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Abstract

This paper explains the binary choices of agents and portfolio selection under higher-

degree risk conditions. First, we re-examine the equivalence of (m,n)th-degree stochastic 

dominance and preference order for agents exhibiting (m,n)th-degree mixed risk aversion. 

Next, we demonstrate sufficient conditions for increased demand for a risky asset when the 

return distribution of portfolios undergoes (m,n)th-degree stochastic dominant shift. This 

shift includes the (1,n)th and (2,n)th-degree stochastic dominance as well as mean-preserving 

spread, downside risk, and outer risk. The results depend on an upper bound of higher-

degree relative risk aversion coefficients, and we investigate their implications.

1   Introduction

Analyzing how changes in endogenous risk parameters affect agents’ behavior is one of 

the problems in comparative statics. Specifically, the effect of stochastic dominant shifts on 

equilibrium prices of portfolios and agent behavior in the risky asset market has been 

reported by Hadar and Seo (1990), Gollier (2001), Ohnishi and Osaki (2007), and Jokung 

(2013). In this paper, we focus on (m,n)th-degree stochastic dominance introduced by Wong 

(2019) to characterize agent behavior under higher-degree risk. (m,n)th-degree stochastic 

dominance encompasses various stochastic dominance criteria and higher-degree risks, such 

as mean-preserving spread by Rosthchild and Stiglitz (1970), increase in higher-degree risks 

by Menezes, Geiss, and Tressler (1980) and Menezes and Wang (2005), and (1,n)th and (2,n)

th-degree stochastic dominance by Denuit and Eeckhoudt (2013).

This paper obtains the following results: First, we re-evaluate the equivalence of (m,n)

th-degree stochastic dominance and preference order for agents exhibiting (m,n)th-degree 

risk-aversion by modifying the condition as proposed by Wong (2019). Second, we establish 

sufficient conditions for an increase in optimal demand for a risky asset due to (m,n)th-
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degree stochastic dominant shift in the return distribution of portfolios. These conditions 

impose an upper bound of the agent’s higher-degree relative risk aversion. Finally, we pro-

vide examples illustrating the implications of the increase in optimal demand for the risky 

asset and the upper bound on higher-degree relative risk aversion.

This paper is structured as follows: Section 2 revisits the relationship between (m,n)th-

degree stochastic dominance and (m,n)th-degree mixed risk aversion. Section 3 presents the 

model and results conditions for increased demand in the risky asset. Section 4 illustrates 

the implications of the conditions for the increase in optimal demand for the risky asset. The 

final section concludes.

2   (m,n)th-Degree Stochastic Dominance Criteria

2.1   Preliminaries
Consider random variables ix  in some interval [ , ]x x  for each i = 1,2. Denote each cumu-

lative distribution function as ( )iF x , where ( ) 0iF x =  and ( ) 1iF x = . Let 1( ) ( )
x

n n
i i

x
F x F y dy-= ∫  

be the sucssesive integration of the cumulative distribution function. We introduce (m,n)th-

degree stochastic dominance defined by Wong (2019) as follows.

Definition 1 (Wong, 2019). For all two integers, n and m, such that n ≥ m ≥ 1, and any two 

random variables, 1x  and 2x , we say 1x  is riskier than 2x  via (m,n)th-degree stochastic domi-

nance if

1 2

1 2

1 2
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( )

( )

(
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( ) for all [ , ].)

s s
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F x F x k m n

F x F x x x x

= = …

≥ = + …

≥ ∈

Denote the (m,n)th-degree stochastic dominance as follows: given two random variables 

1x  and 2x , 2x  dominates 1x  in the sense of (m,n)th-degree stochastic dominance, denoted by 

) 21 ( ,m n SD xx ≼  when 1x  is riskier than 2x  via (m,n)th-degree stochastic dominance. If m = n, (n,n)

th-degree stochastic dominance is equivalent to nth increase in risk introduced by Ekern 

(1980). Define this order as ≼nIR corresponds to ≼(n,n)SD.

In particular, the mean-preserving spread by Rothschild and Stiglitz (1970) is identical 

to the second increase in risk. Menezes, Geiss, and Tressler (1980) defined an increase in 
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downside risk, which shifts the risk to the left while preserving the mean and variance. A 

third increase in risk is equivalent to downside risk. As defined by Menezes and Wang 

(2005), an increase in outer risk indicates that the shift has higher peaks and longer tails 

with a constant mean, variance, and third central moment, corresponding to a fourth increase 

in risk.

2.2   (m,n)-Concave Order
Denote vNM utility function as u: →

, u(x), which is differentiable at least n times. 

Let u(s)(x) be sth successive derivative of u(x) for s = 1,2,…, n. Consider a class of (m,n)-con-

cave utility functions for two integers, n and m, such that n ≥ m ≥ 1, as follows.

1 ( )
( , ) { ( ) ( 1) 0 for , , }.( )s s
m n cv u x u x s m n+

- = | - ≥ = …𝒰

Same as Wong (2019), we say u(x) exhibits (m,n)th-degree mixed risk aversion if u(x) ∈  

𝒰 (m,n)-cv. When m = 1, 𝒰 (1,n)-cv is equivalent to the class of s-increasing concave utility func-

tion, 𝒰 s-icv, such that (-1)s+1u(s)(x) ≥ 0 for s = 1,…, n. Caballé and Pomansky (1996) showed that 

allowing n to approach infinity results in all odd derivatives of u(x) being positive and all 

even derivatives being negative, making u(x) completely monotone. In this case, (1,n)th-

degree mixed risk aversion becomes mixed risk aversion. When m = n, 𝒰 (n,n)-cv becomes the 

class of s-concave utility function, 𝒰 s-cv, where (-1)s+1u(s)(x) ≥ 0. Thus, (n,n)th-degree mixed 

risk aversion degenerates the nth-degree risk aversion by Ekern (1980).

