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Chapter 1

Introduction

1.1 History of the tt*-Toda equations

The tt* equations were introduced by Ceccoti and Vafa in 1991 [CV1]. This
equation is suggested in the context of the classification of deformations of
N = 2 super conformal field theory. In this article, they considered the
finite numbers of vacuum and chiral field, which defined a chiral ring. In
1991, Dubrovin found that the tt* equations could be written by the zero
curvature equations on the tangent bundle over a Frobenius manifold and
the pluriharmonic map equation for maps into a symmetric space [Dub].

The zero curvature equations are integrable. One can solve these equa-
tions by using the DPW method [GIL3|. In this method, we consider the
holomorphic data (we call this the DPW potential) and then express the
solutions as a loop group factorization of a function obtained from this data.
We also have an asymptotic expansion of solutions and their coefficients (we
call this the asymptotic data).

We focus on the “Toda” types of the tt* equations. We call these equa-
tions the tt*-Toda equations. The tt*-Toda equations are well studied in

the series of works by M.Guest, A.Its and C.Lin [GIL1][GIL2][GIL3][GIL4].
They focus on the tt*-Toda equations with type A,, as follows.

2(wy) g = —e2(Wimmwi) 4 Hwimwizy) (1.1.1)

where w; : U — R (U is an open subset of C = R?), i € Z, w; = Wpy14
and Y jw; = 0 and where we assume the “Frobenius condition” (in some

5
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articles, this is called “anti-symmetry condition”)
w; + wy,—; =0 (for 0 <i < n)

and the radial condition w; = w;(|t|). We consider the following connection
form « on the trivial principal SL(n + 1,C) bundle over C* := C\{0}

1 _
a = (w + XWT)dt + (—wi + AW)dt (1.1.2)
where w = diag(wo, - -, w,) and where
O ewl_w()
W =
eWn—Wn—1

ewo—wn 0

Then the zero curvature equation da+a A« = 0 for Y\ € C* is equivalent to
(1.1.1). By direct calculation, we know that the equation (1.1.1) is equivalent
to 2wy = [WT, W] where w = diag(wg, w1, -+ ,w,). Thus this equation is
equivalent to the compatibility condition (¥;); = (Vg), for the linear system

{\pt — (w, + 1w w

1.1.3
s = (—wi+ AWT) 0. (113)

For the holomorphic potential

0 zho
dz
20
where z € U and k; > —1 (Vi), one can construct a global solution w by using

the DPW-method through the Iwasawa decomposition of loop groups. Then
we obtain global solutions whose asymptotic expansions are
w;([t]) ~ —m; log [t].
Here m; are defined by follows:
n+1
mi;—1 —m; = T(kl + 1) —1
where N =n+ 1+ >, k;. Thus we obtain the following ([GIL3],[Mol]).
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Theorem 1. For fired N > 0, the global solutions of (1.1.1) are in one to
one correspondence with the following Asl, 11C-valued one forms %n(z)dz on
C*, where

Zko

Zhn
Here k; € [-1,0), n+1+ > k; = N and k; = ky_;41 for any i. The

. n+l
variable z means t = "THZ N .

From the radial condition w;(x) = w;(|t|) (x = |t]), we have

i_ti_fi = ti—t_i =0
Yo tar T ta) T Ve T taw) T

Then we have the radial version of (1.1.1) as (zw,), = 2z[W?,W]. This is
equivalent to the compatibility condition V., = ¥, for the linear system

_ (_1 1 T
{\If# = ( MZxW PRAL + W >\IJ (1.1.4)

U, = (W +uWh)w.
where p = %, x = |t|. By Chapter 4 in [FIKN], this compatibility condition

(1.1.4) is equivalent to the isomonodromy deformation with z of the first
differential equation

1 1
v, = (——QZ‘W — —zw, + xWT) V. (1.1.5)
u u

Therefore for solutions w of the tt*-Toda equations, equations (1.1.5) has the
monodromy data which is independent of . Hence we have a correspondence
between a solution w and the Stokes matrices of (1.1.5).

By changing variable ¢ = £, the equation (1.1.5) is equivalent to

1 1

By Proposition 1.1 of [FIKN], we have the unique formal solution around

(=0 as
W0 B, <z+ D ¢k§k> et

k=-1
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where —W = ﬁo(—dnﬂ)pofl, By = e‘deiag(l,w%,--- ,wnTH), Q is the
.. /=1
Vandermonde matrix (w*)o<; j<n, W = e T and dpy1 = diag(l,w, -+ ,w").

We take Stokes sectors at ( = 0 as follows: for the n + 1 = 2m case,
©0) _ < _ T _ T f
O {CeC”] 5 < arg( < 2} (1.1.7)

and for the n + 1 = 2m + 1 case,

™ ™ s

Q0 = | - " < <=+ —-— 1.1.8
e e b Rt Ty i Sl Tror Y (1.18)
and QI(:)L = e miiQ) for k e %HZ. We have the canonical solutions @lgo)

n+1

on €2 such that \if,(;)) ~ \i/f as ¢ — 0. We define Q, and S, by

3@
kt 4

-0 B - 15,

for k € —~7Z. Using the symmetries of Q) in page 7 and 12 of [GH1], we

n+1
have the monodromy around ¢ = 0

SO0 —(Q1Qu 1, ™ (n+1=2m)
1902 (QlQlﬁﬂ)Twl (n+1=2m+1)

0-(, 7 0-(, 1)

and we also have géo) = (Sfo))_T. We can write the monodromy around
¢=0as 57(5”)". L
We have the characteristic polynomial of ()10, L IT as

(1.1.9)

where

1

P(z) = 2" — 512" + 592" — - — 51 + 1

for n + 1 even and the characteristic polynomial of the semisimple part of
Q1Q1%H as
n+

1

P(z) = 2" — 512" + sp2™t — o s — 1

for n + 1 odd where s; is the i-th symmetric function of the n + 1 entries of

o T (mtp).
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Theorem 2 (|GIL3],[Mol}). For eachn € N and N > 0. The global solutions
of (1.1.1) correspond to n-tuples of parameters

S = (Sl,...,Sn)ERn
with s; = Sp—iy1. We call this S = (s1,- -+, Sn) the Stokes data.

From the above discussion, we have correspondences among holomorphic
data k;, asymptotic data m; and Stokes data s;:

k‘i<—>mi > S;.

For these global solutions, there are several interesting interpretations as fol-
lows.

1. Quantum cohomology

In [DGR], Dorfmeister-Guest-Rossman showed that the quantum coho-
mology of CP! corresponds to a global solution. By considering the quantum
product by the second cohomology, we have the Dubrovin connection on the
trivial vector bundle.

Let 1 € HY(CP!,C) and z € H*(CP',C) be generators. Then we have
the quantum product o, as

logl=1 1oz =2, xosx=1-q.

From this product, we have the Dubrovin connection on the trivial vector
bundle H?(CP',C) x H*(CP',C) — H?(CP',C) as follows:

1 /0 ¢ dg
A ( 10 > q
where ¢ € C* =~ H*(CP*',C). This is a connection form of the same type as
w in the tt*-Toda equation in the SL(2,C) case.
For other cases, Iritani [Ir1],[Ir2] studied the tt* structure on the quan-
tum cohomology of orbifold or algebraic curves. Guest-Lin [GL1] obtained

some quantum cohomology of projective weighted spaces whose Dubrovin
connections correspond to holomorphic data.

2. Generalization of the tt*-Toda equations
In 2019, the tt*-Toda equations were generalized from the SL(n + 1,C)
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type to the general complex Lie group types by Guest-Ho [GH2]. This work
plays a fundamental role for this thesis.

The equation (1.1.1) is the tt*-Toda equation with G = SL(n + 1,C).
Guest and Ho used the notations of Lie theory and representation theory.
They generalized the equations, holomorphic data, asymptotic data and
Stokes data. They used several remarkable works by Kostant [Ko], Hichtin
[Hit], Steinberg [Ste] and Boalch [Boa]. We will give details in Chapter 2.

3. Integer Stokes data

By integer Stokes data, we mean the condition that all Stokes data take
integer values. As we shall see in Section 2, we have finite many solutions
with integer Stokes data, for each n. In [CV2], they use characteristic poly-
nomials of monodromy matrices to classify models of quantum fields. We
will compare the classification by Cecotti and Vafa and the classification by
Guest-Its-Lin in Chapter 4.

For such Stokes data, there are some remarkable results. In [GL1] and
[GL2], several quantum cohomology correspond to some solutions with in-
teger Stokes data, e.g. quantum cohomology algebras of CP™ or weighted
projective spaces, and A, singularities of unfolding also corresponds to spe-
cial integer Stokes datum on p-line in FWA. In [Mol] and [Mo2], Mochizuki
studied Z-structure on parabolic vector bundles.

Another aspect is the action of the braid group Br, 1 on Stokes matrices.
In [CV2], when Cecotti and Vafa classified quantum field models, they con-
sidered Stokes matrices modulo the braid group action. In [BH|, Balnojan
and Hertling studied the orbits of the braid group action on Stokes matrices.

4. Other researches

In [FN], Fredrickson and Neitzke found the surprising fact that the set
of SL(n + 1,C)-Higgs bundle on CP! corresponding to connection forms of
the same type as w correspond to certain representations of W-algebras (Re-
mark 5.4 in [FN]). Following this result, Guest-Otofuji studied Stokes data
from the view point of representation theory of affine Lie algebras in [GO.
They found that a certain integer Stokes point corresponds to a fundamen-
tal representation of a Kac-Moody Lie algebra. In [CV1], Cecotti and Vafa
defined the tt* equations in the context of superconformal Virasoro algebra,
i.e. Vertex algebras, so relationships among them can be expected.
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1.2 Main results

In this thesis we investigate the integer Stokes data. As above, we know
that the integer Stokes data contain rich information in terms of physics
and mathematics. First we obtain properties of the integer Stokes data by
considering cyclotomic polynomials. It is written in Section 3.1.

Proposition 3. [HK] If m is asymptotic data corresponding to an integer
Stokes data, P(x) satisfies the following conditions.

LY w(d)p(d) =n+1
d

2.v(1) =n+1(mod?2).
Conversely if Q(x) = [ Ten(Pa)"'Y satisfies 1 and 2, then the roots of Q(z)

come from an integer Stokes point.

By using this proposition, we obtain a formula for the total number of
the integer Stokes data.

ZHéal .....Héf“l).(m—i—l).

T€L

As the second topic, we focus on the integer Stokes data on p-line. The
points on this line are parametrized by real numbers A\ € [—1, %] The first
main theorem is as follows:

Theorem 4. [HK] Assume n = 3 and X € [-1,2]. Then the Stokes data s
of the corresponding solution of the tt*-Toda equations is integral if and only
if
N NS
n+ 2 n
We know that we have a solution of the tt*-Toda equation with A, type
from the Dubrovin connection of the quantum cohomology of CP". Further-
more, we know that the tt*-Toda equations are defined for general complex
simple Lie groups. From this generalization, we can ask:
For general complex simple Lie groups GG, can we obtain solutions with the
asymptotic data m = —p which correspond to the Dubrovin connection of
the quantum cohomology of some homogeneous space 7
We give an answer of this question in Section 3.3. This is the second main
result.
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Theorem 5. (/GIL3],[Mol1],/GH2],[GM],[LT],[K])
For a complex simple Lie group G and a minuscule weight \;, there is a
natural correspondence between (i) the asymptotic data

mz—pef)ﬁ

and (i) the holomorphic data

1 (& dq
W=~ o, T qe—q | —
(B )

for solutions of the tt*-Toda equations. The asymptotic data m = —p corre-
sponds to the unique global solution when g has type A,. The holomorphic
data correspond to the Dubrovin connection for the quantum cohomology of
G/P;.

After that we compare the classification by Cecotti and Vafa in Section
6 of [CV2] with the results of Guest-Its-Lin of [GIL1]. These approaches are
different, but we found that the results are surprisingly close. We obtain the
third main theorem as follows. It is written in Section 3.4.

Theorem 6. [HK] Forn = 1,2, 3, the classification of Cecotti-Vafa coincides
with the classification of Guest-Its-Lin.

The following is the list of contents of this thesis. In Chapter 2, we prepare
the notations and theory for this thesis. We consider the general complex
simple Lie groups and we define the tt*-Toda equations, holomorphic data,
asymptotic data and Stokes data. This part follows [GH2]. In Chapter 3,
we focus on the integer Stokes data. In Section 3.1, we see properties of the
integer Stokes data. Then we calculate the total number of the integer Stokes
data. Then we determine the integer Stokes data on the p-line in Section
3.2. In Section 3.3, we obtain solutions of the tt*-Toda equations with the
asymptotic data m = —p from the quantum cohomology of the minuscule
flag manifolds. Finally we compares the classification by Cecotti and Vafa
with the classification by Guest-Its-Lin in Section 3.4.



Chapter 2

The tt*-Toda equations

In this chapter, we review notations of Lie groups and Lie algebras. Then
we define the tt*-Toda equations.

2.1 Definition of the tt*-Toda equations

2.1.1 Notations

First we review the notations of Lie groups and Lie algebras. Let G be a
complex simple simply-connected Lie group and g be its Lie algebra. We
take a Cartan subalgebra h. We decompose g as

g=hdP .

aeN

where g, = {X € g | ad(H)(X) = a(H)X, Yh € b} is nonzero, « is called a
root and the set of roots denoted by A.

