and low compilation overhead in both
program startup and steady state measurements in comparison to other configurations,
including those with the compile-only approach. Owing to its zero compilation cost,
the MMI allowed us to achieve an efficient recompilation system by setting appropriate
tradeoff levels for each transition between optimizations.

Based on the data shown in this chapter, MMI-all is our configuration of first choice,
achieving the two goals described in Section 3.2: the best performance for varying phases
of application programs, and system extensibility for adding profile-directed optimiza-
tions. However, using a simple system, such as MMI-L1 in our system, might be a
reasonable approach depending on the target platform, where the simplicity and robust-
ness of the system is a primary goal. That is, for a specific platform one may decide that
it is more practical to simplify the system rather than introducing the implementation
complexity and then facing the resulting code maintenance problem. Standing in this
position, MMI-L1 may be a preferable system with an acceptable level of performance
and sufficiently lightweight compilation overhead.



Chapter 4

Profile-Directed Optimizations

4.1 Introduction

From the results shown in the previous chapter, we can see the advantages of our dy-
namic optimization framework with the MMI and three optimization levels in terms of
performance and compilation overhead in both the application startup and steady state
phases. In addition, we can further explore the opportunity for more advanced optimiza-
tions by exploiting the dynamic profile information. In this chapter, we describe the
two profile-directed optimizations, method inlining and code specialization, designed and
implemented on top of the dynamic compilation system described in Chapter 3.

Section 4.2 describes how the profile data can be collected for extracting potential
candidates to drive these optimizations. Section 4.3 and 4.4 then provide the details of
the profile-directed method inlining and the code specialization, respectively. Section 4.5
shows the impact on the performance and the compilation overhead when applying these
optimizations, both alone and in combination. Finally, Section 4.6 gives the summary of
this chapter.

4.2 Dynamic Instrumenting Profiler

We employ a dynamic instrumentation mechanism to collect the runtime information,
such as the distribution of call sites, parameter values, and other specified field values.
The instrumenting profiler generates code, according to the plans specified by the recom-
pilation controller, for each of the target methods or target variables to be monitored.
Figure 4.1 shows a graphic example when the instrumentation code is generated and
installed in the target compiled code. The entry instruction of the target code, after it is
copied into the instrumenting code region, is dynamically replaced with an unconditional
branch instruction to direct control to the generated profiling code. At its first entry,
the instrumentation code stores the current time stamp. It then examines the specified
variables, records them in a table, and then jumps back to the next instruction after

43
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B's compiled code
tHb-€sp,5U

mov [esp+4c], ebx
mov [esp+48], esi

stack growth

B's instru-  [€
mentation code

Method B

return addr

look up
frame (for call site and
parameters)

mov [esp+44], edi

|
|
parameter record profile table :
values , |
start time !
|

M;zrt‘;lrc:]cel3 A value frequency

0x21058 | 800
0x21098 | 300

return addr

Figure 4.1: Dynamic instrumentation for collecting information on call site distribution and/or
parameter and field values. The entry code is patched to direct control to the generated instru-
mentation code.

the entry point. After the predetermined number of samples has been collected, the
code again checks the current time and records how long it took to collect those samples
by subtracting the start time. The code then uninstalls itself from the target code by
restoring the original code at the entry point.

The profiler can collect any or all of the following information depending on what
optimizations are under consideration: the return address stored on the top of the current
stack, the values of parameters on either designated registers or in stack locations, and the
values of class variables or object fields from the parameters. When examining the caller’s
address, only the top-level history in the call stack is recorded because of the potential
overhead. The information that is collected and recorded by the instrumentation code
can range from a simple counter (such as zero, non-zero, or array type), which just
counts the number of executions, to a form of tables with values or types of variables and
their corresponding frequencies. The data table or the counter for storing information is
allocated separately so it can be passed back to the controller. The maximum number of
entries in the table is fixed.!

Thus two kinds of information can be collected for each method during an interval in
the program’s execution: the distribution of values and the frequency of invocations. The
time recorded for sample collection indicates the call frequency for the method for that
fixed number of instrumentation samples, and is useful information for method inlining
decisions. This is because the hotness-count provided by the sampling profiler is strongly

!The instrumentation code is just a small amount of code, typically less than 100 instruction bytes,
and the corresponding table space is in general less than another 100 bytes. This space is treated in the
same way as compiled code so that it can be reclaimed upon class unloading.
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dependent on the size of the target method (it is easier for larger methods to get more
sampling ticks), so small but very frequently called methods may not receive the attention
they deserve. In that sense, the fine-grained frequency information can be useful in
identifying hot call edges critical for inlining, and in compensating for the rather coarse-
grained hotness count of the sampling profiler.

The instrumentation is successively applied to a group of recompilation target methods
provided by the sampling profiler at every fixed sampling interval. After installation, the
recompilation controller periodically monitors the completion of the profile collections
on all of these methods, and if completed, it proceeds to the analysis step described in
the next two sections. This is implemented by setting a maximum wait count for the
recompilation controller to give up the compilation thread execution. If necessary, it
stops the profiling for methods that are invoked very infrequently and which will never
reach the predetermined number of samples by directly manipulating the current profile
count for those methods.

4.3 Profile-Directed Method Inlining

Method inlining has significant impact on both costs and benefits of compilation as shown
in Figure 3.3. In our dynamic optimization system, we have applied method inlining only
for tiny methods in the level-1 optimization, while in the level-2 and level-3 optimiza-
tions we use static heuristics for aggressive inlining. However, we can exploit dynamic
program execution behavior to improve the cost and benefit ratio of this expensive op-
timization. When enabling profile-directed inlining, we basically abandon any existing
static heuristics, except for always inlining tiny methods, and totally rely on the online
profile information for driving method inlining in the level-2 and level-3 optimizations.

For collecting call site distribution, we basically apply the instrumentation to all hot
methods that are detected by the sampling profiler and which are candidates for promotion
to the next level of optimization. Since the instrumentation code in this case is to find
the most beneficial candidates among the call sites where the current target method
can be inlined, we need to ensure that the current target is appropriate for inlining, or
otherwise adding the instrumentation is just overhead. Thus those methods that are
apparently not inlinable into other methods (due to excessively large size, for example)
are excluded as targets for instrumentation. Methods already compiled with the highest
level of optimization are also excluded, since they are methods already considered for
inlining but not inlined in the previous round of compilation. All these decisions are
made through the instrumentation planning by the recompilation controller.

The controller examines the recompilation candidates grouped together by the sam-
pling profiler to identify among them those hot call paths appropriate for inlining. Upon
completion of collecting the call site information, the decision on requesting method in-
lining proceeds with the following steps:
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(a) Partial call graph (b) Inlining and recompilation steps

Figure 4.2: (a) An example of the partial call graph, where nodes indicate recompilation
candidate methods (A to K), and edges show the call connections from caller to callee, each
associated with a strength factor (W1 to W7). Each node is assumed to have a hotness count,
although it is not shown above. (b) The graph example of the inlining steps. The hot call
paths are identified (the bold edges) and three inlining requests are made (A to C to D, A to
C to E, and H to G). The hotness counts of these methods are then adjusted along the arrows
shown beside the hot call paths, resulting in the zero hotness counts for A and C. Finally the
recompilation requests are made for the shadowed methods, excluding the methods with low
hotness counts.

1. Partial call graph construction: The controller first constructs a partial call graph?
by examining the call site distribution profile for each of the instrumented methods.
Nodes represent recompilation candidate methods, each of which has a hotness
count, and edges show the call connections from caller to callee, each associated
with a strength factor computed from the call frequency and the distribution ratio,
as shown in Figure 4.2(a). The distribution ratio is based on the count given to the
corresponding call site address in the profile.?

2. Exact call path identification: The controller then identifies the exact call paths
appropriate for inlining. It begins with a method having no outgoing edge, and suc-
cessively selects call edges whose strength factor is above a threshold by traversing
the connections up to the top of the call chain.

3. Method inlining request: The controller issues inlining requests for the hot call
paths identified above.* These requests are stored in a persistent database so that

2The call graph is partial in the sense that it is constructed from the profile data and therefore it
includes only call edges that were found in a certain interval of the program’s execution.

3Since tiny methods are always inlined in the compiled code and thus the call site found in the profile
may actually be within an inlined tiny method, the runtime structure called the inlined method frame is
consulted to get the exact call path from the call edge. This structure was originally created to support
the runtime system for exception handling and security managers.

4Since the raw profile data indicates a set of compiled code addresses where the invocation was made
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inlining decisions can be preserved for future recompilation to incorporate the previ-
ous inlining requests. This is to avoid any performance perturbation resulting from
oscillating between two compiled versions of a method, each with a different set of
inlining decisions [59, 10].

4. Hotness count adjustment: The controller then corrects the hotness count for each
method by assuming that inlining was performed as requested in the previous step.
A portion of the hotness count of the callee (including values from its children, if
any) is distributed to each of its callers according to the distribution ratio for each
incoming edge. When dividing the hotness counts from children into their multiple
callers, the distribution ratio cannot be known precisely, because the profile infor-
mation is not available for the multiple-level histories of the call paths. Therefore,
we use a constant ratios assumption [92] to approximate the actual ratio. That is,
we assume the ratio is the same as the one recorded in the profile.

5. Recompilation request: The controller again traverses the list of recompilation can-
didates to issue the final recompilation requests. If a method in the list is recom-
mended for inlining into another method, and there is no other call site for this
method found in the profile information, then the method is removed from consid-
eration for recompilation. Likewise, those methods whose hotness counts are below
a threshold value as a result of the hotness count adjustments are discarded. A
method already compiled with the highest optimization level will be recompiled
again only when a new inlining request has been made and its estimated impact is
above a threshold value.

Figure 4.2(b) shows a graphic example of the Steps 2 to 5 above. We assume here that
W1, W2, W4, and W5 are the only strength factors above the threshold, and thus the
three hot call paths along the bold edges (D-C-A, E-C-A, and G-H) are identified. We also
assume the distribution ratio of the incoming edges along the hot paths is dominant for
the methods A and C but not for method H, which results in the different recompilation
decisions for these methods.

Since we consider the inlining possibilities among hot methods appearing in the group
of hot methods, and since this group comes from sampling during an interval in the
program execution, the resulting inlining requests are expected to contribute for a perfor-
mance boost. In Step 2, however, there may be a call path where a caller is not included
in the current group of hot methods, and it is possible to request inlining for such a case as
well. This can be considered to be more aggressive in the profile-directed inlining. How-

ever, this aggressive inlining policy did not produce additional benefit in our experience
[99].

to the current target method, it does not specify the exact call sites in the original form of the method
bodies. The code address is therefore converted to the offset of the corresponding bytecode instructions
using a table generated at compile time.
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Figure 4.3: Flow of code specialization decisions. The recompilation controller directs the
instrumenting profiler to dynamically install instrumentation code by specifying specific variables
based on the impact analysis results. It then utilizes the profile information to decide how those
methods should be specialized by taking advantage of the skewed behavior of the application.

4.4 Dynamic Code Specialization

Code specialization is enabled only on the highest optimization level based on the profile
data collected in the previous version of the compiled code. Figure 4.3 shows the flow
of control regarding how the decision on code specialization will be made. It consists of
two parts, impact analysis by the dynamic compiler and specialization decisions by the
recompilation controller. These are described in detail in the following sections. The code
specialization is applied for an entire method, not for a smaller region in the method such
as a loop.

4.4.1 Impact Analysis

Since overspecialization can cause significant overhead in terms of both time and space,
it is important to anticipate before its application how much benefit it can bring to the
system and for what values. Impact analysis, a dataflow-based routine that detects op-
portunities and estimates the benefits of code specialization, is used to make a prediction
as to how much better code we would be able to generate if we knew a specific value or
type for some variables. The impact analysis is performed during the level-2 or level-3
compilation and the results of the analysis are stored in a persistent database, so that the
controller can make use of it for the next round of recompilation plans.



4.4. DYNAMIC CODE SPECIALIZATION 49

The specialization targets can be either method parameters or non-volatile global
variables,? such as class fields and object instance fields. The set of specialization targets
for global variables within a method can be computed from In(n) and Kill(n) for each
basic block n after solving the forward dataflow equations given below:

In(entry bb): all non-volatile global variables within the method.

Kill(n): the set of global variables that can be changed by instructions within
basic block n.5

Out(n) = In(n) - Kill(n)

In(n) = Nnepream) Out(m) (for n # entry basic block)

This means that after the computation In(n) is the set of global variables referenced
within the method and guaranteed not to be updated along any paths reachable from
the top of the method to the entry point of the basic block n. FEach global variable
reference within the basic block can then be checked as to whether it can be included in
the specialization target from the Kill set for each instruction. That is, we can compute
all the global variables that are safe for privatization at the entry point for each method.
The set of specialization targets, both the global variables obtained as above and the
argument variables, is then fed to the impact analysis. The pseudo-code of the impact
analysis is shown in Figure 4.4.

For each specialization target V', the specialization point can be expressed as a triple
(V, L, S), where L denotes a local variable directly or indirectly defined from V', and S
denotes the statement in the method in which the variable L is defined. The algorithm
traverses the dataflow through a def-use chain for each use of the variable L and its derived
variables, tracking any possible impact on each operation for V. The impact value of the
specialization type T" on operation Op appearing in the pseudo-code can be expressed as:

Total_saved_cost(Op, T') = Unit_saved_cost(Op, T') * f(loop nest level)
Impact value(Op, V, T') = Total_saved_cost(Op, T) | SST(V, T)

In these equations, Unit_saved_cost represents the cost savings attributed to a single
operation Op with the specialization type 7. If the operation is located within a loop,
then the cost saving is scaled with a fixed value that represents the loop iterations to
reflect the greater benefit that can be expected.

The baseline of the impact is the execution cost of the specialization safety test (SST),
which is the guard code generated at the entry point of the specialized method. This
can vary from a simple compare and jump instruction to a set of multiple instructions

5For a variable declared volatile, a thread must reconcile its working copy of the field with the master
copy every time it accesses the variable [51], so we cannot treat it as a specialization target.

6 Any method invocations, synchronization instructions (monitorenter and monitorexit), and excep-
tion checking operations for the variable are treated as barrier instructions. We assume the optimization
of exception check elimination [71] is performed prior to the impact analysis.
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1: Each specialization point is expressed as a triple (V, L, S), where

2: V: a parameter or a global variable that can be a target for

3: specialization

4: L: local variable that is directly or indirectly defined from V

5: S: statement where L is defined

6:

7: Impact_Analysis () {

8: for each specialization target V {

9: Weight (V, *) = 0;

10: /* estimate the impact for a given specialization target */
11: Estimate (Weight, V, V, method entry point);

12: }

13: }

14:

15: Estimate (Weight, V, L, S) {

16: for each operation Op which uses L and is reachable from S {

17: if (Op can be simplified or eliminated by a specialization type T) {
18: Weight(V, T) += Impact_value(Op, V, T);

19: if (Op is converted to a constant assignment) {
20: /* recursively call itself for the derived variable */
21: Estimate (Weight, V, LHS variable of Op, location of Op);
22: }
23: }
24 }
25: }

Figure 4.4: Pseudo-code for the impact analysis. The algorithm tracks any possible impact of
operation for each use of the specialization targets and its derived variables. The impact value
is defined based on the type of operations simplified and the execution cost of the guard code
to be generated, as described in the text.

depending on the variable V' and type T'. The impact value is then computed by weighing
the expected benefit (Total_saved_cost) from the operation Op with the specialization
type T against the expected cost SST.

The cost savings can be quite different for each of the operations. For example, the
elimination of checkcast or instanceof operations can have a large effect,” while it would
be much smaller when getting a constant operand in a binary operation. In particular,
instanceof has a large impact because it is often used as a conditional part of an if-
statement and the elimination of this operation can lead to the elimination of the entire
then or else part of the if-statement, resulting in straight-line code.

The final result of the impact analysis for the estimated specialization benefit is the
specialization candidate set SCS, each member of which is a specialization candidate SC;

7Our implementation of the subtype checking operation is based on a 1- or 2-element software cache
(positive cache for checkcast and both positive and negative caches for instanceof). This still requires
6 to 9 instructions in the fast execution pass. The display implementation in HotSpot [39] is more efficient
and requires only 3 instructions for most cases.
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SCS ={(V,T) | Weight(V, T) > minimum threshold}
The factors currently considered in the impact analysis include the following:

— A constant value of a primitive type, which can lead to additional opportunities
for constant folding, strength reduction, the replacement of floating point tran-
scendental operations with a computed value, and the elimination of the body of
a conditional branch or a switch statement.

— An exact object type, which allows removal of some unnecessary type checking
operations and leads to more opportunities for devirtualization and inlining by
improving the precision of the class hierarchy analysis.

— The length of an array object, which allows us to eliminate array bound checking
code. This can also contribute to loop transformations, such as loop unrolling and
simplification, if the loop termination condition becomes a constant.

— The type of an object such as null, non-null, normal object, or array object, which
can be used for removing some unnecessary null checks and for improving the code
sequencing for some instructions (e.g. invokevirtualobject, checkcast).

— Equality of two parameter objects, allowing method bodies to be significantly sim-
plified.

— The thread locality of objects® which allows the removal of unnecessary synchro-
nizations.

4.4.2 Specialization Decision

When a hot method has been identified in the level-2 or level-3 compiled code, the con-
troller checks the results from the impact analysis stored in the code manager database. If
it finds a candidate SC for the method that looks promising as a justification for perform-
ing specialization, then the controller dynamically installs the instrumentation code into
the target native code, using the mechanism described in Section 4.2, to decide whether
it is indeed worth specializing with the specified type. Currently a minimum threshold is
used to allow all candidates to be selected as instrumentation installation targets.