Consider (m,n)-concave order as follows: given two random variables 1x  and 2x , 1x  is 

said to be smaller than 2x  in the (m,n)-concave order, denoted by 1x ≼(m,n)-cv 2x  when E [u( 2x )] ≥  

E[u( 1x )] for all u(x) ∈ 𝒰 (m,n)-cv. Similarly, let ≼s-icv and ≼s-cv be the orders which satisfies 

E [u( 2x )] ≥ E[u( 1x )] for all u(x) ∈ 𝒰 s-icv and u(x) ∈ 𝒰 s-cv, respectively. It is clear that ≼(1,n)-cv = 

≼n-icv and ≼(n,n)-cv = ≼n-cv.

Wong (2019) mentions the equivalence of (m,n)-concave order and (m,n)th-degree sto-

chastic dominance. For the sake of completeness in the proof, we revise Lemma 1 of Wong 

(2019) as follows.

Proposition 1.   The following holds for all two integers, n and m, such that n ≥ m ≥ 1:

1 ( , ) 2

1 1
1 2

1 ( , ) 2

,

[ ] [ ] for 1, ,

m n cv

s s

m n SD

x x

E x E x s m

x x

-

- -


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 
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≼
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1 1
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- -

- -

- -
+ +
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 - ≥ - ∈

 

 

 

where (⋅)+ = max[⋅, 0].

Proof. See Appendix A.1.

Proposition 1 means that (m,n)-concave order can be characterized by (m,n)th-degree 

stochastic dominance as well as 1[( ) ]s
iE x x -

+-   for s ∈
 when non-central moments equal for 

all s = 1,…,m - 1. 1[( ) ]n
iE x x -

+-   is referred to as the nth-degree Lower Partial Moment (LPM) 

by Bawa (1975), Fishburn (1977), Ingersoll (1987), and Harlow and Rao (1989). LPM 

becomes larger when smaller values of ix  occur, which can be interpreted as a nonnegative 

index with the left tail on the distribution. Therefore, the random variables with a larger 

LPM are also riskier in the sense of stochastic dominance criteria.

For instance, the following holds for (1,3)th-degree stochastic dominance.

1 3 2 1 (1,3) 2

2 2
1 2 1 2[ ] [ ], [( ) ] [( ) ] [ , ].

icv SDx x x x

E x x E x x E x x E x x x x x

-

+ +

⇔

⇔ - ≥ - - ≥ - ∀ ∈

 

   

≼ ≼

In general, (1,n)th-degree stochastic dominance corresponds to nth-degree stochastic domi-

nance. In (2,3)th-degree case,

1 (2,3) 2 2 1

1 (2,3) 2

2 2
1 2 1 2

, [ ] [ ]

[ ] [ ], [( ) ] [( ) ] [ , ].

cv

SD

x x E x E x

x x

E x x E x x E x x E x x x x x

-

+ +

=

⇔

⇔ - = - - ≥ - ∀ ∈

   

 

   

≼

≼

Similarly, (2,n)th-degree stochastic dominance becomes mean-preserving nth-degree stochas-

tic dominance as in Denuit and Eeckhoudt (2013). This way, Proposition 1 enables the 

demonstration of equivalence with commonly used stochastic dominance criteria.

3   The Impact of Demand for Higher Degree Stochastic 
Dominant Shift

In this section, we consider a standard portfolio problem, the same as Gollier (2001), 

and explain the conditions for the optimal demand on the risky asset to increase when the 

return distribution of the risky asset shifts due to (m,n)th-degree stochastic dominance or 

nth increase in risk.
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3.1   The Model
Consider an economy in which one risk-free asset, one risky asset, and an agent with a 

concave vNM utility function. The agent faces the problem of determining the optimal con-

sumption (W - α 1,α 1) of his consumption, where W is the agent’s initial wealth in +,α 1 is the 

amount invested in the risky asset, and W - α 1 is the amount invested in the risk-free asset. 

The portfolio amount at the end of the period can be given as

1 1 0 0 1 1( )(1 ) 1 ,( )W r x w xα α α- + + + = +  (1)

where

r is the return of the risk-free asset in +,

0x  is the return of the risky asset over the period,

w0 = W(1 + r) is future risk-free wealth in the portfolio,

1x = 0x - r is the excess return of the risky asset in [ , ]x x .

Let F1(x) be the distribution function of the excess return on the risky asset. Assume the 

agent is not allowed to short-sell each asset. For the existence of a positive solution, addi-

tionally assume E [ 1x ] > 0 and 1x  alternates in sign. For equation (1), the optimization problem 

for the agent to choose the demand of risky asset may be written by

1

0 1 1max [ ( )].E u w x
α

α+  (2)

The first-order condition for problem (2) is

1 0 1 1[ ( )] 0,E x u w xα ∗′ + = 

where α 1
∗ is the optimal demand for the risky asset.

We examine the following question: Under what conditions does a distribution change 

lead to an increase in the optimal demand for the risky asset? To explore this question, we 

define the excess return of the risky asset as the change in the distribution of 1x , denoted by 

2x ∈ [ , ]x x . Let F2(x) be the distribution function of 2x . By concavity of objective function for 

α 1, the change in the distribution increases the optimal amount in the risky asset if and only 

if

1 0 1 2 0 2[ ( )] 0 [ ( )] 0,E x u w x E x u w x′ ′+ = ⇒ + ≥    (3)

where α 1
∗ is unity. Condition (3) means that when the optimal exposure to risky asset 1x  is 

unity, the optimal demand of 2x  as the change in the distribution is larger than unity. This 

condition is equivalent to the following condition as
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1 0 1 0 2 1[ ( )] 0 ( )[ ( ) ( )] 0.
x

x
E x u w x xu w x f x f x dx′ ′+ = ⇒ + - ≥∫  (4)

Therefore, the condition for increased demand for the risky asset can be formulated as the 

difference in excess return densities, with this difference signifying the distributional shift. 

Subsequent analyses will explore higher-degree distributional shifts and elucidate their 

effect on optimal demand.