We choose a set of simple roots II = {a4, - -, a,} such that {«;};e; span
h where J = {1,--- ,n}. We call this n the rank of G. Then we define the
set of positive roots A" by AT ={ae A|a=ba;+ -+ by, bj € Zsp}
and the set of negative roots A~ by —A™T. These satisfy A = AT U A™.

Let (,) be any positive scalar multiple of the Killing form. If g is simple,
then the Killing form is nondegenerate. This form induces the form on h*
and we denote this by the same notation (,). We denote the coroot %
of a root a by a¥. We define an ordering of the roots by a < g if § — «
is positive. In terms of this ordering, the highest one is called the highest

13
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root. We denote the highest root by —ag. If —ag = >}7_, a;a;, the Coxeter
number h is defined by h =1+ 377 a;.

We define H, in h by (H,, H) = «¥(H) for all H € h. Then we obtain
a basis {Hq,, -, H,,} of h. We choose eigenvectors e, € g, such that
(as€_a) = 2/(a, ) for all &« € A. Then we have

0 ifa+8¢A
lea, 5] = < Hy, ifa+p=0
Na+lg€a+5 lf (0% + /6 € A - {O}

where N, is a nonzero complex number. We define {w;};c; as the dual
basis in § to {a;};es, that is a;(w;) = ;.

Example 1.
The case of G = SL(n + 1,C)

We have SL(n + 1,C) = {X € GL(n+1,C) | det(X) = 1} and sl(n +
1,C) ={X € M(n+1,C) | tr(X) = 0}. We take the Cartan subalgebra
b = {diag(z1, -, zps1) | Z?:f z; = 0}.

Then the roots are A = {£(e; —¢;) | 1 < i < j < n+ 1}. When we
take the simple roots as II = {¢; — €41 | © = 1,--- ,n}, then the highest
root is —ag = €; — €,41. Thus the Coxeter number is h = n + 1 because
—op = (€61 —€) + -+ (€n — €nt1)-

We define (,) by (X,Y) = tr(XY). Then we have the induced form (,)
on h*. For a simple root a; = ¢, — €;11 (1 < i < n), we have (;La) = q.
Thus H,, = E;; — Eiy1,+1 where E; ; is the matrix which (7, j) component is
one and the others are zero. We have e,, = E; 11, e_o, = Eiy1; (1 <i<n)

and e_o, = E1per. @ = 535 Ejj — 2000 Eig)-

2.1.2 Connection form o

We consider the following g-valued 1-form « on the trivial principal bundle
CxG—C,

E_)dt + (—wi + M\E,)dt =: o/dt + o"dt

> =

O[:(wt+
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where F, = Ad(e™) (g c5 Te1q,) for ¢ € C*. Then we consider the zero

curvature equation for all A € C. We have

d 1~ - d ~ _
da+ana :d_t_<wt + XE,)dt A dt + %(—wg + AEL)dt A dt
1~ ~ _
+ [wy + XE_’ —wi + AE,|dt A di
1

Xad(wg)EN, — wyz — Nad(w;)EL)dt A dE

1 5 . L _
+ (Xad(wg)E_ + Xad(wy)Ey + [E_, E,])dt A dt
— (2w + [E_, E.])dt A dt

=(—ws —

—2wg + Zc e~ We o N f e @eg )t A di.
i=1
Thus we have

do +a A a=(—2w; + Z c; c T e_al,e CY'7'(“’)6053.])dt A dt
i,0=1

=(—2wy; — Y die > H, )dt A dE

i=1
where d; = ¢; ¢;. Therefore we obtain the following proposition.

Proposition 7. The connection d + « is flat, i.e. da+a Ara =0 (") e C>)
if and only if 2wz = — Z?:o dje_Zaj(“’)Haj holds.

Definition 8. We call this equation
Qwyp = Zde_Qa’ “H,, (2.1.1)

the two dimensional Toda equation for a complex simple Lie group G.

Example 2. (G = SL(n + 1,C) case)
We assume the same setting as for SL(n + 1,C) in Ezample 1 and that all

d; = 1. We have the connection form (1.1.2) and the zero-curvature equation
is (1.1.1).
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2.1.3 Three involutions 0,0,y

We add the condition coming from tt* geometry. tt* geometry means topological-
antitopological fusion and it was introduced by Cecotti and Vafa [CV1]. To
add the tt* condition, we define a C-linear involution ¢ and two conjugate-
linear involution 6, .

We define a conjugate linear Lie algebra homomorphism 6 by

0(ca) = —€a, O(Hy) = —Hy ("a e N).

This 6 defines the compact real form. For example, if G = SL(n + 1,C), the
fixed set of 6 is SU(n + 1).

The C-linear involution o needs some preparation (see [Hit]). We consider
a three dimensional subalgebra grps which is isomorphic to s[(2,C). We
introduce

n n n n
p= i =D Tillay, €0 = ) Viica, Jo= D Vrie—a,
i=1 i=1

i=1 =1

where the real numbers rq, - - - , r, are determined by a choice of simple roots.
Then these satisfy

[0s €0l = o, [p; fol = —fo, [eo, fol = p.

Therefore span{ey, fo, p} = sl(2,C). This subalgebra is called the principal
three dimensional subalgebra and denoted by grps. When we consider the
adjoint action by p, we can decompose g into irreducible representations by
g =@, Vi. Let u; be a highest weight vector of V; and m; its weight. m;
are called exponents. We may take u; = ¢y and u,, = e_,,. These exponents
satisfy 1 =my <mg < --- <m, = h— 1. It is known that dimV; = 2m; + 1
(i =1,---,n). With respect to this decomposition g = @, V;, we can take
a basis of g where each V; has {ad(fo)’(u;)] j = 0,---,2m;}. We define a Lie
algebra homomorphism ¢ by

o(u;) = —u;, o(fo) = —fo.

The conjugate-linear involution y is defined by x := 0. Here we have
06 = 0. We define the real form of the Toda equation as follows.

Definition 9. Given a real form of the Lie algebra g, the corresponding real
form of the Toda equations is defined by the following conditions.
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(R1) a;(w) € R for all i. )
(R2) o/(z,2,\) — a"(z,2Z,1/)\) under the involution which defines the real
form of g.

We define the tt*-Toda equations.

Definition 10. (The tt*-Toda equations) The tt*-Toda equations are the
Toda equations which are the reality conditions (with respect to x) where
w : C* — by satisfies the additional conditions

(F) o(w) = w (anti-symmetry condition)

(R) w = w(|t|) (radial condition)

From this definition, we have

c; =¢1 and d; € R.

1

Example 3. (G = SL(n + 1,C) case)
We assume Example 1. Then o,x are given by

1
o(X) = -AXTA, x(X) = AXA, where A =
1
Then we have the tt*-Toda equation in A, type as
2(w;)g = —e2Wir1w) 4 2wimwiz) gy C* R, i€ {0, ,n}

Furthermore, the w;’s satisfy the following two conditions:
1. w; + wy—; = 0 (anti-symmetry condition)

2. w; = w;(|t]) (radial condition).

2.1.4 tt* equation

We review some tt* geometry. We refer to the articles by Cecotti and Vafa
[CV1] and Dubrovin [Dub]. We define the tt* equations on a Frobenius
manifold.
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Definition 11. Let M be a complex manifold. Its tangent space T,M (Yx €
M) has a structure of Frobenius algebra (T, M, -, e,{,)) if - is a multiplication
on T, M, e is the unit vector and {,) is a nondegenerate inner product on
T.M such that {a - b,c) = {a,b-c). Then we call this M a quasi-Frobenius
manifold.
A quasi-Frobenius manifold is called Frobenius manifold if the curvature
VXY = VxY + A(X - Y) vanishes (YA € C*) where V is the Levi-Civita
connection with respect to {, ).

Let 1 be the matrix such that (X,Y) = Zmb Ny XY, where X,,Y), are
basis. Let C' be the matrix such that X - Y = > , Cu, X, Y. Let g be a
Hermitian positive definite form i.e. g = Z%b gabdiadizb.

Definition 12. The pair (1, g) is called compatible if there exists a complex
connection D where for any complex vector field X = Y. X,0,

DXy = 0.Xq + ) T4 X,
b

D5 x, = 0:Xa, D;, = Dac
such that

Dacnab = acnab - Z ngndb - Z Fganda =0
b a

Ds.gap = OcGap — Z ngg&d =0
d

From this definition we have I'c = g t0.g. Let M = gn~t. We call M
normalized if M satisfies MM = 1. For these data (g, M,C) (or (n,g,C))
we define the tt* equation as follows.

Definition 13. The tt* equations are

D,Cy, = D,C,

[Da, Dg] + [Ca, Cl;] =0
where Cy = MCyM.

Now we consider these equations on C x C"* — C (First we consider the
tt* equations on C" x C" — C™ and then we restricted the base space into
C). Then we have only one equation

[D27 Dg] + [CZ, Cg] == O
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We have
0:(g'0.9) — [C,g7'C'g] =0

When we consider
C = E—7 Ct = E+7 g = €2w7

then we have the equation (2.1.1).

2.2 Local solutions of the tt*-Toda equations

In this section, following [GH2], we describe some local solutions near ¢ = 0.
We consider the following connection form w.

1 n
w = X (ZO zkje_aj> dz
Jj=

(i.e. from any ko, - ,k, = —1). Here z is a complex variable related to ¢ by

S[=

t = szh.

First of all we solve the differential equation

dL 1 [,
FE (ZOZ e) L
P

where L is a G-valued function on C*. We have this L as follows.

L(z,\) = 3N loaz (I + Z )\_iSi(z)>

IS/

where A is nilpotent and S;(0) = 0 (Yi). From Section 6 in [GH2], we know
that there exist a loop group element v € LG and gauge transformation Gy,
such that

a = <7LRGh)_1d<7LRGh)

where vLg is a part of Iwasawa decomposition of yL i.e.

YL = (yL)r(vL)+-
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Then we obtain local solutions w whose asymptotic is
w~ —mlog|t|ast — 0

where m is defined by

S

Skt —1(0<i<n)

a;(m)

where N = h + "  a;k; and ap = 1. From Proposition 6.1 in [GH2], we
have

Proposition 14. Let m € by. There ewists a local solution near zero of
the tt*-Toda equations such that w ~ —mloglt| as t — 0 if and only if
a;(m) = -1 fori=0,--- n.

Let A be the set of asymptotic data of local solutions near z = 0 i.e
A={meby aj(m)=>-1(=0,---,n)}

for G # A, Dypyo, Fs. We define A7 = {m € A| o(m) = m} for G =
Ay Dynio, Fg. We consider for G # A,,, Dyni2, Fg, the fundamental Weyl
alcove 2 i.e.

A= {X e V1| 0 < a*Y(X), —af™(y) < 1}

where o™ = 277\1/_—104. We define 27 := {X € | o(X) = X} for G =
Apn, Dipy2, F. From Theorem 6.9 in [GH2], we have

Theorem 15. We have a bijection map from A (or A7) to A (or A7) by

2m+/—1
h

m— X =

(m + p).

From this theorem, we can parametrize local solutions with its asymptotic
w ~ —mlog |t| by the fundamental Weyl alcove.

Example 4. (G = SL(n + 1,C) case) We have the set of asymptotic data
in the SL(n + 1,C) case as

5 = {m = diag(mo, -, My, —my, -, —mo)| mi—m1+1 >0 (0 <7 < 2k)}



2.2. LOCAL SOLUTIONS OF THE TT*TODA EQUATIONS 21

forn+1=2k or
Agk+1 = {m = dia’g<m07 e 7mk707 —mg, - a_m0>| mi_mi+1+1 = 0 (0 < 1 < 2]€+1)}
forn+1=2k+ 1. We have the fundamental Weyl alcove (invariant by the
anti-symmetry) as
1
o0 = {X = diag(wo, -, a, —wp, -+, —w0)| 0 S 2 S - S wo < )

for the n + 1 = 2k case or

gk+1 = {X = diag(xOJ'” ,Ik,o,—l'k,"' ,—.T0)| 0 ST < ST <

for then +1 =2k + 1 case.

As the same of the A, case, we define Stokes data as
S = (51,7 ,8n)

. 20V =1 (14 p) .

where s; is the value on e n+1 P} of the character of the i-th fundamen-

tal representation of G. For the A, case, we have correspondence among

the global solutions of the tt*-Toda equations, the holomorphic data, the
asymptotic data and the Stokes data by Theorem 2.

g
n+1

for the A, case. Let n +1 = 2k and 6, = < I I ) We can define an
k

Finally we introduce an equivalence relation on asymptotic data in A

operator on connections as follows.
1 _
() = Orafy "t = Oi(w, + TWH)brdt + O(—w + AW)fpdt. (2.2.1)

We find that the gauge-equivalent connection ©(«) has the same form as «,
but with w replaced by

ek’wek = diag(_wk—b s, —Wo, Wo, t 7wk—1)-

We define a map O, : A7, — A7, by

Opmb, ifk=""eZ
@n+1(m):{kmkl ie ’

m if k=0l g7

2
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Then, up to permutations, m and ©,,,1(m) correspond to the same solution

of the tt*-Toda equations. If ©,1(m) = m and k = 2 € Z, then we have
a solution of the tt*-Toda equations for wq, - wy_1. If k is even, we can

repeat this process using © nil.

