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Chapter 1

Introduction

Cosmology

Cosmology represents a fundamental study on the large scale physics in the whole Universe, to investigate
its origin and evolution. Here, the word, “Universe” is all existing matter and space considered as a whole,
in other words, where the law of nature exits. Then cosmology is also a study of its all components, existing
in which the universe, how they formed, how they have evolved 1. It has a long history to understand
the Universe as the world around humanity’s place including of course science, philosophy, and religion.
Cosmology firstly started as a simple questions in early history of humankind about 100 thousands years
ago, such as ”What’s going on around me?” or ”How does the Universe (God) work?” It was based on
local pray as respecting God of Nature who creates phenomena around the world. The earliest scientific
observations for understanding the Universe were related to the epoch of four big civilizations in 5000
years ago, Egypt, Mesopotamia, India and China. Actually in the ancient cosmology of Egypt, the sun
god, Ra, was seen to control the annual solar motion along the horizon.

Modern cosmology as a study of science is usually known as a beginning with Albert Einstein who
found the Special and General Relativity. The general relativity not only gives a precise description of
gravitational force but also has completely changed the idea of space and time. Gravity is described as a
geometrical object, and energy and momentum densities of matter fields deform a spacetime. As a result,
a spacetime becomes a dynamical object, which allows us to study the universe as a whole. Therefore,
the cosmology was born as one of physical science by this theory. Alexander Friedmann derived the
Friedmann equations describing expansion of the universe in 1921. In 1927 Georges Lemaitre proposed
the big bang theory and Edwin Hubble discovered the red shift by expanding of the universe in 1929 (the
so-called Hubble law) [212, 211]. In 1964 Arno Penzias and Robert Woodrow Wilson detected the cosmic
microwave background radiation [355, 466] as a consequence of Big bang theory.

Thus cosmology has long history as old as human beings and may be perhaps one kind of thinking
ourself as their birth? or, their history? or themselves? We don’t say it clearly, but the universe is of
course, the largest special “nature” existing around us, which works as a some kind of “mirror” to human
being, attracting humankind for a long time. Recently, the idea of Anthropic Principle seems to be related
to such direction of discussion. All the physical laws of Nature involves particular physical constants such
as the gravitational constant, the speed of light, the electric charge and Planck’s constant etc. Some
are derived from physical laws, however, for most, their values are arbitrary. If all above constants take
critical values in a possible narrow range, life like a humankind could be created, otherwise no life comes
who understands the universe. The Anthropic Principle may be not scientific, but is one approach to
explain the above fundamental question; what our world, the universe takes special values of physical
constants? This idea is interesting to think in the point of view of landscape existing in String theory
as you will see later, where there exist other different universes and this principle may give a necessary
condition for the existence of our universe. In this sense, based on the Anthropic principle, the universe

1The word “Cosmology” is from the Greek: cosmologia, (cosmos) the universe seen as a well-ordered whole + (logos)
word, reason, plan.
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6 CHAPTER 1. INTRODUCTION

is just a mirror to face ourselves.

Cosmological hierarchy structures

The cosmology is also studying of large scale structures, such as galaxy and cluster. Here, let us introduce
briefly cosmological structures by looking up to large scales from the our planet, Earth. This is interesting
in the view point of an ancient study, “Cosmology”, which ancient man asked, ”What’s going on around
me?” The Earth is the planet whose radius is R ∼ 6378km and circuit 2πR ∼ 40.08 thousand km 2.
The galaxy which the Sun and we live in, of course, is called the Milky Way or the Galaxy 3. Our
Galaxy is made of a bulge of old stars, whose size is totally about 100,000 light-years(∼ 30kpc). The
sun system is located at about 2/3(∼ 9kpc, see also ‘parsec’ in (2.31)) from the center. Almost all
galaxies can be classified into three classes as ellipticals, spirals, and irregulars. The smallest aggregates
of galaxies are called groups of galaxy. The Andromeda galaxy is most closed to the Milky Way about
700kpc(∼ 2.1×106lyr), belonging to a local group of galaxies. The next class is cluster of galaxies, where
groups and clusters may contain from ten (group) to thousands of galaxies (cluster) and they form the
densest part of the large scale structure of the Universe. The clusters themselves are often associated with
larger groups called superclusters. Superclusters are usually consist of chains of about a dozen clusters
which have a mass of about 1016 solar masses. Our own Local Supercluster is centered on Virgo located
at 20Mpc from the Earth, and is relatively poor having a size of 15Mpc. The largest superclusters, like
that associated with Coma, are up to 100Mpc in extent. The structures of filaments which consists of
galaxies, are the largest known structures in the Universe, thread-like structures with a typical length of
70 to 150 Mpc that form the boundaries between large voids in the universe.

Modern scientific cosmology

Recently, the standard cosmological scenario is the so-called the Big Bang theory, proposed by George
Gamow et al in 1948 [11], which is based on General Relativity and “Cosmological Principle” in which,
if one consider physics on large efficient scales, one believe our universe is homogeneous and isotropic.
It leads to an expandng universe, which started from a hot dense state in around ten billion years ago,
called “the Big Bang” [165, 166]. This scenario can explain the evolution of both of the spacetime and its
components (matter) from nucleosynthesis at three minutes after starting, to the present time 13.7 billion
years, consistent with the several observational data. The observational evidences are mainly three: 1.
confirmation of cosmic expansion, 2. consistent abundances of the light element and 3. existence of
cosmic microwave background radiation (CMB). The first can be seen as Hubble law and the second on
the theory of nucleosynthesis. The last one, CMB is the most strongest confirmation that the Big Bang
theory received. It was detected by Arno Penzias and Robert Wilson in 1964 [355, 466]. However, the big
bang theory has key theoretical problems which are called the flatness, the horizon problems and related
to the origin of the structure formation [289, 259]. In order to resolve these problems at the same time,
there exists Inflationary scenario where before the big bang universe, there was a period that the universe
expands quasi-exponentially [289, 259, 280]. So far, only the idea of inflation provides a resolution of
those problems. Not only does it give some picture of the earlier stage of the universe before the big bang
but also it seems to be supported by some recent observational data on CMB. On the other hand, in the
inflationary scenario, the temperature of the universe has fallen to zero and the universe has become very
cold after the inflation, because of its exponential expansion. This state of the universe, however, is not
consistent with the initial condition of the universe at the big bang beginning since it was huge hot, so the
mechanism to connect smoothly the inflationary scenario with the big bang theory would be needed, the
so-called Reheating. Recent observations of CMB radition detected by the COsmic Background Explorer
(COBE) [40] and Wilkinson Microwave Anisotropy Probe (WMAP) satellites [41, 264, 359, 427] are
consistent with predictions by standard cosmological scenario including the big bang scenario, Inflation
and Reheating mechanism as described above (see also Fig. 1.1). Furthermore, combined with the new
observational data such as the astronomical instruments like the Sloan Digital Sky Survey (SDSS) [440]
and the Two Degree Field system (2dF) [100], supernovae data and Lyman α forest data, the WMAP

2This value is very close to 40 thousand km because the distance of “meters” was originally defined by 1/40000 of the
circuit of Earth. The light can travel to 7.5 circles around Earth in one second, whose speed is 3× 105 km/s, and then we
can roughly estimate R = 300/7.5× 103 = 4× 104 km.

3The name capitals “Galaxy” comes from the Greek “Gala” meaning milky.
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(a) The tempeature maps of CMB (b) Distribution of galaxies in 2dF

Figure 1.1: (a): The difference between the temperature anisotropy of cosmic microwave background
radiation detected by COBE [40] and WMAP satellite [427]. The upper map is COBE and lower WMAP.
The recent observational data of CMB can give us more information of the universe. (b) Distribution of
galaxies in the 2dF (Colless et al 2001 [100]). By the end of the survey, redshifts for 250, 000 galaxies will
have been obtained. As shown here, they probe structure in the universe out to z = 0.3, corresponding
to distance up to 1000h−1 Mpc away from us (we are located at the center).

data can give us more accurate information about our universe (see 2dF in Fig. 1.1).

It is known from the modern accurate observations, surprising us greatly, that the current universe
is mainly about 90 percents fulfilled with the unknown components, the so-called dark energy and dark
matter. The recent universe estimated by WMAP observational data is composed of dark energy(72%),
dark matter(25%), and ordinary matter(4%) including baryon [427]. Dark energy leads to accelerated
expansion of the universe and then the accelerated expansion is recent found to start form about 4 billion
years, slightly after the Solar system formation. Dark matter is non-baryonic matter, interacting only
through the gravitational force, and is necessary to explain the large-scale structure of the universe. In the
modern cosmology, they can not be explained naturally, however, their existences are confirmed, which
account for almost of the total energy of the universe. This becomes the most difficult remaining question
which the modern cosmology must reply. According to the Friedmann equations and interpreted as the
matter term, dark energy is a fluid which has a negative pressure, as the cosmological constant or the
energy density of vacuum does. It implies the existence of curious matter, conversely, it may demand us
the alteration of the theory itself, or is a “window” to see a new physics of fundamental theory. Moreover,
if dark energy is a vacuum energy of the universe, it is seen that the special value of this constant energy
has been chosen in the early universe, a long 13.7 billion years ago. It is unnatural and strange to explain,
and by some possibility, it may be related to a fundamental physics in the early stage of the universe.
These high energy physics so far has not been understood yet beyond the nucleosynthesis. Physics in this
stage, in the point view of unification of fundamental forces, is very attractive us. On the other hand, dark
matter needs to have concentrated the origin of large scale structures in order to build efficiently large
scale structures of the universe such as clusters, because the origins of these structures are considered of
quantum fluctuations generated by inflation. It also implies the possibility of testing the relation between
dark matter and high energy physics. Thus the dark components of the universe may be not independent
of the unified theory of all forces existing in nature.

For the recent studies of the unified theory (or the so-called theory of everything), one of most promis-
ing approaches is a it superstring theory, or M-theory, considered as a quantization of fields including
gravitational interaction [366]. Such unified theories are usually formulated in higher dimensions than
four. These extra dimensions can solve the hierarchy problem because they can lower the value of the
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Planck mass. This problem can be stated that why is the gauge symmetry group of the field theory that
is supposed to describe all the phenomena of nature broken not at one, but at two completely different
energy levels? The cosmological implications of string theory are receiving a lot of attention, the so-called
String cosmology. It was inspired by the recent advances of string theory. The goal of string cosmology
is to examine the dynamical evolution at the early stage of the universe, and re-examine cosmological
origins in order to understand a convincing link between string theory and unknown problems e.g., what
dark energy and dark matter are ? String theory has a much richer set of fundamental degree of freedom,
consisting—in addition to fundamental strings—of D-branes [365] of various dimensionalities. This fun-
damental objects, D-branes denote non–perturbative effects of string theory as “soliton” of strings, while
string theory has been only described in perturbative form. Inspired by such speculation, recently a new
paradigm on the early universe has been proposed, the so-called brane-world [206, 365], where ordinary
matter fields are confined to hypersurface in higher dimensional spacetime, while only gravitational fields
propagate throughout all of spacetime. In the brane-world, Randall and Sundrum [373] proposed a new
model where four-dimensional Newtonian gravity is recovered at low energies even without compact extra
dimensions. This models can give us the new picture of the early universe. Furthermore, brane-world
shows a possibility of the unification scale within reach of our near-future experiments. It implies an
important possibility that black hole can be produced in an accelerator such as the CERN Large Hadron
Collider [92]. Moreover the recent accurate observations give rich information of the universe and espe-
cially detection of the gravitational wave background arising due to the early universe, is a challenging
future task for the Laser Interferometer Space Antenna (LISA) [294] or the Deci-hertz Interferometer
Gravitational Wave Observatory (DECIGO) [416]. The future data has rich information on the early
universe, and hence provide us with powerful tools to probe fundamental physics. Based on such a new
world picture, many cosmological scenarios have been studied. In such a brane-world scenario, for resolv-
ing the above-mentioned key theoretical problems in the big bang theory, a new idea of the early universe
has been proposed, which is called the Ekpyrotic universe or the Cyclic universe scenario [246, 248, 432].
It is based on a collision of two cold branes. The universe starts with a cold, empty, and nearly ground
state [52], which contains two parallel branes at rest. The two branes approach each other and then
collide. The energy is dissipated on the brane and the big bang universe starts. Since this scenario is
not only motivated by the fundamental unified theory but also may resolve the key theoretical problems,
such as the flatness and horizon problems, therefore, it could provide an alternative to an inflationary
scenario and would be very attractive. While for the inflationary scenario, it is still unclear what the
origin of inflaton is. So far, there has been no convincing link with the fundamental unified theory, that
is string/M-theory. Furthermore, these brane models can give us the possibility of resolving the above
mentioned key cosmological problems, such as dark energy and dark matter. Colliding branes would be a
fundamental phenomena in the string cosmology since there exist many branes of various dimensionalities
produced in the string theory and they dynamically move and continue to collide each other. The col-
liding branes not only leads to the ekpyrotic universe scenario, alternative to inflation, but also another
scenario, the so-called String (brane) gas cosmology [64], resolving the dimensionality problem, which is
described as the fundamental question; why the space we live in has three dimensions ? In this thesis,
we pay attention to a phenomena of colliding branes and study several applications of colliding branes
to string cosmology.

The thesis is organized as follows. In Chapter 2, we review the big bang theory as a standard
cosmological scenario. Then the inflationary scenario and reheating mechanism are introduced as the
remedy of them in Sec. 2.2. So far, we have studied the homogeneous universe, however, we can find
hierarchy of structure scales in the universe, such as galaxy and cluster of galaxies. In Sec. 2.3, we pay
attention to such inhomogeneity of the universe and discuss the large-scale structures. In Sec. 2.4, we
shall review the modern problem of the universe, dark energy and dark matter and summarize a modern
cosmological standard picture. In Chapter 3, we briefly review string theory and a brane-world scenario.
In Chapter 4, we briefly explain two scenarios based on colliding branes.

We study several applications of colliding branes to string cosmology, where we formally classify two
cases: Minkowski spacetime (Chapter 5) and curved spacetime (Chapter 6). In Chapter 5, we would like
to show our works studying reheating mechanism in the ekpyrotic scenario (Sec. 5.2 and based on [436])
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and evolution of fermions confined on the brane (Sec. 5.3 and based on [184]). In Chapter 6, taking
account of effects from background spacetime, we are planning to study collision of anti de sitter (AdS)
branes (Sec. 6.1 and based on [437]), production of black brane by colliding AdS branes (Sec. 6.2 and
based on [439]) and resolution of the dimensionality problem by string gas cosmology (Sec. 6.3 and based
on [438]). Chapter 7 is devoted to conclusions and remarks.





Chapter 2

Standard cosmological scenario

2.1 Big bang scenario

2.1.1 Big bang scenario

Investigating the general relativity (GR) plays important role to study an evolution of the universe because
GR is the most plausible theory which describes the most fundamental force on large scale physics, that
is gravitational interaction. It was proposed by Einstein in 1915 and Einstein equations are expressed as
[466]

Gμν = κ2Tμν − Λgμν , (2.1)

where we define κ2 ≡ 8πG = M−2
pl = 8πm−2

pl and Gμν , Tμν , G and mpl are Einstein tensor, energy-
momentum tensor, Newton’s constant and Plank mass, respectively. Λ is a cosmological constant, which
Einstein firstly introduced to keep the universe static. When we consider a dynamics of the universe
itself, the basic assumption is that the universe can be found to be homogeneous and isotropic over
some efficient large scale (The Cosmological Principle). The assumption of isotropy is strongly supported
by the observational evidence of CMB radiation 1. In fact, the universe is homogeneous and isotropic
on 100Mpc scale supported by Redshift surveys [100, 440]. Mathematically, satisfying the cosmological
principle, the candidates of the three-dimensional space are limited to 3 cases. The corresponding metric
is obtained by [466] (see also the reviews of standard cosmology, big bang theory [280, 259, 355], recent
reviews [332, 123] )

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (2.2)

Here t and a(t) denote a cosmic time, and a scale factor, which means a scale of the universe. The
constant K represents a normalized spatial curvature. The case of K = 1, 0, and −1 represents a closed,
flat, and open universe, respectively, which is related to the spatial shape (or geometry) of our universes
(see Fig. 2.1). The metric form of (2.2) is called Friedmann-Robertson-Walker metric (FRW metric)2.
By using it, we can characterize an evolution of the homogeneous and isotropic universe in terms of a(t).

The evolution of the universe changes depending on matter components. We will consider a perfect
fluid3, whose form is often used as,

Tμν = (ρ+ P )uμuν + Pgμν , (2.3)
1It is natural to consider the assumption of homogeneity is also supported by CMB [41, 264, 359, 427]. However, there

are some works [233, 261, 333] which claim that this assumption may be broken since the present cosmological structure,
i.e., galaxies and clusters form z � 1. Usually, Cosmology is based on the cosmological principle and then Friedmann
equations is the basic equations for analysis of its dynamics. They think present dark energy component comes from the
inhomogeneity near z ∼ 1. In thesis, however, the homogeneity is assumed as first step of analysis.

2Another form of this metric is given by (2.23).
3The perfect fluid is equivalent to a fluid whose entropy is conserved along their flow. This assumption satisfy the

cosmological principle. We can treat the equation of motion as P = P (ρ, s0) = P (ρ) with constant entropy s0.

11
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Flat ClosedOpen

Figure 2.1: Sketches of geometry of the universe. In the flat universe, observed size is equal to actual
size, however, it is less (greater) than actual size for the open (closed) universe. This figure is from the
website: http://universe-review.ca

where ρ, P and uμ are an energy density, pressure and a four velocity of fluid, respectively. Considering
the FRW metric Eq. (2.2) and the perfect fluid as matter component, the Einstein equation can be
reduced to

H2 =
κ2

3
ρ− K

a2
+

Λ

3
, and ρ̇+ 3H(ρ+ P ) = 0 , (2.4)

where H ≡ ȧ/a is called a Hubble expansion rate. The first equation in (2.4) is termed as the Friedmann
equation and the second one represents the energy conservation law in general relativity. Combining these
relations, it gives the following acceleration equation (or Raychaudhuri equation),

ä

a
= −κ

2

6
(ρ+ 3P ) +

Λ

3
. or Ḣ = −κ

2

2
(ρ+ P ) +

K

a2
. (2.5)

From the Friedmann equation, we see there is a particular density, that is known as a critical density ρcr
corresponding to the spatial flat Universe (K = 0) in the absence of a cosmological constant (Λ = 0). This
is given by ρcr = 3H2/κ2 and is a function of time obtained by a given value of the Hubble parameter.
Using it, the Friedmann equation can be simplified as

Ω− 1 =
K

a2H2
. (2.6)

where Ω = ρ/ρcr is the dimensionless density parameter. One also can include a contribution ΩΛ = Λ/3H2

corresponding to the cosmological constant, so that we use Ωtotal = Ω + ΩΛ instead of Ω. The case of
Ω > 1, Ω = 1 and Ω < 1 corresponds to a closed, flat and open universe, respectively. The recent
observations shows that the current universe becomes almost spatial flat (Ω � 1). As an other forms, by
defining ΩK ≡ −K

a2H2 , it can become a simple form Ωtotal +ΩK = 1.
In order to close the system, we can provide another information in terms of the equation of state

(EOS) of matter
P = P (ρ) , (2.7)

which is generally characterized by micro physics. As typical EOS of matter in Cosmology, 111111 we give
two examples; relativistic species (E � mc2) and nonrelativistic ones (E � mc2). The energy density
and pressure are obtained by using a phase distribution function f(p) = [exp((E − μ)/T ) ± 1]−1 where
+1 pertains to Fermi-Dirac and −1 to Bose-Einstein particles under thermal equilibrium is realized 4.

4We stress that the universe can evolve dynamically, therefore it cannot be treated as a usual thermal equilibrium. Here
we define this equilibrium state by local equilibrium, in which the characteristic time scale of some reaction tc � 1/σnυ
becomes smaller than the cosmic time tH ∼ 1/H; tc � tH , where σ denotes an effective cross-section, n is a number density
and H is the Hubble parameter. See the further article of Temperature.



2.1. BIG BANG SCENARIO 13

To describe relativistic particles, energy density and pressure are obtained as follows [259],

ρ =
π2

30
g∗(T )T 4 , P =

1

3
g∗(T )T 4 , (2.8)

with g∗(T ) =
∑

boson gi +
7
8

∑
fermion gi is internal degree of freedom, especially g∗ = 2 corresponds to

photon. Then total EOS of all relativistic spices can be simplified by

P =
1

3
ρ (radiation) , (2.9)

independent of their spins and chemical potentials. Another important example is an ordinary matter.
Its rest mass is much greater than its kinetic energy. So the EOS is approximated by

ρ � mnc2 +
3

2
nT . P � nT � ρ , (2.10)

and then we can treat them as

P = 0 (matter) . (2.11)

If one take the cosmological constant as an one kind of matter ρvac = Λ/κ2, the vacuum energy is given
by the equation, ρvac = const. Then combed with the energy conservation law (2.4), its EOS is obtained
as,

P = −ρ (cosmological constant) . (2.12)

Here we can show a simple description for three examples described above. The form of EOS is given
using an adiabatic index γ(= ω − 1) as

P = (γ − 1)ρ = ωρ . (2.13)

Combined with the energy conservation law, equivalently, ˙(a3γρ) = 0, we obtain

ρ ∝ a−3(ω+1) . (2.14)

We can see the energy density ρ decreases when the scale factor a becomes large. If one would consider
radiation and matter, the energy density of radiation ρr (matter ρm) varies as a

−4 (a−3). This means that
energy loss of radiation is bigger than of matter, therefore, as the universe becomes large, matter becomes
more dominant than radiation. It is consistent with the current observational data Ωm,0 � 3500Ωr,0 (see,
where Ωm includes dark matter). As one go back to the early time of the universe, we can estimate
the time when energy density of matter is equal to that of radiation (Matter-Radiation equality time)
as aeq = Ωr,0/Ωm,0 ∼ 1/3500. Here the present scale factor is normalized as a0 = 1. The cosmological
constant is characterized as ω = −1 and that is clearly understood from a constant energy density in
Eq.(2.14). In the following discussion, it is shown as an important component of the recent universe; dark
energy Ωde,0 � 0.7, if we consider it as the cosmological constant, we similarly obtain the time when the
dark energy begins to dominate as a|(de=matter) = (Ωm,0/Ωde,0)

1/3 ∼ 1/0.75. That is when the universe
was about 0.75 times of the present scale.

Next, let us see the evolution of the universe a(t). Putting Λ = 0, when we consider the geometry as
a spatial flat (K = 0), we easily find the solution for Eqs. (2.4) as

a ∝ t
2

3(1+ω) , H =
2

3(1 + ω)t
, H ∝ a−

3(1+ω)
2 , (2.15)

therefore, we find a ∝ t2/3 and a ∝ t1/2, for matter dominant era for radiation dominant era, respectively.
This universe expands forever, but its speed is decreasing. i.e., deaccelerated expansion with ä < 0 for
the both cases. For other simple cases, where we consider matter (P = 0) is filled in the open universe
(K = −1), the universe expands forever as well as flat case and in the closed universe (K = 1), after
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(b)
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(b) Scale factor −1/3 < ω
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a
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(d)(c)
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Figure 2.2: The potentials are plotted in (a) and (c) for −1/3 < ω and −1 < ω < −1/3, respectively and
typical evolutions of scale factor corresponding to their potentials are also plotted in (b) and (d). In fig

(c), we define Vs ≡ − 3ω
1+3ω

Ωm,0

as
and as ≡

(−(1+3ω)Ωde,0

Ωm,0

)1/(3ω)

.

some period of the expansion, the universe begins to contract, which implies that the final scale factor
a becomes 0. On the other hand, the case of vacuum energy (ω = −1) is, for the flat universe, the
time evolution of scale factor is obtained as accelerated expansion; a ∝ eH t, with the constant Hubble
H, from the Friedmann equation. Similarly, both the open and closed universe asymptotically behave
as exponential expansion. If the dark energy is the vacuum energy itself, the recent universe evolves as
accelerated expansion: a ∝ eH0t. The condition for EOS which distinguishes a deaccelerated expansion
from an accelerated is given by the Eq. (2.5) as ω < −1/3, and thereby, the cosmological constant (or
vacuum energy) is a typical example of ω satisfying this condition.

Newtonian picture and Potential problem: The Friedmann and Raychauhdhuri equations are
partially obtained in the ordinary Newton theory as follows. We consider the expansion of the universe,
characterized by the hubble expansion rate as 
v = d
r/dt = H(t, 
r)
r. Assuming the hubble expansion rate
is homogeneous and isotropic H(t, 
r) → H(t), consistent with the observational evidence Hubble law seen
later, leads to the distance characterized by the scale factor 
r = a(t)
χ, where χ denotes the Lagrangian
coordinate d
χ/dt = 0, (basically which is the comoving distance seen later). Substituting 
r = a(t)
χ, the
conservation law of mass can be rewritten as

dM

dt
=

d

dt

(4π
3
r3ρ

)
= 0 =⇒ ρ̇ = −3Hρ . (2.16)

The Newton equation 
F = md2�r
dt2 also can be rewritten as

m
d2
r

dt2
= −GmM

r3

r = −Gm

r3

(4πr3ρ
3

)

r =⇒ ä

a
= −4πG

3
ρ . (2.17)

The equation of motion (EOM) for the scale factor (2.17) implies that the the universe can not be static
in the existence of matter. (2.16) and (2.17) are related to the second one of (2.4) and (2.5), however, it
is just correspondence, and hence the differences between Newtoninan and general relativistic equations
are seen as additional terms of pressure: ρ→ ρ+ P and ρ→ ρ+ P/3 for (2.16) and (2.17), respectively.
Furthermore, as a additional correction term, the cosmological constant of Λ/3 needs to the right hand
side of (2.17). Including this term, integrating (2.17) by time, we obtain ȧ2− 8πG

3 ρa2− Λ
3 a

2 ≡ −K, where
K is a integration constant and related to the spatial curvature. The first term denotes kinetic energy
and the second gravitational energy and related to the Friedmann equation, the first one of (2.4). It can
give us interpretation of evolution of the universe as a potential problem as follows. In the absence of Λ
term and considering the matter (P = 0) and the dark energy (P = ωρ), (2.4) can be rewritten in the
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following form:
ȧ2

H2
0

+ V (a) = ΩK,0 , V (a) = −Ωm,0

a
− Ωde,0 a

−(1+3ω) . (2.18)

Notice that as a correspondence with Newton gravity, the mass and the energy are given by m = 2/Ḣ2
0

and E = ΩK,0 = −K/a2H2
0 , respectively. For the potential problem, the negative energy E < 0 leads to

binding state and hence the closed universe expands and begins to contract after some period as discussed
above. The potential types are divided into two cases: 1. ω > −1/3 and 2. −1/3 > ω > −1, as shown in
figs (a) and (c) in Fig. 2.2 and we show the corresponding typical evolution of the universe in figs (b) and
(d). The first case has been pointed out in the above discussion. Types named (b), (d) and (e) seen in
the second case (fig 2.2(d)), evolve asymptotically as exponential expansion a ∝ eH0t. The type e is seen
to be just the case denoting the evolution of the current universe, which deaccelerates and then begins to
accelerate around the present time. The case of ω < −1 will be seen to correspond to a phantom (ghost)
dark energy in the further section of 2.4.

If the universe is sufficiently small at its early stage, the previous discussion implies that the most
dominant component is radiation in the universe. By comparing with phenomena occurred at that
corresponding temperature in the nuclear physics, we can understand the scenario at the early stage of
the universe as effects of the cooling because of the cosmic expansion. For an important physics at this
stage, we will evaluate the abundances of the light element. It is consistent with the observational data
(Helium-4 constitutes about 25%, which will be shown in the following section). The other important
observation to support the big bang scenario is Cosmic Microwave Background (CMB), that is the
radiation (photon) decoupled at about T = 4000K. The current temperature of CMB radiation is about
T ∼ 3K, which has been firstly detected by Penzias and Wilson in 1965. Now we can understand the big
bang scenario as a standard cosmology supported by many observational results. In the next subsection,
we shall explain three observational evidences supporting the big bang scenario. Before that, we will
introduce important definitions and concepts to discuss the cosmology through the thesis.

• Redshift

Redshift is an useful quantity to measure an expansion of the universe because a redshift of the photon
wavelength emitted by a stellar object when the universe expands. Using a wavelength λ and a scale
factor a, the redshift z can be obtained

1 + z =
λ0
λ

=
a0
a
, . (2.19)

Here the subscript zero represents a present value. It is useful to introduce the following relation:

Ḣ = −H
a

= −H(1 + z) , equivalently,

∫
dz

H(z)
= −

∫
dt

a
, (2.20)

where H(z) is given explicitly as (2.33).

• Horizon

In GR, there exists a causality as a connected region since the speed of light gives a maximum for traveling
information. In particular the boundary between causal connected and disconnected region is called the
(particle) horizon. Actually, the particle horizon dp in a flat geometry can be obtained by

dp =

∫ r

0

√
|grr|dr = a(t)

∫ r

0

dr = a(t)

∫ t

0

dt

a(t)
� a

ȧ
. (2.21)

Notice that the horizon is approximately given by H−1, which is the so-called Hubble radius defined
as dH ≡ H−1. Consequently, the terms “Hubble scale” and “particle horizon” are sometimes used
interchangeably dp � dH because they are of similar magnitude for some models5. The comoving particle

5They can differ by a large factor when a strong energy condition is violated as ρ+3P < 0, where the size of the causally
connected region dp grows exponentially fast, whereas the Hubble radius dH is constant as you will see in Inflationary
scenario.
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horizon is defined and then the relation between the physical distance and comoving distance is given as

dp
com =

∫ t

0

dt/a(t) , dp
phy = a(t) dp

com . (2.22)

If the Hubble parameter can be estimated, we can find the corresponding physical horizon scale (dp
phy ∼

H−1), and the comoving horizon, roughly given by dp
com � 1/(aH), respectively. Notice that in the

perturbation theory (see Sec. 2.3), one usually compare the comoving wavelength λ = 1/k with dp
com,

i.e., which is larger k or aH (equivalently, a/k or H−1 for the physical wavelength). At the preset time,
the scale factor is usually normalized a0 = 1 and yields dp

phy = dp
com|t=t0 . Using the evolution of scale

factor (2.15), we find dp
phy = 3t in the matter-dominant era and dp

phy = 2t in the radiation-dominant
era, respectively. As for a typical value of Hubble parameter, it is known that the present Hubble scale
H−1

0 is about 3000Mpc, i.e., 1010 (a ten billion) light years (1pc ∼ 3 ly).

• Cosmological distances

We introduce concepts of a definition of distance in order to observe it in an expanding background. Let
us introduce two useful definitions of distance; a comoving distance and a physical distance. We can
write the FRW metric (2.2) in the following form:

ds2 = −dt2 + a2(t)
[
dχ2 + f2K(χ)(dθ2 + sin2 θdφ2)

]
, where fK(χ) =

⎧⎨
⎩

sinχ , K = +1 ,
χ , K = 0 ,
sinhχ , K = −1 .

(2.23)

The distance χs =
∫
dχ =

∫
dt
a(t) is the so-called the comoving distance. The light traveling along the

χ direction follows the geodesic equation ds2 = −dt2 + a2(t)dχ2 = 0. As for other example, we will
introduce a Luminosity distance.

Luminosity distance: is defined by a luminosity of a stellar object. Using an absolute luminosity Ls
6

and an energy flux F obeying F = Ls/(4πd
2), the luminosity distance dL can be defined as

d2L ≡ Ls
4πF . (2.24)

One can get a relation between two luminosities Ls and L0 as

Ls = L0(1 + z)2 . (2.25)

Using an area of sphere as S = 4π(a0fK(χs))
2, we obtain an observed energy flux as

F =
L0

4π(a0fK(χs))2
. (2.26)

Then we can get a luminosity distance in an expanding universe by

dL = a0fK(χs)(1 + z) , (2.27)

where fK(χ) = χ for a flat FRW spacetime. We estimate

dL =
1 + z

H0

∫ z

0

dz′

h(z′)
, (2.28)

and hence rewrite H(z) in terms of dL(z):

H(z) =

{
d

dz

(
dL(z)

1 + z

)}−1

. (2.29)

6The difficult problem is to determine the absolute luminosity Ls. There is a “ladder” of distance determinations
[466], with five distinct rungs, dependent on cosmological interesting distances: 1. Kinematic method, using trigonometric
parallaxes (d < 30pc), 2. Main-Sequence method, using HR(Hertzsprug-Russell) relation (< 100kpc), 3. Cepheids method,
using the period of photons emitted from such stars (< 1Mpc), 4. Tully-Fisher method, using Tully-Fisher relation
(< 100Mpc), and 5. Supernovae Ia (z <∼ 1), using their spectral features with declining light, as seen in dark energy.
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In cosmology (astronomy), distances are usually measured in parsecs instead of meters. One year is
written in terms of seconds as 1yr � 3 × 107sec. Recalling the light speed having the value of c �
3× 108m/s, the light years are related to meters

1 light year � 3× 3× 107+8 � 1016m . (2.30)

Therefore, parsecs are related to meters via

1 pc = 3.26 light years � 3× 1016m . (2.31)

Angular diameter distance: In a static Euclidean space, the angle which an object with a given
transverse size subtends on the sky is inversely proportional to the distance to this object. The angular
diameter distance is defined by the apparent angular separation Δθ and the proper size l of object as
dA = l/Δθ. In an expanding universe, Δθ can be written in terms of the comoving distance between χs
and χ = 0 as Δθ = l/(aχs) = l/(a

∫ t0
t1

dt
a ). In the non-zero curvature case K 
= 0, it needs to interchange

χs(z) with fK(z). Therefore, the angular diameter distance is given by

dA = a0(1 + z)−1fK(z) � a0(1 + z)−1

∫ t0

t1

dt

a
=

1

H0(1 + z)

∫ z

0

dz′

h(z′)
, (2.32)

where we have used a relation χ = fK(χ) for a flat geometry on the second equation and (2.20) on the
last equation. Note that the diameter angular distance also depend on the hubble parameter as similar
to the luminosity distance (2.28).

• Age

Let us consider the age of the universe. The Hubble is a function of the redshift z as

H2(z) = H2
0 [Ω

(0)
r (1 + z)4 +Ω(0)

m (1 + z)3 +Ω
(0)
Λ +ΩK(1 + z)2] , (2.33)

rewritten from the Friedmann equation (2.4), where we consider the three material contributions to ρ;
radiation (ωr = 1/3), dust (ωm = 0) and a cosmological constant (ωΛ = −1) plus the spatial curvature

(ΩK ≡ −K/(a20H2
0 )). If one generally consider a dark energy contribution, the term of Ω

(0)
de (a/a0)

2/3(1+ω)

needs in stead of the cosmological constant. Using (2.20), the age of the universe can be estimated by

t =

∫ t0

0

dt =

∫ ∞

0

dz

H(1 + z)
=

∫ ∞

1

dx

H0x[Ω
(0)
r x4 +Ω

(0)
m x3 +Ω

(0)
Λ +ΩKx2]1/2

, (2.34)

where x(z) ≡ 1+ z. It implies that the age of the universe is determined by its including components Ωi.
In a simple situation, when we only consider dust Ωm � 1 with ΩK = ΩΛ = Ωr � 0 (Einstein-de Sitter), it
follows the age of the universe t0 � 2

3
1
H0

∼ 9Gyr (or billion years). It is interesting to compare it with the
age of the oldest stellar. For example, the age of globular clusters can be estimated as t1 = 13.5±2Gyr. It
gives us the lower bound which the age of the universe needs to satisfy, obtained as t0>∼13Gyr. From the
above estimation it is difficult for a flat universe to satisfy this condition with a normal form of matter.
However the age problem can be easily solved in a flat universe if one re-consider a cosmological constant

Ω
(0)
Λ . If the parameters can be taken as Ω

(0)
Λ � 0.7 and Ω

(0)
m � 0.3, the age becomes t0 ∼ 0.96/H0 and

accordingly, the age becomes larger by a factor of about 3/2: t0 ∼ 13.5Gyr. As a result, the age of the
universe can be roughly estimated as t0 � 1/H0 and it corresponds to the horizon of the universe is
dH � c/H0 since the light emitted at the onset of big bang, travels during the age of the universe. The
spatial geometry also changes the age. For an open universe model, the age is larger than the flat case,
because the amount of matter decreases and then it takes longer. Conversely, the closed case makes it
become shorter.

• Temperature
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The entropy density of the proton is given by s = 4
45π

2T 3 and it reads a conservation of s as T 3a3 =const,
that is,

T ∝ 1

a
� (2.73K)× z , (2.35)

normalized by a current “temperature” of a Planck distribution T0 = 2.73K. If a radiation can interact
with ordinal matter and be thermalized, this temperature denotes the temperature of the universe7. After
thermal decoupling of radiation from other matter at z ∼ 1100 or T ∼ 3000K (see a heading of CMB), it
denotes temperature of a planck distribution of freely streaming photon and it does not represent a thermal
equilibrium of the universe. As the universe expands, the “temperature” also decreases. Conversely, the
temperature at the early stage of the universe became very high. That is the idea of the big bang universe.
At this hot stage of the universe (where a radiation dominated), it is useful to estimate a relation its time
scale and its temperature as

t ∝ T−2 =⇒ tsec � O(1)

T 2
MeV

. (2.36)

It is also useful to estimate a energy scale corresponding to a temperature by using the relation

1eV � 104K . (2.37)

For a few order of eV , its corresponding events are the equality time at Teq ∼ 104K ∼ 1eV(z ∼ 3500)
and the recombination at Tdec ∼ 3000K ∼ 0.3eV(z ∼ 1100).

2.1.2 Observational evidences

The standard cosmological scenario is the so-called the Big Bang theory, proposed by George Gamow
et al in 1948, where the universe started from a hot dense state around ten billion years ago, as a high
density Egg, ”the Big Bang” [165, 166, 11]. We will explain the three observational evidences confirming
the big bang theory.

(1) Hubble law

This fact that the universe is now expanding is discovered by E. Hubble in 1929 [212, 211]. He observed
and estimated a relation between distances (r) and radial velocities (v) of twenty four extra-galaxies as

v = H0r . (2.38)

The value of the Hubble parameter, H0 at his estimation, is about 53km/s/Mpc [211] (compared with the
current value; 71±4km s−1 Mpc−1 [158], see Fig. 2.3)8, because the errors of distance determined from the
Cepheid variables, were very large. It shows that the faraway galaxies are receding more rapidly from our
galaxy. This fact can be explained from the homogeneous and isotropic expanding of the universe. That
is H(t, 
r) is reduced to the function of only time H(t), equivalently, 
r = a(t)
χ with Lagrange coordinate
d
χ/dt = 0. In GR, a receding velocity is related to the redshift z = a0/a(t) − 1 of the wavelengths
of emission lines as v = cz (2.38). Notice that it can interpret v as a receding velocity only for a low
redshift z � 1, however, one usually by using it, extensively define a redshift as a distance r = cz/H0.
Cosmologist can usually use a dimensionless Hubble parameter h ≡ H/100. The current value of Hubble
constant also has other three meanings 1. Age, 2. Size 3. Energy scale. The first and second meanings
are related each other by multiplying c. The current universe is mainly characterized by the present
value of the Hubble H0 and so we summarize its several physical meanings as follows: 1. Expansion
rate H0 = 100hkm/s/Mpc, 2. Age H−1

0 � 13.7Gyr, 3. Horizon H−1
0 � 13.7Glr � 4200Mpc, and 4.

Vacuum energy H0 � 10−42GeV.
7It is not thermal equilibrium. Thermal equilibrium can not be realized at 1 + z ∼ 5 × 104, but the isothermal effect

occurs after that, and then, as a result, black body keeps until 1+z ∼ 1100. Moreover, after that, even though both thermal
equilibrium and isothermal effect break, when one compare it with a black body, “temperature” is obtained.

8It means the velocity of galaxy existing at 1Mpc is 71km/s, compared with a velocity to escape from the gravity of
earth is 11.2km/s.
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Velocity

2�~102PARSEC

Distance
0

0

100KM

50KM

100PARSEC

(a) The original Hubble diagram (1929) (b) Hubble Space Telescope Key Project (2001)

Figure 2.3: (a): This figure is in Hubble (1929) [211]. Velocities of distant galaxies (units should be km
sec−1) are plotted vs distance (units should be Mpc). Solid (dashed) line is the best fit to the filled (open)
points which are corrected (uncorrected) for the sun’s motion. In this early work, H0 � 53km/s/Mpc.
(b) The Hubble diagram from the Hubble Space Telescope Key Project (Freedman et al., 2001 [158])
using five different measures of distance. Bottom panel shows H0 vs distance with the horizontal line
equal to the best fit value of 72km sec−1 Mpc−1.

(2) Nucleosynthesis

The most widespread chemical element in the universe is hydrogen, constituting nearly 75% of all baryonic
matter. Helium-4 (He-4) constitutes about 25%. The other light elements and metals have only very
small abundance. Simple arguments lead to the conclusion that the large amount of 4He could not have
been produced in stars, that is, if the luminosity of baryonic matter in the past was not much larger than
at present, less than 0.5% of 4He can be fused in stars. It can not explain that one quarter of all baryons
has been fused into 4He in stars. The big bang theory explain the light elements [11, 203], H, He, Li and
Be, are produced in the early stage of the universe, at nearly T ∼ 109K ∼ 0.1MeV, that is, a few minutes
after the big bang starts. We will explain the amount of produced helium hereafter (see the review book
[332]). This amount depends on the availability of neutrons at this time, since the neutron-to-proton
ration freezes out. This ratio is roughly determined by their mass difference Δm ∼ 1.2MeV as

np
nn

∝ eΔmc
2/kBT . (2.39)

Therefore, the neutron decreases as cooling of the universe. This ratio freezes out at T ∼ 0 .8MeV where
np/nn ∼ 5.3. After freeze-out, the neutron (beta) decay is the sole remaining cause for a change in the
number of neutrons. Then the neutron concentration decreases as Xn ≡ nn/nN ∝ e−t/τn where τn is
a lifetime of a free neutron τn ≈ 886s and nN = nn + np is the total number of nucleons (baryons).
He-4 could, in principle, be built directly in the four-body collision: p + p + n + n → 4He, however,
actually, the He-4 are formed as a result of complex nuclear interactions. In these interactions, the
most important process is a deuterium (D) production p + n � D + γ. Then two interactions convert
deuterium into heavier elements helium-3 (3He) and tritium (T) and finally produce He-4. The deuterium
can constitute a significant fraction of baryonic matter only if the temperature is about 0.08MeV. The
equilibrium concentration XD = 2nD/nN increases from 10−4 to 10−2 as the temperature drops from
0.08MeV to 0.07 MeV. This increasing of deuterium makes nucleosynthesis, to produce more heavy atoms,
begin quickly. When the deuterium concentration reaches its maximal value XD � 10−2, the final He-4
abundance is completely determined by the number density of free neutrons at this time. The abundance
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of He-4 is determined as nn/2, and accordingly the abundance ratio by weight X4He = 4n4He/nN is given
as

X4He =
4× nn

2

(nn + np)
=

2

1 +
np
nn

. (2.40)

When XD is of order 10−2 at temperature T ∼ 0.07MeV, the neutron-to-proton ratio is estimated as
nearly

np
nn

∼ 7 or Xn ∼ 0.12. Therefore one finally obtains X4He ∼ 2
(1+7) ∼ 0.25. Recent observational

data shows He = 24.72±0.12% for Ref. [220] and He = 24.74±0.28% for Ref. [358]. The nucleosynthesis
produces 4He,D, 3He, T , lithium-7 ( 7Li) and beryllium ( 7Be) at most. Other elements such as 6Li, 8Be
etc. are produced in much smaller amounts and will be ignored. Final abundances of these light elements
are obtained as D<∼10−4 4He, T, 3He<∼10−1D and 7Li, 6Be<∼10−5D for η10 = 3 where η10 is the

baryon-to-photon ratio η10 ≡ 1010 × nN/nγ . From the recent observational data [220, 357, 358], one can
constraint them as 1.0 × 10−4 < D/He < 1.2 × 10−4 and 4.0 × 10−6 < 7Li/D < 1.2 × 10−5 and it is
consistent with the result abundances obtained from the big-bang nucleosynthesis, which occurs at the
temperature dropping form 0 .1MeV to 10keV.

(3) CMB

CMB is the most powerful tool to look into the early image of the universe, which is a isotropic emission
of radiation from a hydrogen recombination (or simply, Recombination)9; p + e− � H + γ where H is
a neutral hydrogen atom. For the ground (1S) state, the binding energy of neutral hydrogen, ΔE =
mp + me − mH = 13.6eV corresponds to a temperature of about 105K and then the recombination
appears to occur at this temperature. However, a real temperature is different from this one. The Saha
formula (μe + μp = μH) can be derived as

nenp
nH

=
(Tme

2π

)3/2

exp
(
− ΔE

kBT

)
(2.41)

We introduce the ionization fraction Xe =
ne
nB

, according to a neutrality np = ne and the baryon number

density: nB � np + nH � 10−7(1 + z)3cm−3, Eq. (2.41) becomes

npne
nHnB

=
X2
e

1−Xe
� 2.2× 1023

( T

1K

)−3/2

e−ΔE/kBT . (2.42)

The factor of 1023 shown in the above equation is a big value and so even if the temperature reaches
kBT ∼ ΔE ∼ 105K, Xe does not decrease readily. In fact, when the ionization fraction is Xe = 0.5,
the temperature is obtained as Trec ∼ 3750K(z ∼ 1370). So far we have assumed thermal equilibrium of
ground state, however, if we do not assume it, it takes a lower value as Trec ∼ 3400K(z ∼ 1220) 10. After
that, a radiation decoupled from other elements begin to stream freely through the universe and then an
observer today detects the photons that last interacted with matter. It is the so-called decoupling (or last
scattering), which occurs at Tdec ∼ 2500K (zdec ∼ 900 ) obtained by estimating tdec <∼ H−1. A. Penzias
and R. Wilson casually discovered the CMB as isotropic weak radio signals in 1965. That stretched
wavelength is same as a planck distribution at T ∼ 3K. After that, The COBE satellite (COsmic
Background Explorer) [40] detects the CMB and can estimate more accurate value of this “temperature”,
as 2.725 ± 0.002K in 1992. So the redshift is obtained as 1 + z = 3000K/2.73K � 1100 . On the other

9There also exists Helium recombination, where capture of one electron giving He+ occurs at T ∼ 12000K and the
neutral Helium becomes at T ∼ 5000K. However even complete recombination of helium reduces the number of free
electrons by 12% at most and the universe is still opaque to radiation. As a result, hydrogen recombination is a more
interesting and dramatic event from an observational point of view.

10To be accurate, under thermal equilibrium, the redshift is obtained as z ∼ 1370 for Xe ∼ 0.5 and z ∼ 1200 for Xe ∼ 0.1,
while considering deviation from thermal equilibrium (nonthermal effects of radiation in excited sates 2S and 2P etc seen
in [332]), z ∼ 1220 for Xe ∼ 0.5 and z ∼ 1100 for Xe ∼ 0.1. Therefore, recombination occurs at about z ∼ 1100 − 1200
(Trec ∼ 3000K)
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hand, not a radiation but a neutrino decouples from other elements at T ∼ 1 .5MeV and yields a cosmic
background neutrino having a planck distribution with temperature as Tν = (4/11)1/3Tγ ∼ 2.7K/1.4 ∼
1.95K. The neutrino temperature is lower by a factor of (4/11)1/3 since photons are heated by the
annihilation of electron and positron when the temperature drops below their rest mass T ∼ me ∼
500keV(0 .5MeV ). If one will detect them in the future, it is perfect evidence of the big bang theory. (see
the article of “history” in summary of this chapter). BOOMERanG (Balloon Observations of Millimetric
Extragalactic Radiation and Geophysics) [53] has flown around Antarctica in two separate flight (the first
in 1998, the second in 2003) to map the CMB. The recent CMB data are obtained by WMAP satellite
(Wilkinson Microwave Anisotropy Probe) [41, 264, 359, 427] and it can estimate several cosmological
parameters as Table 2.2. In the following, we shall explain the relation between cosmological parameter
Ωi and the CMB spectrum in the section 2.3.

2.1.3 Problems in Big bang scenario

The big bang cosmology has been shown as a successful scenario, however it contains some unexplained
theoretical problem by its own. Let us clarify what the problems are (see the review of inflation [36, 280,
289, 332]).

• Flatness problem

The density parameter Ω today (see (2.6)) is constrained by the recent observational data as

Ω0 = 1.02± 0.02 . (2.43)

The curvature term (K/a2) becomes effective at the early stage of the universe since its decay rate is
slower than other components: matter(ρm ∝ a−3) and radiation(ρr ∝ a−4). So Ω must be very close to
unity in the early universe. It is also seen from (2.6) that the a2H2(= ȧ2) term always decreases since the
standard big-bang theory implies a decelerating of the universe ä < 0. We can evaluate the parameter Ω
in the stage at which the temperature is Ti,

Ωi ∼ 1 +
(Ω0 − 1

Ω0

)(T0Teq
T 2
i

)
, (2.44)

where Teq ∼ 104K, T0 ∼ 3K are the temperature at the (Matter-Radiation equality time) and at present,
respectively. For example, the density parameter can be evaluated as |Ωi − 1| ≤ 10−16 at the epoch
of nucleosynthesis (T ∼ 1MeV) and |Ωi − 1| ≤ 10−60 at the Planck epoch (T ∼ 1019GeV). It was an
extreme fine-tuning of initial conditions. Why the universe is so close to flat as the initial condition is
the so-called flatness problem.