3.2   (m,n)th-Degree Stochastic Dominant Shift
This section elucidates the impact of (m,n)th-degree stochastic dominance shifts on the 

demand for the risky asset. Consider a distributional shift where 2x  dominates 1x  in the 

sense of (m,n)th-degree stochastic dominance, i.e., 1x ≼(m,n)SD 2x . Subsequently, we provide the 

condition for an increase in the demand for the risky asset when subjected to the (m,n)th-

degree stochastic dominant shift in the distribution.

Proposition 2. Suppose the agent’s vNM utility function u: →
, u(x) is concave. The 

shift in the return distribution increases the optimal demand for the risky asset for all u(x) 

∈ 𝒰(m,n+1)-cv if the following conditions hold for all two integers n and m where n ≥ m ≥ 1:

1 ( , ) 2

( 1)

( )

,

( )
for all [ , ], and , , .

( )

m n SD

k

k

x x

u x
x k x x x k m n

u x

+





- ≤ ∈ = …


 ≼

Proof. See Appendix A.2. ◻

Proposition 2 specifies the sufficient condition for an increase in demand for the risky 

asset under the assumption of 1x ≼(m,n)SD 2x . Note that this sufficient condition places con-

straints not only on the agent, who exhibits (m.n)th-degree mixed risk aversion but also sets 

an upper bound on 
( 1)

( )

( )

( )

k

k

u x
x

u x

+

-  for k = m,…, n. This broader constraint arises because the 

condition for the increase in optimal demand for the risky asset relies on the derivative of 

the objective function rather than the utility function.

For each s = 1,…, n, let

( 1) ( 1)

1 1( ) ( )

( ) ( )
( ) : and ( ) :

( ) ( )

s s

s ss s

u x u x
x x x

u x u x

+ +

+ += - = -ℛ 𝒜
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be s + 1th-degree relative risk aversion and s + 1th-degree absolute risk aversion, 

respectively. In their work, Jindapon and Neilson (2007) introduced Arrow-Pratt and Ross 

risk aversion measures for higher degrees and elucidated the impact of comparative higher-

degree risk aversion. Additionally, Kimball (1990) demonstrated the relationship between 

precautionary savings and 𝒜3(x), which is referred to as absolute prudence. Similarly, 

Kimball (1993) termed 𝒜4(x) as absolute temperance. Consequently, the condition for an 

increase in the demand for the risky asset imposes an upper bound on the k + 1th-degree rel-

ative risk aversion for each k = m,…, n.

For some examples, in the case of (1,3)th-degree stochastic dominant shift, the further 

condition on concave vNM utility function is

4 5 (4)
2 3( 1) ( ) 0, ( 1) ( () 0, ) ( )1, 2,u x u x x x′′′- ≥ - ≥ ≤ ≤ℛ ℛ

and

4 3 for al) [( l , ].x x x x≤ ∈ℛ

While the condition encompasses u(x) ∈ 𝒰4-icv, it’s worth noting that (1,3)th-degree stochastic 

dominance implies 3-increasing concave order. As a generalization, the (1,n)th-degree sto-

chastic dominance shift provides insight into the risk-taking behavior of agents with u(x) ∈  

𝒰n+1-icv and ℛk+1(x) ≤ k for k = m,…, n and all x ∈ [ , ]x x . On the other hand, it can be associated 

with the binary choice behavior of agents with u(x) ∈ 𝒰n-icv.

Similarly, with respect to the (2,3)th-degree stochastic dominant shift,

4 5 (4)
3( 1) ( ) 0, ( 1) ( ) 0, 2,( )u x u x x′′′- ≥ - ≥ ≤ℛ

and

4 3 for al) [( l , ].x x x x≤ ∈ℛ

Therefore, in the case of distribution changes where the means are equal, it is not relative 

risk aversion but higher-degree relative risk aversion that affects the agent’s risk-taking.

3.3   nth Increase in Risk
In this section, we investigate a distributional shift where 2x  dominates 1x  in the sense 

of nth increase in risk, 1x ≼nIR 2x . As discussed in the previous section, ≼nIR is equivalent to 

(n,n)th-degree stochastic dominance. Consequently, the condition for an increase in the opti-

mal demand for the risky asset becomes immediately apparent.
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Corollary 1. Suppose the agent’s vNM utility function u: →
, u(x) is concave. The shift 

in the return distribution increases the optimal demand for the risky asset for all u(x) ∈  

𝒰(n,n+1)-cv if the following conditions hold for all integer n where n ≥ 1:

1 2

1

,

( ) for all [ , ].

nIR

n

x x

x n x x x+




≤ ∈

 ≼
ℛ

Proof. Substituting m = n in Proposition 2 satisfies the above statement. ◻

Since the distribution shift enforces the constraint that the kth non-central moments 

become equal for k = 1,…, n - 1, the constraint on higher-degree e risk aversion is reduced 

to one. For instance, with mean-preserving spread, the sufficient condition for an increase in 

demand for the risky asset is

4
3( 1) ( ) 0and 2 for all [ , ]) .(u x x x x x′′′- ≥ ≤ ∈ℛ

In the case of a third increase in risk (downside risk or mean-variance-preserving spread),

4 5 (4)
4( 1) ( ) 0, ( 1) ( ) ( )0 and 3 for all [ , ].u x u x x x x x′′′- ≥ - ≥ ≤ ∈ℛ

When the agent faces outer risk (mean-variance-skewness-preserving spread),

5 (4) 6 (5)
5( 1) ( ) 0, ( 1) ( ) 0, an (d 4 for all ,) [ ].u x u x x x x x- ≥ - ≥ ≤ ∈ℛ

From the examples, Proposition 2 is comprehensive, including the results related to nth 

increase in risk.

4   An Interpretation of the Condition for Increase in Demand

This section considers the higher-degree utility premium and binary lotteries to provide 

the interpretation of the effect of agents’ risk-taking on the higher-degree distributional 

shift. Following Courbage, Loubergé, and Rey (2018), as well as Wong (2019), we introduce 

a non-monetary measure of risk premium, referred to as the (m.n)th-degree utility premium. 