Definition 16. We define an equivalence relation ~grp, on A,iq1 in the
following way. First, ©,,1(m) ~gr, m for all m € A,y1. Next, if n +
1 is even, and ©ni1(m) = m (i.e. m = diagim’,m’) for m’ € AnTH),
dmg(@nTH(m’), @nT-l—l(m,>) ~arr m. After a finite number of steps, this pro-
cess terminates and generates an equivalence relation.

We refer to the resulting classification of asymptotic data as the GIL
classification. By this classification, we also classify the solutions of the tt*-
Toda equations because the asymptotic data one-to-one correspond to the
global solutions.

Example 5. (The n = 3 case) Let m = diag(mg, my, —my, —mg). We have
(mo, my, —m1, —mg) ~arr (=mi, —mg, mo,my). If mg +my = 0, then we
have the further identificaion (mg, —mg, mg, —mg) ~arr (—mo, Moy, —Mg, Mg).

2.3 Integer Stokes problem

In this section, we review the integer Stokes problem. We consider the A,
case for Section 3.1, Section 3.2 and Section 3.4. We consider the general
complex simple cases for Section 3.3.

If G = SL(n+1,C), we know that a solution w of the tt*-Toda equations
satisfies the isomonodromic deformation (1.1.6) as we see in Section 1.1.
Then we take Stokes sectors as (1.1.7) or (1.1.8) and we have the monodromy
around ( = o as

n+1
1 2

smge _ [T@Q D™ (n+ 1= 2k)
(@@ (1 =2k 1)

Then we have the characteristic polynomial of @1Q1%ﬁ as

N g A+ oA — = s A+
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for n + 1 even and the characteristic polynomial of Qlélﬁﬂ as

AL g A g AT — g N —
for n + 1 odd where s; is the i-th symmetric function of the n + 1 entries of
o I (mtp).
We define
1 —s, S, (—1)"s4
0 1
Stor = | 50 (2.3.1)
Lo 1 s,
o ... ... 0 1

where s; = $,_i11. SHor 1S related to S%OO) by Shor = Fgfoo)FT, where F'
is the matrix in Proposition 3.4 of [Hor|. Hence s € Z" is if and only if
Stor € SL(n + 1,7Z). From the form of F, it follows that this condition is
equivalent to Sfoo) e SL(n+1,Z).

We consider the condition that all s; are integers. This is called the
integer Stokes condition. We call finding solutions satisfying the integer
Stokes condition the integer Stokes problem. In [GL1|, Guest-Lin calculated
all integer Stokes data in the 4 x 4 case and they found several examples from
the quantum cohomologies of Kéhler varieties (Table 4 in [GL1]). From the
results of [GL1], some questions occur.

Question 1 Can we determine all integer Stokes data and count the number
of the solutions with integer Stokes data 7

Question 2 Do there exist integer Stokes data of Lie-theoretic origin?

These questions are considered in Section 3.1 and Section 3.2. After these
sections, we find new interpretations of solutions of the tt*-Toda equations
with the asymptotic data m = —p. Finally we compare the classification by
Cecotti and Vafa [CV2] and the classification by Guest-Its-Lin [GIL1] and
[GL2] for the A,, case. We will give details in Section 3.4.

2.4 Quantum cohomology and the Dubrovin
connection

In this section, we review briefly the definition of (small) quantum coho-
mology and the corresponding Dubrovin connection. As we need only the
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case of compact Kahler homogeneous spaces, we can use a naive definition
of Gromov-Witten invariants. We use the same notation in [G1]. We set the
coefficients of homology groups and cohomology rings to be C.

Let M be such a complex manifold. Let p,q,r be three distinct points
in CP'. Let A, B,C be homology classes of H,(M) and D be an element of
Hy(M;7Z) = mo(M). We define

Hol? = {holomorphic maps f : CP' — M| f(p) € A, [f] = D}

where [f] means the homotopy class of f. Holg’q, Holg’r are defined in the
same way.

Definition 17. Gromov- Witten invariants are defined by
(A|B|Cp = tHolX? ~ Hol2>" ~ HolS".
We define the quantum product for M as follows.

Definition 18. For C € H,(M) and t € H*(M), a o; b is defined by

aoyb,Cy= Y (AB|C)pet?

DeHy (M)

where A, B are the dual homology classes to a,b and {, ) is the pairing between

H*(M) and H,(M).

We call (H*(M),o;) the quantum cohomology algebra of M and denote
it by QH*(M). Finally we define the Dubrovin connection. We take a
basis by, - ,b, of H*(M;C) where let r be the dimension of H*(M;C).
Let t = tiby + --- + t.b, where t; € C. We change the coordinate from
bi € H*(M;C) to ¢; € H*(M;C*) by &% = ¢;.

Definition 19. The Dubrovin connection on the trivial vector bundle H*(M; C*)x
H*(M;C) — H?(M;C>) is defined by

1, da
V=dt Y Al
)‘i=1 4

where A;(q) are the operators given by the quantum product b;o,.
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We seek flag manifolds whose Dubrovin connection form coincides with

the connection form w, i.e. w = %A(q)% (in our case r = 1).

From the article by Iritani [Ir2], we know that Dubrovin connections of
the quantum cohomology algebras of orbifolds satisfy the tt* equations. We
can say that the Dubrovin connection of the quantum cohomology of CP" is
the form of the tt*-Toda equations.

Example 6. (The quantum cohomology of CP™)

This example is important for the tt*-Toda equations. It was suggested by
Cecotti and Vafa. We have the quantum product by the second cohomology
xz e H(CP",C) as follows.

vor' =2 (i=0,---,n), roa" =q.
Then we obtain the Dubrovin connection by the second cohomology as

0 q

1 dg 1| 1 . dg 1 [ ) dz
e =5 E:X<Z+ -

1 n
- <Z 2 le_q, + zoeao) dz
i=1

where we change notation by ¢ = z. From this form, we know that the
Dubrovin connection of the quantum cohomology of CP™ is related to the tt*-
Toda equation where G = SL(n + 1,C). We obtain k; = —1fori=1,--- ,n
and ko = 0. Thus we have a;(m) = —1 and m = —p. Therefore we have a
local solution which corresponds to the origin of A°.






Chapter 3

Integer Stokes problems

In this chapter, we focus on the integer Stokes data. Section 3.1, Section
3.2 and Section 3.4 are joint works with Yudai Hateruma. We establish the
following results concerning integer Stokes data.

1. Properties of the integer Stokes data.
2. There are only four points with integer Stokes data on the p-line

3. Solutions of the tt*-Toda equations with the asymptotic data m = —p
corresponding the quantum cohomology

4. Comparison of the CV classification with the GIL classification.

Then we compare the classification by Ceccotti and Vafa [CV2] with the
classification by Guest-Its-Lin [GIL1]. The motivations of these classifica-
tions are different. However the results are surprisingly almost the same. In
addition, the classification by GIL is simpler and clearer than by CV for the
tt*-Toda equations. Finally we see that the symmetry (2.2.1) is a sign group
action G, | on integer Stokes data.

3.1 Properties of the integer Stokes data

Recall that each Stokes data s; is the i-th symmetric function of the n + 1

/=T
numbers of ¢ =1 ™) We need to introduce some arithmetic settings. We
have the following fundamental theorem by Kronecker.

27
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Theorem 20. [Kro] If the roots of a monic polynomial over Z are on the
unit circle, then they have to be roots of unity.

The important corollary we will use in Chapter 4 is the following:

Corollary 21. If a monic polynomial over Z has all roots on the unit circle,
then it has to be a product of cyclotomic polynomaials.

Proof. By Kronecker’s theorem, all roots of the polynomial f(x) have the
form ex?™V=1 with 1 < a < m —1, (a,m) = 1. It is known that the min-
imal polynomial p(z) € Q[z] such that p(ex?V=1) = 0 is the cyclotomic
polynomial ®,,(x). Hence the statement is proved. O

/1
Let the roots of P(x) be the entries of e wst (M) Then we have

P() "t — s+ —s,x+ 1 (n+ 1 even)
T =
" — s+ 4+ s,z — 1 (n+1odd)

When we consider the integer Stokes data, we have

P(z) = ] (@m(x))m. (3.1.1)

mEZ>Q

by Corollary 21. Here for each positive integer n, let ®,,(x) be a n-th cyclo-
tomic polynomial, that is,

@, (z) = I 1 (= G)

(1<j<n.ged (jin)=1)

where (J = e#2™/=1 be primitve n-th roots of unity.
Let us give a general formula to calculate the number of all integer Stokes
data in SL(n + 1,C) case. For

n—+1(m + p) = diag(zo, - - - , T, —Tg, - -+, —xo) € AL ,; (n 4+ 11is even)

or

1
n+1

(m + p) = diag(xo, - -+ , Tk, 0, =g, - -+, —x9) € A7, (n + 1is odd),
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we consider a polynomial P(zx) as

P(x) = H (x — eﬂ”\/jl“) (n + 1 even) (3.1.2)
o<is<k
or
P(z)=(z—1)- [] (x—e™V7") (n+ 1 odd). (3.1.3)
o<i<k
When we consider an integer Stokes data si(e%(m”)) €eZ (i=1,---,n),

P(x) is a monic polynomial over Z with roots in S*. Thus P(x) has to be
a product of cyclotomic polynomials P(z) = [ ] o (®a)”@ with degree n + 1
by Corollary 21. We have the following proposition.

Proposition 22. If m is an asymptotic data with an integer Stokes data,
P(z) satisfies the following conditions.

LY w(d)p(d) =n+1
2.v(1) =n+1 (mod2).

Conversely if Q(x) = [1en(®a)"Y satisfies 1 and 2, then the roots of Q(z)
give an integer Stokes point.

Proof. First we show that P(x) satisfies the conditions 1 and 2. The condition
1 holds because the degree of P(z) is n+ 1. Because ®;(0) = 1 for all i € Z,,
we have

P(0) = (:(0))"" = (=1)".

If n 4+ 1 is even, then we have P(0) = 1 by (3.1.2). If n + 1 is odd, then we
have P(0) = —1 by (3.1.3). Therefore v(1) = n + 1 (mod 2). Thus P(x)
satisfies the condition 2.

We show the converse. From the condition 1, Q(z) has solutions 2V~ 1ui
(t =1,---,n+ 1) where —% S Unt1 S 0 S U1 S % because roots of
cyclotomic polynomials is in S*.

If n+1 = 2k, from the condition 2, Q(z) has an even number of ®;.
It is well-known that degree ®; (i > 3) is even. Hence we know Q(x) has
an even number of ®,. It is also well-known that for ®; (i = 3), if e2mV/~Tw
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(0 <w < 3) is a solution of ®;, then e 2"V=1* is also a solution of ®;. Thus
we have the roots of ®; (i = 3) as

21/ —1wy 2/ —1wy | —2m\/—1wy —2m/—1wy
6 s o .. 76 ’e s o .. ,e
for some ¢ € N. Therefore we can reorder y;’s as

Y1 = — Yk, Y2k = — Y1
where 0 < y < - < yp < 3 and we have solutions of Q(x) as

627T\/j1y0, . ’eQﬁ\/jlyk’ 6727r\/j1yk’ . ,6727r\/jly0.
Thus we know that the point

y = diag(vo, -~ s Yk, =Yk, -+ » —Y0)

is in A7, and this point corresponds to an integer Stokes data because Q(x)
given by y has integer coefficients.

If n+1 =2k + 1, from the condition 2, Q(z) has an odd number of ®;.
Thus in this case, as the same reason above, (x) has an even number of ®.
Therefore we have solutions of Q(x) as

e?ﬂ'«/—lyo’ . 7627r\/—1yk’ 1’ 6_27M/_1yk, . 76—27r\/—1y0
where 0 < yp < -+ < yp < % Thus we know that the point

Yy = diag(yo: sy Yk, 07 Yk, _yO)

is in A7, and this point corresponds to an integer Stokes data as the same
reason in the case that n + 1 is even. U

From Proposition 22, we only have to count combination numbers of
the product of cyclotomic polynomials which satisfy 1 and 2. If we know
the total number in SL(2k,C) case, then we also know the total number in
SL(2k + 1,C) by the bijective map

O(0 o
LRAG — Ay

dlag(x(]a Ty — Tkt _-7:0) g diag(Q:Oa s Tk, 07 Tk, _xﬂ)'
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Thus we obtain the same total numbers in SL(2k, C) and SL(2k+1, C) cases.
Let n + 1 be an even number. Consider a partition

T:(ala"' y A1, A2, v c Aoy Gyt 7al717"' 71)

of n + 1 with each 2 < a; < n + 1 is an even positive integer and a; < a; for
i < j. These a; correspond to each degree of ®; (j < 3) and 1 corresponds to
the dimensions of ®; and ®,. Let «; be the number of a; in a partition and
ap be 2m for 1. Let Z be the set of all such partition. Set £(a;) as a number
of elements of a set {x € Z~o | ¢(x) = a;} where ¢ is the Euler function. Then
the number of all integer Stokes data is given by the formula:

Z HE at) . ..., afal) (m+1)

i+7—1
J
Recall the set of the interior integer Stokes data (n + 1 = 2k) as

where H ; =

1
(A3.)° ={z = (xo, -+ , 2, T, - - - ,—xo)eﬁlgk\0<xk<---<x0<5}.
Then we consider a partition
T = (ala'” yA1,A2, A2, , A, " 7al)

of n + 1 with each 2 < a; < n + 1 is an even positive integer and a; < a; for
1 < j. When we count the number of the interior integer Stokes data, then
we have to remove overlaps of the same cyclotomic polynomials. Thus we

have the fomula;
v (5(51)> <5<Oi‘l>>

Tel
then we obtain the number of interior points.