• Horizon problem

The CMB radiation temperature is the same across the entire sky to an accuracy of a few parts in
one million. Then it leads to that the universe had to be in thermodynamic equilibrium at some past
before CMB radiation was emitted, since the radiation has been effectively non-interacting after that
point in time. As noted in the above article of Horizon, the present value of the Hubble radius is
about H−1

0 ∼ 1010lyr(� 3000Mpc) and the corresponding physical hubble radius at the decoupling
(Tdec ∼ 3000K) can be estimated as,

ldec
phy ∼ H−1

0 (adec/a0) ∼ H−1
0 (T0/Tdec) ∼ 107 light years . (tdec < t < t0) (2.45)

On the other hand, noting that the universe at the decoupling is dominated by the matter, the horizon
scale at decoupling is obtained from Eq. (2.21) as,

dp
phy(tdec) � 3tdec ∼ (Tdec/T0)

−3/2H−1
0 ∼ 105 light years . (0 < t < tdec) (2.46)

The volume ratio of dp
phy(td) to the particle horizon today at decoupling ldec

phy, is estimated as

dp
phy(tdec)

ldec phy
∼ 10−2(×360/(2π) � 1◦) . (2.47)
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Figure 2.4: Sketches of the horizon problem and the formation of the structure problem in the big bang
theory. The region inside the cone at any time is causally connected to us (at the center) (a). Photons
emitted from the last scattering surface (at redshift ∼ 1100) started outside of this region. Therefore,
at the last scattering surface, they were not in causal contact with us and certainly not with each other.
In this universe, similarly, the fluctuations ((k/a)−1) is not causally connected (b). Inflation gives us
solutions to these problems seen in (c) and (d). (same sketches in the book [123])

These causally regions corresponds to an angle of order 1◦. This result is also obtained from estimating the
ratio of the comoving particle horizon dp

com = (1 + z)dp
phy ∝ (1 + z)−1/2 to the present as dp

com(z =
1100)/dp

com(z = 0) = 1/
√
1101 = 1.7◦ 11. On the other hand we have observed photons which are

thermalized as a same temperature at all regions in the CMB sky. The observed temperature from the
different region can be evaluated as ΔT/T ∼ 10−5. Why these causally disconnected regions have same
temperature is the so-called horizon problem (see Fig 2.4).

• Origin of large-scale structure

The COBE satellite shows the anisotropies of temperature has a nearly scale-invariant spectrum, the
so-called Harrison-Zel’dovich spectrum. In a theory describing a structure formation (the perturbation
theory of the FRW metric, seen the section of inhomogeneity in more detail), it may be possible to obtain
the present structure if one would use observational results at the last scattering as initial conditions.
However, it needs to consider some physical mechanism providing such small perturbations. Moreover it
is difficult to generate large scale fluctuations through causal process in a FRW metric, which is related to
a resolution of horizon problem in the view point of causality. The big bang theory alone cannot explain
this problem.

• Relic density problem

In modern particle physics, it has been known that many unwanted objects can be produced due to
symmetry breaking. For example, topological defects, such as Monopole, cosmic strings, and domain
walls can be formed by phase transitions. It is natural that some relic remains in a general situation at
the early universe. In particular, it is known that the monopole energy density is bigger than the critical
density, i.e., ρmon ≥ 1010ρcr. It is clearly inconsistent with the present universe. Why the amount of
monopole is so small? This problem is known as the relic density problem.

2.2 Inflation cosmology and Reheating mechanism

Inflationary cosmology [408, 195] played an important role. Inflation can give us prediction about a
theoretical origin of structure formation in the universe. Moreover this scenario has also a possibility to

11The comoving horizon size at decoupling is dp com(tdec) � 400Mpc, similar order of typical supercluster’s scale. The
equality time locates before the decoupling, which corresponds to the comoving horizon scale dp com(teq) � 90 − 100Mpc,
similar order of cluster’s scale.
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investigate a fundamental physics as a new window. The idea is very simple. We can show the review,
e.g., [289, 259, 280, 51, 344, 62, 279, 282, 36] for some early review and [303] found for a model building
in the context of supersymmetric models.

2.2.1 Basic Idea

We assume the universe would be in an accelerated expansion at its early stage,

ä > 0 . (2.48)

This corresponds to the following two cases by the relation (2.5): one is, in the absence of Λ,

ρ+ 3P < 0 , (2.49)

and another is a positive Λ only. For the typical example, we show the vacuum energy (or the cosmological
constant) dominates the accelerated expansion of the universe, characterized as ω = −1. It is obvious this
EOS satisfies the above condition (2.49) and from the Friedmann equation (2.4), we obtain the following
solutions in K = 0, which behaves as exponential expansion,

a(t) = a0 e
Ht , with H =

√
ρvacκ2/3 (2.50)

where a0 is the integral constant, corresponding the scale factor at t = 0. Even if we consider the spatial
curvature K, it is easy to see that every solutions behave as exponential expansion in the epoch t� 1/H.
It is also seen that the Hubble parameter is constant during this epoch. We shall show how an accelerated
expansion of the universe solves the cosmological puzzles in the standard big bang theory.

• Flatness problem

Eq. (2.4) of the Friedmann equation is reduced to (2.6):

Ω− 1 =
K

a2H2
. (2.51)

During inflation, the a2H2 term in the above equation increases, that shows a decreasing of comoving
Hubble radius (aH)−1. Ω rapidly approaches unity by this increase. Once inflationary expansion effi-
ciently occurs Ω becomes close to one and the present universe also shows Ω is of order unity.

• Horizon problem

In order to resolve the horizon problem, the comoving particle horizon needs to satisfy∫ tdec

0

dt

a(t)
�

∫ t0

tdec

dt

a(t)
, (2.52)

where tdec and t0 are the decoupling and present time, respectively. It means that a comoving distance
before decoupling is larger than one after decoupling (see Fig 2.4). If the universe expands about e60−70 ∼
1028−30 times during inflation, the horizon problem can be resolved. This amount of inflation is fairly
easily achieved in the usual inflationary scenario.

• Origin of large-scale structure

It is an important point to introduce inflation that it can provide primordial density perturbations through
causal mechanism, which describe origin of galaxies and clusters. Fig 2.4 shows a sketch of the evolution
of perturbation. In the early stage of inflation, all perturbations within the Hubble radius become small
because in which causal physics works well. When a scale of perturbation is stretched over the Hubble,
which is known as constant (i.e., the first horizon-crossing), a longer perturbation than Horizon can
‘frozen’ since causality is violated. Later such longer perturbations go inside the Hubble horizon again
(the second horizon-crossing), (see also the evolution of the fluctuations of the structure formation in
Fig. 2.4(d)). After the second horizon crossing, the initial small perturbations generated during inflation
becomes large scale perturbation. It is possible to generate perturbations in a causal mechanism. Note
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that perturbations are generated by a causal microphysical process, which will be shown in the next
section.

• Relic density problem

When inflation occurs, the energy density of the universe decreases as a−2 or slower. For example, an
energy density of supersymmetry particles decreases faster as a−3 and they can be cleared away via a
red-shift. Reheating process can also resolve an unwanted particles as graviton after inflation. It is known
that a reheating temperature needs to be lower than 109GeV, in order not to overproduce an unwanted
relic object such as gravitinos and to make nucleosynthesis succeed [404].

2.2.2 Dynamics of inflation

The energy density and pressure of inflaton (scalar field) can be characterised by

ρ =
1

2
φ̇2 + V (φ) , P =

1

2
φ̇2 − V (φ) . (2.53)

There has been not presently a regard well established fundamental theory, so we have to consider V (φ)
as a different function corresponding to different models of inflation. Some examples of potentials are
(1): Higgs potential, V (φ) = λ(φ2 − M2)2 (2): Massive scalar field, V (φ) = m2φ2/2 and (3): Self-
interacting scalar field, V (φ) = λφ4. The basic equations for a homogeneous scalar field are obtained by
substituting Eqs. (2.53) into the Friedmann equations, Eqs. (2.4) as

H2 =
κ2

3

[1
2
φ̇2 + V (φ)

]
φ̈+ 3Hφ̇+ V ′(φ) = 0 , (2.54)

where prime represents d/dφ. During inflation, the relation (2.5) yields

ä > 0 ⇐⇒ P < −ρ
3

⇐⇒ φ̇2 < V (φ) (2.55)

which means that the potential energy V (φ) dominated than the kinetic energy φ̇2/2. Namely, in order
to achieve a sufficient inflation, we require a flat potential along which inflaton rolls down slowly. This is
related to the so-called slow-roll condition, which is the condition to take place during inflation. We can
find this condition as

ä

a
= Ḣ +H2 > 0 ⇐⇒ − Ḣ

H2
< 1 ⇐⇒ M2

pl

2

(
V ′

V

)2

< 1 , (2.56)

where the last manipulation uses the slow-roll approximation (φ̇2/2 � V (φ) and |φ̈| � 3H|φ̇|). One can
define the so-called slow roll parameters

ε(φ) =
1

2κ2

(
Vφ
V

)2

, η(φ) =
1

κ2
Vφφ
V

, ξ2 =
1

κ4
VφVφφφ
V 2

, (2.57)

where Vφ ≡ dV/dφ. The final condition in Eq. (2.56) is just slow-roll condition ε < 1. The first term ε
denotes the slope of potential and the second η denotes its curvature and the condition η < 1, roughly
speaking, relates to prolonged period of inflation. The necessary conditions is ε � 1 and |η| � 1, the
so-called slow-roll approximation.

Imposing these conditions, EOMs are approximately given as

H2 ≈ κ2

3
V (φ) , 3Hφ̇ ≈ −V ′(φ) , and hence Ḣ ≈ −κ

2

2
φ̇2 . (2.58)

If the potential is flat and constant at this time, the above equation leads an exponential expansion of
the universe a ∼ eH ∼ eV . The inflation ends once ε and |η| become of order unity. The number of
e-foldings N is a useful quantity measuring an inflationary expansion, which is given by

N ≡ ln
a(tfinal)

a(tinitial)
= −κ

2

2

∫ φf

φi

H

H ′(φ)
dφ � κ2

∫ φi

φf

V

Vφ
dφ , (2.59)
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where the slow-roll approximation is used at the final step. If one take |Ωf − 1| <∼ 10−60 after inflation,
the flatness problem can be solved. The ratio |Ω− 1| between the initial and final can be estimated as

|Ωf − 1|
|Ωi − 1| �

(
ai
af

)2

= e−2N . (2.60)

In order to resolve the flatness problem, the number of e-foldings needs to be N >∼ 60. The condition
N > 60 represents a minimum e-folding number for any model of inflation to solve the flatness and
horizon problem. If we take the potential form as V ∝ φ2q, Eq. (2.59) is reduced to

N(φ) =
κ2

2q

∫ φi

φf

φdφ =
κ2

4q
(φ2i − φ2f ) ∼

2π

q

( φi
mpl

)2

. (2.61)

and then the sufficient e-folding condition leads to

N >∼ 60 ⇒ φi >∼ 3
√
qmpl . (2.62)

On the other hand, breaking down of slow roll condition gives

1 ≈ φ̇2

V
≈
(
− V ′

3H

)2 1

V
=

V ′2

3κ2V 2
=
q2m2

pl

6πφ2
=⇒ φf

mpl
≈ 0.2q . (2.63)

Quadratic potential V (φ) = m2
φφ

2/2
As a typical example, let us consider the massive potential. We get the exact solutions as

φ � φi − mφmpl

2
√
3π

t , a � ai exp

[
2

√
π

3

mφ

mpl

(
φit− mφmpl

4
√
3π

t2
)]

, (2.64)

where φi denotes an initial value of inflaton. Eq. (2.64) shows an exponential expansion of the universe.
It is also important that these solutions are attractor solutions since using the phase diagram method,
they relate to a fixed point dφ̇/dφ = 0. It implies inflation naturally occurs along these trajectories in
phase space. From Eqs. (2.62) and (2.63), we find that the scalar field (inflaton) takes its value during
inflation as

φi >∼ 3mpl : (initial) , φf � 0.2mpl : (final) . (2.65)

Moreover, in this simple potential case, the value of Hubble during inflation is approximately equal to a
mass of scalar field i.e., H2 ∼ V/m2

pl ∼ m2
φ. On the other hand the normalization of the CMB on large

scales, which will be obtained in the farther section as P
1/2
R ∼ H2/(2πφ̇) ∼ H/(

√
π εmpl) (see (2.192)),

must be smaller than order 10−5. It implies that H<∼10−6mpl (2.92) and combing it with H ∼ mφ gives
a constraint equation to a mass of scalar field

mφ <∼ 10−6mpl (= 1013GeV) . (2.66)

This constraint equation is well used.

2.2.3 Reheating mechanism

At the end of inflation the universe is in a non-thermal state and becomes a very cold. It also make the
universe at effectively zero temperature and model of inflation must explain the process the universe was
reheated to the high temperatures as an initial state of Big Bang. We call this mechanism Reheating,
which involves both baryogenesis and nucleosynthesis. Baryogenesis usually needs greater energy than the
electroweak 100 GeV and nucleosynthesis requires temperature around 1 MeV. We now review reheating
mechanism as follows (see [36, 332]).

• Elementary reheating theory
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The “old” type of reheating [1, 125] was achieved by a decay of inflaton. Inflaton field φ has a finite
probability of decay via coupling to other scalar (χ) or fermion (ψ) fields representing the terms gφχ2

and hφψψ, where g and h have a dimension of mass and dimensionless coupling, respectively. We can
estimate decay rates (Γ) by dimensional analysis. Since [Γ] = t−1 = mφ, if mφ � mχ,mψ, the decay
rates are obtained [125, 289]

Γφ→χχ =
g2

8πmφ
, Γφ→ψψ =

h2mφ

8π
. (2.67)

One can show that quantum corrections do not significantly modify the interactions only if g < mφ and

h < m
1/2
φ . Therefore, for mφ � mpl (2.66), the highest decay rate into χ particles, Γχ ∼ mφ, is much

larger than the highest possible rate for the decay into fermions, Γψ ∼ m2
φ. It implies that decaying into

scalar field more thermalizes the universe than into fermions. The condition of thermal equilibrium of
the universe reads Γ > H. By solving a relation for a total decay rate as Γtot ≡ Γφ→χχ +Γφ→ψψ = H =

(8πρ/3m2
pl)

1/2, the reheating temperature TR can be estimated by

TR � 0.2

(
100

g∗

)1/4√
Γtotmpl . (2.68)

Imposing the constraint Γ < mφ ∼ 10−6mpl, the reheat temperature is limited to be below the GUT scale,
TR < 1016GeV. However, such model of inflation may overproduce gravitinos. In order to resolve the
gravitino problem, the reheating temperature must be below 106 GeV for a general situation ([140, 236,
238, 239, 328]). This value gives a most rigid upper limit of reheating temperature. On the other hand,
the lower limit is determined by a successful nucleosynthesis around MeV scale [237]. So the reheating
temperature needs in the following range

MeV <∼ TR <∼ 106GeV . (2.69)

We study the background evolution during reheating by adopting a polynomial potential V ∝ φ2q. Using
the Virial theory, we find

a(t) ∝ t(q+1)/3q , H ∝ q + 1

3q

1

t
. (2.70)

When q = 1 (V ∝ φ2) and q = 2 (V ∝ φ4), the universe at the reheating phase expands as matter-
dominant (a ∝ t2/3) and radiation-dominant (a ∝ t1/2), respectively.

Quadratic potential V (φ) = m2
φφ

2/2
In this simple case, the evolution is described by decreasing oscillation

φ(t) = φ̄(t) sin(mφt) , φ̄(t) =
mpl√
3πmφt

. (2.71)

The initial amplitude is given by 0.2mpl. The energy density of inflaton decreases following ρ = φ̇2/2 +
V (φ) ≈ m2

φφ̄
2/2 ∝ a−3 and these decaying energy transfers to coupled other particles as the above

elementary theory shows [259]. However, the domain of applicability of this elementary reheating theory
is limited. The reason is why (1): no Bose condensation effects (related to narrow resonance) and (2):
non-adiabatic process (broad resonance) do not be considered. These effects become important very
soon after the beginning of the inflaton decay. This stage is the so-called preheating, where the inflaton
decays into other coupled scalar field (see [256, 257] and also Ref. [448, 420]). The most of the energy
density in the inflation field may be available for conversion into thermalized form. We shall review this
preheating in the following (see also other processes: gravitational particle production [154, 428], and
instant preheating [148, 149], but we omit them in this thesis).

• Preheating
If the inflaton couples with other fields, their effective masses change very rapidly via a time-dependence
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of inflation. Then it results in non-adiabatic excitation of the field fluctuations by parametric resonance.
This is the essence of preheating [448, 126, 420, 256] (see also Refs. [243, 244, 245, 475, 56, 57, 368,
426, 22, 257]). Let us simply consider a coupling to one scalar χ only, via g2φ2χ2/2. The Klein-Gordon
equation in terms of Fourier modes of χ field follows

χ̈k + 3Hχ̇k +

[
k2

a2
+ g2φ2(t)

]
χk = 0 , (2.72)

leading to the momentum k of produced χ particle as k =

√(
mφ
2

)2

−m2
χ − 2gφ(t). The oscillating term

gφ � gφ̄ cos(mφt) leads to a “scattering” in the momenta space. If gφ̄ � m2
φ/8 (called a weak coupling

regime), particles are created within a width

Δk � mφ

(4gφ̄
m2
φ

)
� mφ (2.73)

located near the radius k0 � mφ/2, called a narrow parametric resonance (see Fig. 2.5). Narrow
parametric resonance is related to Bose condensation. Depending on the narrow regime Δk located on
the radius k ∼ mφ/2, the number density nk is calculated as

nk=mφ/2 � nχ
4πk20Δk/(2π)

3
� π2φ̄

g

nχ
nφ

. (2.74)

The occupation numbers nk exceed unity i.e., nk � 1 and this case is not applicable in the above “old”

Figure 2.5: The sketches for (a) narrow and (b) broad resonances.

reheating. Then substituting the effective decay rate with the above Bose factor nk into the evolution

equation of number density, we obtain 1
a3

d(a3nχ)
dN = g2

2m2
φ

(
1 + 2π2φ̄

g
nχ
nφ

)
nφ, where N = mφt/2π is the

number of inflaton oscillations. In the case φ̄ =const and for nk � 1 this can be integrated as

nχ ∝ exp
(π2gφ̄

m2
φ

N
)
∝ exp

(
2πμN

)
, with μ = πgφ̄/2m2

φ , (2.75)

where is the parameter of instability. This result is also obtained by the so-called Mathieu equation,

d2Xk

dz2
+ (Ak − 2q cos 2z)Xk = 0 . (2.76)
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Compared with (2.72), the above variables are given as Xk = a3/2χk, z = mφt and

Ak = 2q +
k2

m2
φa

2
, q =

g2φ̄2(t)

4m2
φ

. (2.77)

From Eq. (2.77) the parameters Ak and q are allowed in the range of Ak ≥ 2q. The variables Ak and q
lead to instability condition of the Mathieu equation [271, 256]. When they take values in an instability
band, the perturbation Xk grows exponentially Xk ∝ exp(μkz). If one take a q(<∼ 1) (weak coupling),

the instability band has a small width μk =
√

(q/2)2 − (2k/mφ − 1)2 which takes the maximal value
μk � q/2 near k ∼ mφ/2. It gives a same order of instability μk ∼ 4πgφ̄/m2

φ as (2.75).
If one take a q (� 1), it leads to broad resonance with a wide range for parameters. This regime is

equivalent to |gφ̄| � m2, where a coupling constant is strong. We see that this particle production occurs
by non-adiabatic process in the following discussion. In order to see it, for simplify, we can neglect the
expansion of the universe. For a strong coupling regime, the mode equation is χ̈k + ω2(t)χk = 0 with

ω(t) =
√
k2 + g2φ̄2 cos2(mφt). Every time the oscillating inflaton vanishes at tj = m−1

φ (j + 1/2)π, the

effective mass of the χ field, proportional to | cos(mφt)|, vanishes. It is shortly before and after tj that
the adiabatic condition is strongly violated:

|ω̇|
ω2

=
mφg

2φ2| cos(mφt) sin(mφt)|
(k2 + g2φ̄2 cos2(mφt))3/2

≥ 1 . (2.78)

Considering a small time interval Δt � 1/mφ in the vicinity of tj , we can rewrite this condition as

Δt/Δt∗ ≥ (k2Δt2∗ + (Δt/Δt∗)2)3/2 where Δt∗ � 1/
√
gφ̄mφ � 1. It follows that the adiabatic condition

is broken only within short time intervals Δt ∼ Δt∗ nears tj and only for the modes with

k < k∗ � Δt−1
∗ � mφ(gφ̄/mφ)

1/2 . (2.79)

It is worth nothing that the momentum of the created particle can be larger than the inflaton mass by

the ratio
√
gφ̄/mφ > 1, which is called broad resonance [257] (see Fig 2.5). The adiabatic violation is

largest for k = 0 and so the created particle grows from one oscillation to the next by (nj+1/nj)k=0 =
exp(2πμk=0) as similar as narrow resonance, where the number density increases exponentially. The
parameter of instability μk is obtained by using WKB solution in the adiabatic regime ω̇ � ω2 and
solving “scattering” problem in the parabolic potential for the non-adiabatic regime ω̇ � ω2. As a result,
the instability parameter is given by

μk � 1

2π
ln
[
1 + 2e−πκ

2

+ 2 cos θe−
π
2 κ

2
√
1 + e−πκ2

]
, (2.80)

where κ2 = k/k∗ is the dimensionless wavenumber defined by Eq. (2.79) and θ denotes the phase of the
wavefunction which changes quantum mechanically at each scattering. This parameter takes its maximal
value μmax

k = π−1 ln(1 +
√
2) � 0.28 for k = 0 and θ = 0. Assuming random θ, we conclude that the

particle number in every mode changes stochastically, which is called stochastic resonance. Skipping the
cos θ term, we obtain

μ̄k � 1

2π
ln(1 + 2e−πκ

2

) . (2.81)

It also takes its maximal values at the center k = 0 as μ̄k=0 = (ln 3)/2π � 0.175. Therefore the broad
resonance is more effective particle production characterised as exponential growth nk ∝ e2πμkN with
μk ∼ O(0.1) than the narrow resonance as small instability parameter μk ∼ O(0.01). These processes,
preheatings occur before single-body decay (see elementary reheating theory) as described above and it
leads the universe to be thermalized.
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2.2.4 Theoretical models and Observational constraints

• Models of inflation

Here we shall overview several generic inflationary models. The original “old inflation” scenario [195, 408]
is based on the idea of a metastable false vacuum which will be transited to a true vacuum. Although
there have existed many inflation models, a single-field inflation can be basically classified into three
classes: “large-field”, “small-field”, and “hybrid”. Typical example for Large-field models is a chaotic
inflation where the field rolls toward the potential minimum. Small-field models would be expected as
an inflaton shown by consequence of spontaneous symmetry breaking. New inflation [286, 7] and natural
inflation [159] are the examples of this type. One can classify these two classes as large field models
(V ′′(φ) > 0) and small field (V ′′(φ) < 0). A third class of models is “hybrid” inflation where inflation
can be ended by a second scalar field. Hybrid inflation only predicts a “blue” spectrum, nR > 1. As a
simple example in such model Double inflation models exist which have two stages of inflation by two
scalar fields [363]. We show the typical potential forms of the three types in Fig ??.

(1) Large-field models

Let us show the simplest example of large field model, which is characterized by the monomial potential

V (φ) = V0φ
n . (2.82)

Note that Chaotic inflation often uses this form of potential [287]. In order to compare these models with
the observational data, we need to estimate a primordial power spectrum PRc produced by quantum
mechanism of inflaton’s fluctuations (see the more details in Sec 2.3). It is characterized by its scale
dependencies nR − 1 ≡ d lnPRc/d ln k (2.194) and the tensor to scalar ratio r ≡ PT/PRc (2.202). Using
the slow-roll parameters written in terms of scalar field ε(φ) and η(φ), it is easily shown that these
quantities is given by

nR = 1− 2n+ 4

n+ 200
; r � 13.7

n

n+ 200
. (2.83)

Note that the spectrum is red nR � 0.97(0.94) and the tensor mode is suppressed r � 0.14(0.27) for the
quadratic(quartic) potential.

Exponential potentials: V = V0 exp
(
−
√

16π
α

φ
mpl

)
, equivalent to n→ ∞ limit of the large field models

in (2.82) and hence the border between large-field and hybrid models. Exponential potentials lead to a
power-law expansion of the scale factor, usually called power-law inflation [297]. Exponential potentials
are motivated by the effective low-energy description of extra spatial dimensions such as dilatons and
moduli fields in superstring theory. This model yields an useful relation: ε = 2η = 2/α. Thus, if inflation
starts, i.e., when ε < 1, it will never end. We obtain a useful relationship between the index nR and the
ratio r as

r = 8(1− nR) . (2.84)

Using it, we can classify the inflationary models in the nR − r plane as seen below.

(2) Small-field models

The typical form of potential is

V (φ) = V0

[
1−

(
φ

μ

)n]
, (2.85)

which may arise from a phase transition. Eq. (2.85) is equivalent to a Taylor expansion around φ = 0.
The Coleman-Weinberg potential [98] used as the potential of New inflation models [286, 7] corresponds
to n = 4. Similarly to th large-field models, the parameters r and nR are obtained by

nR = 1− n− 1

25(n− 2)
, r � 0 . (2.86)

It gives the red spectrum (nR<∼1) and negligibly small tenser mode (r � 0).
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Figure 2.6: Schematic illustration of the potential of (a) large-field, (b) small-field and (c) hybrid (these
figures in Ref [36]).

Linear potentials: V (φ) = V0φ is the border of large and small-field models. In this case, ε = −η =const
is independent of φ. We also obtain the border line characterized by

r =
8

3
(1− nR) . (2.87)

(3) Hybrid inflation

In this class, the field rolls toward a minimum with a nonzero vacuum energy [290, 291, 102], which is
motivated from the viewpoint of particle physics [102, 303, 292]. Hybrid inflation models involve more
than one scalar field. The second scalar field plays a role of trigger of instability as a “waterfall” transition
towards a true minimum (see Fig. ??). The typical form of potential is given by

V (φ) = V0

[
1 +

(
φ

μ

)n]
. (2.88)

Let us consider the Linde hybrid inflation model with potential [291]

V =
λ

4

(
χ2 − M2

λ

)2

+
1

2
g2φ2χ2 +

1

2
m2φ2 . (2.89)

When the field rolls down toward χ = 0, it reduces to

V � M4

4λ
+

1

2
m2φ2 . (2.90)

For φ < φc ≡ M/g, the field rolls toward a true minima at φ = 0 and χ = ±M/
√
λ. For generally, ε(φ)

and η(φ) cannot be fixed outside the context of a particular model. However, we obtain in the limit of
φ/μ to be less than unity

η

ε
� 2(n− 1)

n

(
μ

φ

)n
. (2.91)

In this case, recalling that nR = 1− 4ε+ 2η, we can find the spectrum of hybrid models nR > 1, shows
blue, due to η > 2ε. The fact of a “blue” scalar spectrum is one typical prediction by hybrid inflation.

• Observational constraints

As we will see in the further section, quantum fluctuations during inflation can become temperature
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Figure 2.7: The nR-r parameter space allows us to classify inflationary models. The line of r = (8/3)(1−
nR) shows the border between large and small field models given by Eq. (2.87), and r = 8(1−nR) is the
one of large-field and hybrid models Eq. (2.84) (see [31, 36]).

anisotropies of CMB radiation. The CMB observations can give constraints to classify many models
[122]. The observational data from the WMAP can give constraint on many models [31, 359, 250, 276].
Fig. 2.7 shows the nR − r plane classifying three classes: the small-field, large-field and hybrid models
[250]. With the WMAP data, precisions of inflationary scenarios can be established [359]. This paper
shows that WMAP observation gives us constraint to the parameter space of inflationary models and for
example, a minimally-coupled inflation with λφ4 can be excluded as in Fig. 2.7.

The amplitude of scalar perturbations by CMB observational data is given by A2
R � 2.4× 10−9, that

is the COBE normalization (2.163). On the other hand the amplitude of scalar perturbations can be

written as A2
R = 1

πε

(
H
mpl

)2

(2.192). Hence using them with ε < 0.032 we can give an upper limit on the

energy scale of inflation:
H

mpl
< 1.55× 10−5 . (2.92)

Note that the case of just nR = 1, that is pure Harrison-Zel’dovich value (corresponding to ε = 0), is still
consistent with the data.

2.3 Cosmological inhomogeneity

Measurements of the cosmic microwave background tell us how homogeneous and isotropic the universe is
at the time of recombination. Today, however, the universe has a well developed nonlinear structure. This
structure takes the form of galaxies (their scales is 10− 100kpc), cluster (1− 10Mpc)12 and superclusters
of galaxies (which is a group of clusters ∼ 100Mpc), and, on larger scales, of voids, sheets and filaments of
galaxies. Deep redshift surveys show, however, that when averaged over O(100Mpc), the inhomogeneities
in the density distribution remain small. The simple explanation as to how nonlinear structure could
develop from small initial perturbations is based on the fact of gravitational instability. In this section, we
consider this gravitational instability and study formation and evolution of large scale structure. Here we
pay attention to a linear order in a perturbation theory13. This instability is easily understood in terms
of Jeans theory, which is treated in the Newtonian gravity. In the Newtonian gravitational theory, the
physical interpretations are easily obtained, however, the Newtonian analysis of gravitational instability

12Here, “Cluster” of galaxies is divided into (1): a galaxy group, which is made of about ten galaxies and its scale is
about 1Mpc (2): a galaxy cluster, which is made of one hundred galaxies and about 10Mpc.

13It is obvious that when the perturbation amplitude δ reaches unity (δ ∼ 1), the neglected nonlinear terms ∼ δ2 etc.,
become important, which corresponds to knonlinear � 0.1Mpc−1 (∼ 10Mpc). It is roughly given by a redshift time, z ∼ 20.
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has limitations. We have to use General Relativity (GR) for both short-wavelength and long-wavelength
perturbations. This theory gives us a unified description for any matter on all scales. Unfortunately, the
physical interpretation of the results obtained is less transparent in GR than in Newtonian theory. The
main problem is the freedom in the choice of coordinate used to describe the perturbations. In contrast to
the homogeneous and isotropic universe, where the preferable coordinate system is fixed by the symmetry
properties of the background, there are no obvious preferable coordinates for analyzing perturbations.
The freedom in the coordinate choice, or gauge freedom, leads to the appearance of fictitious perturbation
modes. These fictitious modes do not describe any real inhomogeneities, but reflects only the properties
of the coordinate system used. In order to be independent of gauge choices, one can use a gauge invariant
perturbation theory. First, let us review this cosmological perturbation theory.

2.3.1 Cosmological perturbation theory

We will follow Ref. [330] in terms of our notation here. (See also [27, 60, 128, 141, 216, 255, 302, 398]
for other approaches). In the linear approximation different types of perturbations evolve independently
and therefore can be analyzed separately. We first classify metric perturbations as follows. Let start
from spatial flat FRW metric with inhomogeneous metric perturbations around it. The line element of
perturbed FRW spacetime can be expressed as

ds2 = a2(τ)
[
−(1 + 2A)dτ2 − 2Bidτdx

i + (δij + 2Cij)dx
idxj

]
, (2.93)

where we define the conformal time

τ =

∫ t

0

dt

a
. (2.94)

It is also convenient to define new conventions in order to go forward the following discussion.

(· · · )′ = d

dτ
(· · · ) = a

d

dt
(· · · ) , H = a′/a = aH , Xj1j2...|i = ∇iXj1j2... , X(i|j) =

1

2
(Xi|j +Xj|i) .

(2.95)

Note that horizon-crossing (k = aH) is equivalent to k = H. All metric perturbations can be classified into
three modes: scalar, vector and tensor parts, that are determined by their dependences for transformation
on spatial hypersurfaces. Therefore we can decompose the above components Bi and Cij into scalar,
vector and tensor, respectively as

Bi = B|i + Si , Cij = −δijψ + E|ij + F(i|j) + hij , (2.96)

where scalar parts are A,B, ψ and E 14, vector parts are Si and F(i|j), which are additionally constrained

by S
|i
i = 0 (divergenceless/transverse condition), and tensor parts are hij with the constraint h

|j
ij = 0 and

h ii = 0 (transverse-traceless condition). The Einstein equations for the scalar, vector and tensor parts
can be decoupled each other at linear order. We do not consider second-order cosmological perturbations
shown as [2].

Scalar perturbations: the metric takes the form

ds2 = a2(τ)
[
−(1 + 2A)dτ2 − 2B,idτdx

i + ((1− 2ψ)δij + 2E|ij)dxidxj
]
. (2.97)

Considering a scalar gauge transformation

τ → τ̃ + T , xi → x̃i + L,i , (2.98)

14This metric perturbations follow the notation of Ref [330], but we use A rather than φ as perturbation of the lapse
function.
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we have

A→ A− T ′ −HT , B → B + L′ − T , ψ → ψ +HT , E → E − L . (2.99)

There exist many combinations made of scalar metric perturbations as a gauge-invariant variable, however
the simplest gauge-invariant linear combinations of these functions, which span the two-dimensional space
of the physical perturbation, are

Φ ≡ A+
1

a
[a(B − E′)]′ , Ψ ≡ ψ +H(E′ −B) . (2.100)

These gauge invariant variables give a good physical interpretation in the longitudinal/Newtonian gauge.
The Newtonian gauge is a specific gauge-transformation choice, where the new frame becomes zero-shear
E = B = 0 and it leads to the simple form as ΦN = A and ΨN = ψ. Matter perturbations are also
gauge-dependent variables. Energy-momentum tensor is obtained in the terms of 4-velocity uμ as

Tμν = (ρ+ P )uμuν + Pδμν +Σμν , (2.101)

where Σ is an anisotropic stress and it is traceless. For scalar field, the above components are described
as density, pressure and velocity perturbations in the limit of first order perturbations

T 0
0 = −ρ̄(1 + δ) , T 0

i = (ρ̄+ P̄ )v|i , T ij = (P̄ + δP )δij +Σij , (2.102)

where the variables characterised by bar ρ̄ take their background values and note that the variables
δρ = δρ̄ and Π defined as Σij = P̄ (∂i∂j − δijΔ/3)Π are often useful. Π represents the gauge-invariant
variable itself. The adiabatic pressure perturbation can be described as

δPad ≡ Ṗ

ρ̇
δρ = c2sδρ , (2.103)

where we also define the sound velocity cs = Ṗ /ρ̇ and a non-adiabatic part of pressure perturbation, or
entropy perturbation, is a gauge-invariant perturbation

δPnad = δP − c2sδρ . or Γ ≡ δP

P̄
− c2s
w
δ . (2.104)

Since Γ vanishes for adiabatic perturbations δP/δρ = Ṗ /ρ̇ = c2s, Γ represents the amplitude of an entropy
perturbation. The scalar part of the 3-momentum v can be related to a gauge-invariant velocity V

V ≡ v − k−1E′ , (2.105)

where k is frequency. In contrast to the velocity, there exists no unique natural definition of a gauge
invariant quantity corresponding to the density perturbation 15. One convenient choice is defined by the
following combinations,

Δc ≡ δ + 3(1 + ω)Hk−1(v −B) . (2.106)

The variable Δc represents a comoving density perturbation [27, 255], which is the density contrast in
the slicing such that the material 4-velocity is orthogonal to constant time hypersurfaces as v = B, called
Comoving gauge. The Δc and V are the fundamental variables to write the perturbed Einstein equation
in the terms of which [255].

Vector perturbations: characterised by the metric form of

ds2 = a2(τ)
(
−dτ2 − 2Sidτdx

i + (δij + 2F(i|j))dxidxj
)
, (2.107)

15for examples, Δs ≡ δ+3(1+ω)Hk−1(E′/k−B) for Newtonian gauge and Δg ≡ δ+3(1+ω)(ψ+E/3) for Flat gauge,
which are seen more detail in [255].
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and these variables change as

Si → Si + L′
i , Fi → Fi − Li , (2.108)

and then F ′
i + Si becomes the gauge-invariant vector shear perturbation. In contrast to a scalar per-

turbation, there exist two natural gauge-invariant combinations corresponding to a velocity perturbation
Vs = v − F ′/k and V = v − S represent the amplitudes of the shear and the vorticity of the matter
velocity field, respectively.

Tensor perturbations: the metric is

ds2 = a2(τ)
[
−dτ2 + (δij + hij)dx

idxj
]
, (2.109)

and hij does not change under coordinate transformations. It already describes the gravitational waves
in a gauge invariant manner. We can decompose any tensor perturbations by using eigenmodes of an
equation ∇2eij = −k2eij , which is given as

hij = h(t)e
(+,×)
ij (x) , (2.110)

with two possible polarisation states, + and ×.

Curvature perturbations
We can construct two gauge-invariant variables commonly used. One is curvature perturbation on
uniform-density obtained by

−ζ ≡ ψ +
H

ρ̇
δρ , (2.111)

which was first defined by Bardeen, Steinhardt and Turner [28] (see also Refs. [30, 317, 461]) 16. The
comoving curvature perturbation can be defined by 17

Rc ≡ ψ − H

ρ+ P
δq , (2.112)

where δq is a momentum potential relating to a 3-momentum given by ∂i(δq). It has been used in
[300, 302, 330]. The variables Rc is related to −ζ and the difference is proportional to Δc as

−ζ = Rc +
H

ρ̇
Δc . (2.113)

Moreover the relationships between the previous defined gauge-invariant variables (Bardeen’s variables
[28]) Φ,Ψ and them is obtained as

−ζ ≡ 2

3

H−1Φ′ +Φ

1 + ω
+Φ . (2.114)

To see more their relationships, let us consider the perturbed Einstein equations δGμν = κ2δTμν . As an
important result, we find the gauge-invariant equation

k2Ψ = −4πGa2ρ̄Δc . (2.115)

16This curvature perturbation is equivalent to a perturbed expansion to uniform-density hypersurfaces δN as ζ = δN ,
that is so-called the δN formalism. It is a powerful tool to investigate nonlinear evolution of perturbation of inflation
including multi-field inflation [406, 407, 461, 305, 383, 306]. It is based on a similar idea used in separate universe approach
[406, 407, 461, 383].

17See Kodama-Sasaki [255], the curvature perturbation is given by the amplitude R = ψ + E/3 of the spatial scalar
curvature perturbation of the constant time hypersurface δR(3) = 4k2/a2R. In order to distinguish this notation, we added
a index c. R is not gauge-invariant and it exactly becomes the Newtonian potential in the Newtonian gauge RN = Φ.
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It shows that the Newtonian gauge metric perturbation is related to the comoving density perturbation
and corresponding to generalization of the Poisson equation k2ψ = −4πGδρ in the Newtonian perturba-
tion theory. With the help of it, the Eq. (2.113) reduces to

Rc = −ζ − 2ρ̄

9(ρ̄+ P̄ )

( k

aH

)2

Ψ , (2.116)

and hence two commonly used curvature perturbations coincide each other on the large scale,

Rc = −ζ on the large scale (2.117)

where their comoving scales are larger than the comoving Hubble horizon 1/(aH) � 1/k. It is also
important to see the traceless part of Einstein equation yields

Ψ− Φ = κ2k−2a2P̄Π (2.118)

and hence we have Ψ = Φ in the absence of anisotropic stress Π = 0. Finally, we summary three
gauge coordinates, (1): Newtonian/Longitudinal gauge (E = B = 0), (2): Flat gauge (ψ = 0) and (3):
Comoving gauge (v = B). (1) is equivalent to zero-shear condition, σg = 0, where σg = E′/k − B is
the shear of the unit vector normal to the constant time hypersurface. In this gauge, Bardeen variables
are reduced to generalization of the Newtonian potential as Φ = A and Ψ = ψ. There is no extra
coordinate freedom which preserves this condition. (2) is useful to quantize the inflaton during inflation
as shown the further section. It is related to the fact that the mass term of perturbed inflation field can
be neglected under the slow-roll condition and hence we can use the result obtained by neglecting metric
perturbation ψ = 0. In that time, the Mukhonov variable can be directly reduced to the perturbed
inflaton, υ = aδφ. (3) is equivalent to the condition δφ = 0 during inflation. In this gauge, the
gauge-invariant curvature perturbation Rc is equivalent to Newtonian potential Rc = ψ. Moreover, the
comoving curvature perturbation Rc is proportional to Φ as

Φ =
3 + 3ω

5 + 3ω
Rc , (2.119)

and yields

Φ =
2

3
Rc (radiation dominant) , Φ =

3

5
Rc (matter dominant) . (2.120)

This equation is shown by the conservation of−ζ = Rc on large scales as shown in the following subsection.
From this equation, if Φ is constant, we can obtain the simplest relation between Rc and Φ and hence Φ
becomes times 9/10 through radiation and matter dominant epoch, Φm = (9/10)Φr. In this gauge, Δc

can be reduced to density perturbation, Δc = δ.

2.3.2 Evolution of perturbations

We will see classical evolutions of perturbations. First, we briefly summarize vector and tensor modes
and mainly discuss scalar perturbations in this subsection.

Vector perturbations

Let us consider a 3-momentum as a divergence-free, that obeys a following equation

δ̇qi + 3Hδqi = k2δΠi , (2.121)

where δΠij = ∂(iΠj) represents anisotropic stress. The gauge-invariant of vector metric perturbation
satisfies a following constraint equation

k2
(
Ḟi + Si/a

)
= 16πGδqi . (2.122)
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It is shown that the gauge-invariant vector metric perturbation vanishes if only scalar fields, exist since a
divergence-free momentum needs to vanish. Eq. (2.121) shows that vector perturbations vanish without
anisotropic stress.

Tensor perturbations

Tensor perturbations have no constraint equation since gravitational degrees of freedom is free, corre-
sponding to gravitational waves. Tensor metric perturbations obey an equation

ḧ+ 3Hḣ+
k2

a2
h = 0 . (2.123)

Note that it is same form of equation describing evolution of a massless scalar field in a FRW background.

Scalar perturbations

We will consider scalar perturbations for single perfect fluid in the simple situation where K = Λ = 0
and Π = 0. In this case, we have seen Φ = Ψ and the perturbed Einstein equations can be reduced to
the closed form equation for the gravitational potential

Φ′′ + 3H(1 + c2s)Φ
′ − c2sΔΦ+ 8πGa2ρ̄(c2s − ω)Φ = 4πGa2ρ̄ωΓ . (2.124)

Note that entropy perturbation Γ is the source term for this equation. Once we solve this equation, it
follows the density and velocity as

δ =
2ΔΦ

3H2
− 2

(
Φ+

Φ′

H
)
, v = −2(Φ + Φ′/H)

3H(1 + ω)
, (2.125)

where Δ denotes Laplacian of spatial derivatives. For the other approach to analyze the system, Kodama-
Sasaki [255] write the continuous and Euler equations for the matter perturbations Δc and V . This
formulation is useful to compare the Newtonian perturbation/Jeans theory and easy to interpret physical
meanings. The Euler equation for the gauge-invariant velocity V is obtained as

V ′ +HV = ik
[ c2s
1 + ω

Δ+
ω

1 + ω
Γ
]
+ ikΨ− 2

3

ω

1 + ω
ikΠ . (2.126)

The second term on the left-hand side represents the adiabatic slowing-down of velocity via a cosmic
expansion. The first term comes from pressure gradient and the third term shows a generalized term
appearing in the Newtonian perturbation theory. The terms proportional to Γ and Π appear as GR
corrections. Eliminating V from the continuous equation Δ′

c − 3ωHΔc = . . . and the Euler equation,
we obtain the second-order form of the evolution equation for the comoving gauge-invariant density
perturbation Δc (see it in the [255]). We omit to write and discuss them and solve the equation for
Φ in the first approach. For simplify, we neglect the source term Γ = 0 (considering the adiabatic
perturbation). The background solutions are obtained as a function of the conformal time τ as

a ∝ τν , ρ̄ = τ−2(ν+1) ,
(
ν ≡ 2

1 + 3ω

)
. (2.127)

From this equation, we find the relation between the conformal and physical time as

t ∝ τ
3(1+ω)
3ω+1 . (2.128)

The typical examples are matter-dominant ω = 0 and radiation ω = 1/3. For each epoch, ν = 2 (matter)
and ν = 1 (rad) yield a ∝ τ2, t ∝ τ3 (matter) and a ∝ τ, t ∝ τ2 (rad), respectively. The growing solutions
for Φ are generally described as the Bessel function of order ν by

Φ ∝ x−νjν(csx) �
{

1 (csx� 1)
x−ν−1 cos[csx− π

2 (ν + 1)] (csx� 1)
(2.129)
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where we define x = kτ , representing the ratio of the horizon size to the wavelength of perturbation,
since k/aH = k/H = x/ν from (2.127) and spherical Bessel function f(x) = jν(x), satisfying f

′′(x) +
2f ′(x)/x+ [1− ν(ν + 1)/x2]f(x) = 0.

• Subhorizon scale

We consider the shortwave perturbations with kτ(= x) � 1. In the radiation dominant era, the solutions
oscillate as

Φ = − Φ0

k2τ2
cos

( kτ√
3

)
, δ =

2Φ0

3
cos

( kτ√
3

)
, v =

Φ0

2
√
3k

sin
( kτ√

3

)
. (2.130)

The physical interpretation for oscillation is that the gravitational forces make radiation perturbations
contracted, while radiations have the pressure expanding themselves and hence the competing two forces
gives the oscillations for their evolutions. We also find that the Newtonian potential Φ decays as τ−2 in
this stage, which is shown as the power spectrum of CDM for the large wavenumber keq < k. In matter
dominant era, we obtain the solutions as

Φ = const ≡ Φm0 , δ = −k
2τ2

6
Φm0 , v = −τ

3
Φm0 , (2.131)

where the constant amplitude Φm0 = 9
10Φ0. We find that the density perturbation δ is proportional to

τ2 ∝ a ∝ t2/3. This result is in agreement with the Newtonian result. In the matter-dominated universe,
Φ obeys Φ′′ +6/τΦ′ = 0 and yields the same solutions Φ = C1 +C2/τ

5 and δ � −k2/6(C1τ
2 +C2τ

−3) =
C̃1t

2/3+ C̃2t
−1. In order to compare the above obtained results with the Newtonian theory, let us shortly

review the Newtoninan/Jeans theory.

Jeans theory: is reduced to the continuous and Euler equations as

ρ̇+ 3Hρ+
1

a
∇ · ρv = 0 , v̇ +

1

a
(v ·∇)v +Hv = − 1

ρa
∇P − 1

a
∇ψ , (2.132)

with the Newtonian potential ψ, obeying the Poisson equation Δψ = −4πGρ̄. Considering linear pertur-
bation as ρ = ρ̄(1 + δ) and fourier transformation δ = δke

ik·x, we can obtain the second-order equation
for δk as

δ̈k + 2Hδ̇k +

[(cs
a

)2

k2 − 4πGρ̄

]
δk = 0 . (2.133)

This equation can be interpreted as δ̈+[Expansion rate]δ̇+[Pressure−Gravity]δ = 0, that is, gravitational
instability occurs, if gravity wins in the regions, where mass near overdense region is attracted to the
center by gravity but repelled by pressure. The last term determines the typical scale (the so-called Jeans
length), on large scales than which, gravity dominates and density perturbation can grow. The critical

frequency is kJ = a
cs

√
4πGρ̄ and its corresponding Jeans length λphJ = 2π/kJ × a is given by

λJ = cs

√
π

Gρ̄
(Jeans length) . (2.134)

Using Hubble equation H2 � Gρ̄, the time scale (free fall time) tff = 1/
√
Gρ̄ is equivalent to the

cosmological time scale 1/H. So the Jeans length is of order the sound horizon (or “sound communication”
scale) λJ ∼ cstff , where sound can maximally contacts during cosmological time scale. In order to see the
typical evolutions of perturbation, neglecting the cosmological expansion H = 0, Eq. (2.133) becomes
δ̈k + ω2(k)δk = 0 with ω(k) =

√
k2 − k2J and we can find the solution δk ∝ exp(±iω(k)t). If we consider

the smaller length λ < λJ , the solution describes oscillation δk ∝ sin(wt), while the larger length λ > λJ ,
the gravitational instability grows exponentially δk ∝ e|ω|t. We interpret it as that Jeans length λJ ∼ cstff
is the sound communication scale over which the pressure can still react to changes in the energy density
due to gravitational instability. Including the cosmological expansion, even though this growth rate
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becomes smaller, the main result is obtained similarly. On much smaller scale than the Jeans scale
(λ� λJ), if cs changes adiabatically, then the solution oscillates as WKB solution by

δk ∝ 1√
csa

exp
(
±ik

∫
csdt

a

)
. (2.135)

If cs is constant, it is reduced to the Jeans oscillation δk ∝ eikcsτ . It is consistent with the above obtained
result (2.130) due to cs = 1/

√
3. On scales much larger than the Jeans scale (λ� λJ ), gravity dominates

and in the matter-dominated universe, the solutions can be given by

δk ∝ t2/3 ∝ a (growing mode) , δk ∝ t−1 (decaying mode) . (2.136)

Contrast this relatively slow growth rate with the exponential Jeans instability δk ∝ exp |ω|t due to
cosmic expansion. This result is consistent with the above obtained solutions in GR perturbation theory.
It is important result to explain the existence of dark matter in the universe. Since the growing mode
is proportional to the scale factor, if we want to obtain the large inhomogeneities (δ>∼1) today, the

inhomogeneities were already substantial (δ>∼10−3), which evolved from a primordial density perturbation

at redshift z � 1000. However, this conclusion is inconsistent with the observational quantity δ ≈ 10−4

as favored by the observed CMB fluctuations, therefore, dark matter has been need to grow density
perturbation before the recombination, in the radiation-dominated universe (see the details in Sec 2.4).

