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Chapter 1

Introduction

In this thesis, we study two types of parametric estimations for unknown parameters in
the coefficient functions of stochastic differential equations (SDEs) with small Lévy noise,
and we establish our estimators from a discrete sample path derived from the SDE with
true parameters in the coefficient functions, called discretely observed case. Problems of
parametric estimation for discretely observed stochastic processes with small diffusion have
been studied by various authors (e.g., Genon-Catalot [10], Laredo [21], Sgrensen and Uchida
[33] and so on) and problems of ones with small Lévy noise have been studied by Long et al.
[22], Long et al. [23] and references therein.

In the first half of this thesis, we focus on the parametric estimation for drift parameter
only, and we propose a new type of least square estimator (LSE) based on the Adams method,
which is well-known as a numerical computation method for calculating numerical solutions to
ordinary differential equations (ODEs). Then, we prove the consistency and the asymptotic
normality of of the proposed estimator, and we show that the LSEs based on the Adams
method can be better than the usual LSE based on the Euler method in the finite sample
performance.

In order to say more precisely about our estimators in the first half of this thesis, let us
introduce the well-known Adams method in numerical analysis for ODEs (see, e.g., Butcher
[7], Hairer et al. [14], Hairer and Wanner [15] and Iserles [16]), which is the combinations of
two methods as predictor-corrector pair, says, the Adams-Bashforth and the Adams-Moulton
formulae. Here, we give an ODE

% = a(xzy) (1.1)
with the initial condition zg, where a is a Lipschitz function. For instance, to compute an
approximate value Iy, of the solution of (1.1) at ¢ = ¢, we firstly prepare a predictor Ty,
given by Adams-Bashforth method with ¢ =1,2,... as

¢ ¢
. A 1 . (_1)1/71 1 .
ey, = Ty, + g 1 Yo o(Z,_ ), Yo = PRI /0 1_[1(u +j—1)du, (1.2)
v= Jj=
i
by using the past approximate values &, _,,..., 2 _, with 2;, = xy, and we secondly modify
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8 CHAPTER 1. INTRODUCTION

the value xj, to a corrector iy, given by Adams-Moulton method as

¢ ¢
N 1 iy, L ) =y ,
Ty, = Ty, + ﬁﬁfoa(fftk) + - Vg_l Bual(ty,_ ), Buw:= m /o jl:[o(u—f—j —1)du. (1.3)
iv

Both formulae follows by the same argument as in Section 2.1 in Iserles [16], and the predictor-
corrector scheme is written in Hairer and Wanner [15]. Some of the values of the coefficients
Yev, Bev can be seen in Table 244 in Butcher [7]. Here, we remark that for any ¢ : R — R,
the coefficients vy, and [, satisty

tr 1 14
/ P(s;g,tg—1,... ,ty—g)ds = - Z’Yeug(ftk_u)7

tr—1 v=1

tr 1 L
P(s;g,tg, ... tk_p)ds = — Bevg(zy,_,), 14
J Pttt = 03 gt (14)

where s — P(s;¢,tk,...,tx_¢) is the Lagrange interpolating polynomial through the points
(s,9(8)), $ = tg,...,tx_p (see, e.g., Section III.1 in Hairer et al. [14]). In particular, substi-
tuting ¢ = 1, we have

14 14
ZWV = Zﬁeu =1
v=1 v=0

dX? =a(X{,00)dt +edl,, X§ =120 RY,

where O is a smooth bounded open convex set in R? with p € N, © denotes the closure of
O, 0 € O, ¢ > 0, a is a function from R? x © to RY, and L = (L;)i<o is a d-dimensional
Lévy process. As in the usual literature (e.g., Long et al. [22]), we use the following contrast
function for LSE based on Euler method:

n . € € 1 € ?
\Iln,g(e) = ? Z th — th71 - Ea(th717€) )
k=1

though the Euler method sometimes fails to approximate the solution of ODEs (e.g., a(z,0) =
—0x for z,6 > 0 and 6/n ¢ (0,2), in Section 4.2 in Iserles [16]) and is less accurate than the
Runge-Kutta method, the Adams method, etc. Of course, these numerical approximation
methods except for the Euler method do not work to calculate numerical solutions to SDEs,
while they are available for the ODE given in the limit € — 0. Thus, we employ the Adams
method instead of the Euler method and define the Adams-Bashforth type contrast function
U,,-0(0) as
N — 1 i
Ve olt) = XL -X - - > wwalX;, . 0)

k=¢Vv1 v=1



We can also define the Adams-Moulton type contrast function as we shall see in Chapter 2,
and will discuss only the Adams-Moulton type contrast function, since the proof for Adams-
Moulton type is analogous.

In the second half, we expand our scope to the joint estimation of the parameters in the
drift, diffusion and jump terms, while we restrict Lévy noise to compound Poisson process. In
the ergodic case, such joint estimation for SDEs with Lévy noise is proposed in Shimizu and
Yoshida [32], and has been considered so far by various researchers (see, e.g., [1, 12, 25, 31],
and other references are given in Amorino and Gloter [2]). On the other hand, in the small
noise case, no one has succeeded in giving a proof for such joint threshold estimation of the
parameter relative to drift, diffusion and jumps. So, the aim of the second half of this thesis
is to give a framework and a proof for the threshold estimation in the small noise case.

As an essential part of our framework for estimation, we suppose not only n — oo and
e — 0 but A, — oo, while the intensity . is fixed, n — oo and ¢ — 0 in the previous
works of estimations for SDEs with small noise (see, e.g., [13, 20, 22, 33], and references are
given in [23]). The asymptotics with A\. — oo would be the first and new attempt in many
works of literature, and enables us to deal with the joint estimation of the parameter (u, o, )
relative to drift, diffusion and jumps, while the papers above deal with only the estimation
of drift and diffustion parameters (or in some papers drift parameter only). Indeed, one can
immediately notice that if the intensity A, is constant, then the number of large jumps never
goes to infinity in probability, and so we would never establish a consistent estimator of jump
size density. Therefore, we suppose that A. — 0o as € | 0 (). is not necessary to depend on
¢ as in Remark 3.2.4). Also, the assumption A\, — oo seems natural when we deal with data
obtained in the long term with the pitch of observations shortened, which is familiar in both
cases of ergodic and small noise. Thus, one can agree with our proposal.

Another attempt in the second half of this thesis is to give a proof by using localization
argument (as in, e.g., Remark 1 in Sgrensen and Uchida [33]) in the entire context, though
the argument is usually omitted, or instead, Proposition 1 in Gloter and Sgrensen [13] is just
referred. As to the proof, we prepare the localization assumptions for jump size densities,
i.e., Assumptions 3.2.9 to 3.2.12, together with usual localization assumptions for coefficient
functions in (3.1), i.e., Assumptions 3.2.5 and 3.2.6. Owing to prepare Assumptions 3.2.9
to 3.2.12, this thesis has more examples of jump size densities than the papers [25, 32]
(see Section 3.5 in this thesis, and see, e.g., Ogihara and Yoshida [25, Example]). On the
other hand, Assumptions 3.2.9 to 3.2.12 are too complicated for us to omit the localization
argument. Thus, we show our main results under the localization argument in the entirety
of our proof, which is one of the novelties.

A further attempt of the second half of this thesis is to simplify the contrast functions used
in earlier works [25, 32] by removing ¢,, defined in [25, 32] from their contrast functions. As
we mentioned above, the class of jump size densities is wide and includes unbounded densities
(e.g., log-normal distribution) which are not included in [25, 32]. Note that the class of jump
size densities in Shimizu [27] is also wide ([27] does not assume the twice differentiability of
jump size densities, while conversely this thesis does not assume [ ]z\pa%j fa(2)dz (p>1) as
in the assumption A5 in [27]), but [27] is concerned with moment estimators in the ergodic
case.

In order to see the behavior of our estimator in numerical experiments, we give Table 3.6.1
under the assumption that A, is known. Of course, this assumption is impractical when we
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deal with only observations, and how to choose threshold v, /n” in filters lgrew and 1pnes
defined in Notation 3.2.7 is one of the crucial points for estimation with jumps, but it is not
within the scope of this thesis (see, e.g., Shimizu [29, 30] for the readers who are interested
in the techniques of the way to choose such threshold, and then Lemma 3.4.8 may also help
you estimate the intensity A.). Instead of this discussion, we give another experiment as in
Table 3.6.2 to see what will occur by using different thresholds.

In Section 2.3, we set up some notations, assumptions and preliminary propositions for
the proof of main results. In Section 2.2, we state our main result and give their proof. In
Section 2.4, we give a simulation by numerical computation to compare our estimators with
well-known least squares estimators for an Ornstein-Uhlenbeck process.

In Section 3.2, we set up some assumptions and notations. In Section 3.3, we state
our main results, i.e., the consistency and the asymptotic normality of our estimator. In
Section 3.4, we give a proof of our main results. In Section 3.5, we give some examples of the
jump size density for compound Poisson processes in our model. In Section 3.6, we give two
numerical experiments to see the finite sample performance of our estimator. In Section 3.7,
we state and prove some slightly different versions of well-known results.



Chapter 2

LSE based on Adams method

In this thesis, we first concerned with the following R%valued stochastic differential equation
dX: = a(X:,00)dt +edL;, X& =R (2.1)

where O is a smooth bounded open convex set in R? with p € N, © denotes the closure of
O, 0 € O, & > 0, a is a function from R? x © to RY, and L = (L)< is a d-dimensional Lévy
process given by

t t
Lt:aBmL// zN(ds,dz)+// 2 N(ds,dz)
0 J|z|<1 0 Jz|>1

with a d x r real-valued matrix o, an r-dimensional standard Brownian motion By, an in-
dependent Poisson random measure N(ds,dz) with characteristic measure dt v(dz), and a
martingale measure N(ds,dz) = N(ds,dz) — v(dz)ds. Here, we assume that v(dz) is a
Lévy measure on R?\ {0} and fIZ|>0 |z|v(dz) < oco. Suppose that we have discrete data

X; ..., X[ from (2.1) under 0 = 6 € Oy with X7 := X% and that 0 =ty < --- < t, = 1
and t;—t;_; = 1/n. We consider the problem of estimating the true 6y € Oy under n — oo and
¢ — 0 at the same time. We also define x; as the solution of the corresponding deterministic

differential equation

d.’lft

e a(x, 0o) (2.2)

with the initial condition zy.

11



12 CHAPTER 2. LSE BASED ON ADAMS METHOD

2.1 Assumtions and notations

Notation 2.1.1. The following notations will be needed throughout this chapter:

e Ny:=NU{0}, By C R%is a closed ball centered at the origin with radius M > 0.

f is smooth with respet to x € R, and for
o ORI x O;RY) :={ f:R*x 0 = R all k €N, the k-th derivatives of f with

respect to x € R? are continuous on R? x ©

o DY ;:% wzthaEN la] = a1+ -+ ag.
i Hf”coo@(BMx@) = SHP | D3 fHC(Bng) = Ssup sup |D3 f(z,0)],
a€eN O Nd (l 9)€B1\,[><@
Hf(90)||coo(BM) = SUP 1Dz f (- 90)||C(BM = sup sup |Dg f(z,6)],
a€eNg z€By

where f € C“O(Rd X @;Rd), M > 0.
o tt:,l f(t)dt denotes the average integral m *[ch)—l f(t)dt.
o Y\ i= X[, Jort € (=1/n,1], where [-] is the ceiling function.
e |lof3 =tr(c"0) = Zafj, where o = (0;;) is a d X r matric.
ij
Assumption 2.1.1. We will make the following assumptions:

(A1) The family {a(-,0)}gco is equi-Lipschitz continuous, i.e., there is a postive constant C
called a common Lipschitz constant such that

ja(@,0) — a(y,0)| < Clz —y| (z,y €R, 0 €0).
(A2) The function a belongs to C°*°(R? x ©;RY), and 1] coe0 By w0y < 00 for all M > 0.

(A3) The function a is differentiable with respect to 6 € Oy, and the families {8%(-, 0) }oco,
(j =1,...,p) are equi-Lipschitz continuous.

(A4) If 6 # 6y, then a(xy,0) # a(xy,6y) for some t € [0,1].

(Ab) For any 6 € O, a p x p symmetric matriz I(0) with the following (i,7)-th entry is
positive definite:
19(0) = / 94 ) 22 (2, 0) dt
. 0 89 ty 89 ty .

2.2 Main result

We define the Adams-Moulton type contrast function W, . ,(6) as
2
‘ X:  —LAa(Xs, .0)

tk trilg—e)
)
e2/n

\Iln,a Z
k V1
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where X5 , = (X ,...,X; _,)and Ay is the operator from C*"(R% R?) to C*H (R RY)

te—e
of the form
Aof(z Zﬁg,,f z,)  forx = (v,...,z,) €R™ €0,
in particular,
Aéa tk lp— 1’7 Zﬁe”a tk (2'3)

For simplicity of discussion, it is useful to use the following form for the contrast function

(I)n,s,é(e) = 52(\Pn,s,€(9) - \Ijn,s,Z(HO))~

Then the LSE is given by

Opcr = argmin U, . ((#) = argmin @, . ,(6). (2.4)
9co 9eo

Similarly, we denote by \Ijn’ayg the Adams-Bashforth type contrast function

2

Boe0) = i - X jfl(x el
k=t
where
Aw(X5 ., .0 Zwya fe (2.5)
Then the LSE 6, is given by
Onco = argmin W, . (). (2.6)
bco

We call én,a,g and én@g the Adams-Moulton type LSE and the Adams-Bashforth type LSE,
respectively.

Theorem 2.2.1 (Consistency). Let £ =, € N depend on n. Under conditions (A1)-(A4),
the least squares estimator Qngg given in (2.4) is consistent to 0y, i.e., if 2°c — 0 and £2%/n
1s bounded as n — oo and € — 0, then

~

Py,
en,a,é — 90
asn — oo and e — 0.

Theorem 2.2.2 (Asymptotic distribution). Let ¢ = ¢,, € N depend on n. Under conditions
(A1)-(A5), if £2%/n — 0, 2%c — 0 and (2**/ne — 0 as n — oo and € — 0, then

e (e — 0) Do, 1(86)15(6y)



14 CHAPTER 2. LSE BASED ON ADAMS METHOD

asn — oo and € — 0, where 1(0) is the p X p matriz given in the assumption (A5), and S(0)
s a p-dimensional vector with the i-th entry

1 9a

S;(6) = 2,,0) - dL
0) = | g 0)-dLs

for 6 € ©, respectively.

Remark 2.2.1. Recall that there is another LSE ényg’g given by (2.6) based on Adams-
Bashforth method (the LSE én@g given by (2.4) is based on Adams-Moulton method). The
consistency of éms,g also holds if (2% — 0 and (322 /n is bounded as n — oo and € — 0. In
Theorem 2.2.2, the corresponding convergence for 0~n,574 holds if €°2%/n — 0, (2% — 0 and
032% /ne — 0 as n — 0o and € — 0.

Remark 2.2.2. We shall see in Section 2.4 that the performances for numerical experiments
become better when ¢ depends onn. It is natural to ask what assumption on (n, e, l) we need to
assume for consistency and asymptotic normality of LSEs. Theorem 2.2.1 and 2.2.2 ansewer
the question, and in particular the assumption for (n,e,l) is simply written as ne — oo
when € is bounded. This simple assumption is same as in various research so far (see, e.g.,
Theorem 2.2 in Long et al. [22], the assumption (B1) in Sorensen and Uchida [33], etc.)
If someone wants to consider £ unbounded, one should carefully take £ go infinity since the
larger £ we take, the exponentailly larger data we need.

2.3 Proof

In this section, we begin with setting up some notations and assumptions, and give some
useful inequalities and several convergence theorems.

Proposition 2.3.1. Suppose the assumption (Al).
(i) It holds that

n (41
sup Y/ — ZIIt‘ <C (5 sup |Ls| + —) ,
v=0,...,0 s€[0,1] n
te(te—1)vo,1]

where C'is a positive constant, and Y, := XFnﬂ/n with the ceiling function [-].

(ii) Let ¢ =4, € N depend on n. If {/n = O(1) as n,{ — oo, then

sup sup ‘Yﬁfy‘ < oo a.s.,
0<e<l  v=0,....0
nEN te(t(o—1yvo,1]

and

a.s

7ol = inf {t > O‘ || > m, Inine Y | > m} — 00
v=0,...,

as m — oo, uniformly inn, 0 < e <1 and { € Ny.
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Proof. 1t follows by Gronwall’s inequality that

sup | X; — x| < e%e sup |L| ,
t€(0,1] te(0,1]

where C' is the common Lipschitz constant from (A1). Since |[n(t —¢,)]/n — t| < &2 for all
t € (te-1)vo, 1], we have

!Ytﬁ’fy — xt‘ < e% sup |L| + sup |zs — 24|
s€[0,1] [s—u|<(€+1)/n
s,u€0,1]

for all t € (t(g,l)vo, 1]. This implies (i). Moreover, (ii) is immediate from the inequality

‘Yﬁ’fy} < sup |xg| + e“s sup |Ls| + sup |z — 2y
s€[0,1] s€[0,1] [s—u|<(l+1)/n
s,u€l0,1]
forall t € (t(g,l)vo, 1]. ]

2.3.1 Inequalities for deterministic convergence

We prepare the following inequalities for the solution of (2.2).
Lemma 2.3.2. Let f be a function in C°°(RY x ©;R?) such that [ fllcse0(py xey < 00 for
all M > 0, and suppose the assumption (A2). Then,

dZ
1 100 0)| < O Tl gy om0

sup
t€[0,1]
for all £ € N.
Proof. Tt is shown by induction that
dg d d
@(f(xt,e)) =D > Y can Dby, DYDY fe), Y Caw =1,
=l je=1lal+|v|=t lal+vI=¢

where a = (au, ..., ap) for a; € N¢, v € N&, ¢,, € Ng. We write b;(z,6) and f(z,0) simply
as b; and fy, respectively. Indeed, the derivative of each term with respect to t is

d
Cow D (b D (Db, - Db, DLf))

. T=x¢
Je+1=1

where e; denotes d-dimensional multi-index with entry 1 at the jth coordinate, and entry
zero elsewhere. O]

Lemma 2.3.3. Let { € N. Let f be a function as in Lemma 2.3.2. Under the assumption
(A2), it follows that

_ l+1
< lln (Z—H)dZ—H||a(90)HC+°°(BM)Hf”coo,O(BMX@)a

ti
Agf(xtk;tk_l, 9) —][ f(ﬂfs, 9) ds
te—1

where k =LV 1,...,n, and M = sup,cjo 1) |4|-
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Remark 2.3.1. When we employ Agf (2, ,4,_,,0) given by (2.5) with (1.2) as the version
of the Adams-Bashforth method instead of Asf (x+,.1,_,,0), we obtain the following inequality:

B ¢
</ln €d£||a(90)||coo(BM)||f||co<>v0(BMx@)'

~ 2™
Aéf(mtkflltk,gyg) _f f(l‘s,e) dS
th—1

Proof. 1t follows from (1.4) and (2.3) that

][k (P(s: F(2.,0), b tos) — f(2s,60)) ds

te—1

Aof@py . 0) ][fxs,

9

where k = ¢V 1,...,n, and s — P(s; f(z.,0),tk,...,tx—¢) is the Lagrange interpolating
polynomial through the points (s, f(zs,6)), s = tx,...,tx_¢. It holds from Theorem 3.1.1 in
Davis [8] that for each s € [t;_1, tx] there exists & € (tx_¢, tx) such that

1 dé-‘rl ¢
P(S;f(xwe)?tkv"-;tkf@) —f(l's,e) = <dt€+1 (f(mtae))> H(S_tkfu)a
t=8s y=0

(¢+1)!
and that
][tlc < dqe+t ﬁ ﬁ
Tail+1 (f(xta 9))) (S - tkfy) ds < sup t7 |8 - Z‘:k:fu| ds
tp—1 det+ t=£s y—0 t€ti—e,tr] dt@+1 te—1 y—0
0! dé+1
S nz"‘l til[(l)pl] dtg_i_]_ (f(xh 9)) :
This yields the consequence. OJ

2.3.2 Convergence theorems
Proposition 2.3.4. Let { = ¢, € N depend on n, and let f be a function as in Lemma 2.3.2.

Suppose the assumptions (A1) and (A2), and that the family {f(-,0)}oco is equi-Lipschitz
continuous. If £/n — 0 and 2‘c — 0 as n — oo. Then, for all ¢ > 1

n 1
% S ‘Aef(ka:tH,G)’qﬂ/o |F (2, 0)]dt

k=(V1

asn — oo and € — 0, uniformly in 6 € ©.
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Proof. We use the triangle inequality to obtain that

“ . 1/q . e
<% k—zevl ’Aff(Xik:tk_l,H)‘ ) — (/0 ’f($t>9)|q dt)

n 1/q
< <% Z Aif( triti—g? )_Aéf(xtk:tk_zve) q)

k=tv1
(% Zn: Aof(xey .y, 0 ][ [z, 0)dt )
1 1/q
) — (/o |f(xt,9)|th> .

k=ev1
+ ( ][ f .TJD dt
k=¢v1

The second and the third term in the right-hand side converge to zero as n — oo and ¢/n — 0,
uniformly in § € ©, by Lemma 2.3.3 and Lemma 2.5.2. From Lemma 2.5.1, the first term is
estimated from above by

_|_

<Zlﬁeu> sup | f(X?,0) — f(xs,0)] < C2° sup | X7 —

s€[0,1] s€[0,1]

where C' is the common Lipschitz constant for f. This converges almost surely to zero as
2fe — 0, uniformly in § € ©, as we saw in the proof of Proposition 2.3.1. O]
Remark 2.3.2. If we employ Alf(ka,lztk,p
Proposition 2.3.4 holds under (2 — 0.

