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Chapter 1

Introduction

1.1 History of the tt*-Toda equations

The tt* equations were introduced by Ceccoti and Vafa in 1991 [CV1]. This
equation is suggested in the context of the classification of deformations of
N “ 2 super conformal field theory. In this article, they considered the
finite numbers of vacuum and chiral field, which defined a chiral ring. In
1991, Dubrovin found that the tt* equations could be written by the zero
curvature equations on the tangent bundle over a Frobenius manifold and
the pluriharmonic map equation for maps into a symmetric space [Dub].

The zero curvature equations are integrable. One can solve these equa-
tions by using the DPW method [GIL3]. In this method, we consider the
holomorphic data (we call this the DPW potential) and then express the
solutions as a loop group factorization of a function obtained from this data.
We also have an asymptotic expansion of solutions and their coefficients (we
call this the asymptotic data).

We focus on the “Toda” types of the tt* equations. We call these equa-
tions the tt*-Toda equations. The tt*-Toda equations are well studied in
the series of works by M.Guest, A.Its and C.Lin [GIL1][GIL2][GIL3][GIL4].
They focus on the tt*-Toda equations with type An as follows.

2pwiqtt̄ “ ´e2pwi`1´wiq ` e2pwi´wi´1q (1.1.1)

where wi : U Ñ R (U is an open subset of C “ R2), i P Z, wi “ wn`1`i

and
řn

i“0 wi “ 0 and where we assume the “Frobenius condition” (in some

5



6 CHAPTER 1. INTRODUCTION

articles, this is called “anti-symmetry condition”)

wi ` wn´i “ 0 pfor 0 ď i ď nq
and the radial condition wi “ wip|t|q. We consider the following connection
form α on the trivial principal SLpn ` 1,Cq bundle over Cˆ :“ Czt0u

α “ pwt ` 1

λ
W T qdt ` p´wt̄ ` λW qdt̄ (1.1.2)

where w “ diagpw0, ¨ ¨ ¨ , wnq and where

W “

¨

˚̊
˚̋

0 ew1´w0

. . . . . .
. . . ewn´wn´1

ew0´wn 0

˛

‹‹‹‚.

Then the zero curvature equation dα`α^α “ 0 for @λ P Cˆ is equivalent to
(1.1.1). By direct calculation, we know that the equation (1.1.1) is equivalent
to 2wtt̄ “ rW T ,W s where w “ diagpw0, w1, ¨ ¨ ¨ , wnq. Thus this equation is
equivalent to the compatibility condition pΨtqt̄ “ pΨt̄qt for the linear system

#
Ψt “

`
wt ` 1

λW
˘
Ψ

Ψt̄ “
`
´wt̄ ` λW T

˘
Ψ.

(1.1.3)

For the holomorphic potential

ω “ 1

λ

¨

˚̊
˚̋

0 zk0

zk1
. . .
. . . . . .

zkn 0

˛

‹‹‹‚dz

where z P U and ki ě ´1 (@i), one can construct a global solution w by using
the DPW-method through the Iwasawa decomposition of loop groups. Then
we obtain global solutions whose asymptotic expansions are

wip|t|q „ ´mi log |t|.
Here mi are defined by follows:

mi´1 ´ mi “ n ` 1

N
pki ` 1q ´ 1

where N “ n ` 1 ` řn
i“0 ki. Thus we obtain the following ([GIL3],[Mo1]).
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Theorem 1. For fixed N ą 0, the global solutions of p1.1.1q are in one to
one correspondence with the following Λsln`1C-valued one forms 1

ληpzqdz on
C˚, where

ηpzq “

¨

˚̊
˚̋

zk0

zk1

. . .
zkn

˛

‹‹‹‚.

Here ki P r´1,8q, n ` 1 ` řn
i“0 ki “ N and ki “ kn´i`1 for any i. The

variable z means t “ n`1
N z

n`1
N .

From the radial condition wipxq “ wip|t|q (x “ |t|), we have
ˆ
x
d

dx
´ t

d

dt
´ t̄

d

dt̄

˙
w “ 0,

ˆ
t
d

dt
´ t̄

d

dt̄

˙
w “ 0.

Then we have the radial version of (1.1.1) as pxwxqx “ 2xrW T ,W s. This is
equivalent to the compatibility condition Ψxµ “ Ψµx for the linear system

#
Ψµ “

´
´ 1

µ2xW ´ 1
µxwx ` xW T

¯
Ψ

Ψx “ p 1
µW ` µW T qΨ.

(1.1.4)

where µ “ λx
t , x “ |t|. By Chapter 4 in [FIKN], this compatibility condition

(1.1.4) is equivalent to the isomonodromy deformation with x of the first
differential equation

Ψµ “
ˆ

´ 1

µ2
xW ´ 1

µ
xwx ` xW T

˙
Ψ. (1.1.5)

Therefore for solutions w of the tt*-Toda equations, equations (1.1.5) has the
monodromy data which is independent of x. Hence we have a correspondence
between a solution w and the Stokes matrices of (1.1.5).

By changing variable ζ “ µ
x , the equation (1.1.5) is equivalent to

Ψζ “
ˆ

´ 1

ζ2
W ´ 1

ζ
xwx ` x2W T

˙
Ψ. (1.1.6)

By Proposition 1.1 of [FIKN], we have the unique formal solution around
ζ “ 0 as

Ψ̃p0q
f “ P̃0

˜
I `

ÿ

kě´1

Ψ̃kζ
k

¸
e

1
ζ dn`1
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where ´W “ P̃0p´dn`1qP̃0
´1
, P̃0 “ e´w Ω diagp1,ω 1

2 , ¨ ¨ ¨ ,ω n`1
2 q, Ω is the

Vandermonde matrix pωijq0ďi,jďn, ω “ e
2π

?´1
n`1 and dn`1 “ diagp1,ω, ¨ ¨ ¨ ,ωnq.

We take Stokes sectors at ζ “ 0 as follows: for the n ` 1 “ 2m case,

Ωp0q
1 “ tζ P Cˆ| ´ π

2
´ π

n ` 1
ă argζ ă π

2
u (1.1.7)

and for the n ` 1 “ 2m ` 1 case,

Ωp0q
1 “ tζ P Cˆ| ´ π

2
´ π

2pn ` 1q ă argζ ă π

2
` π

2pn ` 1qu (1.1.8)

and Ωp0q
k 1
n`1

:“ e´ π
n`1Ωk for k P 1

n`1Z. We have the canonical solutions Ψ̃p0q
k

on Ωk such that Ψ̃p0q
k „ Ψ̃f as ζ Ñ 0. We define Q̃k and S̃k by

Ψ̃p0q
k` 1

n`1

“ Ψ̃p0q
k Q̃k, Ψ̃

p0q
k`1 “ Ψ̃p0q

k S̃k

for k P 1
n`1Z. Using the symmetries of Q̃k in page 7 and 12 of [GH1], we

have the monodromy around ζ “ 0

S̃p0q
1 S̃p0q

2 “
#

´pQ̃1Q̃1 1
n`1

Π̃qn`1 pn ` 1 “ 2mq
pQ̃1Q̃1 1

n`1
Πqn`1 pn ` 1 “ 2m ` 1q (1.1.9)

where

Π “
ˆ

In
1

˙
, Π̃ “

ˆ
In

´1

˙

and we also have S̃p0q
2 “ pS̃p0q

1 q´T . We can write the monodromy around

ζ “ 0 as S̃p0q
1 pS̃p0q

1 q´T .
We have the characteristic polynomial of Q̃1Q̃1 1

n`1
Π̃ as

P pxq “ xn`1 ´ s1x
n ` s2x

n´1 ´ ¨ ¨ ¨ ´ snx ` 1

for n ` 1 even and the characteristic polynomial of the semisimple part of
Q̃1Q̃1 1

n`1
Π as

P pxq “ xn`1 ´ s1x
n ` s2x

n´1 ´ ¨ ¨ ¨ ` snx ´ 1

for n ` 1 odd where si is the i-th symmetric function of the n ` 1 entries of

e
2π

?´1
n`1 pm`ρq.
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Theorem 2 ([GIL3],[Mo1]). For each n P N and N ą 0. The global solutions
of (1.1.1) correspond to n-tuples of parameters

S “ ps1, . . . , snq P Rn

with si “ sn´i`1. We call this S “ ps1, ¨ ¨ ¨ , snq the Stokes data.

From the above discussion, we have correspondences among holomorphic
data ki, asymptotic data mi and Stokes data si:

ki Ø mi Ø si.

For these global solutions, there are several interesting interpretations as fol-
lows.

1. Quantum cohomology
In [DGR], Dorfmeister-Guest-Rossman showed that the quantum coho-

mology of CP 1 corresponds to a global solution. By considering the quantum
product by the second cohomology, we have the Dubrovin connection on the
trivial vector bundle.

Let 1 P H0pCP 1,Cq and x P H2pCP 1,Cq be generators. Then we have
the quantum product ˝q as

1 ˝q 1 “ 1, 1 ˝q x “ x, x ˝q x “ 1 ¨ q.

From this product, we have the Dubrovin connection on the trivial vector
bundle H2pCP 1,Cq ˆ H˚pCP 1,Cq Ñ H2pCP 1,Cq as follows:

1

λ

ˆ
0 q
1 0

˙
dq

q

where q P Cˆ – H2pCP 1,Cq. This is a connection form of the same type as
ω in the tt*-Toda equation in the SLp2,Cq case.

For other cases, Iritani [Ir1],[Ir2] studied the tt* structure on the quan-
tum cohomology of orbifold or algebraic curves. Guest-Lin [GL1] obtained
some quantum cohomology of projective weighted spaces whose Dubrovin
connections correspond to holomorphic data.

2. Generalization of the tt*-Toda equations
In 2019, the tt*-Toda equations were generalized from the SLpn ` 1,Cq
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type to the general complex Lie group types by Guest-Ho [GH2]. This work
plays a fundamental role for this thesis.

The equation (1.1.1) is the tt*-Toda equation with G “ SLpn ` 1,Cq.
Guest and Ho used the notations of Lie theory and representation theory.
They generalized the equations, holomorphic data, asymptotic data and
Stokes data. They used several remarkable works by Kostant [Ko], Hichtin
[Hit], Steinberg [Ste] and Boalch [Boa]. We will give details in Chapter 2.

3. Integer Stokes data
By integer Stokes data, we mean the condition that all Stokes data take

integer values. As we shall see in Section 2, we have finite many solutions
with integer Stokes data, for each n. In [CV2], they use characteristic poly-
nomials of monodromy matrices to classify models of quantum fields. We
will compare the classification by Cecotti and Vafa and the classification by
Guest-Its-Lin in Chapter 4.

For such Stokes data, there are some remarkable results. In [GL1] and
[GL2], several quantum cohomology correspond to some solutions with in-
teger Stokes data, e.g. quantum cohomology algebras of CP n or weighted
projective spaces, and An singularities of unfolding also corresponds to spe-
cial integer Stokes datum on ρ-line in FWA. In [Mo1] and [Mo2], Mochizuki
studied Z-structure on parabolic vector bundles.

Another aspect is the action of the braid group Brn`1 on Stokes matrices.
In [CV2], when Cecotti and Vafa classified quantum field models, they con-
sidered Stokes matrices modulo the braid group action. In [BH], Balnojan
and Hertling studied the orbits of the braid group action on Stokes matrices.

4. Other researches
In [FN], Fredrickson and Neitzke found the surprising fact that the set

of SLpn ` 1,Cq-Higgs bundle on CP 1 corresponding to connection forms of
the same type as ω correspond to certain representations of W-algebras (Re-
mark 5.4 in [FN]). Following this result, Guest-Otofuji studied Stokes data
from the view point of representation theory of affine Lie algebras in [GO].
They found that a certain integer Stokes point corresponds to a fundamen-
tal representation of a Kac-Moody Lie algebra. In [CV1], Cecotti and Vafa
defined the tt* equations in the context of superconformal Virasoro algebra,
i.e. Vertex algebras, so relationships among them can be expected.
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1.2 Main results

In this thesis we investigate the integer Stokes data. As above, we know
that the integer Stokes data contain rich information in terms of physics
and mathematics. First we obtain properties of the integer Stokes data by
considering cyclotomic polynomials. It is written in Section 3.1.

Proposition 3. [HK] If m is asymptotic data corresponding to an integer
Stokes data, P pxq satisfies the following conditions.

1.
ÿ

d

νpdqϕpdq “ n ` 1

2. νp1q “ n ` 1 pmod 2q.
Conversely if Qpxq “ ś

dPNpΦdqνpdq satisfies 1 and 2, then the roots of Qpxq
come from an integer Stokes point.

By using this proposition, we obtain a formula for the total number of
the integer Stokes data.

ÿ

τPI
Hξpa1q

α1
¨ ¨ ¨ ¨ ¨ Hξpalq

αl
¨ pm ` 1q.

As the second topic, we focus on the integer Stokes data on ρ-line. The
points on this line are parametrized by real numbers λ P r´1, 1

ns. The first
main theorem is as follows:

Theorem 4. [HK] Assume n ě 3 and λ P r´1, 1
ns. Then the Stokes data s

of the corresponding solution of the tt*-Toda equations is integral if and only
if

λ “ ´1, ´ 1

n ` 2
, 0,

1

n
.

We know that we have a solution of the tt*-Toda equation with An type
from the Dubrovin connection of the quantum cohomology of CP n. Further-
more, we know that the tt*-Toda equations are defined for general complex
simple Lie groups. From this generalization, we can ask:
For general complex simple Lie groups G, can we obtain solutions with the
asymptotic data m “ ´ρ which correspond to the Dubrovin connection of
the quantum cohomology of some homogeneous space ?
We give an answer of this question in Section 3.3. This is the second main
result.
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Theorem 5. ([GIL3],[Mo1],[GH2],[GM],[LT],[K])
For a complex simple Lie group G and a minuscule weight λi, there is a
natural correspondence between (i) the asymptotic data

m “ ´ρ P h7

and (ii) the holomorphic data

ω “ 1

λ

˜
nÿ

j“1

e´αj ` qe´α0

¸
dq

q

for solutions of the tt*-Toda equations. The asymptotic data m “ ´ρ corre-
sponds to the unique global solution when g has type An. The holomorphic
data correspond to the Dubrovin connection for the quantum cohomology of
G{Pi.

After that we compare the classification by Cecotti and Vafa in Section
6 of [CV2] with the results of Guest-Its-Lin of [GIL1]. These approaches are
different, but we found that the results are surprisingly close. We obtain the
third main theorem as follows. It is written in Section 3.4.

Theorem 6. [HK] For n “ 1, 2, 3, the classification of Cecotti-Vafa coincides
with the classification of Guest-Its-Lin.

The following is the list of contents of this thesis. In Chapter 2, we prepare
the notations and theory for this thesis. We consider the general complex
simple Lie groups and we define the tt*-Toda equations, holomorphic data,
asymptotic data and Stokes data. This part follows [GH2]. In Chapter 3,
we focus on the integer Stokes data. In Section 3.1, we see properties of the
integer Stokes data. Then we calculate the total number of the integer Stokes
data. Then we determine the integer Stokes data on the ρ-line in Section
3.2. In Section 3.3, we obtain solutions of the tt*-Toda equations with the
asymptotic data m “ ´ρ from the quantum cohomology of the minuscule
flag manifolds. Finally we compares the classification by Cecotti and Vafa
with the classification by Guest-Its-Lin in Section 3.4.



Chapter 2

The tt*-Toda equations

In this chapter, we review notations of Lie groups and Lie algebras. Then
we define the tt*-Toda equations.

2.1 Definition of the tt*-Toda equations

2.1.1 Notations

First we review the notations of Lie groups and Lie algebras. Let G be a
complex simple simply-connected Lie group and g be its Lie algebra. We
take a Cartan subalgebra h. We decompose g as

g “ h ‘
à

αP!
gα

where gα “ tX P g | adpHqpXq “ αpHqX, @h P hu is nonzero, α is called a
root and the set of roots denoted by !.

We choose a set of simple roots Π “ tα1, ¨ ¨ ¨ ,αnu such that tαjujPJ span
h where J “ t1, ¨ ¨ ¨ , nu. We call this n the rank of G. Then we define the
set of positive roots !` by !` “ tα P ! | α “ b1α1 ` ¨ ¨ ¨ ` bnαn, bj P Zě0u
and the set of negative roots !´ by ´!`. These satisfy ! “ !` Y !´.