In order to see evolution of (cold) dark matter in the presence of other components in the universe
(radiation or dark energy), (2.133) can be applied. The total energy density is ρtot =

ρeq
2 (y−3+y−3(1+ω))

with y ≡ a/aeq and this equation can be written in terms of y by [332]

y2(1 + y−3ω)
d2δ

dy2
+

3

2
y
(
1 + (1− ω)y−3ω

)dδ
dy

− 3

2
δ = 0 , (2.137)

where we have skipped the term proportional to c2s because it is determined only by the pressure of cold
dark matter and hence it is negligible. For radiation background (ω = 1/3), we find the general solutions

δ(y) = C1

(
1 +

3

2
y
)
+ C2

[(
1 +

3

2
y
)
ln

√
1 + y + 1√
1 + y − 1

− 3
√
1 + y

]
. (2.138)

At early times, during the radiation-dominated stage (y � 1), the amplitude of perturbations grows as

CDM in rad dominated : δ(y) = (C1 − 3C2)− C2 ln(y/4) +O(y) ∝ ln(aeq/a) ∝ ln k , (2.139)

that is, logarithmically at most. Thus, the radiation suppress the growth of inhomogeneities in the cold
component. When one consider the case of dark energy ω = −1, a general solution of (2.137) can be
obtained

δ(y) = C1

√
1 + y−3 + C2

√
1 + y−3

∫ y

0

( x

1 + x3

)3/2

dx . (2.140)

At early times when the cold matter dominates (y � 1), the perturbation grows as δ � C1y
−3/2 +

2/5C2y in complete agreement with our previous result, Subsequently the cosmological constant becomes
dominant and in the limit y � 1 we have

CDM in DE dominated : δ(y) = (C1 + IC2)− 1

2
C2y

−2 +O(y−3) � const , (2.141)

where I =
∫∞
0

(x/(1 + x3))3/2dx � 0.57. Thus, when the cosmological constant overtakes the matter
density the growth ceases and the amplitude of the perturbation is frozen.

• Superhorizon scale

We consider the larger wavelength than the horizon size x� 1. In the radiation-dominated universe, the
solutions become

Φ = Φ0 (constant) ≡ Φr0 , δ = −2Φ0 , v = −τ
2
Φ0 , (2.142)
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and while matter-dominated,

Φ = Φ0 (constant) ≡ Φm0 , δ = −2Φ0 , v = −τ
2
Φ0 . (2.143)

In the both stages, we find that the gravitational potential is constant and the relation between the energy
density fluctuations and the gravitational potential on superhorizon scales becomes δρ/ρ̄ = −2Φ. As you
seen, the gravitational potential decays on subhorizon scale only for the radiation dominated universe
like (2.130), otherwise, it is constant.

In general speaking, for the general case where the EOS is arbitrary P (ρ), it is convenient to recast
the equation in a slightly different from. To do this, introducing the new variable, which can eliminate a
friction term proportional to Φ′,

u ≡ Φ

(ρ̄+ P̄ )1/2
, (2.144)

a generalisation of Eq. (2.124) takes the simple form [330]

u′′ − c2sΔu− θ′′

θ
u = a2(ρ̄+ P̄ )−1/2P̄Γ , where θ ≡ 1

a

(
1 +

P̄

ρ̄

)−1/2

. (2.145)

The obtained solutions are of course agreement with our previous results (see them in [332]). When
long wavelength adiabatic perturbations cskτ � 1 and Γ = 0, omitting the spatial derivative term and
applying the scale factor a(τ) = aeq(ξ

2 + 2ξ) with ξ ≡ τ
τeq

(
√
2− 1), we obtain

Φ =
ξ + 1

(ξ + 2)3

[
A
(3
5
ξ2 + 3ξ +

1

ξ + 1
+

13

3

)
+B

1

ξ3

]
, (2.146)

where A and B are integration constants representing nondecaying and decaying modes respectively.
For two asymptotical regions (ξ � 1 and ξ � 1), it is easy to see Φ ∼ 1/8 × 16/3 = 2/3 and Φ ∼ 3/5,
respectively. Therefore, it shows that the amplitude of Φ decreases by a factor of 9/10 after the transition.
If one calculate the energy density fluctuations from this solution, it also shown that the amplitude of δ
is always equal to −2Φ on superhorizon scales. The change in the amplitude of Φ can also be inferred
from a widely used “conservation law” for the quantity ζ as

ζ̇ = O((kτ)2)Hζ , ζ ≡ 2

3

(8πG
3

)−1/2

θ2
(u
θ

)′
. (2.147)

For long wavelength kτ � 1, it implies that ζ is constant (ζ̇ = 0). From (2.117), Rc is also constant
on superhoziron. It is also seen directly from the evolution equation R′′

c + 2z/z′R′
c ≈ 0 on large scale

(see (2.188)), which is satisfied for the solution Rc =const. This conservation is obtained under the
assumption of no entropy perturbations Γ = 0. If we consider entropy perturbation, the above equation
is reduced to ζ̇ ∝ P̄Γ and hence entropy perturbation can grow curvature perturbation on superhorizon
scale. Recalling the definition of ζ (2.114), the constant ζ follows that, in the case where the initial and
final values of Φ are also constants, Φ changes only when ω changes from an initial into a final value as

Φf =
(1 + ωf
1 + ωi

)( 5 + 3ωi
5 + 3ωf

)
Φi . (2.148)

For a matter-radiation universe, ωi = 1/3 and ωf = 0, and we obtain the familiar result Φf = (9/10)Φi.

Entropy perturbation

Until now we have been considering adiabatic perturbations in an isotropic fluid where the pressure de-
pends only on the energy density. In a multi-component media both adiabatic and entropy perturbations
can arise. For entropy perturbations, the source terms of the evolution equations for Φ or equivalently
u, (2.124) and (2.145), respectively. The source term is proportional to P̄Γ and it can consist of two
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parts; a part coming from the intrinsic entropy perturbation Γα of each component and the relativistic
part as P̄Γ = P̄Γint + P̄Γrel, where P̄Γint =

∑
α PαΓα. Since Γ and Γα are gauge-invariant, Γrel is also

gauge-invariant by itself. Here after, we do not consider the intrinsic entropy perturbation Γα = 0. In
order to see the physical meaning of Γrel, it is more convenient to rewrite it as [255]

P̄Γrel =
(δP
δρ

− c2s

)
δρ =

∑
α,β

hαhβ
h

(c2α − c2β)Sαβ , with Sαβ ≡ Δcα

1 + ωα
− Δcβ

1 + ωβ
, (2.149)

where we define hα = ρα+Pα. We can see this part comes from the difference of the dynamical behavior
of components c2α 
= c2β , proportional to Sαβ

18. One important interpretation of the quantity Sαβ is
obtained from the radiation and matter fluid (for other examples, multi-components mixed dark matter
and baryon-radiation plasma). In this special case, we find

Sαβ = Δm − 3

4
Δr = δm − 3

4
δr , (2.150)

and hence the adiabatic perturbation is equivalent to the condition δm = 3
4δr. Then the source term for

(2.124) becomes Φ′′ +3H(1+ c2s)Φ
′ + . . . = 16πGa2

3
ρ̄mρ̄r

(4ρ̄r+4ρ̄m)Smr. In order to solve this equation, we shall

assume there are no adiabatic perturbations at the initial time. Then, to define the entropy perturbations,
we impose the initial time condition Φ → 0 as t→ 0. This is called isocurvature perturbations, since the
curvature perturbation vanishes at the initial time, i.e., that the gauge-invariant curvature perturbation
ζ also vanishes. If the initial time is taken to be 0, then this definition coincides with the definition
of entropy perturbations. If the initial time is finite, then the two definitions might differ by a term
proportional to the decaying mode of Φ. So we will consider they describes the same one. Isocurvature
perturbation sometimes coincides isothermal perturbation in the radiation dominated stage because if
we impose the isocurvature condition as k2Φ ∝ (ρrδr + ρmδm) ∝ (δr + aδm) � 0, which comes from
the Poisson equation (2.115), we find δm = Smr and δr = −aSmr � 1 in the limit of a → 0. It
implies that isocurvature perturbation is mainly composed of a small amount of matter densities, whose
perturbations are enlarged and radiation perturbation is vanishingly small δr � δm at the initial time,
i.e., no thermal perturbation θ0 = δr/4 � 1. Entropy perturbations may well be important for structure
formation on superhorizon scales, for examples, generated by cosmic strings stretching over the size of the
universe. Causality constraints forbid the formation of adiabatic perturbations on scales larger than the
Hubble horizon. Hence only perturbations which can be formed on these scales are entropy (isocurvature)
perturbations. If Smr is constant, the equation for Φ has the particular solution Φ = Smr. Obviously,
the above particular solution does not satisfy the required initial condition. The solution is obtained by
adding it to a general solution of the homogeneous equation and choosing the coefficients such that the
initial conditions are satisfied, and hence the result is

Φ =
1

5
ξ
ξ2 + 6ξ + 10

(ξ + 2)3
Smr , (2.151)

where ξ = τ
τeq

(
√
2− 1). The important conclusion is that the gauge-invariant amplitude for this type of

entropy perturbations increases linearly in conformal time until τeq, whereas it is constant for adiabatic
perturbations. From increasing Φ, the energy density also increases on superhorizon scale. Generally, the
analysis of entropy perturbation in several cases is rather complicated, however, the main result is that
produced density perturbation is about of order entropy perturbation itself and it can be evaluated to be
much smaller than standard one produced by adiabatic perturbation |Δc| ∼ O(|Γ|) � 10−5 [255]. Then
the entropy perturbation is usually considered to be inefficient. The other reason for disfavoring this type
of perturbation is why it is inconsistent with the observational data of CMB anisotropy. Similar to non-
adiabatic perturbations, the anisotropic stress Π acts inefficiently for enhancing the density perturbations

18Strictly speaking, when the energy-momentum tensor of each component is not conserved T ν
(α)μ;ν

= Q(α)μ, if we

consider the energy and momentum transfer quantities Qα is not equal to the other Qβ , Γrel is also proportional to
P̄Γrel ∝

∑
α,β(c

2
β − c2α)(Qβ −Qα) as shown in [255].
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as |Δ| ∼ O(Π) [255].

Boltzmann equations for each components

If we consider the situation that the universe is filled with multi-components, the evolutions for each
components needs. Until now, we have dealt with the quantities ρ̄, P̄ etc, as total quantities ρ̄ =

∑
α ρ̄α.

The evolutions of each components are described as Boltzmann equations df(xμ, pν)/dλ = C[f ], where
the distribution function f and the collision term C[f ]. Using the geodesic equation, it can be rewritten
as

pμ
∂f

∂xμ
− Γμνλp

νpλ = C[f ] . (2.152)

If we consider each f for several components, we obtain the evolution equations. For another approach,
considering each energy-momentum tensor T ν(α)μ;ν = Q(α)μ with energy momentum transfer term, which

is relating to the interaction term between them Qμ(α) = 2
∫
dΠpμC[f ] where dΠ is an invariant volume

element on momentum space, gives the same result, however, here we shall go further discussion about
the linearized Boltzmann equations. In the Newtonian gauge ds2 = a2[−(1+2Φ)dτ2+ηij(1−2Ψ)dxidxj ],

we define the new variables, where a momentum qi = a(1 − Ψ)pi and its amplitude q =
√
pipi and the

direction cosine γi = qi/q and expand the perturbation δf as the Fourier and Legendre series

δf(x, q,γ, τ) =

∫
d3k

(2π)3
eik·x

∞∑
l=0

(−i)l(2l + 1)Pl(μ)Fl(q,k, τ) . (2.153)

The quantities Fl are related to each perturbation of hydrodynamical variables δρ, δP, v and Π by inte-
gration in momentum space q as [255]

δρ =

∫
q2dq

2π2�3

√
q2 +m2F0 , δP =

1

3

∫
q2dq

2π2�3

q2√
q2 +m2

F0 ,

(ρ̄+ P̄ )v = −1

k

∫
q2dq

2π2�3
qF1 , P̄Π =

1

k2

∫
q2dq

2π2�3

q2√
q2 +m2

F2 . (2.154)

From the above equations, we find a rough relationship δρ, δP ⇔ F0, v ⇔ F1 and vΠ ⇔ F2. For the
distribution functions, let us consider dark matter, baryon and radiation. The Boltzmann equations
for each component are obtained by calculation of the collision term, which becomes vanishing for dark
matter due to no interaction except for gravitational force and becomes equivalent to Thomson scattering
and Coulomb interaction, for radiation-electron system and for electron-baryon system. As a result, we
can deal with both electrons and baryons as one fluid and hence the baryon we call means both them.
The continuous and Euler equations are given by [123]

δ′dm + ikvdm − 3Ψ′ = 0 , v′dm +Hvdm − ikΦ = 0 , for dark matter
δ′b + ikvb − 3Ψ′ = 0 , v′b +Hvb − ikΦ = − 4

3
ρr
ρb
aneσT (vb − vr) , for baryon(+electron)

δ′r +
4
3 ikvr − 4Ψ′ = 0 , v′r − 1

4 ikδr +
ik
6 Πr − ikΦ = aneσT (vb − vr) , for radiation

(2.155)

where σT is Thomson cross section σT = 0.665 × 10−24cm2 and ne, Πr represent the number density of
free electron and the anisotropic stress of radiation, respectively. There exists momentum transfer term in
right hand side of Euler equations for baryon and radiation. This term comes from Thomson collision term
and it is related to momentum conservation between baryon and radiation as (ρr + Pr)δvr + ρbδvb = 0
, yielding momentum transfer δvb = −Rδvr and sound velocity of baryon-radiation fluid c2s = 1

3(1+R)

where R = 3ρb/(4ρr). For photon (radiation), we introduce a brightness function Θ, which is convenient
to describe temperature fluctuations as

Θ(x,γ, τ) =
1

4

∫
dpp3δf∫
dpp3f̄

=
δT

T
. (2.156)
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Expanding it as the Fourier and Legendre series,

Θ(x,γ, τ) =

∫
d3k

(2π)3
eik·x

∞∑
l=0

(−i)l(2l + 1)Pl(μ)Θl(k, τ) , (2.157)

we find the relationships

Θ0 =
1

4
δr , Θ1 = −kvr , Θ2 =

20k2

3
Πr . (2.158)

and the evolution equations of them become

Θ′
0 = − ik

3
Θ1 +Ψ′ for l = 0 , Θ′

1 = ik(Θ0 +Φ− 2

5
Θ2)− aneσT (Θ1 − vb) for l = 1 ,

Θ′
2 = ik

(2
3
Θ1 − 3

7
Θ3

)
− 9

10
aneσTΘ2 for l = 2 , Θ′

l = ik
( l

2l − 1
Θl−1 − l + 1

2l + 3
Θl+1

)
− aneσTΘl for l > 2 .

(2.159)

These equations continue infinitely, however, if the universe is optically thick (for example, before re-
combination), i.e., that photon’s free streaming scale is much smaller λT = 1/aneσT � 1 (the so-called
tight coupling limit), we can neglect l ≥ 3 modes due to Θl = e−λT obtained from Θl ≈ −λTΘl in this
situation. Then we consider only Θ0,Θ1 and Θ2 hereafter. These equations will be used for the analysis
of CMB photons.

Power spectrum: is defined by square of some quantity with given wavenumber as

〈Φ∗(k)Φ(k′)〉 = (2π)3δ3(k− k′)PΦ(k) . (2.160)

It is convenient to introduce the dimensionless power spectrum by the k-space weighted, which is

PΦ(k) = 4πk3PΦ(k) =
4πk3

(2π)3
〈|Φ|2〉 . (2.161)

Equivalently, it implies the logarithmic spectrum 〈Φ2〉 = ∫
dk
k PΦ(k). Similarly, the power spectrum for

adiabatic perturbations is PRc ≡ 4πk3

(2π)3 |R2
c |. The tensor power spectrum is also written as

PT ≡ 2
4πk3

(2π)3
|h2| , (2.162)

where additional factor of 2 shows two independent modes as polarisations of the graviton. Another
commonly used quantities describing the amplitudes of scalar and tensor power spectrum are

A2
R ≡ 4

25
PRc , A2

GW ≡ 1

100
PT (2.163)

The scale dependencies of the scalar and tensor power spectrums are given by logarithmic derivative of
power spectrum

nR − 1 ≡ d lnPRc

d ln k

∣∣∣∣
k=aH

, nT ≡ d lnPT

d ln k

∣∣∣∣
k=aH

, (2.164)

where we have to evaluate it at Hubble-crossing k = aH. Obviously, it implies PRc = AknR−1 and
PT = AknT . The cases of nR = 1 and nT = 0 represent scale-invariant spectrums. Finally, we introduce
the transfer function, which connects the initial value to the current value, defined by

T (k) =

√
PΦ(k)

PΦm0(k)
. (2.165)
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Using the transfer function, the CDM power spectrum is obtained by

P (k) = PΔc(k) = AkT 2(k)PΦm0(k) . (2.166)

CDM-type spectra have the following approximate form of the transfer function [390, 431, 391]

T (k) =

(
1 +

Ak2

log (1 +Bk)

)−1

. (2.167)

It behaves as T (k) ∼const for the small wavenumbers k (i.e., large scales), while T (k) ∝ k−2 ln k for
the large wavenumbers (small scales). See the CDM spectrum in Fig. 2.11 and the details in Sec 2.4.
Equations (2.166) and (2.167) illustrate the ‘turn around’ of the power spectrum from its primordial scale
invariant form as

P (k) ∝ k on the largest scales , P (k) ∝ k−3 log2 k on small scales . (2.168)

Notice that on large scales, power spectrum proportional to k, implies that a scale-invariant spectrum,
while on small scales, one proportional to k−3 comes from (2.130). Here a growth factor of log k has been
obtained in the evolution of CDM perturbations in the radiation dominated universe seen as (2.139). The
location of the turn-around is close to the wavenumber at the equality time keq � 0.01 ∼ (80Mpc)−1.

2.3.3 Origin of cosmological structure on large scale

In this section, let us discuss the origin of the large-scale structure, which gives initial conditions for
the previous perturbed quantities. Even if there exists the fluctuations of radiation and inflaton in the
inflationary universe, one can see conclusion that the amplitude of the scalar field perturbation induced
from the radiation perturbation is of order Φ of radiation, and it decreases monotonically. Hence we
conclude that the perturbation of radiation existing before the inflationary stage has negligible influence
on the present structure of the universe. In other words, we must seek for sources of perturbations either
in the inflationary stage itself, such as quantum fluctuations. Therefore, in the standard cosmology, it
is considered that the primordial fluctuations are generated by quantum fluctuations of inflaton. Let us
consider a single-field inflation model. In this case we can get a comoving curvature perturbation (2.112)

Rc = ψ +
H
φ′
δφ . (2.169)

As seen in the previous discussion, it is constant on superhorizon size from crossing outside of Hubble
radius to going inside of Hubble radius again. So this quantity is useful in order to describe the evolution
of perturbations. We introduce another variable which is commonly used to describe scalar perturbations
υ (called Mukhonov-Sasaki variable), which is rescaled of Rc by z = aφ′/H. It is also important that this
variable is reduced to the one describing the quantum fluctuations. In order to see this, we consider the
perturbed EOM for a single scalar field. It becomes simplest form in a flat slicing (where ψ = 0). Using
constraint equations, we can obtain one master equation

δ̈φ+ 3H ˙δφ+

[
k2

a2
+ Vφφ − 8πG

a3
d

dt

(
a3φ̇2

H

)]
δφ = 0, (2.170)

Introducing new variables, υ = aδφ, Eq. (2.170) reduces to

υ′′ +
(
k2 − z′′

z

)
υ = 0 . (2.171)

It is easy to see that this variable becomes a gauge-invariant due to proportional to the gauge-invariant
Rc as

υ ≡ a

[
δφ+

φ′

Hψ

]
= Rcz , z ≡ aφ′

H . (2.172)
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It is easy to see that the flat gauge condition (ψ = 0) gives theRc = Hδφ/φ̇ and it is equivalent to the defi-
nition of curvature perturbation as ζ = Hδτ where δτ = −δφ/φ̇ is a time delay in the time delay formalism
by Guth [196, 197]. The evolution of the perturbations is determined by the Einstein action. The first-
order perturbation equations of motion are given by a second-order action. Mukhanov et al [330] showed

that the full action for linear scalar perturbations is given by S2 =
∫
dτd3x(υ′2− (∇υ)2+ z′′/z υ2)/2 and

varying this action is consistent with the above obtained equation. It is important to fix the proportional
factor and define the momentum π canonically conjugated to υ in order to need in a canonical quantizing
as π ≡ ∂L/∂υ′ = υ′. Let us briefly summarize how the primordial density perturbation is generated
below. Inside the Hubble horizon, quantum vacuum fluctuations can be generated by inflaton, and then
these small perturbations can stretch over the Hubble by the accelerated expansion (first horizon-crossing
or Hubble-exit) (see Fig. 2.4(d)). Since in this region, the causality breaks, these longer fluctuations freeze
and become classical fluctuations. After that, the scale of the fluctuations are constant and they will
enter the Hubble radius. They can lead to classical fluctuations. When the fluctuations enter the Hubble
radius again (second horizon-crossing), they evolve according to the classical theory and form the large
scale structure such as cluster of galaxies (see Fig. 2.4(d)). In quantum theory, the variables υ and π
become operators υ̂ and π̂, which at any moment of time τ satisfy the standard communication relations:
and the theory is then quantized by promoting υ and its conjugate momentum to operators that satisfy
the following commutation relations on the τ =constant hypersurfaces:

[υ̂(τ,x), υ̂(τ,y)] = [π̂(τ,x), π̂(τ,y)] = 0 , [υ̂(τ,x), π̂(τ,y)] = iδ(3)(x− y) . (2.173)

We express υ̂(τ,x) in terms of plane waves

υ̂(τ,x) =

∫
d3k

(2π)3/2
[υk(τ)âke

ikx + υk∗(τ)â†ke
−ikx] , (2.174)

and these modes are normalized yielding Wronskian condition υk∗υ′k − υkυk∗ ′ = −i and satisfy (2.171).

This condition ensures that creation and annihilation operators â†k and âk satisfy following relations for
bosons:

[âk, âl] = [â†k, â
†
l ] = 0 , [âk, â

†
l ] = δ(3)(k− l) . (2.175)

We then define a vacuum state by âk as

âk|0 >= 0 , ∀k . (2.176)

We need to determine the initial vacuum state. The vacuum state is usually called Banch-Davies vacuum
[48], since there are not any particles at the initial time (see e.g. [61]). The Bunch-Davies state corre-
sponds to a attractor solution for initial values in an expanding background (see e.g. [63]). Recalling the
basic equation (2.171), the effective mass term, z′′/z, can be written as [434, 282, 217]

z′′

z
= (aH)2

[
2 + 5ε− 3η + 9ε2 − 7εη + η2 + ξ2

]
, (2.177)

where

ε ≡ − Ḣ

H2
, η ≡ 2ε− ε̇

2Hε
, ξ2 ≡

(
2ε− η̇

Hη

)
η . (2.178)

These definitions of the slow-roll parameters coincide with our earlier definitions in Eq. (2.57) at leading
order in a slow-roll expansion. If we do not consider a time-dependence of ε and η, we can get

τ � − 1

(1− ε)aH
, (2.179)

and

z′′

z
=
ν2R − (1/4)

τ2
, with νR � 3

2
+ 3ε− η . (2.180)
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The conformal time τ � (aH)−1 in the dS background denotes the comoving hubble radius as noted
in (2.21). The index νR is so important because it gives a scale dependence of the power spectrum. If

we include the mass term of Inflaton mφ in de Sitter background, it becomes ν2R = 9
4 − m2

φ

H2 and in the
massless limit, νR = 3/2 corresponds to the scale invariant nR = 1 as seen in the further discussion.
Then the general solution to Eq. (2.171) can be obtained in terms of a combination of Hankel functions

υk �
√
π|τ |
2

ei(1+2νR)π/4
[
c1H

(1)
νR (k|τ |) + c2H

(2)
νR (k|τ |)

]
, (2.181)

where the Hankel functions f(k, τ) =
√
τH

(1),(2)
ν (kτ) satisfies a Bessel equation of the form ( d

2

dτ2 + k2 −
ν2−1/4
τ2 )f(k, τ) = 0 and the additional factors are need for satisfying the normalized condition of υk, using

the relation H
(1)
ν (z)H

(2)
ν

′
(z)−H

(1)
ν

′
(z)H

(2)
ν (z) = −4i/πz. Note that τ = 0 is the point corresponding to

the asymptotic future. The power spectrum for the scalar field perturbations is written by

Pδφ =
1

a2
Pυ ≡ 4πk3

(2π)3

∣∣∣v
a

∣∣∣2 . (2.182)

Imposing the usual positive frequency in the Minkowski vacuum, in the limit of small scale, i.e., k → ∞,

υk → e−ikτ√
2k

. (2.183)

The case c1 = 1 and c2 = 0 in Eq. (2.181) is equivalent to this choice. This vacuum state is the so-

called Banch-Davies vacuum (BD vacuum). Actually, in the asymptotic past kτ → −∞, H
(1)
ν (k|τ |) →√

2
πk|τ |e

−ikτe−i(ν+1/2)π/2 satisfying this condition. In the simple situation, purely de Sitter spacetime

where slow-roll parameters vanish, the basic equation and its solutions become

υ′′k +
(
k2 − 2

τ2

)
υk = 0 , υk =

1√
2k

(
1± i

kτ

)
e±ikτ , (2.184)

and the choice of BD vacuum corresponds to

υk =
1√
2k

(
1− i

kτ

)
e−ikτ : BD vacuum . (2.185)

The power spectrum on small scales (k � aH) is given by Pδφ � (
k

2πa

)2
, and on the large scales (k � aH)

we have

Pδφ �
(
(1− ε)

Γ(νR)

Γ(3/2)

H

2π

)2( |kτ |
2

)3−2νR

, (2.186)

where we have used the relation H
(1)
ν (k|τ |) → −(i/π)Γ(ν)(k|τ |/2)−ν for kτ → 0 and Γ(3/2) =

√
π/2. In

particular when we consider a massless field in de Sitter (νR = 3/2) a well-known result can be recovered

Pδφ →
(
H

2π

)2

for
k

aH
→ 0 . (2.187)

The comoving curvature perturbation Rc obeys an evolution equation as

R′′
c + 2

z′

z
R′
c + k2Rc = 0 , (2.188)

and the large-scale limit (k → 0) leads to a general solution

Rc = C1 + C2

∫
dt

a3ε
, (2.189)
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In most single-field inflationary scenarios, a second term corresponds to a decaying mode and can be
negligible after Hubble-exit. Therefore one can conclude that a curvature perturbation remains constant
on superhorizon scales. Using Eq. (2.186) we obtain power spectrum

PRc(k) =
1

|z|2Pυ(k) =
(
H

φ̇

)2

Pδφ(k) �
(
H2

2πφ̇

)2

k=aH

, (2.190)

which is valid up to leading order in slow-roll parameters. It is useful to find the relationships the power
spectrum of Φ and Rc by using (2.120),

PΦ(k) = PRc ×
{

4/9 (k � keq)
9/25 (k � keq)

(2.191)

(2.190) can be written in terms of the only Hubble variables (using (2.58) and ε ∼ 4π
m2

pl
(φ̇/H)2) or the

value of the potential energy as

PRc �
H2

π εm2
pl

∣∣∣∣∣
k=aH

, PRc �
(
128π

3m6
pl

V 3

V 2
φ

)
k=aH

. (2.192)

The COBE normalization [78] is PRc � 2 × 10−9 corresponding to about 60 e-folds. It allows us to
determine an inflation energy scale. For example let us consider the quadratic potential V (φ) = 1

2m
2
φφ

2.
Substituting the previous result of (2.65) to the latter equation in Eq. (2.192), the inflaton mass mφ can
be mφ � 10−6mpl. The same result is roughly obtained by the first equation in (2.192) with H � mφ.
The spectral index, nR, is obtained from (2.186)

nR − 1 = 3− 2νR . (2.193)

Obviously, νR = 3/2 gives the scale-invariant and it corresponds to the coefficient 2 of 1/τ2 term appearing
in the EOM (2.184). To leading order in the slow-roll parameters we can evaluate up to a leading order

nR = 1− 6ε+ 2η . (2.194)

Since ε � 1 and η � 1, it gives that scalar perturbations shows nearly scale-invariant (nR � 1). The
case of nR < 1 (nR > 1) leads to a red (blue) tilted spectrum. For example a chaotic inflation: V = V0φ

q

gives

nR = 1− q(q + 2)

8π

(
mpl

φ

)2

, (2.195)

which is a red spectrum. The CMB data from WMAP3rd [427] gives nR = 0.96± 0.017.

Gravitational wave : As noted in the previous subsection, in a scalar field universe any linear vector per-
turbation vanishes, but tensor perturbations propagate as gravitational waves. Let us show gravitational
waves in an accelerating universe [191]. Introducing μ ≡ ah, a basic equation of tensor perturbations
(2.123) can be reexpressed as

μ′′
k + (k2 − a′′

a
)μk = 0 , (2.196)

with
a′′

a
= (aH)2(2− ε) . (2.197)

In the slow-roll approximation, it results in

a′′

a
� ν2T − (1/4)

τ2
, with ν � ε . (2.198)
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We obtain a tensor power spectrum as

PT � 64π

m2
pl

(
(1− ε)

Γ(νT )

Γ(3/2)

H

2π

)2( |kτ |
2

)3−2νT

. (2.199)

To leading order in slow-roll we have

PT � 64π

m2
pl

(
H

2π

)2

k=aH

� 128

3

(
V

m4
pl

)
k=aH

. (2.200)

The spectral index of tensor perturbations, nT, is given by

nT = −2ε , (2.201)

which is a red spectrum. A tensor to scalar ratio is an important observational quantity, defined by

r ≡ PT

PRc

� 16ε . (2.202)

From Eqs. (2.201) and (2.202) a relation between r and nT can be obtained by

r = −8nT , (2.203)

so-called consistency relation [282] for single-field slow-roll inflation. It is important to investigate how
observational data such that CMB constrains a single-field slow-roll inflation. As you seen, inflation also
predicts the gravitational wave background arising due to the quantum fluctuations and the detection
of such gravitational wave of inflationary origin is a challenging future task for the Laser Interferometer
Space Antenna (LISA) [294] or the Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO)
[416].

2.3.4 CMB anisotropy

In the case of the anisotropic stress of radiation vanishing Πr = Θ2 = 0 19, the basic equations (2.159)
for the brightness functions Θ0,1 can be reduced to one equation for Θ0, with the help of the equation
for v′b in (2.155),

Θ′′
0 +H R

1 +R
Θ′

0 + k2c2sΘ0 = Ψ′′ +
R

1 +R
HΨ− k2

3
Φ . (2.204)

where R = 3ρb/(4ρr) and we have expanded the baryon velocity as vb = vr(= Θ1) + λT f by the first
order of the tight coupling limit, equivalently, the small free streaming scale λT = aneσT � 1/k. This is
a master equation for CMB during a baryon-photon fluid and it is basically interpreted as Jeans equation
(2.133), where the pressure denotes k2c2sΘ0 term and the gravity denotes term proportional to Φ. The
other terms are relativistic effects. If we consider the derivative terms Ψ′′, Ψ′ and Φ′ neglect, we obtain
the solution as

Θ0 = [Θ0(0) + (1 +R)Φ] cos(krs) +
1

kcs
Θ′

0(0) sin(krs)− (1 +R)Φ ,

with rs ≡
∫ τ

0

csdτ (Sound comoving horizon) . (2.205)

19In the thesis, we do not consider the anisotropic stress of photon Πr, which is related to the quadrupole Θ2, however, if
the recombination has a finite duration, non zero quadrupole gives a polarization of CMB [123, 332]. The polarization has
more information about the our universe. In particular, polarization can be decomposed into E and B-modes, dependent
on their parity even and odd, respectively and B-modes is not generated by scalar perturbations. Hence detecting B-modes
of polarization may give us an information about a gravitational wave generated by inflation for future observations.
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It shows the so-called acoustic oscillation, as seen in the Jeans oscillation. The amplitude of this oscillation
is determined by the initial value of Θ0 + (1 +R)Φ. For the initial condition, the adiabatic perturbation
gives Θ′

0(0) = 0, while the entropy perturbation gives Θ′
0(0) ∝ S. Therefore, we see that a phase of an

acoustic oscillation changes by π/2. The term Θ0 + Φ is related to the Sachs-Wolfe (SW) effect [389]
and the amplitude is also dependent on the baryon density as R ∝ Ωbh

2. The SW effect is shown in the

original Boltzmann equation for Θ = δT/T given by
(
∂
∂τ + γi ∂

∂xi

)(
Θ + Φ

)
= 2∂Φ∂τ . If we consider the

matter dominated epoch, from Eqs. (2.131) and (2.143), the gravitational potential Φ is constant and
yields

Θ + Φ =
δT

T
+Φ = const . (SW effect) (2.206)

Similar to (2.205), the general solution for Θl (2.133) is written in terms of spherical Bessel function of
order l jl as

Θl(τ) = [Θ0 +Φ](τdec)(2l + 1)jl(kΔτ)+Θ1(τdec)[ljl−1(kΔτ)− (l + 1)jl+1(kΔτ)]

+ (2l + 1)

∫ τ

τdec

(Φ′ +Φ′)jl(k(τ − τ1))dτ1 , (2.207)

where Δτ = τ − τdec. It also shows the amplitude of oscillation is determined by the SW effects at
the decoupling [Θ0 + Φ](τdec). Let us estimate this term. From the perturbation theory, Θ0 = δr/4
is related to Φ as Θ0 = − 1

2Φ, which comes form Eq. (2.143) δr = −2Φ. The initial condition of Φ0

has been given by quantizing the inflaton fluctuations in the inflationary scenario and the generated
primordial perturbation stretched out the horizon (first horizon-crossing) and then enter into the horizon
(second horizon-crossing), leading to a CMB temperature fluctuation Θ at the decoupling time. On
the other hand, the evolution equation for Θ0 (2.159) in the superhorizon limit, becomes Θ′

0 − Ψ′ ≈ 0
and hence Θ0 − Ψ =const. At the radiation dominated epoch, Θ0 = − 1

2Φ0, yielding const= − 3
2Φ0 due

to vanishing anisotropic stress Φ = Ψ. Therefore, at the matter dominated epoch, Θ0 is estimated as
Θ0 = const+Ψm0 = − 3

2Φ0+Ψm0 = − 3
2
10
9 Φm0+Ψm0 = − 2

3Φm0 where we use the fact that Φ changes by
factor of 10/9 through these epochs seen (2.148). The decoupling occurs at the matter dominated epoch,
at which Φ is constant, and hence we can estimate the SW term [Θ0 +Φ](τdec) as

[Θ0 +Φ](τdec) = −2

3
Φm0 +Φm0 =

1

3
Φm0 . (SW effect at decouping) (2.208)

This result comes from the analysis for adiabatic modes. For the entropy perturbation, Θ0(τdec) becomes
Φm0 and yields the corresponding SW term 2Φm0, larger than the adiabatic mode by a factor of 6. On
the other hand, the second term in (2.207) denotes Doppler effects proportional to velocity Θ1 ∝ vr and
the last term denotes the Integrated Sachs-Wolfe (ISW) effect [378]. ISW effect is seen on the very large
scale l <∼ 20. This effect occurs by the changing of the gravitational potential Φ′ or Ψ′ and it is useful to
see directly the effect of the cosmological constant Λ or dark energy. Next, we consider the second order
of the tight coupling limit O((kλT )

2) for (2.204), we obtain the so-called Silk damping scale in the WKB
solution [422]:

Θ0 ∝ e±ikrse−k
2/k2D , with k−2

D =
1

6

∫
λT

1 +R

(8
9
+

R2

1 +R

)
dτ (Silk damping) . (2.209)

It shows that the acoustic oscillation e±krs decays as exponentially damping e−k
2/k2D since photons defuse

the baryon perturbation which they are coupled with (see also a sketch of Fig. 2.8(b)).

Power spectrum of CMB

A sky map of the CMB temperature fluctuations can be fully characterized in terms of an infinite
sequence of correlation functions. If the spectrum of fluctuations is Gaussian, as predicted by inflation
and as current data suggest, then only the even order correlation functions are nonzero and all of them
can be directly expressed through the two-point correlation function (also known as the temperature
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power spectrum):

C(θ) ≡
〈δT
T

(γ1)
δT

T
(γ2)

〉
, (2.210)

where the brackets denote averaging over all directions γ1 and γ2, satisfying the condition γ1 ·γ2 = cos(θ).
The three-point function is a sensitive test for a non-Gaussian contribution, however, we here does not
discuss it 20. The power spectrum of temperature perturbation Expanding the temperature fluctuation
δT/T = Θ in terms of spherical harmonics δT/T =

∑
l

∑
m almY

m
l (θ, φ) and also expanding C as

Legendre series C =
∑
l Cl

2l+1
4π Pl(cos θ), we obtain the multipole moment Cl of the power spectrum as

〈alm, a∗l′,m′〉 = δll′δmm′Cl ⇒ Cl =
1

2l + 1

l∑
m=−l

|alm|2 . (2.211)

It is related to the above obtained function Θl as

2l + 1

4π
Cl =

1

2π2

∫
dk

k

k3|Θl|2
2l + 1

. (2.212)

Notice that the dimensionless power spectrum is given by l(2l+1)
4π Cl driven from the relation C =∫

dl
l
l(2l+1)

4π ClPl(cos θ). For a small l < 20, there exist the so-called cosmic variance, which limits the
information about statistical properties of the primordial spectrum gathered from a single vantage point.
This indeterminate variance is ΔCl/Cl � (2l + 1)−1/2, and hence about 50% for the quadrupole (l = 2)
and 15% for l ∼ 20. Therefore, only considering l > 20, let us concentrate only the contribution from
the SW term. In this case, using (2.208) for the adiabatic modes, the power spectrum (2.212) can be
estimated as

2l + 1

4π
Cl =

1

2π2

∫
dk

k
k3
∣∣∣1
3
Φm0

∣∣∣2j2l (kΔτ)(2l + 1) = A
Γ(3− n)Γ(n+2l−1

2 )(2l + 1)

(Δτ)n−123−nΓ(2− n
2 )Γ(2− n

2 )Γ(l +
5
2 − n

2 )
,

(2.213)
where we have assumed the power spectrum is written in terms of the index nR as k3|Φk|2 ∝ knR−1. As
you seen, nR = 1 is predicted by inflation, the so-called scale invariant (Harrison-Zel’dovich) spectrum.
In this case, the above equation shows on the large scale l<∼100,

2l + 1

4π
Cl ∝ 2l + 1

(l + 1)l
=⇒ l(l + 1)Cl = const . (2.214)

Therefore it is commonly convenient to use the spectrum l(l+1)
2π Cl in which it becomes a plateau on the

large scale (see Fig. 2.8(a)). This is a flat curve of CMB spectrum. The angular size θ on today’s sky
is related to l as θ ∼ π/l(rad) and then l<∼100 is θ > 1.8◦. For the more small scale l>∼100, the acoustic
oscillation works, which can be decomposed into “oscillating”(O) and “nonoscillating” (N) [332]:

l(l + 1)Cl � B

π
(O +N1 +N2 +N3) , (2.215)

where

O ∝ A1 cos(l�+ π/4) +A2 cos(2l�+ π/4) , N1 ∝ ξ2[P − 0.22(l/lf )
0.3 − 2.6]2e−(l/lf )

2

,

N2 ∝ e−(l/lS)
2

(1 + ξ)1/2
[P − 0.22(l/lf )

0.3 + 1.7]2 , N3 ∝ e−(l/lS)
2

(1 + ξ)3/2
[P − 0.5(l/lf )

0.55 + 2.2]2 . (2.216)

20Non-Gaussianity is important for distinguishing many inflation models by future observational data. It is characterized
by fNL from the decomposition of the gravitational potential as Φ = ΦGaussian + fNLΦ

2
Gaussian [263, 264, 34]. The recent

constraint to non-Gaussianity is obtained −58 < fNL < 134 and the future observation Planck can detect non-Gaussianity
for fNL>∼5.
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(a) (b)

Figure 2.8: (a): Anisotropies in the CMB predicted by the theory of inflation compared with observations
[427]. (b): Schematic illustration shows the typical dependencies of the cosmological parameters. The
arrow represents the direction of shift of the spectrum with increasing of parameter. Here we define
ΩK = −K/(a20H2

0 ) and increasing this denotes the open universe, which makes us look the lights traveling
from smaller angular θ ↘ (larger multipole l ↗) (see also Fig. 2.1).

Here we defined the several variables dependent on the cosmological parameters and two important
damping scales: the finite thickness lf and Silk dissipation lS effects, which are given by

� = 0.014(1 + 0.13ξ)−1(Ωmh
3.1
75 )

0.16 , ξ = R|τrec � 17(Ωbh
2
75) , P = ln

( IΛl200√
Ωmh275

)
, IΛ � (1− ΩΛ)

−0.09

l−2
f = 2σ2

(τrec
τ0

)2

, l−2
S = 2

(
σ2 + (kDτ)

−2
rec

)(τrec
τ0

)2

, σ =
1√

6(14400Hτ/z)rec
. (2.217)

where h75 = (h/0.75) and l200 = (l/200). σ denotes the finite duration of recombination and then lf
denotes this effect directly, while lS denotes a combination this thickness with Silk damping 1/kD. The
oscillation peaks are determined by the O term, where the two cosine terms are A1 < 0 and A2 > 0.
Therefore the term proportional to A1 interferes constructively for the odd peaks and destructively for
the even peaks. As a result, the location of peaks are at ln � π�−1(n− 1/8). The standard cosmological
parameter gives l1 � 230 (d ∼ 210Mpc) and l2 � 460 (d ∼ 103Mpc), where d is the corresponding length
scales obtained by d ≈ θdH(z = 0) = π

l dH(z = 0). The locations of these peaks also directly obtained by
the acoustic oscillation (2.205) as krs = nπ. On the other hand, angular diameter distance dA relates to
multipole l as l ∼ kdA/a obtained from combining Δθ = λ/dA = π/l (see diameter distance in Sec. 2.1)
with λ = πa/k. Then the location of acoustic peak is determined by

ln � nπ(1 + z)dA
rs

, (2.218)

and its shift to a cosmological parameter is roughly determined by

√
Ω

(0)
m dA(z). dA(z) is dependent on

a cosmological parameter through a hubble parameterH(z) as seen in (2.32).
Let us see the dependencies of the cosmological parameters on the CMB spectrum in more details.

The location of first peak is sensitive to l1 ∝ Ω
−1/2
tot , that is, to the spatial curvature ΩK. The baryon

density Ωb increases the height of this peak while the matter density decrease the height (see the first peak
in Fig. 2.8(b)). It is seen easily from (2.216) and (2.217) as follows. If we increase Ωbh

2, both ξ and N1,
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which is proportional to ξ2 increases for fixed Ωmh
2. An increase of the cold matter density for fixed ξ

suppresses the height since P decreases as Ωmh
2 increases. On the other hand, for the height of second

peak, baryonic matter work in opposite direction in terms of their effect on the first peak, that is, the
second peak decreases as the baryon density increases. Hence the baryon density and the dark matter
density work in the same direction in terms of how they alter the height of the second peak (see second
peak in Fig. 2.8(b)). Using both peak heights enables us to resolve the degeneracy in the determination
of Ωmh

2
75 and Ωbh

2
75. Moreover (2.217) show that the different combinations of Ωm and h75 gives the

more information; namely, we can determine the Hubble constant since the heights of the peaks P depend
on Ωmh

2
75 and their location � on Ωmh

3.1
75 .

The CMB observational data by COBE in 1992 [40] and by WMAP in 2003 [41, 264, 359, 427] found
spectrum of primordial perturbations is nearly scale-invariant, that is consistent with a prediction of
inflation. WMAP data [427] gives a spectral index is nR = 0.951+0.015

−0.019, that is good agreement with
a flat ΛCDM model. WMAP data also tells us that the universe is very close to be flat |1 − Ωtotal| =
0.030+0.026

−0.025 � 1 [350] as predicted by inflationary cosmology. In a flat cosmological models (Ωtot = 1),
using the observational value of the hubble parameter h = 0.71±0.076, we can conclude the constraint on
cosmological constant as ΩΛ = 0.69±0.03

0.06. See Table 2.2 in the details for several cosmological parameters.

2.4 Dark energy and dark matter

We shall review unknown components in the modern cosmology, called dark energy and dark matter.
First, main observational data will be introduced and we will mention the existences of these dark
components. See recent reviews [105, 394].

2.4.1 Observational evidences for dark energy

The observations of Type Ia Supernova in 1998 pointed out the accelerated expansion of the universe
[360, 381]. First, we will explain the observational evidences for dark energy from the supernovae Ia.

• Constraints from Supernovae Ia

The Hubble parameter can be written as a convenient form, from Eq. (2.33)

H2 = H2
0

∑
i

Ω
(0)
i (1 + z)3(1+ωi) , (2.219)

where Ω
(0)
i = ρ

(0)
i /ρ

(0)
cr seen in (2.6), and ωi and ρ

(0)
i correspond to the EOS and the present energy

density, respectively. The luminosity distance in a flat space (2.28) can be rewritten as

dL =
(1 + z)

H0

∫ z

0

dz′√∑
i Ω

(0)
i (1 + z′)3(1+ωi)

. (2.220)

Therefore the luminosity distance depends on how each component exists in the universe. Fig. 2.9(a)
shows a luminosity distance (2.220) for a non-relativistic matter ωm = 0 and a cosmological constant

ωΛ = −1 in a flat FRW universe. They satisfy Ω
(0)
m + Ω

(0)
Λ = 1. One can know that dL � z/H0 when z

takes a small value. It shows the hubble law as v = cz = H0dL. The observation of luminosity distances
of high redshift supernovae can give us the direct evidence for the current acceleration of the universe
[360, 381]. The apparent magnitude m and absolute M obey the following equation, using a luminosity
distance dL [392, 348]

m−M = 5 log10

(
dL
Mpc

)
+ 25 . (2.221)

It comes from taking the logarithm of Eq. (2.24) and the numerical factors are commonly used in as-
tronomy. One can observe a Type Ia supernova (SN Ia) as an explosion of white dwarf stars reaching its
maximum mass called Chandrasekhar mass limit ∼ 1.4M�. Since the explosion of SN Ia is achieved in
the same way, the observation of SN can become a “standard candle” for a high redshift. Once we observe
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Figure 2.9: The figures from Ref. [8]. (a): Plot of H0dL versus z for two components in a flat universe.
(b): Log plot of luminosity distance H0dL for a flat cosmological model. Three curves correspond to (i)

Ω
(0)
m = 0, Ω

(0)
Λ = 1, (ii) Ω

(0)
m = 0.31, Ω

(0)
Λ = 0.69 and (iii) Ω

(0)
m = 1, Ω

(0)
Λ = 0. (c): The constrained region

in a parameter space of Ω
(0)
m -Ω

(0)
Λ plane, using SN, CMB and galaxy counting.

the apparent magnitude m, it gives us the luminosity distance dL from the above equation (2.221) due to
the well-known absolute magnitude M . On the other hand, the redshift can be obtained as their shifted
wavelength of emission lines as Ls = L0(1 + z)2 (2.25). Therefore, combining the luminosity distance dL
from m with the redshift z leads to the information about the components in the universe through the
Eq. (2.220). As for one typical example of data, we get relation

H0dL � 1.16 , for z = 0.83 . (2.222)

On the other hand, from Eq. (2.220) the theoretical estimation of the luminosity distance for two com-
ponents

H0dL � 0.95, for Ω(0)
m � 1 , H0dL � 1.23, for (Ω(0)

m � 0.3, Ω
(0)
Λ � 0.7) . (2.223)

It shows the case H0dL = 1.23 is more close to the above observational data H0dL = 1.16 and yields the
dark energy dominated universe. This estimation shows clearly the existence of a dark energy. When

we assume a flat universe, it can be found as Ω
(0)
m = 0.28+0.09

−0.08 (1σ statistical). It shows that the present
universe has about 70 % of its current energy density as dark energy.

• Constraints by CMB and LSS

The observations by CMB [427] and large-scale structure (LSS) [440, 411] can give us information of
a dark energy. Using the most recent WMAP data [427] with a constant equation of state ωde = −1,

and combined with SN legacy Survey, we can get Ω
(0)
K = −0.015+0.02

−0,016, implying a flat universe. We

caution that the CMB alone does not strongly constrain Ω
(0)
Λ without putting any prior for the other

cosmological parameters. However if a flat universe is assumed with a hubble h = 0.71± 0.076, the CMB

data gives Ω
(0)
Λ = 0.69+0.03

−0.06 [421]. In Fig. 2.9(c) we plot an allowed region constrained from SN Ia, CMB
and large-scale galaxy clustering [8]. All data strongly shows a density parameter of each component in

the current universe as a dark energy Ω
(0)
Λ � 0.7, Ω

(0)
m � 0.3 and a baryonic matter only 4 %. Thus the

rest of the matter (26 %) denotes a non-baryonic matter with a dust EOS (ω = 0 ) known as Cold Dark
Matter (CDM). We can summarize main three components in the present universe as [427]

Ω
(0)
Λ � 0.72 , Ω

(0)
DM � 0.25 , Ω

(0)
baryon � 0.04 . (2.224)
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In addition to SN, there are other candidates of standard candles: 1. Baryon oscillation for future
observations at z ∼ 3, 2. Weak lensing for future z ∼ 4 − 6 and 3. Gamma ray bursts for future
z ∼ 6. Baryon oscillation appears an oscillation in the CDM power spectrum (seen in Fig. 2.11(b)),
corresponding to the so-called acoustic oscillation of photon emitted from baryon-radiation fluid existing
before recombination (see review papers Eisenstein et al [138, 415]). This phenomena, baryon acoustic
oscillation (BAO) is also observed as acoustic peaks in the CMB spectrum (see Fig. 2.8(b) and compared
with Fig. 2.11(b)). For a representative measurement, BAO will be detected by the measurements e.g.
the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) [93]. Weak lensing effect is based on
photon bending (see reviews [253, 204, 379, 123]). The cosmological gravitational field distorts the paths
travels by light from distant sources to us, the so-called Lensing. This effect can be quantified with a
two-by-two symmetric matrix, named the distortion tensor, encoding information about image distortion.
Gamma Ray Bursts (GRB) is the measurement observing to the most high redshift.