Remark 2.3.3. It is easy to check that, for f and g satisfying the same assumptions as in
Proposition 2.3.4,

- Z A[f tktk 0 ) A[.g( trith— 27 / f xh xta )dt

k V1

0) instead of Aof (x5, ,,0), the convergence in

Indeed, we replace f by f + g in Proposition 2.8.4 with ¢ = 2, and apply the relationship
between inner product and norm:

a+bl® |a—b|
2 2
This convergence will appear in the proof of Proposition 2.3.8 (ii).

=2ab (a,b€R).

Lemma 2.3.5. Let { = /¢, € N depend on n, and let f be a function as in Proposition 2.5.4.

Suppose the assumptions (A1) and (A2), and that f is differentiable with respect to 6 € Oy,

and the families {%(-,9)}9 . (j =1,...,p) are equi-Lipschitz continuous. If (2°/n — 0
J €69

and 2'c — 0 as n — 0o and € — 0, then it holds that

Py, 1
Z Alf tk te_p> ) (Ltk _Ltk—l) 93 / f(xtﬂe) -dLy
0

k=tv1
asn — oo and € — 0, uniformly in 6 € ©.
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Proof. Since

Z Azf tk tp—e? ) (Ltk - Ltk 1 Zﬁ&// f(Y;/Tfy,(g) -dL;

k=¢(v1 te—1)vo

and Zi:o Be, = 1, we have

1
Z Azf tk (I ) (Ltk - Ltk—l) _/0 f(.%’t,e) ~dL,

k=(V1
—Zm/

te—1)vo

te—1)vo
(F0725,0) = Fan0) L= [ fw0) - dLs.
0
The last term converges almost surely to zero as n — oo and ¢/n — 0, uniformly in 6 € ©.
Let us denote .
it:UBt+// zN(ds,dz),
0 Jz|<t

then L, = at + L; + fg f|2|>1 z N(ds,dz). We have

Zmy /

(Z 1)vo

/ 1 (Y5, 0) = flx,0)) - 2 N(dt, dz)

<2 sup heirs —xt‘/ / |z| N(dt,dz),
l2[>1

-----

te[t“ 1)\/07

which converges almost surely to zero as n — oo, ¢ — 0, £2°/n — 0 and 2% — 0, uniformly
in 6 € O, by Proposition 2.3.1. Analogously, we obtain

a.s. 0

25&// (FOY" 0) — f(x1,6)) - adt

te—1)vo

as n — 00, € — 0, £2°/n — 0 and 2% — 0, uniformly in § € ©.
Analogous to the proof of Lemma 4 in Ogihara and Yoshida [25], it follows from Markov’s
inequality and Morrey’s inequality (see, e.g., Theorem 5 in Evans [9, Section 5.6]) that for

any q € (p,oo] and n >0
>n>

sup
(dS{C)

Z 6&// l{tST;;N} (f(Y;T;,a 0) — f(a, 9)) ) df/t

(l 1)vo

1 ! ‘ noe 7
< —F |sup / l{tgr&’e*[} Z B (f(th—}y? 0) — fla, 0)) ~dLy ]
n 0€0 |Jt_1yvo =
(2.7)
C ! n.e i
S —E / {t<7_naé Zﬁéu }/; tyr f(l't’)) st 9
n te—1)vo wha(e)
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where C' is a constant depending only on p, ¢ and ©. It follows from Hélder’s inequality and
Fubini’s theorem that
. n)

1 L
/t Licrmey Z Bow (f(Yi25,.0) — f(24,0)) - ALy
(£—1)vo _

¢

P | su
(068 uz_:O
q 1/q
< g /E do
n o

q 1/q
¢ 1 n,e af ~
+ ; (L E /t\(envo t<7‘" 1,4 Z /B€V< }/;, ty) 0) 80 (l't7 0)) . st ] de)

for j =1,...,p. By the moment inequality for stochastic integrals (see, e.g., Theorem 7.1 in
Chapter 1 in Mao [24]), for ¢ > 2 we obtain

/@E

1
/BEZI/ l{tST::l,s,Z} (f()/:i’;:”, 0) - f(xt, 0)) * st
(e—1)vo

1 q

14
; Lyoomery O B (F(V5,,0) = f(2,0)) - dBy| | dO
(e=1)vo =0

1 q/2 1

S (M> /E / ].{t<‘rn,s,£}
2 © te—1yvo "
_ q/2

< (q(q 1)> Cq/E
2 S)

and by Kunita’s inequality (see, e.g., Theorem 4.4.23 in Applebaum [3]), for ¢ > 2, there
exists D(q) > 0 such that

q

] 5

/(:)

1 4
< D(Q)/ E / / Lo meny Zﬁeu (f(Y5,0) — f(x4,0)) - 2| v(dz)dt
© te—1yvo 4 0<|z|<1 =0

1
1 n,e,l
/t(l—l)\/o A<|Z|S1 . |
q/2 1 a/2
< D(q)C? (/ \z|2u(dz)) E / ].{t<7_nai} sup 2% |Y/"p, —mt’ dt
0<|2|<1 te—1)vo =0,...,¢

4 (/Wq \z|qy(dz)> E }

C is the constant in (2.7). Both converge to zero as £2¢/n — 0 and 2 — 0, by dominated
convergence theorem, and so does (2.7). O

¢ q
> Bu (FV5,,0) = f(1,0)) dt] o
v=0

yyyyy

1 ¢
/ / Loonery O B (FOV25,,0) = f(24,6)) - 2 N(ds, dz2)
te—1yvo Y 0<[2|<1 =0

+ B

¢ q ]
S B (FO5.0) — f(20,0)) - 2| w(dz)d } a6
v=0

.....
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Proposition 2.3.6. Let { = ¢, € N depend on n, and let f be a function as in Lemma 2.3.5.
Under the assumptions (A1) and (A2), if £2*/n — 0, 2% — 0 and (2% /ne — 0 as n — oo
and € — 0, then it holds that

1 & 1 Py, 1
53 A K00 (X~ X~ h A0 0)) 7 [ fe0) -z,

k=¢v1

asn — oo and € — 0, uniformly in 6 € ©.
Remark 2.3.4. This lemma will be essentially used for the case 6 = 6.
Proof. It follows that

1 - = = € 1 =
E Z Azf(th:tk,g7 9) ' (th - th—l - EAEGJ(thttk,g7 00))

k=tV1

1 «& b 1
= - Z Acf(X5 4, 0)- (/ a(X¢E,0p) dt — EAga(X;k:tk_e,90))

th—1

+ Y A (X o 0) - (L — L)

k=tV1

= Jl + Jg.

From Lemma 2.3.5, Jy converges to f01 f(xy,0)-dL; in Py, as n — 0o, € — 0, £2°/n — 0 and
2‘c — 0, uniformly in 6 € ©, and

4 n the
> BubBuy Y X5, 0) (G(Xf7 bo) — a(X5,_, . 90)) dt

=0 k=ev1 Y th—1

< (Z m) LS [0 (a0 - a(xe00)
v=0

b=Vl v,pu=0,...,¢

1
|| =~
E

te[tk,l,tk]
Cc2%
< swp | F(XG_L0)] x5 - x|
ne ety v,u=0,...,0 a
- te[tk,htk]

where C' is a Lipschitz constant in (Al). For t € [ty_1yvo, 1),

t
x; - x| = / a(X5,00)ds + (L, — Ly,_,)

90)‘ +¢&  sup ‘LS — Ly,

Se[tk,htk]

le—v?

lk—v
: ¢
gc/ ‘Xj—kai ’d5+—’a(XE
tk—v Y n

and by Gronwall’s inequality, we obtain

th—v)

¢
XX | et (S axg L 6)| 42 s |Lo— Lol
Y n SE[tr—1,tk]
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Thus,
-~ 6226 225 n
(A< Ce | = sup (X500 f(XF0)|+— D sup |F(XG )| L~ Lo,
NE stef0,1] N Ty vok=0,..L

s€[tg—1, tk]

The next to the last term converges almost surely to zero as e — 0 and (2% /ne — 0,
uniformly in §# € ©. We remain to prove that

n
22@ P,
sup |Ly— Ly | — 0.
=0,...,0
k=ev1 YT
SE€[tK—1,tk]

This follows from the fact that

ti
sup |Ls— Ly | < Sup ‘L — Ltk ‘ + (g — th—ov1) + / / |z| N(ds,dz),
= te—ev1 v [2]>1

v=0,...,0 v=0,...,
S€[tp—1,tk] SE[tp_1, tk]
where
n - £—1)VO0

02t 92¢ (£-1)vo 92¢ ( o, /92t

- by — thopvt) = — toy =) = — 1-=)<—=— >0,

L ev1( F ) [ — ( ) Z ( ”) n

224 " 6225

/ / |z| N(ds,dz) <—// |z| N(ds,dz) =% as — — 0,

k=ev1 Y te—ev1 /2[>1 |z[>1 n

and by Doob’s martingale inequality (see, e.g., Theorem 2.1.5 in Applebaum [3])
- 1/2

22[ n
Z E sup

=0,...,0
k=0v1 V=i
SE€[tk—1,tx]

L, — Etk_u‘ < 2% Z E sup
"=

24[ n M. 5 2 1/2
Z E||Ly, — Ly,_, ]
k=¢Vv1 -

24€ 1/2 524£
<0(€ (uou%+ / |z\2u<dz>)) Lo a0
|z]<1 n

with some positive constant C' independent of n, e, £. Thus, for any n > 0,

2
P sup — Z sup )f(ka_u,Q)‘ ‘Lt — Ly | >n
(dS{C) h—tv1 tue/[itzo,..g(
k—1:tk]
. 02t n
<P(l>7rh4 P Hf”c(Bmx@) Z S})lp , Ly — Ly, | >n
el )

converges in Py, to zero as n — 0o, € — 0 and £2%/n — 0. O
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Analogously, we obtain the following proposition.

Proposition 2.3.7. Let { = ¢, € N depend on n, and let f be a function as in Lemma 2.3.5.
Under the assumptions (A1) and (A2), if 2% — 0 and (2% /n is bounded as n — oo and
€ — 0, then it holds that

§ : € € 1 € Po
Agf tk thp? ) <th — th71 — EAga(th e 2’90)> —)O 0
k=(v1

as n — 0o and € — 0, uniformly in 6 € O.

2.3.3 Proof of main resutlts

Proof of Theorem 2.2.1. Let f(z,0) = a(z,6y) — a(x, ). Since

E 1 € €

”5[ =2 Z ( tk: 1 EAZG(X% it 479 )) 'Aéf(th:tk—e’e)
k=0Vv1

2

+ — Z ’Aﬁf tktk i )

k V1

it follows from Proposition 2.3.4 and 2.3.7 that for any n > 0, if 2% — 0 and £2%/n is

bounded, then
1
P(sup|#ncst0) = [ 1rGe 0 as
0cO 0

as n — 00, € — 0. Also, (A4) implies that for any 6 > 0

>7]>—>0

inf /1|f(:c5,9)|2d5>/1|f(x8,90)]2d5—0.
0

|6—60|>6 Jo
Thus, it follows from Theorem 5.9 in van der Vaart [35] that ém,g is consistent to 6. O
To prove Theorem 2.2.2, we prepare the following proposition.
Proposition 2.3.8. Let { = {,, € N depend on n. Assume the conditions (Al)-(A5).

(i) If £2%/n — 0, 2%c — 0 and £2**/ne — 0 as n — oo and € — 0, then

8718<I>n5g Py

80;7 (60) — —25;(6o)

asn — oo and € — 0.
(ii) If 2% — 0 and €2%°/n is bounded as n — oo and € — 0, then

a (I)n el
0,00,

(6) —% 21%(6)

asn — oo and € — 0, uniformly in 6 € ©.
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Proof. (i) Since we have

aq)n,s[ c c 1 .
6, =2 Z Afag fete 0) - (th — X~ EAN(th o 2,6’0)> ,

k=¢v1

the consequence follows by Proposition 2.3.6 with f(x,0) = —25—&(@‘, 0).
(ii) We have

aQ(I)nsg 2 - 8(1 8
== (0) = — Ar— (X5 . 0)-A X? 0
89169] ( ) n Z 4891( tritn_p? ) fae ( tritn_g? )

1

- aza € € 3
- 2 Z AZW(th:tk,[7 9) : (th - th Aea(th tp—p? 90)) :
V1 I

By Proposition 2.3.7, the second term in the right-hand side converges in Fp, to zero uni-
formly in 8 € ©. Also, by using Proposition 2.3.4 and the relationship between inner product

and norm with f(z,0) = gg (2,6) £ 2= (x ) and with ¢ = 2, the first term converges almost

surely to 27% () uniformly in 6 € @. O

Proof of Theorem 2.2.2. 1t follows from the mean value theorem that

8(I)n5 A 8<I>n€ ns N
1( ae; L (Opes) — o Z(eo)> — e Y (ner — ) - / ve 7 l(00+u(0n75,g—90)) du.

By the consistency of HAn@g and Proposition 2.3.8 (i), the left-hand side converges to 25;(6)
in Py, asn — oo and ¢ — 0 if £2%/n — 0, 2% — 0 and 2% /ne — 0.
For an arbitrary convex neighborhood U of 6, € ©g, we have

aQ(I)n,s,é ! aQ(I)n,E,E A
‘ aelaej (90) - o 892893 ((90 +u(9n,€7g — 00)) du 1{0}%5’[6[]}
82q>n5€ 82@7@6@
< & _ €5
< sup Gt (00 ~ et (0)
2
q)nef i .. L.
< 2su ——(0) — 217(0)| + 2sup [IV(0) — IV (6))|.
< 28| 55,00, ) 2 )‘ sup |17(0) — 17 (o)

It follows from the consistency of 6, ¢, Proposition 2.3.8 (ii) and the continuity of 6 — I(6)
that if 2% — 0 and £2%/n is bounded, then

1 92
o, . . )
2‘[7?58 = 889 aéj (00 + U(en)&g — 90)) du —>P90 2]” (90)
0 (A}

as n — oo and € — 0. By Lemma 2.5.3, the proof is complete. O
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2.4 Numerical experiment

In this section, we give a simulation by numerical computation to compare our estimators
with well-known least squares estimators for an Ornstein-Uhlenbeck process given by

dXt = —HoXt dt + Est s Xo = X, (28)
where L is one of the following processes:
e [ is the standard Brownian motion.

e [ is the sum of the standard Brownian motion and the compound Poisson process with
intensity 10 and with standard exponentially distributed jumps.

For simplicity, we set 8y = 1 and g = 1 with ¢ = 0.1,0.5,1.0 and n = 10,100, 1000. As
we mentioned in the remark of Theorem 2.2.1 and 2.2.1, we take { = 1,...,6, and we shall
compare our Adams-Moulton type estimators

n 2
A 1
P : € £ € .
Op 0 = argmin E X — X+ 04X, ) (¢t=1,...,6)
/cO — n
k=0
to the usual ‘Euler-type’ estimator
n 1 2
%) F— 3 € £ €
0r 1= argmin E Xy — X, +=0X |,
< I— n
R . - )
where Aga(th:tIH) with a(x) = x are given by
€
Aea(th:tk_g>
(1 ve 1vye i/
§th~ + §th71 ifte=1,
5 ve 2 yve _ 1 ye : _
12th + 3th'71 12Xt1c72 if £ = 2’
3 ye 19 yve _ 5 vye 1 ye : _
Sth + 24Xt1971 24th72 + 24th73 if £ = 3’
_ ) 2mlye | 323ye Ly 53 ye 10 ye Y
= 720Nt T 360 Nixo1 ~ 30Ntk T 360Nte_s — 720N tps if £ =4,
95 ye 1427 ye _ 133 ye 241 ye _ 173 ye 3 vye : _
558 Xtp T 1220 N te1 — 240 Nip_s T 720N tp_s — T440°Nip_a T 60N fs if £ =5,
19087 ye | 2713 ve  _ 15487 ye 586 ve
60180 tx T 5520 N ip_1 T 20160 °Ntx—2 T 945Nt
6737 ye 263 ve 863 ye e
L 50160 S fe—s T 5520 X fr_5 — 60480°S fr if £ =6.