Let p, q be any positive scalar multiple of the Killing form. If g is simple,
then the Killing form is nondegenerate. This form induces the form on h˚

and we denote this by the same notation p, q. We denote the coroot 2α
pα,αq

of a root α by α_. We define an ordering of the roots by α ă β if β ´ α
is positive. In terms of this ordering, the highest one is called the highest

13
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root. We denote the highest root by ´α0. If ´α0 “ řn
j“1 ajαj, the Coxeter

number h is defined by h “ 1 ` řn
j“1 aj.

We define Hα in h by pHα, Hq “ α_pHq for all H P h. Then we obtain
a basis tHα1 , ¨ ¨ ¨ , Hαnu of h. We choose eigenvectors eα P gα such that
peα, e´αq “ 2{pα,αq for all α P !. Then we have

reα, eβs “

$
’&

’%

0 if α ` β R !
Hα if α ` β “ 0

Nα`βeα`β if α ` β P ! ´ t0u

where Nα`β is a nonzero complex number. We define t.jujPJ as the dual
basis in h to tαjujPJ , that is αip.jq “ δij.

Example 1.
The case of G “ SLpn ` 1,Cq

We have SLpn ` 1,Cq “ tX P GLpn ` 1,Cq | detpXq “ 1u and slpn `
1,Cq “ tX P Mpn ` 1,Cq | trpXq “ 0u. We take the Cartan subalgebra
h “ tdiagpx1, ¨ ¨ ¨ , xn`1q | řn`1

i“1 xi “ 0u.
Then the roots are ! “ t˘pεi ´ εjq | 1 ď i ă j ď n ` 1u. When we

take the simple roots as Π “ tεi ´ εi`1 | i “ 1, ¨ ¨ ¨ , nu, then the highest
root is ´α0 “ ε1 ´ εn`1. Thus the Coxeter number is h “ n ` 1 because
´α0 “ pε1 ´ ε2q ` ¨ ¨ ¨ ` pεn ´ εn`1q.

We define p, q by pX, Y q “ trpXY q. Then we have the induced form p, q
on h˚. For a simple root αi “ εi ´ εi`1 (1 ď i ď n), we have 2αi

pαi,αiq “ αi.

Thus Hαi “ Ei,i ´Ei`1,i`1 where Ei,j is the matrix which (i, j) component is
one and the others are zero. We have eαi “ Ei,i`1, e´αi “ Ei`1,i (1 ď i ď n)
and e´α0 “ E1,n`1. .i “ 1

2při
j“1 Ej,j ´ řn`1

j“i`1 Ej,jq.

2.1.2 Connection form α

We consider the following g-valued 1-form α on the trivial principal bundle
C ˆ G Ñ C,

α “ pwt ` 1

λ
Ẽ´qdt ` p´wt̄ ` λẼ`qdt̄ “: α1dt ` α2dt̄
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where Ẽ˘ “ Adpe¯wqpřn
j“0 c

˘
j e˘αjq for c˘

i P Cˆ. Then we consider the zero
curvature equation for all λ P C. We have

dα ` α ^ α “ d

dt̄
pwt ` 1

λ
Ẽ´qdt̄ ^ dt ` d

dt
p´wt̄ ` λẼ`qdt ^ dt̄

` rwt ` 1

λ
Ẽ´,´wt̄ ` λẼ`sdt ^ dt̄

“p´wtt̄ ´ 1

λ
adpwt̄qẼ´ ´ wtt̄ ´ λadpwtqẼ`qdt ^ dt̄

` p1
λ
adpwt̄qẼ´ ` λadpwtqẼ` ` rẼ´, Ẽ`sqdt ^ dt̄

“p´2wtt̄ ` rẼ´, Ẽ`sqdt ^ dt̄

“p´2wtt̄ ` r
nÿ

i“1

c´
i e

´αipwqe´αi ,
nÿ

i“1

c`
i e

´αipwqeαisqdt ^ dt̄.

Thus we have

dα ` α ^ α “p´2wtt̄ `
nÿ

i,j“1

c´
i c

`
j re´αipwqe´αi , e

´αjpwqeαj sqdt ^ dt̄

“p´2wtt̄ ´
nÿ

i“1

die
´2αipwqHαiqdt ^ dt̄

where di “ c´
i c

`
i . Therefore we obtain the following proposition.

Proposition 7. The connection d`α is flat, i.e. dα`α^α “ 0 p@λ P Cˆq
if and only if 2wtt̄ “ ´ řn

j“0 dje
´2αjpwqHαj holds.

Definition 8. We call this equation

2wtt̄ “ ´
nÿ

j“0

die
´2αipwqHαi (2.1.1)

the two dimensional Toda equation for a complex simple Lie group G.

Example 2. (G “ SLpn ` 1,Cq case)
We assume the same setting as for SLpn ` 1,Cq in Example 1 and that all
di “ 1. We have the connection form (1.1.2) and the zero-curvature equation
is (1.1.1).



16 CHAPTER 2. THE TT*-TODA EQUATIONS

2.1.3 Three involutions θ, σ,χ

We add the condition coming from tt* geometry. tt* geometry means topological-
antitopological fusion and it was introduced by Cecotti and Vafa [CV1]. To
add the tt* condition, we define a C-linear involution σ and two conjugate-
linear involution θ,χ.

We define a conjugate linear Lie algebra homomorphism θ by

θpeαq “ ´eα, θpHαq “ ´Hα p@α P !q.

This θ defines the compact real form. For example, if G “ SLpn` 1,Cq, the
fixed set of θ is SUpn ` 1q.

The C-linear involution σ needs some preparation (see [Hit]). We consider
a three dimensional subalgebra gTDS which is isomorphic to slp2,Cq. We
introduce

ρ “
nÿ

i“1

.i “
nÿ

i“1

riHαi , e0 “
nÿ

i“1

?
rieαi , f0 “

nÿ

i“1

?
rie´αi

where the real numbers r1, ¨ ¨ ¨ , rn are determined by a choice of simple roots.
Then these satisfy

rρ, e0s “ e0, rρ, f0s “ ´f0, re0, f0s “ ρ.

Therefore spante0, f0, ρu – slp2,Cq. This subalgebra is called the principal
three dimensional subalgebra and denoted by gTDS. When we consider the
adjoint action by ρ, we can decompose g into irreducible representations by
g “ Àn

i“1 Vi. Let ui be a highest weight vector of Vi and mi its weight. mi

are called exponents. We may take u1 “ e0 and un “ e´α0 . These exponents
satisfy 1 “ m1 ă m2 ă ¨ ¨ ¨ ă mn “ h ´ 1. It is known that dimVi “ 2mi ` 1
(i “ 1, ¨ ¨ ¨ , n). With respect to this decomposition g “ Àn

i“1 Vi, we can take
a basis of g where each Vi has tadpf0qjpuiq| j “ 0, ¨ ¨ ¨ , 2miu. We define a Lie
algebra homomorphism σ by

σpuiq “ ´ui, σpf0q “ ´f0.

The conjugate-linear involution χ is defined by χ :“ σθ. Here we have
σθ “ θσ. We define the real form of the Toda equation as follows.

Definition 9. Given a real form of the Lie algebra g, the corresponding real
form of the Toda equations is defined by the following conditions.
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(R1) αipwq P R for all i.
(R2) α1pz, z̄,λq ÞÑ α2pz, z̄, 1{λ̄q under the involution which defines the real
form of g.

We define the tt*-Toda equations.

Definition 10. (The tt*-Toda equations) The tt*-Toda equations are the
Toda equations which are the reality conditions (with respect to χ) where
w : Cˆ Ñ h7 satisfies the additional conditions
(F) σpwq “ w (anti-symmetry condition)
(R) w “ wp|t|q (radial condition)

From this definition, we have

c´
i “ sci` and di P R.

Example 3. (G “ SLpn ` 1,Cq case)
We assume Example 1. Then σ,χ are given by

σpXq “ ´!XT!, χpXq “ !X̄!, where ! “

¨

˝
1

¨ ¨ ¨
1

˛

‚.

Then we have the tt*-Toda equation in An type as

2pwiqtt̄ “ ´e2pwi`1´wiq ` e2pwi´wi´1q, wi : Cˆ Ñ R, i P t0, ¨ ¨ ¨ , nu

Furthermore, the wi’s satisfy the following two conditions:

1. wi ` wn´i “ 0 (anti-symmetry condition)

2. wi “ wip|t|q (radial condition).

2.1.4 tt* equation

We review some tt* geometry. We refer to the articles by Cecotti and Vafa
[CV1] and Dubrovin [Dub]. We define the tt* equations on a Frobenius
manifold.
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Definition 11. Let M be a complex manifold. Its tangent space TxM p@x P
Mq has a structure of Frobenius algebra pTxM, ¨, e, x, yq if ¨ is a multiplication
on TxM, e is the unit vector and x, y is a nondegenerate inner product on
TxM such that xa ¨ b, cy “ xa, b ¨ cy. Then we call this M a quasi-Frobenius
manifold.
A quasi-Frobenius manifold is called Frobenius manifold if the curvature
∇λ

XY “ ∇XY ` λpX ¨ Y q vanishes p@λ P Cˆq where ∇ is the Levi-Civita
connection with respect to x, y.

Let η be the matrix such that xX, Y y “ ř
a,b ηabXaYb where Xa, Yb are

basis. Let C be the matrix such that X ¨ Y “ ř
a,b CabXaYb. Let g be a

Hermitian positive definite form i.e. g “ ř
a,b gābdz̄adzb.

Definition 12. The pair pη, gq is called compatible if there exists a complex
connection D where for any complex vector field X “ ř

a XaBa
DBcXa “ BcXa `

ÿ

b

Γa
cbXb

DB̄cXa
“ B̄cXa, DB̄c “ D̄Bc

such that

DBcηab “ Bcηab ´
ÿ

b

Γd
cbηdb ´

ÿ

a

Γd
caηda “ 0

DBcgāb “ Bcgāb ´
ÿ

d

Γd
cbgād “ 0

From this definition we have Γc “ g´1Bcg. Let M “ gη´1. We call M
normalized if M satisfies MM̄ “ 1. For these data pg,M,Cq (or pη, g, Cq)
we define the tt* equation as follows.

Definition 13. The tt* equations are

DaCb “ DbCa

rDa, Db̄s ` rCa, Cb̄s “ 0

where Cb̄ “ MC̄bM̄ .

Now we consider these equations on C ˆ Cn Ñ C (First we consider the
tt* equations on Cn ˆ Cn Ñ Cn and then we restricted the base space into
C). Then we have only one equation

rDz, Dz̄s ` rCz, Cz̄s “ 0.
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We have
Bz̄pg´1Bzgq ´ rC, g´1C̄tgs “ 0.

When we consider
C “ Ẽ´, C̄

t “ Ẽ`, g “ e2w,

then we have the equation (2.1.1).

2.2 Local solutions of the tt*-Toda equations

In this section, following [GH2], we describe some local solutions near t “ 0.
We consider the following connection form ω.

ω “ 1

λ

˜
nÿ

j“0

zkje´αj

¸
dz

(i.e. from any k0, ¨ ¨ ¨ , kn ě ´1). Here z is a complex variable related to t by

t “ sz
1
h .

First of all we solve the differential equation

dL

dz
“ 1

λ

˜
nÿ

j“0

zkje´αj

¸
L

where L is a G-valued function on Cˆ. We have this L as follows.

Lpz,λq “ e
1
λN log z

˜
I `

ÿ

1ďi

λ´iSipzq
¸

where N is nilpotent and Sip0q “ 0 p@iq. From Section 6 in [GH2], we know
that there exist a loop group element γ P LG and gauge transformation Gh

such that
α “ pγLRGhq´1dpγLRGhq

where γLR is a part of Iwasawa decomposition of γL i.e.

γL “ pγLqRpγLq`.
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Then we obtain local solutions w whose asymptotic is

w „ ´m log |t| as t Ñ 0

where m is defined by

αipmq “ s

N
pki ` 1q ´ 1 p0 ď i ď nq

where N “ h ` řn
i“0 aiki and a0 “ 1. From Proposition 6.1 in [GH2], we

have

Proposition 14. Let m P h7. There exists a local solution near zero of
the tt*-Toda equations such that w „ ´m log |t| as t Ñ 0 if and only if
αipmq ě ´1 for i “ 0, ¨ ¨ ¨ , n.

Let A be the set of asymptotic data of local solutions near z “ 0 i.e

A “ tm P h7| αipmq ě ´1 pi “ 0, ¨ ¨ ¨ , nqu.

for G ‰ An, D4n`2, E6. We define Aσ “ tm P A| σpmq “ mu for G “
An, D4n`2, E6. We consider for G ‰ An, D4n`2, E6, the fundamental Weyl
alcove A i.e.

A “ tX P
?

´1h7| 0 ď αreal
i pXq, ´αreal

0 pyq ď 1u

where αreal “ 1
2π

?´1
α. We define Aσ :“ tX P A| σpXq “ Xu for G “

An, D4n`2, E6. From Theorem 6.9 in [GH2], we have

Theorem 15. We have a bijection map from A por Aσq to A (or Aσ) by

m ÞÑ X “ 2π
?

´1

h
pm ` ρq.

From this theorem, we can parametrize local solutions with its asymptotic
w „ ´m log |t| by the fundamental Weyl alcove.

Example 4. (G “ SLpn ` 1,Cq case) We have the set of asymptotic data
in the SLpn ` 1,Cq case as

Aσ
2k “ tm “ diagpm0, ¨ ¨ ¨ ,mk,´mk, ¨ ¨ ¨ ,´m0q| mi´mi`1`1 ě 0 p0 ď i ď 2kqu
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for n ` 1 “ 2k or

Aσ
2k`1 “ tm “ diagpm0, ¨ ¨ ¨ ,mk, 0,´mk, ¨ ¨ ¨ ,´m0q| mi´mi`1`1 ě 0 p0 ď i ď 2k`1qu

for n ` 1 “ 2k ` 1. We have the fundamental Weyl alcove (invariant by the
anti-symmetry) as

Aσ
2k “ tX “ diagpx0, ¨ ¨ ¨ , xk,´xk, ¨ ¨ ¨ ,´x0q| 0 ď xk ď ¨ ¨ ¨ ď x0 ď 1

2
u

for the n ` 1 “ 2k case or

Aσ
2k`1 “ tX “ diagpx0, ¨ ¨ ¨ , xk, 0,´xk, ¨ ¨ ¨ ,´x0q| 0 ď xk ď ¨ ¨ ¨ ď x0 ď 1

2
u

for the n ` 1 “ 2k ` 1 case.

As the same of the An case, we define Stokes data as

S “ ps1, ¨ ¨ ¨ , snq

where si is the value on e
2π

?´1
n`1 pm`ρq of the character of the i-th fundamen-

tal representation of G. For the An case, we have correspondence among
the global solutions of the tt*-Toda equations, the holomorphic data, the
asymptotic data and the Stokes data by Theorem 2.

Finally we introduce an equivalence relation on asymptotic data in Aσ
n`1

for the An case. Let n ` 1 “ 2k and θk “
ˆ

Ik
Ik

˙
. We can define an

operator on connections as follows.

Θpαq “ θkαθ
´1
k “ θkpwt ` 1

λ
W T qθkdt ` θkp´wt̄ ` λW qθkdt̄. (2.2.1)

We find that the gauge-equivalent connection Θpαq has the same form as α,
but with w replaced by

θkwθk “ diagp´wk´1, ¨ ¨ ¨ ,´w0, w0, ¨ ¨ ¨ , wk´1q.

We define a map Θn`1 : Aσ
n`1 Ñ Aσ

n`1 by

Θn`1pmq “
#
θkmθk if k “ n`1

2 P Z ,

m if k “ n`1
2 R Z .
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Then, up to permutations, m and Θn`1pmq correspond to the same solution
of the tt*-Toda equations. If Θn`1pmq “ m and k “ n`1

2 P Z, then we have
a solution of the tt*-Toda equations for w0, ¨ ¨ ¨wk´1. If k is even, we can
repeat this process using Θn`1

2
.

Definition 16. We define an equivalence relation „GIL on An`1 in the
following way. First, Θn`1pmq „GIL m for all m P An`1. Next, if n `
1 is even, and Θn`1pmq “ m (i.e. m “ diagpm1,m1q for m1 P An`1

2
),

diagpΘn`1
2

pm1q,Θn`1
2

pm1qq „GIL m. After a finite number of steps, this pro-
cess terminates and generates an equivalence relation.

We refer to the resulting classification of asymptotic data as the GIL
classification. By this classification, we also classify the solutions of the tt*-
Toda equations because the asymptotic data one-to-one correspond to the
global solutions.