Example 7. (The SL(4,C) case) We consider the above partitions of n+1 =
4 as follows:
(1,1,1,1),(2,1,1),(2,2), (4).

For (1,1,1,1), we have oy = 2 -2 and m = 2. We have the three product of
cyclotomic polynomials
o7, PIP3, Pj.
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For (2,1,1), we have a; = 2, a1 =1, ag = 2-1 and m = 1. Then we have
&(ay) = 3 and the six P(x) as follows:

D3®?, D P2 PD?, D3PI, DyP3, Dda.

For (2,2), we have a1 = 2, ay =2, o = 2-0 and m = 0. Then we have
& = 3. In this case, multiplicative combinations happen. We have the six
P(z) as follows:

D3, D, D7, D30y, 04Dy, P3Ps.
For (4), we have ay =4, a; =1, ag = 2-0 and m = 0. Then we the four
P(z) as follows:
(1)57 q)87 q)l(b q)12-
Thus we have 19 integer Stokes data in the SL(4,C) case. The polynomials

correspond to the interior integer Stokes data are @34, PPy, P3Pg, D5, Pg,
P10, P1o.

Example 8. (The SL(6,C) case)
We calculate the total number of integer Stokes points in the SL(6,C)
case. Let n +1 =6 and consider all partitions of 6. We have

(1,1,1,1,1,1),(2,1,1,1,1),(2,2,1,1),(4,1,1),(2,2,2), (4, 2), (6).
Then the total number of the integer Stokes points is

Z HE (@) ... .. Hfgal) (m+1)

T€L
=44+3-3+(9-3)-2+4-24+(27—-2-6—-5)+12+4
=4+9+12+8+10+12+4
=59

We have the total number of the interior integer Stokes points as

3 <5S1)) ..... <€Sl>>

=1+12+4
=17
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3.2 Integer Stokes data on the p-line

In the following we will introduce some examples based on [GL2] and [GO].
Let us consider the global solution with asymptotic data m = —p. By the
Theorem 1, the corresponding holomorphic data is kg =0, ky = --- =k, =
—1. In this case the Asl, ;C-valued 1-form is

1
1) = 5 dz.

271

This connection form is the Dubrovin connection associated to the quantum

cohomology of CP™. As 621ﬁ (m+r) — [ in this case, we obtain s; = (n —; 1) .

When m = —n+r2p the corresponding holomorphic data are ky = 1,
ki = --- =k, = 0. This data is related to the unfolding of A, ., singu-
larities. All s; are equal to 1.

When m = %p the corresponding holomorphic data is kg = —1,k; =
o=k, = 1_7” This data is related to the quantum cohomology of weighted
projective space P1". The corresponding Stokes data is sg = —1,89 = -+ =
Sp1 =0,8, = —1.

When m = 0 the situation is trivial. That is, all s; = 0 and the corre-
sponding solution of (1.1.1) in given by w; = 0 for all 7.

Solutions which correspond to integer Stokes data are interesting objects
for both mathematics and physics. However computing such examples is
a difficult problem. In this section we will find some examples on the line
Rp. We call this line the p-line. It is natural to expect that there are some
relations between the Lie-theoretic objects and integer Stokes data. We will
show that (when n > 2) the only solutions on the p-line with integer Stokes
are the 4 examples described above.

Theorem 23. Assume n > 3 and X\ € [—1,2]. The Stokes data S =
(81,7, 8n) corresponding to the solution of the tt*-Toda equation with m =
Ap is in Z" if and only if
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3.2.1 Proof of Theorem 23

To show Theorem 23, we first show the following lemma. The following
lemma is mainly proved by the author of this Ph.D thesis.

Lemma 24. Assume n > 3 and A = TlL—jré, l € Z=y. Stokes data s is in Z" if
and only if

1=0,1,2,0.

Proof. We assume n > 3 and ¢ > 3. We consider

n—21

P(x) := g (x — e2ten ™),

P(z) has to be P(x) = HmeZ>O(Q)m(x))“(m).

When n is even, P(x) has a solution et 7>™ =1 Therefore it should be
P, 4¢|P(x). For the same reason, it should be @y, 14 |P(2z) when n is odd.
To show Lemma 24, we only have to show that P(z) does not have some
roots of @, or ®y(,44) because we can not construct ®; when some roots
of &, are missing.

First we consider the case that n is even. Let n = 2a where a > 2 and
a € Z. Then P(z) has the roots

enL-HZ%rV_l

?

1 / 1 /
n+1’.27r -1 1 e_ n-HZQTr -1 N
76 Y )

Y

’ 6_%”27“/_1

When ¢ = 2b + 1 where b > 1, P(z) does not have

+b +1
HEBVT | eonyT

If ¢ = 2b+ 1, then we have ged(n + ¢,a + b) = 1 because we have
2(a+b)+1)-1+(a+0b)-(-2)=1.

It follows that e+ >™ = is a root of ®,,.¢. However P(x) does not have this
root. This is a contradiction.

When ¢ = 2b where b > 2, P(x) does not have

a+b—1 / a+1 —
ei n+4 2my/—1 I ei n+227r -1 —1
Y Y Y *
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If ¢ = 2b, then we consider two cases, a + b is odd and a + b is even.
If a + b is odd, then we consider not ®,,, but @%(n+£) = ®,,p. Because
a > 2, P(z) has entr?™ 1 — ea?™V T This is a root of O, 4p(x) because
ged(a+b,1) = 1. Thus ®,|P(x). However, we have ged(a+b, 3(a+b—1)) =
1 because .
(a+b).1+§(a+b—1)-(—2) = 1.

a+b—1 27“/_71 . . .
Thus e2(a+t) is a root of ®,,, but P(z) does not have it as a root. This
is a contradiction.
If a + b is even, then we have gcd(2(a +b),a +b—1) = 1. We show this
by the following lemma.

Lemma 25. We consider a positive coprime pair (m,n) (m > n, and m,n €
Z=o). Then (2m + n,m) is also a positive coprime pair.

Proof. 1f (m,n) is a positive coprime pair, then there exist x,y € Z such that
mz +ny = 1. Then we have

(2m +n)y + m(z —2y) = 1.

x — 2y is also integer number. Thus (2m + n,m) is also a positive coprime
pair. ]

Because a+b—1is odd, (a+b—1, 2) is a coprime pair. Therefore we obtain

gcd(2(a + b),a+b—1) =1 by Lemma 25. So ®,,4, has a root ¢ 5 27V T
However P(x) does not have this as a root. This is a contradiction.

We consider the case that n is odd. Let n = 2a + 1 where a > 1. P(x)
has roots

2a+1 1 1 2a+1
€2<Z+e>27rv*1, . ’ez(nu)%\/*l’ 6*2(n+e)27rv*17 R ,67 ZM)Q”V

Thus these are roots of 2(n + £)-th of unity. Because P(x) has a solution
em%ﬁ, it should be ®o¢,4¢)|P(x). We consider the two cases ¢ = 2b + 1
where b > 1 or ¢ = 2b where b > 2.

If £ =2b+ 1, then n + ¢ is even. P(z) does not have a root e 2mV 1
because ¢ > 3. However we can find that @5, has this root. Since (n +
¢ —1,2) is a coprime pair, we have gcd(2(n + €),n + ¢ —1) = 1 by Lemma

nit-1 — .. ..
25. 50 Py(,,4¢) has a root e+ 2™V=1 This is a contradiction.



36 CHAPTER 3. INTEGER STOKES PROBLEMS
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If ¢ = 2b, then n + ¢ is odd. Then P(x) does not have a root et 2mV 1
because ¢ > 4. However we can find that ®,(,, has this root. Since (n +
¢ —2,2) is a coprime pair, we have gcd(2(n + £),n + ¢ —2) = 1 by Lemma

n+4—
25. Thus ®y(,,4¢) has a root eﬂtﬁé 2™V=1 This is a contradiction. O
Finally we prove Theorem 23.

Proof. (of Theorem 23) Let us consider P(z) as (3.1.2). Assume all coeffi-
cients are integer numbers. P(z) has to be a product of cyclotomic polyno-
mials as (3.1.3). This fact implies that A is a rational number. Indeed if A
is not a rational number, the diagonal entries of enitPO+D) ig not an m-th
root of unity. Thus the integer Stokes problem for general A\ reduces to the

problem:
Let A = =L 1 e Qsg, then

n+l’

seZ<1=0,1,2,00.

It is easily seen that the above [ correspond to the A in the statement of
Theorem 23 respectively.
Let I = ¥ such that ged(p, ) = 1. Recall that for any cyclotomic polyno-

mial ®,,(z), the roots with the lowest angle have the form ex2mV1 ( is some
integer). So similarly the roots of P(x) with the lowest (except 0) angle have
to be such a form. Hence, depending on the parity of n, we get the following
conditions:

1
1 — —— 27/ —1 1
1. 62(n+l)27rV 1 e2n+3) =ex2™"l . odd,

9. e 2™Vl _ eﬁ%ﬁ — e+ even.
Now ged (p, q) = 1, so ged(p,np + q) = 1. Then p =2 or p = 1 when n is an
odd number, p = 1 when n is an even number, respectively. Not depend on
n, the case p = 1, is proved by Lemma 24.

Consider the case in which n is odd and p = 2. Now the all roots of P(x)
is given by

erra ™l 01, ... . (3.2.1)

So ez52™ 1 ig one of the roots of P(z). By the minimality of a cyclotomic

polynomial ®5,,,|P(x). Now ¢ is an odd number so ged (2n +¢,2) = 1.
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Thus ez7a™ 1 is a toot of D®y, i (). These facts implies that eTnra 2V T

is one of the roots of P(x). However 2™ T does not appear in the list
(3.2.1) because n is odd. Hence P(z) must not be a product of cyclotomic
polynomials. ]

3.2.2 Another proof of Theorem 23

We give another proof of Lemma 24. This is mainly proved by Y.Hateruma.
To give another proof of Lemma 24, we need some preparation. Set Dy =
{zeC*|5(k—1) <argz < Tk}, ke {1,2,3,4}.

Definition 26. Let P(x) be a polynomial. If there exists at least one root of
P(z) in each quadrant Dy, we say that the roots of the P(x) are balanced.

Then we have the following proposition.

Lemma 27. The roots of ®,,(x) are not balanced if and only ifn € {1,2,3,4,6}.

To obtain this proposition, we define the Mobius function p : Z-g —
{—1,0, 1} which is defined by

(n) = 0 (if n can be divided by a square number excluding 1)
AT = (—=1)* (if n = p; - - px where p; are different prime numbers)

Then we have
Proposition 28. The sum of all primitive n-th roots of unity equals p(n).
Proof. Let f(n) be the sum of all primitive n-th roots of unity.

gn) = " Fld) = {1 nel

i On>1

because the sum means the sum of all roots of ™ — 1. By using Mobius
inversion formula, f(n) can be computed as

o) =Y (5) 9l

dn

— u(m)g(1) + (dﬁ) gd) + o+ g (dﬁ) 9(ds) + p(1)g(n)

= u(n)

where "d;|n. O
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Proof. (of Lemma 27) When n is one of the above five numbers, it is easily
found that the roots of ®,(z) are not balanced.