Such coefficients from the Adams-Moulton method can be seen, e.g., in Table 244 in Butcher
[7]. Note that the Euler-type LSE 0, . is slightly different from the Adams-Moulton type LSE

én,&[)a i.e., ‘backward Euler-type’, but for the sake of both similarity, we omit to consider éma,O-

Here, we compute
n € £ £
A Zk:l(th - th,l)th,1
Hn,s = -

%ZZ:l |Xt8k71|2 7

2 _ZZ:[(XtEk - XtEk_l)A‘ea(Xik:tk—f)

Oner =
" %ZZ:Z |Aza(Xit{k:tk—€)|2

and

(t=1,....6).
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In Table 2.4.1, we make a sample path { X7 }7_, by

g __
to_*TOv

—0pA
X, =e "X,  te

1 _ 67290At

26,

N(0,1),

1
At =t —tp1 = —
n

25

as a well-known way of constructing an exact numerical solution of (2.8), where N(0, 1) is the
standard normal variable. In Table 2.4.2, we make a sample path by using Euler Maruyama
method with 100 x 1,000 number of subdivisions for the interval [0,1]. We iterate this
computation 10,000 times and show their sample means and standard deviations in Table
2.4.1. We also plot the sample means and 95% confidence intervals of ényg,g through iterations

in Figure 2.4.1.

From Tables 2.4.1 and 2.4.2, and Figure 2.4.1 and 2.4.2, we see that the simulation
performances depend on £ and become better than one from Euler’s method when we employ

an appropriate £.

Sample mean (with standard deviation in parentheses) of LSEs, based on 10,000
sample paths from the OU process (2.8) with (6p, z¢) = (1.0, 1.0) and with standard
Brownian motion. We emphasize the best average of LSEs for each (g,m) using a

bold font.

Table 2.4.1:

e=1.0

n =10

n = 100

n = 1000

Euler
AM1
AM2
AM3
AM4
AMS5
AM6

1.663489 (1.471654)
0.951550 (1.283734)
1.028716 (1.564615)
1.074215 (1.833185)
1.087510 (2.127400)
1.026782 (2.333814)
0.884837 (2.779585)

1.931070 (1.821037)
0.802641 (1.038229)
0.987162 (1.187243)
1.078157 (1.261705)
1.131508 (1.309929)
1.167348 (1.354262)
1.192481 (1.387997)

1.966545 (1.873523)
0.790167 (1.010930)
0.986894 (1.152948)
1.084002 (1.225335)
1.146718 (1.273696)
1.190314 (1.307555)
1.224354 (1.336056)

e=0.1

n =10

n = 100

n = 1000

Euler
AM1
AM2
AM3
AM4
AM5
AMG6

0.964199 (0.138219)
1.004400 (0.154055)
1.008660 (0.174779)
1.012103 (0.198794)
1.013956 (0.230109)
1.015775 (0.269280)
1.019984 (0.321273)

1.010592 (0.151375)
1.004306 (0.152030)
1.006182 (0.153983)
1.007291 (0.156226)
1.007880 (0.157855)
1.008047 (0.159778)
1.008658 (0.162266)

1.015443 (0.152811)
1.004406 (0.151787)
1.006442 (0.152153)
1.007306 (0.152466)
1.007970 (0.152656)
1.008404 (0.152829)
1.008764 (0.153157)

e =0.01

n =10

n = 100

n = 1000

Euler
AM1
AM2
AM3
AM4
AM5
AMG6

0.951791 (0.013711)
0.999246 (0.015337)
1.000177 (0.017310)
1.000232 (0.019645)
1.000138 (0.022662)
1.000017 (0.026460)
1.000139 (0.031419)

0.995199 (0.014975)
1.000049 (0.015147)
1.000061 (0.015320)
1.000070 (0.015533)
1.000062 (0.015683)
1.000026 (0.015867)
1.000041 (0.016101)

0.999686 (0.015110)
1.000074 (0.015126)
1.000102 (0.015141)
1.000100 (0.015160)
1.000110 (0.015169)
1.000113 (0.015182)
1.000117 (0.015209)

AMY/: LSE via the Adams-Moulton method with order ¢ (¢ =1,...,6).
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Table 2.4.2:
Sample mean (with standard deviation in parentheses) of LSEs, based on 10,000 sample
paths from the OU process (2.8) with (6o, zo) = (1.0, 1.0) and with Lévy noise which is the
sum of the standard Brownian motion and the compound Poisson process. We emphasize

2.5 Appendix

Lemma 2.5.1. Let ¢ € N. Let v, and g, be given by (1.2) and (1.3). Then,

the best average of LSEs for each (¢,n) using a bold font.

e=1.0 n =10 n = 100 n = 1000
Euler  2.007064 (2.384299)  2.404387 (2.936047)  2.452525 (3.013250)
AM1  -0.715378 (1.566790)  -0.639030 (1.750689) -0.629191 (1.514785)
AM2  -0.014319 (2.051735) -0.104887 (1.768940)  -0.112236 (1.493505)
AM3  0.286297 (2.305605)  0.161202 (1.833517)  0.145195 (1.544060)
AM4  0.477244 (2.574459)  0.331748 (1.895879)  0.308179 (1.595550)
AM5  0.511744 (2.868428)  0.445835 (1.947106)  0.423175 (1.637366)
AM6  0.439842 (3.366565)  0.521836 (1.970925)  0.510284 (1.669400)

e=01 n =10 n = 100 n = 1000
Euler  1.166634 (0.741016)  1.280757 (0.936255)  1.294340 (0.977801)
AM1  1.060503 (0.790647)  1.034306 (0.747335)  1.031139 (0.744317)
AM2  1.130144 (0.993074)  1.077497 (0.771562)  1.073988 (0.771562)
AM3  1.167730 (1.108686)  1.100365 (0.788456)  1.096388 (0.792289)
AM4  1.214359 (1.338724)  1.115808 (0.820980)  1.108822 (0.776632)
AM5  1.223887 (1.515457)  1.127240 (0.831186)  1.118895 (0.787421)
AM6  1.176586 (1.749853)  1.135689 (0.842277)  1.126413 (0.794018)

£ =0.01 n =10 n = 100 n = 1000
Euler  0.952623 (0.062801)  0.996526 (0.068634)  1.001071 (0.069261)
AMI1  0.998390 (0.070618)  0.999100 (0.069312)  0.999127 (0.069208)
AM2  1.000092 (0.079777)  0.999481 (0.070127)  0.999517 (0.069260)
AM3  1.000229 (0.090495)  0.999731 (0.070769)  0.999721 (0.069369)
AM4  1.001112 (0.103840)  0.999782 (0.071581)  0.999834 (0.069484)
AM5  1.001624 (0.120812)  0.999925 (0.072499)  0.999920 (0.069517)
AM6  1.001718 (0.143539)  1.000004 (0.073293)  1.000001 (0.069566)

L 0
el <2t (t=12,..), D |Bul <2 (¢=0,1,...).
v=1 v=0

Proof. The conclusion is obtained from

¢ ¢ 1 ¢ ¢
1 / _ 14 1
Yev| = u+j—1)du < = {2
;' ol ;(V_l)!(e_y)! 0 E( ) ;(y—l)!(ﬁ—y)!
ity
for ¢ =1,2..., and
¢ ¢ 1 1 ¢ ¢ 0
J=S— CDdu<y =2t
;Wﬂ ZOV!(E—V)!/O jll)(u—i—] ) u_gul(é—u)!
i

for ¢ =0,1,....
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1.02 4

< .99

1.24
0.98 9

10 === True value 6y

' 0.97 4 = n=10
—%- n=100

0.8 M- n=1000

0.96
T T T T T T T T T T T T T T
Euler AM1 AM2 AM3 AM4 AM5 AM6 Euler AM1 AM2 AM3 AM4 AM5 AM6
e=0.01

0.99 4

0.98 4

0.97 4

=== True value 0y

0.96 == n=10
—k- n=100
W n=1000
0954 . 5 .
Eule AM1L AM2 AM3 AM4 AMS5 AM6
Figure 2.4.1:

r?he means and 95% confidence intervals through 10,000 iteration for
One (Euler) and 60, .0 (AM{, £ = 1,...,6), with the same data in
Figure 2.4.1.

Lemma 2.5.2. Let g be a continuous function on R?, let t — vy, be an R%-valued continuous
function on [0,1], and let {f(,0)}sco be a pointwise equicontinuous family of functions from
R? to RY. If€/n — 0 as n — oo, then

n t 1
% Y g (ikl £y, 0) dt) —>/0 go f(y,0)dt

k=tV1
as n — oo, uniformly in 6 € ©.

Proof. Since {f(y.,0)}sco is uniformly equicontinuous on [0, 1], for any n > 0 there exists
N € N such that 0 € ©, |s —t| < 1/N = |f(ys,0) — f(y:,0)] < n. Then, for all n > N,
te0,1) and § € ©

|f(ys70) - f(ytve)’ ds < m,

n tr n ti
Z l[tkhtk)(t)][ f(y& '9) ds — f(yta 9) < Z l[tkhtk)(t)][
k=1 k-1 k=1 th—1

and we have
n

l[tkl,tk)(t)]{ k f(y87 9) ds — f(yt, 9)

k=1
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e=10
2.54 === True value 6 .
x == -0 10
2,04 &= n=100
1.254
1.54
1.20
< 10+ <
5 11
& S
0.5 .=
1.10 4 L
0.0 4 S //I === True value 6
1.05 4 o = n=10
—0.54 —k- n=100
1004 == mm e e —H- n=1000
Euler AB2 AB3 AB4 ABS AB6 AB7 Euler AB2 AB3 AB4 ABS5 AB6 AB7
e=0.01
1.00
0.99 4
< 098
<
0.974
=== True value 6y
0.96 %= n=10
4= n=100
“H- n=1000
0.95 ; 5
Eule AB2 AB3 AB4 ABS AB6 AB7

Figure 2.4.2:
The means and 95% confidence intervals through 10,000 iteration for

éms (Euler) and ényg’g (AMY, ¢ = 1,...,6), with the same data in
Figure 2.4.2.

uniformly in (¢,60) € [0,1) x ©. By the continuity of g, we obtain

1 n tr 1 n tr
13 (][ £ (91, 0) dt) ~ [ >t (f o) ds) dt
Ly tk—1 U th—1
1 n th 1
_ / g Zl[tkhtk)(t)][ Fye0)ds | dt — / g0y 0)dt
0 k=1 te—1 0
as n — oo, uniformly in 6 € ©. Since {g o f(y.,0)}seco is equicontinuous at ¢t = 0, for £ > 2,
1 -1 the
-9 ][ flye,0)dt | =0
"= R
as {/n — 0, uniformly in 6 € ©. O

Let (€2, P,.7) be a probability space, and let Sym, (R) denote the set of all px p symmetric
matrix with real entries and with the Frobenius norm || - || p.
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Lemma 2.5.3. Suppose that v, = v in R? and M, 2 M in Sym,(R) as n — oo, w, satisfies
U = Myw,. If M is positive definite, w, — M~ v.

Proof. Let 1 be an arbitrary positive number less than the smallest eigenvalue of M. If
|| M, — M| <n, then 0 < M —nl,y, < M, < M + nl,.,, where L5, is the identity matrix
of size p and < is the Loewner order. This implies that M, is invetible and

(M + anXp)il < Mt =< (M~ anXp)il'
Since (M #nl,.,) ™" — M~" in Sym,(R) as i — 0, there exists a positive number 7 depending
only on M, p and 7 such that ||[M ;' — M~L||p <7 and 7 — 0 as n — 0.
Set 7, = {w € Q| M,(w) is invertible}. Then, if an arbitrary positive number 7 is
sufficiently small, for some n > 0 we have
P(2;) + P(lg, | M = M7 p > 0) < 2P(| M = M7 [r > 1) =0,
where 14 is the indicator function on a set A C €). Hence, we obtain

_ P _
w, = M, 'vlg, + w,lge = M

as n — 00. O






Chapter 3

QMLE type threshold estimation

3.1 Introduction
In this chapter, we are concerned with the following stochastic differential equation (SDE):
de = CL(XtE, Mo) dt + f:—b(XtEi, 0‘0) th + €C(Xfi, O[o) dZt)\E R Xg =g € ]R, (31)

where € > 0, and ©; (i = 1,2, 3) are smooth bounded open convex sets in R% with d; € N
(i = 1,2,3), respectively, and 6y = (po,00,0) € Qg = O X Oy x O3 C R? with d :=
dy + dy + ds with © := O, and each domain of a,b,c is R x ©; (i = 1,2,3), respectively.
Also, Z* = (Z{\E)tzo is a compound Poisson process given by

Npe
Z} =) Vi Zy =0,

i=1

where N* = (Nt’\f)tzo is a Poisson process with intensity A, > 0, and V;’s are i.i.d. ran-
dom variables with common probability density function f,,, and are independent of N>
(¢f. Example 1.3.10 in Applebaum [3]). W = (W,;);>o is a Wiener process. Here, we de-
note the filtered probability space by (£, F, (Ft)i>0, P). Suppose that we have discrete data
X;,..., X[ from (3.1) for 0 =ty < --- < t, = 1 with ¢; —t;_; = 1/n. We consider the
problem of estimating the true 6, € ©y under n — oo and € — 0. We also define z; as the
solution of the corresponding deterministic differential equation

de’t

E = G(ﬂft, No)

with the initial condition x.

3.2 Assumptions and notations

This section is devoted to prepare some notations and assumptions. Before going to see our
assumptions, we begin by setting up the following two notations:

31
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Notation 3.2.1. Let I, be the image of t — x; on [0, 1], and set

IS = {y eR ‘ dist(y, I,) = ir}f |z —y| < (5}.
T€lzg

Notation 3.2.2. A function ¥ on R x R x O3 is of the form

C(;a)fo‘(c(;{a)ﬂ if c(z, ) £ 0 and fa<c(x?{a)> -0,

0 otherwise.

log

Then, we prepare the following assumptions:
Assumption 3.2.1. a(-, o), b(-,00) and c(-, ) are Lipschitz continuous on R.

Assumption 3.2.2. The functions a,b, c are differentiable with respect to 8 on Igo x O for
some § > 0, and the amilies{@ : } ,{i -,a} ,{@ -,a} =1,....d
[ a0, (s ) uco,’ 109 (-,0) peo,’ 199 () cOs (j )

are equi-Lipschitz continuous on I go.

Assumption 3.2.3. For any p > 0, let f,, : R — R satisfy

/ |2]? fao (2) dz < o0.
R

Assumption 3.2.4. The family {fa}ae(;)3 satisfies either of the following condtions:

(i) fa, o € O3 are positive and continuous on R.

(1) fa, o € O3 are positive and continuous on R, (= (0,00)), and are zero on (—o0,0].
Assumption 3.2.5. The family {b(-,0)},cp, satisfies

inf  |b(xy,0)| > 0.

(z,0)€l; X O2
Assumption 3.2.6. The familiy {c(-, @)}, g, satisfies

0<c <le(z,a)] <o for (z,a) € I, X O

with some positve constants ¢; and cy. In this thesis, without loss of generality, we may
assume

c(zy, ) > ¢ for (x,a) € I,y X Os.
Assumption 3.2.7. If u # po, 0 # 09 or a # «p, then

a(y» /’L) §é a’(ya NO)? b(y7 U) ¢ b(yv UO) or w(yv C(yv 2y Oé) 7é 1/}(y7 <, O40)7 respectively

for some y € 1;50 with some & > 0, and for some z € R.



3.2. ASSUMPTIONS AND NOTATIONS 33
Assumption 3.2.8. v,,1,. .., U, are random variables such that v,y is Fy,_, -measurable (or
measurable with respect to {Xy;;j < k}), and they satisfy

0<v <vpp <9
for some constants vy and vs.

Assumption 3.2.9. There exists § > 0 such that for (z,y,a) € I3, x R x © with ¢ # 0, ¢
is differentiable with respect to o; (i =1,...,d3). For a € O

T /w(x, c(x,00)z, ) foo (2)dz, = — / (2, c(x, ag) 2, )| fap (2) dz

are continuous at every points in I, and there exist 6 > 0 and C' > 0 such that

Tj(:m c(x, )z, )

ds3
/{( Vi (@, e(z,00)z,0)| + ) sup

s EIgOX@3 j=1 (m,a)61§0><93

} fao(2)dz < o0.

Assumption 3.2.10. Relative to the choice (i) or (ii) in Assumption 3.2.4, we assume either
of the following conditions (i) or (ii), respectively:

(i) Under Assumption 3.2.4 (i), there exist constants C' > 0, ¢ > 1 and 6 > 0 such that

sup
(z,a)elgo x O3

0
a—fu,y,a) <CU+lY) (yeR).

(ii) Under Assumption 3.2.4 (ii), we assume the following three conditions:
(ii.a) There exists 6 > 0 and L > 0 such that if 0 < y; <y < ya, then

a—w(x «
8y 7y7

0 0
< ‘8_15@,%,@) T \a—f@,yg,a) +L forall (z,0) € I}, x O,

(ii.b) There exist constants ¢ > 0 and 6 > 0 such that

1
<0 (—) as |y| — 0.
[yl

(ii.c) There exists § > 0 such that for any C1 > 0 and Cy > 0 the map

T / sup
a€B3

takes values in R from IS o, and is continous on 15

sup
(x,a)elgo x O3

0
%@,;,,@

-T C1y+027 ) fao(y)dy

Assumption 3.2.11. For (z,y,«) € I3 x Rx © with ¢ # 0, ¢ is differentiable with respect
to a € O3, and

o O
Oa; Oay;

—(x,c(x,00)z,00) fao (2)dz (i,5=1,...,d3)

15 continuous at every point x € I,,.
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Assumption 3.2.12. The functions a, b, ¢ are twice differentiable with respect to 6 on I;fo X ©

or some 9, and the families {ﬂ . } , { Pb_(. o } , { Pc_(. } 1,] =
f / aeiaej( ) €6, aeae( ) eo, aeae( ) aeeg( J
1,...,d) are equi-Lipschitz continuous on Igo, There exists § > 0 such that for (x,y,a) €

15 X R x @ with ¢ # 0, ¥ is twice differentiable with respect to o (i =1,...,d3). Fora € ©,
1=1,.

2
fao(2)dz

)z, a)fao( )dz, :cH/'S;i( ,c(z, ap)z, @)

are continuous at every points x € I, and there exist d > 0 such that

ds
/ E sup
521 (@0)EL xO

Relative to the choice (i) or (ii) in Assumption 3.2.4, we assume either of the following
conditions (i) or (ii), respectively:

2

30zi8aj

foo(2)dz < c0.

(z, c(z, a0)z,0)

(i) Under Assumption 3.2.4 (i), there exist constants C' >0, ¢ > 1 and 6 > 0 such that
0%

Sup 8yaal (x7 y7 Oé)

(z, a)615 X O3

<C+ylY) (yeR).

(i1) Under Assumption 3.2.4 (ii), we assume the following three conditions:
(ii.a) There exists § > 0 and L > 0 such that if 0 < y; <y < yo, then
o 0% 0%

< -
‘&yaai(x’y’a)‘ = 'ayaai(xvylaa) +‘8y3a, (357927@)

(11.b) There exist constants ¢ > 0 and 6 > 0 such that
0° 1
id _O<—> as |y| — 0.
[yl

Jyde, 55— (,y,a)
(ii.c) There exists § > 0 such that for any C; > 0 and Cy > 0 the map

z+— [ su (x,Chy + Cy,
/ae&l)); 01/30@ w+ O a)

takes values in R from IS, and is continous on I3, .