Upon the completion of the value profiling, the controller then makes a final decision
regarding whether or not it is profitable to specialize with respect to a specialization
candidate SC. The metric we use for this decision can be expressed as follows:

f (Weight, Sample Ratio, Code Size, Hotness Count)

This function indicates that the impact analysis result, the ratio of bias in the corre-
sponding profile data, the size of the recompilation target code, and the method hotness
count are all considered for the final specialization decision. The code size affects the
maximum number of versions that can be produced for specialization, since the larger

8We use the escape analysis to identify thread-local objects.
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Figure 4.5: An example of specialization decision on multiple candidates. (a) Three special-
ization candidates available. (b) Construction of decision tree on generating three specialized
versions.

the code size for recompilation, the more costly it would be to generate multiple versions.
The method hotness count is used for adjusting the number of versions allowed for some
important methods. The construction of the specialization plan then proceeds as follows.

Suppose there are three specialization candidates SC; (€ SCS for i = a, b, ¢) available
for a method as in Figure 4.5(a). The expected benefit for each candidate using specialized
code, based on the probability of the specialized code hit ratio, is computed as B; = R; *
W;. The plan on how to organize the specialized code can then be viewed as constructing
a decision tree. That is, each internal node of the tree represents the specialization safety
test SST; guarding each specialization. The right subtree is for the version where the
benefit B; is applied, and the left subtree tracks the version where it is not used.

All of the nodes that are not selected for a particular specialization are contracted to
a single node. For example, the left node from the root represents a general version of
the code (that is, the level-2 or unspecialized level-3 compiled code). Thus, the number
of leaf nodes in the tree is exactly the number of specialization candidates plus one. The
specialization is then organized by selecting leaf nodes, from right to left, for as many
as the number of versions allowed as calculated from the code size and method hotness
count.

Two strategies can be considered for selection: benefit ordered and sample ratio or-
dered. In the benefit-ordered strategy, a specialization candidate having a larger value
of B; is selected as a higher level of node, reflecting a greater expected benefit when the
condition holds true. In the sample-ratio-ordered, the value of R; is regarded as a more
important factor with expectation of a higher rate of executing the specialized versions.
In Figure 4.5(b), assuming that SC; is in the order of a, b, ¢ by either criteria, so the
decision-tree is constructed with the number of specialized versions limited to three.
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The transformations with code specialization proceed with “ordinary” optimizations
by using the set of the specialization variables and with their corresponding values. Those
optimizations include constant folding, null-check and array-bound-check elimination,
type check elimination or simplification, and virtual method inlining. When there is
an SST failure upon entry into the specialized code block, the control is directed to the
general version of the code, which is the level-2 or unspecialized level-3 code. This can
occur as a result of changes in the execution phase of the program, so that the specialized
methods are called with a different set of parameters. In this situation, the general ver-
sion of the code may be identified as hot again, and the next round of recompilation can
be triggered for this method, possibly with specialization using different values. Thus a
new version of specialized code can then become active, by replacing the previous code.
The maximum number of versions for specialized code for a method is limited to avoid
excessive code growth.

4.4.3 Specialization Example

Figure 4.6 shows an example of the code specialization. For the example program (a), the
three instance field variables (this.of fset, this.count, and this.value) can be identified as
specialization targets, since there are no barrier instructions within the method for these
global variables to be privatized at the method entry point. Thus, the impact analysis
is performed for the three global variables and two parameter variables as specialization
targets.

Suppose the result of the impact analysis is as shown in the table of Figure 4.6(b).
This shows that, for example, if we know the value of the parameter fromlIndex as a
constant, we would be able to optimize the program with a factor of 2.0 compared to
the cost of the necessary guard code. Two of the specialization targets, however, have
no impact on any type of specialization. The specialization candidate set SC'S in this
method is {(fromIndex, constant), (this.count, constant), (this.of fset, constant)}.

If this method is identified as hot and is being recompiled with level-3 optimization, the
recompilation controller checks the result of the impact analysis, and performs the value
profiling for these three specialization candidate SC's that have possible optimization
benefits. Assuming that profile results are well biased for these variables as shown in the
table, the controller may decide that it is profitable to specialize with these SC's based
on the expected benefit and the hotness count of this method.

The specialization is thus organized to apply these SC's in the order of the expected
benefit. Figure 4.6(c) shows a specialized version when we apply all of these SC's. We
assume here that we construct two versions of the specialized code. The failure of the
first two SST guard tests results in jumping to the general version, but when the third
test fails, another version of specialized code is called. Given the <variable ,value> pair of
the specialization, the optimizer performs constant propagation and loop simplification,
an existing set of optimizations, to produce the specialized code.
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publicint indexOf (int ch, int fromindex) {
int max = this.offset + this.count;
char v[] = this.value;

if (fromindex < 0) {

fromindex = 0;
} elseif (fromIindex >= this.count) {
return -1;
}
for (inti = this.offset + fromindex; i < max; i++) {
if (V[i] ==ch) {
return i - this.offset;
}
}
return -1;

(a) Example program

CHAPTER 4. PROFILE-DIRECTED OPTIMIZATIONS

publicint indexOf_specializedA (int ch, int fromindex) {

[* specialization safety test (SST) */

if (this.offset= 0) goto general version;

if (this.count= 4) goto general version;

if (fromindex= 0) goto indexOf_specializedB;

[* specialized version with this.offset = 0,
this.count = 4, and fromindex = 0 */

char v[] = this.value;

if (v[O] == ch) return O;
if (v[1] == ch) return 1,
if (v[2] == ch) return 2;
if (V[3] == ch) return 3;
return -1,

(c) A speciaized version of the example program.

Impact analysis result Value profiling result Expected
Specialization target I/ | Specialization type 7 | Weight(V,T) (value: sample ratio) benefit 5
fromIndex constant 2.0 0: 100% 2.0

ch any type 0.0
this.count constant 5.0 4: 70%, 10: 8%, 12: 7%, .... 3.5
this,offset constant 6.0 0: 95%, 5: 1%, 3: 0.5%, ... 5.7
this.value any type 0.0

(b) Result of the impact analysis and value profiling

Figure 4.6: An example of code specialization. (a) shows an example program, and (b) shows
the result of the impact analysis and value profiling. A specialized version of the program (c)
has the SST guard code for specialization with this.offset = 0, this.count = 4, and fromIndex

= 0.

4.5 Experimental Evaluation

This section shows the impact on both performance and compilation overhead when ap-
plying these profile-directed optimizations, both separately and in combination.

4.5.1 Methodologies

All of the measurement conditions are the same as those described in Section 3.4.1. Other
conditions specific to the measurements here are as follows.

e For the instrumentation-based profiling for hot methods, a maximum of 10,000
values were collected for each of the target parameters, global variables, or return
addresses. The maximum number of data variations recorded was 8.
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e The number of code duplications allowed for specialization was set to one at a time,
regardless of the target method code size.” The decision-tree construction was based
on the benefit-ordered strategy.

e The maximum number of level-3 compilations for the same method was set to three.
This is for both profile-directed inlining and code specialization with different profile
information.

Four variations of profile-directed optimizations are compared as described below, two
with the above optimizations applied separately, and the others with the optimizations
applied in combination. The baseline of the comparison is with the MMI-all configuration
described in Section 3.4.1.

e inline: This enable only the profile-directed method inlining on the baseline. None of
the static heuristics for inlining are used except for tiny methods, which are always
inlined. No profile data for specialization is collected, nor is any impact analysis
performed.

e specialization: This enable only the code specialization on the baseline. No profile
data for inlining is collected. Method inlining is performed using the default static
heuristics as in the baseline.

e inline+spec: This enable both profile-directed inlining and the code specialization.
The profile information for both inlining and specialization is collected at the same
time for the given methods.

e inline+spect+edo: In addition to the above inline+spec configuration, exception-
directed optimization (EDO) [85] is enabled. This is another example of a profile-
directed optimization technique implemented in our framework to optimize fre-
quently raised exception paths. A recompilation request from the EDO profiler is
processed at the same optimization level with special treatment for method inlining
for the specified hot exception paths.

When measuring the compilation overhead, we measured only level-2 and level-3 com-
pilation statistics, since level-1 is the same for all four cases. The compiled code size
includes additional code that was dynamically generated for instrumentation.

4.5.2 Profile-Directed Inlining

Figure 4.7 shows the comparisons of both performance and compilation overhead in the
steady state benchmarks, and we can make the following observations.

9We have tried allowing multiple versions of specialized code allowed for each method, but found it
not very effective [97].
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Figure 4.7: Steady state comparison on both performance and compilation overhead with four
variations of profile-directed optimizations (1 of 2). Each bar indicates the relative numbers to
the MMI-all configuration. The taller bar shows better performance in (a), while the shorter
bar means smaller overhead in (b).



4.5. EXPERIMENTAL EVALUATION 57

14

1.2 1
(]
N
(%)
() .
°
Q
O
B 0.
=)
kol
o

mtrt jess comp db mpeg jack javac jbb G.M.
(c) Relative Size of of Compiled Code (smaller is better)
1 -

0.8 H
-
o
5
= 0.6 H
x
5
=
5 0.4 H
=)
kol
14

0.2 H

0 L
mtrt jess comp db mpeg jack javac jbb G.M.

(d) Relative Peak Compiler Memory Use (smaller is better)

‘ dinline [ specialization W inline+spec M inline+spec+edo ‘

Figure 4.7: Steady state comparison on both performance and compilation overhead with four
variations of profile-directed optimizations (2 of 2). Each bar indicates the relative numbers to
the MMI-all configuration. The shorter bar means smaller overhead in (c¢) and (d).



58 CHAPTER 4. PROFILE-DIRECTED OPTIMIZATIONS

The top graph in the figure shows that the profile-based inlining performs about as well
as or better than the static-heuristics-based inlining for most of the benchmarks. The use
of profiling seems particularly effective for 202_jess, 201 _compress, and _213_javac.

The comparisons of the actual inlining results between profile-based and static-heuristics-
based inlining policies show that there were several critical call paths that were not inlined
with the static heuristics, but which were inlined with profile-based decisions, and this led
to performance differences. One probable reason for these differences is that the chance to
inline performance-critical call paths is lower for the static heuristics because the limited
inlining budget is wasted by greedily inlining methods based on static assumptions.

The performance is slightly degraded with the profile-based inlining for _209_db. In-
vestigation shows that the current profile-based inlining is missing some opportunities for
inlining performance-sensitive call sites in this benchmark. This is because the sampling
profiler overlooked as recompilation candidates target methods that should have been
inlined. Our profile-directed inlining is only possible when the target method is selected
as hot for dynamic instrumentation. Although tiny methods are always inlined, there are
still some chances that other methods with very small bodies will be missed for selection
as recompilation candidates due to the sampling nature of the profiler, and in that case
it is unable to consider the inlining possibilities for those methods. This problem may be
resolved by expanding the tiny method criteria, but this would go against the goal of our
basically relying only on profile information with minimal heuristics. We need to come
up with an effective way to deal with this situation.

As for the compilation overhead in the other three graphs, the profile-based inlining
shows significant advantages over the existing static-heuristics-based inlining for most
of the benchmarks. In the best case, it reduces the overhead by nearly 70%, and on
average the reduction is about 40% in all three metrics of the compilation overhead.
This is apparently due to limiting the inlining requests only to those call sites deemed
beneficial for performance improvements. The compiled code size is greatly reduced for
some benchmarks, even taking the instrumentation code into account.

There is an exception to these general observations, where -201_compress shows degra-
dation with profile-based inlining. This benchmark has a very few hot methods, resulting
in a relatively low level of compilation overhead regardless of the inlining policy. In the
profile-based inlining case, two inlining requests were actually made for the same method,
Compressor/compress, but with different timings because of the group of hot methods
supplied by the sampling profiler. Thus the method was compiled twice with level-3 op-
timization, first with one inlining request and then with an additional request identified
later. Because of the low level of compilation overhead, this additional level-3 compilation
was enough to cause a seemingly big difference in these ratios.

This problem is considered inherent to an online profiling and feedback system, since
the information is partial, not complete, at any point in time, and we do not know the
best time to drive recompilation with the limited available information. When additional
information that can contribute to the performance becomes available later, we then have
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Table 4.1: Statistics of compiled and instrumented methods for each optimization level. The
number of inlining requests is shown for each depth of call paths that was requested for inlining.

Program L1 L2 L3 inline requests
comp’d | inst’d | comp’d | inst’d | comp’d || d=1 ‘ d=2 | d=3 | d>4
227 mtrt 212 16 12 3 7 13 2 1 -
_202_jess 310 27 18 11 9 21 9 3 -
-201_compress 130 ) 1 - 4 3 - - -
_209_db 129 5 1 1 3 6 - - -
_222 mpegaudio 221 23 23 11 16 8 3 2 3
_228_jack 387 58 43 17 15 19 4 1 1
_213_javac 838 117 128 25 18 20 3 1 -
SPECjbb2000 583 130 133 33 27 20 6 1 1

to decide whether or not it is better to trigger additional recompilations. Currently we
drive recompilation by considering the estimated performance benefit of the additional
inlining request based on the relative hotness counts of the caller and the callee, but we
also limit the maximum number of level-3 compilations for the same method in order to
avoid a code explosion. We need to explore better ways to manage this situation by, for
example, introducing additional metrics for the impact of inlining on a particular call
path. We would need to have a code reclamation function to remove this constraint, as
in the continuous optimization framework described in [73].

Table 4.1 shows the compilation statistics when only profile-directed inlining is en-
abled. The numbers are for compiled and instrumented methods for each of the opti-
mization levels. No instrumentation is applied to L3 compiled code, as mentioned in
Section 4.3. The count is cumulative, so if a method is L1 compiled and then promoted
to L2, then it is counted in both categories. The last four columns show the total number
of inlining requests for each depth of call paths. The number is per call site, so if two
inline requests are issued for a method, inlining it into two different call sites, then both
are counted as separate inline requests.

4.5.3 Code Specialization

With code specialization only a modest performance improvement, from 2% to 3%, can
be observed for four benchmarks, 227 mtrt, 202_jess, _222 mpegaudio, and _228_-
jack, while the others do not show any significant difference. Two of them, -201_com-
press and _209_db, have spiky profiles and only a few methods are heavily executed. Our
impact analysis could not find any good candidates for specialization among these hot
methods. In contrast, -213_javac and SPECjbb have many equally important methods,
and specializing only a few of them does not seem to provide any additional speedup.
The code size growth observed was approximately 7% to 30%. The increased code



60 CHAPTER 4. PROFILE-DIRECTED OPTIMIZATIONS

Table 4.2: Statistics of the number of methods and variables for specialization candidates and
those actually get specialized.

Program # of candidates # of specialized total L3

methods(L2/L3) | variables(L2/L3) | methods | variables | compiled
_227 mtrt 5/1 8/2 4 6 9
_202_jess 5/0 5/0 4 4 14
_201_compress 2/0 6/0 2 3 5
209_db 1/0 1/0 1 1 5
"222_mpegaudio 18/ 2 32 /7 14 26 23
228_jack 12/1 20 / 1 8 11 21
_213_javac 15/0 30/0 8 16 22
SPECjbb2000 23 /1 42 / 2 12 15 38

size for _209_db, _228_jack, and _213_javac seems to be excessively high relative to
the resulting performance gain. The hit ratio of specialized version code was quite high
overall, considering the fact that only a limited amount of data sampling is performed in
our instrumentation-based value profiling. This is because the variation of the data for
parameters or global variables is relatively small within a single benchmark.

Table 4.2 shows the statistics for the numbers of methods and variables for the code
specialization. The second and third columns are the specialization candidates shown in
the number of methods and variables for each L2 or L3 compiled code. The value profiling
is performed for these variables. The next two columns are the code specialization actually
applied among these candidates when they are recompiled with L3 optimization. The total
number of L3 compiled methods is in the last column. The table shows that except for
_201_compress and _209_db a fair number of methods and variables are specialized.

These results collectively show that the code specialization seems to have only a mod-
est impact on performance, at least for these benchmarks and with our implementation
strategy. This is especially true when considering the moderately complicated technique
that involves impact analysis, value profiling, and the specialization decision process. The
results seem to be a contrast to what has been reported with specialization in other lan-
guages. For example, the system with the alto optimizer for C programs [83] shows an av-
erage of 4.6% (14.1% maximum) performance benefit over 8 integer SPEC-95 benchmarks,
and the scheme in the Vortex compiler for Cecil [45] provides 20% to 100% improvement
over a CHA-based optimization system on four selected benchmark programs.

We can think of several reasons for the differences between these systems and ours
in the effectiveness of the code specialization. First, there may be problems in our im-
plementation strategy for the specialization. For example, the target of specialization is
the whole method, rather than a smaller region in the method, and this may make the
opportunities for specialization smaller, because only those variables that can be guarded
at the method entry are specialization candidates. If we move to specialization for a part
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of a method, a technique called method outlining (in contrast to method inlining) needs
to be explored to allow multiple versions of specialized code to be generated for that part
of the method. Also we currently limit the maximum number of level-3 recompilations to
three. This is related to the problem of specialization on the whole method, but the lack of
a code reclamation capability is another reason for this restriction. Second, the two cited
systems are both static compilers and the profile data is collected offline in a separate run.
Thus call graphs for the most profitable sets of specializations can be constructed. Our
system considers specialization individually within a single method. Third, Cecil is, like
Self, a pure object-oriented language, so all data are objects and message passing is the
only way to manipulate objects. This makes the overhead for dynamic method dispatch
very high within the system, and the specialization that converts dynamic calls to static
calls can be much more effective than in statically typed languages such as Java.

Overall, we need to investigate more deeply for a broader set of applications and
benchmarks regarding whether or not the code specialization for Java can be effective
in a dynamic optimization system. We should allow more aggressive code specialization
after implementing both the specialization on any region of a program and a code GC
mechanism.