2.4.2 Dark energy

• Cosmological constant problem

The cosmological constant Λ was firstly introduced by Einstein in 1917. Using it, he wanted to make
a universe static. The cosmological constant corresponds to an energy density of the vacuum, but such
energy scale is naturally much larger than that of the present Hubble. This is the so-called “cosmological
constant problem” [468].

There have been many ways to solve this problem. For examples we can show attempts as adjustment
mechanisms [124, 72], anthropic considerations [288, 32, 467, 228, 171, 172, 173, 316], modified gravity
[457], quantum gravity [98], degenerate vacua [474], higher-dimensional gravity [17, 223, 456], supergravity
[157, 5], string theory [55, 424, 150, 225, 80]. In this section we will explain a fine-tuning problem and
discuss several origins of Λ. The cosmological constant leads to an accelerating of the universe by a
some kind of repulsive force as ä/a = Λ/3 seen in (2.4) with a negative pressure (2.12), while ordinary
matters does attractive forces ä/a < 0. The Poisson equation for gravitational potential Φ including the
cosmological constant Λ yields

ΔΦ = 4πGρ− Λ . (2.225)

Since Λ has dimensions of [Length]−2, it can be estimated by using the present Hubble parameter H0,
yielding

Λ ≈ H2
0 = (2.13h× 10−42 GeV)2 . (2.226)

It can read a critical density ρΛ
21,

ρΛ =
Λm2

pl

8π
≈ 10−47 GeV4 ∼ (10−3eV)4 . (2.227)

On the other hand, we can evaluate a sum of zero-point energies with mass m as a vacuum energy, which
is given by

ρvac =
1

2

∫ ∞

0

d3k

(2π)3

√
k2 +m2 =

1

4π2

∫ ∞

0

dk k2
√
k2 +m2 . (2.228)

It shows an ultraviolet divergence: ρvac ∝ k4. However it is usually known that there exists some cut-off

scale kmax inwhich quantum field theory is valid. It makes the integral (2.228) finite ρvac ≈ k4max

16π2 . For an
example case of General Relativity, we expect it to be the Planck scale: mpl = 1.22× 1019 GeV, one get

ρvac ≈ 1074 GeV4 , (2.229)

21Notice that a mass scale of critical density mcr ∼ 10−3eV may be of the same order of magnitude as neutrino mass
mνe < 2.2eV. In this point, there is recent idea of dark energy as neutrino mixing [88].
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which means that vacuum energy scale is 10 121 orders of magnitude larger than the present Hubble
constant Eq. (2.227).

Another cosmological constant problem is described as the so-called coincidence problem. It implies
that why each energy densities have now the same order as

O(ρ
(0)
Λ ) ∼ O(ρ

(0)
DM) . (2.230)

The coincidence problem implies that we appear to live during a special epoch when the densities in
dark energy and in dark matter are almost equal. Since the cosmological constant does not evolve while
both matter and radiation evolve rapidly (ρm ∝ a−3, ρr ∝ a−4), it follows that the small current value
ρΛ � 10−47 GeV4 implies ρΛ/ρr � 10−123 at the Planck time (when the temperature of the universe was
T ∼ 1019 GeV), or ρΛ/ρr � 10−55 at the time of the electroweak phase transition (T ∼ 100 GeV). Thus
an extreme fine-tuning needs in order to ensure that ρΛ/ρm ∼ 1 today.

Moreover Kallosh claims to add more one problem: Why positive value the cosmological constant
takes? In the string theory, AdS vacuum is naturally obtained due to satisfy SUSY. It has been also
seen in a complex setup of KKLT model in order to get a dS vacuum in string theory. As summary,
the cosmological constant problem is the following three statements: (1) Why small?, related to the
fine-tuning problem, (2) Why now?, related to the coincidence problem and (3) Why positive?, related
to the fact that AdS vacuum is naturally obtained in the string theory.

• Quintessence

The cosmological constant remains a constant as ω = −1, but in general the time evolution of ω can
be allowed to consider with a time-dependent EOS ω(t). Scalar fields naturally arise in particle physics,
they can play role of a dark energy and known as scenarios, quintessence, phantoms, K-essence, tachyon
and ghost condensates. Let us firstly explain quintessence [376, 83]. Quintessence is described by an
ordinary scalar field φ minimally coupled to gravity, but as we will see with particular potentials that
lead to late time inflation. The action for Quintessence is given by S =

∫
d4x

√−g [− 1
2 (∇φ)2 − V (φ)

]
,

where (∇φ)2 = gμν∂μφ∂νφ. The EOS for φ is characterised by

ωφ(t) =
p

ρ
=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (2.231)

It is obvious to see the EOS change with time. In order to see this changing of EOS from observations,
one often use a linear fitting formula of the EOS as ω(t) = ω0 + ω1z for a small redshift z � 1. The
energy density is obtained by

ρ = ρ0 exp

[
−
∫

3(1 + ωφ)
da

a

]
. (2.232)

This gives us a general definition of the energy density of dark energy. Using it, the Hubble (2.33) for
the universe made up matters and dark energy becomes

H2 = H2
0

{
Ωm,0/a

3 +Ωde,0 exp

[
−
∫ a0

a

3(1 + ω(t))
da

a

]}
. (2.233)

The specific EOS ω < −1 is called a phantom (ghost) dark energy. It leads to another expanding solution
given by

a = (trip − t)
2

3(1+ω) , H = − 2

3(1 + ω)(trip − t)
, with trip � t0 +

2

3H0

√
Ωde,0|1 + ω| . (2.234)

The scale factor and Hubble diverge when t → trip, which corresponds to divergence, the so-called Big
Rip singularity. If ω = −3/2, the big rip time trip ∼ 36Gyr, i.e. after 22 billion years.

It is interesting case where powerlaw expansion a(t) ∝ tp achieves by a scalar-field potential, which
results in

V (φ) = V0 exp

(
−
√

16π

p

φ

mpl

)
, (2.235)
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where the accelerated expansion occurs for p > 1. The φ field evolves as φ ∝ ln t. The original quintessence
models [376, 83] used a following power-law potential

V (φ) =
M4+α

φα
, (2.236)

and the potential of quintessence is used as an exponential type (2.235) V ∝ e−φ or the inverse power-law
potential (2.236) V ∝ 1/φα. For other scalar field models giving a dynamical EOS, K-essence models
are characterized by the following extended general action [20, 21]

S =

∫
d4x

√−gP (Φ, X) , where X ≡ −(1/2)(∇φ)2 , (K− essence) (2.237)

and the Lagrangian density P (φ,X) equates to a pressure density. It can be applied to a kinetic driven
inflation, called K-inflation [19] and a dark energy [95].

The another dark energy model is Tachyon field. Sen [414] used a pressureless gas as dark energy,
which is generated by a decay of D-branes (see also Refs. [413, 168, 43]). It is called tachyon [321, 146,
147, 399, 400] and is characterized by the action

S = −
∫

d4xV (φ)
√
−det(gab + ∂aφ∂bφ) . (Tachyon field) (2.238)

Note that it is exactly a Dirac-Born-Infeld action, describing D-3 brane, seen in Chapter 3.

2.4.3 Observational evidences for dark matter

• Flat rotation curves

Though the observational evidence favoring a flat Universe with Ωtotal � 1 is fairly recent, the nature of
the ‘unseen’ component of the universe (which dominates its mass density), is a long-standing issue in
modern cosmology. Indeed, the need for dark matter was originally pointed out by Zwicky (1933) [477]
who realized that the velocities of individual galaxies located within the Coma cluster were quite large,
and that this cluster would be gravitationally bound only if its total mass substantially exceeded the sum
of the masses of its component galaxies. For clusters which have relaxed to dynamical equilibrium the
mean kinetic and potential energies are related by the virial theorem [99]

K +
U

2
= 0 , (2.239)

where U � −GM2/R is the potential energy of a cluster of radius R, K � 3M〈v2r〉/2 is the kinetic energy
and 〈v2r〉1/2 is the dispersion in the line-of-sight velocity of cluster galaxies. This relation allows us to
infer the mean gravitational potential energy if the kinetic energy is accurately known. In individual
galaxies the presence of dark matter has been convincingly established through the use of Kepler’s third
law

v(r) =

√
GM(r)

r
(2.240)

to determine the ‘rotation curve’ v(r) at a given radial distance from the galactic center. Observations
of galaxies taken at distances large enough for there to be no luminous galactic component indicate that,
instead of declining at the expected rate v ∝ r−1/2 true if M � constant, the velocity curves flattened
out to v � constant implyingM(r) ∝ r (see fig 2.10). This observation suggests that the mass of galaxies
continues to grow even when there is no luminous component to account for this increase. Velocity curves
have been compiled for over 1000 spiral galaxies usually by measuring the 21 cm emission line from neutral
hydrogen (HI) [361, 425]. It is interesting that the total mass of an individual galaxy is still somewhat of
an unknown quantity since a turn around to the v ∝ r−1/2 law at large radii has not been convincingly
observed. This is the so-called flat rotation curve problem in galaxies. An important difference between
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Figure 2.10: The observed rotation curve of the dwarf spiral galaxy M33 extends considerably beyond its
optical image (shown superimposed); from Roy [386]. (This figure is Fig1 in Sahni [394].)

the distribution of dark matter in galaxies and clusters needs to be emphasised: whereas dark matter
appears to increase with distance in galaxies, in clusters exactly the reverse is true, the dark matter
distribution actually decreases with distance. Indeed, for certain dwarfs (such as DD0154) the rotation
curve has been measured to almost 15 optical length scales indicating that the dark matter surrounding
this object is extremely spread out (see also figure 2.10). A foreground cluster, on the other hand, acts as
a gravitational lens which focuses the light from background objects such as galaxies and QSO’s (Quasi-
Stellar Object) thereby allowing us to determine the depth of the cluster potential well. Observations
of strong lensing by clusters indicate that dark matter is strongly concentrated in central regions with
a projected mass of 1013 − 1014M� being contained within 0.2 - 0.3 Mpc of the central region. This
observation may prove to be problematic for alternatives to the dark matter hypothesis such as the
Modified Newtonian Dynamics (MOND) approach of Milgrom [325]. As the name suggests, MOND
is a modification of Newtonian physics which proposes to explain the flat rotation curves of galaxies
without invoking any assumptions about dark matter. Briefly, MOND assumes that Newtons law of
inertia (F = ma) is modified at sufficiently low accelerations (a < a0) to F = maμ(a/a0) where μ(x) = x
(μ(x) = 1 ) for x� 1 (x� 1) [325, 403].

• The constraint from baryon density

As discussed earlier, the fact that the cosmic density is made of baryonic as only 4% can read that the dark
matter which we are observing could well be non-baryonic in origin. This fact is related to nucleosynthesis.
In a successful nucleosynthesis, the baryon-photon ratio η10 ≡ 1010 × nN/nγ is constrained as η10 =
5.5± 0.5. This is still constant even if the universe expands. Therefore the energy density of the baryon
can be estimated by the present number density of radiation nγ ≈ 412cm−3 as

Ωb =
ρb
ρcr

=
mNnN
ρcr

=
mNη10nγ10

10

ρcr
≈ 0.0224h−2 ≈ 0.04 for h = 0.7 . (2.241)

For candidates for dark matter, if we pay attention to baryonic objects, one can consider white dwarfs,
neutron stars and black holes etc. These are candidates for dark matter, the so-called, MAssive Compact
Halo Objects (MACHO) [345].

• The constraint from structure formation

The need for non-baryonic forms of dark matter gets indirect support from the fact it difficult to obtain
current large-scale structure by only baryon hence to reconcile the existence of a well developed cosmic web
of filaments, sheets and clusters at the present epoch with the exceedingly small amplitude of density
perturbations (δρ/ρ ∼ 10−5 at z � 1100) inferred from COBE measurements and more recent CMB
experiments [427]. Indeed, it is well known that, if the effects of pressure are ignored, linearized density
perturbations in a spatially flat matter dominated universe grow at the rate (see the result of (2.136))

δ ∝ t2/3 ∝ (1 + z)−1 , (2.242)
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where 1+ z = a0/a(t) is the cosmological redshift. In a baryonic universe, due to large radiation pressure
density perturbations of baryons can grow only after recombination at z � 1100 at which point of time
baryons and radiation decouple. Requiring δ > 1 today implies δ > 10−3 at recombination, which
contradicts CMB observations by over an order of magnitude. In non-baryonic models on the other
hand, a structure can begin to grow much earlier since there is no coupling between dark matter and
radiation, significantly before recombination. Hence a universe with a non-baryonic matter can allow us
to restudy a structure formation. Moreover a recent CMB data independently shows the existence of
dark matter, obtained by fitting the CMB spectrum derived from several cosmological models.

2.4.4 Dark matter

• Cold dark matter

The structure can grow by gravitational instability and it depends both on whether primordial perturba-
tions is adiabatic or isocurvature and whether dark matter is hot or cold. Non-baryonic Hot Dark Matter
(HDM) is considered to be relativistic when it had decoupled from the other matter and it has a large ve-
locity dispersion (hence called ‘hot’). While Cold Dark Matter (CDM) has a small velocity dispersion and
decoupled at its non-relativistic stage. The free-streaming (collisionless phase mixing) of non-baryonic
particles as they travel from high density to low density regions (and vice versa) introduces an important
length scale called the ‘free-streaming distance’ λfs – which is the mean distance traveled by a relativistic
particle species until its momentum becomes non-relativistic. In both HDM and CDM the processed final
spectrum of density perturbations differs from its initial form. In the case of HDM this difference arises
because fluctuations on scales smaller than λfs are wiped out due to free streaming with the result that
the processed final spectrum has a well defined cutoff on scales smaller than λ ∼ λfs. Perhaps the best
example of HDM is provided by a light neutrino of mass about 30 eV. In this case λfs � 41(30eV/mν)
Mpc with the result that large proto-pancakes having masses comparable to those of rich clusters of
galaxies M ∼ 1015M� are the first objects to form in HDM. Smaller objects (galaxies) are formed by
the fragmentation of the proto-pancake. This top-down scenario for structure formation was originally
suggested by Zeldovich and coworkers in connection with adiabatic baryonic models and subsequently
applied to HDM. It has since fallen out of favour mainly due to the strong observational constraints
on the mass of the neutrino

∑
νi
mνi < 0.7 eV and on the relic neutrino density 10−3 <∼ Ωνh

2 <∼ 10−1

[139, 143, 326, 427]. It also faces considerable difficulty in forming structure sufficiently early to explain
the existence of galaxies and QSO’s at high redshifts. In contrast to HDM, constituents of CDM have
a much smaller free-streaming distance. Because of this small scales are the first to go non-linear and
gravitational clustering proceeds in a bottom up fashion in this scenario.

• Power spectrum of CDM

A key quantity defining gravitational clustering is the power spectrum of density perturbations P (k)
(2.166) and (2.168). The relevant cosmological quantity is the shape of the power spectrum of density
perturbations, which for CDM-like models, can be characterised by the ‘shape parameter’ Γ = Ωmh. The
exact solution for the transfer function is the fitting form of Bardeen, Bond, Kaiser and Szalay (1986)
[29, 123]:

T (q) =
ln[1 + 2.34q]

2.34q

[
1 + 3.89q + (16.2q)2 + (5.47q)3 + (6.71q)4

]−0.25

, q ≡ k/ΓhMpc−1 . (2.243)

The ‘standard’ cold dark matter (SCDM) models with Ωm = 1 and the HST-determined value h � 0.7
predict Γ � 0.5 which is much larger than the observed value Γ = 0.207±0.030 inferred from observations
of galaxy clustering in the sloan digital sky survey (SDSS) [367]. A modification of SCDM called LCDM
assumes that, in addition to CDM the universe consists of a smoothly distributed component called a
cosmological constant or a Lambda-term. LCDM models with h � 0.7 and Ωm = 0.3 predict a smaller
value for the shape parameter, Γ � 0.2, and the resulting amplitude and shape of the power spectrum is
in excellent agreement with several different sets of observations as demonstrated in figure 2.11.

• Candidates for DM
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(a) (b)

Figure 2.11: (a): The power spectrum inferred from LSS, Lymanα forest, gravitational lensing and
CMB. The solid line shows the power spectrum prediction for a flat scale-invariant LCDM model with
Ωm = 0.28, Ωb/Ωm = 0.16, h = 0.72; from Tegmark et al [440]. It also shows asymptotic k dependencies
seen in (2.168), where the location of turn-around is closed to the wavenumber at the equality time
keq � 0.01 ∼ (80Mpc)−1. (b): Plot of baryon acoustic oscillation. We enlarge the CDM power spectrum
of Fig. 2.11(a) at 0.01 < k < 0.5, where oscillation can be seen due to tight coupling of baryons with
photons. Two different lines denotes the cases of Ωm = 0.35, h = 0.70,Ωb = 0.04 and Ωm = 0.25,
h = 0.65,Ωb = 0.05. This figure is from [415].

Promising candidates for cold dark matter include a 100− 1000 GeV particle called a neutralino. The
neutralino is a weakly interacting massive particle (WIMP) and is seen to be consider SUSY partner of
neutrino. It is believed that the lightest supersymmetric particle will be stable due to R-parity which
makes the neutralino an excellent candidate for cold dark matter (see [385, 222] for reviews of particle
dark matter). A radically different particle candidate for cold dark matter is an ultra-light pseudo-
Goldstone boson called an axion with a mass of only ma ∼ 10−5±1 eV. Although ultralight, the axion
is ‘cold’ because it was created as a zero-momentum condensate. Its existence is a by-product of an
attempt to resolve QCD of what is commonly called the ‘strong CP problem’ [259]. This problem is
described as why a theoretical parameter is so unnaturally small θ < 10−9, which required by the CP
invariant consistent with the observational data. This parameter is given in the Lagrangian of the form:
L ∼ L0 +Θπ2FμνF

μν/32 where the last term works CP violation, however, it needs to explain the mass
constraint for the π and η mesons as mη <

√
3mπ. The most compelling solution is the one proposed

by Peccei and Quinn in 1977 [354]. The crux of their idea is to make Θ a dynamical variable, which
is driven to zero by the action of its classical potential. This feat is accomplished by introducing an
additional global, chiral symmetry, now known as PQ (Peccei-Quinn) symmetry. Weinberg and Wilczek
pointed out that because this symmetry is a spontaneously broken global symmetry, there must be a
Nambu-Goldstone boson, which is just the axion. Other candidates for non-baryonic cold dark matter
include string theory motivated modulii fields [76]; non-thermally produced super-heavy particles having
a mass ∼ 1014 GeV and dubbed Wimpzillas [260]; as well as axino’s and gravitino’s – superpartners of
the axion and graviton respectively [385]. There has been many models for dark matter, however, their
theoretical origins are still unknown. We shall summarize the features of dark matter as follows: (1) dark
(non-luminous), (2) non-baryonic, (3) long-lived and (4) cold (non-relativistic) dust.
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2.5 Summary

2.5.1 The modern imaging of the universe

We summarize the modern imaging of the universe. Especially, based on the ancient questions about
Cosmology, the simple answers are noted as follows.

(i) Age: for 13.7 billion years, the universe keeps to expand from an initial dense and hot state.

(ii) Shape(geometry): There are three types of the universe, closed, flat and open related to spatial
curvature K. The universe is seen to be close to spatially flat as seen in Table. 2.2. Even though the
question such as “Is there the end in the universe?” is difficult to answer, one response is a causal
particle horizon, where the light can reach during the age of the universe. This observational patch of the
universe is of order 3000Mpc∼ 10 billion years×c. Moreover, the standard cosmological theory, inflation
suggests that this may be the end of the story. According to inflationary theory, the universe becomes
homogeneous and isotropic over larger distance than the horizon.

(iii) Matter compositions: we know that

1. CMB radiation has T � 2 .73K ;

2. baryonic matter with no amount of antimatter;

3. where baryonic matter is composed of about 75% hydrogen, 25% helium, plus heavier elements;

4. baryons contribute a small percentage (0 .04%) in the universe; the rest is a cold dark matter
(∼ 25%) and dark energy (∼ 70%).

(iv) History(evolution): See Table. 2.1 in the details. The main flow of the theory is that: Super-
string or Quantum gravity → Inflation → Reheating → Big bang theory (radiation dominated → matter
dominated universe). Let us pay attention to the sequence of main events constituting the history of our
universe as follows [332].

• ∼ 10−43 − 10−14s (1019GeV-10TeV) This energy range will probably not be reached at accelerators
in the near future. Instead, the very early universe gives us the possibility to deal with the universe
as “experiment” in order to study the high energy fundamental physics such as quantum gravity,
unified theory.

• ∼ 10−14 − 10−10s (10TeV-100GeV) This range of energy scales can still be probed by accelerators.
The Standard Model of electroweak and strong interaction appears to be applicable here.

• ∼ 10−5s (200MeV) The quark-hadron transition takes place: free quarks and gluons become confined
within hadron (baryons and mesons).

• ∼ 0.2s (1− 2MeV) Two important events take place during this period. First, the primordial neutrinos
decouple from the other particles and propagate without further scattering (T ∼ 1.5MeV). Second,
the ratio of neutrons to protons “freezes out” because the interactions that keep neutrons and
protons in chemical equilibrium become inefficient (T ∼ 0.8MeV).

• ∼ 1s (0.5MeV) The typical energy at this time is of order the electron mass. The numerous electron-
positron paris begin to annihilate when the temperature drops below this energy scale. After
annihilation, the neutrino temperature is lower by a factor of (4/11)1/3 since photons are heated
by the annihilation.

• ∼ 200− 300s (0.05MeV) The abundances of the light elements resulting from primordial nucleosyn-
thesis are in very good agreement with available observation data. The number density of free
neutrons at T ∼ 0.07MeV gives the abundance of Helium-4, about 25%.

• ∼ 1011s (∼ eV) This time corresponds to matter-radiation equality which separates the radiation-
dominated epoch from the matter-dominated epoch.

• ∼ 1012 − 1013s At this time nearly all free electrons and protons recombine as neutral hydrogen
(recombination). The universe becomes transparent to the background radiation (decoupling).

• ∼ 1016 − 1017s Galaxies and their clusters are formed from small initial inhomogeneities as a result
of gravitational instability.
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Event Temperature (T ) Time (t) Redshift (z)
Birth of Universe ∞ (?) 0sec
Superstring(?) Quantum gravity(?) ∼ 1019GeV 10−42sec
Inflation ∼ 1013GeV 10−34sec
Matter-antimatter asymmetry ∼ 1013GeV
Reheating 106GeV >∼T>∼ MeV 10−34sec

Maximum energy of accelerator 10TeV 10−14sec
SUSY breaking ∼ 1TeV 10−11sec
Dark matter production (?) ∼ 1TeV 10−11sec (?)
Electroweak sym breaking 100GeV 10−10sec
Quark-hadron transition 200MeV 10−5sec
Neutrons decoupling 1.5MeV ∼ 0.1sec
n− p ratio freezes out 0.8MeV ∼ 0.2sec
e− e+ annihilation 0.5MeV ∼ 1sec
Nucleosynthesis 0.1MeV > T > 10keV 200− 300sec (∼ 3 min)
Helium recombination ∼ 1.2eV(=12000K) (He+) 1011sec (∼ 3kyr) ∼ 4395

∼ 5000K(He) 1012sec (∼ 30kyr) ∼ 1832
Matter-radiation equality ∼ 9450K(= 1eV) 1011sec ∼ 3500
H recombination ∼ 3400K(Xe = 0.5) ∼ 1200

∼ 3000K(Xe = 0.1) ∼ 1100
Photons decoupling (CMB) ∼ 2700K 378kyr ∼ 1000
Primordial galaxy formation 200 million yr ∼ 20
Reionization 500 million yr ∼ 10
Current most distant galaxy 800 million yr 7
Solar system formation ∼ 9 billion yr ∼ 1 (a = a0/2)
Birth of Earth 9.2 billion yr ∼ 0.43

(4.5 billion yr ago)
Birth of life 10 billion yr ∼ 0.35
Dark energy domination (?) 10 billion yr ∼ 0.3
Typical distance in SDSS of galaxies 11.3 billion yr ∼ 0.2
Dinosaur era 220 million yr ago ∼ 0.016
Disappearance of dinosaur 65 million yr ago ∼ 0.0047
Appearance of Humankind 4.5 million yr ago ∼ 0.00033
Now 2.73K 13.7 billion yr 0

Table 2.1: Summary of the sequence of main events constituting the history of our universe. This is just
a rough estimation denoting the thermal history. It is useful to estimate two relations: year and second
as 1yr � 3× 107sec and temperature and energy as 1eV � 104K.

(v) Future: The answer to the question such as “What the universe will be in the future?” is depend
on the EOS of dark energy. We have known that the universe is now in the stage of slowly accelerated
expansion, and hence dark energy will continues to be dominant in the future, leading to an almost empty
universe. If the dark energy is phantom ωde < −1 (see Sec. 2.4), the evolution changes drastically, and the
universe will begin to contract at a finite time (∼ after 22 billion years) in the future, towards to the Big
Rip. Contracting phase in the future is also seen in the case of the closed universe K > 0, however, the
observations suggest the flat universe. In the further chapter, we will show the cyclic universe scenario.
This implies that the universe will continue to accelerating expand and contract forever.

Finally, we summarize the current best values of the cosmological parameters obtained by the WMAP
data [427] in Table 2.2.

2.5.2 Problems in the standard cosmology

• Dark matter, Dark energy and Inflaton
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Description Symbol Value
Total density Ωtot 1.014± 0.017
Baryon density Ωb 0.041+0.0013

−0.0017

Dark matter density Ωm 0.235+0.013
−0.018

Dark energy density Ωde 0.716± 0.055
EOS of dark energy ωde −0.967± 0.073(with SN)

−1.08± 0.017(with LSS)
Hubble constant h 0.734+0.028

−0.038

Age of universe t0 13.73+0.13
−0.17Gyr

Baryon-to-photon ratio η (5.5± 0.5)× 10−10

CMB temperature T0 2.725± 0.002K
Redshift of decoupling zdec 1089± 1
Age at decoupling tdec 379+8

−7kyr
Thickness of decoupling Δzdec 195± 2
Decoupling time interval Δtdec 118+3

−2kyr
Redshift of matter-radiation equality zeq 3233+194

−210

Redshift of reionization zre 11± 4.3

Power spectrum normalization A 0.833+0.086
−0.083

Scalar spectral index nR 0.961± 0.017
Tensor-to-scalar ratio r < 0.65

< 0.3(with Lensing+LSS)
Sound horizon at decoupling rs 147± 2Mpc
Acoustic scale lA = πdA/rs 301± 1

Table 2.2: The best fit values of the cosmological parameters by WMAP [427]. The critical density ρcr is
obtained from the hubble parameter as ρcr ≡ 3H2

0/(8πG) = 1.88h2×10−29g/cm3. In the case of h = 0.73,
it becomes ρcr = 1.0× 10−29g/cm3 = 4.3× 10−47GeV4.

Observations of the cosmic microwave background (CMB) and the deuterium abundance in the Universe
suggest that Ωbaryon � 0.04 if the current Hubble expansion rate is h = H0/100km/sec/Mpc = 0.7.
Although Ωbaryon is much larger than the observed mass in stars, Ωstars � 0.005, it is nevertheless very
much smaller than the total energy density in the universe inferred from the observed anisotropy in the
cosmic microwave background [427]

Ωtotal ≡ 8πGρtotal
3H2

= 1.014± 0.017. (2.244)

Both dark matter (DM) and dark energy (DE) are considered essential missing pieces in the cosmic jigsaw
puzzle. There is strong evidence of these two unknown components having their contributions as

Ωm � 1/3, ΩDE � 2/3 . (2.245)

We summarize their features based on the three contexts, (1)When, (2)Duration and (3)Energy scale in
the followings: Dark energy: is characterised that (1) 10 billion years, (2) a few billion years and (3)
10−42 GeV, Dark matter: (1) 10−11sec, (2) almost history of the universe, (3) of same order dark energy,
and Inflation: (1) 10−32sec, (2) 10−30sec and (3) 1013GeV.

• Baryogenesis/Baryon asymmetry

The universe is asymmetric: there are more baryons than antibaryons. While antibaryons are produced
in accelerator or in cosmic rays, “antigalaxies” are not observed. The relative excess of the baryons

B ≡ (nb − nb̄)

s
∼ 10−10 , (2.246)
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is exactly what we need to explain the abundance of light elements and the observations of CMB fluc-
tuations. Any particular model for baryogenesis should possess three ingredients which are independent
of the details of the actual theory. These conditions are the so-called Sakharov’s three conditions as (1)
violation of baryon number, (2) C/CP violation and (3) non-equilibrium. First condition is obvious and
does not require a long explanation. If baryon number is conserved and is equal to zero at the beginning,
it will remain zero forever. If baryon number does not satisfy any conservation law, it vanishes in the state
of thermal equilibrium. Therefore we need the third condition. The second condition is less trivia: it is a
prerequisite for ensuring a different reaction (decay) rate for particles and antiparticles. If this condition
is not met, the numbers of baryons and antibaryons produced are equal and no net baryon charge is
generated even if the other two conditions are fulfilled. The Standard Model possesses all the ingredients
necessary for the generation of baryon asymmetry. In fact, baryon number is not conserved in topological
transitions (the so-called sphaleron process), CP is violated in weak interactions, related to the non zero
phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix [254], and the departure from thermal equilibrium
naturally occurs in the expanding universe. It would be remarkable if the baryon number could be ex-
plained within the Standard Model itself. Unfortunately this seems not to work. The main obstacle is
the third condition. For realistic values of the Higgs mass, the electroweak transition is a cross-over and
cannot supply us with the necessary strong deviations from thermal equilibrium. Therefore, to explain
baryon asymmetry we have to go beyond the Standard Model. There is a wide range of possibilities;
1. GUTs, 2. Leptogenesis [163] and 3. Affleck-Dine mechanism [4]. The first one is the idea
that baryon number is generically not conserved in Grand Unified Theories such as SU(5). The second
approach is that baryon asymmetry can also be generated via leptogenesis. The final baryon number is
obtained by Bf = − a

1+aLi where a = 28/51 in the Standard Model. The last one is explaining baryon
asymmetry based on supersymmetric theories where ordinary quarks and leptons are accompanied by
supersymmetric partners –squarks and sleptons. The corresponding scalar fields carry baryon and lepton
number, which can in principle be very large in the case of a scalar condensate [234, 235].

• Dimensionality problem

It is described as the fundamental question; why three spatial dimensions we live in ? It must be resolved
or answered by only higher dimensional theory than in 4 spacetime dimensions. Superstring theory is
such one constructed in 10 dimensional spacetime and hence string theory has the possibility to address to
dimensionality problem. Superstring theory predicted our world has originally 10 space-time dimensions,
although we are only in 3 spatial dimensions. In this point, brane cosmology can allow us to consider a
resolution of dimensionality where three-dimensional branes remain as a consequence of its collisions in
a nine-dimensional space.



Chapter 3

String theory and Brane-world
scenario

Unification of interactions

Among the progress of particle physics, unification of four fundamental interactions, e.g., the strong, week,
electromagnetic and gravitational interaction is one of most important subjects. All interactions except
for gravity could be unified by grand unified theories. When we discuss about quantization of fields,
gravity is again exceptional because it is not renormalizable. we have not so far been able to quantize the
gravitational interaction. On the other hand, one of most promising approaches is a superstring theory,
or M-theory. Such unified theories are usually formulated in higher dimensions than four. In order to
unify theories of interactions, one find there exists the hierarchy problem, which can be stated that why
is the gauge symmetry group of the field theory that is supposed to describe all the phenomena of nature
broken not at one, but at two completely different energy levels? For example, in string theory, one would
expect it to be broken at the Planck energy Tpl ∼ 1019GeV, but in fact, the symmetry group SU(2)×U(1)
describing the standard electroweak, which is the so-called Weinberg-Saram model [396, 465]) is broken
at a much lower energy scale TWS ∼ 100GeV, which is equal to the mass scale of the gauge bosons for
the broken part of the gauge group, i.e., the W± and Z bosons. There also exists the difference in the
energy levels between the the above energy scales and the energy scale of the Grand Unified Theories
(GUTs) TGUTs ∼ 1015GeV, which are based on gauging a single group such as SU(5) or SO(10) broken
to a Standard Model (SU(3) × SU(2) × U(1)). These differences in energy scales are the root of the
hierarchy problem. Superstring/M-theory is higher dimensional theory (10/11-dimensions) more than
our known 4 dimensions as seen in this section. These extra dimensions can solve the hierarchy problem
because they can lower the value of the Planck mass (see the detail in the section of brane-world). Under
the assumption that extra dimensions exist, we must be able to explain why only four dimensions are
observed and equivalently, the observational constraint can restrict the extra dimensions. We will the
main two constraints from the present experimental data on the ground:

• Newtonian inverse-square law [295, 209, 3, 231]

We now see the validity of the Newtons law F (r) = Gm1m2/r
2 for r >∼ O(0.1mm) ∼ 5× 1011GeV−1.

• Accelerator experiment such as hadron collider [92]

This current energy scale can reach at most O(TeV) ∼ 10−17cm, where there no such effect of extra
dimensions such as KK modes (seen in the article of Brane-world). The above two limits are used well
in the following discussion.

3.1 Superstring theory

In this section, we will explain an concept of superstring theory briefly (see also [366]). We give some
important points describing it as follows.

63
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Particle String

(a)

IIA

IIB

I

HetericE8�~E8

T-duality

T-duality

HetericSO(32)

S-duality

S1

M-theory

Orientifold

S-duality

S1/Z2

(b)

Figure 3.1: (a): A schematic illustration of string interaction. (b): The relation of M theory and five
superstring theories, which the dual symmetries connect each other.

• String picture: All particles are made of “String” in the point view of string theory. It is motivated
by a quantization of gravity. In order to quantize gravity, one encounter a difficulty of ultraviolet diver-
gence. In the other three forces (weak, electomagnetic and strong), it is usually resolved by a rescaling of
the fields and the parameters (renormalization) at least at one loop level, however, for the gravitational
interaction, the problem appears due to its dimensionful coupling constant as GN = M−2

pl and hence is
nonrenormalization. This divergence is related to the fact that its interaction occurs at one point in the
point view of a Feynman diagram. Therefore, if its diagram is applicable to more one spatial dimensional
object (string), no pointlike interaction exists and hence it may give a resolution of quantum gravity
(see an image in Fig. 3.1(a)). Usually, in the string theory, a dimension of string is called as string’s
world-sheet. The basic idea is basically described as transition from point particle to one-dimensional
object (string).

• Closed and open strings: String is classified into two types, that is, closed and open strings. It
is determined from their boundary conditions shown in the following. The closed string denotes a gravi-
ton, while open string denotes gauge particles and so the string theory has both spin-1 gauge bosons in
Standard Model and spin-2 graviton, as expected for an unified theory.

• Supersymmetry: Superstring denotes string satisfying symmetry between bosons and fermions (su-
persymmetry). All particle are classified into boson or fermion, depending on their spins and statistical
features. Boson has even spin and is related to gauge particle, graviton and Higgs particle, while fermion
has odd spin and describes matter fields (quark/lepton). Supersymmetry implies that the two-dimensional
field action describing the string theory (3.30), is invariant under a called supersymmetric transformation
(3.31), which is generally written by δA = i[ε̄Q,A]. Here Q is a generator of a Super-Poincare group

and satisfies a Super-Poincare algebra in N = 1 case {Qα, Q†
β} = 2Pa(Γ

aΓ0)αβ where gamma matrix
Γa. Super-Poincare group, introduced as an extension of Poincare group, does transform bosons into
fermions and visa versa. Supersymmetry is the most general symmetry among all symmetries existing in
natural world. It is demanded from resolution of Higgs mass divergence including one loop correction.
One loop correction of boson(/fermion) contributes positive(/negative) quantity to calculation of Higgs
mass. Moreover supersymmetry makes a unwanted tachyon states, having a negative mass, vanish with
the so-called GSO condition as seen around (3.9). Supersymmetry surely breaks in the present time (it
is often estimated at T ∼ 1TeV). But it is thought to be keep in the very early universe. It is perhaps
related to the dark energy and dark matter and so very important symmetry (see Sec. 2.4).

• 10 dimensional theory: (Super)string theory is described in higher dimensional spacetime than our
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four dimensional world. This demanding comes from symmetries which string theory has: Poincare invari-
ance, different coordinate invariance and Weyl (conformal) invariance. As a result, Superstring(/bosonic)
string has no anomaly in just D = 10(/26) dimensional spacetime. For bosonic string, in order to quan-
tize string, one usually use methods of light-cone gauge or Gupta-Blea quantization or path integral
or BRST(Becchi-Rouet-Stora-Tyutin) quantization (which we don’t explain in this thesis), however,
all quantizations show D = 26 to make theory self-consistent. Similarly, superstring is made to be
self-consistent in NSR(Neveu-Schwarz-Ramand) formulation or GS(Green-Schwarz) one and both shows
D = 10. The fundamental theory is described in ten dimensional spacetime, but our world is four. So it
is important that know how one can obtain a realistic world from such a higher dimensional theory. Such
question how this extra dimensions be is related to the issue of compactification discussed as follows.

• Compactification: There are many different ways to compactify the six dimensions, and string
theory does not say which realization must be found in nature. It only puts some restraints on the
allowed types of compact dimensions. They must form a special kind of manifold, called a Cakabi-Yau
space. Thus one way of fixing the number of dimensions to four is to compactify six dimensions to a tiny
Calabi-Yau space, which is smaller than we can detect with current technology. But there are still millions
of different Calabi-Yau spaces to choose among. This compactification is used in the ekpyrotic universe
scenario and in KKLT model [225]. Another simple compactification is the Kaluza-Klein compactification
[230, 251] such as toroidal one, which is used for introduction of D-branes (see the further article, named
T-duality) and in ADD model [16] (see the article, ADD model). Thus the higher dimensional theory has
a possibility of explaining the fundamental question why our world is four. It is very interesting topic,
the so-called dimensionality problem as discussed below.

• No free parameter: String theory has basically only one unknown constant parameter as a string
length ls. This scale is related to string tension T as ls ∝ T−1/2. No other adjustable constants exists.

• Uniqueness: Demanding that the two dimensional world-sheet quantum field theory has super-
symmetry, there exists five different types known as consistent superstring theories, i.e., I, IIA, IIB,
Heterotic SO(32) and Heterotic E8 × E8. But their types are related to each other in terms of several
dualities and hence they are thought to be unified in more one dimensional (D = 11) theory (called it M
theory). The dual relations among these theories are shown in the Fig. 3.1(b), where S-duality denotes
a weak-strong coupling duality gs → 1/gs, T-duality is a duality in a toroidally compactified theory with
radius R. It denotes invariance to radius-dependent rescaling R → α′/R as seen in more detail in the
following section.

3.1.1 Bosonic string spectrum

Let us try to make a quantum theory of bosonic strings for simplify. When we formulated the action
principle for the usual zero dimensional point particle, we use as the relativistic action the length of the
particle’s world-line. The action of a point particle is obtained by S = −m ∫

ds = −m ∫
dτ
√−(∂τX)2

wherem is the rest mass of the particle. Notice that the L =
∫
τ
√−(∂τX)2 term denotes the length of the

particle’s world-line (see Fig. 3.2(a)). If we want to consider a two-dimensional world-sheet σa = (τ, σ),
it is easy to be extended by using the area of the world-sheet of the string A and the action of the string
is given as

SNG = −T ·A = −T
∫
dτ dσ

√
−(dethab)2 , with hab ≡ ∂aX

μ∂bXμ , (3.1)

where Xμ is the vector-valued function in D-dimensional Minkowski spacetime and T denotes the tension
of the string related to the string coupling constant α′, which has square of length of the string ls as

T =
1

2πα′ =
1

2πl2s
. (3.2)
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This action is the so-called Nambu-Goto action. Introducing an independent world-sheet metric γab, the
equivalent to it is the so-called Polyakov action given by

SP = −T
2

∫
dτ dσ

√−γγabhab . (3.3)

The equivalence SNG = SP can be seen by varying SP with respect to γab and plugging the solution
back into the action. The action Sp shows several symmetries: (1). D-dimensional Poincare invariance
under which X transforming X → ΛX + a, γab are invariant, where a is a translation vector. (2).
Diffeomorphism invariance under which X are invariant, and γab transforms like a rank two covariant

tensor γab → ∂σc

∂σ′a
∂σd

∂σ′b γcd. (3). Two-dimensional Weyl invariance under which X are invariant, and γ
are rescaled by an arbitrary function ω(τ, σ) as γab → exp(2ω)γab. These total three symmetries on the
world-sheet has three independent degrees of freedom related by the fact that the world-sheet metric γ
are a 2 by 2 matrix. We can use three gauge symmetries to fix a gauge where the world-sheet metric is
diagonal, γab = diag(−1, 1). This gauge is called conformal gauge. In this case, we vary the Polyakov
action with respect to the fields Xμ and obtain the following EOM

(∂2τ − ∂2σ)X
μ = 0 . (3.4)

For the boundary condition, we impose the Neumann conditions 1 at σ = 0, π where σ ∈ [0, π]:
∂σX

μ(τ, σ = 0) = 0 and ∂σX
μ(τ, σ = π) = 0, and yields the solution describing the open string:

Xμ(τ, σ) = xμ + 2α′pμτ + i
√
2α′

∑
n�=0

1

n
αμne

−inτ cos(nσ) . open strings (3.5)

On the other hand, for the second choice of boundary, imposing the condition to σ ∈ [0, 2π]: Xμ(τ, σ +
2π) = Xμ(τ, σ), we also obtain the solution of the closed strings:

Xμ(τ, σ) = xμ + α′pμτ + i

√
α′

2

∑
n�=0

1

n

[
α̃μne

−in(τ+σ) + αμne
−in(τ−σ)] . closed stings (3.6)

Here xμ and pμ are the average position and total momentum in the center of mass, respectively. The
coefficient α̃ and α indicate the oscillation modes and correspond to left and right-moving mode, respec-
tively. The open string has the endpoints on the boundary. These two modes of oscillation in closed
strings are related to the rank two tensor indicating gravity gμν . Define light-cone coordinate in spacetime
X± = (X0 ±X1)/

√
2 and Xi where i = 2, . . . D − 1. In this gauge, for the open strings, X+ = α′p+τ

and X+ is not a dynamical variable. To quantize the motion and oscillations of the string, we define the
conjugate momentum density by Π ≡ δL/δ(∂τX) and impose the following relations

[x−, p+] = iη−+ = −i , [Xi(σ),Π(σ)j ] = iδijδ(σ − σ′) . (3.7)

Its Fourier components are written in

[xi, pj ] = iδij , [αim, α
j
n] = mδijδm,−n . (3.8)

The mass spectrum give by m2 = 2p+H − pipi is obtained by

m2 =
1

α′
(
N +

2−D

24

)
, (3.9)

1Notice that for the open strings, we have imposed the Neumann boundary conditions, however, since we can specify
boundary conditions separately for each edges of the open string, we indicate these conditions by calling it a NN, ND, DN
and DD strings where D denotes the Dirichlet boundary condition defined by a some constant vector bμ as Xμ = bμ and
the first letter indicating the condition at σ = 0, and the second at σ = π. Of course, in all cases, it can also be solved and
quantized. We will only quantize the NN open string, but we will later see the appearance of DD open strings, indicating
the existence of physical objects that correspond to the surfaces on which the endpoints of those string are attached.
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(a) (b)

Figure 3.2: (a): Two dimensional world-sheet of stings (b): T-duality and D-branes, which open string
ends on and closed string can travel freely.

where N denotes the level of energy. The lightest (N = 0) state |0; k〉 has the negative mass m2 = 2−D
24α′

for D > 2. This state is the so-called tachyon and indicates an instability in the theory. We will ignore
this complication, since the tachyon doesn’t appear in the supersymmetric string theory, which is related
to the so-called GSO condition. The lowest excited states (N = 1) of the string, which defined by a
creation operator αi−n, are obtained by

αi−1|0; k〉 , m2 =
26−D

24α′ . (3.10)

Lorentz invariance now requires a specific value of D. Imposing it to be massless particles, the number
of spacetime dimensions for Lorentz-invariant spectrum is only determined to be

m2 = 0 , D = 26 . (3.11)

This is important result of critical dimensions for the boson strings. Similarly, the closed strings also
can be canonically quantized in this light-cone gauge. So far we have used the light-cone quantizing
method, however, if we try to other quantization (see the above heading named 10 dimensional theory),
demanding that the quantized theory should exhibit the symmetries of the classical action (Lorentz,
diffeomorphism and Weyl) leads also to the conclusion that D = 26. But we will not drive these results
in this thesis. Considering the supersymmetry string, the critical dimension can be obtained as D = 10
Varying the action with respect to γab gives the another EOM for the world-sheet metric δSP/δγab = 0.
This equation does not contributed to by the Einstein-Helbert term in the action since that is a topological
term invariant under small variations of the metric in the two dimensional spacetime. Notice the trace of
this equation is satisfied irrespective of the values of X and γ, which follows from the Weyl symmetry of
the two dimensional field theory, related to the vanishing trace of energy-momentum tensor T aa = 0. This
equation is called Virasoro constraint condition and we impose these conditions on the mass spectrum
and obtain the final results for both types of strings as

m2 =

{
(N − 1)/α′ open strings

2(N + Ñ − 2)/α′ closed strings
(3.12)

whereN and Ñ correspond to the left- and right-going oscillation modes for the closed strings, respectively
and they must have the same valueN = Ñ , the so-called level-matching condition. Neglecting the tachyon
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states having negative squared mass, we see that we get massless (first excited) statesm2 = 0 when N = 1
for the open string, and when N+Ñ−2 for the closed string. Thus we can construct the following massless
states:

• Open string state: αi−1|0; k〉
It represents the open string with no oscillators excited and momentum. This massless state is gauge
field Ai like photon.

• Closed string state: αi−1α
j
−1|0, 0; k〉

These states have 2-tensor properpty under SO(D − 2). It reads that any tensor eij can be decomposed

eij = Gij +Bij +φ , where Gij =
1

2

(
eij + eji− 2

D − 2
δijekk

)
, Bij =

1

2
(eij − eji) , φ =

1

D − 2
δijekk .

(3.13)
The traceless tensor Gij denotes graviton state, the antisymmetric tensor Bij is called a Kalb-Ramond
state and a scalar φ is called dilaton state. Since string theory hopes to be a correct quantum theory of
gravity, it is good to see that graviton is included in the spectrum.

3.1.2 T-duality and D-brane

We consider a toroidal compactification on radius R by identification as X25 ∼ X25 + 2πRw with
integer w. Under this radial compactification, for the closed strings, the field X25 in invariant such as
X(σ + 2π) = X(σ) = X(σ) + 2πRw and can be reduced to

X = x+ 2Pτ + wRσ +
∑[

e−in(τ+σ) . . .
]

(3.14)

and yields the mass spectrum

m2 =
n2

R2
+
w2R2

α′2 +
2

α′ (N + Ñ − 2) , with N − Ñ = nw , (3.15)

where n and w are called momentum and winding number, respectively. From the above equation, we
see that if we do the transformation n ⇔ w, R ⇔ α′/R, we get the same spectrum of states as before.
This is the so-called T-duality of the theory. This symmetry can gives the minimum radius, the so-called
“self-dual” radius close to the string scale,

R⇔ α′/R ⇒ R ∼
√
α′ ∼ ls , (self − dual radius) (3.16)

and leads to several non-singular universe models, where the so-called Pre-big bang [174, 175, 176, 458] ,
Ekpyrotic universe scenarios [246, 432, 247] and String gas cosmology [64, 66] etc exist (see in the next
section).

The open string don’t have a conserved quantum number like the winding number for the closed
strings. Notice that instead of Neumann boundary conditions, we now have Dirichlet conditions on X ′

in the 25 direction,

X
′25(τ, σ = 0) = x

′25 , X
′25(τ, σ = π) = x

′25 + 2πα′ n
R
. (3.17)

We can give the difference in the X
′25 for the two ends of the string in terms of the compactification

radius of the T-dual coordinate.

X
′25(σ = π)−X

′25(σ = 0) = 2πnR′ . (3.18)

Since the radius of the circle in the T-dual theory is R′, this says that both ends of the open string
end on the same hyperplane, a so-called D24-brane (see Fig. 3.2(b)), since it extends itself in 24 spatial
dimensions; the directions we have not T-dualized. The D in the word D-brane, denotes the Dirichlet.
The possibility of interaction between different strings implies that all string endpoints end on the same
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hyperplane. The open string ends on this hypersurface, on the other hand, the closed string, e.g. gravi-
ton, can escape into the T-dualized direction called the bulk. This inspiration leads to a Brane-world. By
compactifying several orthogonal dimensions, we can make D-branes of arbitrary dimensions. A dualiza-
tion parallel to the tangent space of a brane reduces its dimension by one, and a dualization orthogonal
to the tangent space increase the dimension by the same amount. The D-brane in bosonic string theory
is this hypersurface to which the string endpoints are attached. In this case it is a flat, static plane, but a
general brane is a dynamical surface moving around in the higher dimensional space. In super-symmetric
string theory there is no tachyon, and many brane states are stable. The crucial difference is that the
super-symmetric branes carry a conserved charge. The conservation of this charge prohibits the branes
from decaying. They are therefore possible candidates for brane universe. The action of Dp-brane, where
p indicates spatial dimensions the brane has, is given by

S = −Tp
∫
dp+1ξe−φ

√
det(Gab +Bab + 2πα′Fab) , (3.19)

where Tp is the brane tension, which can be said to be the energy density per volume inherent in the brane.
The factor e−φ describes the brane’s coupling to the bulk dilaton field φ. Gab = Gμν∂ξaX

μ∂ξbX
ν is the

pullback of the spacetimes metric from spacetime to the brane volume, and similarly for the antisymmetric
Bab Kalb-Ramond bulk two-form field. The action is so-called the Dirac-Born-Infeld action. The action
can be derived by finding a solution of string theory on a background containing a Dp-brane, and then
demanding that it satisfies conformal invariance. This derivation is out of the scope of this thesis. In
the superstring theory, this action (3.19) has to be added by a charge term μp

∫
Cp+1. Calculating the

one-loop string amplitude, Plochinski (95) [365] showed that the Dp-brane has the so-called RR charge
and tension give by

μp = (2π)
7−2p

2 (4π2α′)
3−p
2 , Tp =

√
π

κ
(4π2α′)

3−p
2 , (3.20)

respectively.