+L  for all (z,a) € I xO;.

sup
(z, a)615 X O3

fao(y) dy

Remark 3.2.1. Instead of Assumptions 3.2.5 and 3.2.6, the following stronger assumptions
are often used:
inf _ |b(x,0)| >0, inf  |e(z,a)] > 0.
(z,0)ERXxO2 (z,0)ERXO3
(see, e.g., Remark 1 in Sorensen and Uchida [33]). However, the ‘classical’ localization
argument mentioned in [33] is hard to apply for our purpose. Thus, we employ our milder
assumptions and show how it works well.
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Remark 3.2.2. Under Assumption 3.2.9,

/g—i(x,c(x,ao)z, Q) fao(2)dz = 8(21- (/w(x?c(x’ao)z’a)f%(z) dz) 7

a=ag

at every x € I3, .

Remark 3.2.3. Assumption 3.2.12 is given by replacing a,b,c, v with %, %, aff;, gg_,

respectively, in Assumptions 3.2.2, 3.2.9 and 3.2.10, and is needed for obtaining the conver-
gence (3.20) of the matriz containing the second derivatives of the contrast function.

Furthermore, we introduce the following notations:

Notation 3.2.3. Denote
AX; =X, — X[ fort>0,

where € > 0.

Notation 3.2.4. Denote
ALXE = ka — X¢

te—1?

AN = N =N fork=1,...,n,
where n € N, € > 0.
Notation 3.2.5. Define random times

T = inf{t € [tp_1, ;] |AX] # 0 ort =4},
M = sup{t c [tk,l, tk] ‘ AXE 75 0ort= tkfl}.

Notation 3.2.6. Define events J,Zf (k=1,...,n,i=0,1,2) by
T = (LN =0}, S = {AINM 1), = {AINY 2 2)
where n € N, € > 0.
Notation 3.2.7. Under Assumption 3.2.8, set events C;°" and D>*" (k=1,...,n) by

{A};‘XE < ”L’“} under Assumption 3.2.4 (ii),

nrP

cnen {{]AZXE\ < Bkl under Assumption 3.2.4 (i),
kT

{AZXE > ”ﬂ} under Assumption 3.2.4 (ii),

nP

Dpee {{]AZX5| > Ykt under Assumption 3.2.4 (i),

where n € N, e >0, p € (0,1/2). Then, put
Cuil =000y, Dyt =DroP 0y fork=1,...,n, i=0,1,2,
where n € N, e >0, p € (0,1/2). Furthermore, for sufficiently small § > 0, we may put
Cool = Cri? n{X; € I, for all t € 0,1]},
Dps? == Dpt? n{X; € I, for all t € [0,1]}
fork=1,....n,i=0,1,2.
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Remark 3.2.4. We treat (n,e) as a directed set with a suitable order according to a conver-
gence. For examples, when we say that n — oo, € — 0 and A\ — 00, we mean that the index
set (n,€) is a directed set in N x (0, 00) with order <, defined by

(n1,e1) <1 (n2,€)  if ny < ng, €1 > ey and Ay < Ao,

and when we say that n — 00, ¢ = 0, Ao — 00 and A, f|z|<C/nf’ fao(2)dz — 0 with some

constants C, p > 0, we mean that the index set (n,€) is a directed set in N x (0, 00) with order
<9 defined by

(77,1781) —<2 (n275) anl < Na, &1 > €2, )\61 < )\62

and A, / fao(2)dz > A, / fao(z)dz.
|2[<

217
"2
Needless to say, the identity map Id from ({(n,e)}, <2) to ({(n,e)},<1) is monotone, and
Id({(n,e)}) is cofinal in ({(n,e)}, <1).
Remark 3.2.5. We can assume \. does not depend on €. In this case, we treat {(n,e,\)}

instead of {(n,€)} as a driected set, and we must write X°*, Z*, W, .y, etc., instead of X¢,
ZAs, W, ., etc., respectively. But, for simplicity, we assume . depends on €.

2o

3.3 Main results

We define the following contrast function ¥, .(0) after the quasi-log likelihood proposed in
Shimizu and Yoshida [31]:

\Ijn,a(e) = ‘117(11,.)5(/17 0) + \I[g,‘)s(a) for 6 = (:uv g, a) € 0,

where for p € (0,1/2), \Ifgllg(,u, o) and \Ilgl(a) are given by using Notations 3.2.4 and 3.2.7 as
the following:

2
1 ‘AZXE—%a(ka,I,M)‘

1
NS (n,0) :=—— + =log |b(XE o) p Lenewr
n,e \[" 1 . 2 te_1" C. )
n k=1 Qﬁ}gb(th,NO-)’ 2 * (32)
1 & . ARXE
\I/n%g(a) = )\_ Z 1/} <th1ﬂ kT) O[) ]-DZ’E””
€ k=1
with
1 ] : Y
lo ” if ¢(z, ) # 0 and f, > 0,
sy e ()| e 20w ()
0 otherwise.
Then, the quasi-maximum likelihood estimator is given by
0, := argmax U, (6). (3.3)

0cO
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The goal is to show the asymptotic normality of éw when n — oo and ¢ — 0 at the
sametime. In the sequel, we will also assume that A\, — oo as € | 0 for consistency of ém.
Our interest is in a situation where the number of jumps is large and the Lévy noise is small.
In practice, A., the intensity of jumps, should be estimated, and it is possible by Lemma 3.4.8:

A X Z lpmer ase 4 0.

k=1
Theorem 3.3.1. Under Assumptions 3.2.1 to 3.2.10, take p as either of the following:
(i) Under Assumption 3.2.4 (i), take p € (0,1/2).

(i) Under Assumption 3.2.4 (ii), take p € (0,min{1/2,1/4q}), where q is the constant in
Assumption 3.2.10 (ii.b).

Then,

Onc — 0y

asn — 00, € = 0, \. = 00, A2/n — 0, e\. — 0 and A, f|Z|<4U2/Clnp fao(2)dz — 0 with

lim(e?n)~! < co. Here, the constants ¢, and vy are taken as in Assumptions 3.2.6 and 3.2.8,
respectively.

Theorem 3.3.2. Under Assumptions 3.2.1 to 3.2.12, take p as either of the following:
(i) Under Assumption 3.2.4 (i), take p € (0,1/2).

(i) Under Assumption 3.2.4 (ii), take p € (0,min{1/2,1/4q}), where q is the constant in
Assumption 3.2.10 (ii.b) and Assumption 3.2.12 (ii.b).

If 6y € © and Iy, is positive definite, then

“Hfin,e — 10) J

\/ﬁ(& —oo) | — N(0, 1)
\/)\_(6{ — Oéo)

asn — 00, € = 0, \. = 00, A2/n — 0, e\. — 0 and A, f|Z|<4U2/Clnp fao(2)dz — 0 with
lim(e?n)~! < oo, where

L 0 0
Iy=|0 I 0
0 0 I
and ba D0 ( )
.. 1 g8 cd Tty o
1”:_/ Ori Oy 0T g, i i=1,....d),
L S TEWE (0.7 2
1&36(% 00)
1”~—2/ Wf—’dt ij=1,...,d), (3.4)
o (e o) .7 2)

v e (vt ) 00) o () A2t (2 = L)
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Remark 3.3.1. If {fa}aeeg s given by the class of the densities of normal distributions as
in Example 3.5.1, then the range of p in Theorems 3.3.1 and 3.3.2 is same as in Shimizu
and Yoshida [52] and Ogihara and Yoshida [25]. However, if {fo},co, 5 given by the class
of the densities of gamma distributions as in Example 3.5.2, then the range of p is (0,1/4)
which is different from the range (3/8 +b,1/2) of p in Ogihara and Yoshida [25], where b is
the constant defined in the equation (1) in Ogihara and Yoshida [25].

3.4 Proofs

3.4.1 Inequalities

Lemma 3.4.1. Under Assumptions 3.2.1 and 3.2.3, suppose that 0 <e <1, X\, > 1,eA. <1
and 0 < s <t < 1. Then, forp> 2,

g

<C{t—s)lP+e" ((t—s)P?+ A(t —s) + N2t —s)P2+ X(t—s)P) } (1 + |XEP),

where C' depends only on p,a,b,c and fo,. In particular, when A\./n <1 and \. > 1, it holds
forp>2andk=1,...,n that

E | sup [X; - X7

u€ls,t]

‘X‘E X _ 1 1 A
E sup ot ] Fi gC{ + /2+ }(1—|—|X§|p)7
t€[tr—1,tx] ep ePnP  np
E | sup |X; —ao|" | Fip | S C{1+PA2} (1 + |z0]?),
t€[0,1]

where C' depends only on p,a,b,c and f,,.
Proof. For any p > 2, we have

(v fs])”p

< (8| [ 10tz ) = a0,

sup | X} — X{[”

u€|s,t]

p

7))

» 1/p
+e (E sup / {b(X —b(XZ,00)} AW, -Fe])
u€ls,t]
» 1/p
+€<E sup / {C Xvaao _C( LfﬂaO)}dZi\E Fs])
ue[s t]
u P\ /P
4 (= ) |o(XE, )] + CovT5 (X, 00)| +  |e( X, ) (E up | [ a2 ) |
u€ls,t] [Js

(3.5)
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where C' depends only on p. Then, it follows from the Lipschitz continuity of a(-, o) that

B[ ( [ 1otz o) — §,uo>\du)p 7| SCEK/:IXi—XﬂdU)p

t
<Ct-sp ! [ BN - X3P | F)du, (36)
where C' depends only on a, and it follows from the Lipschitz continuity of b(-,0¢) and
Burkholder’s inequality (see, e.g., Theorem 4.4.21 in Applebaum [3]) that
fS]

7]

P p/2

sup Fs| <CFE

u€(s,t]

t
/ XE - X2 du

t
< C(t— s / BXE — X | Flldu, (3.7)

/{b X, 0g) — b(XE, o)} IV,

where C' depends only on p and b, and from the Lipschitz continuity of ¢(-, ap), it is analogous
to the proof of Theorem 4.4.23 in Applebaum [3] that

p
Fs

sup
u€(s,t]

/ {e(X%, a0) — e(X5, ag)} A2

t p/2
< C{E (/ /|X5 — XEP2PAs fao(2) dzdu)
s R

t
+E[/ /\XZ—X§|”|z|pA5fa0(z)dzdu ]-“S]
s R

+E[(/:/R|X5—X§||zuafao<z>dzdu)p

where C' depends only on p and c¢. Here, we have

t p/2
<//\XZ—Xj]Q\zIQ)\EfaO(z)dzdu> ;g]
s R
p/2

t
<ovt ([ @wixc-xp i F) )

t
< ON2(t — s)p/“/ E[|X: - XE|P | F)du
where C depends only on p and f,,, and

E|:</g /R‘XU_XSHZ‘AEfQO(z)dZdU) S:|
<COX (/ (E[|XE - XEPP| F) 1/pdu>

<Nt — sy / E[IXE - X°P| Fdu,

.
o

E
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/]

t
<SC(NPE—s)PP A+ A (t— )P / E(|X: — X | Fdu, (3.8)

where C depends only on p and f,,. Thus,

p

E | sup

u€ls,t]

/ (e(XZ, a0) — o(XE, ap)) d 22

where C' depends only on p, c and f,,. By using the Burkholder-Davis-Gundy inequality,

/ dz)e

where C' depends only on p and f,,. From (3.5), (3.6), (3.7), (3.8) and (3.9),

/]

<o{(t=r et -9 o (L e A= 9T+ — o))

p

E | sup

u€ls,t]

< C (NPt — )PP+ M (t —s) + AL(t — 5)), (3.9)

E | sup |X5 - XZP

u€ls,t]

t
x / E[IX: — X2 | F.] du

+ (t — )P |a(XZ, po)|” + €P(t — 5)”/2 (X5, 00)|”
+eP (Ae(t — 8) + N2(t — s)P/2 + N2(t — s)P) |e(XE, a0) [P},

where C' depends only on p,a,b, c and f,,. By Gronwall’s inequality,

E | sup |X; — X7 fs]
u€[s,t]
< C{(t = 9)|a(X5, mo) [P + € (t — 5)"2 [B(XZ, 00) "
+eP (Ae(t — 8) + N2 (t — s)P/2 + N(t — s)P) |e(XE, ao) P}
x exp (C{(t — s)P + eP(t — s)P/2 + ePA(t — ) + PA/2(t — s)P/2 4 PA2(L — 5)P}) .
This implies the conclusion. O]

Lemma 3.4.2. Under Assumptions 3.2.1 and 3.2.3, suppose that 0 < e <1, A, >1,el. <1
and 0 < s <t <1. Then, forp>2

E | sup | X — x," | F;
u€ls,t]

< CeP ((t— 8PP+ Mt — 5) + N2 (t — s)P/% + NE(t — 5)P)

where C' depends only on p, a and b.
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Proof. Same as the proof of Lemma 3.4.1, for any p > 2, we obtain

/]

< O ((t— )"+ At — 5) + N2 (t — 5P/ + 2 (t = 5)7)

E | sup |X =z,

u€[s,t]

41

< exp (C (= s+ & ((t = )2+ Alt = 5) + X2 (= ) 4 X2t = 5))})

where C depends only on p,a,b, c and f,,.

Lemma 3.4.3. Under Assumptions 3.2.1 and 3.2.3, forp > 1
X5 — 'T'HLP(Q;LOO([O,I])) = O(eA:)
ase — 0, A\, > 00 and e\, — 0, and
sup | XC — x4 =0(1/n+el.)

0<u,s<1

lu—s|<1/n Lr(Q)

asn — 00, e =0, A\, = o0 and e\, — 0.

Proof. Both rates of convergence are obtained immediately from Lemma 3.4.2.

]

]

Lemma 3.4.4. Under Assumptions 8.2.1 and 3.2.3, suppose that a family {g(-,0)},co of

functions from R to R is equicontinuous at every points in I,,. Then,

1 < . v [
EZQ(XW*“H) —>/0 g(xy,0)dt
k=1
asn — 00, £ =0, A\, = 00 and e\. — 0, uniformly in 6 € O.

Proof. This follows from Lemmas 3.4.3 and 3.7.2.

O

Lemma 3.4.5. Under Assumptions 3.2.1 and 3.2.8 with Notation 3.2.5, suppose that 0 <

e<1,\.>1andel. <1. Then, for any p € [1,00),

p

E

sup
t€lty—1,7k)

X — X;

tp—1

Fir

1 gP -
<O(=+—5) (L+ 15 1).
where C' depends only on p, a and b, and

E | sup |Xf — ka|p

L€y, tx]

]:tk—1

<C ! < 141X )P
= ﬁ_FW <+| tk,1|)7

where C' depends only on p,a,b,c and f,,.
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Proof. For t € [ty_1,7;) and p > 2,

et )

£ 5 1/p 1 £
< 0/ ‘X x: [ 7. D ds+~ ‘a(th_l,uo)‘

! € _ X¢ 2/p v
+o€(/t“(EHX MAEM) ds) A

where C' depnds only on p, a and b. By using Gronwall’s inequality, we obtain

2/p
nte? 1 62
(E Ekl]) S 060(1/ + )t (ﬁ + n) ( + ‘ tk 1‘ )7

where C' depnds only on p, a and b. Similarly,

2/p
1 2
<E Ekl]) < C <ﬁ + %) (1 +F [|Xt6k|2 | ]:tk—l]) )

where C' depnds only on p, a and b. From Lemma 3.4.1, we have

gc(% 2)(1“ ).

where C' depnds only on p,a,b,c and f,,. We can easily extend this result to the case
p € [1,2) by using Holder inequality. O]

Lemma 3.4.6. Under Assumptions 8.2.1 and 3.2.3, suppose that0 < e <1, \, > 1,e\. < 1.
Let

X - X;

th—1

sup
sE€[tg—1,t)

Y

X:— X}

th—1

sup
s€[tg_1,t)

sup ‘XSE — ka ‘p

SE([Nk,tx]

E| swp  |X5-XEP

U,S€[tp—1,tk]

Firs

tkl

| XF — X5, | X7 — X5 |
Y= sup ———+ sup ——*.
te€fty—1,7k) € t€ [Nkt €

Then, for any p € (2,00),

1 1
£ __
k:SPp Yk o Op <gn11/17 T n1/21/P>

asn — 00, € = 0, A\, = 00 and eX, — 0.

Proof. By using Lemmas 3.4.4 and 3.4.5, we have

S er 1z <0 () 230 (4 i) =0 (i + o)

k=1

asn — 00, e — 0, A\, = oo and e\, — 0. It follows from Lemma 3.7.3 that

n 1/p
1 1
p _
Sup V7] < (E 1Yy ) =0, <6n1—1/p + n1/2—1/1’> '

=1,...,n 1

asn —o00,&— 0, A\, > o00and e\, — 0. O



3.4. PROOFS 43

3.4.2 Limit theorems

We make a version of Lemma 2.2 in Shimizu and Yoshida [31] in the sequel.

Lemma 3.4.7. Under Assumptions 3.2.1, 3.2.3, 3.2.6 and 3.2.8 with Notations 3.2.3 to 3.2.5
and 3.2.7, suppose that 0 < e <1, \. > 1 and e\. < 1. Then, for p > 2 and p € (0,1/2)

1 eP
n,e,p _>\5/n _
P [Ck,o }‘Ekfl} Z € {1 c (np(l—p) + np(l/Z—p)) <1 + ’ tk 1’?)}

n,e, 1 cP
P [Dk’o ’ | ]:t'“_l] ¢ <np(1—p) + np(1/2—p)> (1 G L )

P[CRy” | Fu]
Ae 1 eP eP e
S E {C <n1’(1—ﬂ) * np(1/2—p) - n ) (1 +‘ tk 1‘ > + /z<4112/c1nﬂ fao(z) dZ},

n,e, )‘5 1 eP & )\

P [Dk:l ’ | ]:tkfl} = n {C <nl’(1p) + np(1/2—p) * n ) (1 +1X t’“ 1|P> + 1} ’
,E,p Ag n,E,p )\g

P [Ck,2 }Ek—l} < n_ P [DkQ }Ek 1} < n_

where ¢ = infep ) |c(Tr, a0)| > 0, ¢o 1= supye)oqy [e(x, ap)|, and C depends only on p, a, b,
¢, fon and vy.