4.5.4 Combination of Profile-Directed Optimizations

When enabling both the profile-directed inlining and the code specialization, the results
are even better for both performance and compilation overhead. The compilation over-
head is still held at a very low level, around 60% of the baseline for all three metrics,
because of the profile-directed inlining. For the performance, we can see the same level
of improvement that came from either of the two profile-directed optimizations, and in
some benchmarks such as 201_compress and 222 _mpegaudio, we see better results than
from applying the optimizations separately.

EDO is especially effective for -228_jack. This benchmark is known to frequently
raise exceptions during the program execution, and EDO seems to optimize the code
quite well by detecting some hot exception paths and by inlining the exception throwing
methods into their corresponding catching methods. This produces another version of the
code with additional inlining and can cause significant compilation overhead. The figure
shows, however, that the overhead is at a reasonable level, and by applying this technique
with profile-directed inlining, the total overhead can still be kept below the level of the
baseline configuration.

4.6 Summary

This chapter described the design and implementation of the profile-directed method
inlining and the dynamic code specialization. The profile-directed method inlining is
performed in level-2 and level-3 optimizations, while the code specialization is applied
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only at the highest optimization level. These techniques both exploit the dynamically
generated instrumentation mechanism for collecting runtime information, such as call site
distribution, parameter values, and global variable values.

The code specialization employs impact analysis to estimate the benefit of specializa-
tion and to decide for which variables the runtime information needs to be collected. The
results show that profile-directed inlining has the potential for significantly reducing the
compilation overhead, for improving performance, or both, compared to the static inlin-
ing heuristics. In contrast, the code specialization only produced modest performance
improvements for a few benchmark programs. This limited performance impact overall
may be due to our current design for code specialization, but needs to be investigated
further, especially to clarify the difference between Java and other languages and systems
that benefited more greatly from specialization.

In a dynamic compilation environment, we have to be very careful about perform-
ing any optimizations that can have significant impact on compilation overhead. We
demonstrated that the online profiling can provide useful information to guide inlining
and specialization opportunities only for those call sites or variables that can be expected
to produce performance improvements.



Chapter 5

Region-Based Compilation

5.1 Introduction

Method inlining and dataflow analysis are two major components for effective program
transformations at the higher optimization levels. However, methods often contain rarely
or never executed paths even in the selected hot methods, as shown in previous studies
[21, 114], and this can cause some adverse effects that reduce the effectiveness of these
optimizations. For example, method inlining can be restricted due to the excessive code
size caused by the rarely executed code in a target method. This is because dynamic
compilers usually manage the inlining process with a fixed budget using metrics such as
the estimated code size and the number of local variables in order to avoid an excessive
compile-time overhead and explosion in the code size. Some methods may include a
large amount of rarely executed code at the beginning, and this may prevent them from
being inlined at the corresponding call sites. Others can grow large from the cumulative
effects of sections of rare code after several stages of inlining, and this may prevent other
hot methods from being inlined. Also, dataflow analysis is often hindered by kill points
existing in those rarely executed paths, whose control flow may merge back to non-rare
paths, and this can prevent the propagation of accurate dataflow information on non-rare
paths.

The problem here lies in the fact that we implicitly assume methods are the units for
compilation. Even if we perform inline expansion, we either inline or do not inline the
entire body of a target method, regardless of the structure and dynamic behavior of the
target method. Method boundaries have been a convenient way to partition the process
of compilation, but methods are not necessarily the most suitable units for optimizations.
If we can eliminate from the compilation target those portions of the code that are rarely
or never executed, we can focus the optimization efforts only on non-rare paths. This
would make the optimization process both faster and more effective.

In this chapter, we describe the design and implementation of a region-based compi-
lation (RBC) technique in our dynamic optimization framework. In this framework, we
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no longer treat methods as the units of compilation, as in traditional method-based or
function-based compilation (FBC). Instead, we select only those portions that are iden-
tified as non-rare paths. The term region refers to a new compilation unit, which results
from collecting code from several methods of the original program but excludes all rarely
executed portions of these methods. Regions are inherently inter-procedural, rather than
intra-procedural, and thus the region selection needs to be interwoven with the method
inlining process. We also describe two RBC-related optimizations, partial escape analysis
and partial dead code elimination, which take advantage of the selected regions.

The notion of region-based compilation was first proposed by Hank et al. [56], as
a generalization of the profile-based trace selection approach [79]. They showed some
experimental evidence of the potential impact by allowing the compiler to repartition
the program into desirable compilation units. An improved region formation algorithm
was then proposed by combining region selection and the inlining process [111, 112].
The goal of this prior work was to expose as many scheduling and other optimization
opportunities as possible to an ILP static compiler without creating an excessively large
amount of code due to the aggressive inlining. In a dynamic compilation environment,
however, this technique is especially useful for several reasons. First, dynamic compilers
can take advantage of runtime profile information from currently executing code and use
this information for the region selection process. Second, they are very sensitive to the
compilation overhead, and this technique may significantly reduce the total compilation
time and code size. Third, they can avoid generating code for unselected regions until the
code is actually executed at runtime.

The key components for the RBC approach are region selection, partial inlining, and
the region exit handling. For region selection, we employ both static heuristics and
dynamic profiles to identify seed blocks of rare code and then propagate them to form
rare code sections. The region selection process and method inlining can affect each other,
in the sense that method inlining exposes new targets for region selection, and the region
selection process in turn conserves the inlining budget, allowing more methods to be
inlined. Thus the inlining process should be performed for parts of a method, not for the
entire body of the method. When the program attempts to exit from a region boundary at
runtime, we trigger recompilation and rely on on-stack replacement (OSR) [59], which is
a technique to dynamically replace a stack frame in one form with another form, in order
to continue the execution from the corresponding entry point in the recompiled code.

In the rest of this chapter, Section 5.2 first describes the existing RBC strategies from
three important perspectives relative to this new technique, and discusses the issues and
challenges for performing RBC in dynamic compilers. Section 5.3 then describes the
design and implementation strategy of our region-based compilation technique, includ-
ing intra-method region identification, partial inlining, and other optimization techniques
that are aware of region information. The region exit handling with the on-stack replace-
ment mechanism is also described for safely executing the exit path from the selected
region. Section 5.4 presents the experimental results on both performance and compi-
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lation overhead based on the actual implementation in our production-level Java JIT
compiler. Finally, Section 5.5 gives the summary of this chapter.

5.2 RBC Strategies and Issues

There have been several previous efforts involving region-based compilation and the re-
lated techniques that addressed the problem of rarely executed paths affecting optimiza-
tion opportunities. These systems range from static compilers and dynamic compilers to
dynamic binary optimizers. We can examine these systems from the three key aspects of
the technique — how the regions or the units of optimization are extracted, how the region
formation and method inlining interact, and how those unselected regions and the region
boundary points are handled. This section overviews the previous approaches for each
of these three aspects and discusses the issues and challenges when performing effective
RBC in the dynamic compilers.

5.2.1 Region Formation

The effectiveness of the region-based compilation largely depends on how the system
performs the region formation by extracting units of optimization that are more repre-
sentative of the dynamic behavior of the program than the original units partitioned by
method boundaries. Figure 5.1 shows an example of region formation by three systems,
a static compiler, a dynamic binary optimizer, and a dynamic compiler. The strategies
used by these systems are described below.

One strategy for region formation is the offline-profile-based approach. This approach
was used in a region-based compilation framework in [56, 55| for an ILP static compiler
in order to expose many interprocedural scheduling and optimization opportunities. The
region formation algorithm in this framework uses the following four steps, based on
execution frequency information being available for all blocks: 1) selection of the seed
basic block with the highest execution frequency, 2) region expansion to the successors of
the seed block based on the execution frequency, 3) region expansion to the predecessors
of the seed block (analogous to successors), and 4) region expansion to the successors of
all of the blocks in the seed path. The expansion of the region is halted by several factors,
such as the region size, the minimum acceptable execution frequency of the given block
relative to the seed block, and the presence of optimization hazards [57].

The last step of the above algorithm expands the region along multiple control flow
paths from a single trace of the control of the seed path. Thus the regions formed with
this algorithm contain a wider range of program fragments than simply selecting a single
trace at a time. The use of offline and complete profile information in this algorithm
provides compilation units that reflect the bias in the actual behavior of the program.
With this approach, the whole program can be partitioned into non-overlapping regions.
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Figure 5.1: An example of regions formed by a static compiler, dynamic optimizer, and dynamic
compiler. The shaded blocks in (a), C, F, and L, are assumed to be rarely executed. A static
compiler may obtain the offline collected profiles as shown in (b), and select a region excluding
the shaded blocks, assuming that method Y can be inlined into method X. A dynamic binary
optimizer may generate two traces as shown in (c), one for the inner loop and the other for the
outer loop. A dynamic compiler may remove the two rarely executed blocks from the compilation
target as shown in (d), again assuming that method Y can be inlined into method X.
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In Figure 5.1(b), the seed block K is selected first based on the profile information
available (we assume method Y is inlined into method X). From the seed block, the region
is then expanded to both successors and predecessors, resulting in the seed path A-B-D-
H-J-K-M-N-D-E-G. The block I is then added to the region as a frequent successor of the
seed path. The remaining shaded blocks C, F, and L are infrequent successors and thus
form separate single block regions.

Another strategy is the online-trace-based approach that is typically used in dynamic
binary optimization systems such as Dynamo [19], DynamoRIO [22], and Mojo [33]. These
systems take a native instruction stream as input, which comes from a statically optimized
binary, and reoptimize the code at runtime. When they identify a program hot trace as an
optimization target, they extract the frequently executed paths (traces) to form a single-
entry multiple-exit contiguous sequence as a unit for optimization. The online nature
of these systems, however, requires that the trace be identified quickly, or the overhead
of the system outweighs the benefit of the reoptimizations. For example, Dynamo [19]
employs a technique called NET (Next Executing Tail) [48] to minimize the total profiling
overhead. A counter is associated with each selected start-of-trace point, such as the target
address of a backward branch. If the counter exceeds a preset threshold value, the next
executing trace is assumed to be hot and is recorded as a target for performing dynamic
optimizations.

Figure 5.1(c) shows two separate traces selected with this approach. The first trace
starts from the inner loop entry and ends when it hits the backward branch. Note that
either block I or J can be included in one trace, even if both are executed frequently.
The second trace starts from the outer loop entry and ends when it hits the entry of the
already generated trace. The exit point of the second trace is linked to the entry of the
first trace.

In dynamic compilers, we cannot use either of these approaches for the following
reasons. First the offline-profile-based approach assumes that a complete profile that
covers all of the code within the target method is always available. It also implicitly
assumes that the profile incurs no runtime cost because it is collected during a separate
profile run. Neither of these assumptions is true with dynamic compilers. The profile
needs to be collected at runtime from the currently executing program. Also, no profile
information may be available for some parts of the target code, as described in the previous
section.

Second, the online-trace-based approach may cause relatively frequent region exits at
runtime, especially when the selected trace is hot but not a dominant one. That is, if there
are several different paths that are frequently executed equally, as in the case of blocks
I and J in the example, there will be no single dominant trace we can effectively pick
up for dynamic optimization. The frequent region exits are likely to lead to performance
degradation rather than improvement in the case of dynamic compilers.

This trace-based approach can certainly be effective for a system that dynamically
reoptimizes code on top of already (statically) optimized generic binaries, since the system
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Table 5.1: A summary of the region definition and region formation in three systems.

‘ System ‘ Region definition, formation, and handling of non-selected code ‘

Region is a program fragment (not a trace) that is identified as hot.
Static compiler Region formation is solely based on offline-collected profile.
Unselected blocks are separately compiled (cold) regions.

Dynamic binary Region is a single trace of control that is identified as hot.
optimizer Region formation is solely based on online profiling.
Unselected code is in an existing binary (and thus does not matter).

Region is a program fragment after removing rarely executed code.
Dynamic compiler | Region formation is based on heuristics combined with online profile.
Unselected blocks are not handled until being executed at runtime.

simply creates a specialized, reoptimized version for the fragment of the code, and the
original code exists when the control actually exits from the reoptimized code. This is
quite a different compilation model from our dynamic compilation environment. The cost
of handling the region exits can be significantly higher when the control escapes from the
regions, since we need to create the backup compiled code on the fly or execute with the
interpreter.

For the above reasons, some dynamic compilers use the strategy of removing rarely
executed code blocks based on some heuristics combined with available profile information,
and perform a very limited form of region-based compilation. For example, both SELF-
91 [29] and SELF-93 [59] systems employ a strong type prediction system and remove
the code blocks for messages sent to receiver classes that are predicted to be uncommon.
Similarly the HotSpot server [87] mainly focuses on the code of uncommon virtual method
targets and references to uninitialized classes, and avoids code generation for those code
blocks. The Jikes RVM [50] uses online profile information, in addition to class hierarchy
analysis, to identify and remove the rarely executed code blocks. This strategy generally
creates a more conservative region than the other two strategies described above.

In Figure 5.1(d), two blocks, F and L, that are never or rarely executed, are removed
from the compilation target (we again assume method Y can be inlined into method X).
The block C is not removed, since it is executed relatively infrequently but still quite a
few times. The compilation for the removed (unselected) blocks is deferred until they are
actually to be executed at runtime.

Table 5.1 summarizes the differences in the definition of a region and the strategy of
the region formation for these three systems.

5.2.2 Method Inlining

The interprocedural regions are the keys for region-based compilation to effectively ex-
pose optimization opportunities that are missed due to procedure boundaries. Thus it
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is important to see how the region formation and the method inlining processes interact
with each other.

Under the original framework of [56], the inlining process and the region formation
process were separate processes. The target program was first flattened with as much
inlining as possible, and the region formation was performed for the resulting code after
the inlining process. Since one of their motivations for the region-based compilation was
to create compilation units that are roughly similar in size, in contrast to the method-
based compilation units, this approach worked well by putting an upper bound on the
allowable region size.

However, this approach has the following problem. The amount of a priori inlining
performed may place an upper bound on the quality of the regions that can be extracted
and thus on the effectiveness of optimizations on those regions. In other words, if we want
to explore more effective regions, the inlining needs to be performed in an aggressive or
sometimes overly aggressive way to expose a larger scope of code for partitioning.

Way et al. [111] addressed this problem by extending the region formation algorithm
to make region-sensitive inlining decisions and to identify interprocedural regions. In the
improved algorithm, the inlining is not performed a priori, but it is interwoven with the
region formation process. When a call site is encountered as a most frequent successor
or predecessor of the seed block, the algorithm first determines whether the call site
is inlineable, and if so, it then continues forming regions within the target callee code.
Therefore, the inlining is driven by the demands made at call sites as a region is formed,
and the interprocedural regions are identified by having the region formation process cross
method boundaries. Because the inlining is performed for the target callee as part of the
region formation, this leads to the effect of partial inlining, making it easier and more
natural to achieve such partial inlining.

Procedure Boundary Elimination (PBE) [107, 106, 105] addressed the same problems,
but in a different way. PBE first unifies the whole program into a single compilation unit,
which they call the procedure unification process, and then repartitions the unified pro-
gram into compilation units suitable for optimizations. In the repartitioning phase, PBE
uses the same algorithm as the one originally used by Hank et al. [56]. The unification
is different from inlining in that it simply replaces all call and return instructions with
normal branch instructions, not with the procedure bodies, taking care of the parameter
passing and local variable renaming. PBE may effectively solve the problem of placing
an upper bound on the amount of inlining and the quality of the regions that can be
obtained, but this technique pays little concern to the compilation overhead caused by
handling the entire program through the procedure unification.

In a dynamic compilation environment, all of the existing systems perform method
inlining first, followed by region selection (removing rare code) as in the framework of
[56], and thus have the same problems described above. We cannot afford to perform
aggressive inlining for extracting better regions when there is a risk of causing excessive
compilation overhead and code size growth. It is better to perform partial inlining by
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Figure 5.2: An example of reconciliation and compensation code required between two regions.

integrating the method inlining and region formation processes.

With the online-trace-based approach [19], dynamic execution traces are by definition
contiguous instruction sequences that can extend across static program boundaries, and
thus can be part of a method or span multiple methods. This results in an effect similar
to partial inlining. In fact, one of the important optimization opportunities exploited in
these native-to-native binary optimizers is straightening the code by eliminating procedure
calls, returns, indirect branches, and so on. Note that the effect of inlining here is achieved
by extracting a runtime trace that crosses method boundaries existing within the already
compiled application binary. In contrast, partial inlining in static and dynamic compilers
is performed by repeated interaction between inlining a single method and applying region
selection to the method being inlined.

5.2.3 Region Exit Handling

As we saw when reviewing the region formation strategies in Section 5.2.1, a region (or
a trace) is an arbitrary fragment in the program selected as an appropriate compilation
unit. Differing from the method-based compilation units, where the procedure calling
convention defines clear interfaces at the boundaries, there may be any number of variables
that are live across each region’s entry and exit points. Since each region is separately
compiled, regions need to be reconciled at the boundaries by considering register allocation
and memory dependencies for those live variables.

In addition, some optimizations applied to the region may transform the code to re-
move redundancies or to replace instructions with more efficient operations. This requires,
however, that compensation code be generated at the region boundaries to compensate for
any effects of the optimization on outside regions and to ensure correctness when control
actually exits the region.
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Figure 5.2 shows an example of both reconciliation and compensation code required for
the region exit handling. The partial redundancy for the computation of x in the original
program (a) becomes fully redundant when two regions are formed and the region A is
compiled separately in (b). The redundancy elimination requires compensation code to
be generated along the region-exiting path, since the variable x is live at the boundary
and needs to be made available to the outside regions. Also, because of the separate
compilation for each region, agreement on which registers or memory locations the live
variables exist in is necessary between adjacent regions, another reason that reconciliation
code is required.