Example 5. (The n “ 3 case) Let m “ diagpm0,m1,´m1,´m0q. We have
pm0,m1,´m1,´m0q „GIL p´m1,´m0,m0,m1q. If m0 ` m1 “ 0, then we
have the further identificaion pm0,´m0,m0,´m0q „GIL p´m0,m0,´m0,m0q.

2.3 Integer Stokes problem

In this section, we review the integer Stokes problem. We consider the An

case for Section 3.1, Section 3.2 and Section 3.4. We consider the general
complex simple cases for Section 3.3.

If G “ SLpn`1,Cq, we know that a solution w of the tt*-Toda equations
satisfies the isomonodromic deformation (1.1.6) as we see in Section 1.1.
Then we take Stokes sectors as (1.1.7) or (1.1.8) and we have the monodromy
around ζ “ 8 as

S̃p8q
1 S̃p8q

2 “
#

´pQ̃1Q̃1 1
n`1

Π̃qn`1 pn ` 1 “ 2kq
pQ̃1Q̃1 1

n`1
Πqn`1 pn ` 1 “ 2k ` 1q

Then we have the characteristic polynomial of Q̃1Q̃1 1
n`1

Π̃ as

λn`1 ´ s1λ
n ` s2λ

n´1 ´ ¨ ¨ ¨ ´ snλ ` 1
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for n ` 1 even and the characteristic polynomial of Q̃1Q̃1 1
n`1

Π as

λn`1 ´ s1λ
n ` s2λ

n´1 ´ ¨ ¨ ¨ ` snλ ´ 1

for n ` 1 odd where si is the i-th symmetric function of the n ` 1 entries of

e
2π

?´1
n`1 pm`ρq.

We define

SHor “

¨

˚̊
˚̊
˚̊
˝

1 ´sn sn´1 . . . p´1qns1
0 1

. . . . . .
...

...
. . . . . . . . . sn´1

...
. . . . . . 1 ´sn

0 . . . . . . 0 1

˛

‹‹‹‹‹‹‚
(2.3.1)

where si “ sn´i`1. SHor is related to S̃p8q
1 by SHor “ FS̃p8q

1 F T , where F
is the matrix in Proposition 3.4 of [Hor]. Hence s P Zn is if and only if
SHor P SLpn ` 1,Zq. From the form of F , it follows that this condition is

equivalent to S̃p8q
1 P SLpn ` 1,Zq.

We consider the condition that all si are integers. This is called the
integer Stokes condition. We call finding solutions satisfying the integer
Stokes condition the integer Stokes problem. In [GL1], Guest-Lin calculated
all integer Stokes data in the 4ˆ4 case and they found several examples from
the quantum cohomologies of Kähler varieties (Table 4 in [GL1]). From the
results of [GL1], some questions occur.
Question 1 Can we determine all integer Stokes data and count the number
of the solutions with integer Stokes data ?
Question 2 Do there exist integer Stokes data of Lie-theoretic origin?
These questions are considered in Section 3.1 and Section 3.2. After these
sections, we find new interpretations of solutions of the tt*-Toda equations
with the asymptotic data m “ ´ρ. Finally we compare the classification by
Cecotti and Vafa [CV2] and the classification by Guest-Its-Lin [GIL1] and
[GL2] for the An case. We will give details in Section 3.4.

2.4 Quantum cohomology and the Dubrovin
connection

In this section, we review briefly the definition of (small) quantum coho-
mology and the corresponding Dubrovin connection. As we need only the
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case of compact Kähler homogeneous spaces, we can use a naive definition
of Gromov-Witten invariants. We use the same notation in [G1]. We set the
coefficients of homology groups and cohomology rings to be C.

Let M be such a complex manifold. Let p, q, r be three distinct points
in CP 1. Let A,B,C be homology classes of H˚pMq and D be an element of
H2pM ;Zq “ π2pMq. We define

HolA,p
D “ tholomorphic maps f : CP 1 Ñ M | fppq P A, rf s “ Du

where rf s means the homotopy class of f . HolB,q
D ,HolC,r

D are defined in the
same way.

Definition 17. Gromov-Witten invariants are defined by

xA|B|CyD “ 7HolA,p
D X HolB,q

D X HolC,r
D .

We define the quantum product for M as follows.

Definition 18. For C P H˚pMq and t P H2pMq, a ˝t b is defined by

xa ˝t b, Cy “
ÿ

DPH2pMq
xA|B|CyDext,Dy

where A,B are the dual homology classes to a, b and x, y is the pairing between
H˚pMq and H˚pMq.

We call pH˚pMq, ˝tq the quantum cohomology algebra of M and denote
it by QH˚pMq. Finally we define the Dubrovin connection. We take a
basis b1, ¨ ¨ ¨ , br of H˚pM ;Cq where let r be the dimension of H˚pM ;Cq.
Let t “ t1b1 ` ¨ ¨ ¨ ` trbr where ti P C. We change the coordinate from
bi P H2pM ;Cq to qi P H2pM ;Cˆq by ebi “ qi.

Definition 19. The Dubrovin connection on the trivial vector bundle H2pM ;Cˆqˆ
H˚pM ;Cq Ñ H2pM ;Cˆq is defined by

∇ “ d ` 1

λ

rÿ

i“1

Aipqqdqi
qi

where Aipqq are the operators given by the quantum product bi˝t.
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We seek flag manifolds whose Dubrovin connection form coincides with
the connection form ω, i.e. ω “ 1

λApqqdq
q (in our case r “ 1).

From the article by Iritani [Ir2], we know that Dubrovin connections of
the quantum cohomology algebras of orbifolds satisfy the tt* equations. We
can say that the Dubrovin connection of the quantum cohomology of CP n is
the form of the tt*-Toda equations.

Example 6. (The quantum cohomology of CP n)
This example is important for the tt*-Toda equations. It was suggested by
Cecotti and Vafa. We have the quantum product by the second cohomology
x P HpCP n,Cq as follows.

x ˝ xi “ xi`1 pi “ 0, ¨ ¨ ¨ , nq, x ˝ xn “ q.

Then we obtain the Dubrovin connection by the second cohomology as

1

λ
px˝qdq

q
“ 1

λ

¨

˚̊
˚̋

0 q

1
. . .
. . . . . .

1 0

˛

‹‹‹‚
dq

q
“ 1

λ

˜
nÿ

i“1

z0e´αi ` z1e´α0

¸
dz

z

“ 1

λ

˜
nÿ

i“1

z´1e´αi ` z0e´α0

¸
dz

where we change notation by q “ z. From this form, we know that the
Dubrovin connection of the quantum cohomology of CP n is related to the tt*-
Toda equation where G “ SLpn ` 1,Cq. We obtain ki “ ´1 for i “ 1, ¨ ¨ ¨ , n
and k0 “ 0. Thus we have αipmq “ ´1 and m “ ´ρ. Therefore we have a
local solution which corresponds to the origin of Aσ.





Chapter 3

Integer Stokes problems

In this chapter, we focus on the integer Stokes data. Section 3.1, Section
3.2 and Section 3.4 are joint works with Yudai Hateruma. We establish the
following results concerning integer Stokes data.

1. Properties of the integer Stokes data.

2. There are only four points with integer Stokes data on the ρ-line

3. Solutions of the tt*-Toda equations with the asymptotic data m “ ´ρ
corresponding the quantum cohomology

4. Comparison of the CV classification with the GIL classification.

Then we compare the classification by Ceccotti and Vafa [CV2] with the
classification by Guest-Its-Lin [GIL1]. The motivations of these classifica-
tions are different. However the results are surprisingly almost the same. In
addition, the classification by GIL is simpler and clearer than by CV for the
tt*-Toda equations. Finally we see that the symmetry (2.2.1) is a sign group
action G˘

n`1 on integer Stokes data.

3.1 Properties of the integer Stokes data

Recall that each Stokes data si is the i-th symmetric function of the n ` 1

numbers of e
2π

?´1
n`1 pm`ρq. We need to introduce some arithmetic settings. We

have the following fundamental theorem by Kronecker.

27
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Theorem 20. [Kro] If the roots of a monic polynomial over Z are on the
unit circle, then they have to be roots of unity.

The important corollary we will use in Chapter 4 is the following:

Corollary 21. If a monic polynomial over Z has all roots on the unit circle,
then it has to be a product of cyclotomic polynomials.

Proof. By Kronecker’s theorem, all roots of the polynomial fpxq have the
form e

a
n2π

?´1 with 1 ď a ď m ´ 1, pa,mq “ 1. It is known that the min-
imal polynomial ppxq P Qrxs such that ppe a

n2π
?´1q “ 0 is the cyclotomic

polynomial Φnpxq. Hence the statement is proved.

Let the roots of P pxq be the entries of e
2π

?´1
n`1 pm`ρq. Then we have

P pxq “
#
xn`1 ´ s1xn ` ¨ ¨ ¨ ´ snx ` 1 pn ` 1 evenq
xn`1 ´ s1xn ` ¨ ¨ ¨ ` snx ´ 1 pn ` 1 oddq

When we consider the integer Stokes data, we have

P pxq “
ź

mPZą0

pΦmpxqqµpmq. (3.1.1)

by Corollary 21. Here for each positive integer n, let Φnpxq be a n-th cyclo-
tomic polynomial, that is,

Φnpxq “
ź

p1ďjďn,gcd pj,nq“1q
px ´ ζjnq

where ζjn “ e
j
n2π

?´1, be primitve n-th roots of unity.
Let us give a general formula to calculate the number of all integer Stokes

data in SLpn ` 1,Cq case. For

1

n ` 1
pm ` ρq “ diagpx0, ¨ ¨ ¨ , xk,´xk, ¨ ¨ ¨ ,´x0q P Aσ

n`1 pn ` 1 is evenq

or

1

n ` 1
pm ` ρq “ diagpx0, ¨ ¨ ¨ , xk, 0,´xk, ¨ ¨ ¨ ,´x0q P Aσ

n`1 pn ` 1 is oddq,
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we consider a polynomial P pxq as

P pxq “
ź

0ďiďk

px ´ e˘2π
?´1xiq pn ` 1 evenq (3.1.2)

or

P pxq “ px ´ 1q ¨
ź

0ďiďk

px ´ e˘2π
?´1xiq pn ` 1 oddq. (3.1.3)

When we consider an integer Stokes data sipe
2π

?´1
n`1 pm`ρqq P Z (i “ 1, ¨ ¨ ¨ , n),

P pxq is a monic polynomial over Z with roots in S1. Thus P pxq has to be
a product of cyclotomic polynomials P pxq “ ś

dPNpΦdqνpdq with degree n ` 1
by Corollary 21. We have the following proposition.

Proposition 22. If m is an asymptotic data with an integer Stokes data,
P pxq satisfies the following conditions.

1.
ÿ

d

νpdqϕpdq “ n ` 1

2. νp1q “ n ` 1 pmod 2q.

Conversely if Qpxq “ ś
dPNpΦdqνpdq satisfies 1 and 2, then the roots of Qpxq

give an integer Stokes point.

Proof. First we show that P pxq satisfies the conditions 1 and 2. The condition
1 holds because the degree of P pxq is n`1. Because Φip0q “ 1 for all i P Zě2,
we have

P p0q “ pΦ1p0qqνp1q “ p´1qνp1q.

If n ` 1 is even, then we have P p0q “ 1 by (3.1.2). If n ` 1 is odd, then we
have P p0q “ ´1 by (3.1.3). Therefore νp1q “ n ` 1 (mod 2). Thus P pxq
satisfies the condition 2.

We show the converse. From the condition 1, Qpxq has solutions e2π
?´1yi

(i “ 1, ¨ ¨ ¨ , n ` 1) where ´1
2 ď yn`1 ď ¨ ¨ ¨ ď y1 ď 1

2 because roots of
cyclotomic polynomials is in S1.

If n ` 1 “ 2k, from the condition 2, Qpxq has an even number of Φ1.
It is well-known that degree Φi pi ě 3q is even. Hence we know Qpxq has
an even number of Φ2. It is also well-known that for Φi (i ě 3), if e2π

?´1w
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(0 ă w ă 1
2) is a solution of Φi, then e´2π

?´1w is also a solution of Φi. Thus
we have the roots of Φi (i ě 3) as

e2π
?´1w1 , ¨ ¨ ¨ , e2π

?´1w$ , e´2π
?´1w$ , ¨ ¨ ¨ , e´2π

?´1w1

for some 2 P N. Therefore we can reorder yi’s as

yk`1 “ ´yk, ¨ ¨ ¨ , y2k “ ´y1

where 0 ď yk ď ¨ ¨ ¨ ď y0 ď 1
2 and we have solutions of Qpxq as

e2π
?´1y0 , ¨ ¨ ¨ , e2π

?´1yk , e´2π
?´1yk , ¨ ¨ ¨ , e´2π

?´1y0 .

Thus we know that the point

y “ diagpy0, ¨ ¨ ¨ , yk,´yk, ¨ ¨ ¨ ,´y0q

is in Aσ
n`1 and this point corresponds to an integer Stokes data because Qpxq

given by y has integer coefficients.
If n ` 1 “ 2k ` 1, from the condition 2, Qpxq has an odd number of Φ1.

Thus in this case, as the same reason above, Qpxq has an even number of Φ2.
Therefore we have solutions of Qpxq as

e2π
?´1y0 , ¨ ¨ ¨ , e2π

?´1yk , 1, e´2π
?´1yk , ¨ ¨ ¨ , e´2π

?´1y0

where 0 ď yk ď ¨ ¨ ¨ ď y0 ď 1
2 . Thus we know that the point

y “ diagpy0, ¨ ¨ ¨ , yk, 0,´yk, ¨ ¨ ¨ ,´y0q

is in Aσ
n`1 and this point corresponds to an integer Stokes data as the same

reason in the case that n ` 1 is even.

From Proposition 22, we only have to count combination numbers of
the product of cyclotomic polynomials which satisfy 1 and 2. If we know
the total number in SLp2k,Cq case, then we also know the total number in
SLp2k ` 1,Cq by the bijective map

ι :Aσ
2k Ñ Aσ

2k`1

diagpx0, ¨ ¨ ¨ , xk,´xk, ¨ ¨ ¨ ,´x0q ÞÑ diagpx0, ¨ ¨ ¨ , xk, 0,´xk, ¨ ¨ ¨ ,´x0q.
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Thus we obtain the same total numbers in SLp2k,Cq and SLp2k`1,Cq cases.
Let n ` 1 be an even number. Consider a partition

τ “ pa1, ¨ ¨ ¨ , a1, a2, ¨ ¨ ¨ , a2, ¨ ¨ ¨ , al, ¨ ¨ ¨ , al, 1, ¨ ¨ ¨ , 1q

of n ` 1 with each 2 ď ai ď n ` 1 is an even positive integer and ai ă aj for
i ă j. These ai correspond to each degree of Φj (j ď 3) and 1 corresponds to
the dimensions of Φ1 and Φ2. Let αi be the number of ai in a partition and
α0 be 2m for 1. Let I be the set of all such partition. Set ξpaiq as a number
of elements of a set tx P Zą0 |ϕpxq “ aiu where ϕ is the Euler function. Then
the number of all integer Stokes data is given by the formula:

ÿ

τPI
Hξpa1q

α1
¨ ¨ ¨ ¨ ¨ Hξpalq

αl
¨ pm ` 1q

where H i
j “

ˆ
i ` j ´ 1

j

˙
.

Recall the set of the interior integer Stokes data (n ` 1 “ 2k) as

pAσ
2kq˝ “ tx “ px0, ¨ ¨ ¨ , xk,´xk, ¨ ¨ ¨ ,´x0q P Aσ

2k| 0 ă xk ă ¨ ¨ ¨ ă x0 ă 1

2
u.

Then we consider a partition

τ “ pa1, ¨ ¨ ¨ , a1, a2, ¨ ¨ ¨ , a2, ¨ ¨ ¨ , al, ¨ ¨ ¨ , alq

of n ` 1 with each 2 ď ai ď n ` 1 is an even positive integer and ai ă aj for
i ă j. When we count the number of the interior integer Stokes data, then
we have to remove overlaps of the same cyclotomic polynomials. Thus we
have the fomula:

ÿ

τPI

ˆ
ξpa1q
α1

˙
¨ ¨ ¨ ¨ ¨

ˆ
ξpalq
αl

˙

then we obtain the number of interior points.

Example 7. (The SLp4,Cq case)We consider the above partitions of n`1 “
4 as follows:

p1, 1, 1, 1q, p2, 1, 1q, p2, 2q, p4q.
For p1, 1, 1, 1q, we have α0 “ 2 ¨ 2 and m “ 2. We have the three product of
cyclotomic polynomials

Φ4
1, Φ

2
1Φ

2
2, Φ

4
2.