Proof. We only give a proof for the case (i) in Assumption 3.2.4, because the same argument
still works under the case (ii) in Assumption 3.2.4-. Same as in the proof of Lemma 2.2 in
Shimizu and Yoshida [32, Section 4.2], it follows that

%o

P [Olrcl,’?p ‘ ftk71:| ) [ngp ‘ 'Ftk 1} <
Also, it follows from

PHXE X2+ AXE + X - X;

Th— tp—1

Unk n AT Ae
< | P i =]

<P||IX; —Xi|+ sw |[X;i—X; |>ZE|F, , ApN =1
t€th—1,7k)
A 4vnk € €1 n AT
+ P ||AZ)] < or sup |e(X7,a0) —c(ze, )] > = | Fryy AFN =11,
' can? tetr tr—1] 2
P HX ~XE 4 AXE 4+ X5 - X | > % Foo s AINY = 1}
<P||X; - X5 |+ sup |XP—X; | >R |F,, AN =
te€[tk—1,7k) 2 P
+ P ‘AZ;\; LI, sup  |e(X5, a0) — ez, ap)| > co | Fp, AN =1
402np te[tk,tk,l]
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and Lemmas 3.4.2, 3.4.5 and 3.7.2 that

A 1
T,E,P e As/n
[O ‘}—t’“ J < n {C (np(l ) ni’(l/2 p)) T I 1’10)

P,
+/ fao(z )dz+C’6 }
|z|<4vpi/c1nP

1 cP
)\E/n v
{C (np(l—p) + np(l/Z—p)) (1 + ’ tk 1’ )

ePA
+f oo(2) 3t
|z|>vpk /4canP n

where C depends only on p, a, b, ¢, f,, and v;. The other inequalities follow from Lemma 3.4.5.
O

P Dy’ | Fy] <

:|>’

In the proof of Proposition 3.3 (ii) in Shimizu and Yoshida [31], the intensity of the
Poisson process driving on the background is constant, although we assume the intensity .
goes to infinity. So, we prepare the following lemma.

Lemma 3.4.8. Under Assumptions 3.2.1, 3.2.8, 3.2.4, 8.2.6 and 3.2.8, for p € (0,1/2)

1 n
A—Z Lpper =25 1,
€ k=1

asn — 00, € = 0, \. = 00, \./n — 0 and e\. — 0. More precisely, for p € (0,1/2) and
p € [2/(1—2p),00)

1 eP
~ ZlD”” = ( P TIC Agnp(l/zpn) !
A 1 eP
— Y 1prer =140 (—5+ + +/ Ja zd2>,
Ae ; Dii P\ pp(l=p)  pp(/2-p) 2| <dvng Jern? o(2)
1 — A
v =0 (5)

asn — 00, € = 0, A\, = 00 and eX. — 0.

Proof. Since

>\E n,e
— =P [Dk:l’p } ftka

n

S _ ﬁef)\g/n
n
2

S|

+ %e%/n — P [Dps" | Foy]

<

VRS

)\ n,e
z) + P [Ck,’l’p ’ ]:tk_1] ,
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it follows from Lemmas 3.4.4 and 3.4.7 that for p > 2 and p € (0,1/2)

Z” 1 1 AL .
E A_ngzfp__H]:tk—l}§Z+)\_€ZP[Ck1p’ftk_l]
k=1 1
Ae 1 el P 1 — )
—_ — p
st s Tara T, ) " 2 (1 + X5, | )+/|Z|<4v2/cmp fay(2)dz 250

asn — 00, € = 0, \. = 00, \./n — 0 and e\, — 0. Similarly, we obtain
- 1
2E [A_1D%,p
Z E [—1Dm

Hence, the conclusion follows from Lemma 3.7.3. O

n

1 1 eP
ftk_l] = O)\_s <nP(1—p) + np(1/2—p)> Z <1 +1X - 1| ) ’

Ae
n

Fip 1] <

Lemma 3.4.9. Under Assumptions 3.2.1, 3.2.3, 3.2.4, 3.2.6 and 3.2.8, for p € (0,1/2)

n
1 1 p
=S dgnen 251,
n k
k=1

asn — 00, £ = 0, \c = 00, \c/n — 0 and e\. — 0. More precisely, for p € (0,1/2) and
p € [2,00)

1 — A
n Z loper =1+ Op <g) ,
Ae eP A, Ae /
—_— ]_ ne = = N d 7
Z cir” (np(l—p)+1 + np(1/2—p)+1 + n |z|§4vnk/cmﬂf o(Z) z

_Zlcnsp_ ()\2)

asn — 00, —0, A\ > 00, \./n — 0 and e\, — 0.

Proof. From Lemma 3.4.8 we have

asn — 00, € = 0, \. = 00, A\./n — 0 and e\, — 0. It follows from Lemmas 3.4.4 and 3.4.7
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that for any p € [0, 00)
n

1
I | FIE
k=1

Ae 1 P ePA 1 Co) LA
= Cg <np(1—p) i np(1/2=7) * n ) E Z <1 + ‘thfl‘ ) + E |z|<4vpg /c1nre fao (Z) dZ’

k=1

IR e
]:tk1:| = E P [Ck;l’p ‘ ‘Ftkfl]
k=1

- 1 1 & - A2
E Hﬁloﬁ"?ﬂ ]-“tkl] == Y PlCist| Ry < .
k=1 k=1
The conclusion follows from Lemma 3.7.3. OJ

Remark 3.4.1. From this lemma, under Assumptions 3.2.1, 5.2.5, 3.2.4, 3.2.6 and 3.2.8,
for p € (0,1/2) and for any random variables § (k = 1,...,n, n € N, ¢ >0, 0 € 0),
when

/\2
Ae > 00, EXN—0, —=—0, )\g/ fao(2)dz — 0
n

|z|<4va /cinP

ase — 0,
S {1eper = lopge } = 00(1)
k=1

asn — oo and € = 0, uniformly in 0 € O, since for anyn > 0

n n
P (s [ iterse| = 0) < ([
c ’ s,

k=1 k=1
Similarly, from Lemma 3.4.8, when

> 1/2) forj=1,2.

2
Ae 500, eX—0, —=—=0
n

ase — 0,
n
€ {1ope — topsof = o)
k=1

asn — oo and € — 0, uniformly in 6 € O,

Lemma 3.4.10. Under Assumptions 3.2.1, 8.2.3, 8.2.4, 3.2.6 and 3.2.8, let p € (0,1/2),
6 >0 and D,’7"” be an event defined by

EZ,’f’p = D’ N{X; € I, for all t € [0,1]},

and let &7y (k=1,...,n, n€N, €>0, 0 € ©) be random variables. If

)\2
Ae > 00, eX.—0, — =0, )\5/ foo(2)dz — 0 (3.10)
n |z|<4vgz/cinP
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as ¢ — 0, then

n
o€ {oper — Lopse } = o1 Zf {1 =Ly} = 0D
k=1
asn — oo and € — 0, uniformly in 6 € ©.

Proof. Since from Lemma 3.4.3

P(X;el foralltG[O,l])ZP(sup \Xf—xt|§(5> —1

t€[0,1]

asn — 00, e = 0and eA. — 0, for any n > 0

:

> 77/2) +P({X; ¢ 15, Fte[0,1]}),

> g g Lomes >77/2>

Take sufficiently large p € [2/(1—2p), 00). Thus, we obtaln from Remark 3.4.1 the conclusion.
U]

18 bounded in probability, we can replace the

P{X; g1, 3telo1]} (

Remark 3.4.2. In this lemma, if {52;}
condition (3.10) with a milder condition

n,e,k,0

€

Ae > 00, €X.—0, — —0.
n

But, we will never use this fact in this thesis.

Lemma 3.4.11. Under Assumptions 3.2.1, 3.2.3, 3.2.4, 3.2.6 and 3.2.8, let p € (0,1/2),
and suppose that a family {g(-,0)}yeq of functions from R to R is equicontinuous at every

points in I,. Then,
1
S e 2 [ ot
0

asn — o0, € = 0, Ao = o0, )\E/n—> 0 and e\. — 0, uniformly in 6 € ©. Also, forp € [2,00)

1
_Z ( te—1" ICQ,’S’P L)/O g(ajtve)dt7
Ae eP . A
_Z ( te—1” ) Cen” = Oy (np(lp)Jrl + np(1/2—p)+1 + n /Z<4v Jerns fao(2)d2 |,

1 A2
E ( th—17 )1017;,’284) = Op (n_§>
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asn — 00, e — 0, A\, = 00, \./n — 0 and e\, — 0, uniformly in 6 € O.

Proof of Lemma 3.4.11. Since {g(-,0)},.o is equicontinuous at every points in I, there
exists & > 0 such that

sup  |g(x,0)| < 0.
(z,G)EIgO NC)

For any n > 0
1 < .
P EZ (th 1,9)1[)275»!’ >n
k=1

Al &
<P ( sup \ka — 2y, | > 5) + P sup |g(:1:,9)]—5— Lpner >n |,
k= 1 (z,0)€I3 %O n A 1 g

1 n
<P ( sup | X7 — x| > 5) + P sup |g(1:,9)]—21cn,¢,p > for j =1,2.
k=0,...n—1 (z.0)€ls, x© n -

7777

It follows from Lemmas 3.4.3, 3.4.4 and 3.4.9 that

1 n 1
PXICRDIEESy R

1 & 1 « ! »
< ﬁ g(kail,Q) lDz,,s,ﬂ -+ E Z tk 1, /0 g l’t, — 0,
k=1 k=1
1 — Ae eP A\, )\5
_ g(XE - 70) ]_ n,e,p — O ( — -+ / fa (Z) dZ 5
= e Okt P A\ mp-pt1 = pp(1/2- p)+1 N Jz|<4vpp /cinP 0
1< A2
- Q(ka,lae) Lepsr = Op (n_§>
k=1
asn — 00, € = 0, \. = 00, A\./n — 0 and e\, — 0, uniformly in 6 € ©. O

Lemma 3.4.12. Under Assumptions 3.2.1, 3.2.3, 3.2.4, 3.2.6 and 3.2.8, let p € (0,1/2).
We assume either of the following conditions (i) or (ii):

(i) Under Assumption 3.2.4 (i), we assume the following four conditions:

(i.a) There exists 6 > 0 such that for every (z,0) € I3 x ©, g(x,y,0) is continuously
differentiable with respect to y € R.

(i.b) There exist constants C >0, ¢ > 1 and 6 > 0 such that

sup

= (
(z.0)€l,x6 dy

0
9 y,e>] <O+l (yeR).
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(i.c) There exists a sufficiently large p > 2 such that

)\2
A > 00, =50, ed—0, en!™V?P 50, )\5/ fao(2)dz — 0
n

|z|<4va /e1nP
asn — oo and e — 0.
(i.d) Let p be taken as in the condition (i.c). Put r,. by

1 1
enl-1/p + nl/2—1/p°

The i=

(11) Under Assumption 3.2.4 (ii), we assume the following six conditions:

(ii.a) There exists § > 0 such that for every (x,0) € I3, x ©, g(x,y,0) is continuously
differentiable with respect to y € (0,00).

(i1.b) There exists § > 0 and L > 0 such that if 0 < yy <y < ys, then

dg g dg 5 ~
— o < |Z 0 = 0 L ll 0 I .
'ay(x,y, )‘_‘y(:}c,yl, )‘—l—‘ay(:r,yg, )’+ for all (x,0) € I; x ©

(ti.c) There exist ¢ > 0 and 6 > 0 such that

sup
(mﬁ)efgo x0

sy 09|=0 (5r)
—(z,y,H)| <O | — as |y| — 0.
ay( y,0) e ]

(ii.d) There exists & > 0 such that for any C; > 0 and Cy > 0 the map

0
- / o ‘a—ga Coy + C, 0) fuo () dy

takes values in R from IS, and is continous on I3 .

(ii.e) Let q be the constant in the condition (ii.c), and let p < 1/4q. For any large
p 2 2/(1=2qp),

2
€

A =00, 250, eA—0, ent VP 500, A fao(z)dz — 0
n |z|<4va/c1nP

asn — 00, € = 0.

(ii.f) Let p and q be the constants in the condition (ii.e). Put r,. by

1 1
enl-1/p—ap T nl/2=1/p—ap’

Tne =

Then,

= Op(rn,e)

1 . g AZXE 1 g g
X g (thl, — 9> Lpper — X g(thil, (Xt a0)Vys 9) Ly
k=1

€9
Tk

asn — oo and € — 0, uniformly in 6 € ©.
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Remark 3.4.3. Assumption 3.2.4 is used only for defining D,"*" in Lemmas 3.4.7, 3.4.8,
8.4.10 and 3.4.11, while it is essentially used in Lemma 3.4.12.

Remark 3.4.4. The assumptions (i.c) and (ii.e) in Lemma 3.4.12 are ensured if

A — 00, eX—0, (ev/n)'<oo and /\5/ fao(2)dz — 0

|z|<4vz /cimP

as n — oo and € — 0. This condition seems to be natural when we consider the asymptotic
normality for our estimator (see, e.g., the condition (B2) in Sorensen and Uchida [33]).

Proof of Lemma 3.4.12. Let § > 0 be a sufficiently small number satisfying the conditions of
the statement and .
51 <c(z,ap) <2cyp forzxe 10

o)

where ¢; and ¢y are the constants from Assumption 3.2.6. In this proof, we may simply write
the maps

0 0
(4:6) = 9(XG,_,,.6) = guly,6) and (y,0) > Fi(w,9,0) = 5, (:6),

and we denote the following event by Eﬁ P

D = DR A {XF € 2, for all £ € [0, 1]}

Since
)\2
— =0, A fao(z)dz_>07

n |z|<4vy /c1nP

under either of the assumptions (i.c) or (ii.e), we obtain from Lemma 3.4.10 that for any
non-random 7, . >0 (n € N,e > 0),

1 — AT X

1 & .
A_ Z 9k (C(th,lu OZO)VNﬁ‘kE ) 9) {]‘f)Z’f”” - 1],?,’15} - OP(T:’L,E)
€ k=1 ’

asn — o0, € = 0 A, = oo and €A, — 0, uniformly in § € ©. Thus, it is sufficient to show

that
1 < ArX© AXE
)\— Z {gk ( kg ,(9) — gk ( - ,9)} 152716,9 = Op(rn,s)y (311)
€ k=1 ’

1 AXE . 1 1
A =1 o £ 0 ) =9 (C(Xt’“*“ao)vmf’ 9) 1D2515’p =0 enl=1/p + nl/2=1/p

(3.12)

asn — 00, € = 0, A\, = oo and e\, — 0, uniformly in § € ©.
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Put
Y=

B X;k + Xik* - Xtak—1 (: AZXE o AXf'k on DZ?P) .
€ € :
By using Taylor’s theorem under either of the assumptions (i.a) or (ii.a), we have

AT XE AXE ! AXE .
gk ( u 56> — Gk ( Tk70> = / %< T +<Y}c€79)y}c€dc on Dl?i’p'
€ € 0o Oy € :

9 3

Here, we remark that ApX® and AX? are almost surely positive on DZIEP under Assump-
tion 3.2.4 (ii). To see (3.11), it is sufficient to show that

1 Zn " agy, (AXF . -
A /o oy \ ¢ = OG0 )Y g <y
€ k=1

= O0p(Tne) (3.13)

sup
(sG]

asn — 00, e = 0, A\, = 0o and e\. — 0. Indeed, for any M >0

1 < AnXe AXE
)\_Z{gk< kg ’9>—gk( 5k79>}1bz,1&p >M7°n,5>
€ k=1 ’
1

il ! 8gk AX?_ . R
A Z/o 8_y< = CY’“0>Y’€ dC 1 ppevngvei<ny

€ k=1

[USC)

> Mrm;) ,

and from Lemma 3.4.6 the first term converges to zero as n — oo, ¢ — 0, A, — oo and e\, —
0, since from either of the assumptions (i.c) or (ii.e) we have en!~'/? — oo or en! =9~/ — oo,
respectively.

We first consider the case (ii) in Assumption 3.2.4. Since for ¢ € [0, 1] we have

+ P (sup

OV 2 (1— QXS a0) Vi, + G zmin {9V D on DL
we obtain from the assumption (ii.b) that
/0 1 %—?(Af; +CY;§79) A pperngyei<y
= { %(%VM;’Q)‘ ! %(Z—Q>‘ | (v + 1’9>' +L}1’53’f’p“”'f =
TN 8 S N TR

1 n,e
T

1 Igr. (1
2o oo G (Ve )| e 7

S)\% /SLo}p %(%z,@) %—gyk(%zﬁ) fao(2)dz,

1
fao(2)dz - P (J7) < EZ/S‘;p

) ’
k=1
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it follows from Lemma 3.7.3 (ii), Lemmas 3.4.4 and 3.4.6 and the assumption (ii.d) that

1 1
[ —
1Jz?,’f kzslup Yil=0p <€n11/p + n1/21/p>

77777

asn — 00, e = 0, A, = oo and e\, — 0, uniformly in § € ©, where p is given in the
assumption (ii.e). Similarly, it follows from Lemma 3.7.3 (ii), Lemmas 3.4.4 and 3.4.6 and
the assumption (ii.d) that

1
vla

asn — 00, e — 0, A\, = oo and e\, — 0, uniformly in 6 € ©, and it follows from Lemma 3.7.3
(ii), Lemma 3.4.6 and the assumption (ii.c) that

agk . 1 1
A Z ‘ 1“71?,’15 k:SPpn Yil=Op enl-1/p—ap . nl/2—1/p—ap

asn — 00, ¢ = 0, \. = oo and e\, — 0, uniformly in § € ©. Thus, we obtain (3.13).
Under the case (i) in Assumption 3.2.4, as in the same argument above, we have
LS

1 €
Bge [ AXE
/ —gk( =+ QY )Yk
€ b1 0€6 1J0 dy €

AN P . 1 1
= )‘_ k= (2 i ‘262‘/]\% ) 1J’?’f k:SPpn Vel = O <5n11/p + n1/21/17>

O9x (2@ e + 1,9)

1 1
1]"5 sup |Yk| - <€n1_1/p + n1/2_1/p>

7777

1 n

”5”0{\Y5|<1}

as n — 00, € = 0, \. = oo and e\. — 0. Thus, we obtain (3.13).
Analogously, it follows that for ¢ € [0, 1]

AXT C1 n
(1— )= + Ce(X5,_ l,ao)VNTAks > EVNTAIS on Dkfp7

and that on ﬁZip

agk,‘ AXE
i ((1 —()—= . =4 Ce(XG, 17040)‘/1\/3,579 d¢
C (1 + |26V || in th i
< + 22V ) in the case (i),
)aag; (Cl VNA5,9> ’ + ‘%gyk <2CQVN/\5, 0) ‘ in the case (ii),
so that, (3.12) holds. O

Lemma 3.4.13. Let p € (0,1/2). Under Assumptions 3.2.1, 3.2.3, 3.2.4, 3.2.6 and 3.2.8,
suppose that for 6 € ©

xH/g(w,c(x,ao)z,Q)fao(z) dz, xr—>/|g(x,c(x,ao)z,9)]2fa0(z) dz (3.14)
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are continuous at every points in I, and that there exist § >0, C' > 0 and ¢ > 0 such that

d

/{ sup  |g(z,c(z, )z, 0)] —i—Z sup
(z,0

)ELS %O =1 (z,0)€I3,x©

%(LC(:E,QO)Z,@)’} fao(2)dz < 0.