3.1.3 Hagedorn temperature

In the string theory, there exists the maximal value of the temperature, the so-called Hagedorn temperature
[198, 366] where the thermal partition function of strings diverges. The partition function including a
1-loop correction at high weight h, is approximated by Z(τ) ≈ exp(4π/l) where l = τ/i. On the other
hand, using the relation m2 = 4(h− 1)/α′, it becomes

Z(τ) =

∫ ∞

0

dmn(m) exp(−2πhl) =

∫ ∞

0

dmn(m) exp(−α′πm2l) , (3.21)

and the equivalence between them implies that the density of string states n(m) grows exponentially as
n(m) ≈ exp(4πm

√
α′). The thermal partition function is given by∫ ∞

0

dm exp(4πm
√
α′) exp(−m/T ) =

∫ ∞

0

dm exp(m(1/TH − 1/T )) , where TH ≡ 1

4π
√
α′ . (3.22)

It is seen that if temperature is greater than the Hagedorn temperature T > TH, it diverges since the
density of states grows exponentially and it therefore exists the maximum temperature. The Hagedorn
temperature will appear in the string gas cosmology as further section.

3.1.4 Supergravity

We will consider the effective action at the low energy limit of string theory (see also review [283]). A
closed string is generated by bosonic string, whose massless modes are described by a nonlinear sigma
model [84]

Sσ = − 1

4πα′

∫
d2σ

√−γ
(
γabGμν(X)∂aX

μ∂bX
ν + εabBμν(X)∂aX

μ∂bX
ν + α′φ(X)R(2)

)
, (3.23)
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where γab, (2πα′), Gμν and Bμν denote the world-sheet metric, the inverse string tension, the background
space-time metric and the background antisymmetric tensor, respectively. The last term represents a
topological one where φ is a background dilaton, coupled to the world-sheet Ricci scalar R(2). The string
coupling is related to the dilaton as gs = eφ0 . Varying the action (3.23) with respect to the fields Xμ, we
obtain equations of motion for stirng in a general space-time

∂a

(√
γγab∂bX

μ
)
+ Γμλν

√
γγab∂aX

λ∂bX
ν +

1

2
Hμ

λνε
ab∂aX

λ∂bX
ν = 0. (3.24)

one additionally must satisfy the constraint equations

Gμν(X)
(
∂aX

μ(σ, τ)∂bX
ν(σ, τ)− 1

2
γabγ

cd∂cX
μ∂dX

ν
)
= 0. (3.25)

The background fields, Gμν , Bμν , and φ, are realized as couplings of the non-linear sigma model and
these couplings evolve in accordance with the corresponding beta functions. Thanks to it, the trace of
the world-sheet stress tensor given by

T aa = βGμν
√
γγab∂aX

μ∂bX
ν + βBμνε

ab∂aX
μ∂bX

ν + βφ
√
γR(2), (3.26)

vanishes, where the β functions are found [84]

βGμν =
(
Rμν + 2∇μ∇νφ− 1

4
HμκσH

κσ
ν

)
+O(α′),

βBμν =
(
∇κHκμν − 2∇κφHκμν

)
+O(α′),

βφ =
1

α′
(D − 26

48π2

)
+
(
4∇κφ∇κφ− 4∇κ∇κφ−R+

1

12
HκμνH

κμν
)
+O(α′), (3.27)

with H = dB denoting the field strength of Bμν . Therefore the conformal invariance at the quantum
level leads

T aa = 0 ⇐⇒ βGμν = βBμν = βφ = 0 . (3.28)

Keeping terms tree level in α′, these equations of motion can be derived from an effective action at low
energy limit of supergravity in D space-time dimensions

S0 =
1

2κ2D

∫
dDx

√−Ge−2φ
(
R+ 4(∇φ)2 − 1

12
H2

)
, (3.29)

where D takes the critical dimensions as D = 26 (D = 10) for the bosonic (super) string. The prefactor
takes the form 2κ2D = (2π

√
α′)D−2g2s(2π)

−1 = 16πGD where ls =
√
α′ is the string length and GD is the

D dimensional Newton constant.

Superstring: In the superstring theory, the world-sheet action for a free string is

S =
1

4πα′

∫
d2σημν

[
ηαβ∂αX

μ∂βX
ν + iψ̄μγα∂αψ

ν
]
. (3.30)

The spinors on the world-sheet are denoted by ψμ = ψμ(τ, σ). Eq. (3.30) becomes supersymmetric if it
is invariant under the infinitesimal transformation:

δXμ = iε̄ψμ, δψμ = γα∂αX
με . (3.31)

Here ε represents a constant anti-commuting spinor. The corresponding EOMs are the two dimensional
Dirac equations: (

∂

∂σ
+

∂

∂τ

)
ψμR = 0 ,

(
∂

∂σ
− ∂

∂τ

)
ψμL = 0 . (3.32)



3.2. BRANE-WORLD 71

We can impose boundary conditions to these equations. Closed strings have either periodic or anti
periodic boundary condition for left and right moving ones, i.e., ψμL,R(σ = 2π) = ±ψμL,R(σ = 0). Here a
periodic and anti periodic boundary condition are called the Ramond (R) sector [371] and the Neveu–
Schwarz (NS) sector [336, 337], respectively. Thus one has four possibilities. The bosons have the NS–NS
and RR sectors, on the other hand the fermions have the NS–R and R–NS sectors. The effective action
for the massless superstring can be also derived in [84, 155, 156, 412, 296]. There are different ways
of quantizing two-dimensional world-sheet having super-symmetry, leading to the five known consistent
string theories (Type I of open and closed strings, Type IIA of IIB of closed strings, E8 ×E8 or SO(32)
Heterotic of closed strings) (see Fig. 3.1(b)). The along with duality relations among these different
string theories and the existence of an 11 dimensional theory that reduces to these five different string
theories at different weak coupling, the so-called M-theory. Here we write only the effective action for
Type IIA superstring.

Type IIA superstring: in which the effective bosonic action referring to N = 2, D = 10, is given by

SIIA =
1

16πα′4

{∫
d10x

√
|g10|

[
e−φ

(
R10 + (∇Φ)

2 − 1

12
H2

3

)
− 1

4
F 2
2 − 1

48
(F4

′)2
]
+

1

2

∫
B2 ∧ F4 ∧ F4

}
(3.33)

where R10 is the Ricci scalar of a metric gMN and g10 ≡ detgMN . The antisymmetric tensor field
strengths are defined by H3 = dB2, F2 = dA1, F4 = dA3 and F ′

4 = F4 +A1 ∧H3, where Xp and d denote
an antisymmetric p–form potential and the exterior derivative, respectively. The last term in Eq. (3.33)
is called a Chern–Simons term.

3.2 Brane-world

String theory predicts a new type of nonlinear structure, called (D-)brane, a nomenclature created ar-
tificially from “membrane”. It is a boundary layer on which edges of open strings stand. This idea
suggests a new perspective in cosmology, that is we are living in a brane world, which corresponds to
three-dimensional hypersurface in a higher-dimensional spacetime. This new picture of the universe is
the so-called Brane-world. In this section, we first overview several types of brane-worlds: (1) Domain
wall model: is first idea of the brane, proposed by Rubakov and Shaposhinkov [387] and independently
by Akama [6]. (2) ADD model (Arkani-Haned, Dimopoulos and Dvali): proposed by [16], relating to
a Kaluza-Klein type compactification [230, 251]. (3) RS model (Randall and Sundrum): proposed by
[373] (4) DGP model (Dvali, Gabadaze and Porrati): proposed by [131], (5) DD̄ -branes inflation
model: proposed by [130, 369], gives us inflaton as a distance between two branes, (6) Ekpyrotic
model: proposed by [246], which is a colliding branes universe scenario as similar to the DD̄-branes
inflation model and it is ordinary called the ekpyrotic or cyclic universe scenario, which is main topic
of the thesis and will be reviewed in details in the next chapter. (7) KKLT model (Kachru, Kallosh,
Linde and Trivedi): proposed by [225], which is interesting as model implying a de Sitter vacuum in the
string theory.

3.2.1 Domain wall model

Following [387], let us consider a toy model of brane-world and start with a scalar field in five-dimensions

given by L = − 1
2∂AΦ∂

AΦ− λ
4

(
Φ2 − η2

)2

. We find a kink solution, called domain wall given by,

ΦK(y) = η tanh
(√

λη2/2 y
)
≡ η tanh

(
m0y

)
. (3.34)

Since transverse to the domain wall is one dimensional, the domain wall is a codimension one object. Its
tension is given by σ =

∫
dyT00(ΦK), where T00 denotes the (0,0) component of the stress tensor and is

determined as follows σ ∼ m3
0/λ ∼ √

λ2−3/2υ3. In the presence of the domain wall, by solving the linear
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equation of motion for the field Φ, Φ(xμ, y) = ΦK(y) + δΦ(xμ, y), we find that the four-dimensional part
of perturbation ρ(xμ) as δφ(xμ, y) = (dΦK/dy)ρ(x

μ) satisfies the equation ∂2μρ = 0, where ρ is the wave
function of a massless particle. It means that these particles live just on the brane, that is localization
on the brane. Next, let us now introduce five-dimensional fermions given as

LΨ = iΨ̄ΓM∂MΨ− gΦΨ̄Ψ . (3.35)

It leads to the corresponding EOM, which is obtained by

iΓM∂MΨ− gΦKΨ = 0 . (3.36)

Using massless chiral mode χL, it has a normalizable solution as

Ψ(xμ, y) = exp
[
−
∫ y

0

gΦK(z)dz
]
χL(x

μ) ,with iΓμ∂μχL = 0 andχL = (1− γ5)χ/2 . (3.37)

From this equation, we can also conclude that chiral mode is localized on the domain wall. As you seen,
in this simple model, a scalar field and fermions can be localized on the brane. Moreover, in order to
build a realistic model building, the model satisfies two properties on a brane: 1. Localization of a gauge
fields and 2. construction of four-dimensional gravity

3.2.2 ADD model

First, we will explain the Kaluza-Klein theory [230, 251]. In the Kaluza-Klein (KK) approach, they envi-
sioned five-dimensional spacetime to which general relativity was applied. One of the spatial dimension
was assumed to be “compactified ” to a small circle with a radius L leaving four-dimensional spacetime
extended infinitely as we see it. If the extra dimension is compactified on a circle with radius L, it reads
y → y+ 2πL as Φ(xμ, y) = Φ(xμ, y+ 2πL). An solution to a five-dimensional Klein-Gordon equation for
massless particles, �Φ(xμ, y) = 0, is given by

Φ(pμ, y) = eip
μxμ · einy/L , (3.38)

where n = 0,±1,±2 . . .. Four-momentum pμ and n satisfy

pμpμ +
n2

L2
= 0 . (3.39)

Then the spectrum can be obtained for zero mode, n = 0 and Kaluza-Klein(KK) modes, n 
= with the
mass

mn =
|n|
L
. (3.40)

It means that the zero mode is only important for low energy (E � 1/L) while all the KK modes are
important for high energy (E � 1/L). The compactified radius L must be constrained as L <∼ 10−17 cm
since no KK mode particles have been observed in an energy scale of present accelerator experiments
O(TeV) [92]. Based on a brane world picture, a new type of KK cosmology was proposed by Arkani-
Hamed, Dimopolos and Dvali (ADD) [16]. They considered simple situation where the brane width is
taken to be zero and all extra dimensions have equal size L. We shall discuss a four-dimensional gravity
in this scenario. The zero mode has an effective action as

M(4+N)

2

∫
d4x

∫ 2πL

0

dNy
√
G (4+N)R→

M2+N
(4+N)(2πL)

N

2

∫
d4x

√
(4)g (4)R , (3.41)

hence, we can obtain the four-dimensional Planck mass,

M2
pl =M2+N

(4+N)(2πL)
N . (3.42)
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It is seen in this ADD model that the ordinary matter fields are confined on a brane, the extra dimensions
are not necessarily required to be so small. This might also be connected with a conjecture that the mass
scale M(4+N) in (4+N)-dimensional spacetime at the more fundamental level is as low as ∼ TeV, nearly
the same as the electroweak mass scale. This removes what is called a hierarchy problem. Setting the
quantum gravity scale to be M(4+N) ∼ TeV, the size of extra dimensions can be obtained as,

L ∼ 1030/N−17cm . (3.43)

For N = 1, it leads to L ∼ 1013cm. Experimental data limiters the validity of the Newtonian inverse-
square law for O(0.1mm)<∼ r [231, 295]. For N = 2, it shows L ∼ 10−2cm, that is submillimeter distances,
corresponding to the lowest value which the Newton’s law has been tested above. Therefore it shows a
possibility of the unification scale within reach of our near-future experiments. It implies an important
possibility that black hole can be produced in an accelerator such as the CERN Large Hadron Collider
[92]. This idea is motivated by the fact that the radius of black holes (called Shwarzschild radius rsch)
in the extra-dimensional scenario, is 10 32 times larger than that of the usual black holes with the same
mass (see [26, 476]). The Shwarzschild radius is given as rsch ∼ (G(4+N)M)1/(N+1) and hence the ratio

to the usual radius (4)rsch ∼ GM is estimated by

(4+N)rsch
(4)rsch

∼
(

M2
pl

M(4+N)

)(
M

M(4+N)

)− N
N+1

∼ 1032
(

M

M(4+N)

)− N
N+1

, (3.44)

where we take M(4+N) TeV scale. This scenario is also ordinarily called large extra dimension model.

3.2.3 RS model

New approaches for extra dimensions proposed by Randall and Sundrum are also very important [373].
In their first paper(RSI), they proposed a mechanism to solve the hierarchy problem by a small extra
dimension, while in their second paper(RSII), they proposed a single brane model with a positive tension,
where 4D Newtonian gravity can be achieved. This mechanism provides us an alternative compactification
of extra dimensions and it is called “warped compactification”. RS brane-world is described by the
following action

S =
M3

5

2

∫
d5x

√−g(R− 2Λ5)−
∑
i

∫
d4x

√−qi(σi + Lmatter(i)) , (3.45)

where M5 and Λ5 are the fundamental scale of gravity and cosmological constant in five-dimension,
respectively and σi is the tension of the i-th brane.

RSI: considers two branes placed at y = 0 and y = L and the Z2-symmetry is imposed as y → −y and
y + L → −y + L. One is called visible-brane, that is our-world at y = L, the other is hidden-brane at
y = 0. We assume that the metric ansatz takes the form ds2 = a2(y)ημνdx

μdxν + dy2. With this ansatz,
we find a “warp factor” solution of the Einstein equations as

a(y) = e−k|y| , with k =

√
−Λ5

6
, (3.46)

where Λ5 = −6k2 is negative. It implies that the spacetime between the two 3-branes is a 5-dimensional
Anti de Sitter(AdS) geometry. We can also see that the branes have equal and opposite tensions σ1 =
−σ2 = 6Λ3

5k. lAdS = 1/k is often called AdS radius. The effective Planck scale Mpl on the negative
tension (second) brane is

M2
pl =

M3
5

k
[e2kL − 1] . (3.47)

This result implies that any mass parameter m0 on visible brane corresponds to a physical mass m on
the hidden brane as m0 = e2kLm. If the fundamental mass scale is m � O(TeV) with ky ∼ 35, our mass



74 CHAPTER 3. STRING THEORY AND BRANE-WORLD SCENARIO

scale m0 becomes Planck scale. If we take ekL ∼ 1015 with L ∼ 35lAdS, thus RSI solves the hierarchy
problem.

RSII: is a positive tension brane at y = 0 by taking the limit of L → ∞. In this limit, Eq.(3.47) on
opposite brane is

M2
pl =M3

5 /k . (3.48)

This implies that even in the infinite radius limit, the warped geometry affects its result. Considering
gravitational perturbations h around the Minkowski brane as Gμν = e−2k|y|ημν + hμν(x

μ, y) in the RSII

and expanding h(x, y) = ψ̂(z)e−k|y|/2eip
μxμ , the linearized basic equation is given by[

−1

2
∂2z + V (z)

]
ψ̂ = m2ψ̂ , with V (z) =

15k2

8(k|z|+ 1)2
− 3k

2
δ(z) , (3.49)

where we define new coordinate z ≡ (
ek|y| − 1

)
/k. This potential shapes a volcano type. From this

potential, we can see that massless graviton are confined in a brane. Moreover, the effective gravitational
potential can be estimated as [170]

V (r) = −Gm1m2

r

(
1 +

2

3

l2AdS

r2

)
. (3.50)

The first term is the usual Newtonian potential and the KK modes produce the second term as correction
term. As we seen that the lowest distance where four-dimensional Newton law is confirmed is mm scale,
thus the AdS radius is reduced to

lAdS <∼ 0.1mm ∼ 5× 1011GeV−1 . (3.51)

From this equation and the relation (3.48), we obtain a constraint as

M5 >∼ 105TeV . (3.52)

We will review cosmology based on the RSII brane model (for reviews of brane-world cosmology, see
[309, 275, 71, 462, 310, 352, 164]). Here we will review [418] for showing an equation of motion for brane.

Five-dimensional energy momentum tensor can be taken as the form

Tμν = −Λgμν + Sμνδ(χ) , with Sμν = −λqμν + τμν (3.53)

with τμνn
μ = 0. Note that Λ is a negative cosmological constant (AdS). From both the the Gauss

equation, which relates to 5D Ricci tensor to 4D Ricci and 5D Einstein equation, with helping of the
Israel’s junction condition [219], we obtain the gravitational equations on the 3-brane as

Ḡμν =− Λ4qμν +
1

M2
pl

τμν +
1

M6
5

πμν − Eμν , (3.54)

where Λ4 =
1

2M3
5

(
Λ +

1

6M3
5

λ2
)
, Mpl =

√
6

λ
M3

5 ,

πμν = −1

4
τματ

α
ν +

1

12
ττμν +

1

8
qμνταβτ

αβ − 1

24
qμντ

2 , Eμν ≡ Cαβρσnαn
ρqβμq

σ
ν . (3.55)

Eμν is related to the 5D Wely tensor. It is an important feature of brane-world that both the bulk and
the brane tension contribute to the cosmological constant in the effective four-dimensional theory on the
brane. Therefore, 4D positive cosmological constant term, i.e., explaining dark energy, arises from the
positive tension brane in AdS bulk Λ < 0. From the Codacci equation and the 5D Einstein equation,
we also find the conservation law for matter DνTμ

ν = 0. Considering our universe is homogeneous and
isotropic, this effective equation is reduced to the Friedmann equation given as,

H2 +
K

a2
=

1

3M2
pl

ρ

(
1 +

ρ

2λ

)
+

1

3
Λ +

C
a4
. (3.56)
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Contrasting with the usual Friedmann equation (2.4), the second term in first terms and last term on the
right hand side have newly appeared in the brane world cosmology. The ρ2 term comes from the quadratic
term πμν , while the last one corresponds to the so-called “dark ” radiation coming from E00 = C/a4,
where C is the integration constant. Although we will have one unknown parameter C, which we need an
information about the bulk spacetime, the system becomes closed.

The cosmological observations impose the lower limit

λ > (1MeV)4 ⇒M5 > 104GeV . (3.57)

3.2.4 DGP model

If one consider curvature correction terms arisen by a quantum effects, the 4D Einstein-Hilbert term are
induced on the brane. This model is the so-called DGP model [131]. The action is given by

S =
M3

5

2

∫
d5x

√−gR+

∫
d4x

√−q
(M2

pl

2
(4)R+ Lmatter

)
. (3.58)

Here we do not consider a tension of the brane σ. For the case of the homogeneous and isotropic universe,
the effective 4D Friedmann equation is reduced to

H2 + ε
H

rc
=

1

3M2
pl

ρ , (3.59)

where the critical length is defined as rc = M2
pl/(2M

3
5 ). When rc → ∞ the four-dimensional term

dominates and therefore, for r � rc, 4D gravitational law on the brane is recovered, while for r � rc,
5D law. Especially, when ε = 1, this model gives a mechanism to realize the late-time accelerating
expansion of the Universe without introducing additional matter since form the above equation. We find
the universe goes into a de-Sitter phase; H → 1/rc ∼ const in the limit of vanishing matter energy density
ρ → 0 [116]. Such a solution is called the self-acceleration. The other branch ε = −1 does not show no
cosmic expansion in this limit. This interesting feature is expected to explain the current acceleration
and resolve the dark energy problem. However, a remaining problem is that the quantum field theory of
gravity(or one-loop correction) needs for the scale where we can estimate (r2c lpl) ∼ 1000km [301], and it
is inconsistent with the range of scales where Newtonian law satisfies.

3.2.5 DD̄-branes inflation model

It is an open question as how to derive inflating potentials from string theory. In 1998, Dvali and Tye
[130] proposed an interesting idea to derive inflation from D-branes. They argued that two D-branes could
generate inflation as follows. If both branes are Bogomolnyi-Prasad-Sommerfeld (BPS) state, meaning
that they preserve supersymmetry, and the net force between them vanishes. This calculation can be
done explicitly, the interaction amplitude corresponds to the exchange of closed strings between the two
branes. One can obtain effective potential as a large distance compared to the string length, which is
taken as the form:

V ≈ 2T +
a

Y d−2

(
1 +

∑
NS

e−mNSY − 2
∑
RR

e−mRY
)

(3.60)

Where T is the tension of branes and Y is the separation between the branes and a a dimension-full
constant. If we assume Y m ≡ (x1 − x2)

m
where the sub-indices 1, 2 corresponding to the brane and

antibrane respectively, considering two D3 and D3 -branes and expanding SD + SD̄ in powers of ∂aY
m,

we get a potential of the form:

V (Y ) = 2T3

(
1− A

Y 4

)
where A =

e2φT3
2π3M8

s

. (3.61)
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This is a string theory derived inflation that has all the properties of successful inflationary models. It
has advantage that one can interpret the inflaton field as a geometrical origin, that is the distance of two
branes.

3.2.6 Ekpyrotic model

The ekpyrotic universe [246] uses a combination of the two ideas; one is Calabi-Yau compactification
and second is that the universe is a brane floating around in the nine spatial dimensions of string theory
(see works and reviews of ekpyrotic (cyclic) universe [248, 375, 432, 445, 455]). We start with the eleven
dimensions of M-theory. The strong string coupling limit if the heterotic E8×E8 string theory is M-theory
on a R10 × S1/Z2 spacetime [206]. The 10-dimensional E8 × E8 heterotic string theory is considered
to be the most realistic candidate for a successful high-energy generalization of the standard model and
quantum gravity. It includes the possibility of chiral couplings, which is an essential ingredient in the
standard model of elementary particles. On each boundary of this spacetime we get a Yang-Mills gauge
group theory with an E8 gauge group. We have one copy of such a gauge theory on each boundary,
contained in separate M5-branes. Then we compactify six spatial dimensions into M4×CY6, where M4

and CY6 are 4-dimensional Minkowski spacetime and 6-dimensional Calabi-Yau space, respectively. This
leaves us with a five dimensional space. Two of the six compactified dimensions are parallel to the the
M5-branes, so in the five dimensional theory, the 5-branes look like 3-branes. This model is the so-called
Horava-Witten model [206]. The two 3-branes are on each boundary of the fifth dimension, which is
topologically the same as a line element with length R. The boundary 3-branes each have the possibility
of having a E8 Yang-Mills gauge theory on them. We consider the possibility that our universe is stuck
on one of them, and that there is a “hidden universe” on the other boundary brane. The construction
opens up a possibility where third brane, the bulk brane, can move inside th bulk space between the
visible and hidden universe, and collide with the visible universe. This hypothetical event could be an
alternative to the standard big bang model, thus avoiding the geometric singularity associated with that
phenomenon. This scenario is main topic in the thesis and will be explained in the next chapter.

3.2.7 KKLT model

No-go theorem

In string theory or supergravity, in order to derive a de-Sitter vacua there have been many studies in
this direction. Among such approaches, the so-called No-go theorem has been found in [180, 314], that is
an impossibility for finding de-Sitter solutions in the 10(11) dimensional supergravity action. The no-go
theorem is described as follows. We consider a D dimensional gravity theory, with D > 2, compactified
down to 4 dimensions X4, by n = D− 4 dimensional internal space Yn. We consider the situation where
X4 is de-Sitter spacetime and Yn is independent of time, taking the metric form as

ds2(Mn+4) =W (y)1/2ds2(X4) + ds2(Yn) . (3.62)

We will assume that the D dimensional gravity theory satisfies the following conditions. (1) The gravity
action with no higher curvature corrections (2) The non-positive potential V ≤ 0. (3) The theory contains
massless fields with positive kinetic terms. (4) The 4 dimensional effective Newton’s constant is finite.
They showed that if their assumptions are satisfied, it leads to a positive Ricci curvature of arbitrary

timelike vector, i.e., R
(4)
V V > 0. Recalling the Raychaudhuri equation, 3ä/a = −RV V − 2σ2 + 2ω2, where

σ and ω are shear and rotation, respectively, RV V > 0 gives ä < 0 because the rotation of the universe
can be neglected. Therefore this theorem prohibits an accelerated expansion of the universe. However,
there exist methods to avoid the no-go theorem. For examples, (1) the internal space is not compact or
manifold having its boundary (it is corresponds to RS brane model). (2) The internal space is depend
on time such as S-brane solution. (3) Including the higher curvature corrections. (4) Considering a local
existing sources such as Dp-brane. This approach is corresponds to the following discussion of KKLT
model.
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KKLT model [225]: showed a possibility of achieving a dS vacua by flux compactifications on a Calabi-
Yau manifold in the IIB string theory. Under such compactification, there appear several unfixed fields,
the so-called moduli fields. The work of Giddings, Kachru and Polchinski (GKP) [185] can fix a axion-
dilaton modulus, denoting the shape of Manifold, but assume only a fixed volume modulus. KKLT
can fix all the moduli associated with the compactification. The low energy effective action of N = 1
supergravity in 4D is given by [24]

S =

∫
d4x

√−g
[
M2

pl

2
R+ gμνKαβ̄∂μϕ

α∂νϕ̄
β − eK/M

2
pl

(
Kαβ̄DαWDβ̄W̄ − 3

M2
pl

|W |2
)]

, (3.63)

where α, β are referring to all moduli ϕ. Here the superpotential W (ϕα) and the Kähler potential
K(ϕα, ϕ̄β) are given by

Kαβ̄ ≡ ∂2K

∂ϕα∂ϕ̄β
, DαW ≡ ∂W

∂ϕα
+

W

M2
pl

∂K

∂ϕα
. (3.64)

The supersymmetry keeps only when DαW = 0 for all α. They [225] additionally introduce a non-
perturbative correction [471] to the superpotential to fix the volume modulus, which is given by

W =W0 +Aeiaρ , (3.65)

where W0 is a tree level term. It can give a anti de-Sitter vacua as

VAdS = −3eK |W |2 = −a
2A2e−2aσc

6σc
. (3.66)

providing a negative cosmological constant. Therefore they add anti-D3 brane to obtain a positive
cosmological constant by using the potential

V =
2b40T3
g4s

1

(Imρ)3
− a2A2e−2aσc

6σc
. (3.67)

This approach tends to solve a cosmological constant (dark energy) problem due to no end of acceleration.
The next work (KKLMMT) is studied in order to cause inflation such as DD̄-branes inflation.

KKLMMT model: Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi (KKLMMT) proposed
that Calabi-Yau manifold is considered as similar as KKLT model and D3/D3-branes are added in this
background. Similar to DD̄-branes inflation, the distance of two branes Y denotes the inflaton and then
collision of branes leads to a end of inflation, taking the effective potential term as

V (Y ) = 2T3

(
1− B

Y 4

)
, (3.68)

similar to (3.61). For the other models of brane inflation, there exist D3/D7 brane inflation model
[210, 265], Racetack inflation [50] and Tacyon inflation model [106].

String landscape

From the viewpoint of constructing de-Sitter vacua in string theory, it is recently known that there are
many de-Sitter vacua as more than 10100, that means to resolve cosmological constant problem needs
realization of a complicated string landscape [435]. This is called String landscape problem.

3.3 Summary

Superstring cosmology

Superstring theory is now the most possible candidate as a unified theory of all interactions [189, 366].
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The cosmological implications of string theory is very interesting and it is called String cosmology. The
goal of superstring cosmology is to examine cosmological questions as the new understanding of string
theory. The cosmological problems which string cosmology can be expected to resolve is for example, the
following. (1): What are Dark energy and dark matter ? (2): What is Inflaton? or convincing link with
(alternative to) inflation? (3): Moduli problem (4): Singularity problem (5): Dimensionality problem.

Fundamental object –Brane

String theory has a much richer set of fundamental degree of freedom, consisting—in addition to fun-
damental strings—of D-branes of various dimensionalities. This fundamental objects, D-branes denote
non–perturbative effects of string theory as “soliton” of strings, while string theory has been only de-
scribed in perturbative form. In order to understand non–perturbative string theory, D-branes are so
important. As noted above, these branes can give us several suggestions for solving the above cosmolog-
ical problems. (1): DGP and RSII give us a new definition of cosmological constant related to higher
dimensional theory. It can lead to an interpretation of dark energy. RSII also shows that the same scalar
field leads to both inflation and dark energy. For other approach, we can create a positive cosmological
constant in the string theory, based on KKLT mechanism. (2): Ekpyrotic, and DD̄-branes inflation can
give us a geometrical interpretation for the inflaton field as the distance of two branes. (3): String (brane)
gas model can resolve the dimensionality problem (see the details in the next chapter). Other importance
of branes is noted as follows. D-branes are solitons in string theory. D-brane is a key object, in order to
see non– perturbative effects of string theory. They have also been instrumental in the geometrization of
gauge interactions and the long-sought correspondence between gauge theories and gravity/string theory
as epitomized by the AdS/CFT correspondence. The AdS/CFT correspondence was originally pro-
posed [313, 201] and many application and extensions exist [192, 193, 473, 472]. Gauge-theory/gravity
correspondence may have far-reaching implications both for the understanding of gauge theory dynamics
and the nature of gravity. This gives us a help of calculating of QCD scattering diagram.

As summary, there has been tremendous work on string cosmology, which are roughly categorized
for three types, that is, (1) Flux compactification, (2) Brane-world and (3) String gas cosmology. The
first is motivated by the type II B superstring theory, in which the work of KKLT [225] based on flux
compactification on a Calabi-Yau manifold. The second is motivated by the D-brane determined as the
endpoints of open string, in which Randall and Sundrum [373] proposed the brane-world cosmology. The
third approach, string gas cosmology is motivated by the Heterotic superstring theory and it is one of
the existing approaches trying to obtain our observed 4D universe starting from a string theory set up,
proposed by Brandenberger and Vafa [64](see Sec. 4.2).



Chapter 4

Two scenarios based on colliding
branes

In this chapter, we will introduce and review briefly the following two scenarios, which are related to a
colliding branes; 1. Colliding branes universe scenario and 2. String(brane) gas cosmological scenario.
The first one is called ekpyrotic universe or cyclic universe and can be seen to be alternative to inflation.
The latter is one approach to resolve the dimensionality problem. The singularity problem may also be
addressed from both scenarios. In both scenarios, a phenomena of colliding two branes is a key process,
and which is the main topic of this thesis.

4.1 Colliding branes/Ekpyrotic universe scenario

Not only does the inflationary scenario give some picture of the earlier stage of the universe before the
big bang but also it seems to be supported by some recent observational data on CMB. While, it is still
unclear what the origin of inflaton is. So far, there is no relation to fundamental unified theories such as
string/M-theory. On the other hand, recently a new paradigm on the early universe has been proposed,
called the brane world. Such speculation has been inspired by recent developments in string/M-theory,
as noted above. One of typical phenomena in brane dynamics is a collision of branes. With this idea
and for resolving the key theoretical problems in the big bang theory, a new idea of the early universe
has been proposed, colliding branes universe model, the so-called ekpyrotic scenario or cyclic universe
scenario [246, 432, 248], where the word “ekpyrotic” from the Greek-derived word ekpyrosis meaning the
fire which represents consuming and reconstituting of the world in the Greek philosophy. It is based on
a collision of two cold branes. The universe starts with a cold, empty, and nearly BPS (Bogomol’nyi-
Prasad-Sommerfield) ground state, which contains two parallel branes at rest. The two branes approach
each other and then collide. The energy is dissipated on the brane and the big bang universe starts.
Since this scenario is not only motivated by the fundamental unified theory but also may resolve the key
theoretical problems, such as the flatness and horizon problems, therefore, it could provide an alternative
to an inflationary scenario and would be very attractive. There has been much discussion about density
perturbations to see whether this scenario is really a reliable scenario for the early universe, however,
it has been shown by many studies that the initial spectrum is not produced as scale invariant, so this
point is the problem which this scenario has. We shall review this colliding branes universe (ekpyrotic
universe) scenario and explain its trouble.

4.1.1 Idea of ekpyrotic universe

In this section, we shall explain an idea of ekpyrotic universe. In the ekpyrotic universe we have a five
dimensional space-time, the fifth dimension being a finite orbifold dimension, and the big bang is realized
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v h

(a)

v hb

(b)

v h

(c)

v h

(d)

v h

(e)

v h

(f)

Figure 4.1: Sketches of the ekpyrotic (newer ekpyrotic) universe scenario seen in the upper (lower) figures.
The visible, hidden and bulk branes are indicated with letters v, h, b respectively. (a) The initial state of
two parallel static branes and the hidden brane spontaneously produces a bulk brane, (b) the bulk brane
travels towards the visible brane, acquiring quantum fluctuations, (c) the bulk brane eventually impacts
inelastically on the visible brane and is absorbed. (d) The initial state, (e) the fifth dimension starts to
contract and two branes then collide, (f) the fifth dimension has bounced at the origin, and is expanding
again.

as a collision between a visible brane on which we live now, and another brane, a bulk brane, which
interacts with the visible brane through stringy effects, including gravity. There are different versions of
this scenario, with different brane configurations.

In the first version, which is original proposed by Khoury, Ovrut, Steinhardt and Turok (2001) [246],
there are three branes being (3 + 1)-dimensional surfaces: the visible brane, the hidden brane, and the
bulk brane, and they are located at each end of the orbifold dimension, and in the bulk, respectively (See
Figure 4.1). The bulk brane is spontaneously produced close to the hidden brane by a mechanism similar
to bubble nucleation and is thereafter moving towards the visible brane. The bulk brane is proposed to
be light compared to the boundary branes. During the bulk brane movement it is under the influence
of a potential created by the exchange of appropriate M-theory fields between the three branes. The
subsequent collision of the bulk brane with the visible brane is responsible for depositing enough energy
on the visible brane for it to evolve into what we are living in today. The newer ekpyrotic scenario [432]
has only two branes, one visible and one hidden (See Figure 4.1). Here, the collision is brought about by a
different mechanism: the fifth dimension contracts, vanishes, and grows again. In the new scenario, since
the fifth dimension vanishes at the instant of collision, a full description demands a rigorous treatment
of this singularity in string theory/M-theory. In this version, we could image the possibility of a cyclic
universe, in which the fifth dimension undergoes a cycle of contraction and expansion a number of times,
or indefinitely. This is called the cyclic model. The ekpyrotic universe is fundamentally different from
standard cosmology, and offers radically different explanations for the cosmological problems. In both
scenarios the initial state is supported to be in a cold, vacuum, nearly BPS state [298], where branes
are flat, parallel and empty. The BPS state is needed to keep a supersymmetry in a 4d effective action.
The visible and hidden branes are flat and are described by a Minkowski spacetime, while the bulk is a
warped five-dimensional spacetime.

The important points of these scenarios are the followings: (1) The Distance between two branes, Y
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Figure 4.2: Sketches of the effective potential for ekpyrotic (cyclic) universe scenario. (a): Exponential
potential V (Y ) = −V0e−αY . The bulk brane approaches and collides the visible brane at Y = 0. (b):
This type of potential adds two new stages of expansion: dark energy and contracting, which is alternative
to inflation, and moreover, the universe continues this cycle.

behaves as an effective scalar field with a exponential potential V (Y ) = −V0e−αY (see Fig 4.2), which
is alternative to Inflaton. (2) Our world on the visible brane is seen to contract in the period before
the collision, that is, while inflationary scenario has an expansion phase, there is an contracting phase
H < 0 in this scenario. The recent study of cyclic universe scenario shows that the effective potential
leads the universe to additional expansion: dark energy and contracting phase, which is alternative to
inflation [144, 433]. It is very attractive to us, however, we will only consider the former simple case,
V (Y ) = −V0e−αY . First, based on the above two features, We will show a resolving of the key theoretical
problems which the big bang theory has.

• Flatness problem

Spatial flatness of the visible universe follows from the assumption of starting near the BPS state. As
we have noted above, the bulk brane becomes flat and parallel as the BPS state. Hence, the geometry
of hot big bang universe is originally spatial flat. We address the flatness problem as beginning state of
a BPS. Therefore, the flatness problem is not seen to be a problem in the ekpyrotic scenario because of
assuming a BPS state as an initial condition.

• Horizon problem

In order to resolve this problem, we should compare two scales, that is, one is the particle horizon
measured by an observer on the visible brane dp, while the other is the Hubble radius of our universe
at collision dH = H−1|Y=0 whereby we investigate which is larger. If dp/dH > e70, this problem can be
avoided. Compared with inflationary theory, this scenario also leads to two horizon-crossings in which
the fluctuations ((k/a)−1) is stretched out the Hubble radius (see Fig. 4.3). dp denotes the causally
links regions determined from the time taken by the brane traveling toward the visible brane. Here
we represent this comoving time as τtot and the scale factor of the traveling (bulk/hidden) brane. The
effective Friedmann equation is given by H2 ∼ 1

2D
2(Y )Ẏ 2 + V (Y ) and hence the particle horizon at

collision times (Y = 0) is obtained as dp = D1/2(Y = 0)τtot. Using Friedmann equation, we can obtain
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Figure 4.3: Schematic illustrations of evolution of fluctuations in Inflation (a) and Ekpyrotic universe (b).
Note that two horizon-crossings occurs in both scenarios and hence the horizon problem and formation
of structure problem are resolved. See the above discussions in Fig. 2.4.

a result omitting the detail as follows,

dp
dH

∼ eαR/2 > e60 =⇒ αR/2 >∼ 60 , (4.1)

where α is parameter shown in the potential term and R denotes the position of the hidden brane
as Y = R. Therefore, if we impose this condition on these parameters, this problem can be resolved.
This condition makes our universe slowly contract, i.e., a ∝ tp with p � 1 because the potential is

−V (Y )/V0 = e−
√

2/pY � e−60Y . This feature that the universe contracts very slowly in the ekpyrotic
scenario will be also seen as the exact solution describing dynamics in the next subsection.

• Origin of large-scale structure

Though the branes start flat and parallel, they undergo quantum fluctuations during their journey across
the fifth dimension. These quantum fluctuations in the traveling brane generate “ripples” during moving
towards the visible brane. It results in slightly cooler or hotter regions on brane and it means that time-
delay at collision gives inhomogeneity in the temperature and energy density levels on the visible brane 1.
These primordial perturbations then grow to become CMB anisotropies resulting in a seed of large-scale
structure. To conform to current experimental observations, this spectrum has to be quite close to scale
invariant. The spectral of these fluctuations will be dependent on the form of the brane-brane potential.
We will discuss these spectrums in the next subsection. Note that the generated primordial density
perturbations in this scenario, cross inside the Horizon late times, as similar to Inflation (see Fig. 4.3).

• Relic density problem

The production of unwanted relics is highly suppressed if the maximal temperature in the ekpyrotic
universe lies well below the mass scale at which such relics are produced. In fact, estimating from an
effective Friedmann equation and using the equation TR ∼ (3M2

plH
2)1/4, we can obtain the reheating

temperature as 1011 GeV. While it is known that the mass scale of the monopole Mmono is nearly 1016

GeV, so this problem can be avoided.

• Initial singularity problem

In contrast to the inflationary scenario, in the ekpyrotic scenario since the big bang is ignited at some
finite temperature and there are no curvature singularities, it may be possible that this problem is solved.

1This interpretation of time-delay is related to Guth idea as shown in [196, 197].
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Since the scenario is based on heterotic M-theory, the singularity theorems of general relativity, which is
a low-energy approximation of M-theory, do not necessarily apply. However, the ekpyrotic scenario does
not include a description of what happened before the start of brane movement. Any model where time
does not extend infinitely far into the past (and that does not contain closed timelike curves) is of course
geodesically incomplete and thus singular.

In addition to solving the above cosmological problems, the ekpyrotic scenario also proposes to solve
problems of particle physics. The BPS property provides us with a N = 1 super-symmetric Yang-Mills
field theory with E8 gauge group at low energy on the visible brane. By a brane collision, a so-called
small instanton transition can occur. The small instanton may break the gauge group from E8 to some
smaller group, for example SU(3)× SU(2)× U(1) or SU(5). It can also set the number of light families
to three. The nature of the small instanton transition depends on the type of the vector bundles on the
Calabi-Yau manifold dimensions. This interesting feature of course comes from the fact that this scenario
has link with a fundamental unified theory, string/M-theory.

As you seen, we have showed an idea of ekpyrotic universe scenario where two branes approach each
other and then collide and hot big bang universe starts. The main points of this scenario are that the
distance between two branes behaves as a scalar field having the exponential potential, which makes this
scenario alternative to inflation, and our universe contracts before collision while the universe expands
in the inflationary scenario. It has been shown this contracting universe also resolve the key problems
which the big bang theory contains as well as expanding universe, however, for the origin of structure, it
has been shown by many studies that its initial spectrum is not produced as scale invariant. Therefore
this point is the trouble this scenario has and we shall explain it in more detail in the next section.

4.1.2 Dynamic of the universe and Spectrum of fluctuations

There has been much discussion about the primordial density perturbation in the ekpyrotic universe
[10, 246, 227, 304, 65, 151, 460, 247, 318, 453, 188, 334], the main points of discussion are the followings:
(1) Whether the initial spectrum is scale-invariant in a contracting phase? (2) How it will evolve
throughout the collision, from contracting phase to expanding phase? This is the so-called “Matching
condition.” In what follows, we follow briefly the historic flow of these discussions. The spectrum index
is defined as exact scale invariance when nR− 1 = nT = 0. The original work [246] claimed the spectrum
is nearly scale invariant. In fact, these index was obtained as slightly blue (nR − 1 > 0) for scalar part
and strongly blue (nT � 2) for tensor part, while inflation shows red spectra nR − 1 < 0 and nT < 0.
The observational data CMB provides nR = 0.93 ± 0.03, therefore, the inflationary scenario is favored
rather than the ekpyrotic scenario concerning scalar perturbations. From the above results, it may be
natural to consider that the observing the gravitational wave spectrum is the key test to distinguish the
two scenarios. As well as this work, Kallosh, Kofman and Linde [227] claimed the spectrum is scale-
invariant nR ∼ 1. These two works approached the called “time delay formalism” proposed by Guth
[196] in order to estimate the spectrum. While this formalism ignored back reactions of spacetime, Lyth
[304], Brandenberger and Finelli [65, 151], Wands [460] showed nR � 3 (blue) including the effect of
back-reaction. This result is inconsistent to the above claim. Against the counterargument, Khoury
et al claimed the scale-invariance again [247], in addition to the effect of back-reaction, considering
the transition from contracting phase to expanding phase, although there had not been so far studies
including the transition. After that, concerning the matching condition, although there are some works
[188, 334, 10], nothing supports the above claim of Khoury et al. From now on, we will show these
results below. First, we consider whether the initial spectrum is scale-invariant in a contracting phase
or not. In this subsection, we show the result, the index for the scalar perturbation nR � 3 shown by
Lyth, Brandenberger and Finelli and Wands. In the ekpyrotic scenario a negative exponential potential
is usually introduced by

V = −V0 exp
(
−
√

2

p

φ

Mpl

)
. (4.2)



84 CHAPTER 4. TWO SCENARIOS BASED ON COLLIDING BRANES

It has been known this field has the power-law solution in a flat FRW background, described as follows;

a ∝ |t|p , H =
p

t
, φ =Mpl

√
2p ln

(√
V0

p(1− 3p)

|t|
Mpl

)
. (4.3)

Here if we consider t > 0 and p > 1, this solution denotes a power-law inflation, while if t < 0 increasing
from −∞ to 0, we can obtain the negative H < 0 and comoving horizon 1/(aH) decreasing, i.e., the
contracting solution. Inspired by string theory, there is a contracting phase as well as the ekpyrotic
scenario, the so-called pre-big-bang scenario proposed by Gasperini and Veneziano [458, 174] (see [283,
176] for a review). It is known that the pre-big-bang universe contracts as power-law, a ∝ t1/3, while the
ekpyrotic universe contracts slowly. As mentioned above, in order to resolve the horizon problem, we need
slowly contraction a ∝ tp with p � 1 in the exponential potential. Getting the efficient e-holding and
imposing e60 ∼ (ai/af)

(1−p)/p leads to a contraction by factor of a few order ln(ai/af) ∼ 3/2. The solution
(4.3) denotes the ekpyrotic universe and pre-big-bang universe for 0 < p� 1 and for p � 1

3 , respectively.
We will estimate the spectrum of scalar perturbations in the contracting phase with the potential (4.3).
In this case, as noted in the inhomogeneity section, we find the term z′′/z = p(2p− 1)/(1− p)2τ−2 in
(2.171) and it leads to the index νR as

νR ≡
∣∣∣∣∣ 1− 3p

2(1− p)

∣∣∣∣∣ , νR =

⎧⎨
⎩

1
2 0 < p� 1
0 p = 1

3
3
2 p� 1

, (4.4)

where in order to comparing, we described the index of inflation, which is approximated νR � 3/2, as
similar to ekpyrotic and pre-big-bang scenarios. Then by using Eq. (2.193) PRc

∝ k3−2νR , we obtain the
spectral index of curvature perturbations (see also Refs. [304, 65, 453, 452, 10, 151]):

nR = 4− 2νR = 1 +
2

1− p
,

⎧⎨
⎩

nR ∼ 3 0 < p� 1
nR ∼ 4 p = 1

3
nR ∼ 1 p� 1

. (4.5)

If we take p→ ∞ in an expanding universe or p = 2/3 in a collapse phase, the spectra show scale-invariant
nR = 1 [10, 429]. The PBB cosmology (p = 1/3) shows a high blue spectrum nR = 4. The ekpyrotic
scenario yields a slow contraction (0 < p � 1), hence the index is blue nR � 3. Therefore both these
scenarios are disfavored by CMB data from WMAP 0.90 < nR < 0.97. The main reason the spectrum
is a blue-tilted in a contraction is a generation of curvature perturbation in a kinematic driven not in a
slow-roll phase.

On the other hand, let us investigate the tensor part of fluctuations related to the gravitational
waves. As well as in the case of a scalar perturbations, the index for the tensor perturbations is found as
νT = |1− 3p|/(2|1− p|). The result of spectrum index is also obtained as

nT =
2

1− p
,

⎧⎨
⎩

nT ∼ 2 0 < p� 1
nT ∼ 3 p = 1

3
nT ∼ 0 p� 1

, (4.6)

and the inflationary scenario also gives the scale-invariant spectrum (nT = 0) for the tensor perturbations
and the ekpyrotic scenario and the pre-big-bang scenario also give the blue spectrum in this case. Similar
to Eq. (2.203), the consistency relation is also realized.

The original work [246] has showed the scale-invariant nR � 1 since assumption of ignoring the effect
of the back-reaction of spacetime gives the EOM υ′′k + (k2 − 2τ−2)υk = 0 for the variable υ = aδφ and
it leads to the scale-invariant spectrum νR = 3/2. The estimation is related to a time delay formalism
where we take a spatially flat gauge (ψ = 0). However, as shown above, the study involving this effect
gives a different results, strong blue spectrum of curvature perturbations nR � 3. There exist mainly two
problems about evolution of fluctuations produced in the contracting phase: (1) How do we treat the
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bounce singularity a = 0? and (2) How do these fluctuations evolve through the bounce? (1) is related to
non-singular bounce model and (2) is corresponds to the matching condition as noted above. Gordon and
Turok [188] and Nathalie and Streich [334] use a toy bounce model, which is represented as a ∼ cosh τ
with the potential V ∼ m2φ2 so that this universe has non singularity (see also [177, 178, 10, 59]). In the
work of Allen and Wands [10], by considering a “ghost” field having a negative kinetic term and choosing
a good gauge, they can realize a non-singular bounce. They showed that the universe contracts like dust
dominated universe, a ∝ (−t)2/3 and it yields a final scale-invariant spectrum of curvature perturbation
Rc.

In order to construct scale-invariant spectrum one takes into account a second scalar field [58, 342, 315].
The authors of ref. [342] used a two-field system: a brane-modulus ϕ and a dilaton χ. Similar to this
work, the recent work [77, 277] propose two scalar field and consider isocurvature perturbations (see
same results in [266, 267]). This mode can be made as a scale-invariant and converted to the curvature
perturbation as [277]

Ṙc =
H

Ḣ

k2

a2
ψ +

2H

σ̇
θ̇δs , (4.7)

where σ and s is a adiabatic and entropy perturbation, respectively and θ is determined by a background
trajectory. If the trajectory is bend at some time θ̇ 
= 0, it implies that the isocurvature perturbation can
be converted into curvature perturbation Rc. They show the final result of spectrum index is slightly blue
as 0.97 < nR < 1.02. Combing this work with a ghost condensation, [77] propose a non-singular bounce
model for complete ekpyrotic scenario (see also [107, 108]). For the cyclic universe scenario, evolutions
of perturbations are recently described by [144].