This measure considers both the initial wealth and the demand for the risky asset and is 

defined as follows:

0 0 2 0 1, : [ ( )] [ ( )].( )u w E u w x E u w xπ α α α= + - + 

To represent the condition for an increase in demand by the (m.n)th-degree utility premium, 



The Effects of (m,n)th-Degree Stochastic Dominant Shifts in a Distribution of Portfolio Returns

─ 67 ─

condition (4) can be rewritten as follows.

0 1 2 0 1 2 0 1 1 0 1 1

0 0

0 1 0 1

0 0

[ ( ( ) ) ( )] [ ( ( ) ) ( )]
lim l

( ) ( )

im

, ,
lim limu u

E u w x u w x E u w x u w x

w w

α α

α α

α α α α α α
α α

π α α π α
α α

∗ ∗ ∗ ∗

→ →

∗ ∗

→ →

+ + - + + + - +≥

+⇔ ≥

   

(5)

Thus, the distributional shift increases the optimal amount in the risky asset if and only if

0 1 0 1( ), ( , ).u uw wπ α α π α∗ ∗+ ≥ (6)

Let’s assume α ∗ = 0 for the sake of simplification. Under this simplification, condition (6) 

degenerates into π u(w0,α ) ≥ 0. According to Proposition 1, this implies that 2x  dominates 1x  

in the sense of (m,n)th-degree stochastic dominance when u(x) ∈ 𝒰(m,n)-cv and 1 1
1 2[ ] [ ] for 1, ,s sE x E x s m- -= = …   

1 1
1 2[ ] [ ] for 1, ,s sE x E x s m- -= = …  , and the converse is also true.

Similar to Magnani (2017) and Wong (2019), we consider the two 50 - 50 lottelies given 

initial wealth w0. Lottery A provides either (α 1
∗ + α ) 2x  or α 1

∗
1x , and Lottery B provides either 

(α 1
∗ + α ) 1x  or α 1

∗
2x . Then, lottery A is equally or more favored than lottery B if and only if

0 1 2 0 1 1

0 1 1 0 1 2

1 1
[ ( ( ) )] [ ( )]

2 2

1 1
[ ( ( ) )] [ ( )],

2 2

E u w x E u w x

E u w x E u w x

α α α

α α α

∗ ∗

∗ ∗

+ + + +

≥ + + + +

 

  (7)

which satisfies necessary and sufficient condition for condition (4). When risk size α 1
∗ is 

assigned to 1x  and 2x  in each lottery, lottery A has risk size α  assigned to risk 2x , while lot-

tery B has risk size α  assigned to risk 1x . In this case, lottery A has better risk 

apportionment than lottery B if and only if the distribution change increases the optimal 

amount in the risky asset.

To examine the effect of the upper bound for higher-degree relative risk aversion in 

Proposition 2, we recall condition (5) as follows:

0 1 0 1

0

, ,
lim 0

( )
.

( )u uw w
α

π α α π α
α

∗ ∗

→

+ - ≥ (8)

If 1x ≼(m,n)SD 2x , then 1 1
1 2[( ) ] [( ) ]s sE x x E x x- -- = -   for s = 2,…,m. Consequently, by expanding 

the nth-order Taylor series for π u (w0,α 1
∗ + α ) and π u (w0,α 1

∗) around w0 + (α 1
∗ + α ) 1x = w0 +  

(α 1
∗ + α )x  and w0 + α 1

∗
2x = w0 + α 1

∗
x , respectively, we obtain（1）

───────────
（1）	 See appendix A.3.



The Effects of (m,n)th-Degree Stochastic Dominant Shifts in a Distribution of Portfolio Returns

─ 68 ─

( )
1 1

0 1 0 1

0

1 ( )
0 1 1
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1

1 ( )
0 1 1

1 1 0 1
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( 1

( ) ( )
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!

k
k

u u

k kn
k

u
k m

k kn
k

k
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w w

u w x

k

u w x
k x w x

k

α

α α

π α α π α
α

α α η η
α

α α α α
α
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∗ ∗

∗ ∗

∗

∗ ∗
∗ ∗

+

∗

→

+

Δ
=

+
=

+ -

- + Δ≈ +

- + Δ= - + ≥

∑

∑ 𝒜 (9)

where 1 2: [( ) [( ) ]]( ) [ ]k k k
k E x x E x xα αΔ = - - -  , 

1

11
,

1 1(
:

( )

)k

k

k

d

d
α

ααη
α α

∗Δ

∗∗

∗ ∗

Δ=
Δ

, ( )
1

( )
0 11

, ( )
0 1 1

:
( )

( )
k

k

u k

u w x

u w x
α

ααη
α α

∗

∗∗

∗ ∗

∂ +=
+ ∂

( )
1

( )
0 11

, ( )
0 1 1

:
( )

( )
k

k

u k

u w x

u w x
α

ααη
α α

∗

∗∗

∗ ∗

∂ +=
+ ∂

.

Therefore, the condition for an increase in the optimal demand for the risky asset can 

be approximated using two demand elasticities: 
1,k αη ∗Δ  and ( )

1,ku αη ∗ . The demand elasticity of 

Δ k (α ) equals a positive constant k. When 1x ≼(m,n)SD 2x , Δ k (α ) represents the scaling factor that 

hedges the (k + 1)th-degree risk at x  relative to the original distribution. Thus, 
1,k αη ∗Δ  can be 

interpreted as the rate of change in the scaling factor for hedging (k + 1)th-degree risk at x  

when increasing the demand of the risky asset by one unit. In contrast, ( )
1,ku αη ∗  represents the 

demand elasticity of u(k), signifying the rate of change in the agent’s kth-degree risk prefer-

ence at x  when the demand of the risky asset increases by one unit. Note that if u (x) ∈ 

𝒰(m,n+1)-cv, then ( )
1,ku αη ∗  is always nonpositive.