32 CHAPTER 3. INTEGER STOKES PROBLEMS

For p2, 1, 1q, we have a1 “ 2, α1 “ 1, α0 “ 2 ¨ 1 and m “ 1. Then we have
ξpa1q “ 3 and the six P pxq as follows:

Φ3Φ
2
1, Φ4Φ

2
1, Φ6Φ

2
1, Φ3Φ

2
2, Φ4Φ

2
2, Φ6Φ

2
2.

For p2, 2q, we have a1 “ 2, α1 “ 2, α0 “ 2 ¨ 0 and m “ 0. Then we have
ξ1 “ 3. In this case, multiplicative combinations happen. We have the six
P pxq as follows:

Φ2
3, Φ

2
4, Φ

2
6, Φ3Φ4, Φ4Φ6, Φ3Φ6.

For p4q, we have a1 “ 4, α1 “ 1, α0 “ 2 ¨ 0 and m “ 0. Then we the four
P pxq as follows:

Φ5, Φ8, Φ10, Φ12.

Thus we have 19 integer Stokes data in the SLp4,Cq case. The polynomials
correspond to the interior integer Stokes data are Φ3Φ4, Φ4Φ6, Φ3Φ6, Φ5, Φ8,
Φ10, Φ12.

Example 8. (The SLp6,Cq case)
We calculate the total number of integer Stokes points in the SLp6,Cq

case. Let n ` 1 “ 6 and consider all partitions of 6. We have

p1, 1, 1, 1, 1, 1q, p2, 1, 1, 1, 1q, p2, 2, 1, 1q, p4, 1, 1q, p2, 2, 2q, p4, 2q, p6q.

Then the total number of the integer Stokes points is

ÿ

τPI
Hξpa1q

α1
¨ ¨ ¨ ¨ ¨ Hξpalq

αl
¨ pm ` 1q

“4 ` 3 ¨ 3 ` p9 ´ 3q ¨ 2 ` 4 ¨ 2 ` p27 ´ 2 ¨ 6 ´ 5q ` 12 ` 4

“4 ` 9 ` 12 ` 8 ` 10 ` 12 ` 4

“59

We have the total number of the interior integer Stokes points as

ÿ

τPI

ˆ
ξpa1q
α1

˙
¨ ¨ ¨ ¨ ¨

ˆ
ξpalq
αl

˙

“1 ` 12 ` 4

“17
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3.2 Integer Stokes data on the ρ-line

In the following we will introduce some examples based on [GL2] and [GO].
Let us consider the global solution with asymptotic data m “ ´ρ. By the
Theorem 1, the corresponding holomorphic data is k0 = 0, k1 “ ¨ ¨ ¨ “ kn “
´1. In this case the Λsln`1C-valued 1-form is

ηpzq “ 1

λ

¨

˚̊
˚̋

1
z´1

. . .
z´1

˛

‹‹‹‚dz.

This connection form is the Dubrovin connection associated to the quantum

cohomology of CP n. As e
2π

?´1
n`1 pm`ρq “ I in this case, we obtain si “

ˆ
n ` 1
i

˙
.

When m “ ´ 1
n`2ρ the corresponding holomorphic data are k0 “ 1,

k1 “ ¨ ¨ ¨ “ kn “ 0. This data is related to the unfolding of An`1 singu-
larities. All si are equal to 1.

When m “ 1
nρ the corresponding holomorphic data is k0 “ ´1, k1 “

¨ ¨ ¨ “ kn “ 1´n
n . This data is related to the quantum cohomology of weighted

projective space P1,n. The corresponding Stokes data is s0 “ ´1, s2 “ ¨ ¨ ¨ “
sn´1 “ 0, sn “ ´1.

When m “ 0 the situation is trivial. That is, all si “ 0 and the corre-
sponding solution of (1.1.1) in given by wi “ 0 for all i.

Solutions which correspond to integer Stokes data are interesting objects
for both mathematics and physics. However computing such examples is
a difficult problem. In this section we will find some examples on the line
Rρ. We call this line the ρ-line. It is natural to expect that there are some
relations between the Lie-theoretic objects and integer Stokes data. We will
show that (when n ą 2) the only solutions on the ρ-line with integer Stokes
are the 4 examples described above.

Theorem 23. Assume n ě 3 and λ P r´1, 1
ns. The Stokes data S “

ps1, ¨ ¨ ¨ , snq corresponding to the solution of the tt*-Toda equation with m “
λρ is in Zn if and only if

λ “ 1

n
, 0, ´ 1

n ` 2
, ´1.
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3.2.1 Proof of Theorem 23

To show Theorem 23, we first show the following lemma. The following
lemma is mainly proved by the author of this Ph.D thesis.

Lemma 24. Assume n ě 3 and λ “ 1´l
n`l , l P Zě0. Stokes data s is in Zn if

and only if

l “ 0, 1, 2,8.

Proof. We assume n ě 3 and 2 ě 3. We consider

P pxq :“ Πn
i“0px ´ e

n´2i
2pn`lq2π

?´1q.

P pxq has to be P pxq “ ś
mPZą0

pΦmpxqqµpmq.

When n is even, P pxq has a solution e
1

n`$2π
?´1. Therefore it should be

Φn`+|P pxq. For the same reason, it should be Φ2pn`+q|P pxq when n is odd.
To show Lemma 24, we only have to show that P pxq does not have some
roots of Φn`+ or Φ2pn`+q because we can not construct Φd when some roots
of Φd are missing.

First we consider the case that n is even. Let n “ 2a where a ě 2 and
a P Z. Then P pxq has the roots

e
a

n`$2π
?´1, ¨ ¨ ¨ , e 1

n`$2π
?´1, 1, e´ 1

n`$2π
?´1, ¨ ¨ ¨ , e´ a

n`$2π
?´1

When 2 “ 2b ` 1 where b ě 1, P pxq does not have

e˘ a`b
n`$2π

?´1, ¨ ¨ ¨ , e˘a`1
n`$2π

?´1.

If 2 “ 2b ` 1, then we have gcdpn ` 2, a ` bq “ 1 because we have

p2pa ` bq ` 1q ¨ 1 ` pa ` bq ¨ p´2q “ 1.

It follows that e
a`b
n`$2π

?´1 is a root of Φn`+. However P pxq does not have this
root. This is a contradiction.

When 2 “ 2b where b ě 2, P pxq does not have

e˘a`b´1
n`$ 2π

?´1, ¨ ¨ ¨ , e˘a`1
n`$2π

?´1,´1.
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If 2 “ 2b, then we consider two cases, a ` b is odd and a ` b is even.
If a ` b is odd, then we consider not Φn`+ but Φ 1

2 pn`+q “ Φa`b. Because

a ě 2, P pxq has e
2

n`$2π
?´1 “ e

1
a`b2π

?´1. This is a root of Φa`bpxq because
gcdpa`b, 1q “ 1. Thus Φa`b|P pxq. However, we have gcdpa`b, 12pa`b´1qq “
1 because

pa ` bq ¨ 1 ` 1

2
pa ` b ´ 1q ¨ p´2q “ 1.

Thus e
a`b´1
2pa`bq2π

?´1 is a root of Φa`b but P pxq does not have it as a root. This
is a contradiction.

If a ` b is even, then we have gcdp2pa ` bq, a ` b ´ 1q “ 1. We show this
by the following lemma.

Lemma 25. We consider a positive coprime pair pm,nq (m ą n, and m,n P
Zě0). Then p2m ` n,mq is also a positive coprime pair.

Proof. If pm,nq is a positive coprime pair, then there exist x, y P Z such that
mx ` ny “ 1. Then we have

p2m ` nqy ` mpx ´ 2yq “ 1.

x ´ 2y is also integer number. Thus p2m ` n,mq is also a positive coprime
pair.

Because a`b´1 is odd, pa`b´1, 2q is a coprime pair. Therefore we obtain

gcdp2pa ` bq, a ` b ´ 1q “ 1 by Lemma 25. So Φn`+ has a root e
a`b´1
2pa`bq2π

?´1.
However P pxq does not have this as a root. This is a contradiction.

We consider the case that n is odd. Let n “ 2a ` 1 where a ě 1. P pxq
has roots

e
2a`1
2pn`$q2π

?´1, ¨ ¨ ¨ , e 1
2pn`$q2π

?´1, e´ 1
2pn`$q2π

?´1, ¨ ¨ ¨ , e´ 2a`1
2pn`$q2π

?´1

Thus these are roots of 2pn ` 2q-th of unity. Because P pxq has a solution

e
1

2pn`$q2π
?´1, it should be Φ2pn`+q|P pxq. We consider the two cases 2 “ 2b ` 1

where b ě 1 or 2 “ 2b where b ě 2.
If 2 “ 2b ` 1, then n ` 2 is even. P pxq does not have a root e

n`$´1
2pn`$q2π

?´1

because 2 ě 3. However we can find that Φ2pn`+q has this root. Since pn `
2 ´ 1, 2q is a coprime pair, we have gcdp2pn ` 2q, n ` 2 ´ 1q “ 1 by Lemma

25. So Φ2pn`+q has a root e
n`$´1
2pn`$q2π

?´1. This is a contradiction.
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If 2 “ 2b, then n ` 2 is odd. Then P pxq does not have a root e
n`$´2
2pn`$q2π

?´1

because 2 ě 4. However we can find that Φ2pn`+q has this root. Since pn `
2 ´ 2, 2q is a coprime pair, we have gcdp2pn ` 2q, n ` 2 ´ 2q “ 1 by Lemma

25. Thus Φ2pn`+q has a root e
n`$´2
2pn`$q2π

?´1. This is a contradiction.

Finally we prove Theorem 23.

Proof. (of Theorem 23) Let us consider P pxq as (3.1.2). Assume all coeffi-
cients are integer numbers. P pxq has to be a product of cyclotomic polyno-
mials as (3.1.3). This fact implies that λ is a rational number. Indeed if λ

is not a rational number, the diagonal entries of e
2π
n`1ρpλ`1q is not an m-th

root of unity. Thus the integer Stokes problem for general λ reduces to the
problem:
Let λ “ 1´l

n`l , l P Qě0, then

s P Zn ô l “ 0, 1, 2,8.

It is easily seen that the above l correspond to the λ in the statement of
Theorem 23 respectively.

Let l “ q
p such that gcdpp, qq “ 1. Recall that for any cyclotomic polyno-

mial Φmpxq, the roots with the lowest angle have the form e
1
˚2π

?´1 (˚ is some
integer). So similarly the roots of P pxq with the lowest (except 0) angle have
to be such a form. Hence, depending on the parity of n, we get the following
conditions:

1. e
1

2pn`lq2π
?´1 “ e

1
2pn` q

p q2π
?´1 “ e

1
˚2π

?´1 n: odd,

2. e
2

2pn`lq2π
?´1 “ e

1
n` q

p
2π

?´1 “ e
1
˚2π

?´1 n: even.

Now gcd pp, qq “ 1, so gcdpp, np ` qq “ 1. Then p “ 2 or p “ 1 when n is an
odd number, p “ 1 when n is an even number, respectively. Not depend on
n, the case p “ 1, is proved by Lemma 24.

Consider the case in which n is odd and p “ 2. Now the all roots of P pxq
is given by

e
n´2i
2n`q 2π

?´1, i “ 0, 1, . . . , n. (3.2.1)

So e
1

2n`q 2π
?´1 is one of the roots of P pxq. By the minimality of a cyclotomic

polynomial Φ2n`q|P pxq. Now q is an odd number so gcd p2n ` q, 2q “ 1.
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Thus e
2

2n`q 2π
?´1 is a root of Φ2n`qpxq. These facts implies that e

2
2n`q 2π

?´1

is one of the roots of P pxq. However e
2

2n`q 2π
?´1 does not appear in the list

(3.2.1) because n is odd. Hence P pxq must not be a product of cyclotomic
polynomials.

3.2.2 Another proof of Theorem 23

We give another proof of Lemma 24. This is mainly proved by Y.Hateruma.
To give another proof of Lemma 24, we need some preparation. Set Dk “
tz P Cˆ | π

2 pk ´ 1q ă arg z ă π
2ku, k P t1, 2, 3, 4u.

Definition 26. Let P pxq be a polynomial. If there exists at least one root of
P pxq in each quadrant Dk, we say that the roots of the P pxq are balanced.

Then we have the following proposition.

Lemma 27. The roots of Φnpxq are not balanced if and only if n P t1, 2, 3, 4, 6u.
To obtain this proposition, we define the Möbius function µ : Zą0 Ñ

t´1, 0, 1u which is defined by

µpnq “
"

0 pif n can be divided by a square number excluding 1q
p´1qk pif n “ p1 ¨ ¨ ¨ pk where pi are different prime numbersq

Then we have

Proposition 28. The sum of all primitive n-th roots of unity equals µpnq.
Proof. Let fpnq be the sum of all primitive n-th roots of unity.

gpnq :“
ÿ

d|n
fpdq “

#
1 n “ 1

0 n ą 1

because the sum means the sum of all roots of xn ´ 1. By using Möbius
inversion formula, fpnq can be computed as

fpnq “
ÿ

d|n
µ

´n

d

¯
gpdq

“ µpnqgp1q ` µ

ˆ
n

d1

˙
gpd1q ` ¨ ¨ ¨ ` µ

ˆ
n

di

˙
gpdiq ` µp1qgpnq

“ µpnq
where @di|n.
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Proof. (of Lemma 27) When n is one of the above five numbers, it is easily
found that the roots of Φnpxq are not balanced.

Obviously the roots of Φ5pxq are balanced, so it remains to consider a
case n ą 6. Assume that the roots of Φnpxq are not balanced. Observe
that e

1
n2π

?´1 and e
n´1
n 2π

?´1 are roots of Φnpxq in D1, D4 respectively. Then
all roots of Φnpxq must be in D1 Y D4. This situation implies that the
sum of all roots of Φnpxq is bigger than 1 because e

1
n2π

?´1 ` e
n´1
n 2π

?´1 ą
e

1
62π

?´1 ` e
5
62π

?´1 “ 1. On the other hand, sum of all primitive n-th roots
of unity equals a value of Möbius function µ at n, i.e.,

µpnq “
ÿ

1ďiďn,gcd pn,iq“1

ζ in

As µpnq P t´1, 0, 1u. This is a contradiction. Hence the roots of Φnpxq, n ą 6
are balanced.

Proof. (Proof of Lemma 24) As the same of (41), let

P pxq :“ Πn
i“0px ´ e

n´2i
2pn`lq2π

?´1q “
ź

mPZą0

pΦmpxqqµpmq.

Consider the case n ď l. In this case the roots of P pxq are not balanced.

e
1

pn`lq2π
?´1 or e

1
2pn`lq2π

?´1 is one of the roots of P pxq when n is even or
odd respectively. Hence, by the minimality of a cyclotomic polynomial,
Φn`lpxq|P pxq (or Φ2pn`lqpxq|P pxq). (In short we represent Φα|P pxq.) Now
α is larger than 6. By Lemma 27, the roots of Φα are balanced. This is a
contradiction. So we need n ą l.

In this situation, all roots of P pxq have the form e
k

2pn`lq2π
?´1 where k

is even or odd when n is even or odd respectively. So let us consider the
following polynomial factorization:

x2pn`lq ´ 1 “ P pxqQpxqRpxq

where Qpxq is xn`l ` 1 or xn`l ´ 1 when n is even or odd respectively and
Rpxq has the form Rpxq “ śpx ´ ξq. Note that all roots of Qpxq have the

form e
k

2pn`lq2π
?´1 where k is odd or even when n is even or odd respectively.

By Corollary 21, x2pn`lq ´ 1 and Qpxq have to be products of cyclotomic
polynomials. Moreover x2pn`lq ´ 1 “ ś

m|2pn`lq Φmpxq and P pxq and Qpxq
have no common roots. Then Rpxq “ x2pn`lq´1

P pxqQpxq also becomes a product of
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cyclotomic polynomials. Because of the distribution of the roots of P pxq and
Qpxq, the roots of Rpxq satisfy n

2pn`lq2π ă arg ξ ă n`2l
2pn`lq2π, i.e., the roots of

Rpxq are in D2 YD3 Y tz P C| Repzq ă 0, Impzq “ 0u. These imply that Rpxq
has to be Φ2pxq, Φ3pxq or Φ2pxqΦ3pxq. It is easily seen that degRpxq “ l´1.
Hence these three cases correspond to l “ 2, l “ 3, or l “ 4 respectively. Now
l ą 2, so we need to observe the cases l “ 3 and l “ 4. In both cases Rpxq
has the root e˘n`2

n`l 2π and these roots have to be e˘ 1
32π

?´1. Now we conclude
that if l “ 3 or l “ 4 we need n “ 0 or n “ 2 respectively. Therefore P pxq
must not be a product of cyclotomic polynomials.