In a static compilation environment, such as the framework of [56], the compiler de-
termines the order in which the regions are compiled, organizing them from important,
potentially more frequently executed regions to less important regions. Both compensa-
tion code and reconciliation code are pushed into unprocessed regions. The region exit
conditions of register and stack location mappings for live local variables are propagated
from the current region into all subsequent regions, and this information is incorporated
in the compilation of the next region. The reconciliation code is generated to relocate the
live variables at the entry of the region. Thus, the code for a region boundary is generated
in the less frequently executed region.

In the dynamic binary optimizers, each exit of a newly formed region (trace) is linked
to an entry point of an already existing optimized trace. Most of the optimizations
performed involve redundancy removal operations (such as redundant branch elimination,
redundant load removal, and redundant assignment elimination). The compensation code
is generated at the bottom of the trace to incur the overhead only when control exits
from the trace (see the exit stub in Figure 5.1(c)). The optimizer preserves the original
register and stack location mappings, and therefore reconciliation code is not necessary.
Thus efficient execution crossing multiple traces can be performed with simple branch
instructions.

In dynamic compilers, we need both compensation code and reconciliation at region
boundaries. Unlike static compilers, however, we cannot push the code into unprocessed
regions, since they are not handled until they are actually being executed at runtime. The
compensation code is thus generated in specially generated blocks provided at region exit
paths. The reconciliation is performed by on-stack replacement (OSR) using the mapping
information for local variables provided at each exit point. There are three options for
handling region exits:

1. Simply fall back to the interpreter. This is the option taken by the HotSpot server
compiler [87] when class loading invalidates inlining or other optimization assump-
tions. This relies on the underlying recompilation system to promote the “decom-
piled” interpreted method once again, if required.

2. Drive recompilation with deoptimization. This is the policy used by the SELF-
93 system [59] and Jikes RVM [50]. The unoptimized code is generated at the
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first transition from the region, and used only for handling the transitions from the
optimized code, not for future invocations of the method. If the original optimization
assumptions turn out to be wrong and the rare cases happen frequently, then the
system reoptimizes the method to reflect the new reality, replacing the original code
for future invocations, by using the underlying recompilation system. Thus this
option can produce two additional versions of the code, the unoptimized code to
handle transitions and the reoptimized code to handle new invocations.

3. Drive recompilation with the same optimization level as that used for the original
code, but without region optimization. In this recompilation, inlining is performed
for the same call sites and for the same target methods as applied when compiling
the original region optimized version. Thus the recompiled version has all of the
entry points corresponding to region boundaries in the original version, and it is
used for both current transitions and future method invocations.

The mapping information we need to keep for restoring the state at the region bound-
ary should be basically the same for all three of these options, but the methods used to
reconstruct the new stack frame are different. In particular, the options (1) and (2) need
to create a set of stack frames according to the inlined context at the transition point,
while the option (3) simply creates a single new stack frame for the recompiled method.

There are both advantages and disadvantages for each of these three options, and
which option we should choose depends on the meaning of “rare code”. If we are very
conservative, saying that only extremely rare cases are rare,’ then the option (1) is prob-
ably the best choice, since the current version can still serve for future invocations and
it is only necessary to handle transitions that may happen very infrequently. However,
this means the compiler may miss some additional optimization opportunities for frequent
cases due to being too conservative. On the other hand, if we use an overly aggressive
strategy for optimizing away rare code, these cases will actually tend to occur frequently at
runtime, and for the sake of overall performance it may be better to replace the compiled
code as quickly as possible to avoid too many expensive OSR operations.

Ideally it might be better to choose from these options depending on the predicted ex-
ecution frequency for each region exit point. For example, we could use branch prediction
from the dynamic profile information.

5.3 Owur Approach

This section provides a detailed description of our region-based compilation technique
[100, 101]. Section 5.3.1 describes our design goals and the strategies when we modify

'We call this conservative since it removes less of the code from the compilation target. However, this
may lead to less effectively optimized code on the frequently executed paths. This can happen because
of inlining and dataflow analysis problems related to relatively infrequent code which is not “extremely
rare”.
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our dynamic compiler to perform the RBC optimizations. Section 5.3.2 describes the
intra-method region selection process using both static heuristics and dynamic profiles.
Section 5.3.3 shows how the region identification and method inlining are interrelated to
obtain more desirable targets as compilation units. Section 5.3.4 describes our implemen-
tation of OSR as support for handling region exit points, and Section 5.3.5 gives some
useful optimizations we implemented to exploit the characteristics of the target code in
the selected regions.

5.3.1 Design Goals and Strategy

Our region-based compilation approach assumes a multi-level dynamic optimization en-
vironment, with a lightweight mechanism for detecting and promoting hot methods to
higher levels of optimizations, as described in Section 3.2. Our RBC approach exploits
this framework to understand the dynamic profiles of the program and to provide bet-
ter optimization opportunities for the hottest methods. Our goals for the region-based
compilation approach are:

e Improve the application performance. Our primary goal is to improve the perfor-
mance in the application’s steady state by effectively exposing optimization oppor-
tunities through region selection. Method inlining and dataflow analyses are two
major areas where we can expect better optimizations.

e Reduce the total compilation overhead. The secondary goal is to reduce the total
compilation overhead (both time and space) by narrowing the compilation target
through effective region selection. The overhead here includes the costs for the
recompilations that can occur for handling region exits at runtime.

In order to achieve these goals, we use region-based compilation only in level-2 and
level-3 optimizations, using the rare code profile information collected from instrumenting
level-1 compiled code. Level-2 and level-3 optimizations are applied only on selected hot
methods, but they are a major part of the compilation overhead and have a large impact
on performance. Since level-1 optimization is designed to be very lightweight with limited
inlining applied, as described in Section 3.2, little benefit could be expected from region
selection at this level.

The following are the decisions used in our RBC implementation for the three key
design issues described in Section 5.2:

e We perform region selection by identifying never or rarely executed portions that
we can remove from the compilation target, as done in other dynamic compilers and
as discussed in Section 5.2.1. We use both static heuristics and dynamic profiles to
identify and eliminate rare sections of code.
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Figure 5.3: The high level view of our configuration with RBC-based optimizations. Both static
heuristics and dynamic information provided by the instrumenting profiler are used in the region
formation process. The numbers from (1) to (6) shown in the figure correspond to each step
described in the text.

e We allow method inlining and region selection to interact with each other to direct
the process of interprocedural region formation. We apply region selection for each
target method first within the inlining process, and then perform partial inlining,
only for the selected parts of the target rather than for the entire body of the
method. When making a decision on inlining the selected regions, we use the same
set of criteria and inlining budget as used in our system without RBC.

e For the region exit handling, we use the strategy of recompiling with the same
optimization level as that used for the target code, the option (3) in the list of
Section 5.2.3. This is because we apply RBC only at the higher optimization levels
(level-2 and level-3). Those methods where region exits occur are already known to
be hot and performance critical, and thus it could cause significant degradation of
the overall performance to deoptimize or decompile those methods. We assume there
is no significant difference in the status of class resolution and class hierarchy for the
recompilation to have the same inlining scope for generating all of the corresponding
entry points.

Figure 5.3 shows a high-level view of the configuration, indicating how a method is
RBC optimized and then how the region exit handling is processed for that method. The
details are described here:

1. Execution begins with the MMI. The MMI selects a hot method based on the
invocation frequency to generate level-1 compiled code. The RBC optimization is



5.3.

OUR APPROACH 75

not applied during the level-1 compilations. The instrumentation code for profiling
is generated in the code, but left disabled.

. When a level-1 compiled method is selected for higher optimizations (level-2 or

level-3), the recompilation controller directs the instrumenting profiler to enable
the instrumentation code for this method. The profiler disables the profiling when
enough samples have been collected.

. The controller then drives recompilation for this method at either level-2 or level-3,

depending on the hotness level. The RBC optimization is applied at this time using
static heuristics and the profile data provided by the instrumenting profiler.

. The level-2 or level-3 RBC-optimized code is generated. If the code is level-2, it may

be promoted to level-3 by the sampling profiler. In that case, the RBC optimization
is applied again using the same profile data (not shown in Figure 5.3). As long as
the execution stays within the selected region, the next two steps do not occur.

. When the control exits from the selected region of the RBC-optimized code, the

region exit handler forces recompilation to generate new code for the target method.
The code is optimized at the same level as the level of the RBC-optimized code, but
RBC optimization is not used in the recompilation. The new code includes all of
the entry points for transitions. This step is done only for the first region exit from
the RBC-optimized code block.

The region exit handler then uses on-stack replacement to seamlessly continue the
execution from the corresponding entry point in the new code.

5.3.2 Intra-Method Region Selection

Our intra-method region selection algorithm is shown in Figure 5.4. We assume each
method is represented as a control flow graph (CFG) at this point with a single entry
block and a single exit block. In the algorithm, Gen represents a 2-bit flag for the rare or
non-rare for the seed basic blocks, and In and Out indicate the flag at the entry and exit
of each basic block, respectively.

The algorithm begins by marking the Gen flag to seed basic blocks by employing both

heuristics and dynamic profile results. We currently use the following heuristics.

A backup block generated by compiler versioning optimization (such as devirtual-
ization of method invocation) is rare.

A block that ends with an exception-throwing instruction (OPC_ATHRQOW) is rare.
An exception handler block is rare.

A block containing unresolved or uninitialized class references is rare.

A block that ends with a normal return instruction is non-rare.
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1: procedure RegionSelection (M)

2: Input: target_method M

3: Output: target method M’ after removing rare blocks

4:

5: Rare, NonRare: a bit representation, 10 and 01, respectively

6: In, Out, Gen: a 2-bit flag for each basic block and initialized with zero
7:

8: /* initialization phase (set flag for seed blocks) */

9: for each basic block bb in any order {

10: /* mark Gen flag based on heuristics */

11: if (matched to static heuristics) {

12: Gen(bb) = Rare or Gen(bb) = NonRare;

13: }

14: /* mark Gen flag based on profile information (overriding heuristics) */
15: if (profile_info_available(bb)) {

16: if (profile_count(bb) == 0) {

17: Gen(bb) = Rare;

18: } else if (profile_count(bb) > threshold) {

19: Gen(bb) = NonRare;
20: }
21: }
22: }
23:
24: /% iteration phase (grow rare and non-rare regions) */
25: do {
26: changed = false;
27 for each basic block bb in reverse post order {
28: /* compute Out flag from all successors’ In flag */
29: Out (bb) = Union of In(succ(bb)) for all successors of bb;
30: if (Out(bb) & NonRare) {
31: /* unmark Rare since at least one successor is marked NonRare */
32: Out (bb) = NonRare;
33: }
34: /* select either Gen or Out flag and then update In flag */
35: temp = (Gen(bb) == 0) 7 Out(bb) : Gen(bb);
36: if (temp '= In(bb)) {
37: In(bb) = temp;
38: /* need to iterate further */
39: changed = true;
40: b
41: }
42: } while (!changed)
43:

Figure 5.4: Algorithm for intra-method region selection (1 of 2). It first selects seed blocks
based on both heuristics and profile results, and then propagates the flags along the backward
data flow.
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44: /* final phase (remove basic blocks marked rare) */
45: perform live variable analysis over the current method M;
46: for each basic block bb in depth first order {

47: for each successor succ-bb of bb {

48: if (In(bb) == NonRare && In(succ-bb) == Rare) {

49: /* found a boundary from a non-rare block to a rare block */
50: new-bb = create a new basic block as RE-BB;

51: new-inst = create a special instruction in new-bb;

52: operand(new-inst) = set all live variables at succ-bb entry;
53: for each predecessor pred-bb of succ-bb {

54: remove an outgoing edge to succ-bb;

55: create an outgoing edge to new-bb;

56: }

57: }

58: }

59: }

Figure 5.4: Algorithm for intra-method region selection (2 of 2). In the final phase, it detects
a transition point from non-rare to rare, and replaces the rare block with a new basic block
containing a special instruction.

The first heuristic above is the same as trusting the compiler’s assessments of which
blocks of the versioned code are executed most frequently. The second and third heuristics
are based on the general observation that exception operations are extremely rare in Java
programs. The fourth heuristic for unresolved and uninitialized class references is from
the fact that the block containing such references cannot have been executed through the
MMI and level-1 compiled code. Finally, we treat all return instructions as the places
where the control normally exits from methods.

If dynamic profile information is available and it shows that a block was never executed,
then we mark that block as rare. If the profile count value is above a predetermined
threshold, the block is marked as non-rare. The dynamic profile information is given
priority when there are conflicts with the static heuristics.

In the iteration phase, we propagate this information along the backward dataflow
until it converges for all of the basic blocks. The Out flag of a basic block is marked
non-rare if any of the successor’s In flags is marked non-rare. If no successor has an In
flag marked non-rare and any one of the successors has a rare In flag, then the Out flag
of the basic block is marked rare. If there is a conflict for rare or non-rare between the
Gen flag and the Out flag of a basic block, the Gen flag is selected to propagate further.
Thus a region of rare code can grow backwards until it encounters a non-rare path, or a
statically identified rare region can be blocked from growing by a profile-based non-rare
block along its path. When converged, the rare regions should have reached the points
where the branches are expected to be rarely taken from the non-rare paths. The In flag
indicates the result of rare or non-rare for each basic block.

In the final phase, live variable analysis is performed first for the given method. This
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public void foo () {
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Figure 5.5: An example of intra-method region selection, showing (a) a Java pseudocode pro-
gram, (b) the control flow graph with markings on some seed blocks, (c) the graph after complet-
ing the iteration phase of the algorithm, resulting in all blocks marked either rare or non-rare,
and (d) the graph after removing the rare blocks and providing the region-exit basic blocks
(RE-BBs) containing all of the live variable information.
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is to find the set of live variables at the entry of each basic block before removing the
rare blocks from the control flow graph. We then traverse the basic blocks to determine
the transition points from a non-rare block to a rare block, and generate a new region
exit basic block (RE-BB) for each boundary. This new RE-BB contains a single special
instruction, called OPC_RECOMPILE, which holds all of the live variables for the rare block
as its operands. When executed, this instruction calls a runtime routine that triggers
recompilation if required and then performs OSR. Finally, we remove all the existing
control flow edges going to the rare block, and create the corresponding edges from the
same source blocks into the new RE-BB. This means that all of the rare blocks that
originally existed following the boundary point are no longer reachable from the top of
the method and thus can be eliminated in the succeeding control flow cleanup phase.

Figure 5.5 shows an example of the intra-method region selection. For the original
program (a), the control flow graph is shown in (b) with markings on some seed blocks
based on both heuristics and profile results. The heuristics used are for a block ending with
an exception-throwing instruction, blocks within the exception handler, a block containing
an uninitialized class reference instruction, and for blocks ending with a normal return
instruction. These rare or non-rare flags in the seed blocks are then propagated along
the backward dataflow path, resulting in the final state shown in (c). Finally, (d) shows
the pruned control flow graph after the rare regions are replaced by the RE-BBs at each
boundary point.

5.3.3 Partial Inlining

Partial inlining begins by performing region selection for the given target method as shown
in Figure 5.6. The inliner then builds a call tree? for the possible inlined scopes from this
target method based on the allowable call tree depths and callee method sizes. Thus,
the initial call tree indicates a larger scope of inlining than that which can actually be
performed within the inlining budget.

The actual inlining pass iterates over each call edge of the call tree and checks each
individual decision for inlining against the total cost. Specifically, the inliner tries to
greedily incorporate as many methods as possible using static heuristics until the pre-
determined budget is used up. Tiny methods are always inlined without qualification
[99]. Otherwise the target method is first processed by region selection, and then it is
determined whether or not the method is inlineable based on this reduced code size. If
inlineable, the inlining is performed only for the non-rare part of the code, and the current
cost is updated with the reduced size of the method.

An important part of this process is to update the live variable information in each
special instruction provided in the RE-BB for the method being inlined. There are two
things that need to be done. One is to rename those live variables by reflecting the

2Since we apply method inlining differently depending on the call context (such as for a call site within
a loop or outside of a loop), this structure needs to indicate call-site-specific information.
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1: procedure PartialInline (R, B)

2: Input: target_method R, inlining_budget B

3: Output: compilation unit (selected region) for R after inlining
4:

5: /* setup for the target method */

6: R’ = RegionSelection (R);

7: construct a (possibly large) call_tree T rooted from R’;
8: set current_cost C = 0;

9:

10: /% actual inlining pass */

11: do {

12: select an unprocessed call edge E in call_tree T;
13: M = callee method of E;

14: if (is_tiny(M)) {

15: /* tiny methods are always inlined */

16: perform inlining M into R’;

17: } else if (C < B) {

18: /* decision is made after region selection */
19: M’ = RegionSelection (M);
20: if (inlinable(M’)) {
21: perform inlining M’ into R’;
22: update live information for each RE-BB in M’;
23: C += cost(M’);
24 : }
25: }
26: if (inline performed) {
27: update call_tree T
28: }
29: } while (an unprocessed call edge exists in T)

Figure 5.6: Algorithm for interaction of intra-method region selection and inlining process,
leading to partial inlining.

mapping into the caller’s context, just like other local variable conversions when inlined.
The other is to add the live variables at the call site to reflect the complete set of live
variables at each region exit point. This operation is necessary to automatically hide
the effect of later optimizations such as copy propagation, constant propagation, and any
other program transformations.

When the inlining has been performed on a method during an iteration, the call tree is
then updated in order to encompass the new candidates exposed within the inlined code.
This is because the devirtualization of the dynamically dispatched call sites is performed
after the caller method has actually been inlined.

The direct advantages of the partial inlining in our framework are twofold:

e Since we first remove the rarely executed paths before trying to find the next inlining
candidate, we never inline methods at call sites within rare portions of code, since
they are no longer included in the current scope. This avoids performing inlining at
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performance-insensitive call sites and can conserve the inlining budget.

e Methods being inlined are first processed through intra-method region selection
before actual inlining. Inlining is considered and carried out against the reduced
target code after removing the rare portions of the code, and this contributes to
conserving the inlining budget.