From appendix A.2, the upper bound for higher-degree relative risk aversion ensures 

that 
1,k αη ∗Δ

≥ - ( )
1,ku αη ∗  and the nonnegativity of condition (9) when 1x ≼ (m,n)SD 2x  and u (x) ∈ 

𝒰(m,n+1)-cv. Hence, this upper bound condition implies that the increase in the agent’s kth-

degree risk preference does not exceed the increase in the scaling factor for hedging (k + 1)

th-degree risk when the risky asset’s demand increases by one unit. In this case, it approxi-

mately leads to the increase in the optimal demand for the risky asset for all u (x) ∈ 

𝒰(m,n+1)-cv when 1x ≼ (m,n)SD 2x .

5   Conclusion

In this paper, we examined how the behavior of agents with various risk preferences can 

be characterized through (m,n)th-degree stochastic dominance. As a result, we demonstrated 

the equivalence of (m,n)-concave order augmented with non-central moments and (m,n)th-

degree stochastic dominance, which can be reformulated using LPM. This reformulation 

suggests that all the stochastic dominances encompassed within (m,n)th-degree stochastic 
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dominance are applicable to empirical analysis. Furthermore, we showed that when the port-

folio return distribution shifts according to (m,n)th-degree stochastic dominance, upper 

bounds are imposed on all (m + 1) to (n + 1)th degree relative risk aversions as the sufficient 

condition for an increase in optimal demand for the risky asset. These upper bound condi-

tions are expressed as demand elasticities of risk hedging scale and risk preferences, 

highlighting an instance of the implications of higher-degree relative risk aversions.

Appendix: Proofs of the Results

A.1   Proof of Proposition 1
First, we will prove the following:

1 1
1 2

1 1
( , ) 2 1 2

1 1
1 2

1

[( ) ] [( ) ] for 1, , ,

[( ) ] [( ) ] for 1, , ,

[( ) ] [( ) ] for all [ , ]

s s

k k
m n SD

n n

E x x E x x s m

E x E x x k m n

E x x E x x x x x

x x x

- -

- -

- -
+ +

 - = - = …


⇔ - ≥ - = + …
 - ≥ - ∈

 



 

  ≼

for all two integers, n and m, such that n ≥ m ≥ 1.

Proof. Integration by parts on Fi
2 (x) yields

2( ) ( ) ( ) ( )

(( ) .)

x x

i i i i
x x

x

i
x

F x F y dy xF x yf y dy

x y f y dy

= = -

= -

∫ ∫

∫ (10)

Using equation (10) and Fubini’s theorem, Fi
3 (x) can be rewritten as follows:

3 2

2

( )( ) ( ) ( )

(( )

1
( ) .

)

(
2

)

x x y

i i i
x x x

x x

i
x z

x

i
x

F x F y dy x z f z dzdy

x y dy f z dz

x z f z dz

= = -

 = -  

= -

∫ ∫ ∫

∫ ∫

∫

Similarly, for Fi
4 (x),

( )4 3 2

2

3

1
( )

2

1
( )

2

1
( ) .

( ) ( )

( )

3 !
( )

x x y

i i i
x x x

x x

i
x z

x

i
x

F x F y dy x z f z dzdy

x y dy f z dz

x z f z dz

= = -

 = -  

= -

∫ ∫ ∫

∫ ∫

∫
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Thus, by induction, the following holds.

11
(( ) ( ))

( 1) !

x
n n

i i
x

F x x z f z dz
n

-= -
- ∫ (11)

for all integer n such that n ≥ 2.

Define 1 [ ix ≤ x] as the indicator function on ix  such that

1 if
1[ ] .

0 if

i
i

i

x x
x x

x x

 ≤≤ = 
>







Then, equation (11) can be rewritten as

1

1

1

1

( ) ( )

( )

1
( )

( 1) !

1
( ) 1[ ]

( 1) !

1
[( ) 1[ ]]

( 1) !

1
[( ) ].

( 1) !

x
n n

i i
x

x
n

i
x

n
i i

n
i

F x x z f z dz
n

x z z x f z dz
n

E x xx x

x

n

E x
n

-

-

-

-
+

= -
-

= - ≤
-

= - ≤
-

= -
-

∫

∫

 



When x = x , we have

1

1

1
( )

( 1) !

1
[( ) ].

( 1) !

( ) ( )
x

n n
i i

x

n
i

F x x z f z d

x

z
n

E x
n

-

-

= -
-

= -
-

∫



Therefore, 1x ≼ (m,n)SD 2x  if and only if

1 1
1 2

1 1
1 2

1 1
1 2

[( ) ] [( ) ] for 1, , ,

[( ) ] [( ) ] for 1, , ,

[( ) ] [( ) ] for all [ , ],

s s

k k

n n

E x E x s m

E x x E x k m n

E x

x x

x

x xE x x x x

- -

- -

- -
+ +

 - = - = …


- ≥ - = + …
 - ≥ - ∈

 



 



for all two integers, n and m, such that n ≥ m ≥ 1. ◻

Next, we will prove the following: 1x ≼ (m,n)-cv 2x  and 1 1
1 2[ ] [ ] for 1, ,s sE x E x s m- -= = …   if and 

only if one of the following equivalent conditions is satisfied:

1 1
1 2

1 1
1 ( , ) 2 1 2

1 1
1 2

[( ) ] [( ) ] for 1, , ,

[( ) ] [( ) ] for 1, , ,

[( ) ] [( ) ] for all [ , ].

s s

k k
m n SD

n n

E x E x s m

E x E x k m n

E x E x x

x x

x x x x

x x xx

- -

- -

- -
+ +

- = - = …
- ≥ - =




⇔ 



+ …
- ≥ - ∈

 

   

 

(12)≼
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Proof. Sufficiency. Assume that 2x  dominates 1x  in the sense of (m,n)th-degree stochastic 

dominance for all two integers, n and m, such that n ≥ m ≥ 1. Repeatedly integrating by parts 

for E [u ( 2x )] - E[u ( 1x )] n times yields

2 1 2 1

1
( ) 1 1

2 1

( )
2 1

1
( )

2 1

( ) 1
2

( ) ( )

( )[ ( )

[ ( )] [ ( )] ( ) ( )

( 1)

( 1)

( 1)
[( ) ] [( ) ]

!