3.3 Minuscule flag manifolds

In this section, we focus on the solution of the tt*-Toda equations with the
asymptotic data m “ ´ρ. In [GIL] and [CV], in the case CP n the Dubrovin
connection on H2pCP n;Cq is identified with the global solution with asymp-
totic data m “ ´ρ for the An case. For other types, we have no example of
solutions with m “ ´ρ corresponding to the quantum cohomology. We can
find that the quantum cohomology of minuscule flag manifolds are examples
of solutions of the tt*-Toda equations with m “ ´ρ.

3.3.1 Minuscule weights

We review some properties of minuscule weights. We refer to the article
[CMP]. For a complex simple Lie algebra, we define the weight lattice I as
the Z-module spanned by λ1, ¨ ¨ ¨ ,λn where λi is defined by pλi,α_

j q “ δij.
These λi are called the fundamental weights.

Definition 29. We call a non-zero weight λ a dominant weight if pλ,α_
i q ą 0

for all αi P Π. We call a dominant weight λ a minuscule weight if pλ,α_q ď 1
for all α P !`.

It is well-known that the minuscule weights are a subset of the funda-
mental weights. In the following table of fundamental weights, the minuscule
weights are marked.

α1
An pn ě 1q : α2 α3 αn´1 αn
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fund. weight λ1 λ2 λ3 λn´1 λn

minuscule ! ! ! ! !

α1
Bn pn ě 2q : α2 αn´2 αn´1 αn

fund. weight λ1 λ2 λn´2 λn´1 λn

minuscule !

α1
Cn pn ě 2q : α2 αn´2 αn´1 αn

fund. weight λ1 λ2 λn´2 λn´1 λn

minuscule !

α1
Dn pn ě 3q : α2 αn´3 αn´2

αn´1

αn

fund. weight λ1 λ2 λn´3 λn´2 λn´1 λn

minuscule ! ! !

α1
E6 : α2 α3

α4

α5 α6

fund. weight λ1 λ2 λ3 λ4 λ5 λ6

minuscule ! !

α1
E7 : α2 α3

α7

α4 α5 α6

fund. weight λ1 λ2 λ3 λ4 λ5 λ6 λ7

minuscule !

It is known that G2, F4 and E8 have no minuscule weight. G{Pλi can be
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described conveniently as a quotient of compact groups as follows.

pAn caseq G{Pi – SUpn ` 1q{SpUpiq ˆ Upn ` 1 ´ iqq – Grpk, n ` 1q
pBn caseq G{Pn – SOp2n ` 1q{Upnq – OGpn, 2n ` 1q
pCn caseq G{P1 – Sppnq{Up1q ˆ Sppn ´ 1q – CP 2n´1

pDn caseq G{P1 – SOp2nq{Up1q ˆ SOp2n ´ 2q – Q2n´2,

G{Pn´1 – SOp2nq{Upnq – S`, G{Pn – SOp2nq{Upnq – S´
pE6 caseq G{P1 – G{P6 – E6{SOp10q ˆ Up1q – OP 2

pE7 caseq G{P1 – E7{E6 ˆ Up1q

HereOGpk, nq is the set of k-dimensional isotropic subspaces of n-dimensional
complex vector space V with a nondegenerate quadratic form. This is called
the orthogonal Grassmannian. For Dn, OGpn, 2nq has two components S`
and S´. These are called varieties of pure spinors (or spinor varieties) and
these are isomorphic to each other [Ma].

For An, Bn, Cn and Dn, the minuscule representations are familiar (see
Section 6.5 in [BD]). For An, Vλi is the exterior power

Źi Vλ1 (1 ď i ď n)
where Vλ1 is the standard representation on Cn`1. For Bn, Vn is the half-spin
representation. For Cn, Vλ1 is the standard representation on C2n. For Dn,
Vλ1 is the standard representation on C2n. Vλn´1 and Vλn are the half-spin
representations. We denote these two representations by ∆` and ∆´.

For exceptional groups, the minuscule representations are given in the
Section 5 of [Gec]. For E6, Vλ1 and Vλ6 are 27 dimensional representations.
For E7, Vλ1 is a 56 dimensional representation.

3.3.2 Representation Vλi and H˚pG{Piq
Let W be the Weyl group of G. We denote the weight orbit of λi by W ¨ λi.
That is W ¨ λi “ txpλiq| x P W u. When we write x as a product of simple
reflections, we denote by 2pxq the minimal length of x in W . The following
fact holds for any parabolic subgroup P of G. Let !P be the subset of !
such that LiepP q “ h ‘ À

αP!P
gα We denote the subset of the simple roots

which belong to !P by ΠP . Let WP be the subgroup of W generated by the
elements of ΠP .

Proposition 30. (see Section 1.10 in [Hum]) For x P W , there exist unique



42 CHAPTER 3. INTEGER STOKES PROBLEMS

elements u P W P and v P WP such that

x “ uv

where W P “ tx P W | 2pxsαq ą 2pxq @α P ΠP u.

By this fact, u is a representative of rxs P W {WP . We have W ¨λi “ W Pi ¨λi.
We shall consider the cohomology ring of G{Pi. The following fact is

well-known.

Theorem 31. (Bruhat decomposition)[Hil] For a parabolic subgroup P of G,
we have a decomposition

G “
ž

uPWP

BuP.

We define the Schubert varieties of G{Pi by Xu :“ BuPi{Pi. We also
define the opposite Schubert varieties by Yu :“ x0Bx0uPi{Pi “ x0Xx0u where
x0 is the longest element of W . Then rYus P H2n´2lpuqpG{Piq and these classes
form an additive basis. By the Poincaré duality theorem, we have a basis of
H2lpuqpG{Piq. We denote this generator by σu.

Now we obtain the correspondence between W Pi ¨λi and an additive basis
of the cohomology H˚pG{Piq by

upλiq ÐÑ σu.

In this subsection, we observe relationships between minuscule weight
orbits and the simple roots. Let λi be a minuscule weight.

Proposition 32. The set of all weights of Vλi is the W -orbit of λi and the
multiplicities of all weights of Vλi are one.

Proof. It is obvious that 7W {WPi ď dimpW ¨ vλiq ď dimpVλiq. If there is a
weight which has multiplicity more than one, then 7W {WPi ă dimVλi . There-
fore by contraposition when we show that 7W {WPi coincides with dimCVλi ,
we obtain the statement of Proposition 32.

We justify the above claim in each case. We have the orders of all Weyl
groups from the table 2 in Section 2.11 of [Hum].

For type An, we have dimC
Ź

iCn`1 “
`
n`1
i

˘
(1 ď i ď n). On the other

hand, for this representation we have W {WPi “ Sn`1{pSi ˆSn`1´iq. There-
fore we obtain 7W {WPi “ pn`1q!

i!pn`1´iq! “
`
n`1
i

˘
.
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For type Bn, a minuscule representation is the half-spin representation
and its dimension is 2n. Then W {WPn “ Sn ¨ pZ2qn{Sn. Hence 7W {WPn “
2n ¨ n!{n! “ 2n.

For type Cn, a minuscule representation is the standard representation
C2n and its dimension is 2n. The corresponding W {WP1 “ Sn ¨ pZ2qn{Sn´1 ¨
pZ2qn´1. Hence 7W {WP1 “ 2n ¨ n!{2n´1 ¨ pn ´ 1q! “ 2n.

For type Dn, there are three minuscule representations. These are the
standard representations and the two half-spin representations. These di-
mensions are 2n, 2n´1, 2n´1 respectively. The corresponding W {WPi (i “
1, n´1, n) are Sn ¨ pZ2qn´1{Sn´1 ¨ pZ2qn´2, Sn ¨ pZ2qn´1{Sn, Sn ¨ pZ2qn´1{Sn,
and 7W {WPi(i “ 1, n ´ 1, n) are 2n, 2n´1, 2n´1 respectively.

For type E6, there are two minuscule representations. These representa-
tions are both 27 dimensional representations. The corresponding W {WP1

and W {WP6 are both WE6{S5 ¨ pZ2q4 where WE6 is the Weyl group of E6.
Then 7WE6{S5 ¨ pZ2q4 “ 27 ¨ 34 ¨ 5{24 ¨ 5! “ 27.

For type E7, the minuscule representation is a 56 dimensional representa-
tion. The corresponding W {WP1 is WE7{WE6 where WE7 is the Weyl group
of E7. Then 7W {WP1 “ 210 ¨ 34 ¨ 5 ¨ 7{27 ¨ 34 ¨ 5 “ 56. This completes the
proof.

From Proposition 32, we have the weights of Vλi as tvupλiq| u P W Piu and
the multiplicities of these weights are all one. In addition, we know that
the Weyl group is generated by the simple reflections tsαj | j P t1, ¨ ¨ ¨ , nuu.
Therefore all weights can be obtained from λi by applying tsαj | j P t1, ¨ ¨ ¨ , nuu
to λi repeatedly. Thus we obtain the following isomorphism.

Vλi Ñ H˚pG{Piq, vupλiq ÞÑ σu.

3.3.3 Theorem 35

From Section 3.2, we obtain the following diagram.

C ˆ Vλi

–ÝÝÝÑ H2pG{Piq ˆ H˚pG{Piq§§đ
§§đ

C –ÝÝÝÑ H2pG{Piq

By using the representation Vλi of G, we obtain the connection form on the
trivial vector bundle C ˆ Vλi Ñ C from ω. In [GM], Golyshev and Manivel
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showed a relationship between the representations of minuscule weights and
the quantum product by the second cohomology for G of type An, Dn, E6, E7.

Theorem 33. [GM] For G of type An, Dn, E6, E7 and λi is a minuscule
weight, we have

nÿ

j“1

e´αj ` qe´α0 “ σsαi
˝ . (3.3.1)

They showed Theorem 33 case by case. After that, in [LT], Lam and Tem-
plier uniformly showed the equation (3.3.1) for G “ An, Bn, Cn, Dn, E6, E7.

Theorem 34. [LT] For a complex simple Lie group G and a minuscule weight
λi, we have the equation (3.3.1).

From this equation, we obtain new interpretations of solutions of the tt*-
Toda equations with the asymptotic data m “ ´ρ, corresponding to the
quantum cohomology for types Bn, Cn, Dn, E6, E7 as in the case of type An

in Section 2.4.
By Theorem 34, we have

1

λ

˜
nÿ

j“1

q´1e´αj ` e´α0

¸
dq “ 1

λ

`
σsαi

˝
˘ dq

q
.

We identify the left hand side of this equation with the holomorphic data ω
of the tt*-Toda equations with k0 “ 0 and k1 “ ¨ ¨ ¨ “ kn “ ´1 by putting
q “ z. Then we obtain

αjpmq “ h

N
pkj ` 1q ´ 1 “ ´1 p1 ď j ď nq.

Thus m “ ´ρ and m satisfies α0pmq “ h ´ 1 ą ´1. By Proposition 14, this
corresponds to the solution of the tt*-Toda equations with the asymptotic
data m “ ´ρ.

The Stokes data corresponding to the asymptotic data m “ ´ρ is given
by

Spe 2π
?´1
h p´ρ`ρqq “ ps1pIq, ¨ ¨ ¨ , snpIqq

where I is the identity element of G. Since sj is the character of j-th fun-
damental representation Vλj , we have sjpIq “ dimVλj P Z (1 ď @j ď n).
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Therefore the asymptotic data m “ ´ρ corresponds to integer Stokes data.
By Theorem 15, the asymptotic data m “ ´ρ corresponds to the origin

of A (or Aσ).
As a conclusion, we obtain the following.

Theorem 35. ([GIL3],[Mo1],[GH2],[GM],[LT],[K])
For a complex simple Lie group G and a minuscule weight λi, there is a
natural correspondence between (i) the asymptotic data

m “ ´ρ P h7

and (ii) the holomorphic data

ω “ 1

λ

˜
nÿ

j“1

e´αj ` qe´α0

¸
dq

q

for solutions of the tt*-Toda equations. The asymptotic data m “ ´ρ corre-
sponds to the unique global solution when g has type An.1 The holomorphic
data correspond to the Dubrovin connection for the quantum cohomology of
G{Pi.

From Theorem 35, we obtain new interpretations of solutions of the tt*-
Toda equations which correspond to quantum cohomology. In the An case,
the quantum cohomology and the σ-model of Grassmannians is discussed in
detail in the context of the tt*-Toda equations in [G3]. In addition, we obtain
the first examples of solutions of the tt*-Toda equations which correspond to
the quantum cohomology in the other Lie group types, i.e. Bn, Cn, Dn, E6, E7.
According to Cecotti and Vafa, we can expect that there are relationships
between these new quantum cohomology example and physics models in the
context of tt* geometry.

3.3.4 Direct calculation of (3.3.1)

In this subsection, we calculate the equation (3.3.1). We consider the irre-
ducible representations Vλi whose highest weights are minuscule weights λi

(see table in Section 3.1). In this section we use results on quantum coho-
mology to prove that the quantum multiplication by the generator of the

1For any g, it is conjectured that m “ ´ρ corresponds to a unique global solution of
the tt*-Toda equations.
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second cohomology coincides with the endomorphism
řn

j“1 e´αj ` qe´α0 for
a minuscule representation Vλi . To show this statement, we use the quantum
Chevalley formula and the canonical basis.

We define the canonical basis of Vλi in Section 5A.1 of the article [Ja]
with the following properties:

e´αjpvupλiqq “
#
vupλiq´αj pupλiq,α_

j q “ 1

0 otherwise.
(3.3.2)

eαjpvupλiqq “
#
vupλiq`αj pupλiq,α_

j q “ ´1

0 otherwise.
(3.3.3)

Hαjpvupλiqq “ pupλiq,α_
j qvupλiq,

for all weights upλiq and all j P t1, ¨ ¨ ¨ , nu. As a consequence of (3.3.3), we
have

e´α0pvupλiqq “
#
vupλiq`p´α0q pupλiq,´α_

0 q “ ´1

0 otherwise.
(3.3.4)

Example 9. (canonical basis for classical groups)
g “ slpn ` 1,Cq For a minuscule representatioin

Źk Cn`1 (1 ď k ď n), we
consider the standard basis ei1 ^ eii`1 ^ ¨ ¨ ¨ ^ eik (i1 ă i2 ă ¨ ¨ ¨ ă ik) where ei
is the standard basis of Cn`1. Then this basis satisfies (3.3.2), (3.3.3) and
(3.3.4).

For the quantum products, we use the quantum Chevalley formula.

Theorem 36. ([FW]) For β P ΠzΠPi and u P W Pi, we have the quantum
product ˝ by σβ as

σsβ ˝ σu “
ÿ

+pusαq“+puq`1

pλβ,α
_qσusα

`
ÿ

lpusαq“lpuq´nα`1

pλβ,α
_qσusα ¨ qdpαq

where α ranges over !`z!`
Pi
, λβ is the fundamental weight corresponding to

β,
nα “ p

ÿ

γP!`z!`
Pi

γ,α_q
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and
dpαq “

ÿ

βPΠzΠPi

pλβ,α
_qσpsβq,

and where σpsβq is the homology class of H2pG{Piq which is Poincaré dual
to σsβ .

In our situation, ΠzΠPi “ tαiu. Therefore the generator of the second
cohomology is only σsαi

and λβ “ λi. We have dpαq “ pλi,α_qσpsαiq “ σpsαiq
for α P !`z!`

Pi
because λi is a minuscule weight. We consider qσpsβq only as

a complex parameter q in C.
From Lemma 3.5 in [FW], the first Chern class of G{Pi is nα times a

generator of H2pG{Piq. Then we have the following proposition

Proposition 37. nα is the Coxeter number h. Explicitly, we have nα “ n`1
(An type), nα “ 2n (Bn type), nα “ 2n (Cn type), nα “ 2n ´ 2 (Dn type),
nα “ 12 (E6 type), nα “ 18 (E7 type) for all α P !`z!`

Pi
.

Proof. For An case, fix a minuscule weight λ “ λk (1 ď k ď n). Then we
have !`z!`

Pk
“ tεi ´ εj p1 ď i ď k, k ` 1 ď j ď n ` 1qu and

ř
γP!`z!`

Pk

γ “
řk

i“1pn ` 1 ´ kqεi ´ řn`1
i“k`1 kεi. For all α P !`z!`

Pk
, we have 2{xα,αy “ 1.