Assuming the given set of criteria for method inlining is reasonable and thus fixed, we
can then use the saved budget from the above steps and try to inline other methods in the
call tree, which is expected to be more effective and can contribute to further improving
performance. Other indirect benefits due to partial inlining include that 1) instruction
cache locality can be improved since non-rare parts of the code tend to be better packed
into the same compilation unit, and 2) later optimizations in the compilation process can
be more effective with increased optimization scope.

5.3.4 Region Exit Handling

As described in Section 5.3.2, we provide an OPC_RECOMPILE instruction at each region
exit point. This is a first-class operator in our compiler’s intermediate representation,
as in the previous implementation of OSR [50, 114]. We keep all live variables at that
program point in the given bytecode sequence as operands of this special operator for
both local and stack variables. This is done at a very early stage in the compilation, so
that any optimizations in later phases can rely on the use of those variables across each
region exit boundary for each valid transformation. At the final stage of the compilation,
we create a map at each region exit point indicating the final locations of those variables
within the stack frame. This is similar to the region exit condition shown in Figure 5.2.
The map includes other information for performing frame conversion, such as frame size
and the callee-saved registers.

Figure 5.7 illustrates how a transition from RBC-optimized code to recompiled code is
handled, using the same example method shown in Figure 5.5. The numbers in the figure
indicate the sequential steps of handling the region exit process. When the OPC_RECOMPILE
instruction is executed at one of the region exit points within the method, the region exit
handler is called (Step 1). If this region exit event is the first one for the method, the
handler drives recompilation for this method to create the code that contains the whole
body of the method (Step 2). As mentioned in Section 5.3.1, we perform the recompilation
with the same optimization level as that used for compiling the current RBC-optimized
code, but at this time do not apply the RBC optimization to avoid recursive recompilation.
This recompiled version prepares all of the entry points within the method for possible
future transitions, not just the entry point for the current transition, as shown in the
figure.?

3This means the compilation target must include the complete body of the inlined methods that the
original code included. This may result in an excessively large compilation target in a pathological case,
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Figure 5.7: An example of transitions from RBC-optimized code to recompiled code. The
numbers in parentheses indicate the steps (described in detail in the text) to be followed when
a region exit event occurs.

Next, the region exit handler performs OSR to dynamically reconstruct the frame
using the maps of both the source and the destination points (Step 3). All registers
holding live variables are first spilled out into the stack frame. The handler then sets
up new callee save registers, reorders the live local and stack variables, and adjusts the
size of the frame, all based on the information contained in the maps. One convenient
optimization here is that when the source and destination stack frames turn out to be the
same shape (i.e. the corresponding map information is the same) in the first OSR event
for each region exit point, then we can patch the instruction at the region exit point with
an unconditional jump instruction directly into the corresponding entry point, so that we
can skip the expensive OSR operation from the next time. After performing the OSR,
the region exit handler transfers the control to the instructions at the region entry point

because we may have aggressively inlined methods using partial inlining for producing RBC-optimized
code. We have not actually encountered this problem, but we can work around this situation in sev-
eral ways (though we have not implemented them), such as 1) including only the region exit point for
the current transition, 2) not applying inlining to all methods but dividing them into several units for
recompilation, or 3) reverting back to the interpreter.
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(Step 4).

The final step (Step 5) is to determine whether or not we should switch from the
RBC-optimized version to the new recompiled version for the future invocations of this
method. Since our region selection is inevitably speculative (based on static heuristics and
incomplete dynamic profiles), it is possible that the assumptions for RBC optimization
at compile time fail and control frequently exits from certain region boundary points.
However, if the frequency is small enough, we want the original RBC version to still serve
for future invocations since it is likely to be better optimized. Thus, we provide a counter
for each RBC version to count the number of actual OSR events that occurred from the
given method. Initially the recompiled version is used for the region exit transitions only,
not for future invocations. If the OSR counter exceeds a certain threshold, we conclude
that our speculative region selection did not work well for this method, and redirect the
control of all future invocations into the recompiled version.

5.3.5 Region Optimizations

All of the analyses and optimizations that follow the region formation phase can proceed
normally. Since there are no longer any merge points from the rare code to the non-rare
code, the dataflow optimizations should be able to work more effectively for program
transformations. The operands in the special instruction OPC_RECOMPILE provided in
the RE-BB are all live variables at each region exit point, and they work as anchors
to preserve the necessary variables through any optimizations. These operands may be
renamed to other variables or replaced by constants during the optimization phases such
as constant propagation and copy propagation. The RE-BB serves as a placeholder for
any optimizations that require generating compensation code for an exiting path.

Thus most of the existing dataflow optimizations can proceed effectively and safely
without any special treatment for the selected region, but there are some special opti-
mizations that can take advantage of the region by making them aware of the region
exit points. Examples include our implementations of partial dead code elimination and
partial escape analysis, as described in [114].

Partial dead code elimination

We have to keep all live variables (both local and stack) in the bytecode-level code at each
RE-BB to be able to restore the state correctly when a region exit occurs at runtime. This
means the live range of some of those variables becomes larger than in the FBC approach.
For example, in the example program shown in Figure 5.8(a), the second reference to
variables a and b for defining y will be eliminated by applying common subexpression
elimination in the FBC, and thus the live range for a and b will be terminated at the
statement in the first block. In the RBC shown in Figure 5.8(b), however, these variables
have to be passed on region exit because they are used in the bytecode-level code. This
live range problem in the RBC will be expressed in the final code as increased register
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Figure 5.8: An example of partial dead code elimination. The computations, whose defined
variables are included in the live set from the RE-BBs but not in the set from the other non-rare
path, are moved and copied into both the RE-BB and the non-rare path. The copy in the
non-rare path is then eliminated in the following dead code elimination phase.

pressure, extra instructions to spill into memory in the non-rare paths, and larger frame
sizes.

Partial dead code elimination [74] can partly alleviate this negative effect of the RBC
by eliminating the computations on non-rare paths. Our implementation of partial dead
code elimination is a simple code motion followed by dead code elimination. We maintain
two sets of live variables, one from the RE-BBs and the other from the non-rare paths.
Using a standard code motion algorithm, we move the computations whose defined vari-
ables are included in the set from the RE-BBs but not included in the other set. The
computations are copied once into both the appropriate RE-BB and the non-rare path in
the other branch direction, but the copy in the non-rare path can then be eliminated in
the following dead code elimination phase. In the example of Figure 5.8(b), the compu-
tations with the variables a and b no longer exist along the non-rare paths, differing from
the FBC case, where they must be retained.

Partial escape analysis

Escape analysis as applied to stack object allocation, scalar replacement, and synchro-
nization elimination is very effective for improving performance. However, quite often this
optimization suffers from the fact that objects escape from only rarely executed code, es-
pecially from the backup path of a devirtualized method call, as shown in Figure 5.9(a).
Thus its effectiveness with the FBC approach has been limited in practice.

In the region-based compilation, we can analyze more objects as non-escaping by
focusing only on the non-rare paths in the target code. To do this, the escape analysis
simply ignores region exit points. Any optimization based on this analysis is legal as long
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Figure 5.9: An example of partial escape analysis. In the original program (a), the object o is
escaping and cannot be optimized. In (b), we ignore the RE-BB for the analysis and the object
allocation is optimized (stack allocated). Compensation code is generated to allocate the object
in heap space on the region-exiting path.

as the execution stays within the selected region at runtime. Thus, the object allocation
in the example program can be optimized (stack allocated) along the non-rare paths as
shown in Figure 5.9(b).

We need to generate compensation code for this optimization on region-exiting paths.
In the final stage of the analysis, we check each of the objects identified as stack allocate-
able or as replaced by scalar variables to see whether the object is one of the live variables
at each region exit point (as listed in the operands of the OPC_RECOMPILE instruction). If
the object is live, we insert a special OPC_STACK2HEAP instruction in the RE-BB immedi-
ately before the OPC_RECOMPILE as shown in Figure 5.9(b). When executed, this special
instruction calls a runtime module that does the following:

— allocates the object on the heap and does its initialization,

— copies the object content from stack to heap or copies the scalar-replaced variables
to heap,

— updates the location of the object reference, if the object is referred to among the
other objects, and

— synchronizes the allocated object, if that operation has been eliminated in the
non-rare paths but is necessary at the exit point.

Our escape analysis is based on the algorithm described in [117]. This is a composi-
tional analysis designed to analyze each method independently and to produce a param-
eterized analysis summary result that can be used at all of the call sites that may invoke
the method. Without the summary result, the analysis has to treat all the arguments
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Table 5.2: Additional benchmark used for RBC evaluation: Java Grande Section 3

‘ Program ’ Description ‘
Euler Computational fluid dynamics
Molydyn (md) Molecular dynamics simulation

Montecarlo (mc) | A financial simulation using Monte Carlo method
Raytracer (ray) | 3D ray tracer
Search Alpha-beta pruned search

as escaping at the given call sites. Hence the analysis result can be more precise and
complete as more of the invoked methods are analyzed.

However, if an argument of object type is included in the list of live variables at any
region exit point within the method, we suppress the generation of the summary results.
This is because the escape analysis is based on the optimistic assumption of ignoring rare
regions. We may create an optimistic summary result in which an object given as an
argument is non-escaping within the method, although the object can actually escape
from a region exit point. This poses a problem, since the analysis of its caller methods
using such optimistic summary results is also optimistic. When the execution exits from a
region boundary in a method, we would have to recompile not only the current method but
all of the caller methods that used the optimistic summary results directly or indirectly.

5.4 Experimental Evaluation

This section presents some experimental results showing the effectiveness of the RBC in
our dynamic compilation system.

5.4.1 Methodology

All of the measurement conditions are basically the same as those described in Sec-
tion 3.4.1. We used the same applications and benchmarks shown in Table 3.1 and
Table 3.2, but in order to evaluate for a broader set of Java programs, we added Java
Grande Section 3 from [68] as described in Table 5.2. We ran each test of the Java Grande
benchmark separately with the “Size B” problem (large data set), and with the initial
and maximum heap sizes of 512 MB. Unlike SPECjvm98, this benchmark includes the
JIT compilation time in the execution time.

The number of samples to be collected in the instrumentation-based profiler was set to
10,000. The threshold for the number of OSRs to redirect the future method invocations
to recompiled code was set to 10. This threshold was determined to be at most about 1%
of the method invocation count.

As in previous chapters, we compared both performance and compilation overhead
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(measured in compilation time, compiled code size, and compile time peak memory use)
of our RBC approach against the conventional FBC approach. We used the dynamic
optimization framework described in Chapter 3, but for the Java Grande and the start-up
applications we ran them with the configuration of MMI and level-3 compilation, instead
of the multi-level compilation scheme, in order to apply RBC to more of the methods in
the program execution. That is, the upgrade recompilation was not enabled, and thus
the profile information on level-1 compiled code is not available. We applied RBC using
only the static heuristics for these benchmarks.

In our current implementation of partial inlining, we perform region selection for an
inlining target method and estimate the cost for the reduced target code, but temporarily
inline the entire body of the method. The rare portion of the code identified in the region
selection is removed immediately after this inlining process. This should not greatly affect
the compilation time or the code size, but the compile-time peak work memory usage will
be larger than it should be with an optimized implementation.

5.4.2 Statistics

Table 5.3 and Table 5.4 show the statistics when running the benchmarks with RBC. The
second to fourth rows are execution and compilation statistics, showing the total number
of methods executed for each test, the total combined number for methods compiled at
level-2 or level-3, and the total number of RBC-optimized methods, respectively.* These
numbers include methods from the required library routines as well as from the benchmark
or the application itself. The level-2 and level-3 compiled methods in the third row are
the targets for RBC optimizations, out of which the fourth row shows the actual number
of methods where rare regions were identified and where the RBC optimizations were
performed.” Both the third and fourth rows include the percentage of the level-2/3-
compiled methods over the total number of methods executed, and the percentages of
the RBC-optimized methods compared to the number of level-2/3-methods, respectively.
Each compilation unit forms a single region in our RBC approach, and thus the number
of RBC-optimized methods corresponds to the number of regions formed.

The next five rows show the breakdown of the region exit points classified with each
rare type, based on the profile results or heuristics, for the RBC-optimized methods. In
other words, these rows show how the rare regions were identified and removed in the
region selection process for the methods shown in the fourth row. An RBC-optimized
method generally has several region exit points, and these numbers give a cumulative
picture of how the methods were RBC optimized. The last three rows show the number
of recompiled methods due to region exits (with the percentages of the RBC-optimized

4We count only the methods directly driven to compilation, and do not include the methods inlined
into the caller methods.

5The numbers in the fourth row represent subsets of the numbers in the third row. All of the third
row methods were selected by the sampling profiler, but only some of those methods (counted in the
fourth row) were found to have rare regions for RBC optimization.
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Table 5.3: Statistics of the region-based compilation for SPEC benchmark runs. The top three
rows are execution and compilation statistics, the middle five rows show how rare regions are
identified in the RBC-optimized methods, and the bottom three show the runtime behavior for
recompilations and OSRs.

‘ Benchmarks ‘ mtrt ‘ jess ‘ comp | db ‘ mpeg ‘ jack ‘ javac ‘ jbb ‘
Total executed methods 455 | 734 325 | 321 495 | 561 | 1085 | 2818
L-2/3 compiled methods 33| 41 7 7 56 81 157 | 166
(% to total methods) 73| 5.6 22| 22| 113|144 | 145 5.9
RBC optimized methods 28 22 1 6 19 58 101 | 123
(% to L-2/3 methods) 84.8 | 53.7 | 143 | 8.7 | 339 | 71.6 | 64.3 | 74.1
Profile-based rare path 3 12 1 7 2 7 14 35

Devirtualized backup path | 483 36 0 19 16 | 136 644 | 1244
Exception throwing path 19 22 0 7 33| 114 169 | 171
Exception handler block 2 3 0 6 0 69 54 96
Uninitialized code path 0 0 0 0 0 1 0 4
Recompiled methods 0 0 0 0 1 9 4 1
(% to RBC opt. methods) 0.0 0.0 0.0 0.0 5.3 | 15.5 4.0 0.8
Region exited points 0 0 0 0 1 10 4 1
(OSR skipped points) ) ©) Ol 6O O @] @]
Number of OSR events 0 0 0 0 6 52 34 10

Table 5.4: Statistics of the region-based compilation for Java Grande and other benchmark
runs. These benchmarks were run with the configuration of MMI and level-3 compilation, and
thus the profile information for rare region identification was not available.

‘ Benchmarks ‘ euler ’ md ‘ mc ‘ ray ‘ search ‘ taro ‘ j2d ’ swing ‘ was ‘
Total executed methods 616 | 726 | 745 | 670 636 | 7398 | 7365 | 7298 | 17204
L-2/3 compiled methods 49 30 | 105 39 28 | 515 | 1157 870 | 1451
(% to total methods) 80| 41141 5.8 4.4 7.0 | 15.7 11.9 8.4
RBC optimized methods 23 12 46 12 11| 231 | 390 335 610
(% to L-2/3 methods) 46.9 | 40.0 | 43.8 | 30.8 39.3 | 449 | 33.7| 385 42.0
Profile-based rare path 0 0 0 0 0 0 0 0 0
Devirtualized backup path 10 2 52 2 2| 457 | 836 706 | 2083
Exception throwing path 48 23 98 26 23 | 522 | 507 496 725
Exception handler block 3 2 10 2 2| 258 | 241 231 324
Uninitialized code path 0 0 0 0 0 0 2 0 34
Recompiled methods 1 0 0 0 0 12 9 13 24
(% to RBC opt. methods) 431 00| 00| 0.0 00| 52| 23 3.9 3.9
Region exited points 1 0 0 0 0 12 9 12 24
(OSR skipped points) O] O 6] ) | G W] (© ] (10
Number of OSR events 11 0 0 0 0 63 59 73 164
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methods), the number of region exit points where control actually escaped at runtime
(including the number of points OSR skipped due to the stack frame layout being the
same), and the total number of OSR events that occurred, respectively.

Except for _201_compress, quite a few methods were optimized with RBC. The num-
ber was roughly in the range of 40% to 80% of the level-2 and level-3 compiled methods,
showing that many benchmarks and applications do contain rare regions even in hot
methods and we can use some optimizations for these methods. A backup path for a de-
virtualized method invocation is the most common kind of rare region identified, followed
by an exception-throwing path. The majority of rare regions were identified on the ba-
sis of the static heuristics, and the numbers of profile-identified rare paths were relatively
small. This is because profile results are not always available for RBC optimization target
methods as described in Section 3.3.3, and because we remain conservative when work-
ing from the profile results, considering the fact that our profiles are based on samples
collected for short intervals of program execution.

The numbers of recompiled methods and OSRs is relatively large in 228_jack, 213 -
javac, and the applications shown in the last four columns in Table 5.4, in comparison
to the other benchmarks. The _228_jack and _213_javac benchmarks are known to
frequently raise exceptions during program execution, and control exited from certain
exception-throwing paths we had presumed to be rare and which we had removed from
the compilation target. For the startup applications, many of the speculative region
selections turned out to be invalid because of the dynamic class loading activity during
the startup runs. This suggests that the RBC optimization should be performed after
the program enters a steady state with a stable working set. However, the number of
recompiled methods for these benchmarks was still kept within a reasonable level of the
percentage of the total number of the RBC-optimized methods, up to 15% for _228_-
jack and around 2% to 5% for some others. The number of OSRs is well constrained,
owing to the mechanism of dynamic OSR counting and the control of future invocations
for the recompiled methods based on those counts. The optimization of skipping the
OSR operation was applied to about one-third to a half of the region exit points where
the control actually escaped. As described in Section 5.3.4, this optimization can be
performed when the source and destination stack frames turn out to be the same shape.
The region exits through the direct jump after this optimization was performed are not
included in the number of OSR events. The other benchmarks show none or very small
numbers of recompilations and OSRs.