(3.15)
Then,

n

1 1
x g(kail, o X5 aO)VNTA’f,G) Lppew RN / /g(:z:t,c(xt,ozo)z,e)fao(z) dzdt
5 ’ 0

k=1
asn — 00, £ = 0, A\, = 00 and e\. — 0, uniformly in 6 € O.

Proof. Tt follows from Lemma 3.4.4 and the assumption (3.14) that for each 6 € ©

- 1
ZE[A—Q(XEM,C(XEM,%)VM 9>1J;;;f Ekl}
k=1 €

£y
k

n

- %Z / g(ka_l,c(ka_l,Oéo)Z,9> Jao(2) dz

k=1

1
2 [ [ atonclan, a0z g z) dz e

0
asn — 00, € > 0, A\, = o0 and e\, — 0, and that

- 1
> E [ﬁ
k=1 €

asn — 00, e = 0, \. = oo and e\, — 0. Thus, Lemma 9 in Genon-Catalot and Jacod [11]
shows us that for each 6 € ©

k

2
9(X (X5, 00) Vi 0)] 1

ft“} 250

1 - € &g !
= Z 9<th,1vC(th,170‘0)vN3§a 9) 1J§,’f 2, /0 /g(xt, c(xy, 00)2,0) fao (2) dz dt
€ k=1
asn — 00, € > 0, A\, = oo and e\, — 0. Put
T =T N {XE € I, for all t € [0, 1]}
Then, by the same argument in the proof of Lemma 3.4.10, it follows from Lemma 3.4.3 that
1 - € €
2 a(Xi X a0V ) { g = Ly} 220
¢ k=1

asn — 00, € = 0, A\, = oo and e\, — 0, uniformly in § € ©.
Now, we have for each # € ©

€
k

1 !
= Zg(ka,va(ka,pao)ij 9> 1J~]?,1E L, /0 /g(a:t, c(xy, 00)2,0) fao (2) dz dt
€ k=1 ’
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asn — 00, e = 0, A\, = oo and e\, — 0. To say the uniformity of this convergence in 6 € 6,
put

n 1
X" (0) = — Z 9<Xt8k71 , c(kai1 , aO)VNTAkE , 9) 1j:,la — / /g(mt, c(xy, 00)2,0) fao (2) dz dt
k=1 ’ 0

and we shall use Theorem 5.1 in Billingsley [4] with the state space C'(©), same as in the
proofs of Propositions 3.3 and 3.6 in Shimizu and Yoshida [32] !. From the assumption (3.15),
we obtain

9)‘ 1‘]1?,716]

1 e e
3o 20 (X o)V ) L

sup ‘g(x, o(x, ao)VNQE,
(z.0)€Id, x© k

— [ swlglaclian)z0)] fun() 4z (< 0

| |

8_53- (x, c(x, OZO)VNTA;,Q)

and

1 =09 (. .
)\— Z —9 (thil, C(th,lﬂ O[())VNQ 9) 1 ”:u,,ls

€9
k

sup
(1,9)61;50 x©

/ 0
= sup
(zﬂ)elgo X0

a—egj(x, c(x,00)z,0)
The above equalities hold from the fact that V. and 1 g are independent. Hence, for any
Tl s
closed ball By of radius M > 0 centered at zero in the Sobolev space W>°(0), we obtain
from Markov’s inequality that

1‘]]:1&:]

fao(2)dz (< 00) forj=1,...,d.

2C

sup P (X" & By) = P (X" [lwre@) > M) < U

where C is defined as (3.15) and for ¢ > 1

ou

7, for u € WH1(O).

Li1(©)

d
lullwra) = llullza@) + D
j=1

From Rellich-Kondrachov’s theorem (see, e.g., Theorem 9.16 in Brezis [5]), it follows that the
balls By, M > 0 are compact in C(©), and so from Theorem 5.1 in Billingsley [4] that {x"*}

'We cannot use Theorem 20 in Ibragimov and Has'minskii [17, Appendix I] (or Lemma 3.1 in Yoshida
[36]), as in the proof of Lemma 2 in Sgrensen and Uchida [33]. In fact, we fail to say that {x™°} satisfies (1)
and (2) in Lemma 3.1 in Yoshida [36].
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is relatively compact in distribution sense as in the Billingsley’s book. Since for each 6§ € ©
{x™*(0)} converges to zero in probability, all convergent subsequences of {x™*} converges
to zero in probability. Analogously, all subnet of {x™¢} has a subsequence convergent in
probability to zero, and so {x™*} converges to zero in probability as n — 0o, € = 0, A, = 00
and e\, — 0. ]
Lemma 3.4.14. Under Assumptions 3.2.1, 3.2.3, 8.2.4, 3.2.6 and 3.2.8, let p € (0,1/2),
and let g : R x © — R satisfy that {%(-, 9)} ,j=1,...,d are equi-Lipschitz continuous
i 0cO

on I3, for some small § > 0. Then,

1
—Zg i {AZXE a(X; l,uo)}@s,p i>/ gl 0)b(zy, ) AW,
0

as g —>@oo, e—0, A\ =00, \2/n—0, e\ — 0 and \ flz|§4vz/cm/’ fao(2)dz — 0, uniformly
infe€oO.

Proof. At first, we can easily check that
RS € & € 1 € p
- Z 9(X;, ,0) a( X7, po) dt — —a(X; ,po) p lemer — 0 (3.16)
€= te—1 n '

asn — 00, € = 0, A, = 00, en — 00, and €A, — 0, uniformly in 6§ € ©. Indeed, this follows
from Lemmas 3.4.3, 3.7.2 and 3.7.3 with the equicontinuity of g on I,, and the following
estimate:

ti 1
- E E |sup |g(X; _,0) {/ a(X;, po) dt — —a(th 17u0)} Lonew ]:tk_ll
0cO te—1
1/2
|X€ t€k 1| ’
E E {sup|g(X; ,0) sup —————| |Fy_,
0cO t€tp—_1,tk] €

(. Schwartz’s inequality and 3.2.1)

en /noon

asn — o0, =0, A\, > o0o0and ), — 0.
At second, we show that

1 1
=0, (— +—+ £> (. Lemmas 3.4.1 and 3.4.4)

1

173
Zg tk . / b(Xf_,O’()) th lcgﬁyﬂ — / g(Xf_,H)b(Xf_,ao) th

th—1 0

173
—Z / Xi00) — 9(X76) L (XF 00) AW, Tepes

n

ty
= / 9(X; ,0)b(X;,00) AWy 1prer — 0 (3.17)

k=1 7 tk—1
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asn — 00, € = 0, \c = 00, \2/n — 0, e\, — 0 and /\Ef‘ |<dva/erne fao(2)dz — 0, uniformly
in 8 € ©. When we put

te[0,1]

CPer .= PP N { sup | X; — x| < 5} ,

it holds from Morrey’s inequality (see, e.g., Theorem 5 in Evans [9, Section 5.6]) that for
q € (d,o0)

Z E ft“]

L
/ {g tlc 17 g(XtE—7 9)} b(th_7 O’O) th 1(?]:,,5,;)

sup
0cO

/ {9(x5_,.0) = 9(X2,0) } (X, 00) AWy 1 gpe
-1

<6’le

Ek—l

)

Wha(e)
where the constant C'; depends only on d, ¢ and ©. Then, it follows that

ZE

L
AR UCSRURY G SUITE R ATIART (N

Li1(®)
a/2 La
ftkl] de

(" Holder’s and Burkholder’s inequalities)

q/2\ V4
sup |Xt51€,1 - Xt5|2 <1 + sSup | tk 1 ‘)<’E|2 + | tk 1| ) ftkl]
tE[tk,I,tk]

te[tk,l,tk
(".- Holder’s inequality and the equi-Lipschitz continuity of g and b on [ 0 )

o (gprers)

2
(90X, 0) = 9(X7.0) P 1gpesb(X7 00)|

(. Lemmas 3.4.1 and 3.4.4)

asn — 00, ¢ = 0, A\, = oo and e\, — 0, where (5 depends only on ¢, and C3 depends only
on ¢,b,g and ©. By the same argument with Theorem B.4 in Prakasa Rao [26], it follows
that

SE
k=1

ty 89 c 8g . .
te—1 {8_0] <th71 ’ €> B a_eg (Xt_’ 9) }b(Xt—a UO) dWw, 1C~'£v5,ﬂ

=0, <%+s+s\/z>

asn — 00, e — 0, A\, — oo and e\, — 0. Thus, it follows from Lemma 3.7.3 that

1
Xi.,0) (X7, 00) AW, Lgnew = Oy | —= VA
Z/tk ) tk 1’ g( t—> )} ( t—aJO) t gy p(\/ﬁ‘f'f—f—s )

‘Ek—l
Li(©)
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asn — 00, — 0, A\, =» oo and e\, — 0, uniformly in § € O, and therefore, from Lemma 3.4.3
we obtain the convergence of the first term in the left-hand side of (3.17). To obtain (3.17),
we remain to prove

n th
Z / 9(X7 ,0)b(X;,00) AW, 1pner = 0 (3.18)

as A\, — 00, e\. — 0, f — 0, A f 2] <dvs Je1np fao(2)dz — 0, uniformly in § € ©. Put
D”ep Dy n{Xf e I{, for all t € [0,1]}. We begin with showing that for any p € (2, c0)
and ¢ € (1,d/(d—1))

ty 1 £P)\2 1/2+1/¢'
; /t\kl g<Xt—’ Q)b(X 0'0) th nep = Op % ( o + AE) (319)

asn — 0o, € = 0, A\, = oo and e\, — 0, uniformly in 8 € ©. It follows from Morrey’s
inequality (see, e.g., Theorem 5 in Evans [9, Section 5.6]) that for ¢ € (d, 00)
sup

Z E Foen
[ZSC]
1D2f,p Ek—l 3

<QZE|
Wla(@)

where the constant C; depends only on d, ¢ and ©. If we put ¢’ = ¢/(q — 1), then it follows
from Hélder’s inequality, Burkholder’s inequality (see, e.g., Theorem 4.4.21 in Applebaum

[3]), the equicontinuity of g and Assumption 3.2.1 that
tk
/ 9( X, 0)b(X;_, 00) dW;

|
tre—1

< (/E
k=1 \’©

/ (thf,e)b(XtE ,UO) th nsp
-1

173
/ G(XEOB(XE, og) AW,

te—1

]_DLI,ls,p ‘Ftkq
La(®)

q 1/q ’
1LE, P 1/q
‘Ek—l d9 P(Dk:f ‘Ek—l)
1/q

q/2 ,
S 1/q
Foo| o) P(Dp| 7))

tk
| o X ooz W,

tp—1
/ )
th—1

< Cy sup |g(z,0)b(x,00)]
(z,0)€Id %O

2
dt

9(X7, 0)b(X7, 00)Lpncw

1/2+1/¢'
T,E,p
1/2 ZP(D ’}—tk 1) '

where Cy depends only on ¢. By using Lemmas 3.4.4 and 3.4.7, for any p > 2 we obtain
1m,

Z E e
La(o)

[ 1 e A\ AT
—%<ﬁ%5<mmm+mmwﬁ‘n)+ﬁ}

P ]:tkq

/ (X2 O)B(XE_, ag) IV,

te—1
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asn — o0, ¢ = 0, \. = oo and €\, — 0. Similarly, by using Theorem B.4 in Prakasa Rao
[26], we obtain for j =1,...,d
113:7’15"’ ‘Ftk—l

Z E
L1(O©)

A 1 &P A\ A VAV
=0 <\/ﬁ{ﬁ (npap) s T, > T

asn — 00, & = 0, \. = oo and e\, — 0. Since we can take ¢’ < 2 small enough, we obtain
(3.19) from Remark 3.7.3. Hence, (3.18) holds from (3.19) and Lemma 3.4.10.
At last, it is an immediate consequence from Lemma 3.4.9 that

(Xf ,0)b(XE_, a0) AW,

123
Z g tk 1’ / C(Xf—a CVO) dZtAa 1(]}’6“6’%’ SN 0
tp—1

asn — 00, € — 0, \c = 00, \2/n — 0, e\. — 0 and A, f\z\g4v2/clnp fao(2)dz — 0, uniformly
in 6 € 6. O]
Lemma 3.4.15. Under Assumptions 3.2.1, 3.2.3, 3.2.4, 3.2.6 and 3.2.8, let p € (0,1/2).
and let g : R x © — R satisfy that {g—gi(-, 9)}066 (i=1,...,d) are equicontinuous on I3 for
some small 6 > 0. Then,

2

1
Zg fo ‘A"XE——G(th L Ho)| Lepes i>/0 g(@e, 0)[b(xs, 00)]* dt

as g —>®oo, e—0, A\ =00, el =0, N2/n— 0 and \. f|Z|§4U2/Cln” fao(2)dz — 0, uniformly
infeo.

Proof. From Lemma 3.4.9, it is sufficient to show that

n &g 1 g ? !
Zg fo1 ’AkX —Ea(th,la,uo) 10,:;5*’#/0 g(s, 0)|blae, o0)|* dt

asn — 00, € — 0, \c = 00, eA. = 0, A2/n — 0 and A, f‘z‘<4v2/cmp fao(2)dz — 0, uniformly
in 6 € O, and we note that -

9 2

1 e +

ti
/ b(Xfi,O'o) th

th—1

2
ti
/ {a(Xf, to) — a(ka_l,uo)} dt

th—1

£ 1 £
‘AZX - Ea(th—l’ )

tr tg
w2 [ (a0 0) = aXE )t [ 0O o) dm} Lo
th—1 ’

- tre—1

Similarly to the proof of (3.16), it follows that

sup ng P L0

0co | €

2

1 1
XF o) = alXopo) ] degpe| = Oy <52? i ﬁ)
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asn — 00, € = 0, \. = 00, en — oo, and e\, — 0. Also, it holds that

2 e
2> axi 0 [ {alXE )~ ol ) e

le—1
1 1
:@<aﬁ+;>

asn — 00, € = 0, A\, = oo and e\, — 0, uniformly in § € ©. Indeed, by using Assump-
tion 3.2.1, Holder’s inequality and Burkholder’s inequality, we obtain
]

tk
X / b(XtE_, 0'0) dW; 10;15,9

tp—1

—ZE
2C <

<= x: oE

<= Zglelglg( ot )I(

k=1

1
X (—E
n
where C' depends only on a,b. By applying Lemmas 3.4.3 to 3.4.5 and 3.7.3 and the bound-

edness of g on Igo x O for some small § > 0, we obtain the above convergence.
From Lemma 3.4.11, we remain to prove that

Zg tk 1;

asn — 00, € — 0, A\. = oo and e\, — 0, uniformly in § € ©. At first, by using Lemma 3.4.4,
we have

ZEQ tklv)

sup |g
0cO

17 tr
%Nmé (ol ) = oG o)t [ BT o) a1y
—1

th—1

) TN\ 1/2
—~ sup X7 - X5 ftkl)

2 tk 1
€7 tefth—1,m]

T\ 1/2
Sup |le tk 1|2+ |b( tr— 1’0-0)’2 'Ftk—l )

te[tk,lﬂ‘k]

2

tr 1
/ (X7, 00) AW;| 1gner — / gl 0)[b(xy, 00) | dt
0

th—1

2

‘Ftk—l Zg tk 17 tk 170-())‘2

ti
[ o am,
te—1

BN / g(xy, 0)|b(xy, ag)]2 dt
0

asn — 00, — 0, A\, > o00and e\, — 0, and

ZE g tk17)

asn — o0, = 0, \, = oo and e\, = 0. Thus, by Lemma 9 in Genon-Catalot and Jacod
[11], we obtain

Zg tk 1;

912

Fu_.| =0

173
/ b(ka Ny o) dW;
tk—1

2
1
R / 920, 0) b, O)[2 it
0

173
/ b(ka 0 o) dW;
tk—1
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asn — 00, ¢ = 0, A\, = oo and e\, — 0. From the equidifferentiablities of g on [ g‘fo for some
0 > 0, the uniform tightness is shown by the same argument in the proof of Lemma 3.4.13.
At second, we shall see

Zg P L0

asn — 0o, € = 0, A, = 00, eA. — 0 and A\./n — 0, uniformly in § € ©. This convergence
is obtained from Lemma 3.7.3 and the following estimate:

2

tg
- / b(XtEk,lﬂ Uo) th

tp—1

2
tr
/ b(XtE_,O'o) th

p
lener =50
k,0
th—1

tr ty
ZE sup [g(XZ,0) / b(XE, 00) AW, / bXE oo)dW| $1pee| | F
k—1

0co th o
. ) 1/2
DITTEN (X o)+ X0 AT L | B
) . ) 1/2
/tk 1{b(X,f_7 00) = b(X, . 00)} AWy 1yme | Fyy (. Holder’s inequality)

]Qk—l

) 1/2

1/2
Ekl] ) (.- Burkholder’s inequality)

1/2
Ek_l] )

g
/ |b(X7,00) + b(ka71;00)|21Jg;g de

tp—1

< suplg(X; ,0)| | F
> saplotxi)

X <E
<C- Zsumg ;0] (
X <E

1 €
=0, <H + —) (" Lemmas 3.4.4 and 3.4.5)

vn

asn — o0, e =0, A\, > oo and ), — 0.
At last, since

ty
| 100G 00) = G, o) P e

th—1

sup (]‘—‘~_|)(t5 tk 1’2+| t— 1’)

te[tk,I,Tk]

sup | X] —

t€tp—1,7k]

X
tk 1

1/2
]:tk_ll ) (" b is Lipschitz)

2

sup n

tg
/ dWw;,
te—1

is bounded in probability, it follows from Lemmas 3.4.1, 3.4.8 and 3.4.9 and the linearity of

b that
Zg tk 1’

asn — 00, € = 0, \. = 00, eA\. — 0 and A\./n — 0, uniformly in 6 € ©. O

2

tg
/ b(ka,l’ UO) th

p
1 rnen men nep — ()
\ Dy, UC'k’1 UCk’Z
k—1
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3.4.3 Proof of main results

Proof of Theorem 3.3.1

Proof of Theorem 3.3.1. 1t follows from Lemmas 3.4.11 and 3.4.14 that

L, 0) = ne® (WL (1, 0) = Wi (1o, )

(A”X‘——abx%l,uw/n)( o(XG o)~ alXi )
2 cpeP

3

k=1 ‘b tk 1’0)‘
2
1 — ’ a(Xi, ) —alX§ l,uo)‘ ]a 2o, 1) — s, o))
- 3 ]_Cnsp —) 3 dt
2n k=1 ‘b tk 1) )‘ |b(mtv )|

asn — 00, — 0, \. = 00, \2/n — 0, e\, = 0 and A, f‘z‘<4v2/6mp fao(2) dz — 0, uniformly
in (u,0) € ©1 x Oy, and from Lemmas 3.4.11, 3.4.14 and 3.4.15 that

U (p, o)
Q—n@ﬁl( o) + U (1o, 0)

R (S e

(o) — — + 3108 [D(XG, o) ¢ 1epes
e2n € P 1 ‘é‘b tk 170_”2 th—1 k

1 1
Ly | lim — - ]a Al (xt;,uo)\ dt — —/
n~><x> en 2 ‘b Ty, 0 )’ 2 0

asn — 00, e — 0, \c = 00, \2/n — 0, e\. — 0 and A, f‘z‘<4v2/cmp fao(2)dz — 0, uniformly
n (p,0) € ©1 x O, Also, it follows from Lemmas 3.4.12 and 3.4.13 that

3

b(xtp 00) 2
b(xy,0)

1 1
dt — —/ log |b(x, o) [* dt
2 Jo

nXa
ZT/J < th_1’ -~ ) 1DZ’5"°

B /0 /_‘” el ao)fao <C(w5{0‘0)> o { C(frtla @) fo (C(:j, a)> } dydt

asn — 00, — 0, \c = 00, \2/n — 0, e\. — 0 and A, f‘z‘qw/qnp fao(2) dz — 0, uniformly

in o € ©5. Thus, by using usual argument (see, e.g., the proof of Theorem 1 in Sgrensen and
Uchida [33]), the consistency of 6, . holds under Assumption 3.2.7. O
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Proof of Theorem 3.3.2

To establish the proof of this theorem, we set up random variables &, &, (¢ = 1,...,3,
i=1,...,ds, k=1,...,n) as the followings:
oot 1 {AnXs_—a(Xf 17“)} (Xf 1,u>
V)| -1 o),
Hi 0=0o = |b e 1’U)| 0=0,
1 Oa
O: y K
= me / Mth , (. Lemma 3.4.14)
k=1 o bz, 00)
2
nye 5 b €
ol 1 & ‘A X — La(X; 1,@)) %o, (th 1,0)
VA R o prp i
9o 0=00 \/ﬁ; o ‘&“b tk 17U)|2 b(th 1’ ) i
=00
= Zgg,kv
k=1
o) 1 N9 (. ApXE ay
e N G L
a=oo k=1 k=1
and
n . n (th 1,/110) /tk 41
= Vv t Lomer,
- 1,k P b(th,laUO) fey k,0

2 ob €
1 do; <th 17 UO)

M:
3

dWy| + — Lemen,
k=1 kz /tkl n b(ka 17 ) 0
2 ék = 2 \/)\_Eﬁ_ozi<XtE’“‘1’ (ka 17040)‘/1\/3570‘0) 1_]:’,15.