Therefore we obtain

nα “ p
ÿ

γP!`z!`
Pk

γ,α_q “ p
ÿ

γP!`z!`
Pk

γ,αq “ n ` 1.

For Bn case, we consider the minuscule weight λn. Then !`z!`
Pn

“
tεi ` εj p1 ď i ă j ď nq, εi p1 ď i ď nqu and

ř
γP!`z!`

Pn
γ “ řn

i“1 nεi. For

εi ` εj p1 ď i ă j ď nq, we have 2{xα,αy “ 1. Therefore we obtain

nα “ p
ÿ

γP!`z!`
Pn

γ,α_q “ p
ÿ

γP!`z!`
Pn

γ,αq “ 2n.

For εi p1 ď i ď nq, we have 2{xα,αy “ 2. Therefore we obtain

nα “ p
ÿ

γP!`z!`
Pn

γ,α_q “ 2p
ÿ

γP!`z!`
Pn

γ,αq “ 2n.

For Cn case, we consider the minuscule weight λ1. Then !`z!`
P1

“ tε1 ´
εi, ε1 ` εi p1 ď i ď nq, 2ε1u and

ř
γP!`z!`

P1

γ “ 2nε1. For ε1 ´ εi, ε1 ` εi p1 ď
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i ď nq, we have 2{xα,αy “ 1. Therefore we obtain

nα “ p
ÿ

γP!`z!`
P1

γ,α_q “ p
ÿ

γP!`z!`
P1

γ,αq “ 2n.

For 2εi p1 ď i ď nq, we have 2{xα,αy “ 1{2. Therefore we obtain

nα “ p
ÿ

γP!`z!`
P1

γ,α_q “ 1

2
p

ÿ

γP!`z!`
P1

γ,αq “ 2n.

For Dn case, fix a minuscule weight λ1. Then !`z!`
P1

“ tε1 ´ εi, ε1 `
εi p1 ď i ď nqu and

ř
γP!`z!`

P1

γ “ 2pn´1qε1. For ε1 ´ εi, ε1 ` εi p1 ď i ď nq,
we have 2{xα,αy “ 1. Therefore we obtain

nα “ p
ÿ

γP!`z!`
P1

γ,α_q “ p
ÿ

γP!`z!`
P1

γ,αq “ 2n ´ 2.

When we consider a minuscule weight λn´1, then we have !`z!`
Pn´1

“
tεi ´ εn p1 ď i ď nq, εi ` εj p1 ď i ă j ď n ´ 1qu and

ř
γP!`z!`

Pn´1

γ “
řn´1

i“1 pn´1qεi´pn´1qεn. For εi´εn p1 ď i ď n´1q, εi`εj p1 ď i ă j ď n´1q,
we have 2{xα,αy “ 1. Therefore we obtain

nα “ p
ÿ

γP!`z!`
Pn´1

γ,α_q “ p
ÿ

γP!`z!`
Pn´1

γ,αq “ 2n ´ 2.

When we consider a minuscule weight λn, then we have !`z!`
Pn

“ tεi `
εj p1 ď i ă j ď nqu and

ř
γP!`z!`

Pn
γ “ řn

i pn´ 1qεi. For εi ` εj p1 ď i ă j ď
nq, we have 2{xα,αy “ 1. Therefore we obtain

nα “ p
ÿ

γP!`z!`
Pn

γ,α_q “ p
ÿ

γP!`z!`
Pn

γ,αq “ 2n ´ 2.

For E6 case, fix a minuscule weight λ1. In E6 case and E7 case, we use
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the same notations in [Yo]. Then the set !`z!`
P1

is listed as follows.

α1, α1 ` α2, α1 ` α2 ` α3, α1 ` 2α2 ` 2α3 ` α4 ` α5 ` α6,

α1 ` α2 ` 2α3 ` α4 ` α5 ` α6, α1 ` α2 ` α3 ` α4 ` α5 ` α6,

α1 ` α2 ` α3 ` α4, α1 ` α2 ` α3 ` α4 ` α5,

α1 ` 2α2 ` 3α3 ` α4 ` 2α5 ` α6, α1 ` α2 ` 2α3 ` α4 ` 2α5 ` α6,

α1 ` 2α2 ` 2α3 ` α4 ` 2α5 ` α6, α1 ` α2 ` α3 ` α5,

α1 ` α2 ` 2α3 ` α4 ` α5, α1 ` α2 ` α3 ` α4 ` α5,

α1 ` 2α2 ` 2α3 ` α4 ` α5, α1 ` 2α2 ` 3α3 ` 2α4 ` 2α5 ` α6.

We have
ř

γP!`z!`
P1

γ “ 16α1 ` 20α2 ` 24α3 ` 12α4 ` 16α5 ` 8α6,. For all

α P !`z!`
P1
, we have 2{xα,αy “ 24 and obtain nα “ 12. In the case of a

minuscule weight λ6, we also obtain nα “ 12 by the same calculation.
For E7 case, we consider the minuscule weight λ1. Then the set !`z!`

P1

is listed as follows.

α1, α1 ` α2, α1 ` α2 ` α3, α1 ` 2α2 ` 2α3 ` 2α4 ` α5 ` α6 ` α7,

α1 ` α2 ` 2α3 ` 2α4 ` 2α5 ` α6 ` α7,

α1 ` α2 ` α3 ` 2α4 ` 2α5 ` α6 ` α7,

α1 ` α2 ` α3 ` α4 ` α5 ` α6 ` α7, α1 ` α2 ` α3 ` α4 ` α5,

α1 ` 2α2 ` 3α3 ` 3α4 ` 2α5 ` α6 ` α7,

α1 ` α2 ` 2α3 ` 3α4 ` 2α5 ` α6 ` α7,

α1 ` 2α2 ` 2α3 ` 3α4 ` 2α5 ` α6 ` α7,

α1 ` α2 ` α3 ` α4, α1 ` α2 ` 2α3 ` 2α4 ` α5 ` α6 ` α7,

α1 ` α2 ` α3 ` 2α4 ` α5 ` α6 ` α7,

α1 ` 2α2 ` 2α3 ` 2α4 ` α5 ` α6 ` α7,

α1 ` 2α2 ` 3α3 ` 4α4 ` 3α5 ` 2α6 ` 2α7,

α1 ` 2α2 ` 3α3 ` 4α4 ` 2α5 ` α6 ` 2α7,

α1 ` α2 ` α3 ` α4 ` α5 ` α6, α1 ` α2 ` α3 ` α4 ` α5 ` α7,

α1 ` 2α2 ` 3α3 ` 3α4 ` 2α5 ` α6 ` 2α7,

α1 ` α2 ` 2α3 ` 3α4 ` 2α5 ` α6 ` 2α7,

α1 ` 2α2 ` 2α3 ` 3α4 ` 2α5 ` α6 ` 2α7, α1 ` α2 ` α3 ` α4 ` α7,

α1 ` α2 ` 2α3 ` 2α4 ` α5 ` α7, α1 ` α2 ` α3 ` 2α4 ` α5 ` α7,

α1 ` 2α2 ` 2α3 ` 2α4 ` α5 ` α7, α1 ` 2α2 ` 3α3 ` 4α4 ` 3α5 ` α6 ` 2α7.
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We have
ř

γP!`z!`
P1

γ “ 27α1 ` 36α2 ` 45α3 ` 54α4 ` 36α5 ` 18α6 ` 27α7,.

For all α P !`z!`
P1
, we have 2{xα,αy “ 36 and obtain nα “ 18.

We can simplify the quantum Chevalley formula as follows.

σsαi
˝ σu “

ÿ

+pusαq“+puq`1

pλi,α
_qσusα

`
ÿ

+pusαq“+puq´ph´1q
pλi,α

_qσusα ¨ q

where α P !`z!`
Pi
.

To replace the conditions of these summations, the following lemma,
corollary and proposition are key ingredients.

Lemma 38. Let λi be a minuscule weight. For u P W Pi and α P Π, we have
the three following situations.
(I) pupλiq,α_q “ 1 ô 2psαuq “ 2puq ` 1.
(II) pupλiq,α_q “ 0 ô 2psαuq “ 2puq.
(III) pupλiq,α_q “ ´1 ô 2psαuq “ 2puq ´ 1.
Here we consider the length function lpuq in W Pi.

Proof. (a) First we show the implication (ñ), for each of (I), (II), (III). Here
we do not use the minuscule condition.
(I) We assume pupλiq,α_q “ 1. We show sαu P W Pi . If pupλiq,α_q “ 1,
pλi, u´1pαq_q “ 1 and u´1pαq is a positive root. Therefore 2psαuq “ 2puq ` 1
in W (see Section 1.6 in [Hum]). For β P ΠPi , we have

pλi, pusβq´1pαq_q ą 0 ô pλi, sβu
´1pαq_q ą 0

ô psβpλiq, u´1pαq_q ą 0

ô pλi, u
´1pαq_q ą 0

Therefore we have pλi, pusβq´1pαq_q ą 0. Hence 2psαusβq ą 2pusβq. On the
other hand, for all β P ΠPi , we have 2pusβq ą 2puq because u is in W Pi . Hence
2pusβq “ 2puq ` 1 in W . Thus we have

2psαuq “ 2pusβq ă 2psαusβq.
This means that sαu P W Pi . Therefore we obtain 2psαuq “ 2puq ` 1 in W Pi .
(II) We assume pupλiq,α_q “ 0. We show su´1pαq P WPi . Let u´1pαq_ “
b1α_

1 ` ¨ ¨ ¨ ` blα_
l (bi P R). Then we have

pλi, u
´1pαq_q “ bi “ 0
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Therefore u´1pαq P !Pi and su´1pαq P WPi . We obtain

2psαuq “ 2pusu´1pαqq “ 2puq in W Pi .

(III) We assume pupλiq,α_q “ ´1. We show sαu P W Pi . If pupλiq,α_q “ ´1,
then pλi, u´1pαq_q “ ´1 ă 0. u´1pαq is a negative root. Hence we have

2psαuq “ 2puq ´ 1 ă 2puq ă 2pusβq in W

for β P ΠPi . Now we have

2pusβq “ 2puq ` 1 “ 2psαuq ` 2 in W.

Let 2pusβq “ r. Then 2psαusβq “ r ´ 1, r ` 1 and 2psαuq “ r ´ 2. So
2psαusβq ą 2psαuq. This means that sαu P W Pi . Thus we obtain 2psαuq “
2puq ´ 1 in W Pi .
(b) Next we show the implication (ð), for each of (I), (II), (III). For (I), we
assume 2psαuq “ 2puq ` 1. Since λi is minuscule, pupλiq,α_q takes only the
values 1, 0,´1. If pupλiq,α_q is 0 or ´1, we obtain a contradiction, by part
(a). The proofs in the case (II), (III) are similar.

Now we have the weights of Vλi as λi ´ řn
j“1 njαj where nj P Zě0. From

this lemma, we obtain the following corollary.

Corollary 39. For u P W Pi such that upλiq “ λi ´ řn
j“1 njαj, we have

2puq “ řn
j“1 nj.

Proof. We have

2psαjuq “ 2puq ` 1 ô pupλiq,α_
j q “ 1

ô sαjpupλiqq “ upλiq ´ αj

by Lemma 38. The elements of W Pi are described by a product of simple
reflections. Thus 2puq “ řn

j“1 nj.

We have the following proposition.

Proposition 40. (I) If there exist α P !` such that 2psαuq “ 2puq ` 1 for
u P W Pi, then α P Π and pupλiq,α_q “ 1.
(II) If there exist α P !` such that 2psαuq “ 2puq ´ ps´ 1q for u P W Pi, then
α “ ´α0 and pupλiq,´α_

0 q “ ´1.
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Proof. (I) For α P !` such that 2psαuq “ 2puq ` 1, we have

sαupλiq “ upλiq ´ pupλiq,α_qα.

By the assumption that 2psαuq ą 2puq, we have pupλiq,α_q “ 1 and α must
be a simple root by Corollary 39.
(II) For α P !` such that 2psαuq “ 2puq ´ ps ´ 1q. Then we have

sαupλiq “ upλiq ´ pupλiq,α_qα.

By the assumption 2psαuq ă 2puq, we have pupλiq,α_q “ ´1. When α “řn
j“1 qjαj, then α must be ´α0 because there is only one positive root which

has the height
řn

j“1 qj “ h ´ 1.

By using the relation usα “ supαqu “ s´upαqu, Corollary 39 and Propo-
sition 40, we can replace the conditions of the summation in the quantum
Chevalley formula.

We show that we can simplify the first summation to
ÿ

pupλiq,α1_q“1,α1PΠ
σsα1u

by setting α1 “ upαq. Then we shall show that α1 is a positive root. In fact,
if α1 is a negative root, then pupλiq,α1_q “ ´1 satisfies 2psα1uq “ 2puq ` 1.
However this contradicts α P !`z!`

Pi
because we have

pupλiq,α1_q “ ´1 ô pupλiq, upα_qq “ ´1 ô pλi,α
_q “ ´1.

Thus α1 is in !`. By Proposition 40, we have α1 P Π Ă !`. Hence we have
ÿ

+pusαq“+puq`1

pλi,α
_qσusα “

ÿ

pupλiq,α1_q“1,α1PΠ
σsα1u

as the first summation of σsαi
˝ σu.

For the second summation, let α1 “ ´upαq. Then we shall show that α1

is also a positive root. In fact, if α1 is a negative root, then pupλiq,α1_q “ 1
satisfies 2psα1uq “ 2puq ´ ph ´ 1q. However this contradicts α P !`z!`

Pi

because we have

pupλiq,α1_q “ 1 ô pupλiq,´upα_qq “ 1 ô pλi,α
_q “ ´1.
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Thus α1 “ ´upαq is in !` for α P !`z!`
Pi
. By Proposition 40, we have

α1 “ ´α0 and pupλiq,´α_
0 q “ ´1. Hence for the second summation of

σsαi
˝ σu we have

ÿ

+pusαq“+puq´ph´1q
pλi,α

_qσusα ¨ q

“
ÿ

+psα1uq“+puq´ph´1q
pλi,´u´1pα1_qqσsα1u ¨ q

“
#
qσs´α0u

pupλiq,´α_
0 q “ ´1

0 otherwise.

Thus we obtain

σsαi
˝ σu “

$
’’&

’’%

ÿ

pupλiq,α_
j q“1

σsαju
` qσs´α0u

pupλiq,´α_
0 q “ ´1

ÿ

pupλiq,α_
j q“1

σsαju
otherwise.

On the other hand, for vupλiq we have

p
nÿ

j“1

e´αj ` qe´α0q ¨ vupλiq

“

$
’’&

’’%

ÿ

pupλiq,α_
j q“1

vupλiq´αj ` qvupλiq`p´α0q pupλiq,´α_
0 q “ ´1

ÿ

pupλiq,α_
j q“1

vupλiq´αj otherwise

“

$
’’&

’’%

ÿ

pupλiq,α_
j q“1

vsαjupλiq ` qvs´α0upλiq pupλiq,´α_
0 q “ ´1

ÿ

pupλiq,α_
j q“1

vsαjupλiq otherwise

by using the definitions of (3.3.2) and (3.3.4). Therefore we obtain

nÿ

j“1

e´αj ` qe´α0 “ σsαi
˝ .
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3.3.5 Quantum Satake isomorphism

When g is of type An (or, conjecturally, of type Dn,E6), the same global
solution corresponds to the Dubrovin connection of any minuscule weight.
This suggests a relation between the quantum cohomology algebra of the
corresponding flag manifolds. In the An case this can be stated as

Źk QH˚pCP nq – QH˚Grpk, n ` 1q

(see [GM] for further explanation).
In the Dn case, the analogous relation is:

Źhalf
˘ QH˚pQ2n´2q – EndCpQH˚pS˘qq. (3.3.5)

This is an isomorphism of Dn-modules and it preserves the operation of
quantum product by the generator of the second cohomology. This follows
from Theorem 34 when we identify H˚pQ2n´2;Cq with C2n and H˚pS˘;Cq
with ∆˘, because (3.3.5) corresponds to the well known relation

Źhalf
˘ C2n – EndCp∆˘q.

In order to explain the notation, we recall the relation here. We denote a
positively oriented orthonormal basis of C2n by e1, ¨ ¨ ¨ , e2n. We define the
isomorphism ‹ :

Źi C2n Ñ Ź2n´i C2n by

‹peξp1q ^ eξp2q ^ ¨ ¨ ¨ ^ eξpiqq “ signpξqeξpi`1q ^ eξpi`2q ^ ¨ ¨ ¨ ^ eξp2nq

for any permutation ξ. Then we obtain ‹ ¨ ‹ “ p´1qip2n´iqid. We define
ι :“ p´iqn‹ :

Źn C2n Ñ Źn C2n. Then ι ¨ ι “ id. Thus we have the canonical
eigenspace decomposition

Źn C2n – Źn
` C2n ‘ Źn

´ C2n. If n “ 2m ` 1, then

we define
Źhalf

˘ C2n by

Ź0 C4m`2
À Ź2 C4m`2

À ¨ ¨ ¨ À Ź2m C4m`2.