5.4.3 Performance

Figure 5.10(a) shows the performance improvements with RBC over the conventional FBC
approach. We took the best time from 10 repetitive autoruns for each test in SPECjvm98,
and the best throughput from a series of successive executions from 1 to 8 warehouses
for SPECjbb2000. We took the self-reported score for the Java Grande benchmarks, and
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measured the time as described in the previous section for the rest of the benchmarks.
The figure shows that RBC performs significantly better than FBC for some benchmarks,
with a 24% improvement for _227 mtrt, and 4% to 8% improvements for some others.

The majority of the performance gain for 227 mtrt comes from the elimination of
backup paths for devirtualized method calls and their exploitation by the partial escape
analysis. Mtrt has many virtual method invocations, most of which are devirtualized and
the target methods are inlined. These methods are never overridden and retaining the
backup paths for dynamic class loading does nothing but prevent the escape analysis from
working well. However, simply removing the backup paths as a part of region selection
does not solve this problem. Without partial escape analysis, the performance actually
degrades, because the escape analysis now has to treat region exit points as globally
escaping points for all live variables, not only for the variables passed as arguments in
the original virtual invocation call sites. As a result, more objects will be analyzed as
escaping, and the number of captured objects that are allocated on stack or replaced with
scalar variables will be decreased.

The partial inlining contributes to a significant improvement for some other SPEC
benchmarks, especially for 202_jess and _228_jack. For example, the large perfor-
mance improvement in _228_jack results from the additional inlining performed in the
partial inlining process which then allows the escape analysis to recognize some frequently
allocated objects as captured and makes those objects stack allocated in one of the core
methods of the benchmark. This is a good example of the indirect effect of partial inlining.

For the Java Grande benchmarks, the performance improvement with the RBC ap-
proach is not very significant, except for Search. These benchmarks were not identi-
fied as having sufficiently large rare regions by the region selection process, as shown
in Section 5.4.2. This makes the partial inlining ineffective for producing performance
differences.

The performance of the application startup consistently improves in the 4% to 8%
range. In contrast to the Java Grande benchmarks, we found a considerable number of
rare regions were identified in these applications to use the RBC optimizations. On the
other hand, we also had relatively higher numbers of recompilations and OSR events due
to region exit, as shown in Section 5.4.2. Since these events are during the application
startup, it is expected that we will have a higher failure rate of speculative optimizations
than in the steady state. Nevertheless, we observed consistent performance improvements.

To assess the time to reach steady state performance, we rely on the underlying recom-
pilation system to identify the performance-critical hot methods and to promote them to
higher optimization levels, where we can then apply RBC optimization. Thus the time to
reach steady state performance is basically the same with and without RBC optimization,
except that some RBC-optimized methods are recompiled upon region exit.
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5.4.4 Compilation Overhead

Figure 5.10, parts (b) to (d) shows the ratios of compilation overhead for RBC over FBC
using three metrics: the compilation time, the compiled code size, and the compilation
time peak work memory usage. Smaller bars mean better scores in these figures. We
measured only level-2 and level-3 overhead, since level-1 is shared between the RBC and
FBC configurations. All these figures for RBC include additional overhead that results
from the recompilations due to region exits occurring at runtime. The peak memory usage
is the maximum amount of memory allocated for compiling methods, including the space
for constructing call trees for method inlining. Since our memory management routine
allocates and frees memory in 1 Mbyte blocks, this large granularity masks the minor
differences in memory usage and causes the results of the (d) figure to form clusters.

The reduction in compilation time is up to 40% for db, and on average slightly below
20%. Overall, the SPEC benchmarks show relatively better reduction ratios than the
other benchmarks. All of the Java Grande benchmarks show very small reductions (less
than 10%) due to the small sizes of the rare regions identified in the region selection
process. The reductions for the startup applications are between 10% and 20%.

The reduction of compiled code size is relatively larger but shows tendencies similar
to those of the compilation time. In particular, the reduction exceeds 60% for 202_jess
and _209_db, and is between 20% and 40% for many other benchmarks. Again, the SPEC
benchmarks show relatively better reduction ratios than the other benchmarks. Besides
the compiled code space shown in the figure, RBC actually requires another runtime
memory area, the map for each region exit point, which is additional overhead specific
to RBC. The size of the map depends on the number of live local and stack variables
for each region exit point, but the map typically requires around 50 to 70 bytes per exit
point. Even if we take this map space into consideration, the total size is still well under
the FBC code size for most of the benchmarks.

The reduction in compilation time work memory size is less dramatic, compared to
the other metrics. Although we can observe significant reductions for some benchmarks
(50% for db, and around 20% for Euler and some others), the overall reduction is less
than 10% and there is even an increase for a few benchmarks. This problem of relatively
higher overhead is caused by our current implementation of partial inlining, as described
in Section 3.4.1. That is, we temporarily inline the entire body of the target methods
before removing the rare portions of the code. With an optimized implementation of
partial inlining, this problem will disappear and the reduction ratio of the work memory
usage overhead should be almost similar to the ratios for the two other overhead metrics.

Overall, the RBC approach shows significant advantages over the conventional FBC
approach for all three metrics of the overhead in most of the benchmarks. The reductions
are between 10% and 30% on average, depending on the benchmark and the metric. This
significant reduction is not surprising, since the rare regions are identified and removed
from the target code, and all of the optimizations and code generation are done for
this smaller amount of target code. The cost of recompilations due to runtime region
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Table 5.5: Percent of the compilation time to the execution time, and percent of the code size
and the peak work memory size to the maximum live object size.

Benchmarks Compilation time | Compiled code size | Work memory size

FBC | RBC FBC | RBC FBC | RBC
227 mtrt 41.3 33.9 0.9 0.6 38.8 33.9
_202_jess 16.7 11.6 3.2 1.3 100.3 113.8
-201_compress 1.1 1.1 0.1 0.1 29.8 29.8
_209_db 0.3 0.2 0.2 0.1 18.9 9.4
_222 mpegaudio 12.1 10.7 4.9 4.3 395.9 395.9
_228_jack 24.6 21.1 12.4 8.9 265.4 228.9
_213_javac 46.2 41.0 2.3 1.9 62.9 55.9
jbb2000 - - 0.4 0.3 10.0 11.3
euler 1.4 1.3 0.3 0.2 24.9 20.4
moldyn 0.1 0.1 2.8 2.3 249.1 249.1
montecarlo 0.8 0.7 0.1 0.1 0.6 0.6
raytracer 0.2 0.2 1.5 1.2 119.7 119.7
search 0.7 0.7 0.5 0.4 140.3 140.3
ichitaroark 43.3 374 10.3 7.3 159.7 148.9
java2d 25.8 24.2 11.9 9.3 112.6 145.7
swingset 47.7 43.9 6.8 5.4 79.3 73.8
websphere 28.9 274 3.8 3.3 314 26.7

exits for some RBC-optimized methods is effectively offset by the benefits of the reduced
compilation overhead with the RBC approach.

Table 5.5 shows the ratios of the compilation time to the execution time, and the ratios
of the compiled code size and the compile time work memory size to the maximum live
object size in the Java heap for each benchmark. For the ratios of the compilation time
for SPECjvm98 benchmarks, the numbers show how much of the compilation time has
been spent in level-2 and level-3 over 10 repetitive runs (in autorun mode) for obtaining
the best execution performance. SPECjbb2000 is excluded because it does not give us
the execution time. For the other benchmarks, the numbers show the compilation time
ratio actually occupied within the duration of a single execution.

The ratio varies from one benchmark to another. For example, 201 _compress, 209 _-
db, and the JavaGrande benchmarks have very low ratios, meaning that the working set
of these benchmarks is very small. On the other hand, 213_javac and _228_jack have
flat profiles and thus higher ratios due to many methods being compiled at level-2 and
level-3. The startup applications spend almost a quarter to a half of their execution time
in compiling methods with level-3. The high ratio of 227 mtrt is due to the very short
execution time. When comparing the FBC and RBC configurations, RBC consistently
has smaller compilation ratios over FBC, despite the significantly improved execution
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times for some benchmarks.

For the ratios of the compiled code size and the compile-time work memory size,
we used the maximum live object size in the heap as an indicator of runtime program
behavior for memory consumption. We measured the live object size after each round
of garbage collection by using the -verbosegc command line option. While the size was
measured reflecting the granularity of the GC events and thus is not exact, the ratios
shown in the table indicate approximately how much of the space was consumed for both
compiled code and compiler work memory in terms of the live objects in the heap for each
benchmark. Again, the ratio varies widely between benchmarks due to the size of the live
object data. For example, moldyn, 222 mpegaudio, and _228_jack are very small (about
0.8 MB to 1.6 MB), while montecarlo and jbb2000 need large amounts of memory for
their live objects (about 515 MB and 90 MB, respectively) throughout those programs’
execution. From this table, the reduction of the compiled code size and the compile-time
work memory use with RBC approach is up to 3% and 10% of the maximum of the live
objects allocated in the heap, respectively.

5.4.5 Discussion

Overall, this study shows the advantages of the RBC approach in both performance
and compilation overhead over the traditional FBC approach. It shows the potential for
significantly reducing the compilation overhead, measured in time, work memory, and
code size, and for improving performance. In a dynamic compilation environment, we
have to be very careful in performing any optimizations that have significant impact on
compilation overhead, so RBC is a promising strategy for dynamic compilers.

We did not use ezception directed optimization (EDO) [85, 86] in our current implemen-
tation. This is a technique to monitor frequently raised exception paths and to optimize
them by inlining and converting exception throwing instructions to simple jump instruc-
tions into their corresponding handlers. This is complementary to our RBC approach,
since EDO effectively eliminates frequently excepting instructions from the current con-
trol flow, before those instructions are treated as rare in our static heuristics for region
selection. By applying EDO, we could ensure that the remaining exception-throwing in-
structions are truly in rarely executed paths. As shown in Section 5.4.2, many of the
recompilation and OSR events occurring in our current implementation are due to region
exits from exception paths, so this optimization is expected to decrease the probability of
region exits without reducing the effectiveness of the RBC approach.

As described in Section 5.2.3, it would be useful to support several options for OSR
and employ them depending on the characteristics of each region exit point regarding
how the rare paths were eliminated. For example, the current strategy of recompilation
with the same optimization level works fine for the exit point of a devirtualized call site
backup path, because once the control escapes from one of those exit points due to the
loading of a dynamic class, it will most likely escape from this exit point in subsequent
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executions. On the other hand, when a region exit occurs from an exception-throwing
path, it may be sufficient to fall back to the interpreter, since exception-throwing paths
(especially after EDO) need not be optimized, considering the inherently high overhead
of runtime exception handling. This mechanism of selective region exit strategies may
allow more aggressive rare path elimination than we currently use.

We can still use the dynamic counts of the OSRs to identify from which region exit
points the control is frequently escaping, and thereby drive recompilation, rather than
waiting for the promotion to be performed by the underlying recompilation system. How-
ever, we need to check whether or not the use of absolute counts is appropriate here. Any
sufficiently long-running program will eventually cause the counter to hit the threshold,
assuming the event frequency is non-zero, and we may loose the benefits of RBC opti-
mization. This will be a problem in production use. We can explore counter decay and
other techniques to address such problems.

We can explore further opportunities for identifying rarely executed code to increase
the effectiveness of the RBC approach. For example, loop versioning [96, 81] is an opti-
mization technique for hoisting the array-bound exception-checking code for an individual
array access outside a loop by providing two copies of the loop: the unoptimized loop,
where exception checking code is retained as in the original loop, and the optimized loop,
where all array exception-checking code is eliminated. Guard code is provided to examine
the whole range of the index against the bound of the arrays accessed within the loop,
and depending on the result of this test, either the optimized or unoptimized loop is
selected at runtime. This is an effective optimization, but entails a significant code size
increase. It is expected that the guard code will succeed in most of the cases and thus the
unoptimized loop will rarely or never be executed. We could have a significant code size
reduction if we can integrate this opportunity into the RBC strategy. We could even use
on-the-fly generation of an unoptimized loop when the test in the entry guard code fails.

Method splitting, also called procedure splitting [88], is a technique that can comple-
ment the RBC strategy. This is to place relatively infrequent code away from common
code, typically in a separate page, in order to improve instruction cache locality. Our
region selection process does not identify these relatively infrequent but still executed
portions of the code, since over-aggressive region selection will lead to too many recompi-
lations and can degrade performance. In other word, the selected region still contains some
relatively infrequent code. We could increase the code locality even more by integrating
the method splitting technique into our framework.

5.5 Summary

In this chapter, we have described the design and implementation of a region-based com-
pilation technique in our Java JIT compiler. We presented our design decisions for region
formation, partial inlining, and region exit handling, and described the algorithm in de-
tail for the intra-method region selection and its integration in the inlining process. We



5.5. SUMMARY 97

implemented this RBC framework in our dynamic optimization framework described in
Chapter 3, and evaluated the technique using several industry standard benchmarks.
The experimental results show the potential to achieve better performance and improved
compilation overhead in comparison to the traditional FBC approach.






Chapter 6

Related Work

This chapter describes some previous work in the area of dynamic optimizations. There
are several research topics related to the work presented in this dissertation, includ-
ing dynamic and adaptive optimization frameworks, low-overhead profiling techniques,
profile-directed method inlining, dynamic code specialization, and compilation techniques
exploiting rarely executed regions. To help clarify the differences between previous work
and this dissertation, this chapter is organized as follows.

Section 6.1 describes several dynamic optimization systems currently available for
Java, all of which use some form of automatic profile-driven adaptive optimizations. These
systems are the work most closely related to this dissertation. We describe several impor-
tant points that distinguish our work from these earlier approaches. Section 6.2 describes
several dynamic optimization systems in other programming languages. In particular,
the SELF implementation was a pioneering work in the area of dynamic optimization,
introducing many important concepts such as customization, type feedback, adaptive op-
timization, deoptimization, and splitting. These techniques are still used, with various
improvements, in many of the current state-of-the-art Java virtual machines. Previous
work in this category also includes dynamic binary optimizers, where online profile infor-
mation is used to improve the quality of the code produced by the optimizing compiler.

Section 6.3 describes previous work that used offline profile information, collected in
a training run, to drive optimization. These systems focus on some of the problems
addressed in this dissertation (using profile information to improve code quality), but
they do not address the issues surrounding online profiling and dynamic optimization.
The section also includes some previous work that studied a single topic or issue related
to this dissertation.

6.1 Dynamic Optimization System for Java

This section describes several major dynamic compilation systems currently available for
Java, either as product JVMs or as research JVMs, all with some form of automatic,
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profile-driven adaptive optimization. We evaluate the characteristics of these systems for
the following three criteria:

e Whether the system uses a compile-only approach or uses an interpreter to allow
for a mixed execution environment with interpreted and compiled code,

e How the system monitors the application program to promote methods from a lower
optimization level to a higher level, and

e What profile information the system collects online to be exploited by the higher
optimization levels, and how it does so.

These features characterize dynamic compilation systems in general. That is, how
the system addresses these three aspects can greatly affect some important features of
the dynamic compilation systems, such as the total system performance during both
the application startup time and the steady state, the underlying bottom-line overhead
for program monitoring, the flexibility and adaptability of the system against changes
in the applications’ dynamic behaviors, and the extensibility of the system for further
reoptimization.

6.1.1 Open Runtime Platform

The Open Runtime Platform (ORP) [37, 36] is a well known research virtual machine
released as open source. It uses a compile-only approach, and implements dynamic op-
timization with two execution modes by providing two different compilers: a fast code
generator [2] and an optimizing compiler [38, 1]. While the fast code generator produces
code directly from bytecode with only limited and lightweight optimizations, the dynamic
compiler uses an IL to apply aggressive optimizations, such as method inlining, global
dataflow-based optimizations, and loop transformations. The dynamic compiler also uses
the profile information collected in the first execution mode to guide optimization deci-
sions such as the inlining policy, where to apply expensive optimizations, and the code
layout in the final code emission.

As a way of triggering recompilation, the system provides two mechanisms using a
counter associated with each method. The first mechanism inserts code to test the values
of the counters. As soon as the counters reach a threshold, the code jumps immediately
to the recompilation routine to optimize the method used by the executing thread. The
second mechanism uses a separate thread to scan the counters, looking for recompilation
candidates in order to optimize them in parallel with the executing application. In both
of these mechanisms, however, the system inserts counter-updating instructions in the
first level compiled code for both method entry points and for loop-backward branches.

The disadvantage of this type of profiling and method promotion system is the perfor-
mance overhead. Although the instrumentation code is not generated in the second-level
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compiled code, it can incur a continuous bottom-line performance penalty. The target
code has to be recompiled if we want to remove the overhead of these instructions. This
problem may not be apparent for applications with spiky profiles, where there are only a
few very hot methods, and compiling those methods with the highest optimization level
is sufficient to obtain the best possible performance. However, flat profile applications
have a large number of methods that are almost equally important, and thus a signifi-
cant portion of those methods can remain unoptimized. It is therefore possible that the
performance will be noticeably degraded due to the instrumentation code left in that un-
optimized code. In fact, in our prototype implementation of this type of profiling system,
we measured an approximately 15% performance penalty for the SPECjvm98 javac test.
Also, the fact that the recompiled code is not instrumented implies further reopti-
mization is not possible in this system. The system currently does not have dynamic
profile collection or any optimization feature using online profile information, and the
system is considered not extensible for adding profile-based optimizations either, due to
the lack of any continuous program monitoring capability. In contrast, our system uses
a low-overhead profiling system for continuous sampling throughout the entire program
execution, and thus allows for further reoptimizations, such as code specialization.