( 1)
[( ) ]

(

( )]

( )[ ( ) ( )]

( )[ ]

)
( )[

1 !

x x

x x

n
k k k k

k m

x
n n n n

n k
k k k

k m

n

x

n n

E u E u u x dF x u x dF x

u x F x F x

u x F x F x dx

u x E x E x
k

u x E

x

x
n

x x

x

x

-
+ +

=

-

=

-

- = -

= - -

+ - -

-= - - -

-+ - -
-

∑

∫

∫ ∫

∑

 

 



1
1[( ) ]] .

x
n

x
E x x dx--∫ 

(13)

Thus, we can verify that E [u ( 2x )] ≥ E[u ( 1x )] for all u (x) ∈ 𝒰 (m,n)-cv using condition (12). In 

addition, integration by parts on E [ 2x ] - E[ 1x ] yields

2 1 2 1

2 2
1 2

2 1

[ ( ) ( )] [ ]

[ ]

[ [( )] [( )]]

( ) ( )

0.

x x

x x
E E xdF x xdF x

F x F x

E x E

x x

xx x

- = -

= - -

= - - - - =

∫ ∫ 

 

(14)

Similarly, by repeatedly integrating by parts on 1 1
2 1[ ] [ ] 1s sE x E x s- -- -   times for s ≥ 2, we 

obtain the following:

1 1 1 1
2 1 2 1

1
1 1 1

2 1

1

1
1

2 1

1

( ) ( )

[ (

[ ] [ ]

( 1) !

( 1) !

( 1)
[( ) ] [( ) ] 0.

( 1)

) ( )

!

]

[ ]

x x
s s s s

x x

s k
s k k k

k

s k
s k k k

k

E E x dF x x dF x

k
x F x F x

s k

x

x x

s
x xE x E x

k

- - - -

-
- - + +

=

-
- -

=

- = -

-= -
- -

-= - - - =
- -

∫ ∫

∑

∑

 

 

Therefore, 1x ≼ (m,n)-cv 2x  and 1 1
1 2[ ] [ ] for 1, ,s sE x E x s m- -= = …   if condition (12) is satisfied.

Necessity. Assume that 1x ≼ (m,n)-cv 2x  and 1 1
1 2[ ] [ ] for 1, ,s sE x E x s m- -= = …  . It is clear that 

F1
2 (x ) = F2

2 (x ) and E [(x - 1x )] = E[(x - 2x )] based on equation (14) when s ≥ 2. In s ≥ 3 case, by 

repeatedly Integrating by parts on F1
3 (x ) - F2

3 (x ) 2 times, we obtain the following:
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3 3 2 2
1 2 1 2

2 2 2 2
1 2 1 2

2 2
1 2 1 2

[ ]

1
[ ] [ [ ] [ ]]

2

1
[ [( )

( ) ( ) ( )

] [( )]] [ [ ] [ ]

( )

( ) (

.

)

]
2

x

x

x

F x F x F x F x dx

x F x F x E E

x E x

x

x x xx xE E E

- = -

= - + -

= - - - + -

∫

 

   

Thus, it satisfies that F1
3 (x ) = F2

3 (x ) and E [(x - 1x )2] = E[(x - 2x )2] since F1
2 (x ) = F2

2 (x ),  

E [(x - 1x )] = E[(x - 2x )], and E [ 1x
2] = E[ 2x

2]. Hence, by induction, F1
s (x ) - F2

s (x ) satisfies the fol-

lowing for each s ≥ 2.

1 1
1 2 1 2

1
1 1

1 2

1
[ [( ) ] [( ) ]]

( 1) !

( 1)
[ [ ] [ ]] 0.

( 1) !

( ) ( )s s s s

s
s s

F x F x E x E x
s

E E

x x

x
s

x

- -

-
- -

- = - - -
-

-= - =
-

 

 

(15)

Next, define the following utility function related to Levy (2015).

exp( ) for [ , ],
( )

exp( ) for ( , ],

x x x
u x

x x

λ δ
λδ δ

- - ∈
= 

- - ∈
(16)

where λ  is a positive constant, and δ ∈ [ , ]x x . This utility funcition is included in 𝒰 (m,n)-cv 

because

1 ( ) 2( 1)( 1) ( 1) exp )( () 0s s s su x xλ λ+ +- = - - ≥

for s = m,…, n. For x ∈ [x ,δ ], there are strict inequalities in all derivatives. Also u(s)(x ) = 0 

for s = m,…, n. Repeatedly integrating by parts for E [u ( 2x )] - E[u ( 1x )] n - 1 times yields

2
( ) 1 1

2 1 2 1

1

1 ( 1) 1 1
2 1

[ ( )] [ ( )] ( 1) ( )[ ( ) ( )]

( )[ ( ) ( .]( 0)1)

n
k k k k

k

x
n

x

n n n

E u E u u x F x F x

u x F x F x x

x

d

x
-

+ +

=

- - - -

- = - -

+ - - ≥∫

∑ 

(17)

Based on equations (15) and (16), all terms of the right-hand side in equation (17), except the 

last one, vanish and we are left with:

1 ( 1) 1 1
2 1 2 1([ ( )] [ ( )] ( 1) 0)[ ( ) ( ] .)

x
n n n n

x
E u E u u x F xx Fx x dx- - - -- = - - ≥∫ 

As u(n)(x) = 0 for x ∈ (δ , x ], we have

1 ( 1) 1 1
2 1 2 1( )[ ( ) ( )][ ( )] [ ( )] ( 1) 0.n n

x

n nE u E u u x F x xx Fx dx
δ- - - -- = - - ≥∫ 

By the weighted mean value theorem for integrals, there exists ξ 1 ∈ (x ,δ ) such that
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1 ( 1)
2 1 1 2 1

1
( 1) 1 1

1 2 1

( )[ ( ) ([ ( )] [ ( )] ( 1)

( 1)
[( ) ] [( ) ] 0.