Lemma 3.4.16. Under Assumptions 3.2.1 to 3.2.6, 3.2.8 and 3.2.10, the following conver-
gences are holds.

Fort=1,2
k=1 k=1

asn — 00, € 0, A\. = 00, en — 00, eA. = 0, A2/n = 0 and A: [y, 010 fao(2) dz = 0.
For ¢ = 3, take p as either of the following:

(i) Under Assumption 3.2.4 (i), take p € (0,1/2).

(i) Under Assumption 3.2.4 (ii), take p € (0,min{1/2,1/4q}), where q is the constant
given in Assumption 3.2.10 (ii.b).
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Then,
D =D G0 (i=1,....d)
k=1 k=1

asn — 00, € = 0, \. = 00, e\. = 0, A2/n — 0 and A, f|z|<4v2/c1np fao

(2)dz — 0 with
lim(e?n)~! < oco.
Proof. For ¢ = 1,2, from Lemmas 3.4.9 and 3.7.3, it is suffcient to show that for p € (0,1/2)
Y E Hﬁékh;ﬁg - fﬁk’ ‘ftm] =0
k=1

asn — 00, € — 0, \c = 00, en — 00, €A, — 0, \2/n — 0 and A, f|2|<4v2/cm" Jao(2z)dz — 0.
For £ =1,let i€ {1,...,d1}, and put g(z) = aa—i(x,uo)ﬂb(x, 00)|?. Then,

g,li:,’OS - gi,k = g<XtEk 1) {

173 1
| ol o)t = 0l o)

te—1
L

+6/ {b(Xf,O’o) - b(ka o )}th 102’1579.
te—1

As in the same argument in Lemma 3.4.14, it holds from Assumptions 3.2.1 to 3.2.3 and
Lemmas 3.4.4 and 3.4.5 that

‘ZE _0p<€in+%>

asn — 00, e — 0, A\, = oo and e\, — 0, and from Assumption 3.2.1, Burkholder’s inequality,
Lemmas 3.4.4 and 3.4.5 that

Y
C n
SWEM@m@

asn — 00, — 0, A\, > o00and e\, — 0.
For ¢ =2, let i € {1,...,ds}, and put g(x) :_#

tr 1
[ a0 o) dt = ol )

le—1

ftk—l

|g tk 1 10:;5#

i

l9(X, Lep s

tr
n/wwM%Mmmwm
te—1

f])o (L)

:i (x,00). Then, we have

sup | X7 — X} \

tkl
te€[th—1,7k]

tr 2

&l — G =a(Xi,) X, 10) = a(XG, o) } dt

173
+ 2 / a(XE, o) (kafl,uo)}dt / b(XE, o0) AW,
lk—1

2 2

1omewr
+ Ck,o )

s/ b(XE_, 00) AW,

173
/ b(XtEk,1 ? UO) th
tk—1
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and by the same argument as in the proof of Lemma 3.4.15, we obtain

2

Leper | Fius

VIS B |lo(x )

tg
[ {atx ) — ol )}
tre—1

t ti
o) [ {alii) e}t [ MO ) f]

te—1 le—1

10::519

2

123
/ b(th,N UO) dw;

10;)7/’75,0 ’Ftk—l
te—1

asn — 00, € — 0, A\, = 00, en — 0o and e\, — 0.
For ¢ = 3, let r,, . be defined as either of the following:

(i) Under Assumption 3.2.4 (i), rp. = —75 + —a-7 with sufficiently large p > 1.
(ii) Under Assumption 3.2.4 (i), 7ne = === + —7a=175=5 With sufficiently large p > 1.

Then, it follows from Lemmas 3.4.10, 3.4.12 and 3.7.3 that
> E Hﬁ:@,kh;f - fé,k‘ ‘ftkfl} =0, (v Aarw)
k=1

asn — 00, € — 0, \. — 00, en — 00, eX. — 0, A2/n — 0 and \. f|2|§4v2/cmp fao(2)dz — 0.
O]
Lemma 3.4.17. Under Assumptions 3.2.1 to 3.2.3, 3.2.5, 3.2.6, 3.2.8 and 3.2.9,

k=1

ft,H} a0 (6=1,2,3)

asn — 00, —0, A\, > 00, eX. = 0 and A\./n — 0.

Proof. For ¢ =1, let i € {1,...,d;}, and put g(z) = g—lfi(x,uo)/b(x,ao). Since

tg
/ dWw,
tp—1

E

ti
]-'tkl] =0, and / dW; and 1, (i = 1,2) are independent,

th—1
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it holds from Lemmas 3.4.4 and 3.4.7 that for any p > 1

tk
=S| [ awirey |5, |
k—1

(2™
= Zg DB | [ AW

te—1

1 ep Ae A2
=0y (nP(1P)1/2 + np(l/2p)1/2> +0p ( ) O <n2>

asn — 00, — 0, A\, > o00and e\, — 0.
For ¢ =2, let i € {1,...,ds}, and put g(x) :—%

tr 173
/ dW; / dWw,
tp—1 te—1

G

]ik—l

;’i (x,00). Since

2 2

1
E Fioo | = e and and 1. (1 =1,2) are independent,

it follows from Lemmas 3.4.4 and 3.4.7 that for any p > 1

~. tk 1
&] ]| = |va §jg ARLA RV IR SR A
k—1

tr 1
- \FZg /tkldwt — 2 Ve | B

_0 1 eP
=\ iz i

asn — 00, — 0, A\, > o00and e\, — 0.

For ¢ = 3, we may assume sup, |X; — x;| < J for some enough small 6 > 0. From
Assumption 3.2.9, we obtain

ZE [fgk‘]:tk 1= \/_Z/ X; e(X5 l,ao)z,ao)fao(z)dz

\/_Za%</w e tkl,%)z,cx)fao(z)dz) — 0.

a=ag

The last equality holds from the fact that

ou—)/w o c(XE ao)z,a)fao(z)dz

behaves like the Kullback Leibler divergence from py , t0 pa,. at * = X7, where p, . (y) =
faly/c(z, a))/c(z, ). U
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Lemma 3.4.18. Under Assumptions 3.2.1 to 3.2.6, 3.2.8, 3.2.9 and 3.2.11,

ZE@M
ZE [éineéine

asn — 00, & — 0, A\, = o0 and e\, — 0, where Iy, ...,

}, put g(z) = g: a,f (2, po) /b(x, 00)%. Since from Lem-

] Py (0=1,2,3, iyin = 1,....dy),

]-“tk_l] o0 (b =1,23, LA Ly, iy =1, dy, j=1,2)

I3 are the matrices defined as (3.4).

Proof. For ¢ =1, 4,5 € {1,...,d;
mas 3.4.4 and 3.4.7 for any p > 1 we have

ty
/ dW;
te—1

2

1 Fuil=0,(-1 Gl
ppgrorzions |[Fua | = O\ oyt oapay T

Zg tkl

asn — 00, e = 0, A\, = oo and e\, — 0, we obtain

ty
o[ aw
tk—1
1 eP A\ !
= — Zg tk 1 <np(1_p) + (1720 + g) — /) g(CUt) dt

asn — 00, e — 0, \. = 00, e\; = 0, and \./n — 0.
For ¢ =2, 4,5 € {1,...,ds}, put g(z) = b%%(%bj(x 0p). Since similarly to the proof of

Lemma 3.4.17, it follows from Lemmas 3.4.4 and 3.4.7 that for any p > 1

tg
nZg tk 1 /t dW,
k—1

1 eP Ae A2
=0 (np(lm * np<1/2p>> 0 ( > O (n )

asn — 00, e — 0, A\, = oo and e\. — 0, we obtain from Lemma 3.4.4 that
tk
/ dW;
te—1
2

1 1 eP >\5
- Fioa| +0p (np(lp) T np(1/2—p) + E)

2
Leper | Fu s

Zn:E [gi,kg{k ‘ ]:fk—l} Zg tk 1
k=1

2

1
— | Lopsrorzions | Fue

2

9 2

1
_ﬁ 10;:’,57/1 .EIPI

ZE[§2k§2k‘Ek 1} —”Zg tk 1

the 2
/ dW,
lp—1

_nzg tk1

1
RLAN 2/ g(xy) dt
0



3.4. PROOFS 67
asn —o00,e— 0, \; > 00,e\. = 0and \./n — 0.

For ¢ = 3, 4,5 € {1,...,d3}, put g(x,y) = gff g;/’ (z,y,a0). Then, it follows from
Lemma 3.4.4 and Assumption 3.2.11 that
Fu|

iE [gé,kég,k‘ftkfl} = ZE[ < tsk 10 thk 17010)‘/]\[%5)1(]:,‘15
k=1
:_Z/ tk € tk & ) >f040( )
, / / 91, o1, @0)2) fuo (=) d2
0

asn — 00, € — 0, \c = oo and e\, — 0. The second equality holds from the fact that V.
Tk
and 1 e are independent.

For (; =j7,i;=1,...,d; (j =1,2), put g(z) = 8‘2‘1 (x, Mo)bz 6‘9 (x,00). Since

t ‘ tr ‘
E (/ th> Fiy| =0, and (/ th> and 1yne are independent (i = 1,3, j = 1,2),
th—1 te—1 ?

it follows from Lemmas 3.4.4 and 3.4.7 that for any p > 1

ZE[ﬁlm

2

tr 1 the
:| \/—Zg tk 1 - /t th + — / th 10;;’,5,;) Ek—l
k—1

n te—1

2

173 1 ty
= \/_Zg tk 1 — /t th + E / th 1DZ’OEYP Ek71
k—1

tre—1

1 eP
=0p <np<1—p) T np(1/2—p)>

asn — 00, =0, A\, = oo and e\, — 0. O]

Lemma 3.4.19. Under Assumptions 3.2.1 to 3.2.3, 3.2.5, 3.2.6, 3.2.8 and 3.2.9,
n N )
AL
k=1

asn — 00, —0, A\, > 00, eX. = 0 and A\./n — 0.

250 (0=1,2,3)

Proof. This follows from the same argument as in the proof of Lemma 3.4.17. O

Lemma 3.4.20. Under Assumptions 3.2.1 to 3.2.3, 8.2.5, 3.2.6, 3.2.8 and 3.2.11,
[
k=1

asn — 00, e —0, A\, = 00 and A, — 0.

4
‘ft“] 250 (1=1,2,3)
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Proof. For £ =1, let i € {1,...,d;}, and put g(x) = ]g—;(:z:,uo)/b(:z:,ao)ﬁ. Then, it holds
from Lemma 3.4.4 that
th 4
/ dw,
th—1

4 n
‘ Ekl} = 9<ka )E
k=1

SN

e[

asn — o0, e — 0, A\, > o0 and ), — 0.

For ¢ = 2, let i € {1,...,ds}, and put g(z) = ‘%
Lemma 3.4.4 that

4
(x,00)| . Then, it follows from

4

1 P
_E -Ftk_l — 0

NE <n?S g(X; )E

k=1

30 [CA]

asn — 00, — 0, A\, > o00and e\, — 0.

4
For ¢ =3,i € {1,...,ds}, put g(z,y) = ’%(w,y, ao)‘ . Then, similarly to the proof of
Lemma 3.4.18, it follows from Lemma 3.4.4 and Assumption 3.2.11 that

n . 14
ZE[ 3 ‘ ‘]:tkI:| )\2 ZE{ ( th 1vc(ka_17a0)vN;\lj>1J£’f ftk—1:| =0
k=1 £ k=1
asn — 00, € = 0, \. = oo and e\, — 0. 0l

Proof of Theorem 3.3.2. From Theorem A.3 in Shimizu [28] and Lemmas 3.4.16 to 3.4.20,

n

T d
Ane = (Elpr &G 8% G- E5%) —2 N(0,15,)

k=1

asn — 00, € = 0, \c = 00, eAc = 0, A2/n = 0 and A [ 4. 0 fao(2) dz — 0 with
lim(e?n)~! < oo. Also, it follows from Lemmas 3.4.11 to 3.4.15 under Assumption 3.2.12
that

PUn.e W,
gzn(ajaﬁ;j(e))” g2n(8uj’&;j(9))” 0
82 n,E 82 n,E
Cnlt) = | (Fc®), (@) 0| Bon G20
2 . 82‘1/71’6
! 0 (3%‘8%‘ (9))ij

asn — 00, e = 0, A: = 00, eAe = 0, A2/n = 0 and A [ 4, 00 fao(2) dz — 0 with
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lim(e?n)~! < oo, uniformly in 6 € ©. Indeed,

9%a €

82\11 n 1 O Opj (th—l’u>

2 ,E 0 § : AnXE — ZalXe¢ , } J 1n.ep
8Mza,uj( )= e 1{ nCL( frt 2 ‘b U)‘Q G

tk 17

a0
Z Eﬂz 853 <X§:k—17u> 1

» .
C;L,E,p — —Iij,

c 2
k 1 th 17 )l
da € b €
0 " W(th 1’”)%(‘){%—1’0‘)
2 n,e n g J p
g 0) = =230 AL - Talx o ) Lo 150,
a:uiao-j ; e }b tk 170)|3 o
2
n nxe_ 1 10b
0?0, . () = 1 ‘A X — ca(X; 1>M)‘ e 8(17801-) (Xs )1
ao_iao-j n k=1 - ‘Eb tk 1>U)|2 an e Cl
9 Ob 0b €
2 = 801 do; (th_1’0> p .
- — ATXE — Xz ’ Lemew — — 512
82 p k ( th_ 17/’6) |b( P )|4 Cp 2
0*w 1 <1 0% AP X©
) ==Y — Xe =R o) 1pne
8041-801]-( ) Agggo@aﬁaj( b1 g ,a) D
I~ 1 9p 0p . APXE p y
XX e e (Yo o lapee £
k=1 ¢

where p(z,y, ) := exp ¢ (z,y, ). Since

_l(ﬂn,e - MO)
Dn,s \/ﬁ(a—me - UO) - An,sa
\/A_E(&H,E - Oéo)

where

1
Dn,s = / Cn,s(go + u(en,s - 90))7
0

the conclusion follows by the same argument in the proof of Theorem 1 in Sgrensen and
Uchida [33]. O

3.5 Examples

This section is devoted to give some examples of densities which satisfy Assumptions 3.2.9
to 3.2.12. For simplicity, suppose that c¢(z,«) is an enough smooth postive function on
I g‘zo x O3, and derivatives of ¢ are uniformly continuous. Let D, is the interior of the common

support of {fa},co, i€
>0 forze Dy,
fal2) { .

=0 otherwise.
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Note that y € D, (=R or Ry) if and only if y/c(z,o) € D for (z,a) € I3 x O3 owing to
Assumption 3.2.4. If (z,y,«a) € Igo x Dy X O3,

/ Y
1 fOé (c(x,oz) )

% (w.y.0) = ,
dy oz, @) A ((J(;}_@)
Ofa Y
8_1/1 _ _8(log C) (1 8_¢ ) Wj (c(z,a))
8@] (l’, y7 Oé) aa] (ZTJ, Oé) + y ay ($7 y7 Oé) + C(x7 a)fa (C(ja)>

for (z,a) € I}, x ©3. The values of these functions may be undefined if (z,y,o) € I3 x

0D, x O3. Otherwise their values are equal to zero.
First, we show an example such that the class of jump size densities satisfies Assump-

tion 3.2.4 (i).

Example 3.5.1 (Normal distribution). Let O3 be a smooth open convex set which is com-
pactly contained in R x Ry x R®=2 and let f, be of the form

fa(2) = ! exp <—M) for a = (aq, ) € O3.

V2mad 203
Then,
1 oy Nwa @l
Y(z,y,a) = —loge(x, o) — §log(27roz2) - T on I, xR x ©3.
@3
Since

' Ofa zZ— 0 Ofq 1 2 —ay)?
=6 e =200, e - {-L Bt e,

we have

oY B 1 Yy
oy ") = T a o (o(x,a> ) O“) |

o d(log ) O o
ekl - _ 1 ol _dwe) 7
aal (x7y7a) aal (ZC,O{) +yay (x7y7a) OCQC(JZ,OC) 9
o d(log c) o 1 1 e —al
ekl — _Z\ e 1 kol - ) A
o d(logc) o
ekl - _ 1 il
B (z,y,a) P, (z,0)| 1+y o (v,y,a)
for (z,y,a) € Igo xRy x O3 and j = 3,...,ds. Furthermore, the derivatives of ¢ and logc
with respect to a are bounded on I3, x O, and so
a2w 2 s
Fasoy )| S COAID. 5o (wy.0)| S COU+ ) for (v.y,0) € I, xR x 65,

where C' is a constant not depending on (x,y,a). Thus, Assumptions 3.2.9 to 3.2.12 are
satisfied.
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Next, we show examples such that the class of jump size densities satisfies Assump-
tion 3.2.4 (ii).
Example 3.5.2 (Gamma distribution). Let O3 be an open interval compactly contained in
R, x (1,00) x R®B=2 and let f, be of the form
1
f(x(z) = F(CYQ)O{?Q
0 (2 <0)

zoelemz/an (45 0),

for a € ©3. Then,

z
U(z,y,a) = —loge(x, o) —logI'(an) — aglog oy + (g — 1) log z — o on I3 x Ry x ©;.