6.1.2 Jikes RVM

The Jikes RVM (previously called Jalapeno) [24, 5] is another research JVM implemented
in Java itself, and uses a compile-only approach. The system is implemented with a
multi-level recompilation framework using a baseline compiler and an optimizing compiler
with three optimization levels. The recompilation is driven based on the estimated cost
and benefit of compiling methods at each optimization level. The system shows good
performance improvements in both startup and steady state regimes compared to other
non-adaptive configurations or adaptive but single level recompilation configurations [10].

Their overall system architecture is quite similar to ours, but the major differences lie in
its compile-only strategy and in how the profiling system works. The compile-only strategy
can incur a significant overhead for the system. Although their baseline compiler was
designed separately from the optimizing compiler to minimize the compilation overhead,
and thus the additional compilation time may be negligible, the system can still result
in a large memory footprint. The integration of an interpreter into the system may
cause some extra engineering and implementation complexity, for example, in distinctively
handling both interpreter frames and compiled code frames in the stack traversal, but
this additional effort would certainly be rewarded. As shown in the measurements in
Section 3.4.4, a large number of the dynamically executed methods are not frequently
called nor computation intensive in many applications. A mixed mode interpreter can
execute those infrequently called methods without imposing any cost in compile time or
code size growth. This allows the recompilation system to be more flexible and aggressive
in its reoptimization policy decisions.
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Like our system, the Jikes RVM combines two separate profiling techniques. The sys-
tem first uses a timer-based sampling mechanism to find hot methods, and then it employs
a heavier instrumentation mechanism for the hot methods to collect more detailed infor-
mation. The sampling profiler is based on polling at yield points (method prologues and
loop back edges), taking advantage of the system’s existing thread-switching mechanism
for quasi-preemption. This sampling profiler continuously works to detect a program’s
hot methods during the course of the entire program execution. This continuous profiling
throughout the application’s lifetime is desirable for flexible and adaptive responses to
the changes in an application’s dynamic behavior.

The Jikes RVM was released under an open source license in 2003 [6], and it has
been the most popular and widely used platform in the Java virtual machine research
community. Many advanced features, ranging from low overhead instrumentation to a
variety of adaptive optimization techniques to sophisticated garbage collection algorithms,
have been implemented and studied using the platform. The rest of this subsection reviews
some of the noteworthy examples.

Arnold and Ryder implemented a framework called instrumentation sampling [15, 9]
to reduce the instrumentation overhead in an online system. This technique introduces
a second version of the code, called checking code, to reduce the frequency of executing
the instrumented code. This allows a variety of profiling techniques to be integrated in
the framework. Since this is a sampling-based instrumentation technique, the profiling
overhead can be kept very small, in comparison to a bursty profiling system like ours. The
main concern, however, is the space overhead caused by duplicating the whole method
for extra versions for both checking and instrumented code, although some space-saving
techniques are described. Our system dynamically attaches only a small fragment of code
for value sampling at the method entry points, and thus it is more space efficient.

Arnold et al. [13] present a comparative study of static and profile-based heuristics for
inlining with several limits on code expansion. In considering three inlining heuristics,
based on a static call graph, a call graph with node weights, and a dynamic call graph
with edge weights, they regard the selection of inlining candidates as a knapsack problem,
and employ a greedy heuristic based on the benefit/cost ratio as a meta-algorithm for
approximating the NP-hard problem. Their experiment, done with offline-based profiling
and an ahead-of-time compilation framework, shows that a substantial (sometimes more
than 50%) performance improvement can be obtained with the heuristics based on the
dynamic call graph with edge weights over the static call graph, even with modest limits
on code size expansion. This work became the basis for the online profile-directed method
inlining.

The Jikes RVM employs two separate profiling techniques, a sampling profiler and
an instrumenting profiler, in order to keep the overall profiling overhead low, but stack
traversals are required by the sampling profiler for the online profile-directed method inlin-
ing [10]. This means the system periodically takes a statistical sample of its caller methods
at the method prologue yield points by traversing the stack frame, and it maintains an
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approximation of the dynamic call graph. A possible problem in this design is that there
will be a continuous bottom-line overhead for the extra work of traversing the stack at
the time of every sampling, and that profile information can be rather coarse-grained for
use in reoptimization. In contrast, the lightweight sampling profiler in our system focuses
only on detecting the hot methods, and relies on a more intrusive instrumentation profiler
for collecting any information that is necessary for guiding optimizations.

Arnold et al. [14] continued to further improve the effectiveness of the profile-directed
inlining by collecting dynamic execution frequencies of the control flow edges between ba-
sic blocks, using the instrumentation sampling framework, and letting this information be
used for fine-tuning the inlining decisions. This call-edge frequency information was also
applied to other online-feedback-directed optimizations, such as splitting, code position-
ing, and loop unrolling. By combining these four optimizations using profile information,
they showed performance improvements ranging from 0.9% (javac) to 16.9% (mtrt), with
a geometric mean of 4.3% for the SPECjvm98 benchmark.

Hazelwood and Grove [58] studied the use of adaptive, context-sensitive profile infor-
mation for improving online method inlining. Their dynamic call graph is periodically
maintained based on multi-level call stack sampling. For a level of context sensitivity,
they attempted several adaptive schemes to find the ideal degree for each call site, since
too much context sensitivity can degrade performance. They showed that the context
sensitivity can make possible a significant number of reductions in both compile time and
compiled code size, while keeping the performance impact very close to zero.

Fink and Qian [50] described a new, relatively compiler-independent mechanism for
implementing OSR, and applied this technique to integrate the deferred compilation strat-
egy in the Jikes RVM adaptive optimization system. Since they did not at that time
implement optimizations that could take advantage of the deferred compilation, the per-
formance improvement was small, but the compilation time and code size showed modest
improvements.

6.1.3 HotSpot Server

The HotSpot server [87] is a JVM product implementing an adaptive optimization system,
and uses both an interpreter and an optimizing compiler to support a mixed execution
environment, as in our system. The interpreter employs separate counters for method
invocations and loop back edges, and drives the compilation immediately when a preset
threshold value is reached and the method is presumed to be hot. The transition from
the interpreter to compilation can occur even in the middle of a method using on-stack
replacement. HotSpot seems to monitor program hot spots continuously as the program
runs so that the system can adapt its performance to changes in the program behavior.
However, detailed information about the program monitoring techniques and the system
structure for recompilation (including how many optimization levels it has) is not available
in the published literature.
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The system collects profiles of receiver type distribution online in the interpreted ex-
ecution mode, and this information, together with class hierarchy analysis (CHA) [46], is
used when optimizing the code for virtual and interface calls. Although collecting the pro-
file information in interpreted mode has low overhead given the already poor performance
of the interpretation, the duration of the profile collection is limited to only the early
periods of a method’s execution and thus the system is vulnerable to mispredictions. If
the behavior of the early execution of the method is not representative of the long run, the
optimization based on the rather inaccurate profile information can be either ineffective
or even harmful to the performance.

The HotSpot employed a technique called uncommon trap, which was first imple-
mented in SELF-93 system as described in Section 6.2.1, to avoid code generation for
uncommon cases. The system always falls back to the interpreter at a safe point after
converting the stack frame when an uncommon path is actually taken. The HotSpot
treats both the backup code of devirtualized calls and references to uninitialized classes
as uncommon paths, as clearly described in the literature. It is also said to employ other
heuristics similar to ours for determining uncommon cases, such as blocks ending in excep-
tion throws or in creation of exception objects, special cases for checkcast operations, and
use of profile information to override the static heuristics. The HotSpot is the first and
currently only production JVM that supports an uncommon trap technique and OSR.

6.1.4 JRockit

The JRockit JVM [93] is another JVM product designed for server applications. It takes
a compile-only approach, and relies upon a fast JI'T compiler for compiling methods
quickly at their first invocation, as opposed to interpretive bytecode execution. It employs
a sampling-based profiling system to monitor the program’s hot spots. If the system
determines that a compiled method is causing a performance bottleneck, it reoptimizes
the method with a secondary compilation with full optimizations. The details of the
compiler structure and contents of the optimizations are not available. But they reported
on the inferiority of the intrusive profiling mechanism of method invocation counters
generated in the unoptimized code in comparison to the sampling-based profiler to detect
hot methods.

6.1.5 Joeq

Joeq [115, 116] is a research platform for virtual machine and compiler technology, released
as open source software. It is implemented entirely in Java, but was designed to support
multiple languages, C, C++, and even x86 binary code, as well as Java bytecode. It in-
cludes an interpreter, an optimizing compiler, and a profiling system that drives dynamic
recompilation. The optimizing compiler employs a common unified internal representa-
tion, and all analyses and optimizations are performed uniformly across all the different
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type of input code. As in our system, Joeq provides two different profilers, the timer-based
sampling profiler [113] and the instrumenting profiler. The profile information is used by
various compiler optimizations to improve their effectiveness, such as inlining frequently
invoked call sites.

Whaley [114] described a technique for performing partial method compilation using
basic-block-level offline profile information. This system eliminates rarely or never exe-
cuted code portions and applies optimizations only on frequent cases. When a branch
is taken to execute those eliminated paths at runtime, the system falls back to an in-
terpreter. The technique allows most optimizations to completely ignore rare paths and
fully optimize the common cases. This system also assumes falling back to an interpreter
when the rare path is taken.

The technique is implemented on Joeq virtual machine, but the Joeq Java compiler
does not perform significant optimizations and thus the effectiveness is limited. Thus he
estimated the effectiveness of the technique by collecting basic-block-level profiles offline
and then using this information to refactor the affected classes with the Bytecode En-
gineering Library [7]. The interpreter transition points at rare block entry are replaced
with method calls to synthetic methods that contain all of the code separated from the
transition point, so that the compilation of those rarely executed blocks can be avoided.
Thus the result is an ideal case, since the compiler need not retain any information to
restore the interpreter state.

6.2 Dynamic Optimization Systems in Other Lan-
guages

6.2.1 SELF

SELF [30] is a dynamically typed object-oriented language originally designed in 1986 as
a refinement and simplification of the Smalltalk-80 language. In order to implement the
pure object-oriented language efficiently, many novel techniques were created during the
course of the project.

SELF-91

Chambers [27] collected a variety of techniques developed in the early stages of the project
into what was called the SELF-91 system. It included several important optimization
techniques, but the ones most relevant to this dissertation are the customizations, deferred
compilations, and inlining trials.

Customization [28] creates a separate version of a given method for each possible
receiver class, relying on the fact that many messages within a method are sent to the self
object. This can be regarded as a restricted form of specialization. This technique allowed
the compiler to customize each version to the specific receiver type, such as static binding
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of method invocations or even inlining, leading to an order of magnitude performance
improvement.

The selective specialization technique [44, 45] then corrected the problem of both over-
specialization and underspecialization in the customization by specializing only heavily
used methods for their most beneficial argument classes, and by specializing those meth-
ods based on their arguments, rather than focusing on the receiver. This system resembles
ours in that it combines static analysis (corresponding to our impact analysis) and pro-
file information to identify the most profitable specializations. However, their work was
focused on converting dynamic calls to static calls to avoid the large performance over-
head caused by dynamic method dispatch. Our specialization allows not only method
call optimizations, but also general optimizations, such as type test elimination, strength
reduction, and array bound check elimination, on the basis of specific values dynamically
collected.

Chambers and Ungar [29] also described a technique called deferred compilation for
uncommon branches where a skewed execution frequency distribution seems likely. They
use type information to defer compilation for messages sent to receiver classes that are
presumed to be rare. When the rare path is actually executed, the compiler generates
code for the uncommon branch extension, which is a continuation of the original compiled
code from the point of failure to the end of the method. The extension is unoptimized to
avoid recursive uncommon branches, and reuses the stack frame created for the original
common case version. It was demonstrated that the technique increases compilation speed
significantly, by nearly an order of magnitude, but there were both performance and code
size problems when the compiler’s uncommon code predictions were wrong.

Dean and Chambers [42, 43] describe the inlining trial method. This technique uses
the first compilation as an experimental version and records inlining decisions and the
resulting effects of the optimizations in a database. The compiler can then take advantage
of the recorded information for future inlining decisions by searching the database for
that information about the receiver and arguments. They do not exploit runtime profile
information in their system, though the expected execution frequency of the call site is
used for the inlining decisions. Central to this technique is type group analysis, which
determines how much of the argument type information available at the call site was
actually used during optimizations of the inlined code. This has a similar effect to our
impact analysis, but the impact analysis is considered more general in the sense that it

can handle not only method parameters but also global variables such as object instance
fields.

SELF-93

The SELF-93 system [59, 62] enhanced the SELF-91 implementation in many impor-
tant ways, including a type-feedback system, profile-directed adaptive recompilation, and
dynamic deoptimizations with an on-stack replacement (OSR) technique.
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SELF-93 pioneered the online-profile-directed adaptive recompilation systems. The
goals of this system were to avoid long compilation pauses and to improve the respon-
siveness for interactive applications. It is based on a compile-only approach, and for the
method recompilation, an invocation counter is provided and updated in the method pro-
logue in the unoptimized code. The counters decay over time to reflect the invocation
frequencies and to avoid eventually reaching the threshold for recompilation for relatively
unimportant methods.

The system also collects call-site-specific profile information for receiver class distri-
butions (type feedback) in unoptimized runs, and then when the method is recompiled,
makes use of this information to optimize dynamically-dispatched calls by predicting likely
receiver types and inlining calls for these types. It was demonstrated that the performance
of many programs written in SELF can be substantially improved with this technique.

Grove et al. [54] complement this result by studying the various characteristics of
the profiles of receiver class distributions collected offline, such as the degree of bias, the
effectiveness of deeper granularity, and the stability across input and programs. They
reported that the compiler could effectively use deeper granularity of the profile context
to predict more precisely the target of dynamically dispatched procedure calls.

The problems in deferred compilation described in the previous section were fixed
by treating the occurrence of uncommon cases as another form of runtime feedback and
replacing overly specialized code with less specialized code, instead of just extending the
specialized code with an unoptimized extension code. This approach was made possible by
introducing both an OSR technique and an adaptive recompilation system. OSR allowed
the dynamic deoptimization [61] of the target code and the replacement of the stack frame
containing the uncommon trap with several unoptimized frames. When it was found that
this unoptimized compiled code was executed frequently, the recompilation system could
optimize the method again based on the feedback from the unoptimized code. Both
SELF-91 and SELF-93 systems focused only on uncommon branches for virtual method
calls for the deferred compilation.

6.2.2 Dynamic Binary Optimizers

There are several binary translation systems for profile-based native-to-native reoptimiza-
tion, such as Dynamo [19], its descendent DynamoRIO [22], HCO [40], and Mojo [33].
These systems identify frequently executed paths (traces) and optimize them by exploiting
code layout and other runtime optimization opportunities.

For example, Dynamo is a fully transparent dynamic optimization system, requires
no user intervention, and takes an already compiled native instruction stream as input
and reoptimizes it at runtime. The use of the interpreter is to identify the hot paths for
reoptimization rather than to reduce the total compilation cost as in our system. They
employ a technique called NET (next executing tail) [48] to identify hot paths as quickly
as possible. If a counter provided at each selected start-of-trace point, typically the target
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address of a backward branch, exceeds a preset threshold value, then the trace at the next
execution time is selected as a target of dynamic optimizations.

Since the trace is a single-entry multiple-exit contiguous sequence, and can extend
across static program boundaries, the trace has arbitrary sub-method and cross-method
granularity as the unit of optimization, similar to the effect of our partial inlining in the
region-based compilation. However, they operate only on a single trace at a time, and
optimizations can be less effective when the selected trace is hot but not a dominant one.
This may not be a problem for these systems, since the statically optimized generic code
is already there and a specialized reoptimized version is being generated. In our dynamic
compilation environment, we have to be more conservative not to frequently exit from
selected regions, and thus employ more general regions to contain arbitrary numbers of
hot traces by removing blocks of rarely executed code.

6.2.3 Oberon

Kistler and Franz [72, 73] describe a continuous optimization system that constantly mon-
itors the system’s state and re-performs optimizations in the background during idle time.
The profiling components collect a variety of runtime information, such as basic-block-
level edge counts, individual path counts, the execution times of individual procedures,
as well as the execution frequency for each procedure. They found that recompiling even
fully optimized code in response to the changes in profiling information could give rise to
real performance improvements. A code reclamation mechanism is mandatory in this sys-
tem, since it can produce an unlimited number of optimized versions for each procedure
due to the continuous optimizations.

6.2.4 Staged Compilation

There has been much work in the area of dynamic code generation and specialization,
most of which require either source language extensions, such as the tcc system [91], or
programmer annotations such as Tempo [80] and DyC [16, 52]. These systems perform
staged specialization. That is, a static compiler first performs the majority of the opti-
mization work and prepares for a dynamic compilation process by generating templates,
and a dynamic compiler then instantiates the templates using the values available at
runtime. They rely on programmer intervention to clarify what to specialize and what
variables to specialize for.

Calpa [82] automated this process of generating annotations for the DyC dynamic
compiler. It evaluates the information that was collected offline regarding basic block
execution frequencies and a value profile based on its own cost/benefit model, and de-
termines runtime constants for specialization and dynamic compilation strategies. The
staged compilation framework has been further refined in their subsequent system [89].

CoCo [34] described a continuous compilation framework that combines both static
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optimization at compile-time and dynamic optimization at runtime. At compile time,
CoCo predicts the impact of applying an optimization without actually applying it, using
three types of models: code application models, optimization models, and resource models.
Using the prediction framework, CoCo determines the optimization plan regarding what
optimizations to apply and in what order to apply them in a given code context. At
runtime, CoCo applies the dynamic code transformation in response to changes in program
behavior as guided by the dynamic optimization plans developed at compile time.