Obviously the roots of ®5(z) are balanced, so it remains to consider a
case n > 6. Assume that the roots of ®,(z) are not balanced. Observe
that ex2™V~1 and "% 2V~ are roots of ®,,(z) in Dy, D, respectively. Then
all roots of ®,(z) must be in D; u Dy. This situation implies that the
sum of all roots of ®,(x) is bigger than 1 because en2mV=l 4ty L
e52™V=1 4 ¢627V=1 — 1 On the other hand, sum of all primitive n-th roots
of unity equals a value of Mobius function p at n, i.e.,

p(n) = > ¢

1<i<n,ged (n,i)=1

As u(n) € {—1,0,1}. This is a contradiction. Hence the roots of ®,,(x), n > 6
are balanced. O

Proof. (Proof of Lemma 24) As the same of (41), let

P(z) i= To(w — 2?7 = TT (@())).

m€Z>0

Consider the case n < [. In this case the roots of P(z) are not balanced.

eV o e7mm2™V 1 ig one of the roots of P(z) when n is even or
odd respectively. Hence, by the minimality of a cyclotomic polynomial,
P 41(2)|P(z) (or Popqry(z)|P(x)). (In short we represent ®,|P(x).) Now
a is larger than 6. By Lemma 27, the roots of ®, are balanced. This is a
contradiction. So we need n > [.
In this situation, all roots of P(z) have the form e 2™V where k
is even or odd when n is even or odd respectively. So let us consider the
following polynomial factorization:

20— 1 = P(2)Q(x)R(x)

where Q(x) is 2" + 1 or 2" — 1 when n is even or odd respectively and
R(x) has the form R(z) = [[(z —&). Note that all roots of Q(z) have the

form eZo#02™ =T where k is odd or even when 7 is even or odd respectively.
By Corollary 21, 22"*) — 1 and Q(z) have to be products of cyclotomic
polynomials. Moreover 22"+ — 1 = [ Lnpmiy ®m(z) and P(z) and Q(z)

22(n+l) _q

W also becomes a product of

have no common roots. Then R(z) =



3.3. MINUSCULE FLAG MANIFOLDS 39

cyclotomic polynomials. Because of the distribution of the roots of P(x) and
Q(z), the roots of R(x) satisfy S 2T < argé < Q’Zﬁf) 27, i.e., the roots of
R(z) are in Dy u D3 U {z € C| Re(2) < 0,Im(z) = 0}. These imply that R(x)
has to be ®y(x), P3(x) or Po(z)P3(x). It is easily seen that deg R(z) =1 — 1.
Hence these three cases correspond to [ = 2, [ = 3, or [ = 4 respectively. Now
[ > 2, so we need to observe the cases [ = 3 and [ = 4. In both cases R(x)
has the root e 712" and these roots have to be e*327V=1, Now we conclude
that if [ = 3 or [ = 4 we need n = 0 or n = 2 respectively. Therefore P(z)

must not be a product of cyclotomic polynomials. ]

3.3 Minuscule flag manifolds

In this section, we focus on the solution of the tt*-Toda equations with the
asymptotic data m = —p. In [GIL] and [CV], in the case CP™ the Dubrovin
connection on H?(CP™;C) is identified with the global solution with asymp-
totic data m = —p for the A, case. For other types, we have no example of
solutions with m = —p corresponding to the quantum cohomology. We can
find that the quantum cohomology of minuscule flag manifolds are examples
of solutions of the tt*-Toda equations with m = —p.

3.3.1 Minuscule weights

We review some properties of minuscule weights. We refer to the article
[CMP]. For a complex simple Lie algebra, we define the weight lattice I as
the Z-module spanned by Ai,---, A, where \; is defined by (A;, ) = 0y.
These A; are called the fundamental weights.

Definition 29. We call a non-zero weight A a dominant weight if (A, ;) > 0

)

for all o; € I1. We call a dominant weight A a minuscule weight if (A, a¥) < 1
for all v e AT,

It is well-known that the minuscule weights are a subset of the funda-
mental weights. In the following table of fundamental weights, the minuscule
weights are marked.
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fund. weight | Ay | Ao | A3 An—1 | A\
minuscule vV |V |V ve v

B,(n>2): o—o---

fund. Weight )\1 )\2 )\n,Q )\n,1 A

minuscule v

Co(n=2): oo -

fund. Weight )\1 )\2 )\n,Q )\n,1 )\n

minuscule v

fund. Weight )\1 )\2 >\n73 )\n,Q >\n71 )\n

minuscule v v v

[™
FEg: o o
o &%) as (6751 Qg

fund. Weight )\1 )\2 )\3 /\4 )\5 >\6
minuscule v v

[~
E7 : O O
(631 (e%) as Oy a5 Qg

fund. Weight )\1 /\2 )\3 )\4 )\5 )\6 )\7

minuscule v

It is known that Gs, Fy and Eg have no minuscule weight. G/P,, can be
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described conveniently as a quotient of compact groups as follows.

( ) G/P,=SU(n+1)/S(U@G) xU(n+1—1i)) =Gr(k,n+1)
(B, case) G/P, = SO(2n+ 1)/U(n) = OG(n,2n + 1)
( ) G/P, = Sp(n)/U(1) x Sp(n — 1) =~ CP**!

) G/Py = S0(2n)/U(1) x SO(2n — 2) = Qay—2,
G/P,—-1 = SO(2n)/U(n) = S;,G/P, = SO(2n)/U(n) = S_
(Eg case) G/P, = G/Ps = E¢/SO(10) x U(1) =~ QP?
(E7 case) G/P, =~ FE;/Eg x U(1)

Here OG(k, n) is the set of k-dimensional isotropic subspaces of n-dimensional
complex vector space V with a nondegenerate quadratic form. This is called
the orthogonal Grassmannian. For D,,, OG(n,2n) has two components S
and S_. These are called varieties of pure spinors (or spinor varieties) and
these are isomorphic to each other [Ma].

For A,, B,,C, and D,, the minuscule representations are familiar (see
Section 6.5 in [BD]). For A, Vj, is the exterior power A'Vy, (1 < i < n)
where V), is the standard representation on C"*. For B,, V,, is the half-spin
representation. For C),, V3, is the standard representation on C*". For D,
V), is the standard representation on C**. V) | and V), are the half-spin
representations. We denote these two representations by A, and A _.

For exceptional groups, the minuscule representations are given in the
Section 5 of [Gec]. For Eg, V), and V), are 27 dimensional representations.
For E7, Vy, is a 56 dimensional representation.

3.3.2 Representation V), and H*(G/F))

Let W be the Weyl group of G. We denote the weight orbit of A\; by W - A;.
That is W - A\; = {z(\;)| x € W}. When we write z as a product of simple
reflections, we denote by ¢(x) the minimal length of z in W. The following
fact holds for any parabolic subgroup P of G. Let Ap be the subset of A
such that Lie(P) = h @ @ en, 9« We denote the subset of the simple roots
which belong to Ap by Ilp. Let Wp be the subgroup of W generated by the
elements of Ilp.

Proposition 30. (see Section 1.10 in [Hum]) For x € W, there ezist unique



42 CHAPTER 3. INTEGER STOKES PROBLEMS

elements we W and v e Wp such that
T = uv
where WP = {z € W| l(xs,) > l(x) Ya € Ip}.

By this fact, u is a representative of [x] € W /Wp. We have W - \; = Wi )\,
We shall consider the cohomology ring of G/P;. The following fact is
well-known.

Theorem 31. (Bruhat decomposition)[Hil] For a parabolic subgroup P of G,
we have a decomposition
G = H BuP.

ueW?r

We define the Schubert varieties of G/P; by X, := BuP;/P;. We also
define the opposite Schubert varieties by Y, := xoBxouP;/P; = x¢X,,, where
o is the longest element of W. Then [Y,] € Ha,—9u)(G/P;) and these classes
form an additive basis. By the Poincaré duality theorem, we have a basis of
H?® (G /P;). We denote this generator by o,.

Now we obtain the correspondence between W . )\; and an additive basis
of the cohomology H*(G/P;) by

u(A;) «— oy.

In this subsection, we observe relationships between minuscule weight
orbits and the simple roots. Let A; be a minuscule weight.

Proposition 32. The set of all weights of V), is the W-orbit of \; and the
multiplicities of all weights of Vy, are one.

Proof. 1t is obvious that §W/Wp, < dim(W - vy,) < dim(V),). If there is a
weight which has multiplicity more than one, then §#//Wp, < dimV,,. There-
fore by contraposition when we show that §W /Wp coincides with dimcV),,
we obtain the statement of Proposition 32.

We justify the above claim in each case. We have the orders of all Weyl
groups from the table 2 in Section 2.11 of [Hum)].

For type A,, we have dim¢ A ‘C"™! = ("jl) (1 <i < n). On the other
hand, for this representation we have W /Wp, = S,,41/(S; X S,41-;). There-
fore we obtain fW/Wp, = L — (n1),

il(n+1—1)! i
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For type B,, a minuscule representation is the half-spin representation
and its dimension is 2". Then W /Wp = &,, - (Z2)"/&,,. Hence tW /Wp, =
2" . pl/nl =2,

For type (), a minuscule representation is the standard representation
C*" and its dimension is 2n. The corresponding W /Wp, = &,, - (Z5)"/&,,_1 -
(Zy)". Hence {W /Wp, = 2" -nl/2"71 . (n — 1)! = 2n.

For type D,, there are three minuscule representations. These are the
standard representations and the two half-spin representations. These di-
mensions are 2n, 27! 277! respectively. The corresponding W/Wp, (i =
Ln—1,n)are &, (Z)" /S, 1+ (Z2)" 2%, &, (Z2)" 1 /G,y &, (7)1 /G,
and fW /Wp.(i = 1,n — 1,n) are 2n, 2"~ 2"~ respectively.

For type Ejg, there are two minuscule representations. These representa-
tions are both 27 dimensional representations. The corresponding W /Wp,
and W /Wp, are both Wg, /S5 - (Zy)* where W, is the Weyl group of F.
Then ijEg/65 . (ZQ>4 = 27 . 34 : 5/24 . 5' = 27.

For type E7, the minuscule representation is a 56 dimensional representa-
tion. The corresponding W /Wp, is Wg. /Wg, where Wg. is the Weyl group
of E;. Then fW/Wp, = 219.3%.5.7/27.3%.5 = 56. This completes the
proof. ]

From Proposition 32, we have the weights of V, as {v,(,)| u € Wi} and
the multiplicities of these weights are all one. In addition, we know that
the Weyl group is generated by the simple reflections {s.,| j € {1,--- ,n}}.
Therefore all weights can be obtained from A; by applying {s,| j € {1, -+ ,n}}
to \; repeatedly. Thus we obtain the following isomorphism.

V,\i — H*(G/PZ), UU(M) = Oy

3.3.3 Theorem 35

From Section 3.2, we obtain the following diagram.

C x Vy, —— H?*(G/P,) x H*(G/P)

| J

cC — H*(G/FR)

By using the representation V), of G, we obtain the connection form on the
trivial vector bundle C x V), — C from w. In [GM], Golyshev and Manivel
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showed a relationship between the representations of minuscule weights and
the quantum product by the second cohomology for G of type A, D,,, Fg, F7.

Theorem 33. [GM] For G of type A, D,, Es, Ex and \; is a minuscule
weight, we have

D e, + Gy = 05, O (3.3.1)

They showed Theorem 33 case by case. After that, in [LT], Lam and Tem-
plier uniformly showed the equation (3.3.1) for G = A,, B,,,Cy,, D,,, Eg, E7.

Theorem 34. [LT] For a complex simple Lie group G and a minuscule weight
Ai, we have the equation (3.3.1).

From this equation, we obtain new interpretations of solutions of the tt*-
Toda equations with the asymptotic data m = —p, corresponding to the
quantum cohomology for types B,,C,, D,, Egs, E7 as in the case of type A,
in Section 2.4.

By Theorem 34, we have

1 (& 1 dq
5 (Z q 1e,aj + ea0> dq = 3 (osaio) v

J=1

We identify the left hand side of this equation with the holomorphic data w
of the tt*-Toda equations with ky = 0 and k; = --- = k, = —1 by putting
q = z. Then we obtain

h

a;(m) = N

(k;j+1)—1=-1 (1<j<n).
Thus m = —p and m satisfies ag(m) = h — 1 > —1. By Proposition 14, this
corresponds to the solution of the tt*-Toda equations with the asymptotic
data m = —p.

The Stokes data corresponding to the asymptotic data m = —p is given
by

ny=1
(e ) = (s1(1), -+ salD)

where [ is the identity element of GG. Since s; is the character of j-th fun-
damental representation V) , we have s;(I) = dimVy, € Z (1 < Vj < n).
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Therefore the asymptotic data m = —p corresponds to integer Stokes data.
By Theorem 15, the asymptotic data m = —p corresponds to the origin
of A (or A7).

As a conclusion, we obtain the following.

Theorem 35. ([GIL3/,[Mol1],[GH2],[GM],[LT],[K])
For a complex simple Lie group G and a minuscule weight \;, there is a
natural correspondence between (i) the asymptotic data

mz—pebﬁ

and (ii) the holomorphic data

1 [ & dq
W= — €_q; T qC_qy | —
(B )

for solutions of the tt*-Toda equations. The asymptotic data m = —p corre-
sponds to the unique global solution when g has type A,. The holomorphic
data correspond to the Dubrovin connection for the quantum cohomology of
G/P;.

From Theorem 35, we obtain new interpretations of solutions of the tt*-
Toda equations which correspond to quantum cohomology. In the A, case,
the quantum cohomology and the o-model of Grassmannians is discussed in
detail in the context of the tt*-Toda equations in [G3]. In addition, we obtain
the first examples of solutions of the tt*-Toda equations which correspond to
the quantum cohomology in the other Lie group types, i.e. B,,C,, D,,, Egs, FE-.
According to Cecotti and Vafa, we can expect that there are relationships
between these new quantum cohomology example and physics models in the
context of tt* geometry.

3.3.4 Direct calculation of (3.3.1)

In this subsection, we calculate the equation (3.3.1). We consider the irre-
ducible representations V), whose highest weights are minuscule weights A,
(see table in Section 3.1). In this section we use results on quantum coho-
mology to prove that the quantum multiplication by the generator of the

'For any g, it is conjectured that m = —p corresponds to a unique global solution of
the tt*-Toda equations.



46 CHAPTER 3. INTEGER STOKES PROBLEMS

second cohomology coincides with the endomorphism Z?Zl €_a; T qe_q, for
a minuscule representation V),. To show this statement, we use the quantum
Chevalley formula and the canonical basis.