4.2 String (brane) gas cosmological scenario

The string cosmology [64, 449, 9, 268] is interesting approach which is motivated by some part of a non-
perturbative effect of string theory. Especially here we focus on the symmetry called T-duality, leading
to a new degrees of freedom called string winding modes (see Sec. 3.1.2). Let us consider a toroidal space
with a radius of the torus R. The T-duality symmetry is described by

R → 1

R
, (n,m) → (m,n) . (4.8)

We choose the background as dilaton gravity. In this background, we consider an ideal gas of fundamental
string in all states, including string winding modes, whose setup is the so-called string gas. Here the energy
density is assumed to be very close to the Hagedorn temperature [198], that represents the maximal
temperature (see also Sec. 3.1.3). We also assume that the string gas is initially thermalized at this
Hagedorn temperature. This approach is the so-called string gas cosmology.

String gas cosmology

The first predictions of string gas cosmology (SGC) were proposed by Brandenberger and Vafa [64].
Thanks to the T-duality, SGC will become non-singular since the temperature T obeys the symmetry

T (R) = T (1/R) (4.9)

and thus the minimal length takes a finite value even if R decreases to zero, that is close to the string length
(the “self-dual”radius, see (3.16)). They [64] suggested that string winding modes would prevent more
than three spatial dimensions from becoming large. It can give the possibility to explain the emergence
of three large and isotropic spatial dimensions, while six remain stabilized near the string scale, the so-
called dimensionality problem. Brandenberger and Vafa [64] discussed that winding modes can maintain
equilibrium in a most three spatial dimensions. It is based on the fact that p dimensional objects can
generically intersect in at most 2p + 1 dimensions. They argued that once the winding modes (p = 1)
annihilate with anti-winding modes, three spatial dimensions would be free to expand. Thus winding
modes can annihilate only in three spatial dimensions and hence it helps to resolve the dimensionality
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problem. This mechanism is the so-called Brandenberger and Vafa (BV) mechanism.

Brane gas cosmology

This is an interesting scenario, but has several questionable aspects. One is that it critically relies on
poorly-understood dynamics at the Planck scale. Another is that it requires a resolution of the moduli
problem, and, more importantly, relies on simple toroidal compactification. But the most problematic
feature of this solution is that it relies on strings being the sole important objects in string theory,
whereas we now know that branes also play a critical role. These models of extension to brane gas
are the so-called brane gas cosmology. Some work has been done on addressing this concern, see in
[9, 15, 49, 135, 134, 240, 370, 249, 353, 208, 119]. The authors of [129] suggest another reason that
four spacetime dimensions are special. They point out that 4 + 4 < 10 and that this not true for
any larger integer. Their argument was that the worldvolume of 3-branes would not intersect whereas
the worldvolume of any larger branes would. Their argument was that larger branes can therefore
unwind, whereas 3-branes would survive. They [232] suggest that under some very general and plausible
assumptions about brane dynamics in ten dimensions, branes with other numbers of dimensions will be
diluted relative to the 3-branes and 7-branes. D3-branes and D7-branes are important for recent ideas
about string theory models of inflation, including KKLT model [226, 225, 115]. Recent string-theoretic
inflation models are based on the presence of 3-branes and 7-branes [226, 225, 115]. This scenario could
naturally give rise to this type of inflation.

Their suggestions are very interesting and the key process is annihilation of two branes of various
dimensionalities, took place of the annihilation of the winding strings. Thus collision of two branes can
resolve the dimensionality problem in brane gas cosmology. In the thesis, for simplify, we will discuss the
string gas cosmological scenario in more details.

4.3 Summary
The brane is a fundamental object in the superstring theory. They may be produced more than one
and have various dimensionalities. The existence of models with more than one brane suggests that
branes may collide. Colliding branes would be a fundamental phenomena in the string cosmology. In this
chapter, we have studied two applications of colliding branes to cosmology: ekpyrotic/cyclic universe and
brane gas cosmology. The first scenario leads to suppose that the Big bang is associated with the collision
and this is alternative to inflationary scenario. The second scenario gives the possibility to resolve the
dimensionality problem due to the several dimensions which many branes (gas) have. In addition to
resolving these problems, both two scenarios would give a resolution of initial singularity problem. In the
remaining of thesis, we will study the collision of two branes in the context of the above scenarios. The
ekpyrotic universe scenario is related to the following works in Sec. 5.2, 5.3, 6.1 and 6.2. The last work
in Sec 6.3 is related to the string gas universe.



Chapter 5

Colliding branes in Minkowski
spacetime

In the above chapter, we have explained the ekpyrotic universe scenario. It has been shown that this
scenario not only can resolve the key theoretical problems the big bang theory contains, but also it is
motivated by the fundamental unified theories, while inflationary scenario does not have the convincing
link with such theories, therefore, it could provide an alternative to an inflationary scenario and would
be very attractive. However, it has been seen that there may be so far some serious troubles in density
perturbations. But it is necessary to consider the collision process and the reheating process in detail.
For the work about the collision of branes, Martin et al have studied collision of branes for using the
brane approximated as the delta function [319]. In the analysis using the delta function, the collision
process can not be followed in detail. On the other hand, even though there are some works by [97], the
reheating mechanism itself in this scenario has not been so far investigated in detail. This may give a
reheating mechanism in an ekpyrotic brane scenario.

5.1 Basic idea of colliding branes

• Domain wall

It may be difficult to deal properly with the collision of two branes in basic string theory. Hence, in
this work, we adopt a domain wall constructed by some scalar field as a brane, and analyze the collision
of two domain walls in a 5-dimensional bulk spacetime. Some other studies have also adopted such a
picture [133, 13]. It is worth noting that there is a thick domain wall model for a brane world [145]. In
order to analyze particle creation at the brane collision, in this work we consider the simplest situation.
We discuss the collision of two domain walls collide in 5D Minkowski spacetime. In Sec. 5.1, we analyze
the collision of two domain walls. Then, in Sec. 5.2.2, we investigate particle creation on the wall at
the collision. We study a collision of two domain walls in 5-dimensional (5D) Minkowski spacetime. To
construct a domain wall structure, we adopt a scalar field Φ with its potential,

V (Φ) =
λ

4
(Φ2 − η2)2 , (5.1)

where the potential minima are located at Φ = ±η. Since we discuss the collision of two parallel domain
walls, the scalar field is assumed to depend only on a time coordinate t and one spatial coordinate z.
The remaining three spatial coordinates are denoted by 
x. For numerical analysis, we use dimensionless
parameters and variables, which are rescaled by η (or its mass scale mη = η2/3) as

t̃ = mηt , z̃ = mηz , Φ̃ =
Φ

η
, λ̃ = mηλ . (5.2)

87
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In what follows, we omit the tilde in dimensionless variables for brevity. The equation of motion for Φ
in 5D is given by

Φ̈− Φ′′ + λΦ(Φ2 − 1) = 0 , (5.3)

where ˙ and ′ denote ∂/∂t and ∂/∂z, respectively. Eq. (5.3) has a static kink solution (K), which is
topologically stable. It is called a domain wall, which is described by

ΦK(z) = tanh
[ z

D

]
, (5.4)

where D =
√
2/λ is the thickness of the wall [469]. We also find another stable solution, that is,

the antikink solution (K̄), which is obtained from Eq. (5.4) by reflecting the spatial coordinate z as
ΦK̄(z) = ΦK(−z) = −ΦK(z).

• Lorentz boosting

When a domain wall moves with constant speed υ in the z direction, we obtain corresponding solution
by boosting Eq. (5.4) as

Φυ(z, t) = tanh
[ γ

D
(z − υt)

]
, (5.5)

where we assume that the domain wall is initially located at z = 0, and γ = 1/
√
1− υ2 is the Lorentz

factor. In order to discuss the collision of two domain walls, we first have to set up the initial data. Using
Eq. (6.12), we can construct such an initial data as follows. Provide a kink solution at z = −z0 and an
antikink solution at z = z0, which are separated by a large distance and approaching each other with the
same speed υ. We then obtain the following explicit profile;

Φ(z, 0) = Φυ(z + z0, 0)− Φ−υ(z − z0, 0)− 1 . (5.6)

The initial value of Φ̇ is also given by its derivative. The spatial separation between two walls is given by
2z0, and as long as z0 � D, the initial conditions (5.6) and its derivative give a good approximation for
two moving domain walls. Using these initial values, we solve the dynamical equation (5.3) numerically,
whose results will be shown in the next subsection.

5.2 Reheating mechanism in colliding two branes universe

Even though there are some works by [97], the reheating mechanism itself in this scenario has not been
so far investigated in detail. Hence, in this chapter, we study how we can recover the hot big bang
universe after the collision of the branes, following our work [436]. It can give a reheating mechanism
in an ekpyrotic brane scenario. Here we investigate quantum creation of particles, which are confined to
the brane, at the collision of two branes. In order to analyze particle creation at the brane collision, in
this work we consider the simplest situation. We discuss the collision of two domain walls collide in 5D
Minkowski spacetime. As noted in Sec. 5.1, we analyze the collision of two domain walls. Then, in Sec.
5.2.2, we investigate particle creation on the wall at the collision. Applying the particle production to
the energy dissipation of the brane, we discuss the reheating mechanism of a brane universe. We use the
unit of c = � = 1.

5.2.1 Time evolution of domain walls

We use a numerical approach to solve the equations for the colliding domain walls. The numerical method
is shown in Appendix. We have two free parameters in our simulation of the two-wall collision, i.e. a
wall thickness D =

√
2/λ and an initial wall velocity υ. The collision of two walls has been discussed

in 4-dimensional Minkowski space [12]. Although we discuss the domain wall collision in 5-dimensional
Minkowski space, our basic equations are exactly the same as the cited case, and we find the same results
as there. In particular, the results are very sensitive to the initial velocity υ. First let us show the
numerical results for two typical initial velocities, i.e. υ = 0.2 and 0.4, in Figs. 5.1(a), 5.1(b), 5.2(a),
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(a) Scalar field (b) Energy density

Figure 5.1: Collision of two domain walls where the initial velocity υ = 0.4. The time evolutions of the
scalar field Φ (a) and energy density ρΦ (b) are shown from t = 0 to 150. The collision occurs once
around t = 31. We set λ = 1.0. (b): The maximum point of ρΦ defines the position of a wall (z = zW(t)).

and 5.2(b). The evolution of Φ is depicted in Figs. 5.1(a) and 5.2(a), while that of the energy density is
shown in Figs. 5.1(b) and 5.2(b). The energy density is given by

ρΦ =
1

2

[
Φ̇2 +Φ′2 +

λ

2
(Φ2 − 1)2

]
. (5.7)

From Figs. 5.1(b) and 5.2(b), we find some peaks in the energy density, by which we define the positions
of moving walls (z = ±zW(t)). If a domain wall is symmetric, its position is defined by Φ(z) = 0.
However, in more general case, just as in the present case that the domain wall is oscillating around some
moving point, it may be natural to define the position of a domain wall by the maximum point of its
energy density. In Figs. 5.1(b) and 5.2(b), we find the behavior of the collision as follows. Where the
initial velocity υ = 0.4, the collision occurs once, while it does twice where υ = 0.2. To be precise, in
the latter case, after two walls collide, they bounce, recede to a finite distance, and then return to collide
again. As shown by several authors [12, 85, 423, 39], however, the result highly depends on the incident
velocity υ. In Appendix, we show our analysis, which confirms the previous work. For a sufficiently large
velocity, it is expected that a kink and an antikink will just bounce off once, because there is no time
to exchange the energy during the collision process. In fact, it has been shown in [12] that two walls
just bounce off once for υ>∼0.25. For a lower velocity, we find multiple bounces when they collide. The
number of bounces during the collision sensitively depends on the incident velocity. For example, the
bounce occurs once for υ = 0.4, while twice for υ = 0.2. We also find many bounce solutions for other
incident velocities, as shown in Appendix (see also [12]). A set of the values of υ which give the same
number of bounce forms a fractal structure in the υ-space as shown in Fig. 6 of [12]. Depending on an
initial velocity, the number of bounces changes drastically.

5.2.2 Particle production on a moving domain wall

Once we find the solution of colliding domain walls, we can evaluate the time evolution of a scalar field on
the domain wall. Since we assume that we are living on one domain wall, we are interested in production
of a particle confined to the domain wall. We assume that there is some coupling between a 5D scalar
field Φ that is responsible for the domain wall and a particle on the domain wall. Because the value of the
scalar field changes with time, we expect quantum particle production to occur. This may be important
to a reheating mechanism for the colliding domain walls. Hence we have to know the value of the scalar
field Φ on the domain wall, i.e. ΦW(τ) = Φ(t, zW(t)). Since the wall is moving in a 5D Minkowski space,
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(a) Scalar field (b) Energy density

Figure 5.2: Collision of two domain walls where the initial velocity υ = 0.2 with λ = 1.0. We find that
collision occurs twice, at t ≈ 58 and 77. From this figure, we find clearly that collision occurs twice.

we have to use the proper time τ of the wall, which is given by

τ =

∫ t

0

dt
√
1− ż 2

W(t) , (5.8)

when we estimate the particle production in our 4-dimensional domain wall. Let us consider a particle
on the domain wall described by a scalar field ψ. Although the confined scalar field may also be extended
in the 5-th direction because the domain wall has a finite width, we assume here that this scalar field is
4-dimensional, which means that it has the value only at the position of the domain wall (z = zW (t)).
This ansatz may be justified as follows. Suppose that we have a 5D scalar field Ψ, which is confined on
a wall with a width DΨ(∼ D). Such a confined scalar field Ψ could be described as

Ψ = N exp

[
− (z − zW (τ))2

2D2
Ψ

]
ψ(x) , (5.9)

where N is a normalization constant. This assumption may be plausible because a width of the domain
wall when two walls collide is the same as the original width D as seen from Fig. 5.3. Assuming an
interaction with the scalar field Φ as 1/2 ḡ2Φ2Ψ2, where ḡ is a coupling constant, we find the dynamical
equation for Ψ by −�Ψ+ ḡ2Φ2Ψ = 0. Inserting the ansatz (5.9), we obtain

Ne
− (z−zW (τ))2

2D2
Ψ

[
∂2ψ

∂τ2
+
(
ḡ2Φ2 −∇2 +m2

eff

)
ψ

]
= 0 , (5.10)

where

m2
eff =

1− ż2W
D2

Ψ

[
1− (z − zW (τ))2

D2
Ψ

]
+

(z − zW )

D2
Ψ

z̈W . (5.11)

Eq. (5.10) is non-trivial only near the wall (z ∼ zW (τ)) because of the gaussian distribution. Hence
Φ in Eq. (5.10) should be evaluated on the wall (z ∼ zW (τ)). The effective mass term is estimated
as meff<∼1/DΨ because |z − zW (τ)|<∼1/D, ż2W < 1, and |z̈W |<∼σ|żW | < σ, where σ ∼ √

λ ∼ 1/D is the
oscillation frequency of the perturbations discussed given in Appendix. The maximal value of acceleration
of a domain wall (z̈W ) can be evaluated in the case of the oscillating field around a static wall. Therefore,
if we can ignore the mass term m2

eff (<∼ 1/D2
Ψ ∼ 1/D2), the equation for Ψ is approximated by the

4-dimensional equation for ψ as

∂2ψ

∂τ2
−∇2ψ + ḡ2 Φ2

W(τ)ψ = 0 , (5.12)
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2D

Figure 5.3: The spatial distribution of the scalar field Φ when the domain walls collide. D is the thickness
of the wall. The scalar field has a non-vanishing value for the effective width of 2D at the collision.

where ΦW(τ) = Φ(zW (τ)). ψ(x) is the 4-dimensional part of 5D scalar field Ψ. The assumption of
dropping the mass term may be a good approximation in the present case because it turns out that the
produced particles with the frequencies higher than 1/D is much less dominant as we will show later.
Once we find the basic equation for a scalar field ψ as Eq. (5.12), it is easy to quantize the scalar field ψ
because our background spacetime is 4-dimensional Minkowski space. In a canonical quantization scheme
[48], we expand ψ as

ψ(τ, 
x) =
∑
k

[ak ψk(τ)uk(
x) + a†kψ
∗
k(τ)u

∗
k(
x)] , (5.13)

where uk(
x) = (2π)−
3
2 ei

�k·�x. The wave equation (5.12) for each mode is now

ψ̈k + [k2 + ḡ2Φ2
W(τ)]ψk = 0 , (5.14)

where k = |
k|. Since the two domain walls are initially far away from each other, the value of ΦW is
almost zero. We can quantize ψ by a usual quantization scheme. The eigen function with a positive

frequency is given by ψ
(in)
k = 1/

√
2ωke

−iωkτ , where ωk =
√
k2 + ḡ2Φ2

W(0) ≈ k. We impose the equal

time commutation relation for the operators ak and a†k

[ak, ak′ ] = 0 , [a†k, a
†
k′ ] = 0 , [ak, a

†
k′ ] = δkk′ , (5.15)

where ak and a†k denote an annihilation and a creation operator, respectively. We then define a vacuum
|0 >in at τ = 0 by ak as ak|0 >in= 0 for all k. After the collision of domain walls, we expect that the
value of ΦW again approaches zero (see the next subsection for details). We can also define the vacuum
state |0 >out, which is different from the initial vacuum state |0 >in. The eigen function of ψk for τ → ∞
is then given by a linear combination of ψ

(in)
k and ψ

(in)∗
k as

ψ
(out)
k = αk ψ

(in)
k + βk ψ

(in)∗
k , (5.16)

and the annihilation and creation operators as

āk = αkak + β∗
ka

†
k , (5.17)
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(a) υ = 0.4 (b) υ = 0.2

Figure 5.4: Time evolutions of a scalar field on one moving wall for υ = 0.4 (a) and υ = 0.2 (b) with
fixed λ = 1.0. The value of the scalar field is given by ΦW(τ) = Φ(t, zW(t)), where zW(t) and τ denote
the position of the wall and the proper time on the wall, respectively.

where αk and βk are the Bogolubov coefficients, which satisfy the normalization condition |αk|2−|βk|2 = 1.
The Hamiltonian of this system is given by

: H := −
∫
τ=const

: T 0
0 : d3
x =

∑
k

a†kakωk , (5.18)

where : : is the normal ordering operation. The creation of the particles with mode k is evaluated as

< 0|in : Hk : |0 >in= |βk|2ωk as τ → ∞ . (5.19)

As a result, the number density and energy density of produced particles are obtained by

n =

∫
|βk|2d3
k , ρ =

∫
|βk|2ωkd3
k . (5.20)

Now we estimate the particle production by the domain wall collision. In Figs. 5.4(a) and 5.4(b), we
depict the time evolution of ΦW on one moving wall with respect to τ . In Fig. 5.1(b), we found one
collision point, which corresponds to a spike in Fig. 5.4(a), and the two-bounce in Fig. 5.2(b) gives
two spikes in Fig. 5.4(b). We also show the results for different values of the coupling constant λ in
Figs. 5.5(a) and 5.5(b) (λ = 10). If Fig. 5.5(a) we find that when λ is larger than λ = 10, the spike
of ΦW becomes sharp. The same thing happens in the case of two bounces (see Fig. 5.5(b)). In Figs.
5.4(a)–5.5(b), we find that ΦW begins to oscillate after the collision. We also find that the period of these
oscillations in Figs. 5.5(a) and 5.5(b) is shorter that those in Figs. 5.4(a) and 5.4(b). One may wonder
whether this oscillation is realistic or not. This oscillation, however, turns out not to be a numerical
error but a real oscillation of the domain wall. In Appendix, using perturbation analysis we show there
is one stable oscillation around the kink solution ΦK(z). We expect that the oscillation is excited by the
collision. In fact, the amplitude of the oscillation increases as the incident velocity υ increases. At a large
velocity limit (υ>∼0.6), we find Φ2

∞ ≈ 0.18(γ−1), where Φ∞ is the amplitude of the post-oscillation. Since
the scalar field on the domain wall oscillates as ΦW ≈ Φ∞ cosστ after the collision, our wave equation
(5.14) would be rewritten as

ψ̈k +

[
k2 +

1

2
ḡ2Φ2

∞ (1 + cos 2στ)

]
ψk = 0 , (5.21)
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(a) υ = 0.4 (b) υ = 0.2

Figure 5.5: Time evolution of a scalar field ΦW(τ) on one moving wall for υ = 0.4 (a) and υ = 0.2 (b)
for λ = 10.

where σ =
√
3/2λ1/2 is the eigenvalue of the perturbation eigen function, a so-called Methieu equation.

From this equation, we may wonder whether we can ignore this oscillation when we evaluate the particle
production rate. In fact, we can discuss a preheating mechanism via a parametric resonance with a similar
oscillating behavior [256, 257], in conventional cosmology [289] as well as a brane world cosmology [451].
It is known that for a Methieu equation, there is an exponential instability ψk ∝ exp(μkt) within a
set of resonance bands, where μk = ḡΦ2

∞/8. This instability corresponds to an exponential growth of
created particles, which is essential in the preheating mechanism. In order to get successful particle
production by this resonance instability, however, we have to require a large value of ḡ2Φ2

∞. However,
in the present simulation, it is rather small, e.g. Φ∞ ∼ 0.1 where υ = 0.4. Hence, we may ignore such
particle production by parametric resonance in the present calculation. However, if the incident velocity
is very fast, such as the speed of light, we may find a large oscillation. Then we could have an instant
preheating process when domain walls collide. We also wonder whether or not the standard reheating
mechanism due to the decay of an oscillating scalar field is effective. In this case, we have to evaluate the
decay rate Γφ to other particles. Since Γφ ∝ ḡ4, we expect that the reheating temperature is proportional
to ḡ2, which is small enough to be ignored. Note that there is another factor that reduces the decay
rate where the potential is not a spontaneous symmetry breaking type [257]. In what follows, we ignore
the creation due to the post-oscillation stage. Hence, we just follow the procedure shown in the previous
subsection. Using the evolution of the scalar field ΦW, we calculate the Bogolubov coefficients αk and
βk. In Table 5.1, we show the results depending on three parameters; υ (the incident velocity), λ (the
self-coupling constant of the scalar field), and ḡ (the coupling constant to a particle ψ).

From Table I, we find the following three features:

(1) The produced energy density ρ depends very much on ḡ. We study two cases with ḡ = 0.01 and
0.1. The energy density for ḡ = 0.1 is 104 times larger than that for ḡ = 0.1, which means that ρ is
proportional to ḡ4.

(2) The energy density ρ for υ = 0.2 is twice larger than that for υ = 0.4. It may be so because the
bounce occurs twice for υ = 0.2, while once for υ = 0.4.

(3) The energy density is less sensitive to λ.

We also investigate several different initial velocities because the collisional process is very sensitive
to its incident velocity. We analyze many cases with two bounces, with three bounces, with four bounces,
etc. , in the range υ = 0.2–0.25, as shown in Appendix. Using those numerical data, we also evaluate
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ḡ υ λ D Nb n ρ

0.4
1.0 1.414

1
3.69×10−7 2.05×10−7

0.01
10 0.447 1.16×10−7 2.05×10−7

0.2
1.0 1.414

2
7.19×10−7 3.90×10−7

10 0.447 2.26×10−7 3.91×10−7

0.4
1.0 1.414

1
3.57×10−3 2.01×10−3

0.1
10 0.447 1.16×10−3 2.05×10−3

0.2
1.0 1.414

2
6.65×10−3 3.81×10−3

10 0.447 2.24×10−3 3.88×10−3

Table 5.1: The number and energy densities (n and ρ) of created particles for the typical values of the
coupling ḡ, the incident velocity υ and the self-coupling λ. D =

√
2/λ and Nb denote the width of the

wall and the number of bounces at the collision, respectively.

the number and energy densities of the particles created at the collision. The results are summarized in
Table 5.2. From Table II, we confirm the above three features (1)-(3). In particular, it becomes more
clear that the energy density is proportional to the number of bounces Nb. We can summarize our results
by the following empirical formula

n ≈ 25dḡ4Nb , ρ ≈ 20ḡ4Nb . (5.22)

If the energy of the particles is thermalized by interaction and a thermal equilibrium state is realized, we
can estimate the reheating temperature by

ρ =
π2

30
geffT

4
R , (5.23)

where geff is the effective number of degrees of freedom of particles. Hence we find the reheating temper-
ature by the domain wall collision as

TR =

(
π2

30

)−1/4

g
−1/4
eff ρ1/4 ≈ 0.88×

( geff
100

)−1/4

ḡ N
1/4
b . (5.24)

In order to see more details, in Figs. 5.6(a) and 5.6(b), we show a spectrum of the produced particles of
number density n, i.e.

n =

∫ ∞

0

dk nk with nk = 4π|βk|2k2 . (5.25)

The spectrum nk is well fitted as a Gaussian distribution as

nk ≈ 4πAe
− k2

2k20 , (5.26)

where k0 = 0.73 and A = 3.12×10−8 for Fig. 10 and k0 = 2.04 and A = 3.43×10−9 for Fig. 11, although
there is small deviation partially. These parameters can be described by physical quantities as k0 ≈ 1/D
and A ≈ Φ0D

2ḡ4. The reason is well understood. k0 ≈ 1/D means that the typical wave number is
given by the width of the scalar field when domain walls collide (see Fig. 5.3). As for β, it corresponds
to the “ reflection ” coefficient of the “ potential ” given in Figs. 5.4(a)-5.5(b). It will be proportional
to the coupling constant ḡ2, and the reflection rate (|β|2) will be related to the potential depth Φ0 and
the square of the width D2. This result may support our ansatz that a scalar field ψ is 4-dimensional
because the particles with the frequencies higher than 1/D are produced very little. The effect of finite
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Nb υ λ D n ρ

0.225
1.0 1.414 7.03×10−7 3.72×10−7

2 10 0.447 2.21×10−7 3.71×10−7

0.238
1.0 1.414 7.08×10−7 3.78×10−7

10 0.447 2.23×10−7 3.78×10−7

0.2062
1.0 1.414 1.10×10−6 6.07×10−7

10 0.447 3.45×10−7 6.06×10−7

0.2049
1.0 1.414 1.09×10−6 6.01×10−7

3 10 0.447 3.43×10−7 6.01×10−7

0.2298
1.0 1.414 1.10×10−6 6.04×10−7

10 0.447 3.43×10−7 6.02×10−7

0.22933
1.0 1.414 1.09×10−6 6.03×10−7

10 0.447 3.44×10−7 6.01×10−7

0.229283
1.0 1.414 1.47×10−6 8.10×10−7

4 10 0.447 4.61×10−7 8.09×10−7

0.2292928
1.0 1.414 1.47×10−6 8.16×10−7

10 0.447 4.62×10−7 8.17×10−7

Table 5.2: The number and energy densities (n and ρ) of created particles with respect to the number of
bounces Nb. υ and D are the incident velocity and the width of the wall, respectively. We set ḡ = 0.01.

(a) λ = 1.0 (b) λ = 10

Figure 5.6: Spectrum of the particles created at the collision. We plot log |βk|2k2 with respect to k for
(a) λ = 1.0 and (b) λ = 10 for the fixed parameters υ = 0.4 and ḡ = 10−2. The Gaussian distribution is
plotted by a dotted line, which gives a good approximation for k ≤ 3 (a) and k ≤ 2.5 (b). In the small
box, we enlarge the low frequency region (k ≤ 1) to see the deviation from the Gaussian distribution.



96 CHAPTER 5. COLLIDING BRANES IN MINKOWSKI SPACETIME

width of the walls on particle production may not be important. Integrating the fitting spectrum (5.26),
we obtain

n =

∫ ∞

0

nkdk = (2π)3/2Φ0Dḡ
4 ≈ 25Dḡ4 , (5.27)

ρ =

∫ ∞

0

nkωkdk = 4πΦ0ḡ
4 ≈ 20ḡ4 , (5.28)

whose values are exactly the same as those obtained by numerical integration in the case with one bounce
(see Eq. (5.22)). We expect that they are enhanced by the factor Nb when we find Nb bounces at the
collision. Therefore, although we obtain particle creation numerically, the result is easily understood and
summarized by a simple formula.

5.2.3 Summary

We have studied particle production at the collision of two domain walls in 5D Minkowski spacetime. It
may give a reheating mechanism in an ekpyrotic (or cyclic) brane scenario. We evaluated the production
rate for particles confined to the domain wall. The energy density of created particles was approximated
as ρ ≈ 4πΦ0ḡ

4Nb where Φ0 is the maximum amplitude of ΦW, Nb is the number of bounces at the
collision, and ḡ is a coupling constant between a particle and a domain wall. If this energy is converted

into standard matter fields, we find the reheating temperature as TR ≈ 0.88× ḡ N
1/4
b (geff/100)

−1/4
. We

find that the particle creation is affected more greatly by the coupling constant ḡ than the other two
parameters υ and λ. The initial velocity changes the collision process, that is, the number of bounces
at the collision, but this is less sensitive to the temperature. The thickness of a domain wall D (or a
self-coupling constant λ) changes the width of potential Φ2

w(τ) of a particle field (ψ), and it changes the
typical energy scale of created particles, which is estimated as ω ∼ 1/D. In order to produce a successful
reheating, a reheating temperature must be higher than 102 GeV, because we wish to explain the baryon
number generation at the electro-weak energy scale [259]. Since Eq. (5.24) is written in the following
form;

mη ≈ 1.1N
−1/4
b ḡ−1TR ≈ 1.1× 107[GeV] N

−1/4
b

( ḡ

10−5

)−1
(

TR
102GeV

)
, (5.29)

we find a constraint on the fundamental energy scale mη as mη>∼1.1 × 107 GeV for ḡ = 10−5 and

mη>∼1.1 × 104 GeV for ḡ = 10−2, which are slightly larger than TeV scale. Here we assume geff = 100.
In the present work, we considered 3-dimensional domain walls in 5-dimensional Minkowski space and
showed that particle production at the two-wall collision may provide a successful mechanism for reheating
in the ekpyrotic universe. In string/M-theory, however, we expect higher dimensions, e.g. 10 or 11. If
we compactify it to the effective 5-dimensional spacetime, our work can be applicable to such a mode.
Moreover, if we discuss a collision of p-dimensional walls (branes) in (p+ 2)-dimensional spacetime, our
approach can also be extended. In this work, we have not taken account of effects from background
spacetime. We are planning to study how such a generalization affects the present results about particle
creation at the collision. We shall explain this plan in the next chapter.

5.2.4 Appendix

1. Numerical method

For our numerical analysis of the domain wall collision, we solve the partial differential equation
(5.3) on discrete spatial grids with a periodic boundary condition. The scalar field on the grid
points is defined by Φn(t) = Φ(zn, t), where zn = n�y, for n = 1, 2, . . . , N . We use the fourth-order
center difference scheme to approximate the second spatial derivative [207] as

∂2Φn
∂z2

=
1

12(�z)2 [−Φn−2 + 16Φn−1 − 30Φn + 16Φn+1 − Φn+2] +O((�z)4) . (5.30)
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v=0.4 v=0.2

(a) υ = 0.4

v=0.2062 v=0.2049

(b)

v=0.229283 v=0.2292928

(c)

Figure 5.7: Time evolution of Φ field at z = 0. We set λ = 1.0. (a): The bounce occurs once for a
large velocity, while two bounces are found for the slower velocity. (b): Three bounces are found. (c):
υ = 0.229283 λ = 1.0 and (b) υ = 0.2292928, λ = 1.0. Four bounces are found.

This leads to a set of N coupled second-order ordinary differential equations (ODE’s) for the Φn.
The ODE’s are solved using a fourth-order Runge-Kutta scheme, and so our numerical algorithm is
accurate to the fourth order both in time and in space, with error of O((�z)4) and O((�t)4). For
the boundaries, we set the left and right grid boundaries at zL = −40 and zR = +40, and impose
the condition Φ(z = zL, t) = Φ(z = zR, t) = −1 . The grid number is N = 8000 with a grid size
of �z = 1.0 × 10−2. The initial position of a wall y0 is set by z0 = |zL + (zR − zL + 1)/3| = 13,
equivalently, one-third of the numerical range. For time steps, we set �t = 0.7 ×�z. As for the
particle production process, we have to solve the second-order ordinary differential equations (5.14)
for each wave number k. By using the fourth-order Runge-Kutta scheme, we solve them for the
wave number k of 0 < k < 100 with the width �k = 1.0× 10−3. We estimate |βk|2 in the equation
(5.16). Defining the functions this way:

W1 ≡ ψkψ̇
∗
k − ψ∗

kψ̇k , W2 ≡ ψkψ̇
∗
k + ψ∗

kψ̇k , W3 ≡ ψkψ
∗
k , (5.31)

we use the formula

|βk|2 =
(W3 −W1/2iω)

2 + (W2/2ω)
2

4W3
, (5.32)

to evaluate |βk|.
2. Numerical examples of several bounces

We depict some numerical examples that show several bounces at the collision. First we show two
typical examples in Fig. 5.7(a). The figures show the behaviors of the scalar field Φ at z = 0 with
respect to t. Initially, when two domain walls are located at a large distance, the value of the scalar
field at z = 0 is 1. Then the two walls approach and collide. At this point the value of |Φ − 1|
increases. After the collision, it again decreases to the initial value. We find some small oscillation
around the domain wall structure excited by the collision. From Fig. 5.7(a), we find there is one
bounce for υ = 0.4, while a bounce occurs twice for υ = 0.2. In fact, the results are very much
sensitive to the incident velocities as shown in [12]. Here we present several examples to show how
the behaviors of the scalar field depend on υ, which confirm the previous studies. In Fig. 5.7(b), we
show the case for υ = 0.2062 and υ = 0.2049, respectively. We find three bounces at the collision.
Four-bounce solutions are depicted in Fig. 5.7(c) for υ = 0.229283 and υ = 0.2292928. These
calculation shows that the detail collisional process is very sensitive to the incident velocity.

3. Perturbations of a domain wall

We show that the oscillation we have found is a proper oscillation around a static stable domain
wall. To show it, we perturb the static domain wall solution (5.4) as Φ = ΦK(z) + δΦ(t, z). In this
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appendix, we use the dimensionless variables rescaled by η. Substituting this into Eq. (5.3) and
linearizing it, we obtain

δΦ̈− δΦ′′ + λ(3Φ2
K − 1)δΦ = 0 . (5.33)

Setting δΦ = e−iσtF (z) and introducing new variable z̄ = tanh(z/D), we rewrite Eq. (5.33) as

(1− z̄2)
d2F

dz̄2
− 2z̄

dF

dz̄
+ 2

[
3− 2− σ2/λ

1− z̄2

]
F = 0 . (5.34)

The solution is given by the associated Legendre function. Imposing the boundary condition (F → 0
as z → ∞), we have two regular solutions; F (z̄) = P 2

2 (z̄) with σ = 0 and P 1
2 (z̄) with σ =

√
3/2λ1/2.

The solution of the former mode is just corresponds to a boost of a kink solution in the z direction,
because we find F (z) ≈ ΦK(z)− ΦK(z − dz). The solution of the latter is the oscillation mode we
find. In fact, taking the average over 10 cycles in the oscillation after the collision in Fig. 5.4(a), we
obtain a mean angular frequency of about 1.17, which is very close to σ =

√
3/2 ∼ 1.22. The ratio

is about 0.96. We also evaluate the angular frequency for other cases. We find 1.33 = 1.09σ for Fig.
5.4(b), 3.67 = 0.95σ for Fig. 5.5(a), and 4.18 = 1.08σ for Fig. 5.5(b). From the figures, we also find
that the amplitude of oscillation gets larger as the incident velocity is faster. This is because the
excitation energy of a wall at the collision will be large for a large velocity. We then conclude that
the oscillations after the collision of two domain walls are the proper oscillations around a stable
domain wall.

5.3 Fermions on Colliding Brane

It has been known since the 70’s that topological defects such as domain walls can trap fermions on
their world volumes [221]. In the 80’s this fact formed an integral part of suggestions that one may
regard our universe as a domain wall [6, 388, 459, 181], or more generally a brane in a higher dimensional
universe [16, 373, 46, 418]. The idea is that the fermionic chiral matter making up the standard model
is composed of such trapped zero modes [179, 25, 374, 127, 241, 384, 262, 324]. A similar mechanism is
used in models, such as the Horawa-Witten model [206, 299] of heterotic M-Theory, in which two domain
walls are present. Our world is localized on one brane and a shadow world is localized on the other brane.
The existence of models with more than one brane suggests that branes may collide, and it is natural
to suppose that the Big Bang is associated with the collision [246, 432, 248]. This raises the fascinating
questions of what happens to the localized fermions during such collisions? Put more picturesquely,
what is the fate of the standard model during brane collision? In this paper we shall embark on what
we believe is the first study of this question by solving numerically the Dirac equation for a fermions
coupled via Yukawa interaction to a system of two colliding domain walls, i.e. a kink-anti-kink collision
in five-dimensional Minkowski spacetime. Each individual domain wall may be described analytically by
a static solution and given such a solution one may easily find analytically the fermion zero modes, which
from the point of view of the 3+1 dimensional world volume behave like massless chiral fermions. The
back reaction of the fermions on the domain wall is here, and throughout this paper, neglected.

Kink-anti-kink collisions, have recently been studied numerically [12, 436, 13]. One solves the scalar
field equations with initial data corresponding to a superposition of the boosted profiles of a kink and an
anti-kink. It was found [12, 436] that, depending on the initial relative velocity that such domain wall
pairs can pass through one another, or bounce, or suffer a number of bounces in a fashion reminiscent of
the cyclic universe scenario [432]. One may extend the treatment to include gravity [274, 437, 183, 94, 322]
but in this paper we shall, for the sake of our preliminary study, work throughout with gravity switched
off. One may now solve the Dirac equation in the time dependent background generated by the kink-
anti-kink collision. We use as initial data for the Dirac equation the boosted profiles of the chiral zero
modes associated with the individual domain walls.
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5.3.1 Fermions on moving branes

We start with a discussion of five-dimensional (5D) four-component fermions in a time-dependent domain
wall in 5D Minkowski spacetime. As a domain wall, we adopt a 5D real scalar field Φ with an appropriate
potential V (Φ). The 5D Dirac equation with a Yukawa coupling term gΦΨ̄Ψ is given by

(ΓÂ∂Â + gΦ)Ψ = 0, (Â = 0, 1, 2, 3, 5) , (5.35)

where Ψ is a 5D four-component fermion. ΓÂ are the Dirac matrices in 5D Minkowski spacetime satis-

fying the anticommutation relations as {ΓÂ,ΓB̂} = 2ηÂB̂ , where ηÂB̂ = diag(−1, 1, 1, 1, 1) is Minkowski
metric1. We explicitly use the following Dirac-Pauli representation

Γ0̂ =

( −i 0
0 i

)
, Γ5̂ =

(
0 1
1 0

)
, Γk̂ =

(
0 −iσk
iσk 0

)
, (k = 1, 2, 3) , (5.36)

with σk being the Pauli 2×2 matrices. Note that Eq. (5.35) implies current conservation law as ∂An
A = 0,

where nA ≡ Ψ̄ΓÂΨ is conserved number current. Here we define Ψ̄ ≡ Ψ†Γ0̂. This gives conserved number

density n ≡ n0 = Ψ̄Γ0̂Ψ = Ψ†Ψ. The total number of fermions is defined by N =
∫
d5Xn, which is

conserved. Later we shall need the fact that the Dirac equation (5.35) has the following time reversal
and reflection symmetries:
(1) If Ψ(t, 
x, z) is a solution of the Dirac equation with scalar field Φ(t, 
x, z), Γ0̂Ψ(−t, 
x, z) is a solution of
the Dirac equation with the scalar field −Φ(−t, 
x, z), where X5 = z is the coordinate of a fifth dimension.

In particular, when there is no interaction (Φ = 0 or g = 0), Γ0̂Ψ(−t, 
x, z) is time reversal of Ψ(t, 
x, z)

(2) If Ψ(t, 
x, z) is a solution of the Dirac equation with scalar field Φ(t, 
x, z), Γ5̂Ψ(t, 
x,−z) is a solution
of the Dirac equation with the scalar field −Φ(t, 
x,−z). In particular, if Ψ(t, 
x, z) is a solution for a kink

[an anti-kink], Γ5̂Ψ(t, 
x, z) is a solution for an anti-kink [a kink]. It will turn out that the solution with
a kink [an anti-kink] is related to positive [negative] chiral fermions, which are defined below (see next
subsection).

(3) Combining (1) and (2), we find that Γ5̂Γ0̂Ψ(−t, 
x,−z) is a solution of the Dirac equation with
Φ(−t, 
x,−z)

If we assume some symmetries for a domain wall, we find further properties for fermions as follows.
(i) For the case of a static domain wall, (1) yields that Γ0̂Ψ(t, 
x, z) is a solution for an anti-kink [a kink]
if Ψ(t, 
x, z) is a solution for a kink [an anti-kink].
(ii) If a domain wall is described by a kink (or an anti-kink), which has symmetry such that Φ(t, 
x,−z) =
−Φ(t, 
x, z), (2) yields that Γ5̂Ψ(t, 
x, z) is a solution for an anti-kink [a kink] if Ψ(t, 
x, z) is a solution for
a kink [an anti-kink].
(iii) We may also have time symmetry such that Φ(−t, 
x, z) = Φ(t, 
x, z) for collision of two walls. In fact
we find from numerical analysis that this ansatz is approximately correct [436]. Assuming z-reflection

symmetry as well, we find from (3) that Γ5̂Γ0̂Ψ±(−t, 
x,−z), which is time reversal and z-reflection of
Ψ±(t, 
x, z), is also a solution for the same scalar field Φ(t, 
x, z).

Before going to analyze concrete examples, we introduce two chiral fermion states

Ψ± =
1

2

(
1± Γ5̂

)
Ψ (5.37)

This definition implies

1

2

(
1± Γ5̂

)
Ψ± = Ψ±,

1

2

(
1∓ Γ5̂

)
Ψ± = 0 . (5.38)

Using the representation (5.36), we have

Ψ+ =

(
ψ+

ψ+

)
, Ψ− =

(
ψ−
−ψ−

)
, (5.39)

1The Capital Latin indices run from 0 to 3 and 5, while the Greek indices from 0 to 3.
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where ψ+ and ψ− are two-component spinors. The Dirac equation (5.35) is now reduced to

(±∂5̂ + gΦ)ψ± + Γμ̂∂μ̂ψ∓ = 0 . (5.40)

As for a domain wall, now we assume the potential form is given by V (Φ) = λ
4

(
Φ2 − η2

)2
. Here we recall

the dimension of some variables. Since we discuss five dimensional spacetime, we have the following
dimensionality:

[Φ] = [η] = L−3/2, [Ψ] = L−2, [g] = L1/2, [λ] = L , (5.41)

where L is a scale length. In what follows, we use units in which mη(≡ η2/3) = 1. Then a domain wall
solution is given by Φ = ε tanh

(
z
D

)
, where ε = ± correspond to a kink and an anti-kink solutions and

D =
√

2/λ is the width of a domain wall. Note that Φ(z) is an odd function of z. As for a fermion, in

the case of a static domain wall, separating variables as ψ+ =
(4)

ψ+(x
μ)f+(z) and ψ− =

(4)

ψ−(x
μ)f−(z) and

assuming massless chiral fermions on a brane, i.e. Γμ̂∂μ
(4)

ψ±(x
μ) = 0, we find the equations for f±(z) as

(±∂5 + gΦ(z)) f± = 0 . (5.42)

We find the solutions are

f± ∝
[
cosh

( z
D

)]∓εgD
. (5.43)

Note that the fermion wave function is an even function of z. Hence the positive-chiral (the negative-
chiral) fermion is localized for a kink (an anti-kink ) but is not localized for an anti-kink (a kink). To fix
numbers of fermions on a wall, f± should be normalized up to an arbitrary phase factor φ±(0), which is
set to be zero. Using a number density of fermions given by

n ≡ Ψ†Ψ = 2
(
ψ†
+ψ+ + ψ†

−ψ−
)
, (5.44)

we normalize the total number of fermions localized on a static domain wall to be unity, i.e. N = 1.
More precisely, for a kink (an anti-kink), we impose

∫∞
−∞ n±dz̃ = 1 which gives

f±(z) =
[

Γ(gD + 1
2 )

2
√
πDΓ(gD)

]1/2 [
cosh

( z
D

)]−gD
. (5.45)

Using this solution, we can describe the wave function of fermion localized on a kink (or an anti-kink) as

Ψ(K)(x, z) =

⎛
⎝ (4)

ψ+(x)f+(z)
(4)

ψ+(x)f+(z)

⎞
⎠ , Ψ(A)(x, z) =

⎛
⎝ (4)

ψ−(x)f−(z)

−
(4)

ψ−(x)f−(z)

⎞
⎠ . (5.46)

To quantize the fermion fields, we define annihilation operators of localized fermions on a kink and on an
anti-kink by

aK = 〈Ψ(K),Ψ〉 and aA = 〈Ψ(A),Ψ〉 (5.47)

Note that those two states are orthogonal, i.e. 〈Ψ(K),Ψ(A)〉 = 0. To discuss fermions at collision of
branes, we first discuss fermions on a domain wall moving with a constant velocity. When a domain
wall is moving, however, Φ is time-dependent, and then the above prescription (separation of the fifth
coordinate) to find wave functions is no longer valid. Since 3-space is flat, we expand the wave functions
by Fourier series as

ψ± =
1

(2π)3/2

∫
d3
k ei

�k�xψ±(t, z;
k) . (5.48)
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We find the Dirac equations become

(±∂5 + gΦ)ψ± −
(
i∂0 ± (
k · 
σ)

)
ψ∓ = 0 . (5.49)

In what follows, we shall consider only low energy fermions, that is, we assume that 
k ≈ 0, that is |
k| is
enough small compared with the mass scale of 5D fermion (gΦ). The equations we have to solve are now

i∂0ψ± = (∓∂5 + gΦ)ψ∓ . (5.50)

Since up- and down-components of ψ± are decoupled, we discuss only up-components here. Note that

taking into account 
k mixes the up- and down-components. With this ansatz, we can describe fermion
by two single-component chiral wave functions as

Ψ =

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ψ+(z, t) +

⎛
⎜⎜⎝

1
0
−1
0

⎞
⎟⎟⎠ψ−(z, t) . (5.51)

For a localized fermion on a static kink (or an anti-kink), the wave functions are ψ±(z, t) = f±(z). Next
we construct a localized fermion wave function on a moving domain wall with a constant velocity υ. In
this case, we can find the analytic solution by a Lorentz boost. We find for a kink with velocity υ,

ψ
(K)
+ (z, t; υ) =

√
γ + 1

2
ψ̃(K) (γ(z − υt)) , ψ

(K)
− (z, t; υ) = i

γυ

γ + 1

√
γ + 1

2
ψ̃(K) (γ(z − υt)) (5.52)

and for an anti-kink with velocity υ,

ψ
(A)
− (z, t; υ) =

√
γ + 1

2
ψ̃(A) (γ(z − υt)) , ψ

(A)
+ (z, t; υ) = −i γυ

γ + 1

√
γ + 1

2
ψ̃(A) (γ(z − υt)) , (5.53)

where ψ̃(K)(z̃) = f+(z̃) and ψ̃(A)(z̃) = f−(z̃) are static wave functions of chiral fermions localized on
static kink and anti-kink, respectively, and γ = 1/

√
1− υ2 is the Lorentz factor. We can check that the

total number of fermions is preserved also in the boosted Lorentz frame. From Eqs. (5.52) and (5.53),
we find that n = γñ. Integrating it in the z-direction, we find∫

t=const

dz n =

∫
t=const

dz γñ (γ(z − vt)) =

∫
dz̃ ñ (z̃) = 1 . (5.54)

If a domain wall is given by a kink [an anti-kink], we have only the positive-chiral fermions in a comoving
frame [the negative-chiral fermions]. However, from Eqs (5.52) and (5.53), we find that the negative-chiral
modes [positive-chiral modes] also appear in this boosted Lorentz frame. For a kink, the ratio of number
density of the negative-chiral modes to that of the positive-chiral ones is given by γ2υ2/(γ + 1)2. The
above wave functions on a moving domain wall with constant velocity can be used for setting the initial
data for colliding domain walls.

5.3.2 Initial setup and Outgoing states

We construct our initial data as follows. Provide a kink solution at z = −z0 and an anti-kink solution at
z = z0, which are separated by a large distance and approaching each other with the same speed υ. We
can set up as an initial profile for the scalar field Φ:

Φ(z, t) = Φ(K)(z, t; υ) + Φ(A)(z, t;−υ)− 1 , (5.55)

where

Φ(K,A)(z, t; υ) = ± tanh(γ(z − υt)/D) (5.56)
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are the Lorentz boosted kink and anti-kink solutions, respectively. Here we have chosen that the initial
time is t = tin ≡ −z0/υ. The domain walls collide at t = 0. For fermions on moving walls, we first expand
the wave function as

Ψ̂ = Ψ
(K)
in (x, z; υ)aK +Ψ

(A)
in (x, z;−υ)aA +Ψ

(B)
in (x, z)aB , (5.57)

where Ψ
(K)
in (x, z; υ) and Ψ

(A)
in (x, z;−υ) are the wave function of right-moving localized fermion on a kink

and those of left-moving one on an anti-kink, respectively, which are explicitly by Eq. (5.52) and Eq.

(5.53). We also denote the bulk fermions symbolically by Ψ
(B)
in (x, z). We do not give its explicit form

because it does not play any important role in the present situation. We have assumed in Eq. (5.57) that

{Ψ(K)
in (x, z; υ),Ψ

(A)
in (x, z;−υ) and Ψ

(B)
in (x, z)} form a complete orthogonal system. Note that {Ψ(K)

in (x, z; υ)

and Ψ
(A)
in (x, z;−υ)} are orthogonal.