Since

e = (250 - 1) £

z (o751
8fo¢ %) % F/ (042)

D (2) = (_04_1 + O%) fa(2), 8a2(z> = {—m —log a; + log Z} Ful2),

for z >0 and o € O3, we have

8_1/}( ) . Qg — 1 . 1

8y r,Y,u) = y ozlc(x, 04)7

A ~ 9(logc) O L Jloe, vy
5o V) = e, @I, 080 | S\ T T e |

oY ~ O(loge) o 1 I["(a) Yy
aT@(av,y,oz) =y (x,a)(l + ya—y(:fc,y,a)> + @.a) {— T(an) —loga; + log —c(:z;,a) } ;

o ~ OJ(loge) o
etana) = =5 o) (145 . 000))

for (z,y,a) € I, x Ry x O3 and j = 3,...,ds. Furthermore, the derivatives of ¢ and logc
with respect to a are bounded on I3 x O, and so

824 2
a0y do; 0
where C' is a constant not depending on (x,y,a). Thus, Assumptions 3.2.9 to 3.2.12 are

satisfied, and p in Theorems 3.3.1 and 3.3.2 can be taken as p € (0,1/4). Here, we remark
that

<c <C+lyl) for (w,y,0) € I x R x O,

(z,y, )

(z,y, )

1
/—fa(z) dz < oo if and only if g > 1.
z

Example 3.5.3 (Inverse Gaussian distribution). Let O3 be smooth, open, convex and com-
pactly contained in R2 x R%~2, and let f, be of the form

8P —as(z—a1)? /2032 (
——e Z (2 >0)
fa(z) = 223 ’
0 (2 <0)
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for a € ©3. Then,

2
Qg | s — 041‘
_ % o Yy o c(z,a) 5
Y(x,y, ) = 2z, a) {log o 3log c(x,oz)} 207y on I; xRy x O3.
Since
a3 as(z — ay) oz — ay)?
R = B JAC)
Ofo . (2 — ap) 0 fa . 1 |Z—041|2
ooy (2) = a? fal2), Doy (2) = 200 203z fal2)
for z >0 and o € O3, we have
2
oY 3 O‘Z{cuy,a) - 0‘1} Q2| ) ~ 0‘1‘
—(Jf,y,(%):——— 2 - 2 )
Ay 2y oty 200 s
o ~ 9(logc) o (i — )
8751(337%04)* T«l(%a) 1+Z/8—y(1’7y>04) +W,
o ~ d(loge) o 1 ey — al?
Doy (v,9,0) = - Doy (z,0){ 1+ y(’?y (z.9,0) | + 2opc(z, ) 20y
oY ~ O(logc) o
aaj(xayva)_ aaj (I,Oé) 1+y8y(xay7a)

for (z,y,a) € Ig‘zo xR, x O3 and j = 3,...,ds. Furthermore, the derivatives of ¢ and logc
with respect to o are bounded on [;fo X O3, and so

2
A SO(@) asy — 0,

M(x7 Y, Oé)
Jor (z,y,0) € I3, x Ry x O3 with y/c(z,a) # oy. Thus, Assumptions 3.2.9 to 3.2.12 are
satisfied, and p in Theorems 3.3.1 and 3.3.2 can be taken as p € (0,1/8).

sup
(z,a)efgo X O3

Example 3.5.4 (Weibull distribution). Let O3 be smooth, open, convex and compactly con-
tained in Ry x (1,00) x R®=2 and let f, be of the form

az—1
Q2 Z ’ —(z/a1)®
PRI b1 ) B

0 (2<0)

for a € ©3. Then,

U(z,y,a) = @.a) {loga2 — aglogag — (g — 1) log c(x,a)} on Iio x R x O3.
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Since

%(z) — {1 4 (i)az} Fal2), %(z) = {i +log — — (ai>a2 logail} fa(2)

8061 (03]

for z >0 and o € O3, we have

o (g —1) iy Yy o2l

gy v = e ()

o ~ O(logc) o Q9 Y a2
gy e = =25 (1o e ) - s e ()
Y

@ag

(fE,y,Oé):_ aaQ

0 0 0
aT:i('Iayva)__ 804] (x,a)<1+y£($,y,a)>

for (z,y,a) € f;fo xRy x Oz and j = 3,...,ds. Furthermore, the derivatives of ¢ and logc
with respect to a are bounded on I3 x O, and so

§O<1> as y — 0,
Y

for (z,y,a) € I3 X R x O3 with y/c(x,a) # ay, where C is a constant not depending on
(x,y,«). Here, we remark that

82
—(.7}, Y, Oé)

Oa;0y

sup
(x,a)Elgo x O3

1
/—fa(y) dy < oo if and only if s > 1
Yy

and that there exists a constant C' > 0 such that

ly*2 ogy| < lyi* ' log | + [y52 " logye| + C for yr <y < .
Thus, Assumptions 3.2.9 to 3.2.12 are satisfied, and p in Theorems 3.3.1 and 3.3.2 can be
taken as p € (0,1/4).

Example 3.5.5 (Log-normal distribution). Let O3 be smooth, open, convexr and compactly
contained in R x [0,00), and let f, be of the form
1

fa(z) = ﬁa?z
0 (2 <0)

67(1ogz7a1)2/2a§ (z > 0)’
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for a € ©3. Then,

Ul p,0) = s {—10 \Zgos)y - 2%2 T 2} on I’ xR, x O
Since
ey = {1 -2 o),
O N e e 120

for z >0 and o € O3, we have

g—Z(x,y,a) = —% (m + a3 + log c(:rL,oz)>

2 o) =~ 208 o) (142 ) ) 4

%(az,y,a) = _8%(()520) (x,a)(l + y%(az,y,a)) + c(a:—l,a) {—O% + |10gc(%§§ — a1|2} ;

etan) = =2 0) (145 . 000))

for (z,y,a) € Ig‘zo xRy x B3 and j = 3,...,ds. Furthermore, the derivatives of ¢ and logc
with respect to o are bounded on [;fo X O3, and so
0%

M(‘f’yaa)

1 1
sup §O<—+—logy> as y — 0,
vy oy

(z,a)elgo x O3

for (z,y,0) € I3 X R x O3 with y/c(x,a) # ay, where C is a constant not depending on

(x,y,a). Here, we remark that
1 logy
/(—+ )m@my<m
Yy Yy

and that there exists a constant C' > 0 such that

1
‘glogy‘ﬁ +C fory1 <y <y

1 1

— logyi| + |—log ¥
hn Y2
Thus, Assumptions 3.2.9 to 3.2.12 are satisfied, and p in Theorems 3.3.1 and 3.3.2 can be
taken as p € (0,1/4).

Remark 3.5.1. As in the assumptions of Theorems 3.5.1 and 3.3.2, the range of p depends
on q in Assumption 3.2.10 (ii.b) and Assumption 3.2.12 (ii.b). So, the differences of the
ranges of p in the ezamples above are caused by the differences of q: ¢ = 2 in Example 3.5.3,
q =1 in Examples 3.5.2 and 3.5.4, and any q € [0,1) in Example 3.5.5.
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3.6 Numerical experiments

In this section, we show some numerical results of our estimator for the Ornstein-Uhlenbeck
processes given by

dX? = —poXFdt +ey/oodW, +£dZ), X5 =z €R, (3.21)

where ZtAs is a compound Poisson process with the Lévy density f,, and with the intensity
Ae. In particular, we fix g = 0.8 and A, = 100, and we employ the inverse Gaussian densities
fa’s as in Example 3.5.3.

To avoid the discussion about how we find some ’appropriate’ v, and p, we suppose that
the intensity A. = 100 is known, and we set

CNp = {AZXe is not contained in the [Np] largest positive numbers of {A?Xa}j,l n},

=1,...

DNp .= {AZXe is one of the [Np| largest positive values of {A;‘Xa}jzl ,,,, n}

where Np > 0 and [-] is the ceil function (we take Np = . in Table 3.6.1, and Np =
50,100,150 in Table 3.6.2). Then we replace 1gner and 1pnes in (3.2) with

1 &b and 1 pYD respectively,

and we calculate our estimator QAM = (fine, One, Ope1, Gneo) as in (3.3) from a sample path
of (3.21) under the true parameter (1, 0q, o1, g2). We iterate this calculation 1000 times
with n = 200, 500, 1500, 5000 and € = 1,0.1,0.01. and we summarize the averages and the
standard deviations of én,g’s in Tables 3.6.1 and 3.6.2.

77777

which conflicts Assumption 3.2.8, however, for simplicity of our numerical experiment we
replace D" with 15,;\5 above. We give an intuitive explanation of the reason why we use
this setting as follows: The continuous increments go to zero and the jumps are remained as
n — oo with ¢ fived (recall that in our asymptotics n increases much faster than 1/e and \. as
in Theorems 3.3.1 and 3.3.2), and in this case, from Lemma 3.4.8, {ARX® | AFX® > v, /nP}
with ‘appropriate’ vy, and p would be the \. largest numbers of {Xf] }; in probability. Hence,

we replace D" with ﬁ,;\f . Also, it follows from Lemma 3.4.8 that?

*Proof of 337, Lpa 25 1: Take an arbitrary 5 € (0,1). If 37_, Ipae < (1=mn)Ac, then the [A-]-th
largest number of {A7X};_; _, is negative, and so Sei lpre =300 Liapxesoy > Shy Lpr.er. Thus,
k

it follows from Lemma 3.4.8 that

1< 1<

asn — 00, £ = 0, \c = 00, A\c/n — 0 and e\, — 0. Since Y ;_, 15~p < [Np] for any Np > 0,
k

1 n ()\5}
P<A21E25_1>n> §P<T>1+n> — 0 as Az — o0.

€ k=1
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Remark 3.6.2. For any Np > 0, we have Y, 1,v, < [Np], and the equality holds when
k

,,,,,

In Table 3.6.1, the averages of (u, 0, a1, az) becomes close to the true paramter as n grows
and e goes to zero. However, the standard deviation of as for each fixed ¢ increases as n
grows. The reason why it happens is expected as follows: If n is not enough large with
fixed €, then the continuous increments in A} X* is too larger than the jumps. In this case,
some of A?X*®’s including positive jumps may be negative, and furthermore even positive
A7} X*®’s may be closer to zero than the jumps included in them. This implies that A} X*®
with small jumps are ignored and the remained A} X¢ regared as jumps are underestimated,
and therefore, the mean and standard deviations of ay are near zero when n is few with fixed
€.

In Table 3.6.2, we consider the following two cases: One is C}"*" is too loose, i.e., the
case Np = 50, and the other is C}"°” is too tight, i.e., the case Np = 150. In the former
case, some small jumps are not removed for the estimation of (u,c) and are in short supply
for the estimation of a. Thus, it is natural that o, aq, as take bigger values than true values.
In the latter case, some Brownian increments are mistakenly regarded as jumps, and so oy
is closer to zero than the true value.

3.7 Appendix

In this section, we state and prove some slightly different versions of well-known results.
More precisely, we prepare Lemma 3.7.2 as localization of the continuous mapping theorem.
Lemma 3.7.3 is a slightly different version of Lemma 9 in Genon-Catalot and Jacod [11].

Lemma 3.7.1. Let X be a Banach space, and let {go},ce be a family of functions from X
to R, and let T,, be the composition operator on L*([0,1]; X') generated by gy, i.e.,

T4, (9.) := go(y.)  for g. € L=([0,1]; X).

Suppose that 3. is a version of a function of C([0,1]; X) in L>([0,1]; X), and that {gs}yeeo is
equicontinuous at every points in Image(y.) := {y, |t € [0,1]}. Then, there is a neighborhood
Ny of y.in L=([0,1]; X) such that {Tg, },cq 1s a family of operators from A, to L>=([0,1]),
and 1s equicontinuous at y..

Proof. Fix an arbirary n > 0. For each x € Image(y.), there exists §, > 0 such that if
|z —2'||y < 6z, x, 2" € X, then

n
sup |go(z) — go(2)| < b%
9co

Since Image(y.) is compact in X, there are finite points z1, ..., z; € Image(y.) such that

Image(y.) C | B(wi,6,,/2),

i=1
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Table 3.6.1: Sample means (with standard deviations in parentheses) of

0,.c’s, based on 1000 sample paths from the OU process (3.21) with inverse
Gaussian f, as in Example 3.5.3 with (p0, 09, o1, @02) = (1.0,2.0,1.2,0.5)
and with Np = A\.(= 100).

‘ n = 200 n = 500 n=1500 n =>5000 true

u | e=1.00| 0.989141 1.016899 1.007082 1.002970 1.0
(0.068480) (0.061120) (0.050175) (0.048399)
e=20.10 | 0.978554 1.024855 1.010180 1.001047
(0.060345) (0.055804) (0.045878) (0.043720)
e=0.01] 0.912885 1.005487 1.010121 1.000906
(0.030783) (0.026575) (0.026601) (0.023244)

o | e=1.00] 1.920753 1.886210 1.968844 2.002727 2.0
(0.165435)  (0.086929) (0.053557) (0.039613)
e=0.10 | 1.942879 1.874213 1.969947 2.002262
(0.163257)  (0.085449) (0.050984) (0.035897)
e=0.01] 2.379172 1.932349 1.961293 2.000971
(0.179838) (0.074998) (0.053425) (0.035739)

ap | €e=1.00| 1.326379 1.160758 1.192697 1.178391 1.2
(0.288811) (0.200419) (0.222514) (0.211085)
e=0.10 | 1.381731 1.129643 1.173607 1.188770
(0.308788) (0.205739) (0.204944) (0.212477)
e=0.01] 1.731430 1.231199 1.153611 1.182000
(0.371265) (0.259936) (0.204695) (0.210043)

as | € =1.00 | 0.099654 0.358790 0.500877 0.533962 0.5
(0.060910) (0.095974) (0.155927) (0.215146)
e=0.10 | 0.109767 0.322201 0.483286 0.527680
(0.067662) (0.096333) (0.144849) (0.202786)
e=0.01| 0.266864 0.077035 0.363671 0.490374
(0.177911) (0.055310) (0.140516) (0.208392)
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Table 3.6.2: Sample means (with standard deviations in parentheses) of
0,.c’s, based on 1000 sample paths from the OU process (3.21) with inverse
Gaussian f, as in Example 3.5.3 with (0, 09, o1, 202) = (1.0,2.0,1.2,0.5)

and with (n,e, A\:) = (5000, 0.01, 100).

H o Qi Q3

true 1.0 2.0 1.2 0.5
Np =50 0.851616  3.028911 2.103949  3.025209
(0.045741) (0.424354) (0.392786) (0.971591)

Np =100 1.000666 2.001121 1.183114 0.484350
(0.024807)  (0.037437) (0.211747) (0.205930)

Np =150 1.040850  1.933562  0.807600  0.144996
(0.024657)  (0.022237) (0.143919)  (0.0226383)

where B(;,d,,/2) is the ball in X' centered at z; with radius 0y, /2. If [[. — y.{| oo 013,20y < 0
with 0 := min{d,,/2,...,0,,/2}, then for a.e. t € [0,1] there is i, € {1,...,k} such that
Yi, Yt € B(wi,, 0z, ). Thus, we obtain

sup |go(9:) — 9o (ye)| < sup [go(Fs) — go(i,)| + sup |ga(ws,) — golye)| < m,
e 0co 0e0
that is,
sup [|go(7.) — 9o(Y) || 1 0,17y < 7-
e
This implies the conclusion. O

We prepare the following lemma as localization of the continuous mapping theorem.

Lemma 3.7.2. Under the same assumptions as in Lemma 3.7.1, suppose that {g(-,0)}ycq
is equicontinuous at every points in Image(y.) := {y; |t € [0,1]}, and that (Y*).er is a net of
X -valued bounded random processes on [0, 1] with a directed set I. If the net (Y*),er converges
in probability to y. in L>=([0,1; X)), i.e.,

1Y: = y»HLoo([o,u;X) 0,

then
. p
Zlég lg(Y",0) —g(y., H)HLOO([O,l]) > 0.

Proof. Take an arbitrary n > 0. It follows from Lemma 3.7.1 that there exists a sufficiently
small 0 > 0 such that if [[§. — y.[| oo (o,1.2) < 0+ then {g(.,0)}yce C L=([0,1]) and

Sup Hg(g> 9) - g(yv Q)HLOO([O,l]) <1,
0cO

and therefore,

P(s0p 190.0) = 900 Oy > 1) < P (17" = 0l oo > ).

This implies the conclusion. O
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Remark 3.7.1. By the proof of Lemma 3.7.2, it also follows that for any Cy > 0,

P <21€18 lg(Y*,0) — g(y-ae)HLoo([o,u) > C2> <P (HY.L - UHLOO([(),U;X) > Cl) )

where Cy depends only on Cy, g and Image(y.).

Lemma 3.7.3. Suppose that (X, ||| y) is a Banach space, {(n,€)} is a directed set and {G;"* },

is a filtration for each n,e. Let x;*°, U be X-valued G!"°-measurable random variables.

(i) If for anyn >0
%I?P(E B 65 > n) 0

then for any n > 0

11H1P< X?’E > 77) — 0
n.e — N
(ii) If
i S;}EP<;E[IIX?’EHX 1G] > M) —0,
then
lim supP( Ell > M) _o.
M—o0 n,e — N

Proof. Since for any n,7" > 0

P ( > X
=1

<

3 n,€ n,e 1
=, ZE“HX% v |G Sﬂ) <-F
X i=1 n

n,e
> Ix; ”xl{zi"_lE[HxFHX!g?_"i]sw}]
=1

E

S|

n—1
(E[HXZ’EHX ’ ggfl] + Z HX?’EHX> 1{2?:1E[Hx?’5|\x ’gf’i]ﬁn/}]
i=1

n—1
1 n'
< Bl + 3 (I e = BIN N | G250) Lo ons]ny | < =
=B +; G N = BN [ G250 ) Lmppeey o] <o }] <
we obtain
- n,e /'7/ - n,e n,e
P X >n) <—+P ZE[HXi’HX}gz‘i1J>771 .
i=1 x " i=1
Thus, the assertions (i) and (ii) follows. O

Remark 3.7.2. When X = R, this lemma can be shown by the same argument in the proof of
Lemma 9 in Genon-Catalot and Jacod [11]. However, the argument does not work in general,

since we may not have Lenglart’s inequality (e.g., Lemma 3.30 in Jacod and Shiryaev [18])
when X is a Banach space.
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Remark 3.7.3. We have an immediate consequence from this lemma that

YOEINGIGE] = 0p(rme) = DX = 0plrne),
i=1 i=1

Z E [HX?76H ‘ gznfl] = Op(rn,e) = ZXZ‘M = OP(Tn,E)a
i=1 i=1

where m, . € R.
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