We define the canonical basis of V), in Section 5A.1 of the article [Ja]
with the following properties:

Vu(n)—ay (W), 0 ) =1
e ; 3.3.2
€ J(v ) {0 otherwise. ( )
Vu(hi)+ay (u()‘l)’ajv> =-1
o) = ; 3.3.3
€a, (Vu(r)) {() otherwise. ( )

He, (vuny) = (W), @ vy,

for all weights u();) and all j € {1,--- ,n}. As a consequence of (3.3.3), we
have

V(X)) +(—ao) (u()\l)7 _aa/) = -1
e () = 3.3.4
o (Vunp) {O otherwise. ( )

Example 9. (canonical basis for classical groups)

g =sl(n+1,C) For a minuscule representatioin \"C"*' (1 < k < n), we
consider the standard basis e;; N e;,,, A+ A€y (i1 <ig < --- <iy) where e;
is the standard basis of C"*'. Then this basis satisfies (3.3.2), (3.5.3) and

(3.3.4).

For the quantum products, we use the quantum Chevalley formula.

Theorem 36. ([FW]) For 3 € II\llp, and u € Wi, we have the quantum
product o by og as

500y = Z (Ag, " )ous,
L(usa)=0(u)+1
+ 2 (Mg, "), - q1

l(usa)=l(u)—na+1

Os

where o ranges over A*\A;Si, Ag 18 the fundamental weight corresponding to

B,
e = ( Z 7, aY)

'yEA‘*’\AIJSi
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and
dla) = Y. (Ag,a¥)o(ss),

ﬁEH\HPZ.

and where o(sg) is the homology class of Hy(G/P;) which is Poincaré dual
to 0,.
sp

In our situation, II\[Ip, = {c;}. Therefore the generator of the second
cohomology is only oy, and Ag = A;. We have d(a) = (A, @¥)0(8q,) = 0(8a;)
for a € A*\A}Si because ); is a minuscule weight. We consider ¢°*#) only as
a complex parameter ¢ in C.

From Lemma 3.5 in [FW], the first Chern class of G/P; is n, times a
generator of H*(G/P;). Then we have the following proposition

Proposition 37. n, is the Coxeter number h. Fxplicitly, we have n, = n+1
(An type); Ne = 210 (Bn type); Ng = 2n (Cn type)a Ng = 2n — 2 (Dn type);
ng = 12 (Eg type), na = 18 (E7 type) for all a € AY\AJ, .

Proof. For A, case, fix a minuscule weight A = \; (1 < k < n). Then we
have AY\AL ={e—¢; (1<i<k k+1<j<n+1)}and ZveAﬂAﬁk v =
SE (n+1—k)e =S ke, Forallae AN\AL , we have 2/(a, a) = 1.

i=1 i=k+1
Therefore we obtain

N = ( Z v,aY) = ( 2 v, ) =n+ 1.

7€A+\A1tk 7€A+\A;k

For B, case, we consider the minuscule weight \,. Then A+\A1tn =
{ei+e (1<i<j<n), ¢ (l<i<n)}and ZVEAWAR v = >, ne. For
€ +¢€ (1 <i<j<n), wehave 2/{o,ay = 1. Therefore we obtain

na=( Y, ma)=( Y, ma)=2n

'yEA*’\A;Sn -yeA*'\A}J;n

For ¢; (1 <i < n), we have 2/{a, a) = 2. Therefore we obtain

N = ( Z v, a) = 2( Z v, @) = 2n.

yeAN\AT yeAR\AL

For C,, case, we consider the minuscule weight A\;. Then AY\AL = {e; -
€, €1+¢€ (1 <i<n), 26} and ZweA*\A; v =2ne;. Fore; —¢;, €1 +¢ (1 <
1
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i <n), we have 2/{a, ay = 1. Therefore we obtain

na=( Y, ma)=( >, va) =2

'yGA"’\AIJEl 'yEA‘*’\A;Sl

For 2¢; (1 < i < n), we have 2/{(a, ) = 1/2. Therefore we obtain

a=( Y ma=g( Y va)=on

'yEA‘*’\A}tl 'yEA‘*’\A}tl

For D,, case, fix a minuscule weight A;. Then A*\Alﬁl = {6 — €, €+
€ (1 <i<n)}and ZveA+\A,tl v=2(n—1)e. For e —¢;, €1 +¢ (1 <i<n),

we have 2/{a, a) = 1. Therefore we obtain

N = ( Z v,a¥) = ( Z v, @) =2n — 2.

7€A+\A;1 76A+\A;1

When we consider a minuscule weight \,_;, then we have AJF\AJJS,H =
- (l<i<n, a+g(<i<j<n-DpadY pon: 7=

S n—1)e—(n—1)e,. For—e, (1 <i<n—1), +¢ (1<i<j<n-—1),
we have 2/{a, a) = 1. Therefore we obtain

N = ( Z v,a¥) = ( Z v,a) =2n — 2.

+ + + +
yeA \Apn_ yeA \Apn_

1 1

When we consider a minuscule weight \,, then we have AT\A} = {¢ +

€; (1<i<j<n)}and ZyeAﬂA;n”V =37 (n—1)¢. Fore+¢; (1<i<j<

n), we have 2/{a, ay = 1. Therefore we obtain

Ne = ( Z v,a¥) = ( Z v, @) =2n — 2.

'yEA‘*’\A;Sn 'yGA‘*’\AItn

For Fj case, fix a minuscule weight A\;. In Fg case and E; case, we use
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the same notations in [Yo]. Then the set AT\A}, is listed as follows.

aq, a1 + ag, a1 + o + az, ap + 209 + 203 + a4 + a5 + ag,
a1+ as + 2a3 + a4 + as + ag, o + as + az + ag + as + ag,
o+ Qo + a3+ g, 0] + g + g + 0y + O,

aq + 209 + 3as + ag + 205 + ag, a1 + g + 203 + a4 + 205 + g,
a1 + 2a9 + 2a3 + ay + 2a5 + ag, ap + as + az + as,

ap + o + 203 + ag + a5, ap + as + ag + oy + as,

a1 + 209 + 203 + a4 + a5, ap + 200 + 3a3 + 204 + 205 + .

We have ZveAﬂA; v = 16aq + 20 + 24as3 + 120y + 1605 + 8ag,. For all
1

a e AT\AY, we have 2/{a, o) = 24 and obtain n, = 12. In the case of a
minuscule weight \g, we also obtain n, = 12 by the same calculation.

For Ey case, we consider the minuscule weight A;. Then the set A*\Ap
is listed as follows.

ay, a1 + ag, a1 + as + az, ap + 209 + 203 + 204 + a5 + ag + a7,
a1 + as + 2a3 + 204 + 205 + ag + ag,

aq + o + ag + 204 + 205 + ag + ay,

a1+ Qg+ a3 +oay + a5+ o+ a7, 1 + 0o+ 3+ g + as,

a1 + 2a + 3as + 3ay + 2a5 + ag + ay,

aq + ao + 203 + 34 + 205 + ag + ay,

aq + 209 + 203 + 30y + 205 + ag + i,

a1+ as +ag + oy, ap +as + 2a3 + 204 + a5 + ag + oy,

ay + o + ag + 204 + a5 + ag + sy,

a1 + 2a9 + 203 + 204 + a5 + ag + g,

aq + 209 + 3as + 4oy + 3as + 204 + 207,

aq + 209 + 3az + 4oy + 205 + ag + 207,

a1+ Qg + a3+ oy + a5+ ag, 1 + g+ g+ g+ a5 + ag,

aq + 209 + 3az + 3oy + 205 + ag + 207,

oy + ao + 203 + 3oy + 205 + ag + 2007,

a1 + 209 + 2a3 + 3oy + 205 + ag + 27, a1 + s + az + ag + ay,
ayp + o + 203 + 204 + a5 + oy, a1 + ag + ag + 204 + a5 + ag,
aq + 209 + 203 + 204 + a5 + a7, a1 + 209 + 3ag + day + 3as + ag + 20.
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We have ZVGAﬂA; v = 27aq + 36 + 45a3 + bday + 36as + 18a + 27ar7,.
1
For all a € AT\A}, , we have 2/{a, @) = 36 and obtain n, = 18. O

We can simplify the quantum Chevalley formula as follows.

Usai OO0y = Z ()\17 av>ausa
Uusa)=0(u)+1

+ Z ()‘DO‘V)UUSa “q
L(usa)=0(u)—(h—1)
where a € AT\AL.
To replace the conditions of these summations, the following lemma,
corollary and proposition are key ingredients.

Lemma 38. Let \; be a minuscule weight. For uw e W' and a € I1, we have
the three following situations.

(I) (u(N;), ) =1 < l(squ) = 0(u) + 1.

(II) (u(N;), ) =0 < l(squ) = £(u).

(IIT) (u(X\;), ") = —1 < l(squ) = £(u) — 1.

Here we consider the length function l(u) in W

Proof. (a) First we show the implication (=), for each of (I), (II), (III). Here
we do not use the minuscule condition.
(I) We assume (u()\;),a") = 1. We show s u € Wi, If (u(N),av) = 1,
(Ai,u™'(a)¥) =1 and v !(«) is a positive root. Therefore ¢(s,u) = £(u) + 1
in W (see Section 1.6 in [Hum]). For g € Ilp,, we have
(Niy (usg) H(@)Y) > 0= (A, spu ' (a)¥) >0

o (5501 (@)) > 0

= (M, u Ha)Y) >0
Therefore we have (\;, (usg)~*(«)¥) > 0. Hence ((s,usg) > £(usg). On the

other hand, for all 3 € Ilp,, we have {(usg) > £(u) because u is in W%, Hence
l(usg) = £(u) + 1 in W. Thus we have

U(squ) = L(usg) < (squsg).

This means that s,u € Wi, Therefore we obtain £(s,u) = £(u) + 1 in W,
(I) We assume (u(X;), ") = 0. We show s,-1(4) € Wp,. Let u () =
biay + -+ by (b; € R). Then we have

()\i,u_l(oz)v) = bz =0
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Therefore u™!(«) € Ap, and s,-1() € Wp,. We obtain
U(s0u) = L(uSy-1(a)) = £(u) in W

(ITT) We assume (u();),a") = —1. We show s,u € W If (u(\;), ) = —1,
then (A, u " (a)¥) = -1 < 0. u(a) is a negative root. Hence we have

U(squ) = l(u) — 1 < l(u) < l(usg) in W
for g € Ilp,. Now we have
l(usg) = l(u) + 1 = {(squ) +2in W.

Let l(usg) = r. Then l(squsg) = r — 1,7 + 1 and {(squ) = r — 2. So
((squsg) > €(squ). This means that s,u € Wi, Thus we obtain {(s,u) =
O(u) — 1 in WhH,

(b) Next we show the implication (<), for each of (I), (II), (III). For (I), we
assume £(s,,,) = ¢(u) + 1. Since \; is minuscule, (u()\;),a") takes only the
values 1,0, —1. If (u()\;),a) is 0 or —1, we obtain a contradiction, by part
(a). The proofs in the case (II), (III) are similar. O

Now we have the weights of V3, as \; — 377,

this lemma, we obtain the following corollary.

nja; where n; € Zo. From

Corollary 39. For u € W' such that u(\;) = A — X7 nja;, we have
O(u) = 25 ny.

Proof. We have

U(sa,u) = L(u) +1 = (u(X), o) =1

J

< 5q, (u(N)) = w(Xi) — aj

by Lemma 38. The elements of Wi are described by a product of simple
reflections. Thus £(u) = > n;. O

j=1

We have the following proposition.

Proposition 40. (1) If there exist « € AT such that {(squ) = l(u) + 1 for
we Whi then aell and (u(\;), ) = 1.

(II) If there exist o € AV such that ((squ) = £(u) — (s — 1) for ue W¥, then
a=—ap and (u(N;), —ay ) = —1.



52 CHAPTER 3. INTEGER STOKES PROBLEMS

Proof. (I) For a € A" such that {(s,u) = ¢(u) + 1, we have
Sau(N;) = u(N;) — (u(N;), a")a.
By the assumption that ¢(s,u) > ¢(u), we have (u();),a") = 1 and « must
be a simple root by Corollary 39.
(IT) For v € A* such that ¢(squ) = £(u) — (s — 1). Then we have

Sa(N;) = u(N;) — (u(N;), a")a.

By the assumption ¢(s,u) < f(u), we have (u(\;),a¥) = —1. When a =
Z?:I qj0j, then o must be —ag because there is only one positive root which
has the height >;7_, ¢; = h — 1. O

By using the relation us, = sy@)t = 5_yu, Corollary 39 and Propo-
sition 40, we can replace the conditions of the summation in the quantum
Chevalley formula.

We show that we can simplify the first summation to

2 O-Sa/’u,

(u(Ns),a’v)=1,a’€ell

by setting o = u(«). Then we shall show that o’ is a positive root. In fact,
if o/ is a negative root, then (u()\;),a’Y) = —1 satisfies {(syu) = £(u) + 1.
However this contradicts a € A*\A}, because we have

(u(N), ) = =1 < (u(N),u(a”)) = =1 < (N, ") = —1.

Thus o is in A*. By Proposition 40, we have o € Il € A™. Hence we have

2 ()\iJOév)UUSa = Z Os_ u

Lusa)=0(u)+1 (u(Xg),a’v)=1,a/€ell

as the first summation of oy, o 0y.