Now we can set up an initial state for fermion by creation-annihilation operators. We shall call a
domain wall associated with fermions a fermion wall, and a domain wall in vacuum a vacuum wall. We
shall discuss two cases: one is collision of two fermion walls, and the other is collision of fermion and
vacuum walls. For initial state of fermions, we consider two states;

|KA〉 ≡ a†Aa
†
K|0〉 |K0〉 ≡ a†K|0〉 (5.58)

where |0〉 is a fermion vacuum state. We discuss behaviour of fermions at collision. After collision of
two domain walls, each wall will recede to infinity with almost the same velocity as the initial one υ.
Therefore we expect that positive chiral fermions stay on a left-moving kink and negative ones on a

right-moving anti-kink. Those wave functions are given by Ψ
(K)
out (x, z;−υ) and Ψ

(A)
out(x, z; υ). There may

be bulk fermions which are left behind after collision, which wave function is symbolically written by

Ψ
(B)
out(x, z). Since the initial wave functions (Ψ

(K)
in (x, z; υ) and Ψ

(A)
in (x, z;−υ)) are rewritten as the finial

wave functions (Ψ
(K)
out (x, z;−υ), Ψ(A)

out(x, z; υ), and Ψ
(B)
out(x, z) at t = tout ≡ z0/υ), we find the relations

between them by solving the Dirac equation (5.50). Those relations can be written as

Ψ
(K)
in (x, z; υ) ∼ αKΨ

(K)
out (x, z;−υ) + βKΨ

(A)
out(x, z; υ) + γKΨ

(B)
out(x, z) ,

Ψ
(A)
in (x, z;−υ) ∼ αAΨ

(A)
out(x, z; υ) + βAΨ

(K)
out (x, z;−υ) + γAΨ

(B)
out(x, z) . (5.59)

In order to define final fermion states, we also describe the wave function as

Ψ̂ = Ψ
(K)
out (x, z;−υ)bK +Ψ

(A)
out(x, z; υ)bA +Ψ

(B)
out(x, z)bB , (5.60)

where bK, bA and bB are annihilation operators of those fermion states. From Eqs. (5.57), (??), (5.59)
and (5.60), we find

bK = αKaK + βAaA , bA = αAaA + βKaK (5.61)

Using the Bogoliubov coefficients αK, βK and αA, βA, we obtain the expectation values of fermion number
on a kink and an anti-kink after collision as

〈NK〉 ≡ 〈KA|b†KbK|KA〉 = |αK|2 + |βA|2 , 〈NA〉 ≡ 〈KA|b†AbA|KA〉 = |αA|2 + |βK|2 (5.62)

for the case of |KA〉. If the initial state is |K0〉, we find

〈NK〉 ≡ 〈K0|b†KbK|K0〉 = |αK|2 〈NA〉 ≡ 〈K0|b†AbA|K0〉 = |βK|2 . (5.63)

5.3.3 Time evolution of fermion wave functions

In order to obtain the Bogoliubov coefficients, we have to solve the equations for domain wall Φ [436]
and fermion Ψ numerically. For the time evolution of Ψ, we use the Crank-Nicholson method since it is
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(b) t = 32 (at collision)
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(c) t = 56 (after collision)

Figure 5.8: Snap shots of the number density of the wave function (n = Ψ†Ψ) and those of two chiral
states n± for collision of fermion-vacuum walls. We set D = 1, g = 2, and υ = 0.8.

generally shown to be useful for the parabolic type of partial differential equation. In our simulation of
two-wall collision, we have three unfixed parameters, i.e. a wall thickness (D) and an initial wall velocity
(υ) and a coupling between fermions and a domain wall (g). From the solution (5.45), we find the fermions
are localized within the domain wall width D if g >∼ 2/D. When g < 2/D, fermions leak out from the
domain wall. Hence, in this paper, we analyze for the case of g ≥ 2. We set D = 1, but leave υ free.
Before showing our results for fermions, we summarize the behaviours of domain walls discussed in [436].
We find a bounce of domain walls, which depends in a complicated way on the initial velocity (There is a
fractal structure in the initial velocity space [?]). After the collision, two domain walls recede into infinity
with almost same velocity ±υ. It is similar to collision of solitons. To obtain the Bogoliubov coefficients,
we solve the Dirac equation for the collision of fermion-vacuum walls, i.e. fermions are initially localized

on one wall, and the other wall is empty (Ψ
(K)
in (x, z; υ) or Ψ

(A)
in (x, z;−υ) ).

We shall give numerical results only for the case that positive chiral fermions are initially localized on a

kink (Ψ
(K)
in (x, z; υ)). Because of z-reflection symmetry discussed, we find the same Bogoliubov coefficients

for the case that negative chiral fermions are initially localized on an anti-kink (Ψ
(A)
in (x, z;−υ)), i.e.

|αK|2 = |αA|2 and |βK|2 = |βA|2. Setting g = 2 and υ = 0.8, we show the result in Fig. 6.1(a). The other
chiral mode appears at collision and the wave function splits into two parts after collision. From the
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g = 2 g = 2.5
υ |αK|2 |βK|2 |γK|2 |αK|2 |βK|2 |γK|2
0.3 0.94 0.056 0.004 0.47 0.53 0.00
0.4 0.87 0.12 0.01 0.57 0.40 0.03
0.6 0.69 0.30 0.01 0.78 0.17 0.05
0.8 0.42 0.55 0.03 0.88 0.02 0.10

Table 5.3: The Bogoliubov coefficients of fermion wave functions localized on each domain wall after
collision ( |αK|2 and |βK|2) with respect to the initial velocity υ. We also show the amount of fermions
escaped into bulk space (|γK|2 = 1− (|αK|2 + |βK|2)).

asymptotic behaviour of the wave function as t→ ∞, we obtain the Bogoliubov coefficients numerically
such that |αK|2 = 0.42 and |βK|2 = 0.55. Since a few amount of fermions escapes into bulk space at
collision, |αK|2 + |βK|2 is not conserved, and the difference between the initial value and the final one
(|γK|2 = 1 − (|αK|2 + |βK|2)) corresponds to the amount of bulk fermions left behind. The Bogoliubov
coefficients depend on the initial wall velocity. In Table 5.3, we summarize our results for different values
of velocity. We also show the case of g = 2.5 in Table 5.3. For the coupling constant g = 2, |αK|2 and
|βK|2 are almost equal (0.44 and 0.55), but for g = 2.5, most fermions remain on the kink (|αK|2 = 0.88
and |βK|2 = 0.02). We find that the Bogoliubov coefficients depend sensitively on the coupling constant
g as well as the velocity υ. In Fig. 5.9, we shows the g-dependence. Since the wave function is changed
at collision, when the background scalar field evolves in a complicated way, one might think that the
behaviour of wave function would be difficult to describe analytically. However, we may understand the
qualitative behaviour in terms of the following naive discussion. Before collision, the wave function is

approximated well by Ψ
(K)
in (x, z; υ). In order to evaluate the wave function of fermion after collision, we

have to integrate the Dirac equation (5.50). During the collision, the spatial distributions of fermion wave
functions are well-described by some symmetric function of the z-coordinate (see Fig. 6.1(a) (b)). So we
may approximate them as ψ± = A±(t)eiφ±(t)ψ0(z), where ψ0(z) is a normalized even real function. A±
and φ± are regarded as the amplitudes of positive- (negative-) chiral modes and those phases, respectively.
The scalar field Φ evolves as Φ : 1 → Φc(≈ −1.5) → 1 at the collision point (z = 0). If we approximate
the scalar field as Φ = Φc at collision for collision time Δt(∼ D/c), integration of Eq.(5.50) with respect
to z gives the change of amplitudes and phases of wave functions as

1√
1−A2±

∂0A± = ±gΦc sin(Δφ) , ∂0φ± = −gΦc

√
1−A2±
A±

cos(Δφ) , (5.64)

where Δφ ≡ φ− − φ+. We have also assumed that total amplitude of wave functions is normalized
(A2

+ + A2
− = 1). This means that we ignore bulk fermions, which may be justified because |γK|2 � 1.

If Δφ = 0 and A± = 1 initially, then we find A+(Δt) = 1 (or A−(Δt) = 1), which guarantees Δφ = 0
anytime from Eqs. (5.64). We find that (A+,Δφ) = (1, 0) (or (A−,Δφ) = (1, 0)) is a fixed point of
the system, Eqs. (5.64). However, it turns out that those are unstable. On the other hand, we find
that Δφ = π/2 (or −π/2) is an attractor (stable fixed points) of the present system. The time scale to
approach these attractors is given by (g|Φc|)−1 if ΔA2 ≡ A2

−−A2
+ = O(1). Once we assume Δφ = ±π/2,

then we find that the phases φ± do not change. Then we can integrate the first equation in (5.64), finding

A2
±(Δt) =

1

2
[1± sin (2εgΦcΔt+ C0)] , (5.65)

where ε = ±1 and C0 is an integration constant. This formula may provide a rough evaluation of
|αK|2, |βK|2. Comparing the numerical data and the formula (5.65) with Φc ≈ −1.5, we find the fitting
curves in Fig. 5.9 (ε = −1, Δt ≈ 1.4 and C0 = −1.2). The above naive analysis explains our results very
well. We then conclude that Δφ = ±π/2 is generic except for a highly symmetric and fine-tuned initial
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Figure 5.9: The Bogoliubov coefficients (|αK|2, |βK|2) with υ = 0.4 in terms of a coupling constant g. The
circle and the cross denote |αK|2 and |βK|2 respectively. Two sine curves (|αK|2, |βK|2 ≈ [1± sin(4.2g −
1.2))]/2 show the formula (5.65) with the best-fit parameters.

setting (A+ = 1 or A− = 1 and Δφ = 0), and the formula (5.65) with Δφ = ±π/2 is eventually found
after collision. The small difference may be understood by the details of the complicated dynamics of
colliding walls.

5.3.4 Fermion numbers on domain walls after collision

We can evaluate the expectation values of fermion numbers after collision as follows. For the initial state
of fermions, we consider two cases: case (a) collision of two fermion walls |KA〉 and case (b) collision of
fermion and vacuum walls |K0〉.

In the case (a), we find

〈NK〉 = |αK|2 + |βA|2 = |αK|2 + |βK|2 = 1− |γK|2 ≈ 1 (5.66)

〈NA〉 = |αA|2 + |βK|2 = |αA|2 + |βA|2 = 1− |γA|2 ≈ 1 . (5.67)

We find that most fermions on domain walls remain on both walls even after the collision. A small
amount of fermions escapes into the bulk spacetime at collision.

In the case (b), however, we obtain

〈NK〉 = |αK|2 , 〈NA〉 = |βK|2 . (5.68)

Since the Bogoliubov coefficients depend sensitively on both the velocity υ and the coupling constant g,
the amount of fermions on each wall is determined by the fundamental model as well as the details of the
collision of the domain walls.

5.3.5 Summary

We have studied the behaviour of five-dimensional fermions localized on domain walls, when two parallel
walls collide in five-dimensional Minkowski background spacetime. We have analyzed the dynamical
behavior of fermions during collision of fermion-fermion branes (case (a)) and that of fermion-vacuum
ones (case (b)). In order to evaluate expectation values of fermion number on a kink and an antikink
after collision, we solve the Dirac equation for the wave function in the case (b) and find the Bogoliubov
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coefficients, in which βK denotes the amount of fermions transferring from a kink to an antikink (a
vacuum wall). As a result, in the case (b) some fermions jump up to the vacuum brane at collision.
The amount of fermions localized on which brane depends sensitively on the incident velocity and the
coupling constants g/λ where g and λ are the Yukawa coupling constant and that of the double-well
potential, respectively. It can be intuitively understood that the amount of localized fermions is roughly
determined by the duration of collision for which they transfer to another wall or stay on the initial wall,
and the localization condition depending on the Yukawa coupling constant between fermions and domain
walls. On the other hands, in the case (a), we find that most fermions seem to stay on both branes
even after collision. This is because of the relationship |βK| = |βA|, which is guaranteed by a left-right
symmetry in the present system. This result means physically that the same state (k ∼ 0) of fermions
are exchanged for each other by the same amount. Therefore, the final amounts of fermions does not
depend on parameters.

We conclude with some comments about the subject not mentioned above:

(1) For the case of g < 2/D, the localization of fermions is not sufficient. The tail of fermion distribution
extends outside the wall. As a result, we find that a considerable amount of fermions escapes into a bulk
space at collision. For example, we find |αK|2 + |βK|2 = 0.64 for g = 1 and υ = 0.8. The formula (5.65)
is also no longer valid in this case (see Fig. 5.9). This is because localization is not sufficient.

(2) The collision of domain walls is rather complicated. We find a few bounces at collision depending on
the incident velocity. The number of bounces is determined in a complicated way (a fractal structure in
the initial phase space [12, 436]).

(3) Since we have discussed only the case of zero-momentum fermion on branes (
k = 0), we have only a
single state on each brane, which constrains the fermion number to be less than unity. If we take into
account degree of freedom of low energy fermions, we can put different states of fermions on each brane.
As the result, the final state of fermions after collision is different from the initial state, and it depends
sensitively on the coupling constant as well as the initial wall velocity just as the case of collision of
fermion-vacuum walls.

(4) In the case of collision of two vacuum branes, nothing happens in the present approximation. The
pair production of fermion and antifermion, for which we have to take into account the momentum k,
may occur at collision. This pair production process may also be important in the cases of collision of
two fermion branes and that of fermion-vacuum branes. The work is in process.

(5) Including self-gravity is important to study. It can drastically changes collision of domain walls [437],
resulting in a formation of black hole. It is interesting to see how fermion distribution changes through
a singularity.



Chapter 6

Colliding branes in curved spacetime

6.1 Collision of two domain walls in asymptotic Anti de Sitter
spacetime

In order to study whether such a reheating process is still efficient in more reliable cosmological models,
we have to include the curvature effect. In particular, some brane universe are discussed with a negative
cosmological constant [373] Hence, we study here how gravitational effects change our previous results.
In order to investigate such an effect, we have not only to investigate the collision of domain walls in a
curved spacetime, but also to solve the spacetime by use of the 5D Einstein equations. Inspired by the RS
brane model, we include a potential of the scalar field which provides an effective negative cosmological
constant in a bulk spacetime. We first set up the initially moving two domain walls, each of which is
obtained by boosting an exact static domain wall solution [145]. Although this solution is obtained in the
four dimensions, it is easy to extend it to the 5D one. We then solve the 5D Einstein equations and the
dynamical equation for a scalar field to analyze collision of thick walls in asymptotically AdS spacetime.
We use the unit of c = � = 1.

6.1.1 Basic equations and initial settings

We study collision of two domain walls in 5D spacetime. To construct a domain wall structure, we adopt
a 5D real scalar field Φ with an appropriate potential V (Φ), which minimum value is negative. This
potential gives an asymptotically anti-de Sitter (AdS) spacetime just as the RS brane model. Since we
discuss the collision of two parallel domain walls, the scalar field is assumed to depend only on a time
coordinate t and one spatial coordinate z. The remaining three spatial coordinates are denoted by 
x. For
numerical analysis, we use dimensionless parameters and variables, which are rescaled by the mass scale

mΦ, which is defined by the vacuum expectation value at a local minimum as Φ0 = m
3/2
Φ , as

t̃ = mΦt , z̃ = mΦz , Φ̃ =
Φ

m
3/2
Φ

. (6.1)

In what follows, we drop the tilde in dimensionless variables for brevity. We can choose a bulk metric as
“2D conformal gauge” , i.e.

ds2 = e2A(t,z)(−dt2 + dz2 ) + e2B(t,z)d
x2 . (6.2)

This gauge choice also makes the initial setting easy when we construct moving domain walls by use of
the Lorentz boost. In this gauge, the 5D Einstein equations and the dynamical equation for a scalar field

107
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(a) (b)

Figure 6.1: (a): The scalar field potential V (Φ) is plotted where D =
√
2, κ5 = 0.3. This potential

behaves like a double-well potential for |Φ| < 5, except that one of its two minima has a negative value.
On the other hand, for |Φ| > 5, this potential behaves differently from a double-well potential, that is
V (Φ) rapidly falls into −∞. (b): The metric component of the exact solution for a static domain wall
[145] is plotted where we set D =

√
2 and κ5 = 0.3. This spacetime approaches Minkowski space because

AK → A∞ (a constant), while it becomes asymptotically AdS because AK → −k|y| as y → −∞, where
k = 8κ25/9D.

are split into three dynamical equations;

Ä =A′′ + 3Ḃ2 − 3B′2 − κ25(Φ̇
2 − Φ′2 +

1

3
e2AV (Φ)) ,

B̈ =B′′ − 3Ḃ2 + 3B′2 +
2

3
κ25e

2AV (Φ) ,

Φ̈ =Φ′′ − 3ḂΦ̇ + 3B′Φ′ − 1

2
e2AV ′(Φ) , (6.3)

plus two constraint equations;

ḂB′ −A′Ḃ − ȦB′ + Ḃ′ = −2

3
κ25Φ̇Φ

′ ,

2B′2 +B′′ −A′B′ − ȦḂ − Ḃ2 = −1

3
κ25(Φ̇

2 +Φ′2 + e2AV (Φ)) , (6.4)

where a dot (̇) and a prime (′) denote ∂/∂t and ∂/∂z, respectively. These are our basic equations. Before
solve them numerically, we have to set up our initial data, which satisfies the constraint equations (6.4).
For an initial configuration of a domain wall, we use an exact static solution given by [145]. They assume
a scalar field Φ with a potential

V (Φ) =
(∂W
∂Φ

)2

− 8

3
κ25W

2 , where W ≡ 1

D

(
Φ− 1

3
Φ3 − 2

3

)
(6.5)

is a superpotential, and κ25 and D are the five dimensional gravitational constant and the thickness of a
domain wall, respectively. The potential minima are located at Φ = ±1 in the range of |Φ|<∼5 (see Fig.
6.1(a)). The potential shape is similar to a double-well potential, but it is asymmetric. The minimum
value at Φ = 1 vanishes, while that at Φ = −1 is negative. With this potential, we can obtain analytically
an exact solution for two colliding domain walls as follows. First, we show a static domain wall solution
with this potential. A kink solution of a scalar field (K) is described as

ΦK(y) = tanh
( y

D

)
, (6.6)
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and the metric of 5D spacetime is

ds2 = e2AK(y)(−dt2 + d
x2) + dy2 , (6.7)

with

AK(y) = −4

9
κ25

{
ln
[
cosh

( y
D

)]
+

tanh2(y/D)

4
− y

D

}
. (6.8)

Since this exact solution is not given in our gauge, we have used a new coordinate y, which will be
associated with z later. This metric approaches that of the AdS spacetime in one asymptotic region
(y � −1), i.e.

e2AK → e−2k|y| as y → −∞ , with k =
8κ25
9d

. (6.9)

While it becomes a flat Minkowski space in another asymptotic region (y � 1), i.e.

e2AK → e2A∞ as y → ∞ , with A∞ =
4

9
κ25

(
log 2− 1

4

)
. (6.10)

We depict the behaviour of metric function exp[AK(y)] in Fig. 6.1(b). By reflecting the spatial coordinate
y, we also find an antikink solution (K̄) as ΦK̄(y) = ΦK(−y) = −ΦK(y). The corresponding metric of
this antikink solution is also obtained by reflection of y-coordinate, i.e. AK̄(y) = AK(−y). In order to
describe this solution under our gauge condition (6.2), that is, in the (t, z) frame, we should transform
the present (t, y) coordinates (Eq.(6.7)) into the (t, z) ones (Eq.(6.2)) by defining the coordinate z as

z =

∫
e−AK(y)dy . (6.11)

This integration will be performed numerically to find initial data of collision of two domain walls. When
a domain wall moves with constant speed υ in the fifth direction z, we can obtain the corresponding
solution by boosting a static kink solution (K) as

Φυ(z, t) = tanh

[
1

D
y∗ (γ(z − υt))

]
, (6.12)

where y∗ and z∗ are comoving coordinates of a domain wall, and y∗(z∗) is obtained by the inverse
transformation of Eq. (6.11). The Lorentz transformation gives z∗ = γ(z − υt) where γ = 1/

√
1− υ2 is

the Lorentz factor. We have assumed that the center of a domain wall is initially located at z = 0. The
corresponding metric is easily obtained by Lorentz boost. Because of the Lorentz invariance in our 2D
conformal gauge, i.e., −dt∗2 + dz∗2 = −dt2 + dz2, we find

ds22D = exp[2AK (γ(z − υt))](−dt2 + dz2) , (6.13)

where AK(z∗) = AK(y∗(z∗)). The function AK(y) is given by Eq. (6.8). The center of a domain wall
(z∗ = 0) moves as z = υt in our (t, z)-coordinate frame. Then we regard that the metric describes a
spacetime with a domain wall moving with constant speed υ in the z direction as well as a scalar field Φ
does so. In order to discuss collision of two moving domain walls, we first have to set up its initial data.
Using Eqs. (6.12) and (6.13), we can construct an initial data for two moving domain walls as follows.
Provide a kink solution at z = −z0 and an antikink solution at z = z0, which are separated by a large
distance and approaching each other with the same speed υ. We then obtain the following initial data;

Φ(z, 0) = Φυ(z + z0, 0)− Φ−υ(z − z0, 0)− 1 , A(z, 0) = Aυ(z + z0, 0)−A−υ(z − z0, 0)−A∞ , (6.14)

where A∞ is the constant value given by Eq. (6.10). The initial values of Φ̇ and Ȧ are also given by

Φ̇(z, 0) = Φ̇υ(z + z0, 0)− Φ̇−υ(z − z0, 0) , Ȧ(z, 0) = Ȧυ(z + z0, 0)− Ȧ−υ(z − z0, 0) . (6.15)
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(a) Scalar field (b) Energy density

Figure 6.2: (a): Collision of two domain walls where the initial velocity υ = 0.4. The time evolutions of
the scalar field Φ (a) and the energy density ρΦ (b) are shown from t = 0 to 70. The maximum point of
ρΦ defines the position of a wall (z = zW(t)). The collision occurs once around t = 31. We set D =

√
2,

κ5 = 0.05. This process is similar to the Minkowski case, κ5 = 0.

Obviously, we set A = B and Ȧ = Ḃ at initial. Using these initial values, we solve the dynamical equation
(6.3) numerically. We adopt a numerical method similar to one used in [436]. The difference is found in a
boundary conditions. We impose the Dirichlet boundary condition for the scalar field, which is the same
as the paper I, while the Neumann boundary condition is used for the metric as A′(z) = −kγeA(z), which
is derived from the asymptotic form of the metric, i.e., eA(z) → 1/(kγ|z|+ 1) as |z| → ∞. We have three
free parameters in our model, i.e. a wall thickness d, an initial wall velocity υ, and a warp factor k (or the
gravitational constant κ5). Two of them (d, k(or κ5)) are fundamental because they appear in the theory.
In the paper I, we studied the collision of two domain walls in the fixed Minkowski background [12],
where we had two free parameters d and υ. So, including the gravitational back reaction, we investigate
how κ5 (or k) changes the previous results. In what follows, fixing the value of d, i.e. D =

√
2, we show

our results.

6.1.2 Time evolution of scalar field

First let us set κ5 = 0 (or k = 0), that is the case of Minkowski background spacetime. Although the
scalar field potential is slightly different from that in the paper I, the result is exactly the same. This
simulation also gives a check of our numerical code. Next we perform our simulation for κ5 
= 0. For a
small value of κ5, i.e., κ5<∼0.05 (equivalently k<∼1.57×10−3 or mΦ<∼(0.05)2/3m5 ≈ 0.136m5), the collision
process is very similar to the case of the Minkowski background. Setting the initial velocity υ = 0.4, we
show our numerical results for κ5 = 0.05 in Figs. 6.2(a) and 6.2(b). The evolution of Φ is depicted in
Fig. 6.2(a), while that of the energy density is shown in Fig. 6.2(b). The energy density of the scalar
field is given by

ρΦ = e−2A
(
Φ̇2 +Φ′2

)
+ V (Φ) . (6.16)

We find some peaks in the energy density, by which we define the positions of moving walls (z = ±zW(t)).
If a domain wall is symmetric, its position is defined by Φ(z) = 0. However, in more general situation,
just as in the present case that the scalar field is oscillating around some moving point, it may be natural
to define the position of a domain wall by the maximum point of its energy density. Fig. 6.3(a) denotes
the position of brane z = zW(t) with respect to t. The brane moves with constant speed υ = 0.4 toward
the collision point z = 0, and collide, then recede to the boundary. We also find small oscillation around a
uniform motion after collision. Since we assume that we are living on one domain wall, we are interested
in a particle ψ confined on the domain wall. If a particle ψ is coupled with a 5D scalar field Φ, which
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(a) υ = 0.4 (b) υ = 0.2

Figure 6.3: Time evolutions of the position of one brane z = zW which starts to move at z = −13 with a
constant speed υ = 0.4 (a) and υ = 0.2 (b), respectively. We set D =

√
2, κ5 = 0.05. (b): The dashed

line denotes κ5 = 0.05 while the dotted line does κ5 = 0. The time interval between two bounces is
prolonged by an effective negative cosmological constant.

is responsible for the domain wall, we expect quantum production of ψ-particles at collision of domain
walls. This is because the value of the scalar field Φ on the domain wall changes with time. This fact may
play an important role in a reheating mechanism [436]. Once we find the solution of colliding domain
walls, we know the time evolution of a scalar field on the domain wall, and we can evaluate production
rate. At the position of a domain wall, the induced metric is given as

ds2 = −dτ2 + a2(τ)d
x2 , (6.17)

where proper time and the scale factor are determined as

τ =

∫
eAWdt , a(τ) = eBW(τ) . (6.18)

AW and BW are evaluated on the brane, i.e., AW = A(t, zW(t)) and BW = B(t, zW(t)). The Hubble
parameter of the brane universe is defined by

H(τ) ≡ 1

a

da

dτ

∣∣∣
z=zW

=
dBW

dτ
= e−AWḂW(τ) . (6.19)

For υ = 0.4, we depict the time evolution of ΦW on one moving wall for different values of κ5 in Figs.
6.4(a) and 6.4(b). The feature of collision is similar, but the behaviour of a scalar field on the moving
wall after collision is different for each κ5. We summarize our numerical results for each value of κ5 in
order.

(i) κ5=0.01

For a small value of κ5, e.g., κ5 = 0.01 (equivalently k ∼ 6.29 × 10−5 or mΦ ∼ 0.0464m5), the result is
almost the same as the case of the Minkowski background, in which case we find one bounce point, which
corresponds to a crossing point in Fig. 6.2(b), and then the oscillations around ΦW = 0 follow (see the
dotted line in Fig. 6.4(a)). This oscillation is explained by using a perturbation analysis in Minkowski
spacetime [436]. We have found one stable oscillation mode around the kink solution. This oscillation
appears by excitation of the system at collision.
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(a) κ5 ≤ 0.1 (b) κ5 = 0.15

Figure 6.4: Time evolution of a scalar field on the moving wall with υ = 0.4, D =
√
2. We set κ5 =

0, 0.05, 0.1 for (a) and κ5 = 0.15 for (b). The value of the scalar field on the wall is defined by ΦW =
Φ(t, zW(t)), where zW(t) is the position of the wall. (a): The time of period of oscillation gets slightly
longer and the amplitude is a little bit larger as κ5 increases. (b): ΦW goes out of oscillation phase 0 at
τ ∼ 55 and then numerical simulation stops.

(ii) κ5 = 0.05

As increasing the value of κ5 slightly larger, for example κ5 = 0.05, (equivalently for k ∼ 1.57× 10−3 or
mΦ ∼ 0.136m5), the time evolution of ΦW slightly changes. In Fig. 6.4(a), just as the case of κ5 = 0, we
find one bounce and successive oscillations. However, the period of oscillation is slightly longer and the
amplitude gets a little bit larger as κ5 increases.

(iii) κ5 = 0.15

For κ5 = 0.15, (equivalently k ∼ 1.41× 10−2 or mΦ ∼ 0.282m5), the behaviour of this oscillation changes
drastically. After several oscillations, the scalar field leaves ΦW = 0 as shown in Fig. 6.4(b). The
numerical simulation eventually breaks down because all variables diverge.

(iv) κ5 > 0.15

For the larger values of κ5 than 0.15, the time to appearance of singularity becomes shorter, that is,
contrary to the case of κ5<∼0.15, the scalar field after collision does not oscillate but leave ΦW = 0

soon. The time evolution of ΦW is shown in Fig. 6.5, for κ5 = 0.2 (k = 2.51 × 10−2) and κ5 = 0.25
(k = 3.93 × 10−2). The metric component A at z = 0 also diverges as shown in Fig 6.6. It is not
a coordinate singularity, but a curvature singularity. In order to show it, we calculate the so-called
Kretschmann invariant scalar, which is the simplest scalar invariant quadratic in the Riemann tensor,
and is defined as

RabcdRabcd =e
−4A

[
3(B̈ + Ḃ2 − ȦḂ −A′B′)2 − 3(A′Ḃ + ȦB′ − Ḃ′ − ḂB′)2

+ (Ä−A′′)2 + 3(B′2 − Ḃ2)2 + 3(B′′ +B′2 − ȦḂ −A′B′)2
]
. (6.20)

In Fig. 6.6(b), we depict the time evolution of the Kretschmann scalar at the origin z = 0, which
diverges at t � 69. It is caused by the divergence of a quantity Ȧ. We conclude a singularity forms
at the origin z = 0. This divergence is not a numerical error because a constraints equations (6.4) are
always satisfied within 10−5 - 10−2 % accuracy except at time when the singularity appears. In Appendix
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(a) κ5 = 0.2 (b) κ5 = 0.25

Figure 6.5: Time evolution of the scalar field ΦW for υ = 0.4, D =
√
2, setting (a) κ5 = 0.2 and (b)

κ5 = 0.25. The numerical simulation breaks down when (a) τ ∼ 42 and (b) τ ∼ 35, respectively.

6.1.5, we study the reason why a spacetime is unstable and eventually evolves into a singularity in detail
using a perturbation analysis of the Einstein equations and dynamical equation of Φ. We find that a
perturbed oscillation mode around an unperturbed kink solution becomes overstable for κ5 = 0.1. From
our analysis, we conclude that gravitational back reaction makes a kink solution unstable contrary to the
Minkowski case. Next, we show the result for the case of the initial velocity υ = 0.2. In the Minkowski
case, this incident velocity shows two-bounce at collision process (see Fig. 6.7 (a)). After two walls
collide, they bounce, recede to some finite distance, turn back and then collide again. For small values
of κ5, e.g., κ5 ≤ 0.05, the collision process is very similar to the case of κ5 = 0 (see Fig. 6.7(b)). As κ5
increases, the time interval between first and second bounces becomes longer as shown in Fig. 6.3(b).
This can be understood from the fact that the above mentioned oscillation after collision will radiate
the energy. So a kink-antikink pair is loosely bounded and it takes longer time to collide again. For the
case of κ5>∼0.1, this feature of collision is drastically changed. Two-bounce collision never occurs, that
is, two walls collide only once. This is because a lot of energy of a kink-antikink pair is radiated away
via the unstable oscillation after collision and it has not enough energy to form a trapped state. After
the first bounce, the domain walls never collide again but recede each other. For larger value of κ5, we
find only one-bounce collision. Namely, a “negative cosmological constant” outside a kink-antikink pair
keeps away two walls toward the boundary, so it plays as an effective attractive force.

6.1.3 Time evolution of metric

We evaluate the time evolutions of the metric AW, BW on the brane and plot them in Figs. 6.8. Both of
two quantities decrease with time except that BW increases slightly through the bounce. From those two
quantities, using Eqs. (6.18) and (6.19), we evaluate a scale factor of our universe a(τ) = eBW(τ) and the
Hubble expansion parameter H ≡ da

dτ /a, where τ is the proper time of domain wall defined by Eq. (6.18),
and show them in Figs. 6.9 setting υ = 0.4. From this figure, we find that our universe expands slightly
before bounce then eventually contracts. For each κ5, the scale factor a and the Hubble parameter H are
also plotted in Figs. 6.9(a) and 6.9(b). From these figures, we see that our universe contracts faster as κ5
gets larger, i.e. a negative cosmological constant increases. Next we investigate the scale factor a and the
Hubble parameter H for the case of υ = 0.2. Setting κ5 = 0.05, that is the case of two-bounce collision.
We find two contracting phases, which correspond to each bounce at collision as we expected. For κ5>∼0.1,
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(a) (b)

Figure 6.6: (a): Time evolution of the metric component A at z = 0 for υ = 0.4, d =
√
2, κ5 = 0.15. It

diverges at t ∼ 70. (b): In this case, Kretschmann scalar invariant (RabcdRabcd) at the origin z = 0. We
find that the Kretschmann scalar diverges at t � 69. This means that it is not a coordinate singularity,
but a curvature singularity.

(a) κ5 = 0 (Minkowski) (b) κ5 = 0.05

Figure 6.7: Time evolution of a scalar field ΦW for υ = 0.2, D =
√
2. For (a) κ5 = 0 and (b) κ5 = 0.05,

we find two peaks which correspond to twice bounces at collision. Moreover, it is seen that an effective
negative cosmological constant prolongs the time interval between two bounces.
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AW BW

Figure 6.8: Time evolution of the metric A and B on the moving wall for υ = 0.4, D =
√
2, κ5 = 0.15.

The value of the metric is given by AW = A(t, zW(t)), where zW(t) is the position of the wall. Both of
two quantities decreases with time.

(a) (b)

Figure 6.9: Time evolutions of the scale factor a = eBW (a) and the Hubble parameter H ≡ ȧ(τ)/a (b) for
υ = 0.4, D =

√
2. We set κ5 = 0.1, 0.15 and 0.2. (a): As κ5 gets larger, the speed of contraction becomes

larger. (b): As κ5 gets larger, the typical time scales of expansion and contraction become larger.



116 CHAPTER 6. COLLIDING BRANES IN CURVED SPACETIME

the bounce occurs once only because of a large negative cosmological constant and we find the universe
contracts slower than the case υ = 0.4. Our universe contracts faster as υ gets larger. Finally, we find in
Fig. 6.9(b) that there are two discontinuous stages in the evolution of the Hubble parameter at t ∼ 30
and ∼ 32. As we will see, we can conclude that these discontinuities appear just because of ambiguity of
the definition of a wall-position, z = zW. The Hubble parameter mainly depends on the derivative of the
metric with respect to t, Ḃ. In this paper, we define the position of wall by one where the energy density
of scalar field gets maximum. However, this position does not move continuously through a bounce.
Actually, we show żW has also two discontinuous stages, where the speed of a wall apparently exceeds
the speed of light. Namely near the bounce, the definition of wall-position is not well-defined. This is
because there is no wall configuration during the collision. Hence these discontinuities of the Hubble
parameter seem to be apparent. We should look at the global time evolution.

6.1.4 Summary

We have investigated collision of two domain walls in 5D asymptotically AdS spacetime. We evaluate the
values of both a scalar field corresponding to a domain wall and metric on the moving wall for different
value of the warp factor k which is related to a gravitational effect κ5. We analyze two typical incident
velocities, i.e. υ = 0.4, and υ = 0.2, which correspond to one-bounce and two-bounce solutions in the
Minkowski spacetime, respectively. For the case of υ = 0.4, the global feature of collision is same for
different values of κ5, but the behaviour of oscillation after the collision is different for each κ5. For
small value of κ5<∼0.01, the oscillation is the same as Minkowski case, but for κ5>∼0.05, it becomes an
overstable oscillation. So its period and amplitude get larger as κ5 increases. In the cause of this unstable
oscillation, the singularity appears after collision. This singularity is very similar to that found in Khan
and Penrose [242], in which they discuss collision of plane waves and formation of a singularity. Hence
the appearance of singularity in the present model could be understandable because we take into account
a gravitational effect in collision of two domain walls. In the time evolution of our universe, we find that
the universe first expands a little just before collision and then contracts just after collision. This result
is consistent with [274]. We cannot explain our hot big bang universe as it is. It is also found that the
speed of expansion and contraction gets faster as κ5 increases. For the second case, i.e., υ = 0.2, we show
the bounce does not occur twice for larger value of κ5 (κ5>∼0.1) corresponding to the unstable oscillation.
We shall discuss about the value of a warp factor k. We consider a curvature length l = 1/k written in
the following form

l = 1.97× 10−17
(10−2

k

)(TeV
mΦ

)
[m] , (6.21)

where mΦ is a mass scale of a domain wall. Here we set a value of a warp factor k in the region
0.01 <∼ k <∼ 0.25. On the other hand, we also know from the experimental data of testing a gravitational
inverse-square law that the curvature length must be smaller than 0.1 mm [3, 209, 295]. From this
constraint equation, we obtain

k > 1.97× 10−15
(TeV
mΦ

)
. (6.22)

So the values of k used in our simulation satisfy this constraint.

6.1.5 Appendix

In Fig. 6.4(a), we find oscillations after collision and those amplitudes and periods increase as κ5 gets
larger. To understand this feature, we analyze perturbations around a static domain wall solution. We
use the coordinate y, by which a static domain wall solution is given by analytically (ΦK(y), AK(y)),
which are given by Eqs. (6.6) and (6.8). We perturb the basic equations (6.3) and (6.4) by setting
A = AK(y) + a(t, y), B = AK(y) + b(t, y), and Φ = ΦK(y) + φ(t, y). We find two sets of perturbation
equations:
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(1) dynamical equations

e−2AK ä =
∂2a

∂y2
+
dAK
dy

∂a

∂y
− 6

dAK
dy

∂b

∂y
+ κ25

(
2
dΦK
dy

∂φ

∂y
− 2

3
V
∣∣
K
a− 1

3

dV

dΦ

∣∣∣
K
φ

)
, (6.23)

e−2AK b̈ =
∂2b

∂y2
+ 7

dAK
dy

∂b

∂y
+

2

3
κ25

(
2V

∣∣
K
a+

dV

dΦ

∣∣∣
K
φ

)
, (6.24)

e−2AK φ̈ =
∂2φ

∂y2
+ 4

dAK
dy

∂φ

∂y
+ 3

dΦK
dy

∂b

∂y
− 1

2

(
2
dV

dΦ

∣∣∣
K
a+

d2V

dΦ2

∣∣∣
K
φ

)
, (6.25)

(2) constraint equations

∂ḃ

∂y
− dAK

dy
ȧ = −2

3
κ25
dΦK
dy

φ̇ , (6.26)

∂2b

∂y2
+ 4

dAK
dy

∂b

∂y
− dAK

dy

∂a

∂y
+

2

3
κ25

(
V
∣∣
K
a+

1

2

dV

dΦ

∣∣∣
K
φ+

dΦK
dy

dφ

dy

)
= 0 (6.27)

In order to find the eigenvalue and eigen functions, we set a = ã(y)eiωt, b = b̃(y)eiωt, and φ = φ̃(y)eiωt.
Then the constraint equation (6.26) is reduced to be

db̃

dy
− dAK

dy
ã = −2

3
κ25
dΦK
dy

φ̃ (6.28)

Inserting Eq. (6.28) into another constraint (6.27) and using the equations for a background solution, we
find that the constraint equation (6.27) turns out to be trivial. So we have only one constraint equation
(6.28). Eliminating db̃/dy in (6.23) and (6.25) by use of Eq. (6.28), we obtain two coupled perturbation
equations in terms of ã, φ̃ as

d2ã

dy2
=

[
6

(
dAK
dy

)2

+
2

3
κ25V

∣∣
K
− e−2AKω2

]
ã− dAK

dy

dã

dy
− κ25

(
4
dAK
dy

dΦK
dy

− 1

3

dV

dΦ

∣∣∣
K

)
φ̃− 2κ25

dΦK
dy

dφ̃

dy
,

d2φ̃

dy2
=

(
dV

dΦ

∣∣∣
K
− 3

dΦK
dy

dAK
dy

)
ã− 4

dAK
dy

dφ̃

dy
+

[
2κ25

(
dΦK
dy

)2

+
1

2

d2V

dΦ2

∣∣∣
K
− e−2AKω2

]
φ̃ . (6.29)

Eq. (6.24) is guaranteed by the other two dynamical equations and constraint equations. Eqs. (6.29)
have the asymptotic forms as y → ∞ as

ã = e±
√
A1y , φ̃ = e±

√
A2y , (6.30)

where

A1 = −e−2A∞ω2 , A2 =
1

2

d2V

dΦ2

∣∣∣
Φ=1

− e−2A∞ω2 . (6.31)

Here we choose both negative signs in Eqs. (6.30) because negative signs correspond to out-going wave
modes. We solve numerically these equations (6.29) connecting the above asymptotic solutions and find
the complex eigen frequency ω. For κ5 = 0.1, we obtain a stable mode as ωs = 1.23 + 1.07 × 10−3i and
unstable mode as ωu = 0.644−2.90×10−2i. Compared this unstable mode with the value obtained from
the oscillations after collision found in Fig. 6.4(a) (Notice that we use a proper time τ in Fig. 6.4(a).
Then it should be evaluated in the physical time t). We obtain 0.772 ≈ 1.2 × �[ωu] for the real part of
the frequency and −0.029 ≈ 1.0×�[ωu] for the imaginary part. So we may conclude that the overstable
oscillations after the collision of two domain walls found in Fig. 6.4(a) are explained by the unstable
mode around a static domain wall solution.
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(c) LK = 0.18 and LA = 0.22

Figure 6.10: Energy density ρ on t = const. surfaces: (a) collision of two identical walls at the center,
(b) collision of two walls with different thickness, and (c) two walls with different amplitude. The sharp
peaks represent the domain walls, and the arrows show the directions of a wall’s velocity. For (b) and
(c), all the unspecified parameters are the same as those in (a).

6.2 Dynamics of colliding branes and black brane production

It is known that primordial black holes and domain walls may have been produced in the early universe
through the physical process of the collapse of cosmological density perturbations and the series of phase
transitions during the cooling phase of universe. On the other hand, black holes and domain walls
(also known as branes) also play an important role in string theory as fundamental constituents. In
addition, according to M-theory, branes are of particular relevance to cosmology: branes are free to move
in a bulk space, and they may approach and collide, causing the big bang/crunch or an inflation on
branes [246, 248, 432].

In view of the phenomenological relevance, understanding how the domain walls/branes interact
dynamically is an important problem, and more knowledge in this area could help in clarifying many issues
regarding the early universe. In the past few years much attention have been paid to understanding the
dynamics of domain walls (e.g., [13, 152, 161, 320, 327, 417, 437]). In particular, the interaction between
black holes and domain walls has been the subject of study. Nevertheless, even more fundamental
processes like collision, recoil, and reconnection of branes are less understood. The collision and recoil
of domain walls in the cosmological context described above was studied in [437], where a reheating
mechanism via particle productions was discussed within a toy model. In this paper, we consider the
problem from a different perspective. The collision of domain walls/branes is a violent phenomenon, and,
as partially observed in our previous study, a spacetime singularity might appear through a collision.
If this is the case, a low-energy description of colliding branes breaks down at some point, implying
a complete loss of predictability, without the complete theory of quantum gravity. We investigate the
process of collision using a BPS domain wall in five-dimensional supergravity, and our main goal is
to determine the final outcome of the kink-anti-kink collisions including self-gravity. As we will see,
singularity formation is a generic consequence of collisions. However, the singularity is spacelike and
hidden inside the horizon. The horizon extends in a spatially flat direction along the brane so that a
black brane is produced through the collision. To clarify and to provide further examples of black brane
production, we will also study collisions using another model of domain walls.

6.2.1 Model I

The system we intend to study consists of two domain walls that are initially located far away from each
other. The initial data for such a configuration is constructed by superposing domain wall solutions in an
appropriate manner. As a model of a domain wall, we consider a gravitationally interacting scalar field
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Figure 6.11: R and RabcdRabcd at t =const. surface, corresponding to the simulations in Fig. 6.10.

 0

 10

 20

 30

 40

 50

 60

-30 -20 -10  0  10  20  30

t

z

u v
u=const v=const

singularity
kink

antikink

(a)

 0

 10

 20

 30

 40

 50

 60

-30 -20 -10  0  10  20  30

t

z

u v
u=const v=const

singularity
kink

antikink

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  25  30  35  40  45  50  55

β

t

β0=0.2
β0=0.4
β0=0.6
β0=0.8

(c)

Figure 6.12: (a) and (b) show the numerical results in the null coordinates, corresponding to Fig. 6.10(a)
and 6.10(b), respectively. Dotted lines with arrows describe the orbit of walls. Thick lines are u, v-
axes, and dotted straight lines show u, v =const., to which the spacelike singularity asymptotes. The
position of a wall is defined by its maximum energy density. (c) Time variation of the (kink) wall’s speed.
Irrespective of the initial speed, the final speed after the collision goes to unity.

of the Lagrangian L = R
2κ2 − 1

2∇aφ∇aφ− V. The following solution of 5D Einstein equations represent a
single domain wall (Model I), which has a spatially flat direction in three dimensions d
x23.

ds2 = e2U (−dt2 + d
x23) + dr2 , U = −L
2

3

[
log

[
cosh

(
2(r − r0)

D

)]
+

2a(r − r0)

D

]
, (6.32)

φ =
2L

κ

{
tan−1

[
tanh

(
r − r0
D

)]
− π

4

}
, V (φ) =

2L2

3κ2D2

[
ω0 + ω1 cos

(
κφ

L

)
+ ω2 cos

2

(
κφ

L

)]
,

where ω0 = 3 − 4a2L2, ω1 = −8aL2, ω2 = −3 − 4L2. There are three unfixed parameters, i.e., wall
thickness δ, amplitude L of scalar field, and the position r0 of the kink’s core. We will hereafter take
κ2 = 1. We will call this domain wall solution the kink solution (for a < 0). The anti-kink solution is
defined by the reflecting r-coordinate in the above solution. In the limit of r → ±∞, the scalar field
asymptotes constants, and the scalar potential plays the role of the cosmological constant Λ = κ2V in
the limit

Λ = − 8L4

3D2

[
1 + a sign(r)

]2
r→±∞

. (6.33)

The domain wall for |a| < 1 gives a warp factor decreasing for both infinities of an extra dimension, and
the cases of |a| = 1 become the wall solutions interpolating between AdS and flat Minkowski vacua. For
|a| > 1, the warp factor decreases in one direction, and increases in the other. This domain wall can be
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embedded into the five-dimensional supergravity coupled with hypermultiplets as an exact BPS domain
wall [14]. After integrating out irrelevant fields with canonical normalization, the above solution is found
to be identical to the exact BPS solution in [14]. We shall restrict our analysis to collisions along a r-
direction, preserving the symmetry along the homogeneous 
x3-directions. Even with this simplification,
such a setup is of relevance in a number of physical situations. The initial data for such a collision can
be obtained as follows. First of all, we introduce a new coordinate z by z =

∫
dre−U and work on the

conformal gauge,

ds2 = e2A(t,z)(−dt2 + dz2) + e2B(t,z)d
x2. (6.34)

Then the above single static wall is boosted along the fifth direction z, and we obtain a wall moving with
constant velocity β [437]. To discuss collisions of two moving domain walls, we set a kink solution at
z = −z0 and an anti-kink solution at z = z0, which are separated by a large distance and approaching
each other with the same (or different) speed β. Such superposition and matching of the metric and
scalar field at the center is possible for |a| = 1, and sufficiently smooth initial data that satisfies the
constraint equations at the initial time can be obtained, as long as the spatial separation between the
two walls is much larger than the thickness of walls. Therefore, we take |a| = 1 throughout this paper.
Obviously, we set A = B and velocity Ȧ = Ḃ at the outset, and the initial values of φ̇ and Ȧ are given
by the above construction. During the evolutions, the Neumann boundary conditions are imposed at the
outer boundaries. The asymptotics of the scalar field is φ ∝ (γ|z|/√6/|Λ| + 1)−3/2L2

, and the metric

behaves eA ∝ (γ|z|/√6/|Λ| + 1)−1 as |z| → ∞, where γ = 1/
√

1− β2 is the Lorentz factor. The kink
and anti-kink solutions are characterized by their own width and amplitude, (DK , LK) and (DA, LA),
respectively. Therefore, we have three types of unfixed parameters for the initial setup; D, L and β. Using
a fourth-order accurate finite difference code, we have solved the system numerically and evaluated the
constraints at each time step for various families of initial data. The overall picture does not depend on a
specific choice of the parameters. Some examples of numerical results are reported in Fig. 6.10, in which

the time evolutions of energy density ρ = e−2A

2

[
(∂tφ)

2 + (∂zφ)
2
]
+ V in {t, z}-flame are shown. In all

these cases, the two walls with initial velocity β0 = 0.4 collide at z = 0 and t ≈ 31. Fig. 6.10(a) describes
the symmetric collision of two identical walls. In this case, the walls pass through one another so that the
initial kink solution at z < 0 goes to z > 0. (The kink and anti-kink solutions are distinguished by their
relative field values at the center and infinity z = ±∞.) The energy density of wall, i.e. the wall’s tension,
increases during this process. This would be caused by the fact that the induced universe on the walls are
contracting during the process, with Ḃ < 0. After the collision, a sharp peak of density appears at the
collision point z = 0, and it implies an emergence of singularity. In fact, the curvature diverges rapidly
at the point, whereas the curvature on the wall remains finite and small at the moment (Fig. 6.11). Here
our criterion of curvature singularity is that the Kretschmann scalar exceeds RabcdRabcd > 106. At the
time t ≈ 42 of singularity formation, the energy density localized at z = 0 is 1.2 times bigger than those
on the walls, and a portion of energy is stored in this small region, which will be inside an event horizon,
as we see below.

This basic picture of collision holds for other cases. For the asymmetric collisions, such as two walls
with different width, amplitude, and/or speeds, the emergence of singularity is still a generic feature.
Figs. 6.10(b) and 6.10(c) show examples of collisions in which different thickness or amplitude of scalar
field are taken for the two walls, without changing other parameters. Among these cases, Fig. 6.10(b)
shows that one of the walls recoils at the collision, due to the larger momentum of one of the walls: the
initial kink solution at z = −30 in Fig. 6.10(b) goes to z > 0 after the collision, while the anti-kink at
z = +30 bounds back. Interestingly, in these asymmetric collisions, the curvature singularities appear off
the collision point. For Figs. 6.10(b) and 6.10(c), they are at z = −2.4 and z = −1.2, respectively. For
the wide range of initial parameters, the emergence of singularity is the generic consequence. However,
as expected and discussed below, the singularity does not appear for L � 1 and/or β0 � 1 for fixed D.
In such “non-relativistic” cases, the two walls just pass through, and the final configurations of fields are
well described by the boosted walls, as we applied for the initial configurations.
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Figure 6.13: Schematic conformal diagrams for a single domain wall that asymptotes to AdS (Minkowski)
as z → ∞ (z → 0) (Left) and for colliding walls, producing a black brane (Right).