6.2.5 Others

The notion of mixed execution of interpreted and compiled code was considered as part of a
continuous compiler or smart JIT approach in [90], and a study of three-mode execution
using an interpreter, a fast non-optimizing compiler, and a fully optimizing compiler
was reported in [3]. In both of these papers, it was proven that there are performance
advantages from using an interpreter in the system to balance the compilation cost and
the code quality, but the problems of the compilation memory footprint and the generated
code size were not discussed.

Bruening and Duesterwald [21] explored the issues in finding optimal compilation
unit shapes for an embedded Java JIT compiler. They demonstrated that always using
method boundaries is a poor choice for compilation. They did not implement a working
JIT compiler for evaluation, and only provided estimates of the code size reductions when
using trace-based and loop-based strategies for compilation units. They found that a
majority of the code in methods is rarely or never executed, and concluded that code size
could be reduced drastically with only a negligible change in performance.

Ephemeral instrumentation [104] is, in principle, quite close to our dynamically in-
stalled and uninstalled instrumentation technique for value profiling. Their method is to
dynamically replace the target addresses of conditional branches in the executing code
with a pointer to a general subroutine that updates a frequency counter for the corre-
sponding edge. The collected data is then used offline for a static compiler. Our profiling
system, on the other hand, is not limited to the branch target, but is applicable to any
point in the program by generating the corresponding code for value sampling. Also
the instrumentation system is integrated into the fully automated dynamic optimization
system.

Krintz and Calder [76] describe an annotation framework for reducing compilation
overhead for Java programs. One of the proposed annotations is method inlining on the
basis of analysis of profile information collected offline, which allows substantial reduction
of startup time compilation overhead.

Another profile-driven dynamic recompilation system is described in [23] for Scheme.
They use edge-count profile information for basic block reordering in the recompiled code
resulting in improved branch prediction and cache locality.
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6.3 Static Compilation Systems
6.3.1 IMPACT

The IMPACT is an experimental framework developed at the University of Illinois at
Urbana-Champaign to investigate architectural and compilation techniques to support
ILP processors. Some of the work performed in this framework is relevant to this disser-
tation.

Chang et al. [31] described profile-guided procedure inlining in an optimizing C com-
piler. They first construct a weighted call graph using the profile information collected
offline on the numbers of invocations of each function and the relative hotness counts
of each call edge. A greedy algorithm is then applied bottom-up in the call graph to
maximize the number of reductions of dynamic function calls while keeping the code size
expansion within a fixed bound. Their result shows a significant performance improve-
ment with a relatively low code expansion ratio. However they don’t report on how
much of the effectiveness is contributed by the use of profile information. Dynamically
dispatched calls (through function pointers in C programs) were not inlined in this study.

Hank et al. [56] described the problems of the conventional function-based compilation
strategy and demonstrated the potential of the region-based compilation technique by
presenting the results of several experimentals, including results on the static code size
savings. The proposed region formation was designed to perform a normal (possibly an
aggressive) inlining pass first, followed by a partitioning phase that created new regions
based on heuristics that used offline profile results.

Hank [55] further investigated the application of classical optimizations to region-
based compilation units, and the issues involved in separate register allocations by the
compilation units. Two additional steps, encapsulation and reintegration, were required
to make regions look like ordinary functions for optimizations and then to reintegrate
them into the containing function.

Trace scheduling [79] is a technique that predicts the outcome of conditional branches
and then optimizes the code assuming the predictions are correct. It can suffer from
the complexity involved in the compensation code generation. Superblock scheduling [63]
simplifies the complexity by using tail duplication to create superblocks, single-entry
multiple-exit regions. Both of these techniques were originally designed to extend the
scope of ILP scheduling beyond basic block boundaries to encompass larger units. Other
classic optimizations were also extended to exploit superblocks [32].

6.3.2 VELOCITY

The VELOCITY is a research compiler infrastructure developed at Princeton University
primarily to address a new approach to compiler organization. The compiler organization
work performed in this framework includes two techniques relevant to this dissertation:
procedure boundary elimination and optimization space exploration.
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Procedure Boundary Elimination (PBE) [107, 106, 105] is a framework for unrestricted
whole-program optimization, and can be considered as an extreme case of the region-based
compilation, targeting the entire body of the program. It first unifies the whole program
into a single compilation unit, which is then repartitioned into units better suited to
optimization than the original procedures. PBE uses the same algorithm proposed by
Hank et al. [56] for the region formation from the unified program.

Optimization Space Exploration (OSE) [109, 108, 105] is an iterative compilation
method, trying multiple optimization paths for searching which optimizations to apply
and in what order. They first construct a decision tree, with the most important opti-
mizations in the root node, and search the space by predicting the relative performance
benefit with each optimization configuration based on a simplified machine model and on
profile data. They observed 5% to 10% speedups in average compared to -O2 compilation
for the Itanium, while the compilation time almost doubled even with compile-time search
space pruning.

6.3.3 Others

Ball and Larus [20] proposed a heuristic approach for static branch prediction based
on the data types and the types of comparisons used in the branches and the code in
the target basic blocks. Hank et al. [57] also studied a similar approach using hazard
avoidance and branch heuristics, and showed that the performance of static-analysis-
based superblock formation and optimizations is comparable to profile-based methods for
many benchmarks. We also used program-based static heuristics for the region selection,
and propagated the rare and non-rare information using backward data flow to identify
rarely or never executed regions.

Scheifler [92] shows that inlining optimization can be reduced to the well-known knap-
sack problem. He uses a greedy algorithm to minimize the estimated number of function
calls subject to a size constraint. This relies on runtime statistics about the program
to calculate the expected overhead of each invocation. The constant ratio assumption is
used to avoid the cost of a multi-level history. Kaser and Ramakrishman [70] propose a
probabilistic model to estimate the effect of using profile data, with a one-level history
based on the constant ratio assumption. When evaluating inlinable calls remaining after
optimization, they report good results with their technique compared to other compilers.

Ayers et al. [18] describe the design and implementation of the inlining and cloning
in the HP-UX optimizing compiler, and show the performance of the SPECint92 and
95 benchmarks can be substantially improved with their techniques. They use profile
information collected offline to prioritize the inlining or cloning candidates of the call sites
to be considered. The use of profile information is reported to be quite effective, but it is
an intra-procedural profile of the basic block level execution frequency, not information
on call edges for guiding inlining for a particular call path.

Autrey and Wolfe [17] proposed an analysis to identify glacial variables to find good
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candidates for specialization. Their analysis is static, and the execution frequency is
estimated by the loop nesting level, without using dynamic profile information. Calder
et al. [26] showed the potential for performance improvement that the value-profile-based
specialization can yield using several hand-transformed examples based on offline-collected
value profiles. In contrast, we described a fully automated design and implementation of
online dynamic code specialization that has been integrated into our production-level Java
JIT compiler.

Muth et al. [83] described a fully automatic value-profile-based specialization system.
They employ a cost-benefit analysis that is used both to reduce the overhead caused by
value profiling (which they call goal-directed value profiling [110]) and also to identify
the code to be specialized. This is very similar to our impact analysis, which provides
specialization candidates to which we apply value profiling. However, their targets for
profiling, and hence for specialization, are limited to those variables currently in registers.

Way et al. [111] improved the region formation algorithm of Hank [55] to make it
scalable by combining region selection and the inlining process, and reduced the compi-
lation time memory requirements considerably. They also evaluated region-based partial
inlining that was performed through partial cloning, and observed small performance im-
provements [112]. This work was also performed for improving ILP static compilers, as
in Hank’s system.



Chapter 7

Conclusions

7.1 Summary

In this dissertation, we have described the design of dynamic optimization techniques for
Java that exploit various kinds of runtime profile information. We implemented these
techniques in an IBM Java Just-in-Time compiler product, and performed a detailed
evaluation for each of the techniques using industry standard benchmark programs and
several applications.

We first described in Chapter 3 how we can construct an efficient dynamic optimization
framework for Java, and discussed several key design points. We also presented extensive
experimental results, demonstrating the effectiveness for achieving high performance and
low compilation overhead in both program startup and steady state measurements. Our
contributions can be summarized as follows:

e We presented a system architecture for a simple, but efficient and high-performance,
dynamic optimization framework in a production-level JIT compiler. We showed
that use of a mixed mode interpreter is important in the framework to build an
effective recompilation system, by taking advantage of the zero compilation cost
and setting appropriate tradeoff levels for each transition between optimizations.

e We presented a program profiling mechanism, combining multiple different tech-
niques depending on profiler characteristics and target code compilation levels. That
is, a counter-based profiler, counting method invocation frequencies and loop itera-
tion for detecting hot interpreted methods, a sampling-based profiler for detecting
hot compiled methods, and an instrumenting profiler, installed and uninstalled dy-
namically for collecting more detailed runtime information for selected methods.

On top of this dynamic optimization framework, we designed and implemented several
dynamic optimizations. In Chapter 4, we described the profile-directed method inlining
and the dynamic code specialization. Both of these optimizations exploit the dynamically

113



114 CHAPTER 7. CONCLUSIONS

generated instrumentation mechanism for collecting runtime information, such as call site
distribution, parameter values, and global variable values. Our contributions here can be
summarized as follows:

e We presented a profile-directed method inlining technique based on runtime call
site distribution and frequency information collected with a dynamic instrumenta-
tion mechanism. We eliminated all static inlining heuristics except that we always
inline tiny methods, and showed the significant advantages for both improving per-
formance and reducing compilation overhead.

e We presented a code specialization technique that employs impact analysis to es-
timate the benefit of specialization and runtime value sampling for specialization
decisions. This is a fully automated design with no programmer intervention re-
quired. We showed that the proposed technique can produce modest performance
improvement for a set of benchmark programs.

Another dynamic optimization technique proposed in this dissertation is region-based
compilation, as described in Chapter 5. We discussed the issues and challenges for per-
forming effective region-based compilation in a dynamic compilation environment, in con-
trast to other environments, static compilers and dynamic binary optimizers, and proposed
a technique that is the most suitable for Java JIT compiler. Our contributions in this
area can be summarized as follows:

e We presented a design for region formation, partial inlining, and region exit handling
that is effective for dynamic compilers, and described the algorithm in detail for the
intra-method region selection and its integration in the inlining process.

e Together with two region-aware optimizations, partial escape analysis and partial
dead code elimination that exploit region exit points, implemented in the region-
based compilation framework, we showed that our proposed technique can con-
tribute to significant advantages for both improving performance and reducing com-
pilation overhead.

7.2 Future Work

There is a long history of research in the area of dynamic and adaptive optimizations, as
summarized well in a recent survey [12]. We believe that dynamic optimization techniques
will likely become more important as programs become more complex and rely more heav-
ily on object-oriented language features, such as inheritance and polymorphism. Static
analysis and optimization will become more difficult as program complexity increases,
creating more opportunities for dynamic optimizations to identify and exploit runtime
execution behaviors.
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The following describes some of our subjective observations and future directions re-
garding the design and implementation of the system described in this dissertation.

7.2.1 Dynamic Optimization Frameworks

The ultimate goal of dynamic optimizations would be to construct a continuous program
optimization (CPO) framework, where code is continually and automatically reoptimized
in the background, capturing new optimization opportunities based on runtime profile
values. When new code is generated, reflecting new program behavior, the control should
be transferred from the currently executing code to the corresponding position within the
newly generated code (hot swap). The background mechanism should then start finding
yet more opportunities in the execution patterns for the next cycle of reoptimizations.

Our dynamic optimization system is still far from such a CPO framework. Although
our profiling system operates continuously during the entire period of program execution,
we have no mechanisms such as hot code swapping and code reclamation, which are
mandatory for building a generalized CPO framework. In a CPO framework, we need to
capture optimization opportunities in the currently executing code with minimal overhead,
and we believe the concepts of impact analysis and two-stage profiling described in this
dissertation can play a key role. This is because our concepts try to exploit knowledge
of the program’s structure to determine the best profiling strategies and to make a cost-
benefit model for estimating the value of reoptimization opportunities.

Another interesting area for an efficient CPO framework would be to identify and
exploit phase shifts in executing programs. CPO is based on an assumption that there is
usually no single typical usage scenario in real applications, which could then be optimized
with a single optimization strategy, but instead there are several distinctive usage scenarios
calling for different strategies. A phase-shift detector could determine in a timely manner
when an executing program is in a stable phase of program execution or when it is in
a transition between phases. If this information were available at a reasonable cost,
we could rely on the technologies in the CPO framework to determine when we should
reconsider optimization decisions. The research on online phase detection mechanism is
just emerging [84], and this will be a new research frontier.

7.2.2 Profile-Directed Optimizations

We need to further refine the system to improve the cost and benefit of the profile-
directed optimizations. For example, we have considered so far only the relative strengths
and distributions of the call edges when driving profile-directed inlining. However, the
significant impact of method inlining is not only through the direct effect of eliminating
call overhead, but also due to indirect effects of specializing an inlined method body into
the calling context, with better utilization of dataflow information at the call sites. Since
our instrumentation mechanism collects parameter values as well as return addresses, it
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should be possible to estimate whether inlining a method will be beneficial in terms of the
effect on these optimizations as well. We can extend our impact analysis in this direction.
We will try to exploit this information in the future for pursuing better inlining strategies.

In the long term, however, the essential problem of the dynamic optimization systems
is to decide whether or not the optimization effort can be offset by the performance benefit
for a given program. Most, if not all, of the dynamic optimization systems currently avail-
able, including ours, predetermine the set of optimizations provided for each optimization
level. Basically those optimizations considered to be lightweight, such as those with a
linear relationship to the size of the target code, are applied at the earlier optimization
levels, and those with higher costs in compilation time or greater code size expansion are
delayed to the later optimization levels. However, the classification of optimizations into
several different levels has been either intuitive work or just based on the measurements
of compilation cost and performance benefit on a typical execution scenario analyzed of-
fline. Consequently, the optimizations applied are not necessarily effective for the actual
target methods compiled with the given optimization levels. That is, some optimizations
may not contribute to any useful transformations for performance improvements, but can
result in a waste of compilation resources.

The problem here is that we equally apply the same set of optimizations for those
methods selected to compile at that optimization level, regardless of the type and char-
acteristics of each method. Ideally it would be desirable to dynamically assemble a set of
suitable optimizations depending on the characteristics of the target methods so that we
can apply only those optimizations known to be effective for each method. It would be
better for the total cost and benefit management if we could not only selectively apply
optimizations on performance-critical methods, but also selectively assemble or customize
a set of optimizations depending on the characteristics of the target methods so that we
can apply only those optimizations known to be effective for the given methods.

For example, inlining decisions are now profile-based, and thus the compilation bound-
aries are dynamically determined. The next step will be to estimate the costs and benefits
we can expect from optimizations when the target method is inlined, before performing
actual inlining. We can employ a technique similar to impact analysis to estimate the
benefit, because a majority of the inlining benefits come from specializing an inlined
method body into the calling context with better utilization of dataflow information at
the call sites. The cost estimation will be based on the structure of a given method,
using indications such as loop structures, characteristics of field and array accesses, and
other features, as suggested in [11|. Program metrics [72] are using a similar notion to try
to estimate the potential benefit of program optimizations. Online performance auditing
[77] is an approach to evaluate the effectiveness of optimizations online to automatically
identify and correct performance anomalies at runtime.
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7.2.3 Region-Based Compilation

While we obtained a significant improvement in both performance and compilation over-
head reduction for a selected set of benchmarks and applications, we need to validate the
technique for broader set of real applications, especially large-scale server applications.
Large-scale applications are often constructed by piecing together separate components
and libraries, producing programs where the code that performs the actual work is buried
within and spread across many layers of abstraction. These applications generally have
very flat profile when analyzed with method-level profiling [53], but they often show a
significant bias in their execution profile when we look at them with basic-block-level pro-
filing. Thus we believe that region-based compilation could be effective for these seemingly
flat profile applications.

In our current implementation, we used a single method for handling rarely executed
code regions. We drove recompilation with the same optimization level and performed
on-stack replacement (OSR). This allowed a quick prototyping of the RBC technique,
but poses some boundary case problems, such as different class resolution status or the
hierarchy when performing recompilation. It also forces us to be conservative for region
selection, because the cost of region exit was relatively high. We need to address these
problems.

The approach we suggest here is, as briefly discussed in Section 5.4.5, to employ
multiple methods for handling rare regions, including code splitting, method outlining,
and rare-path cutting (both driving recompilation and backing to the interpreter through
OSR), and then to select the best strategy among them based on a cost-benefit analysis.
Note that OSR backing to the interpreter does not cause the above-mentioned boundary
case problems we have in our current system. This approach will allow us to be more
aggressive in the region selection process, and should result in forming better compilation
or optimization units.

Rare-path cutting is an important option for handling rare regions because we can
eliminate merge points while avoinding the code size and compilation overhead problems.
In particular, rare-path cutting will be the best strategy if the expected execution fre-
quency of a rare region is indeed extremely rare. Retaining rare-path cutting as one of
the viable options allows us to form better compilation or optimization units. However,
we need other options for handling relatively infrequent, but not extremely rare paths.
Method splitting and method outlining will give us options for selective region exit strate-
gies. Given a rare-region boundary point, it is important to select the best strategy from
these options using a single cost-benefit analysis. The factors of the analysis will be as
follows:

— Increased optimization opportunities (and the resulting code quality)

— Impact on compilation overhead

— Expected frequency of region exit and the costs of handling the region exits
— Expected execution speed when region exit occurs
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We may also be able to restructure even non-rare regions in order to make optimiza-
tions work effectively. When we apply transformations, such as code splitting, method
outlining, and peeling, they will be based on a cost-benefit analysis for each transforma-
tion. For example, given an object’s allocation, if a basic block approach forces escape
analysis to make a decision not to stack-allocate the object, it would probably be worth-
while to restructure the non-rare region to exclude the basic block.
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