For the second summation, let o’ = —u(«). Then we shall show that o
is also a positive root. In fact, if o’ is a negative root, then (u();),o’V) =1
satisfies ((squ) = €(u) — (h —1). However this contradicts a € AY\A}
because we have

(uw(N), ) =1 < (u(\), —u(av)) =1< (\,a") = —1.
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Thus o/ = —u(a) is in A* for « € A*\A}. By Proposition 40, we have
o = —ap and (u(N;), —ay) = —1. Hence for the second summation of

os. oo, we have

()\i7 av)gusa “q

L(use)=0(u)—(h—1)
Z (/\za _u_l(alv))gsa/u g
£(s ru)=L(u)—(h—1)
_ {qas_aou (u(X), —ag) = —1

0 otherwise.

Thus we obtain

Z Osoyu T q0s_pu  (u(Xi), —ag) = —1
g = Jwogan-
Bog — T Z Os u otherwise.

oy
(u(ri)a) )=1

On the other hand, for v,,) we have

(Z €a; T qe—ap) - Yu(ri)
=1

( Z Vu(A)—ay + GUu(N\;)+(—a0) (u()\z)a —CK[\)/) =—1
_ ) winay-1

Z Vu(Ag)—a; otherwise
\ (u()‘i)vajv ):1

( Z Usa;u(h) T QUs_qqu(r) (uw(Ni), —ag) = —1

B Z Vs, u(A) otherwise
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3.3.5 Quantum Satake isomorphism

When g is of type A, (or, conjecturally, of type D,,Es), the same global
solution corresponds to the Dubrovin connection of any minuscule weight.
This suggests a relation between the quantum cohomology algebra of the
corresponding flag manifolds. In the A,, case this can be stated as

N QH*(CP™) =~ QH*Gr(k,n + 1)

(see [GM] for further explanation).
In the D,, case, the analogous relation is:

A QH*(Qan-2) = Endc(QH*(Sy)). (3.3.5)

This is an isomorphism of D,-modules and it preserves the operation of
quantum product by the generator of the second cohomology. This follows
from Theorem 34 when we identify H*(Qg,_2;C) with C*" and H*(S4;C)
with A, because (3.3.5) corresponds to the well known relation

ALY €2 = Ende(Ay).

In order to explain the notation, we recall the relation here. We denote a
positively oriented orthonormal basis of C?> by ey,--- ,e9,. We define the
isomorphism * : A'C?* — A¥"7'C>" by

*(eg1) A €g@) A A egy) = sign(§)egirn) A eg(iva) AT A Eg(an)

for any permutation £. Then we obtain * - x = (—1)"=)id. We define
L= (—1)"*: \"C* - A" C?". Then ¢-¢ = id. Thus we have the canonical
eigenspace decomposition A" C** = A" C*"@ A" C*". If n = 2m + 1, then
we define A" C?" by

/\0 CAm+2 (_B /\2 CAm+2 @ . (‘B /\2m C4m+2,
If n = 2m, then we define A"*/ C?* by
0 ~4m 2 ~4m 2m am
N CmDAN C"mD---DAT"C™
and /\fialf C?" by

NTmBA T @AM T
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From Theorem (6.2) of [BD], we have
@A = ALEA
A+®A, :/\n—l_i_/\n—?;_i__”
ALQA_=AN"+A\"7"+--
1

as spin(2n) representations where the last terms are A* + A%+ A’ or A* + A
If n =2m + 1, then we have

;/\2m+/\2m—2+“.+/\2+/\0
hal m
:/\ir foam+2
If n = 2m, then we have
;/\im+/\2m—2+...+/\2+/\0
hal f m
= N i,

When we consider the minuscule A_ and the corresponding homogeneous
space S_, we obtain

/\Tlf QH*(QMQ) = EDdC(QH*(Sf))

as in the case of A .

3.4 The GIL classification and the CV classi-
fication

In this section, we compare the classifications by Cecotti-Vafa and by Guest-
Its-Lin. First we review the classification by Cecotti-Vafa. It is written in

Section 6 of [CV2].

3.4.1 The classification by Cecotti and Vafa

Their classification method is purely algebraic and based on the classification
of ‘Stokes matrices’ S of hypothetical solutions of the tt* equations and their
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hypothetical ‘monodromy matrices’ H = SS~7. Let S be an upper triangular
matrix with 1 on the diagonal. According to Cecotti and Vafa, the Stokes
matrices coming from physically realistic solutions of the tt* equations have
to satisfy:
SeSL(n+1,Z), and (3.4.1)
eigenvalues of H are in S'. (3.4.2)

By the same discussion as in Section 3, P(z) can be written as a product of
cyclotomic polynomials

P(x) = Thnez o (P (). (3.4.3)
Note that, in Section 3, we studied the properties of characteristic polyno-
mials of ngo)ngiH and these properties were proved by the property of its

n+1
solutions. On the other hand, in the following lemma, we prove the proper-
ties of characteristic polynomials of H = SS~7. They will be purely proved
by its definition and the above assumptions.

Lemma 41. The above P(x) satisfies the following conditions.

(1) >, v(m)p(m) = n+1, ¢(m) is the Euler function.

(2) v(1) =n+ 1 mod 2.

(3) Forn odd, either v(1) >0 or >} ., v(p*) = 0 mod 2 for all primes p.

Proof. 1: This is trivial since deg ®,,(z) = ¢(m).
2: P(0) = det(—H) = det(—S)det(S~") = (—1)n + 1). On the other hand,
®,,(0) = 1 for all m but for m = 1 where ®;(0) = —1. Hence v(1) =n+1
mod 2.
3: We have
P(1) = det(1 — H) = det(1 — SS™T)

= det(ST — 8)/det(ST)

= (pf(s" - 5))°
where pf means the Pfaffian of a matrix. Note that ST—S is a skew-symmetric
matrix. Hence

Mnen(®m (1)) = (pf(S" — 5))%.
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On the other hand,

0 ifm=1
Q. (1) =< p if m=pF pprimek=>1
1 otherwise.

If n is even the condition is equivalent to the condition (2), because from (2)
v(1) = 1 mod 2 then the left side of the equation vanishes and Pfaffian is
identically 0. If n is odd, there are two possibilities. When the Pfaffian is 0
the left hand side has to satisfy v(1) > 0. When the Pfaffian is not 0, it is
casily seen that >, _, v(pF) = 0 mod 2 for all primes p because the left side
must be a square number. O]

By Lemma 41, we obtain all possible characteristic polynomials. Com-
paring both sides of the equation (3.4.3), we have a system of Diophantine
equations. Solving the systems we obtain all hypothetical Stokes matrices S.

Let U, 11 be the set of (n+1) x (n+1) upper triangular matrices with 1 on
the diagonal with two conditions (3.4.1) and (3.4.2). Let S = (aij)1<i<j<n €
U, 1. A braid group action is generated by

o;:S— PSPF (1<i<n)

I;
where P, = lof , I; is the j x j identity matrix and o; =
In—i—l
<_ai’i+1 (1)> A product of elements is defined by

0;00(S) = 0i(P;SP})o;(S)
where on the right hand side we use the matrix multiplication. Then these
o, satisfy
oi00; =000 (|i—j|<2)
0;004100; = 03410040041
The braid group is generated by these generators o; and we denote them by
Br,,41. We consider the sign group G ;:
+1

+ _
G(n+1 -
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We denote the element whose i-th entry is —1 and other entries are 1 by 7;.
G, | also acts on U, 11 by
S — TiSTiT )

. . . i _
We consider the semidirect product Br,, 1 x G, ;. Here we have o;07; = 7;00;
for i # 7 and o; 07, = T;41 0 0;.

Definition 42. [CV2, Bon] We define an equivalence relation on Uy, 1 by
S1 ~cv Sy if and only if Sy, So are in same orbit of Br,,q X G:fﬂ.

We refer to the resulting classification of Stokes matrices as the CV clas-
sification.

In fact we shall also use a coarser equivalence relation on U, ;1 by making
use of two invariants. The conjugacy class of the monodromy matrix is an
invariant of actions of Br, x G ;. Indeed, the above action induces the

action on monodromy matrices by
SS1— PSSP
Next the braid group action on matrices S + S7 is given by
S+ ST P(S+ STHPT.

By the Sylvester’s law of inertia, the signature of the matrix S + S7 is also
invariant under the action. For the elements of G, |, the conjugacy classes of
SS~T and the signature of S+ ST are also invariant. Hence we can introduce
equivalence relations

S ~eon 81 [857T] = [557T]

S ~consig S = [SS7T] = [SS7T] and sig(S + ST) = sig(S + ST)
where [#] means the conjugacy class and sig(x) is the signature. We use
these invariance to show that the GIL classification coincides with the CV

classification for n = 1,2, 3.
We have a natural projection as follows.

Z/{nJrl/ ~ovT? unJrl/ ~con,sig” > Z/{nJrl/ ~con

by
[S]CV — [S]con,sig — [S]con-
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In the following we summarize the CV classification in [CV2] and compute
the Jordan normal forms of the monodromy matrices for use in the next

section.
1 a
- (0 1).

n = 1: Set
The characteristic polynomial of H is
P(z) = 2° + (a* — 2)x + 1.

By Lemma 41, there are three possibilities for the form of P(x). In Table

Table 3.1:
P(x) b
él(I)Q —2
@6(.%) -1
@2(.1')2 2

3.1, b means the coefficient of ' and [H] is the Jordan normal form of H.
We have

a’> —2=b.

Except for b = —2, we have two solutions ¢ = ++/b+ 2. However the
corresponding Stokes matrices are equivalent under the action of the braid
group. Indeed,

CO-ENEDED-CT) o

Thus if suffices to take b < 0.

e For b = —2, the solution is @ = 0. This case corresponds to the trivial
model.
e For b = —1, the solution is a = —1. This solution corresponds to the

Landau-Ginzburg model with superpotential W (X) = X3 — X (the A,
minimal model).
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Table 3.2:
a S [H]

o (o 1)
()
20 7)

e For b = 2, the solution is @ = —2. This solution corresponds to the
CP! s-model.
n = 2: Set
1 Tr1 X2
S = 0 1 T3
0 0 1

The characteristic polynomial of H is
P(x) = 2° + a(z;)2® — a(z)r — 1

where a(z;) = 22 + 23+ 2% —z17973. By Lemma 41, there are five possibilities
for the form of P(z). In Table 3.3, b means the coefficient of 2%. These lead

Table 3.3
P(x) b
(I)I(CL’)S 0
@1(1’)@2(1[’)2 4
@1(1‘)@3(1‘) 3
Oy (z)Py(x) |2
(I)l(:c)fbﬁ(:c) 1

to the Diophantine equations
o] + a5 + 25 — 117973 = b,

This equation is called the Markov type Diophantine equation, and its com-
plete solutions were studied in [Mor|. The important facts are
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Table 3.4:

(21, 22, T3) S [H]
100 100

(0,0,0) 010 010
001 00 1

1 3 3 110

(3,3,3) 013 01 1
001 00 1
1 -1 —1 -1 1 0
(-1,-1,-1) [ [0 1 -1 0 -1 0
0 0 1 0 0 1
122 -1 0 0
(2,2,2) 01 2 0 -1 0
001 0 0 1
111 ez 0 0
(1,1,1) 011 0 e3> 0
001 0 0 1

e for a generic b € Z there are infinitely many solutions of the equations,
and

e these solutions are generated by three transformations from so-called
fundamental solutions?(see [CV2] or [Mor|). The three transformations
contains the generators of the action of the braid group B;

(5617132, $3) — (—171, T3, Ty — 371553)
(1'1@2,553) — (fEQanl — Ta3, —5763)-

By using these facts, Cecotti-Vafa obtained four physically realistic models
corresponding to the braid group orbits.

e For b = 0, a fundamental solutions is (3, 3, 3). This solution corresponds
to the CP3 o-model.

e For b = 4, there are two fundamental solutions, (1,1,2) and (2,2,2).
The solution (2,2,2) corresponds to the Ising 3-point function. The

2The fundamental solution (1, 22, x3) is a nontrivial solution satisfying 0 < 7 < 29 <
x3 and x1 + T2 + x3 is minimal. Triviality means that at least two x;’s vanish.
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physics model corresponding to (1,1,2) can be explained as an N = 2
Toda theory related to the A, root system, and (1,1,2) can be trans-
formed into (—1,—1,—1).

e For b = 2, the fundamental solution is (1,1,1). This corresponds to
the A3 minimal model.

e For b =1, 3, there are no fundamental solutions.

3.4.2 The comparison of classifications

In this section, we compare the classification of Guest-Its-Lin with the classifi-
cation of Cecotti-Vafa in the n = 1, 2, 3 cases. To compare them, we calculate
the monodromy matrices from the asymptotic data (or Stokes data). For the
n = 1,2 cases, it turns out to be necessary to consider only the conjugacy
classes. For the n = 3 case, we have to consider not only the conjugacy
classes but also the signatures.

We consider the asymptotic data with the integer Stokes data. We de-
note the set {me A7 | s;€Z, i =1,--- ,n} by A7, ;. As we have seen in
Section 3, by (2.3.1) we can define the map

27my/—1
S An+1 7 = Uni1, m — Spor(e 71

(m+p))

We denote SHor(ean M) by Stror(m).

Proposition 43. The map . is well-defined.

Proof. Form € A7, 7, Suor(m) is in SL(n+1,Z) from (2.3.1). Thus Sy (m)
satisfies (3.4.1).