If n “ 2m, then we define
Źhalf

` C2n by

Ź0 C4m
À Ź2 C4m

À ¨ ¨ ¨ À Ź2m
` C4m.

and
Źhalf

´ C2n by

Ź0 C4m
À Ź2 C4m

À ¨ ¨ ¨ À Ź2m
´ C4m.
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From Theorem (6.2) of [BD], we have

∆` b ∆` “ Źn
` ` Źn´2 ` ¨ ¨ ¨

∆` b ∆´ “ Źn´1 ` Źn´3 ` ¨ ¨ ¨
∆´ b ∆´ “ Źn

´ ` Źn´2 ` ¨ ¨ ¨

as spinp2nq representations where the last terms are
Ź4 ` Ź2 ` Ź0 or

Ź3 ` Ź1.
If n “ 2m ` 1, then we have

EndCp∆`q – ∆˚
` b ∆` – ∆` b ∆´

– Ź2m ` Ź2m´2 ` ¨ ¨ ¨ ` Ź2 ` Ź0

“ Źhalf
˘ C4m`2.

If n “ 2m, then we have

EndCp∆`q – ∆˚
` b ∆` – ∆` b ∆`

– Ź2m
` ` Ź2m´2 ` ¨ ¨ ¨ ` Ź2 ` Ź0

“ Źhalf
` C4m.

When we consider the minuscule ∆´ and the corresponding homogeneous
space S´, we obtain

Źhalf
´ QH˚pQ2n´2q – EndCpQH˚pS´qq

as in the case of ∆`.

3.4 The GIL classification and the CV classi-
fication

In this section, we compare the classifications by Cecotti-Vafa and by Guest-
Its-Lin. First we review the classification by Cecotti-Vafa. It is written in
Section 6 of [CV2].

3.4.1 The classification by Cecotti and Vafa

Their classification method is purely algebraic and based on the classification
of ‘Stokes matrices’ S of hypothetical solutions of the tt* equations and their
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hypothetical ‘monodromy matrices’H “ SS´T . Let S be an upper triangular
matrix with 1 on the diagonal. According to Cecotti and Vafa, the Stokes
matrices coming from physically realistic solutions of the tt* equations have
to satisfy:

S P SLpn ` 1,Zq, and (3.4.1)

eigenvalues of H are in S1. (3.4.2)

By the same discussion as in Section 3, P pxq can be written as a product of
cyclotomic polynomials

P pxq “ ΠmPZą0pΦmpxqqνpmq. (3.4.3)

Note that, in Section 3, we studied the properties of characteristic polyno-
mials of Q̃p8q

1 Q̃p8q
1 1
n`1

Π̃ and these properties were proved by the property of its

solutions. On the other hand, in the following lemma, we prove the proper-
ties of characteristic polynomials of H “ SS´T . They will be purely proved
by its definition and the above assumptions.

Lemma 41. The above P pxq satisfies the following conditions.

(1)
ř

m νpmqφpmq “ n ` 1, φpmq is the Euler function.

(2) νp1q “ n ` 1 mod 2.

(3) For n odd, either νp1q ą 0 or
ř

kě1 νppkq “ 0 mod 2 for all primes p.

Proof. 1: This is trivial since degΦmpzq “ φpmq.
2: P p0q “ detp´Hq “ detp´Sq detpS´T q “ p´1qpn ` 1q. On the other hand,
Φmp0q “ 1 for all m but for m “ 1 where Φ1p0q “ ´1. Hence νp1q “ n ` 1
mod 2.
3: We have

P p1q “ detp1 ´ Hq “ detp1 ´ SS´T q
“ detpST ´ Sq{ detpST q
“ ppfpST ´ Sqq2

where pf means the Pfaffian of a matrix. Note that ST´S is a skew-symmetric
matrix. Hence

ΠmPNpΦmp1qqνpmq “ ppfpST ´ Sqq2.
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On the other hand,

Φmp1q “

$
’&

’%

0 if m “ 1

p if m “ pk, p prime k ě 1

1 otherwise.

If n is even the condition is equivalent to the condition p2q, because from p2q
νp1q “ 1 mod 2 then the left side of the equation vanishes and Pfaffian is
identically 0. If n is odd, there are two possibilities. When the Pfaffian is 0
the left hand side has to satisfy νp1q ą 0. When the Pfaffian is not 0, it is
easily seen that

ř
kě1 νppkq “ 0 mod 2 for all primes p because the left side

must be a square number.

By Lemma 41, we obtain all possible characteristic polynomials. Com-
paring both sides of the equation (3.4.3), we have a system of Diophantine
equations. Solving the systems we obtain all hypothetical Stokes matrices S.

Let Un`1 be the set of pn`1qˆpn`1q upper triangular matrices with 1 on
the diagonal with two conditions (3.4.1) and (3.4.2). Let S “ paijq1ďiďjďn P
Un`1. A braid group action is generated by

σi : S ÞÑ PiSP
T
i p1 ď i ď nq

where Pi “

¨

˝
Ii

σi

In´i´1

˛

‚, Ij is the j ˆ j identity matrix and σi “
ˆ

´ai,i`1 1
1 0

˙
. A product of elements is defined by

σi ˝ σjpSq “ σipPjSP
T
j qσjpSq

where on the right hand side we use the matrix multiplication. Then these
σi satisfy

σi ˝ σj “ σj ˝ σi p|i ´ j| ď 2q
σi ˝ σi`1 ˝ σi “ σi`1 ˝ σi ˝ σi`1

The braid group is generated by these generators σi and we denote them by
Brn`1. We consider the sign group G˘

n`1:

G˘
n`1 “

$
’&

’%

¨

˚̋
˘1

. . .
˘1

˛

‹‚

,
/.

/-
.
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We denote the element whose i-th entry is ´1 and other entries are 1 by τi.
G˘

n`1 also acts on Un`1 by
S ÞÑ τiSτ

T
i .

We consider the semidirect productBrn`1˙G˘
n`1. Here we have σi˝τj “ τj˝σi

for i ‰ j and σi ˝ τi “ τi`1 ˝ σi.

Definition 42. [CV2, Bon] We define an equivalence relation on Un`1 by
S1 „CV S2 if and only if S1, S2 are in same orbit of Brn`1 ˙ G˘

n`1.

We refer to the resulting classification of Stokes matrices as the CV clas-
sification.

In fact we shall also use a coarser equivalence relation on Un`1 by making
use of two invariants. The conjugacy class of the monodromy matrix is an
invariant of actions of Brn ˙ G˘

n`1. Indeed, the above action induces the
action on monodromy matrices by

SS´T ÞÑ PiSS
´TP´1

i .

Next the braid group action on matrices S ` ST is given by

S ` ST ÞÑ P pS ` ST qP T .

By the Sylvester’s law of inertia, the signature of the matrix S ` ST is also
invariant under the action. For the elements of G˘

n`1, the conjugacy classes of
SS´T and the signature of S`ST are also invariant. Hence we can introduce
equivalence relations

S „con Ŝ :ô rSS´T s “ rŜŜ´T s
S „con,sig Ŝ :ô rSS´T s “ rŜŜ´T s and sigpS ` ST q “ sigpŜ ` ŜT q

where r˚s means the conjugacy class and sigp˚q is the signature. We use
these invariance to show that the GIL classification coincides with the CV
classification for n “ 1, 2, 3.
We have a natural projection as follows.

Un`1{ „CV Ñ Un`1{ „con,sigÑ Un`1{ „con

by
rSsCV ÞÑ rSscon,sig ÞÑ rSscon.
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In the following we summarize the CV classification in [CV2] and compute
the Jordan normal forms of the monodromy matrices for use in the next
section.
n “ 1: Set

S “
ˆ
1 a
0 1

˙
.

The characteristic polynomial of H is

P pxq “ x2 ` pa2 ´ 2qx ` 1.

By Lemma 41, there are three possibilities for the form of P pxq. In Table

Table 3.1:
P pxq b
Φ1pxq2 ´2
Φ6pxq ´1
Φ2pxq2 2

3.1, b means the coefficient of x1 and rHs is the Jordan normal form of H.
We have

a2 ´ 2 “ b.

Except for b “ ´2, we have two solutions a “ ˘
?
b ` 2. However the

corresponding Stokes matrices are equivalent under the action of the braid
group. Indeed,

ˆ
1 a
0 1

˙
ÞÑ

ˆ
´a 1
1 0

˙ ˆ
1 a
0 1

˙ ˆ
´a 1
1 0

˙
“

ˆ
1 ´a
0 1

˙
. (3.4.4)

Thus if suffices to take b ă 0.

• For b “ ´2, the solution is a “ 0. This case corresponds to the trivial
model.

• For b “ ´1, the solution is a “ ´1. This solution corresponds to the
Landau-Ginzburg model with superpotential W pXq “ X3 ´X (the A2

minimal model).
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Table 3.2:
a S rHs
0

ˆ
1 0
0 1

˙ ˆ
1 0
0 1

˙

´1

ˆ
1 ´1
0 1

˙ ˜
e

π
?´1
3 0

0 e´π
?´1
3

¸

´2

ˆ
1 ´2
0 1

˙ ˆ
´1 1
0 ´1

˙

• For b “ 2, the solution is a “ ´2. This solution corresponds to the
CP 1 σ-model.

n “ 2: Set

S “

¨

˝
1 x1 x2

0 1 x3

0 0 1

˛

‚.

The characteristic polynomial of H is

P pxq “ x3 ` αpxiqx2 ´ αpxiqx ´ 1

where αpxiq “ x2
1`x2

2`x2
3´x1x2x3. By Lemma 41, there are five possibilities

for the form of P pxq. In Table 3.3, b means the coefficient of x2. These lead

Table 3.3:
P pxq b
Φ1pxq3 0
Φ1pxqΦ2pxq2 4
Φ1pxqΦ3pxq 3
Φ1pxqΦ4pxq 2
Φ1pxqΦ6pxq 1

to the Diophantine equations

x2
1 ` x2

2 ` x2
3 ´ x1x2x3 “ b.

This equation is called the Markov type Diophantine equation, and its com-
plete solutions were studied in [Mor]. The important facts are
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Table 3.4:
px1, x2, x3q S rHs

p0, 0, 0q

¨

˝
1 0 0
0 1 0
0 0 1

˛

‚

¨

˝
1 0 0
0 1 0
0 0 1

˛

‚

p3, 3, 3q

¨

˝
1 3 3
0 1 3
0 0 1

˛

‚

¨

˝
1 1 0
0 1 1
0 0 1

˛

‚

p´1,´1,´1q

¨

˝
1 ´1 ´1
0 1 ´1
0 0 1

˛

‚

¨

˝
´1 1 0
0 ´1 0
0 0 1

˛

‚

p2, 2, 2q

¨

˝
1 2 2
0 1 2
0 0 1

˛

‚

¨

˝
´1 0 0
0 ´1 0
0 0 1

˛

‚

p1, 1, 1q

¨

˝
1 1 1
0 1 1
0 0 1

˛

‚

¨

˝
e

π
2 0 0
0 e´π

2 0
0 0 1

˛

‚

• for a generic b P Z there are infinitely many solutions of the equations,
and

• these solutions are generated by three transformations from so-called
fundamental solutions2(see [CV2] or [Mor]). The three transformations
contains the generators of the action of the braid group B3

px1, x2, x3q ÞÑ p´x1, x3, x2 ´ x1x3q
px1, x2, x3q ÞÑ px2, x1 ´ x2x3,´x3q.

By using these facts, Cecotti-Vafa obtained four physically realistic models
corresponding to the braid group orbits.

• For b “ 0, a fundamental solutions is p3, 3, 3q. This solution corresponds
to the CP 3 σ-model.

• For b “ 4, there are two fundamental solutions, p1, 1, 2q and p2, 2, 2q.
The solution p2, 2, 2q corresponds to the Ising 3-point function. The

2The fundamental solution px1, x2, x3q is a nontrivial solution satisfying 0 ă x1 ď x2 ď
x3 and x1 ` x2 ` x3 is minimal. Triviality means that at least two xi’s vanish.
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physics model corresponding to p1, 1, 2q can be explained as an N “ 2
Toda theory related to the Â2 root system, and p1, 1, 2q can be trans-
formed into p´1,´1,´1q.

• For b “ 2, the fundamental solution is p1, 1, 1q. This corresponds to
the A3 minimal model.

• For b “ 1, 3, there are no fundamental solutions.

3.4.2 The comparison of classifications

In this section, we compare the classification of Guest-Its-Lin with the classifi-
cation of Cecotti-Vafa in the n “ 1, 2, 3 cases. To compare them, we calculate
the monodromy matrices from the asymptotic data (or Stokes data). For the
n “ 1, 2 cases, it turns out to be necessary to consider only the conjugacy
classes. For the n “ 3 case, we have to consider not only the conjugacy
classes but also the signatures.

We consider the asymptotic data with the integer Stokes data. We de-
note the set tm P Aσ

n`1| si P Z, i “ 1, ¨ ¨ ¨ , nu by Aσ
n`1,Z. As we have seen in

Section 3, by (2.3.1) we can define the map

S : Aσ
n`1,Z Ñ Un`1, m ÞÑ SHorpe

2π
?´1

n`1 pm`ρqq.

We denote SHorpe
2π

?´1
n`1 pm`ρqq by SHorpmq.

Proposition 43. The map S is well-defined.

Proof. Form P Aσ
n`1,Z, SHorpmq is in SLpn`1,Zq from (2.3.1). Thus SHorpmq

satisfies (3.4.1).
As we have seen in Section 2, the monodromy matrix of the solution

corresponding to the asymptotic data m (or the Stokes data s1, ¨ ¨ ¨ , sn) is

S̃p8q
1 S̃p8q

2 “ S̃p8q
1 pS̃p8q

1 q´T “

$
&

%
´pQ̃p8q

1 Q̃p8q
1 1
n`1

Π̃qn`1 pn ` 1 evenq
pQ̃p8q

1 Q̃p8q
1 1
n`1

Πqn`1 pn ` 1 oddq

In addition, for m P Aσ
n`1, we know from the discussion in Section 2 that

Q̃p8q
1 Q̃p8q

1 1
n`1

Π̃ has a Jordan normal form as

Q̃p8q
1 Q̃p8q

1 1
n`1

Π̃ “ g´1e
2π

?´1
n`1 pm`ρqeNg
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where g P SLpn ` 1,Cq and N is a nilpotent element which commutes with
m ` ρ. Then we have the monodromy matrices

$
&

%
´pQ̃p8q

1 Q̃p8q
1 1
n`1

Π̃qn`1 “ ´g´1e2π
?´1pm`ρqepn`1qNg pn ` 1 is evenq

pQ̃p8q
1 Q̃p8q

1 1
n`1

Πqn`1 “ g´1e2π
?´1pm`ρqepn`1qNg pn ` 1 is oddq.

Then we have

rSHorpmqSHorpmq´T scon “ rFS̃p8q
1 F TF´T pS̃p8q

1 q´TF´1scon
“ rS̃p8q

1 pS̃p8q
1 q´T scon

“

$
&

%
r´pQ̃p8q

1 Q̃p8q
1 1
n`1

Π̃qn`1scon pn ` 1 evenq
rpQ̃p8q

1 Q̃p8q
1 1
n`1

Πqn`1scon pn ` 1 oddq

“
#

r´e2π
?´1pm`ρqepn`1qN scon pn ` 1 evenq

re2π
?´1pm`ρqepn`1qN scon pn ` 1 oddq.

Therefore all eigenvalues of SHorpmqSHorpmq´T are in S1. Thus SHorpmq sat-
isfies (3.4.2).

We consider the set of equivalence classes of „GIL for Aσ
n`1,Z and denote

them by Aσ
n`1,Z{ „GIL. Then we define the map

ĂS : Aσ
n`1,Z{ „GILÑ Un`1{ „CV , rmsGIL ÞÑ rSHorpmqsCV .