6.2.2 Horizon formation

The next task at hand is to confirm the nature of singularity. In numerical investigations of singularity
formation and global structure of the spacetime, null coordinates are useful to prevent the singularity
from corrupting the rest of the spacetime. In these coordinates, horizons are not particularly special and
we can follow the collision all the way to the singularity even when a horizon appears through a collision.
We evolve the colliding walls in the double-null coordinates (e.g., [162, 199]),

ds2 = −2e2Adudv + e2Bd
x2 , (6.35)

where
√
2u = (t − z),

√
2v = (t + z). In this gauge, the Einstein equations and the dynamical equation

for a scalar field are split into three dynamical and two constraint equations. Let us first focus on the
symmetric collision in Fig. 6.10(a). The corresponding evolution in the null coordinates is described
in Fig. 6.12. It shows that the curvature singularity is spacelike, approaching u or v = const. lines at
late times, which corresponds to the event horizon. This result is very generic, and we have observed
similar results for the wide range of initial data (velocity, etc.). This system has homogeneous 3-spatial
directions, and so the horizon also extends in these directions. This means that a black brane is produced
by the collision of walls, so that this collision provides the dynamical mechanism of generating black
branes in higher dimensions.

Another interesting feature is that after the collision the walls are trapped around the surface of
the horizon. The final speeds of walls asymptote to the speed of light [Fig. 6.12(c)], irrespective of the
initial velocity. The bulk outside the two walls is not exactly AdS, but asymptotes to it. Because of this
behavior, the walls are pulled outside, accelerating in the directions. A schematic picture of a conformal
diagram is given in Fig. 6.13 Another example corresponding to to the asymmetric collision in Fig. 6.10(b)
is shown in Fig. 6.12(b). Even in this asymmetric collision, the event horizon forms from the point where
the spacelike singularity appears. An interesting difference is that the kink wall escapes from the horizon,
and only the antikink wall is trapped nearby.
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Figure 6.14: The orbits of a wall after the symmetric collisions at t ≈ 60 (β0 = 0.2 and D = 1) are
described for the two models (Model I, II), to show the dependence on L. Solid straight (black) lines
represent u =const. lines along the spacelike singularities for L = 0.1, 0.2.

6.2.3 Model II

The initial data discussed so far is based on the single BPS domain wall. There is another simple model
in which collisions of walls can be tested. It is the model used in the previous work [437],

U = −2L2

3

(
log[cosh(r/D)] +

tanh2(r/D)

4
− r

D

)
, (6.36)

φ =

√
3 L

κ
tanh

( r
D

)
, V =

9L4

4D2κ4

[
2

(
∂W

∂φ

)2

− 8κ2

3
W 2

]
,

where W = − 1
9
√
3

(
κ
Lφ

)3
+ κ√

3L
φ − 2

3 . The basic property of the wall is quite similar to the wall in the

previous sections; the bulk in r > 0 asymptotes to the Minkowski spacetimes, while the spacetime in r < 0
asymptotes to the AdS, recovering (6.33). This single domain wall solution is found simply by extending
the four-dimensional solution in [145]. It is interesting to study various aspects of the wall collisions in this
model and compare them with the previous model. We have performed many simulations and confirmed
that all phenomena observed in the previous sections, such as the singularity and horizon formation hold
with qualitatively similar behaviors. A basic exception is that in this model the walls bounce back after
the collision, contrary to the case in Model I. Thus the causal structures of such a collision look like
Fig. 6.12(a), but kink and anti-kink profiles are exchanged after a collision. This difference comes from
the nonlinear interaction through the dynamics of collision.

Such details of model dependence become more significant for weak field cases in which no singularity
appears. In Fig. 6.14, we compare the difference of the two models by showing the orbits of a wall after
the symmetric collisions for various values of L. For Model I, the spacelike singularity appears for L � 0.1,
and the walls asymptote to the null lines, as discussed above. On the other hand, for L � 0.1, the velocity
of the wall becomes timelike with constant speed after the collisions, and no singularity appears. In fact,
the final configurations of scalar fields are well approximated by superposing boosted walls, so that the
two walls just pass through one another in these cases. Note that if the initial velocity is increased the
horizon appears even for smaller L. For Model II, multiple collisions take place for L� 1 (Fig. 6.14). For
L = 0.01, the collision takes place two times, and then the wall bounces back with constant velocity. This
behavior is compatible with and typical in the non-gravitating system of the previous study [437]. As L
increases, the two walls gravitate toward one another and multiple bounces take place (e.g., L = 0.045).
The marginal value of L is L = 0.05 in Fig. 6.14, in which the gravitational attractive force and the
repulsive force due to outer AdS region are in balance. Therefore, a quasi-static configuration of two
walls is realized after the collision.
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6.2.4 Summary

We have considered a system of colliding domain walls, whose initial data is set up based on a single BPS
domain wall, and found that the role of gravity at the collision is significant in that it can drastically
change the picture of “silent” collisions without self-gravity. The main result of our study is that horizon
formation is a generic phenomena in the collision of walls. In the non-relativistic cases, such as L � 1
and/or β � 1, “silent” collisions without singularity and horizon are realized, but such cases are very
limited and unlikely in an early universe of brane-worlds.

The local interaction and dynamics at the collision depends on which model we are looking at. For
Model I, the domain walls can pass through one another, while in Model II they bounce at the collision
and go back. However, the basic feature of horizon formation does not change in these models, and we
have concluded that the horizon formation (and singularity behind it) is a generic consequence of kink-
anti-kink collisions. The horizon has three homogeneous spatial directions, so that a black three-brane is
produced by such a collision. The bulk outside the two walls is approximated by the AdS, and then we
look at the created black hole as it sits on the AdS. In the pure AdS, a possible black hole is a topological
black hole, which has a flat 3-dimensional hypersurface with vanishing curvature. The end state of the
present scenario would be this type of black hole (Fig. 6.13), although the field fills the bulk outside
the horizon. Here, a further interesting possibility comes from the fact that a spatially homogeneous
horizon suffers from Gregory-Laflamme instability in general. The end state of this instability has not
been clearly understood so far, and the horizon may break up, resulting in multiple black holes that are
stuck on the walls [269]. Furthermore, during this process, a good deal of energy will be radiated away by
gravitational waves, and they remain as primordial gravitational wave backgrounds. Thus this possibility
provides a new way of producing primordial black holes and gravitational waves in an early universe with
higher dimensional bulk filled by walls/branes.

There are several interesting directions, which may be pursued on the basis of these results and/or
by relaxing several conditions. One of such issue is a study of the effects and roles of other fields in
supergravity, a subject sets aside in our analysis. Other fields contained in the hypermultiplets will be
excited (or thermalized) during the collisions, and analyzing them should provide many cosmological
insights into brane-world cosmologies [184]. Furthermore, there is one most important question left to
answer: To what extent is the production of black holes/branes generic in a class of more generic theory
and context, such as collisions of different types of walls with an arbitrary incident angle. We foresee no
major obstacle in anticipating that horizon formation would be suppressed.

6.3 Dimensionality problem

From cosmological aspects, an ultimate goal of string theory is to resolve three interesting problems: the
cosmological constant, the initial singularity problem, and the origin of the three spatial dimensions and
time. For the initial singularity problems, the tachyon condensation of winding strings may play a role
when the radius of universe shrinks smaller than the string scale, according to a recent proposal [323].
Here, we focus on the dimensionality problem in the context of the Brandenberger-Vafa (BV) scenario
[64] (see [129, 232]). In the original BV scenario [64], it is assumed that all nine spatial dimensions
start from the toroidally compactified radii near the string length and the universe is filled with an
ideal gas of fundamental matter, so-called string gas. It is also assumed that the string gas is initially
thermalized at the critical temperature TH , called the Hagedorn temperature [198]. In order to resolve
the dimensionality problem, the string winding modes play a particularly important role. The winding
strings prevent the dimensions which they wrap from expanding, as shown in [449, 450]. The annihilation
of winding and anti-winding strings determines how many dimensions expand and how many dimensions
stay at the string length. A simple counting argument suggests that this annihilation occurs mostly
in the space-time dimensions of D = 4, so the three spatial dimensions become large. Some studies
have already examined various aspects of the BV scenario and it has been extended in a variety of ways
[449, 450, 395, 136, 9, 35, 113, 44, 87, 68, 54, 69]. (See also recent reviews [66, 67, 38]). The interaction
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(annihilation) rate Γ of the string winding modes, with the string coupling eφ, is roughly

Γ � 100 ln E e4φ . (6.37)

(See [113] and Sec. 6.3.4 for more detailed discussion). Assuming that this interaction works efficiently at
an early stage of the universe, decompactification proceeds. However, there are three main assumptions
on this scenario: adiabatic evolution, weak coupling and thermal equilibrium. A critical point of this
scenario is the last assumption about thermal equilibrium [113] (see also [136] for another assessment).
The thermal equilibrium condition is given by

Γ > H, (6.38)

where H is the Hubble expansion rate. Let us briefly estimate this condition based on a typical cosmolog-
ical evolution at the Hagedorn temperature with “string matter”. The radius of the universe asymptotes
to a constant value, whose order is the string scale or several times of it. This means that all dimensions
will be still small, which is inconsistent with our large four dimensions. However, if the radii (of three
dimensions) asymptote to a sufficiently large value, then the universe could be matched to a radiation
dominated phase. This type of evolution is only allowed when the initial dilaton satisfies a certain con-
dition. From the condition indicated with Eq. (6.37), the interaction rate is found to be bounded from
above as

Γ �
(
O(10−1)H3

0

)
H0 , (6.39)

where the subscript 0 denotes the value at an initial time (Sec. 6.3.4). This shows that the thermal
equilibrium condition is not satisfied at the initial phase of the universe, under the adiabatic condition
H � 1. Therefore, no consistent treatment with well-defined thermodynamic functions can be carried
out [118], and all analysis based on such an approach cannot be trusted. This non-equilibrium aspect of
string gas is related to cosmological expansion at the Hagedorn phase. Some features are necessary for
resolving this difficulty, for instance:

• The universe does not evolve toward a constant radius at late times.

• Initial evolution of the universe is modified.

In the latter case, the universe may or may not evolve toward a constant radius, and the initial constraint
for the dilation may be replaced by a weaker condition. There are several possibilities for achieving
the above two evolutions. In the straightforward derivation of the interaction rate (6.39), we have
assumed a simple dilaton-gravity system without taking into account any nontrivial coupling between
the dilaton and “string matter” (gas) fields. Any nontrivial coupling modifies the dynamics of dilaton
and cosmological expansion, and it may weaken the difficult requirement for the initial condition. For
example, incorporating the NS-NS and R-R fields into the action [87, 68], or the effects of higher curvature
corrections [54] will alter the evolution of the universe at an early stage. With these ideas in mind, we
wish to pursue the possibility of resolving the thermal equilibrium issue. We adopt a simple modification
of the scenario by taking into account the dilaton potential. This simple alternative will allow us to study
the system rather extensively and give insight into other possibilities and approaches. We will see that
the above two features are realized in the simple models in the present paper. In the next section, general
aspects of dilaton-gravity and string gas in the extreme Hagedorn regime of high-energy densities are
briefly reviewed. We will take the dilaton potential to be of two types. The first case is discussed in Sec.
III, the second in Sec IV. For both cases, we analyze the dynamics of the Hagedorn regime with a single
scale factor (Hubble radius) and with large and small radii. In Sec. V we discuss the thermal equilibrium
of string gas for the two models. The final section is devoted to summary and discussion. We adopt the
string scale α′ = 1.
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6.3.1 String gas in 10D dilaton gravity

Dilaton-gravity comes from the low-energy effective action of string theory. Ignoring contributions from
the antisymmetric two-form and including a potential V (φ) for the dilaton, 1 the action of this system is
described as

S =

∫
d10x

√
|g|[e−2φ

(
R+ 4(∇φ)2 + V

)
+ LM

]
, (6.40)

where g denotes a determinant of metric gμν and LM denotes a Lagrangian of some matter. Assuming a
spatially-homogeneous universe,

ds2 = −dt2 +
9∑
i=1

e2λi(t)dx2i , φ = φ(t) , (6.41)

we can reduce the action to

S =

∫
dt
√−g00(−g00)

[
e−ψ(

9∑
i=1

λ̇2i − ψ̇2 + V (φ))− F (λi, β
√−g00)

]
, (6.42)

where we have introduced a shifted dilaton ψ ≡ 2φ−∑9
i=1 λi to simplify the obtained equation of motion.

In the reduced action, we have introduced the (one loop) free energy F of a closed string as the Lagrangian
of matter. This is only possible in an early universe in which the string gas is in thermal equilibrium at
the temperature β−1. Variation with respect to g00, λi, ψ yields the following equations of motion:

−
9∑
i=1

λ̇2i + ψ̇2 = eψE − V (φ) ,

λ̈i − ψ̇λ̇i =
1

2
eψPi +

1

4
V ′(φ) , (6.43)

ψ̈ − 1

2

9∑
i=1

λ̇2i −
1

2
ψ̇2 =

1

2
V (φ)− 1

4
V ′(φ) ,

where E = ρe
∑
λi and Pi = pie

∑
λi are the total energy and total pressure in i-th direction, respectively.

These quantities are related to the free energy F by the basic thermodynamic relation:

E = F + β
∂F

∂β
, Pi = − ∂F

∂λi
.

Employing Eqs. (6.43), the conservation of the total energy is

Ė +
9∑
i

λ̇iPi = 0 . (6.44)

The basic equations become simple forms in terms of the shifted dilaton. In some cases, however, the
equations written by the original dilaton are convenient. Here, if we separate the spatial dimensions into
spatial large d-dimensions and small (9− d)-dimensions, which are denoted as

R = eμ, r = eν , (6.45)

respectively,

1We give the dilaton potential in string frame, while corresponding potential in Einstein frame is given in Appendix
6.3.6. Note that the initial data in Einstein frame also differ from ones in string frame.
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6.3.2 Hagedorn regime

The original BV scenario [64] assumed that all nine spatial dimensions are compactified with radii R ∼ 1
and the universe is filled with string gas in thermal equilibrium around the Hagedorn temperature TH
[198]. The partition function has poles depending on the radii of the universe, and accordingly the
equation of state changes. For small radii, the leading order expression for the temperature and the
pressure which come from the density of states Ω is derived in [35]. For large enough E, as a result, the
temperature remains close to the Hagedorn temperature TH , and the pressure is vanishingly small,

T ∼ TH , Pd ∼ 0 , P 9−d ∼ 0 . (6.46)

Therefore, the string gas in the universe with small radii at the Hagedorn temperature can be treated
as a pressureless fluid, as expected by T -duality. As the universe grows with larger radii, the above
mentioned poles move on the β plane. This causes the density of states Ω to change and yields a different
temperature and pressure from those of the former “small radius” regime [119]. There will exist a critical
radius R̄. When the radius is below the critical radius, the universe is still described by a pressureless
state at the Hagedorn temperature, while above the value, the temperature and the equation of state are

1

T
=
βHE − 9

E
, P ∝

( E

βHE − 9

)
dRd(E) , (6.47)

where d denotes the expanding spatial dimensions. Note that these quantities depend on the total energy
E and that it is necessary to solve the equation of motions for E as a function of time numerically. It
was shown that the radius rapidly expands like an acceleration expansion while the dilaton continues its
monotonic decrease [113].

The above small and large radius phases are the basic states of string gas near the Hagedorn tem-
perature, and the BV mechanism explains how the particular spatial dimensions enter into the second
phase. These discussions are, of course, based on the assumption of the thermal equilibrium of string
gas and that is the point of our discussion in this paper. When the energy density decreases and the
temperature falls much below the Hagedorn temperature, the string gas will behave as radiation, with
P = 1

dE yielding the radiation dominated evolution, R ∝ t2/(d+1) in [35, 113]. In what follows, we discuss
the evolution of spacetime and dilaton and, based on the analysis, we study the thermal equilibrium of
string gas at the initial Hagedorn regime, where the string gas behaves as pressureless dust.

6.3.3 Time evolution of universe and dilaton

We will take the potential of the dilaton to be of two types, each with a different nature. The first
example is a simple exponential potential (Model I), while the second is a double-well potential (Model
II). In order to describe the typical behavior of the system, we analyze the simple situation, in which all
radii are the same, μ = ν. The more generic situation in which small spatial dimensions (r = eν) and
large spatial dimensions (R = eμ) are separated will be also discussed in. However, as a result, both radii
evolve in the same manner since the potential acts on each radius in the same way.

Exponential potential (Model I)

As a toy model, we discuss a dilaton field with a runaway potential. (See [45] for early works in other
context),

V (φ) = b e2aφ , (6.48)

where a and b are constant parameters. For simplicity, we assume φ<∼0 with a > 0 hereafter to achieve

the weak coupling regime eφ < 1. Additionally, we take |b| = 1 since the basic behavior does not change
according to the magnitude of b. The effective potential in the Einstein frame will allow us to intuitively
understand the behavior of the dilaton. As discussed in Appendix 6.3.6, the effective potential of the
dilaton in the Einstein frame W (φ) is described as

W = −eφ2 V , (6.49)
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and hence the case with b < 0 is the usual exponential potential in the Einstein frame. We will also
analyze this case. For the following two limits, analytic asymptotic solutions can be found. Let us begin
with discussing these solutions before we present numerical solutions.

V → 0 limit

This case is reduced to the standard analysis without the potential term. The equations (6.43) with zero
pressure give

μ̈ = (2φ̇− 9μ̇)μ̇+
1

4
V ′ ,

φ̈ = φ̇2 − 18μ̇2 +
1

4
V + V ′ , (6.50)

E = e9μ−2φ(72μ̇2 − 36μ̇φ̇+ 4φ̇2 + V ) ,

and then the V → 0 approximation yields

d

dt
ln μ̇ = ψ̇ , ψ̈ =

9

2
μ̇2 +

1

2
ψ̇2 ,

d2

dt2
(e−ψ) =

E

2
. (6.51)

Since the total energy is constant, E = E0 = const, obtained from Eq. (6.44), the analytic solutions for
ψ(= 2φ− 9μ) and μ are easily obtained from Eq. (6.51) as

e−ψ =
E0

4
(t− t∗)2 +B(t− t∗) +

B2 − 9A2

E0
, (6.52)

μ = μ∗ +
1

3
ln
∣∣∣ (E0(t− t∗) + 2B − 6A)(B + 3A)

(E0(t− t∗) + 2B + 6A)(B − 3A)

∣∣∣ ,
where t∗ is the time when the condition V (φ) � 0 is satisfied. The integration constants are given by
A = μ̇∗e−ψ∗ , B = −ψ̇∗e−ψ∗ , where μ∗ and ψ∗ are the field values at the time t = t∗. The solutions behave
asymptotically in three ways (see Fig. 6.15(a)). The first type (i) is that in which the radius grows as
limt→0 ln |1/t| and diverges (μ → ∞) at E0(t − t∗) = 2|B + 3A|. At the same time, the dilaton also
grows and diverges 2. These behaviors appear if the conditions B +3A < 0 and |B +3A| < |B − 3A| are
satisfied, yielding 0 < 6μ̇∗ < φ̇∗. The second type of evolution (ii) is that in which the radius contracts as
limt→0 ln |t| and |μ| diverges at E0(t− t∗) = 2|B− 3A|. Similarly, the dilaton contracts. These behaviors
appear if the conditions B − 3A < 0 and |B − 3A| < |B + 3A| are satisfied, yielding 3μ̇∗ < φ̇∗ with
μ̇∗ < 0. The last type (iii) is that in which the radius converges to a constant value, which is achieved
for 0 < B + 3A,B − 3A.

The first two types of evolution will be seen in the double-well potential case. In the present model,
only the last behaviors are important and we comment on its asymptotic radius. The asymptotic evolution
at t→ ∞ of the spacetime is

R∞ = eμ∞ = eμ∗
∣∣∣B + 3A

B − 3A

∣∣∣1/3 , (6.53)

and it converges to a constant radius [449], while the (shifted) dilaton rolls monotonically to the weak
coupling. Without fine-tuning (B � 3A), the asymptotic value R∞ is not very large, and the radius
remains small. We call this solution the convergent solution.

V, V ′ � φ̇μ̇, φ̇2, μ̇2 limit

In the potential dominated case, the equations (6.50) are reduced to

μ̈ =
1

4
V ′(φ) = b

a

2
e2aφ , φ̈ =

1

4
V (φ) + V ′(φ) = b

8a+ 1

4
e2aφ . (6.54)

2At the strong-coupling regime after the growth of the dilaton, we cannot predict what will happen. A possibility of a
static universe in the strong-coupling regime is recently discussed in [69].
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Figure 6.15: Evolution of asymptotic solutions (6.52) with respect to the initial data (μ̇∗, φ̇∗). Other
initial data are fixed, as μ∗ = φ∗ = 0 with t∗ = 0. Fig. 6.15(a) shows the asymptotic solutions with
V = 0. The forbidden region E � 0 is equivalent to 3|μ̇| � |φ̇| � 6|μ̇|. The growing and contracting
solutions correspond to 0 < μ̇∗ � φ̇∗/6 and μ̇∗ � φ̇∗/3 with μ̇∗ < 0, respectively. For the other choice of
initial data (μ̇∗, φ̇∗), the radius converges to a constant value μ∞ of Eq. (6.53). Fig. 6.15(b) shows the
asymptotic solutions for the exponential potential V = be2aφ with a = 2 and b = 1. The forbidden region
E � 0 is equivalent to (9μ̇−

√
9μ̇2 − 1)/2 � φ̇ � (9μ̇+

√
9μ̇2 − 1)/2. The rapidly growing and convergent

solutions correspond to φ̇C < φ̇∗ and φ̇∗ < φ̇C , respectively. The critical velocity φ̇C is approximated
by straight lines of Eq. (6.81) (μ̇∗ � φ̇∗/3 + 5/6) with μ̇∗ > 0 and Eq. (6.83) (μ̇∗ � 2/9φ̇∗) with μ̇∗ < 0
(Appendix B).

As for b = 1, if the initial condition satisfies

8a+ 1

4a
e2aφ∗ > φ̇2∗ , (6.55)

the analytic solutions for these equations are given by

φ = −1

a
ln

{
1

2C1

√
8 +

1

a
sin

[
aC1

(
t− t∗ + C2

)]}
,

μ =
2a

8a+ 1
φ+D1(t− t∗) +D2. (6.56)

Here C1, C2, D1 and D2 are the integration constants given by

C1 =

√
8a+ 1

4a
e2aφ∗ − φ̇2∗ , C2 =

1

aC1
cot−1

∣∣∣∣ φ̇∗C1

∣∣∣∣ , D1 = μ̇∗ − 2a

8a+ 1
φ̇∗ , D2 = μ∗ − 2a

8a+ 1
φ∗ .(6.57)

μ∗ and φ∗ are the field values at the time t = t∗ when the condition V, V ′ � φ̇μ̇, φ̇2, μ̇2 becomes a good
approximation. Both the dilaton and radius diverge at

(t− t∗) ∼ π

aC1
− C2 . (6.58)

We call the solution (6.56) the rapidly growing solution. For the exponential potential case, these features
of the system are understood clearly by employing phase-space analysis in Appendix 6.3.6.

Double-well potential (Model II)
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Model Parameter Type of solution

b > 0 a > 1 convergent solution (φ̇0 < φ̇C)

rapidly growing solution (φ̇0 > φ̇C)
V = be2aφ a ≤ 1 rapidly growing solution

b < 0 a > 1 convergent solution (φ̇0 < φ̇C)

contracting solution (φ̇0 > φ̇C)

convergent solution (H0 > 0 and φ̇0 � 0)

V = λ
4

[(
φ
η

)2

− 1
]2

λ > 0 η � 1 rapidly growing solution (φ̇0 � 0)

λ < 0 stabilized dilaton with φ→ −η. (H0 > 0 and φ̇0 � 0)

Table 6.1: Summary of basic behaviors

As a second model, we consider the double-well potential,

V (φ) =
λ

4

[(φ
η

)2

− 1

]2
, (6.59)

where λ and η are a coupling constant and a vacuum expectation value (VEV) of φ, respectively. Similar
to the previous model, λ is taken to be positive or negative. The later case corresponds to an ordinary
concave effective potential picture W ∼ −V (Appendix 6.3.6). For simplicity, we assume until S?? that
all radii are the same, μ = ν.

For λ < 0

the dilaton stays at the minimum (VEV) of the double-well potential φV = ±η. Expanding φ around the
VEV,

V ≈ O(δφ2) , V ′ ≈ 2λ

η2
δφ+O(δφ2) , (6.60)

we find that Eqs. (6.50) are approximated as

μ̈+ 9μ̇2 ≈ 0 , δφ̈− 2λ

η2
δφ+ 9μ̇δφ̇+

E

4
e−9μ+2φV ≈ 0 . (6.61)

These equations have the following solutions:

δφ ∼ C1J0(z) + C2N0(z) , μ ∼ D2 +
1

9
ln
∣∣∣t− t∗ − D1

9

∣∣∣ , z =

√
2|λ|
η

(
t− t∗ − D1

9

)
, (6.62)

where Jν(z), Nν(z) are the Bessel functions with the amplitude C1 and C2. D1 and D2 are given by

D1 = − 1

μ̇∗
, D2 = μ∗ +

1

9
ln 9|μ̇∗| . (6.63)

Note that when we derive the above solutions, we have used the fact that the last term in (6.61) decays
as e−9μ+2φV ∝ 1/t, so that it can be omitted at late times. The amplitude of δφ becomes ∝ 1/

√
t for

λ < 0, which is equivalent to a decaying solution. We will call this solution the stabilized dilaton solution.

6.3.4 Thermal equilibrium of string gas

We will take the potential of the dilaton to be of two types, each with a different nature. The first example
is a simple exponential potential (Model I), while the second is a double-well potential, discussed in the
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Figure 6.16: (a): Plot of typical convergent solutions of the dilaton φ (blue line) and radius R = eμ

(red line) for μ0 = φ0 = 0, μ̇0 = 0.2, φ̇0 = −3 and a = 2, b = 1. The analytic solutions (green and pink
lines) of Eq. (6.52) are also plotted as a reference. Here the integration constants, μ∗, φ∗, μ̇∗, φ̇∗, are
chosen appropriately. The asymptotic evolutions are well approximated by the analytic solutions. The
same results can be obtained for the case φ̇0 > 0 with μ̇0 � O(1). (b): Plot of typical rapidly growing
solutions for the same initial conditions in Fig. 6.16(a) except for φ̇0 = −1. (c): Typical evolutions of
the stabilizing solutions with the same initial conditions as in Fig. 6.16(b) except for λ = −1, η = 1.
The analytic solutions (6.62) are also plotted as a reference. The dilaton goes to the VEV (φV = −η) as
oscillating. The radius expands monotonically.

next section (Model II). First, we shall discuss the exponential potential case. In order to describe the
typical behavior of the system, we analyze the simple situation, in which all radii are the same, μ = ν.
The more generic situation in which small spatial dimensions (r = eν) and large spatial dimensions
(R = eμ) are separated will be discussed later in this section. In order to resolve the dimensionality
problem, the annihilation of winding strings play a critical role in the context of the BV scenario. The
interaction rate Γ of annihilation, equivalently, the process where any winding/anti-winding string pair
annihilates to the momentum string pair with the coupling given by eφ, is roughly [113]

Γ � 100 ln E e4φ , (6.64)

where 100 is a numerical factor of sum over both spins and momentum states and E is the total energy
of string gas. The thermal equilibrium condition is given by

Γ > H, (6.65)

where H is the Hubble expansion rate. The assumption of the thermal equilibrium of string gas is
necessary for the BV scenario to work. However, a typical cosmological evolution around the Hagedorn
temperature is that the radii of the universe asymptote to a constant value R∞ as described by Eq. (6.53).
As discussed, R∞ does not become large without fine-tuning. It means that all dimensions are still small
and it is inconsistent with our large four dimensions. Nevertheless, if the radii (of three dimensions)
asymptote to a sufficiently large value, the universe could be matched to a radiation dominated phase,
and only such a case is a viable scenario. Therefore, we require that the asymptotic radius will be larger
than a critical radius R̄, i.e., R∞ > R̄. Here R̄ is a characteristic scale which divides a “small” radius
from a “large” one (Sec. 6.3.2). Then, from (6.43) and (6.53), we obtain a constraint equation on the
initial value of dilaton as

eψ0 <
9μ̇2

0

E0

[( (R̄e−μ0)3 + 1

(R̄e−μ0)3 − 1

)2

− 1

]
, (6.66)

where the subscript 0 implies the value at an initial time. Substituting this initial constraint into (6.64),
the interaction rate at an initial state is roughly estimated as
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Figure 6.17: Plot of Γ−H for the model of (a) exponential potential (b = 1) and (b) double-well potential,
respectively. The initial conditions are μ0 = 0, φ0 = −0.1, μ̇0 = 0.3 and φ̇0 = −1 (the rapidly growing
solutions as red and green lines), or φ̇0 = −3 (the convergent solutions as blue and pink lines). Γ−H > 0
means thermal equilibrium. (a): For the rapidly growing solutions, the weak coupling condition (eφ < 1)
breaks down at t � 3 for a = 1 and t � 4 for a = 0.1. (b): For the rapidly growing solutions, the weak
coupling condition breaks down at t � 10 for λ = 1 and t � 15 for λ = 0.5.

Γ � 100 lnE
(9Ḣ2

0

E0

)2

O(10−1) �
(
O(10−1)H3

0

)
H0 , (6.67)

where we have taken R̄ ∼ 3, μ0 ∼ 0 and sufficiently high energy, E ∼ 100. This shows that the thermal
equilibrium condition is not satisfied at an initial condition as long as the adiabatic condition H0 � 1
holds. In what follows, we test the thermal equilibrium condition (6.65) for our models.

Exponential potential case

(i) b > 0 case

The exponential potential with b > 0 and a > 1 allows two types of trajectory for its solutions, i.e., the
rapidly growing and convergent ones, described by the analytic solutions (6.52) and (6.56), respectively.
Firstly, the convergent solution makes the radius grow toward the asymptotic value of Eq. (6.53), yielding
the constraint of Eq. (6.66). However, once the potential term is included, the constraint (6.66) does
not directly restrict the initial value of dilaton at t = t0, but it provides a constraint at a late time,
t = t∗. Therefore, it could relax the constraint on the initial dilaton value, resulting in better realization
of the thermal equilibrium. Figure 6.17(a) plots the thermal equilibrium condition with time: Γ−H > 0
is equivalent to the thermal equilibrium condition. From this figure, we find the thermal equilibrium is
realized until t ∼ 1, which is equivalent to the time scale on which the potential term works, t <∼ t∗. This
duration does not depend sensitively on a. The final scale of the radius is, however, not so large, and it
may be insufficient to continue the decompactification process. Nevertheless, a noteworthy point is that
the thermal equilibrium is realized at the initial phase, contrary to the naive scenario.

Secondly, the rapidly growing solution is the solution in which the radius grows unboundedly, and
thus the initial constraint cannot be applied in this case. Contrary to the convergent case, the dilaton
grows toward the strong coupling, and the weak coupling condition breaks down. We see that the thermal
equilibrium is also realized as seen in Fig. 6.17(a). So the thermal equilibrium is at least realized until the
time of the violating, even though the time of the breaking becomes longer as a decreases. The duration
of thermal equilibrium becomes large at most by a factor of two. For a ≤ 1, all solutions are the rapidly
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growing type, and, for example, the duration is about t ∼ 5 for a = 0.01.

(ii) b < 0 case

In this case, all solutions with a > 1 that satisfy the weak coupling condition become convergent solutions.
Thermal equilibrium is the same as the convergent solutions in b > 0, and hence the initial equilibrium
continues until t ∼ O(1).

Double-well potential case

(i) λ > 0 case

All solutions with η � 1 that satisfy the weak coupling condition become rapidly growing solutions. In
Fig. 6.17(b) we plot the thermal equilibrium condition. The basic behavior of thermal equilibrium is the
same as in the growing solution for the exponential potential with b > 0, except for the time scale: the
initial equilibrium is realized until t ∼ O(10) where the weak coupling condition violates. The thermal
equilibrium is only marginally satisfied at almost all times until the violating.

(i) λ < 0 case

In this case, all solutions which satisfy the weak coupling condition become the stabilized dilaton solutions.
If we take η to be small, e.g., η � O(1), the thermal equilibrium continues unboundedly (Fig. 6.17(b)).
This is because the solution stabilizes the dilaton at the VEV (φ = −η) and then the interaction rate
Γ ∝ e4φ asymptotes to e−4η ∼ O(0.1). At the same time, the Hubble expansion rate asymptotes to zero,
H ∝ 1/t → 0, and then we have (Γ − H)|t→∞ > 0. As Fig. 6.17(b) shows, the thermal equilibrium
continues unboundedly as long as η<∼1. This result is the best situation for the BV scenario in our models.
As for η > 1, the thermal equilibrium is only marginally satisfied at late times, Γ−H ≈ 0.

6.3.5 Summary

We have studied the thermal equilibrium of string gas in the Hagedorn regime where the universe is in
high energy. Thermal equilibrium is the one of the important assumptions for the BV scenario in order to
induce the dynamical decompactification of three large spatial dimensions. However, the initial thermal
equilibrium condition of string gas is not realized in the original scenario based on dilaton-gravity. To
resolve this difficulty, we have explored possibilities for avoiding the issue. As a first step to tackle this
problem, we have studied a minimal modification of the original model, by introducing a potential term
of the dilaton. This simple setup allows us to study the system rather extensively. However, this does
not mean that stabilization of the dilaton or the effects of the potential term is a necessary ingredient.
We wish to emphasize that effects of matter (e.g., flux or any kind of corrections, etc.) would not be
negligible, and taking into account such effects, we could avoid the issue of thermal equilibrium in the
early universe. We expect our simple setup will provide implications for such effects. We have taken the
dilaton potential to comprise two simple potentials, i.e., the exponential potential and the double-well
potential, and have analyzed both the dynamics of the system and the thermal equilibrium condition at
the initial stage of the universe. Even though we have mainly studied the evolution of the scale factor
with same radii, there is no significant difference in the typical evolutions of different radii. Based on the
solutions, we have examined whether they satisfy three basic assumptions, i.e., the adiabatic condition
H0<∼O(1), the weak coupling condition and the thermal equilibrium condition Γ > H. As a result, we
find the following cases.

Exponential potential : V = b e2aφ

(i) b > 0 : the convergent and rapidly growing solution

The convergent and the rapidly growing solutions for a > 1 are acceptable cases. The former case is that
the radius converges to a constant value and the dilaton rolls monotonically to the weak coupling regime.
In the latter case, both radius and dilaton asymptotically grow in short time. These different evolution is
determined by whether the initial velocity of dilaton φ̇0 is smaller or larger than the critical velocity φ̇C .
On the other hand, for a ≤ 1, all numerical solutions are asymptotically the rapidly growing solutions.
Both of two solutions satisfy the thermal equilibrium condition during some initial time.

(ii) b < 0 : the convergent solution
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In this case, the convergent solutions are sensible solutions since the others are contracting evolutions.
For any value of a, all numerical solutions satisfy the thermal equilibrium condition during the initial
time.

Double-well potential : V = λ
4 ((

φ
η )

2 − 1)2

(i) λ > 0 : the rapidly growing solution

For η � 1, all numerical solutions are rapidly growing solutions, and they satisfy the thermal equilibrium
condition during some initial time which is relatively longer than the above cases.

(ii) λ < 0 : the stabilized dilaton

In this case, the dilaton is stabilized and it does hold the weak coupling condition. For any value of η,
all numerical solutions are reduced to the stabilized dilaton solutions. If we choose η<∼O(1), the thermal
equilibrium continues unboundedly.

From these results, we conclude that it is possible to realize the thermal equilibrium of string gas
at the initial Hagedorn regime. At the end of the paper, we would like to ask if the evolutions can be
matched to a late-time universe. For the convergent solutions, the universe will not enter into the large-
radius phase R > R̄, because R̄ does not become large without fine-tuning, as discussed above. Besides,
the time scale of the thermal equilibrium will too short for the BV mechanism to work, compared with
Hubble time. Similarly, for the rapidly growing solutions, the short time scale will be a problem for the
exponential potential. However, for the double-well potential, the duration becomes relatively longer and
the situation is better. Nevertheless, it remains as a problem that the dilaton asymptotes to the strong
coupling, where we cannot predict what will happen.

On the other hand, the stabilized dilaton solutions can make the radius grow as R ∝ t, and it would be
possible to match it to a late-time universe. Moreover, the thermal equilibrium continues unboundedly.
This solution is the best case among all examples presented in our paper. It implies that the (quasi-)
stabilized dilaton at an early stage of the universe improves the situation. Besides, this example implies
an interesting possibility for constructing a model that resolves the stabilization and dimensionality
problem at the same time. It remains an interesting question whether we can build a model which can
be embedded in string theory resolving all problems described above.

6.3.6 Appendix

1. Effective potential
In this Appendix we will show the effective potential of the dilaton in the Einstein frame derived by

conformal transformation. We will use a conformal factor as Ω2 that is a function of the D dimensional
spacetime coordinates xμ. The conformally transformed metric is g̃μν = Ω2gμν , and the determinant of
the metric scales as

√−g̃ = ΩD
√−g .. Consider the dilaton-gravity action in D dimensions,

S =

∫
dDx

√
|g|e−2φ

[
R+ 4(∇φ)2 + V

]
. (6.68)

Under the conformal transformation, the action becomes [283]

S =

∫
dDx

√
|g̃|e−2φΩ2−D

[
R̃+ 4(∇̃φ)2 + (D − 2)(D − 1)Ω−2(∇̃Ω)2 +Ω−2V + 4(D − 1)Ω−1(∇̃Ω)(∇̃φ)

]
.(6.69)

The last term comes from integrations by parts. If we set the conformal factor as Ω2−D = e2φ , the action
in the Einstein frame is

S =

∫
dDx

√
|g̃|
[
R̃+ 4

(
1− D − 1

D − 2

)
(∇̃φ)2 + e

4φ
D−2V

]
. (6.70)

In the case D = 10 the Lagrangian of the dilaton which is minimally coupled to the metric in this frame,
is reduced to

Lφ = −1

2
(∇̃φ)2 −W (φ) , (6.71)
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Figure 6.18: (a): The phase trajectories for a = 2 in (x, y) and (x, z) planes. There are four fixed points
in the upper half-planes. B+ is the attractor point for the rapidly growing solution. C+ divides the
convergent solution from the rapidly growing one. The red lines show the trajectories approaching the
rapidly growing solutions, and the black lines show the trajectories approaching the convergent solutions.
The arrows represent the direction of time evolution. The color of the lines indicates the end state of
these solutions. (b): The phase trajectories for a = 3 in (x, y) and (x, z) planes. The four fixed points
are the same as in Fig. 6.18(a).

with the canonically normalized potential

W (φ) = −eφ2 V (φ) . (6.72)

2. Autonomous phase plane
In this Appendix, we describe the asymptotic behavior of the system with the exponential potential.

We define the dimensionless phase-space variables [103, 10]

x ≡ 2φ̇− 9H

3H
, y ≡

√|V |
3H

, z ≡
√
ρeφ

3H
. (6.73)

The Eqs. (6.50) are reduced to a so-called plane autonomous system, which consists of three evolution
equations and a constraint equation,

x′ =
3

2

[
1− x2 + (1− a)y2 − 3axy2

]
, y′ = −3

2
y
[
(2− a)x+ 3ay2 − 3a

]
,

z′ = −3

2
z(x+ 3ay2) , 1 = x2 + y2 − z2 . (6.74)

Here a prime denotes a derivative with respect to the number of e-foldings, ln(R) = μ. Since the system
is invariant under changing as y → −y and z → −z, we mainly consider only the upper half-planes, y ≥ 0
and z ≥ 0, in the following discussion 3. We solve this system numerically to find the phase-trajectories.
In Figs. 6.18(a) - 6.19(b), we show phase trajectories on the y-x and z-x planes for a = 1/2, 1, 2, 3. In
this system, there are three types of fixed point (critical point), defined by x′ = 0, y′ = 0, z′ = 0:

A± : x = ±1, y = 0, z = 0 ,
3y < 0 corresponds to the contracting evolution (μ̇ < 0), and the lines of phase-trajectory are the same as y ≥ 0, except

the direction of the arrow (Fig. 6.18(a)).
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Figure 6.19: (a): The phase trajectories for a = 1 in (x, y) and (x, z) planes. A+, A− and B+ are the
fixed points. C+ does not exist, contrary to the other cases, and hence there is no trajectory approaching
convergent solutions. All trajectories approach B+, and all these solutions are asymptotically rapidly
growing solutions. (b): The phase trajectories for a = 1/2 in (x, y) and (x, z) planes. A+, A− are the
fixed points. A+ is an attractor point replaced by B+ corresponding to the rapidly growing solutions.
All trajectories approach A+, and these solutions are asymptotically the rapidly growing solutions.

B± : x =
2− a

3a
, y = ±2

√
2a2 + a− 1

3a
, z = 0 ,

C± : x = − 3a

a− 1
, y = ± 1√

a− 1
, z = ±

√
8a2 + 3a− 2

a− 1
. (6.75)

C± is vanishing for 0 < a ≤ 1, and B± is also vanishing for 0 < a ≤ 1/2. For a ≤ 1, there are four
fixed points A+, A−, B+ and C+ in the regime y ≥ 0 and z ≥ 0. For 1/2 < a ≤ 1, there are three fixed
points, A+, A− and B+. For 0 < a ≤ 1/2, A+ and A− are the fixed points. It can be understood from
the global behaviors on the phase-space that A± may correspond to an unstable node (or saddle node).
In the following we show that the critical point B+ describes the rapidly growing solution of Eq. (6.56)
and C+ divides the convergent solution (6.52) from the rapidly growing one. In order to see the behavior
of these solutions on the phase-space, we rewrite these solutions in terms of the phase-space variables
(x, y, z). From Eqs. (6.56), the rapidly growing solution with b = ±1 at late times (μ̇→ ∞) gives

x =
2φ̇− 9μ̇

3μ̇
∝ 1

3
, y =

eaφ

3μ̇
∝ 1/ cos

[
aC1(t− t∗ + C2)

]
, z =

√
ρeφ

3μ̇
=

sin
[
aC1(t− t∗ + C2)

]1−1/a

cos
[
aC1(t− t∗ + C2)

] .(6.76)

Therefore, for a > 1, x and y asymptote to finite values, while z goes to zero at the divergent point
aC1(t − t∗ + C2) ∼ π, as seen in Eq. (6.58). The trajectories approach the attractor point B+, which
are plotted by the red lines in Figs. 6.18(a)-6.18(b). Similarly, all trajectories for 1/2 < a ≤ 1 approach
the attractor point B+ (Fig. 6.19(a)), while for 0 < a ≤ 1/2 the critical point A+ plays a role of
B+ corresponding to the rapidly growing solution (Fig. 6.19(b)). On the other hand, the behavior
of the convergent solution at late times, when the (shifted) dilaton decreases to the negative infinity,
ψ(= 2φ− 9μ) → −∞, follows from Eq. (6.52):

x =
ψ̇

3μ̇
∝ −E0

2
(t− t∗)−B , y =

eaφ

3μ̇
∝ e(

a
2−1)ψ , z =

√
ρeφ

3μ̇
= e−

ψ
2 . (6.77)

Therefore, x → −∞ and z → ∞ for a ≥ 2, while y goes to a finite value at late times. In Figs. 6.18(a)-
6.18(b), the trajectories that approach asymptotically the convergent solution are plotted by the black
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lines. From these figures for a > 1, we see two types of asymptotic trajectory: the trajectory approach-
ing B+ which represents the rapidly growing solution and the one approaching the convergent solution
(|x|, |z| → ∞). These two types of trajectory are clearly divided by flows around the fixed point C+. For
0 < a ≤ 1, all trajectories approach the rapidly growing solution because the fixed point C+ disappear as
shown in Figs. 6.19(a) and 6.19(b). From these figures, for a > 1, we can estimate the critical line which
divides the rapidly growing solution from the convergent one in the phase-plane (x, y). The critical line
is approximated by the straight line passing through A− and C+

y � −
√
a− 1

2a+ 1
(x+ 1) . (y ≥ 0) . (6.78)

Therefore, the trajectories that asymptote to the convergent solution are given by

y <∼−
√
a− 1

2a+ 1
(x+ 1), (6.79)

while the trajectories that asymptote to the rapidly growing solution are characterized by the opposite
inequality sign. This condition can be rewritten in terms of the initial dilaton and spacetime variables.
Assuming φ0 � 0, the condition for the convergent solution is

φ̇0 <∼ 3μ̇0 − 2a+ 1

2
√
a− 1

, (6.80)

which is applicable for the expanding case μ̇0 > 0 (y > 0). In our numerical analysis, we vary the initial
velocity of the dilaton, fixing other initial conditions. From the above equation, the critical velocity for
the initially expanding case that divides the late-time evolutions is approximately given by

ϕ̇C ∼ 3μ̇0 − 2a+ 1

2
√
a− 1

. (6.81)

Any velocity lower than the critical velocity yields the convergent solution, while any velocity beyond
the critical one yields the rapidly growing one. The analytic estimation (6.81) is in good agreement with
the critical velocity φ̇C obtained from the numerical analysis. For example, we find φ̇C/ϕ̇C ∼ 0.88 for
μ̇0 = 0.2 and φ̇C/ϕ̇C ∼ 1.3 for μ̇0 = 0.5, based on our numerical simulation for a = 2. For the contracting
case y < 0, the trajectories asymptoting to the convergent solutions are obtained from Fig. 6.18(a):

x>∼0. (y < 0) . (6.82)

The condition required for the convergent solution is 2φ̇0 <∼ 9μ̇0, and then the critical velocity ϕ̇C for
μ̇0 < 0 is

ϕ̇C ∼ 9/2μ̇0. (6.83)
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Conclusions

We will conclude this thesis. It is known from the modern accurate observations, surprising us greatly,
that the current universe is mainly about 90 percents fulfilled with the unknown dark components: dark
energy and dark matter. The recent WMAP observational data tells us the universe is made of dark
energy (74%), dark matter (22%), and ordinary matter (4% ) such as baryon. The modern universe not
only needs the dark components but also inflation leading to early accelerating expansion. These unknown
components of the universe may be not independent of the unified theory of all forces existing in nature.
For the recent studies of the unified theory, one of most promising approaches is a superstring theory,
or M-theory, considered as a quantization of fields including gravitational interaction. The cosmological
implications of string theory are recent paid more attention to, that is the so-called string cosmology. It
has been partly based on by the basic idea of string theory and corresponding brane-world. The goal
of string cosmology is to give a new answer to the cosmological unresolved questions such as what are
the origin of dark energy and dark matter? String theory has a much richer set of fundamental degree
of freedom, consisting of D-branes. This fundamental objects, D-branes denote non–perturbative effects
of string theory as “soliton” of strings, while string theory has been only described in perturbative form.
Inspired by such speculation, recently a new paradigm on the early universe has been proposed, the so-
called brane-world. The existence of models with more than one brane suggests that branes may collide.
Colliding branes would be a fundamental phenomena in the string cosmology. We have studied several
applications of colliding branes to string cosmology.

First, we have estimated a reheating temperature by collision, which is relate to the ekpyrotic universe
scenario (Sec. 5.2). We introduced scalar field coupled with domain walls denoting branes and this work
would provide a new reheating mechanism. For simplify, in the case of Minkowski spacetime, we have

calculated a quantum particle creation and estimated the reheating temperature as TR ≈ 0.88 ḡ N
1/4
b ,

where g and Nb denote the coupling constant and the number of bounces. It can provide an efficient value
of reheating temperature to have the baryogenesis at the electro-weak energy scale. Moreover we have
considered a standard particles (fermions) which is confined on such domain walls (Sec. 5.3). We have
studied the behaviour of five-dimensional fermions localized on branes, when two parallel branes collide
in a five-dimensional Minkowski background spacetime. We found that most fermions are localized on
both branes as a whole even after collision. However, how much fermions are localized on which brane
depends sensitively on the incident velocity and the coupling constants unless the fermions exist on both
branes. This work is a first step. Since we have discussed only the case of zero-momentum fermion on
branes (
k = 0), we have only a single state on each brane, which constrains the fermion number to be
less than unity. If we take into account degree of freedom of low energy fermions, we can put different
states of fermions on each brane. This is future work and we expect it to resolve baryon and anti-baryon
antisymmetry, Δnb/s ∼ 10−10. In the case of collision of two vacuum branes, nothing happens in the
present approximation, however, the pair production of fermion and antifermion, for which we have to
take into account the momentum k, may also occur at collision. This pair production process may also
be important future work. Based on Sec. 6.1, including self-gravity, we studied collision of two domain
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walls in 5-dimensional asymptotically Anti de Sitter spacetime. We have evaluated a dynamics of 5D
scalar field as the domain wall with self-gravity and investigated how a negative cosmological constant in
the bulk changes the result shown in Minkowski background. As a result, for small value of gravitational
effect, the collision process is the same as Minkowski case, but for large case, it becomes an unstable
oscillation and then the singularity appears after collision. Hence the appearance of singularity in the
present model could be understandable because we take into account a gravitational effect in collision
of two domain walls. In the time evolution of our universe, we find that the universe first expands a
little just before collision and then contracts just after collision. We cannot explain our hot big bang
universe as it is. However, we have found a possibility to formation of higher dimensional black holes by
colliding branes (Sec. 6.2). Finally, for the topic of dimensionality problem, based on Sec. 6.3, we have
studied a thermal equilibrium of string gas at Hagedorn temperature. In this work, we found a solution,
which implies that the (quasi-) stabilized dilaton at an early stage of the universe improves the situation.
Besides, this example has implied an interesting possibility for constructing a model that resolves the
stabilization and dimensionality problem at the same time.
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