As we have seen in Section 2, the monodromy matrix of the solution
corresponding to the asymptotic data m (or the Stokes data s1,--- ,s,) is

) N( ] n+1
G(0) glo) _ g(oo)<g(oo))_T _ (Q1 Q1 II) (n + 1 even)
L C (@ Qi 3 )"“ (n + 1 odd)

In addition, for m € A7, we know from the discussion in Section 2 that

Qloo)ngiﬁ has a Jordan normal form as
n+1
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where g € SL(n + 1,C) and N is a nilpotent element which commutes with
m + p. Then we have the monodromy matrices

_(ng)égwi ﬁ)n+1 = —gle 2w¢?1(m+p)e(n+1)Ng (n + 1is even)
(@ﬁm)ini M)m+! = g=tedmV=lmerlent N g (n + 11is odd).

Then we have

[SHor(m)SHor(m) ]con - F EOO FTF (S( ))7TF71]CO7L

[
[ OO) con

SN
[—( (OO) (Oo) H)”“]wn (n + 1 even)
[(Q @“O )n+1]m (n + 1 odd)

- 27r\/7(m+p) (n+1)N Jeon (n+ 1 even)
[ 2my/=1(m+p) o(n+1)N ]con (n +1 Odd)-

Therefore all eigenvalues of Sy (m)Sor(m)~7 are in S1. Thus Sy (m) sat-
isfies (3.4.2). O

We consider the set of equivalence classes of ~grz, for A7, 5 and denote
them by A7, 7/ ~crr. Then we define the map

% 440+1 2/ ~crL—= Uni1/ ~cv, [m]arn = [Saor(m)]cov.

We see that the map 7 is well-defined. F irst, we have
Lemma 44. For k =20 ({ € Z) and m € Af, we have

si(e™ T Om o)y {_f(e;f(::;)) i;i Is odd (3.4.5)
sile”® \™ if 1 15 even
Proof. We have
Or(m) + p = diag(—my, - -+ , —mg, mg, - -+ ,my) + diag(%, e ,%, %,~ ,%)
=diag(—mk+%,--- ,—m0+%,m0—%,--- ,mk—%)
=diag(—mk—§,--- ,—mg—%,m(ﬁ—%,--- ,m;.fl—%)%— kglEg
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where E, = ( L I ) Therefore we have
—1y

e%(@c(m”ﬁ) — G%T Adiag(*mk*%f"ﬁmO*%,mOﬂL%f"7mk+%)e7fx/j1Ee
2my/—1 3. 1 k—1 k-1 1
— (_1>€”Td1ag(fmk7§,--- ;—mo— "5 mo+ S5, Mgt g) )

. 27V =l oo (—me—L o g —E=L k=1 . 1 . 2my/—1
Since e~ & d1a8(=mr— g, mmo =S mot 557 Mkt 5) hag the same entries of e ko (7P
we have

2m+/—1 (m+ NP
—3: P)
S‘(ezﬂﬁ(@k(m)ﬂ)) 1 G ) ifiis odd
7 - er/jl(m_,’_p) ep - s
si(e” & ) ifiis even
because s; is the i-th elementary symmetric function. O

For k = 2¢ and m € AJ, we have (cf. Section 9 in [GIL4])

2m/—1 m4+ e e
N : P
2m _1(diag(m7m)+pk)) {s;(e r—(m+r0) if § is even

si(e” &
0 if 7 is odd.

(3.4.6)

where we denote p in A7 by p;. Then we have

Lemma 45. Let n+1 be even. If 28\n+1 (k € Zsy), for m € A%, we have
ok

AT mbonsy) .
si(622§(diag(m,~-,m)+pn+1)) _ 82%(6 2k ) ifi =0 (mod 27)
0 otherwise.

(3.4.7)

where diag(m,--- ,m) e A7, ;.

Proof. We show this statement by induction. The k& = 0 case of (3.4.7)
trivially holds. Then we assume that the k = ¢ case of (3.4.7) holds. If
21 |n + 1, for m € A%, we have

ofl+1
2 (diag(mam)+pns) ,
S'<€22§(diag(m,-~,m)+pn+1)) _)si(e 2 ) if ¢ = 0 (mod 2°)
) 2t
0 otherwise.
%(mJﬂ’ n+l) . /41
_ ) s i (e2r1 271 if i =0 (mod 2+1)
= BYES|
0 otherwise.

Here we use (3.4.6). Thus the k = ¢ + 1 case of (3.4.7) also holds. O
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Proposition 46. The map 7 is well-defined.

Proof. If n + 1 is odd, ©,,1; is identity. Thus we have to only consider the
case that n + 1 is even.

If 2¥In + 1 (k € Z=o) and 28! n + 1, for diag(m,---,m) € AZ,, where
m e A%, we have

ok
TR Ok(m)4pnsy) L

3¢ TR ins(Ok(m), - O om) +pnen)y _ [ 85 (e * ) ifi=0(mod2%)

0 otherwise.

2t (mApng)
S ) if i = 2% (mod 2++)
2
= 2 (mpnia) )
S%(e 2k 2k ) ifi=0 (HlOd 2k+1>
2
0 otherwise.

by Lemma 44 and Lemma 45. Then we have for m € A%,

ok
[n+1 Sl[n+1 32[n+1 Tt 8n+1_1[n+1
2k 2k 2k 2k 2k
0
2m/—=1 ¢ q: . . . .
SHor(e pEsy (d1ag(m,---,m)+pn+1)> = : . . .. S2IL‘*};1
2
S1Lnt1
ok
0 0 Tnia
ok
and
[L+1 —S [n+1 S [L+1 e —Sntl [L+1
1 2 1
ok ok ok ok k
0
20V (diag(® pi1 (m),+,© a1 (M) +pnt1) .
S i k k = Sol
Hor(e 2 2 ) = 2 n;]—cl
—81]n+1
ok
0 0 Tnna
ok

Thus we have

27T\/jl di @ @ i - .
SHor(e T (diag( "2%1(’")’ ; %(m)) Pn+1)) _ hTSH0r<€2n\i?(d1ag(m7u.7m)+pn+1))h
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where
.
ok
Ins1
ok
B =
.y
ok
Ins1
ok
This h is an element of G, ;. Therefore we obtain
27m/—1 7 3:
n (dlag(QL (m)7 7®L (m))+pn ) m/=1 (s
[SHor(e 1 24);1 24];1 1 )]Cv _ [SHor(62n+11(dlag(m, ,m)+pn+1))]cv
This means the map 7 is well-defined. m

The aim of this section is to show that the map 7 is injective. By the
sequence of maps in Section 4, we have the following diagram.

7
AZ+17Z/ ~GIL Z/{n—i-l/ ~Cv

un-i—l/ ~con,sig (348)

Y

z/{n-i-l/ ~con

We show the following result.

Theorem 47. For n = 1,2,3, the map 7 is injective, that s, the GIL
classification coincides with the C'V classification.

Proof. To show the statement we show that the map

AZJrl,Z/ ~GIL— Un+1/ ~con (349)

for the integer Stokes data is injective if n = 1,2 and that the map

AZJrl,Z/ ~GIL™ un+1/ ~con,sig (3410)



3.4. THE GIL CLASSIFICATION AND THE CV CLASSIFICATION 67

for the integer Stokes data is injective if n = 3. It follows that the map 7 is
injective.

n =1 We have
A5 = {m = diag(mg, —mo)| — % <mg < %}
and X
A3/ ~cri={[mlcir | — g SmM< 0}.
We obtain

) ~an= A~ )L I~ L 10,0)])

as Table 3.5.3 From Table 3.5, we know that the monodromy for each [m]err

Table 3.5: n+1 =2
m = (mg, —mg) | Suor(Mm) [_e2ﬂ\/j1(m+p)e(n+1)N]

b))
)] () )
o G0 G

are distinct. Therefore the map (3.4.9) is injective.
n = 2 We have

con

L

In the n = 2 case, the relation in Definition 16 is trivial, that is A =
A3/ ~arr. We obtain the elements of A5,/ ~gz as Table 3.6. Therefore
the map (3.4.9) is injective.

n = 3 We show that the map (3.4.10) is injective. We have

g = {m = diag(m0707 _mO)’ -1< my <

N | —

. 1 3 3
AZ = {m = dlag(moamlv —my, _m0)| —=—<m < —— <My <

1
° Zmy < mg+1).
2 2’ 2 5 M < motl)

3In tables, we omit the words “diag” of diagonal matrices m.
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Table 3.6: n+1 =3

m = (mg, 0, —myp) Stior (M) [%*/_m”enﬂw Jcon
1 -3 3 110
(—-1,0,1) 0 1 -3 011
0 0 1 00 1
1 -2 2 -1 0 0
(—3,0,3) 0 1 -2 0 —1 0)
0 1 0 1
1 -1 1 V-1 0 0
(—1,0,3) 0 1 -1 0 —/-10
0 0 1 0 0 1
100 100
(0,0,0) 010 010
00 1 001
1 1 -1 -1 1 0
(3,0,-3) 0 1 1) 0 -1 0
00 1 0 0 1

By the relation in n = 3 (see Example 5), we have

1 3 3

AZ/ NG[LZ{[TTL]G[L | — 5 <mp < 5, —5 < myg mip < mo + 1, mo +my < 0}

1
27

o= A

—{[mlair | mo +mq = 0,0 <mg <

Then we obtain the elements of A,/ ~crr, as Table 3.7. By Theorem 3.5 in
[Hor], we know that Syor(m) + Suor(m)? has the same signature as

diag((—1) " p(m), -, (=1)°p(73)) (3.4.11)

where p(z) = 2 — 5123 + 5322 — 12 + 1, m, = e2®+2)™=1 From Table 3.7,
Then we find that the map (3.4.10) is injective. O

Remark 48. Forn = 1,2, we obtain a more powerful result. We can define
a map

AP 1) ~air— U1/ ~Br,., (Ml = [SHor(m)]ora (3.4.12)
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and show that this map is injective.
For n =1, we have the braid group action for Sge(m) by (3.4.4) as

1 S1 . —851 1 1 S1 —S51 1 . 1 —S1
0 1 1 0 0 1 1 0/ \0 1 '
For [mlgin = [m/]ein, we have [Spor(m)] = [Suor(m')]. Thus the map

(8.4.12) is well-defined. From Table 3.5, we obtain that for the integer Stokes
data the map (3.4.12) is injective.

For n = 2, the relation in Definition 16 is trivial. Thus we can define the
map for the integer Stokes data

.Ag — Z/{3/ ~brd, T +— [SHor<m>]brd- (3413)

From Table 3.6, we have the five integer Stokes data in A. On the other
hand, we find that there are five elements [Syor(m)|pra in Us/ ~prq because

the conjugacy classes of the their monodromy are different. Then the map
(8.4.13) is injective.
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Table 3.7 n+1=4

m SHor [762‘” 71(m+p>e<n+l)1\7] Sig(SHor + Sgor)
VS
1 0 1 0 e 0 0 0
01 0 1 0 = 0 0
(7%7é77%7%) 0 0 1 0 w/—1 (+7+7+7+)
0 0 e 3 0
00 0 1 /T
0 0 0 e 3 )
1 0 0 O 1 0 0 O
0 1 0 O 0 1 0 O
0,0,0,0) 00 1 0 00 1 0 (4, +, +)
0 0 0 1 0 0 0 1
1 1 2 _1 —1 0 0 0
—m/—T
11 11 0 1 -1 2 0 e 3 0 0 0.0
(_5767_675) 0 0 1 1 0 0 w\éfl 0 (+,+,0,0)
e
0 0 0 1 0 0 0 1
“3r/—1
1 -1 1 -1 e 0 0 0
— /=T
s 1 1 3 0 1 -1 1 0 e 0 0
(=16~ 10 707 10 o o0 1 -1 . . =T . (+,+,+,+)
e 5
0 0 0 1 3m/—1
0 0 0 5
1 —4 6 —4 —1 1 0 0
3 _11 3 0 1 -4 6 0 -1 0 N
(=3,-3:2:3) 0o 0 1 -4 0 0 -1 1 (+:0,=7)
0 0 0 1 0 0 0 —1
1 -3 4 -3 -1 0 0
5 115 0 1 -3 4 0 -1 0 0
(_67_57576) 0 0 1 —3 0 0 67WS/T1 0 (+707_7_)
0 0 o0 1 0 0 e
1 -2 2 —2 —1 1 0 0
1111 0 1 -2 2 0 -1 0
( 20 5’575) 0 0 1 —92 0 0 1 0 (+707070)
0 0 0 1 0 0 0 —1
1 -1 0 _1 —1 1 0 0
1111 o 1 -1 0 0 =1 0 0
1111 — /=T
(=5 =2:3:%) o 0 1 -1 0 LT 0 (+,+:+,0)
/=T
00 0 1 0 0 55
=1
1 -2 3 -2 eI 1 0 0
— /=T
5 1 1 5 0 1 —2 3 0 e 3 : 0 0
(7g:§77€76) 0 0 1 -2 0 77\{3?1 1 (+7+7777)
e
0 0 0 1
/"I
0 0 3
1 0 2 0 —1 1 0 0
_11 11 01 0 2 0 -1 0 0
( 279 272) 0 0 1 0 0 0 —1 1 (+7+7070)
0 0 0 1 0 0 0 —1
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