(

)]

( )[ ]
1) !

n n n n

n
n n n

E u E u u F F

u

x

x xE E

x

n

ξ δ δ

ξ δ δ

- -

-
- - -

- = - -

-= - - - ≥
-

 

 

Therefore, by arbitrarily choosing δ ∈ [x , x ), the conditions of 1x ≼ (m,n)-cv 2x  and 1 1
1 2[ ] [ ] for 1, ,s sE x E x s m- -= = …  

1 1
1 2[ ] [ ] for 1, ,s sE x E x s m- -= = …   imply that one of the following equivalent conditions is satisfied:

1 2

1 1
1 2

for all [ , ]

[( ) ] [( ) ] for a

( ) (

[ .

)

ll , ]

n n

n n

F x F x x x x

E x E x x x xx x- -

≥ ∈

⇔ - ≥ - ∈ 

(18)

(19)

Now, let us turn to the other condition. Choosing δ = x  to obtain u (x) = -exp (-λx) for  

x ∈ [ , ]x x . By repeatedly integration by parts for E [u ( 2x )] - E[u ( 1x )] n - 2 times, we obtain

3
2 1 1 1

2 1 2 1

2 3 2 2 2
2 1

[ ( )] [ ( )] ( 1) exp( )[ ]( ) ( )

(( 1) exp( [ .) 0( )) ]

n
k k k k

k

x
n n n

x

m

n

E u E u x F x F x

x F x F x d

x x

x

λ λ

λ λ

-
+ + +

=

- - - -

- = - - -

+ - - - ≥

∑

∫

 

By the weighted mean value theorem for integrals, there exists ξ 2 ∈ (x , x ) such that

3
2 1 1 1

2 1 2 1

2 3 2 1 1
2 2 1

[ ( )] [ ( )] ( 1) exp( ) ( ) ( )

( ) (

[ ]

( 1) exp( )[ 0.)]

n
k k k k

k m

n n n n

E u E u x F x F x

F

x

x

x

x F

λ λ

λ λξ

-
+ + +

=

- - - -

- = - - -

+ - - - ≥

∑ 

(20)

Since x > ξ 2, condition (20) can be rewritten as follows using a positive constant ∋1 that  

satisfies ∋1 = x - ξ 2.
3

2 1 ( 2) 1 1 2 3 1 1
1 2 1 2 1( ) ( ) [ ( ) ( )( 1) exp( )[ ] ( 1) 0.]

n
k k n k k n n n

k m

F x F x F x F xλ λ
-

+ - - + + - - -

=

- - - + - - ≥∑ ∋

Taking a value λ → ∞, we have

1 1
1 2

2 2
1 2[( ) ] [

( )

( )

( )

]

n n

n n

F x F x

E x Ex x x

- -

- -

≥

⇔ - ≥ - 

because limλ→∞ λ k-(n-2) exp (-λ ∋1) = limλ→∞ λ k-(n-2) limλ→∞ exp(-λ ∋1) = 0.

Similarly, repeatedly integration by parts for E [u ( 2x )] - E[u ( 1x )] n - 3 times yields

4
2 1 1 1

2 1 2 1

2 5 3 3 3
2 1

[ ( )] [ ( )] ( 1) exp( )[ ]( ) ( )

(( 1) exp( [ .) 0( )) ]

n
k k k k

k

x
n n n

x

m

n

E u E u x F x F x

x F x F x d

x x

x

λ λ

λ λ

-
+ + +

=

- - - -

- = - - -

+ - - - ≥

∑

∫

 
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By the weighted mean value theorem for integrals, there exists ξ 3 ∈ (x , x ) such that

4
2 1 1 1

2 1 2 1

2 5 3 2 2
3 2 1

[ ( )] [ ( )] ( 1) exp( ) ( ) ( )

( ) (

[ ]

( 1) exp( )[ 0.)]

n
k k k k

k m

n n n n

E u E u x F x F x

F

x

x

x

x F

λ λ

λ λξ

-
+ + +

=

- - - -

- = - - -

+ - - - ≥

∑ 

Using a positive constant ∋2 that satisfies ∋2 = x - ξ 3 to obtain

4
2 1 ( 3) 1 1 2 5 2 2

2 2 1 2 1( ) ( ) [ ( ) ( )( 1) exp( )[ ] ( 1) 0.]
n

k k n k k n n n

k m

F x F x F x F xλ λ
-

+ - - + + - - -

=

- - - + - - ≥∑ ∋

Taking a value λ → ∞, we have

2 2
1 2

3 3
1 2[( ) ] [

( )

]

)

( )

(

.

n n

n n

F x F x

E x E xx x

- -

- -

≥

⇔ - ≥ - 

Therefore, by induction, the following is satisfied.

1 2

1 1
1 2

for all 1, , 1

[( ) ] [( ) ] for all 1, ,

)

1.

( ) (k k

k k

F x F x k m n

E x E x m nx kx - -

≥ = + … -

⇔ - ≥ - = + … - 

(21)

(22)

The proof is completed by combining conditions (15), (18), (19), (21), and (22). ◻

A.2   Proof of Proposition 2
Proof. For the right term in condition (4), repeatedly integrating by parts n times yields

0 2 0 1

1
( ) ( 1) 1 1

0 0 2 1

1

( ) ( 1)
0 0 2 1

( ) ( )

( 1)

( ) ( )

[ ( ) ( )][ ( ) ( )]

( ) ( ) ( )( 1) [ ] )[ ( ] .

x x

x x

n
k k k k k

k

x
n n

x

n n n

xu w x dF x xu w x dF x

ku w x xu w x F x F x

nu w x xu w x F x F x dx

-
+ + +

=

+

′ ′+ - +

= - + + + -

+ - + + + -

∫ ∫

∑

∫

When 1x ≼ (m,n)SD 2x , the direction of the sign in condition (4) is determined by the direction of 

the sign in

1 ( ) ( 1)
0 0[ ( ) ( 0)]( 1)n n nnu w x xu w x+ +- + + + ≥

for all x ∈ [ , ]x x  as well as

1 ( ) ( 1)
0 0[ ( ) ( 0)]( 1)k k kku w x xu w x+ +- + + + ≥
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for k = m,…, n - 1. These inequalities for all u (x) ∈ 𝒰 (m,n+1)-cv are equivalent to the following 

conditions:
( 1)