We see that the map ĂS is well-defined. First, we have

Lemma 44. For k “ 22 (2 P Z) and m P Aσ
k , we have

sipe
2π

?´1
k pΘkpmq`ρqq “

#
´sipe

2π
?´1
k pm`ρqq if i is odd

sipe
2π

?´1
k pm`ρqq if i is even

(3.4.5)

Proof. We have

Θkpmq ` ρ “ diagp´m+, ¨ ¨ ¨ ,´m0,m0, ¨ ¨ ¨ ,m+q ` diagpk ´ 1

2
, ¨ ¨ ¨ , 1

2
,´1

2
, ¨ ¨ ¨ ,´k ´ 1

2
q

“ diagp´mk ` k ´ 1

2
, ¨ ¨ ¨ ,´m0 ` 1

2
,m0 ´ 1

2
, ¨ ¨ ¨ ,mk ´ k ´ 1

2
q

“ diagp´mk ´ 1

2
, ¨ ¨ ¨ ,´m0 ´ k ´ 1

2
,m0 ` k ´ 1

2
, ¨ ¨ ¨ ,mk ` 1

2
q ` k ´ 1

2
E+
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where E+ “
ˆ

I+
´I+

˙
. Therefore we have

e
2π

?´1
k pΘkpmq`ρq “ e

2π
?´1
k diagp´mk´ 1

2 ,¨¨¨ ,´m0´ k´1
2 ,m0` k´1

2 ,¨¨¨ ,mk` 1
2 qeπ

?´1E$

“ p´1qe 2π
?´1
k diagp´mk´ 1

2 ,¨¨¨ ,´m0´ k´1
2 ,m0` k´1

2 ,¨¨¨ ,mk` 1
2 q.

Since e
2π

?´1
k diagp´mk´ 1

2 ,¨¨¨ ,´m0´ k´1
2 ,m0` k´1

2 ,¨¨¨ ,mk` 1
2 q has the same entries of e

2π
?´1
k pm`ρq,

we have

sipe
2π

?´1
k pΘkpmq`ρqq “

#
´sipe

2π
?´1
k pm`ρqq if i is odd

sipe
2π

?´1
k pm`ρqq if i is even

because si is the i-th elementary symmetric function.

For k “ 22 and m P Aσ
+ , we have (cf. Section 9 in [GIL4])

sipe
2π

?´1
k pdiagpm,mq`ρkqq “

#
s i

2
pe 2π

?´1
$ pm`ρ$qq if i is even

0 if i is odd.
(3.4.6)

where we denote ρ in Aσ
i by ρi. Then we have

Lemma 45. Let n` 1 be even. If 2k|n` 1 (k P Zě0), for m P Aσ
n`1
2k

we have

sipe
2π

?´1
n`1 pdiagpm,¨¨¨ ,mq`ρn`1qq “

$
&

%
s i

2k
pe

2π
?´1

n`1
2k

pm`ρn`1
2k

q
q if i “ 0 pmod 2kq

0 otherwise.

(3.4.7)

where diagpm, ¨ ¨ ¨ ,mq P Aσ
n`1.

Proof. We show this statement by induction. The k “ 0 case of (3.4.7)
trivially holds. Then we assume that the k “ 2 case of (3.4.7) holds. If
2+`1|n ` 1, for m P Aσ

n`1
2$`1

we have

sipe
2π

?´1
n`1 pdiagpm,¨¨¨ ,mq`ρn`1qq “

$
&

%
s i

2$
pe

2π
?´1

n`1
2$

pdiagpm,mq`ρn`1
2$

q
q if i “ 0 pmod 2+q

0 otherwise.

“

$
&

%
s i

2$`1
pe

2π
?´1

n`1
2$`1

pm`ρ n`1
2$`1

q
q if i “ 0 pmod 2+`1q

0 otherwise.

Here we use (3.4.6). Thus the k “ 2 ` 1 case of (3.4.7) also holds.
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Proposition 46. The map ĂS is well-defined.

Proof. If n ` 1 is odd, Θn`1 is identity. Thus we have to only consider the
case that n ` 1 is even.

If 2k|n ` 1 (k P Zě0) and 2k`1|n ` 1, for diagpm, ¨ ¨ ¨ ,mq P Aσ
n`1 where

m P Aσ
n`1
2k

, we have

sipe
2π

?´1
n`1 pdiagpΘkpmq,¨¨¨ ,Θkpmqq`ρn`1qq “

$
&

%
s i

2k
pe

2π
?´1

n`1
2k

pΘkpmq`ρn`1
2k

q
q if i “ 0 pmod 2kq

0 otherwise.

“

$
’’’’&

’’’’%

´s i
2k

pe
2π

?´1
n`1
2k

pm`ρn`1
2k

q
q if i “ 2k pmod 2k`1q

s i
2k

pe
2π

?´1
n`1
2k

pm`ρn`1
2k

q
q if i “ 0 pmod 2k`1q

0 otherwise.

by Lemma 44 and Lemma 45. Then we have for m P Aσ
n`1
2k

SHorpe
2π

?´1
n`1 pdiagpm,¨¨¨ ,mq`ρn`1qq “

¨

˚̊
˚̊
˚̊
˚̊
˝

In`1
2k

s1In`1
2k

s2In`1
2k

¨ ¨ ¨ sn`1
2k

´1In`1
2k

0
. . . . . . . . .

...
...

. . . . . . . . . s2In`1
2k

...
. . . . . . . . . s1In`1

2k

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 In`1
2k

˛

‹‹‹‹‹‹‹‹‚

and

SHorpe
2π

?´1
n`1 pdiagpΘn`1

2k
pmq,¨¨¨ ,Θn`1

2k
pmqq`ρn`1q

q “

¨

˚̊
˚̊
˚̊
˚̊
˝

In`1
2k

´s1In`1
2k

s2In`1
2k

¨ ¨ ¨ ´sn`1
2k

´1In`1
2k

0
. . . . . . . . .

...
...

. . . . . . . . . s2In`1
2k

...
. . . . . . . . . ´s1In`1

2k

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 In`1
2k

˛

‹‹‹‹‹‹‹‹‚

Thus we have

SHorpe
2π

?´1
n`1 pdiagpΘn`1

2k
pmq,¨¨¨ ,Θn`1

2k
pmqq`ρn`1q

q “ hTSHorpe
2π

?´1
n`1 pdiagpm,¨¨¨ ,mq`ρn`1qqh
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where

h “

¨

˚̊
˚̊
˚̊
˝

´In`1
2k

In`1
2k

. . .
´In`1

2k

In`1
2k

˛

‹‹‹‹‹‹‚
.

This h is an element of G˘
n`1. Therefore we obtain

rSHorpe
2π

?´1
n`1 pdiagpΘn`1

2k
pmq,¨¨¨ ,Θn`1

2k
pmqq`ρn`1q

qsCV “ rSHorpe
2π

?´1
n`1 pdiagpm,¨¨¨ ,mq`ρn`1qqsCV .

This means the map ĂS is well-defined.

The aim of this section is to show that the map ĂS is injective. By the
sequence of maps in Section 4, we have the following diagram.

Aσ
n`1,Z{ „GIL Un`1{ „CV

Un`1{ „con,sig

Un`1{ „con

!
!
!
!
!
!
!
!
!
!
!!"

#ĂS

$
$
$
$

$
$$% &

&

(3.4.8)

We show the following result.

Theorem 47. For n “ 1, 2, 3, the map ĂS is injective, that is, the GIL
classification coincides with the CV classification.

Proof. To show the statement we show that the map

Aσ
n`1,Z{ „GILÑ Un`1{ „con (3.4.9)

for the integer Stokes data is injective if n “ 1, 2 and that the map

Aσ
n`1,Z{ „GILÑ Un`1{ „con,sig (3.4.10)
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for the integer Stokes data is injective if n “ 3. It follows that the map ĂS is
injective.

n “ 1 We have

Aσ
2 “ tm “ diagpm0,´m0q| ´ 1

2
ď m0 ď 1

2
u

and

Aσ
2{ „GIL“ trmsGIL | ´ 1

2
ď m ď 0u.

We obtain

Aσ
n`1,Z{ „GIL“ trp´1

2
,
1

2
qs, rp´1

6
,
1

6
qs, rp0, 0qsu

as Table 3.5.3 From Table 3.5, we know that the monodromy for each rmsGIL

Table 3.5: n ` 1 “ 2
m “ pm0,´m0q SHorpmq r´e2π

?´1pm`ρqepn`1qN scon
p´1

2 ,
1
2q

ˆ
1 ´2
0 1

˙ ˆ
´1 1
0 ´1

˙

p´1
6 ,

1
6q

ˆ
1 ´1
0 1

˙ ˜
e

π
?´1
3 0

0 e´π
?´1
3

¸

p0, 0q
ˆ
1 0
0 1

˙ ˆ
1 0
0 1

˙

are distinct. Therefore the map (3.4.9) is injective.
n “ 2 We have

Aσ
3 “ tm “ diagpm0, 0,´m0q| ´ 1 ď m0 ď 1

2
u.

In the n “ 2 case, the relation in Definition 16 is trivial, that is Aσ
3 “

Aσ
3{ „GIL. We obtain the elements of Aσ

3,Z{ „GIL as Table 3.6. Therefore
the map (3.4.9) is injective.
n “ 3 We show that the map (3.4.10) is injective. We have

Aσ
4 “ tm “ diagpm0,m1,´m1,´m0q| ´1

2
ď m1 ď 3

2
, ´3

2
ď m0 ď 1

2
, m1 ď m0`1u.

3In tables, we omit the words “diag” of diagonal matrices m.
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Table 3.6: n ` 1 “ 3
m “ pm0, 0,´m0q SHorpmq re2π

?´1pm`ρqepn`1qN scon

p´1, 0, 1q

¨

˝
1 ´3 3
0 1 ´3
0 0 1

˛

‚

¨

˝
1 1 0
0 1 1
0 0 1

˛

‚

p´1
2 , 0,

1
2q

¨

˝
1 ´2 2
0 1 ´2
0 0 1

˛

‚

¨

˝
´1 0 0
0 ´1 0
0 0 1

˛

‚

p´1
4 , 0,

1
4q

¨

˝
1 ´1 1
0 1 ´1
0 0 1

˛

‚

¨

˝

?
´1 0 0
0 ´

?
´1 0

0 0 1

˛

‚

p0, 0, 0q

¨

˝
1 0 0
0 1 0
0 0 1

˛

‚

¨

˝
1 0 0
0 1 0
0 0 1

˛

‚

p1
2 , 0,´1

2q

¨

˝
1 1 ´1
0 1 1
0 0 1

˛

‚

¨

˝
´1 1 0
0 ´1 0
0 0 1

˛

‚

By the relation in n “ 3 (see Example 5), we have

Aσ
4{ „GIL“trmsGIL | ´ 1

2
ď m1 ď 3

2
, ´3

2
ď m0 ď 1

2
, m1 ď m0 ` 1, m0 ` m1 ď 0u

´ trmsGIL | m0 ` m1 “ 0, 0 ă m0 ď 1

2
u.

Then we obtain the elements of Aσ
4,Z{ „GIL as Table 3.7. By Theorem 3.5 in

[Hor], we know that SHorpmq ` SHorpmqT has the same signature as

diagpp´1q´3ppπ0q, ¨ ¨ ¨ , p´1q3ppπ3qq (3.4.11)

where ppxq “ x4 ´ s1x3 ` s2x2 ´ s1x ` 1, πk “ e
1
2 pk` 1

2 qπ?´1. From Table 3.7,
Then we find that the map (3.4.10) is injective.

Remark 48. For n “ 1, 2, we obtain a more powerful result. We can define
a map

Aσ
n`1{ „GILÑ Un`1{ „Brn , rmsGIL ÞÑ rSHorpmqsbrd (3.4.12)
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and show that this map is injective.
For n “ 1, we have the braid group action for SHorpmq by (3.4.4) as

ˆ
1 s1
0 1

˙
ÞÑ

ˆ
´s1 1
1 0

˙ ˆ
1 s1
0 1

˙ ˆ
´s1 1
1 0

˙
“

ˆ
1 ´s1
0 1

˙
.

For rmsGIL “ rm1sGIL, we have rSHorpmqs “ rSHorpm1qs. Thus the map
(3.4.12) is well-defined. From Table 3.5, we obtain that for the integer Stokes
data the map (3.4.12) is injective.

For n “ 2, the relation in Definition 16 is trivial. Thus we can define the
map for the integer Stokes data

Aσ
3 Ñ U3{ „brd, m ÞÑ rSHorpmqsbrd. (3.4.13)

From Table 3.6, we have the five integer Stokes data in Aσ
3 . On the other

hand, we find that there are five elements rSHorpmqsbrd in U3{ „brd because
the conjugacy classes of the their monodromy are different. Then the map
(3.4.13) is injective.
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Table 3.7: n ` 1 “ 4
m SHor r´e2π

?´1pm`ρqepn`1qN s sigpSHor ` ST
Horq

p´ 1
6 ,

1
6 ,´ 1

6 ,
1
6 q

¨

˚̊
˝

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

˛

‹‹‚

¨

˚̊
˚̊
˚̋

e
π

?´1
3 0 0 0

0 e
´π

?´1
3 0 0

0 0 e
π

?´1
3 0

0 0 0 e
´π

?´1
3 q

˛

‹‹‹‹‹‚
p`,`,`,`q

p0, 0, 0, 0q

¨

˚̊
˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹‹‚

¨

˚̊
˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹‹‚ p`,`,`,`q

p´ 1
2 ,

1
6 ,´ 1

6 ,
1
2 q

¨

˚̊
˝

1 ´1 2 ´1
0 1 ´1 2
0 0 1 ´1
0 0 0 1

˛

‹‹‚

¨

˚̊
˚̋

´1 0 0 0

0 e
´π

?´1
3 0 0

0 0 e
π

?´1
3 0

0 0 0 ´1

˛

‹‹‹‚ p`,`, 0, 0q

p´ 3
10 ,´ 1

10 ,
1
10 ,

3
10 q

¨

˚̊
˝

1 ´1 1 ´1
0 1 ´1 1
0 0 1 ´1
0 0 0 1

˛

‹‹‚

¨

˚̊
˚̊
˚̋

e
´3π

?´1
5 0 0 0

0 e
´π

?´1
5 0 0

0 0 e
π

?´1
5 0

0 0 0 e
3π

?´1
5

˛

‹‹‹‹‹‚
p`,`,`,`q

p´ 3
2 ,´ 1

2 ,
1
2 ,

3
2 q

¨

˚̊
˝

1 ´4 6 ´4
0 1 ´4 6
0 0 1 ´4
0 0 0 1

˛

‹‹‚

¨

˚̊
˝

´1 1 0 0
0 ´1 1 0
0 0 ´1 1
0 0 0 ´1

˛

‹‹‚ p`, 0,´,´q

p´ 5
6 ,´ 1

2 ,
1
2 ,

5
6 q

¨

˚̊
˝

1 ´3 4 ´3
0 1 ´3 4
0 0 1 ´3
0 0 0 1

˛

‹‹‚

¨

˚̊
˚̋

´1 1 0 0
0 ´1 0 0

0 0 e
´π

?´1
3 0

0 0 0 e
π

?´1
3

˛

‹‹‹‚ p`, 0,´,´q

p´ 1
2 ,´ 1

2 ,
1
2 ,

1
2 q

¨

˚̊
˝

1 ´2 2 ´2
0 1 ´2 2
0 0 1 ´2
0 0 0 1

˛

‹‹‚

¨

˚̊
˝

´1 1 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹‹‚ p`, 0, 0, 0q

p´ 1
6 ,´ 1

2 ,
1
2 ,

1
6 q

¨

˚̊
˝

1 ´1 0 ´1
0 1 ´1 0
0 0 1 ´1
0 0 0 1

˛

‹‹‚

¨

˚̊
˚̋

´1 1 0 0
0 ´1 0 0

0 0 e
´π

?´1
3 0

0 0 0 e
π

?´1
3

˛

‹‹‹‚ p`,`,`, 0q

p´ 5
6 ,

1
6 ,´ 1

6 ,
5
6 q

¨

˚̊
˝

1 ´2 3 ´2
0 1 ´2 3
0 0 1 ´2
0 0 0 1

˛

‹‹‚

¨

˚̊
˚̊
˚̋

e
´π

?´1
3 1 0 0

0 e
´π

?´1
3 0 0

0 0 e
π

?´1
3 1

0 0 0 e
π

?´1
3

˛

‹‹‹‹‹‚
p`,`,´,´q

p´ 1
2 ,

1
2 ,´ 1

2 ,
1
2 q

¨

˚̊
˝

1 0 2 0
0 1 0 2
0 0 1 0
0 0 0 1

˛

‹‹‚

¨

˚̊
˝

´1 1 0 0
0 ´1 0 0
0 0 ´1 1
0 0 0 ´1

˛

‹‹‚ p`,`, 0, 0q
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