0
( )

0

( )

( )

k

k

u w x
x k

u w x

+ +- ≤
+

(23)

for k = m,…, n - 1, and
( 1)

0
( )

0

( )

( )

n

n

u w x
x n

u w x

+ +- ≤
+

(24)

for all x ∈ [ , ]x x . If 
( 1)

( )

( )

( )

k

k

u x
x

u x

+

- ≤ k for all x ∈ [ , ]x x , and k = m,…, n, then

( 1) ( 1)
0 0

0 ( ) ( )
0 0

( ) ( )

( ) ( )

k k

k k

u w x u w x
w x k

u w x u w x

+ ++ +- - ≤
+ +

(25)

for all x ∈ [ , ]x x , and k = m,…, n. Since w0 ∈
+, condition (25) has the property that 

( 1)
0

( )
0

( )

( )

k

k

u w x
x k

u w x

+ +- ≤
+

 for all x ∈ [ , ]x x , for k = m,…, n, and for all u (x) ∈ 𝒰 (m,n) - cv. Therefore, 

condition (25) implies both condition (23) and condition (24) are satisfied. ◻

A.3   Proof of Condition (9)
Proof. Assume that 2x  dominates 1x  in the sense of (m,n)th-degree stochastic dominance. 

Using equation (10) and Fubini’s theorem, -Fi
3 (x) can be rewritten as

3 2

2

( ) ( ) ( )

(

( )

( )

1
( ) .

)

2
( )

x x y

i i i
x x x

x x

i
x z

x

i
x

F x F y dy z x f z dzdy

y x dy f z dz

z x f z dz

- = - = -

 = -  

= - -

∫ ∫ ∫

∫ ∫

∫

Similarly, for -Fi
4 (x),

4 3 2

2

2
3

( ) ( ) ( )

( )

(

1
( )

2

1
( )

2

( 1)
)

3
)( .

!

x x y

i i i
x x x

x x

i
x z

x

i
x

F x F y dy z x f z dzdy

y x dy f z dz

z x f z dz

- = - = - -

 = - -  
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∫ ∫ ∫

∫ ∫

∫

Thus, by induction, the following holds.
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∫

∫



(26)

for all integer n such that n ≥ 2. Combining equations (11) and (26), we have E [( ix - x)+
n] =  

(-1)n E [(x - ix )+
n] for x ∈ [ , ]x x  and for all integer n such that n ≥ 1.

By nth-order approximations for π u (w0,α 1
∗ + α ) and π u (w0,α 1

∗) around w0 + (α 1
∗ + α ) 1x  

= w0 + (α 1
∗ + α ) x  and w0 + α 1

∗
2x = w0 + α 1

∗
x , respectively, we have
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Substituting equations (27) and (28) into condition (8) to obtain
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Hence, condition (8) can be approximated by condition (9). ◻

References
Bawa, V. S., 1975. Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2 (1), 

95-121.



The Effects of (m,n)th-Degree Stochastic Dominant Shifts in a Distribution of Portfolio Returns

─ 77 ─

Caballé, J. and Pomansky, A., 1996. Mixed risk aversion. Journal of Economic Theory, 71, 485-513.

Courbage, C., Loubergé, H. and Rey, B., 2018. On the properties of non-monetary measures for risks. The 

Geneva Risk and Insurance Review, 43, 77-94.

Denuit, M. M. and Eeckhoudt, L., 2013. Risk attitudes and the value of risk transformations. International 

Journal of Economic Theory, 9, 245-254.

Ekern, S., 1980. Increasing Nth degree risk. Economics Letters, 6, 329-333.

Fishburn, P. C., 1977. Mean-Risk Analysis with Risk Associated with Below-Target Returns. The American 

Economic Review, 67 (2), 116-126.

Gollier, C., 2001. The Economics of Risk and Time. MIT Press, Cambridge, MA.

Hadar, J. and Seo, T. K., 1990. The effects of shifts in a return distribution on optimal portfolios. 

International Economic Review, 31, 721-736.

Harlow, W. V. and Rao, R. K. S., 1989. Asset Pricing in a Generalized Mean-Lower Partial Moment 

Framework: Theory and Evidence. Journal of Financial and Quantitative Analysis, 24, 285-311.

Ingersoll, Jr., J. E., 1987. Theory of Financial Decision Making. Rowman and Littlefield, Savage, MD.

Jindapon, P. and Neilson, W. S., 2007. Higher-order generalizations of Arrow-Pratt and Ross risk aversion: 

A comparative statics approach. Journal of Economic Theory, 136, 719-728.

Jokung, O., 2013. Monotonicity of asset price toward higher changes in risk. Economics Letters, 118, 195-198.

Kimball, M. S., 1990. Precautionary savings in the small and in the large. Econometrica, 58, 53–73.

Kimball, M. S., 1993. Standard risk aversion. Econometrica, 61, 589-611.

Levy, H., 2015. Stochastic Dominance: Investment Decision Making under Uncertainty (3rd ed.). Springer, Berlin.

Menezes, C. F. and Wang, H., 2005. Increasing outer risk. Journal of Mathematical Economics, 41, 875-886.

Menezes, C., Geiss, C., and Tressler, J., 1980. Increasing downside risk. The American Economic Review, 70, 

921-932.

Magnani, M., 2017. A new interpretation for the condition for precautionary saving in the presence of an 

interest-rate risk. Journal of Economics, 120, 79-87.

Ohnishi, M. and Osaki, Y., 2007. The monotonicity of asset prices toward changes in risk. Economics, 

Management, and Financial Markets, 2 (1), 3622.

Rothschild, M. and Stiglitz, J.E., 1970. Increasing risk I: A definition. Journal of Economic Theory, 2, 225-243.

Wong, K.P., 2019. An interpretation of the condition for precautionary saving: The case of greater higher-

order interest rate risk. Journal of Economics, 126, 275-286.


