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Abstract

Visual feedback system, which combines virtual (computing) and real spaces

by sensing the status of real space and feedbacking valued information to real

space after visual processing in virtual space, draws increasing attention in

fields such as robotics, factory automation (FA), and entertainment. Object

tracking, which includes detection and tracking, is one of the most impor-

tant visual processing techniques for real-time applications. While different

detection and tracking methods exist depending on the application, the key-

point matching-based detection method, which detects rigid objects, and the

differential-based tracking method, which tracks the object with high accu-

racy, are important technologies in FA and robotics. On the other hand, the

change in real space continues while visual processing is running in virtual

space, so the visual processing with a large delay will introduce large errors,

making the ultra-low delay visual processing critical to ensuring the validity

of the result outputted from virtual space. Among various visual processing

architectures, FPGA (Field-Programmable Gate Array)-based stream archi-

tecture is the one that is possible to achieve both complex spatial process-

ing and delay lower than 1 ms while suitable algorithms and architectures

are needed. Therefore, the FPGA-based ultra-low delay object tracking al-

gorithm and architecture are required to ensure the validity of the tracking



results when feedbacking the tracking results output from the object tracking

process in the virtual space to the real space.

FPGA-based stream architecture achieves ultra-low delay by perform-

ing visual processing while transmitting the image data from the sensor to

the processor, which also means the processing for each image pixel is fully

pipelined. The complex spatial processing in the object tracking algorithms

has always been a problem, preventing object tracking from being imple-

mented with fully pipelined architecture. Here shows three types of repre-

sentative complex spatial processing. Spatial multi-search processing, which

explores multiple possibilities corresponding to a factor and selects the best

result among them to achieve robustness to the factor, exists in keypoint

matching-based detection. When implementing it in FPGA with a fully pipelined

style, many resources are required due to the extensive processing performed

in the spatial domain for wide-range parameter search. Dependent sequential

processing, which sequentially performs two dependent processing, exists in

differential-based tracking. The dependent relation for two processing per-

formed in a local spatial area generates not only high resource costs but also

high delay. Spatial iterative processing, which performs the same processing

iteratively with the output of the previous processing as the input, exists in

differential-based tracking. Iterative processing of a large amount of spatial

processing not only consumes expensive resources but also causes a signifi-

cant delay in the FPGA implementation. On the other hand, the object moves

along with being affected by disturbance while the tracking processing is run-

ning, resulting in the difference between the output state from virtual space



and the true state in real space, where the difference remains albeit greatly

reduced by ultra-low delay processing. Especially for tracking, the difference

introduces tracking errors caused by delay.

To solve the above problems and achieve ultra-low delay object tracking

architecture, temporal mapping and temporal prediction are proposed based

on the high temporal resolution characteristics of the ultra-low delay system.

Temporal mapping takes advantage of the small difference between succes-

sive frames of a sequence taken at the high temporal resolution, simplifying

and reducing the amount of processing in the spatial domain by mapping a

large amount of processing performed in the spatial domain to the temporal

domain. Temporal prediction takes advantage of the detailed moving infor-

mation captured at the high temporal resolution, compensating for changes

due to movement by predicting changes in the temporal domain using a pre-

diction model. Combining these two methods, the problem of spatial multi-

search processing is solved by mapping the spatial search into the temporal

domain based on a temporal prediction-based mapping rule, the problem of

dependent sequential processing is solved by breaking the data dependency

using the previous frame’s data and temporal changes predicted by tempo-

ral prediction, the problem of spatial iterative processing is solved by map-

ping the iterative processing into the temporal domain, and the tracking error

caused by delay is solved by predicting the motion change using temporal

prediction.

The dissertation is organized as follows.



In Chapter 1, the background of the dissertation is described, including

the widespread applications of visual feedback systems in modern life, the

importance of object tracking in real-time applications, the importance of the

ultra-low delay in the visual feedback system, the problems, and the concept

of proposals. Furthermore, the target and organization of this dissertation are

shown.

In Chapter 2, aiming at an ultra-low delay detection, temporal template

prediction-based keypoint matching is proposed. Keypoint matching-based

detection, which consists of feature detection and feature matching, is one of

the popular detection algorithms. Handling scale change is one of the most

challenging tasks for keypoint matching-based detection to be implemented

into FPGA with ultra-low delay. The conventional method [IEICE 2013] pro-

posed the multi-templates method, which handles size change by preparing

multiple templates with various sizes for feature matching and searches for

the template with the best matches. With a large number of spatial process-

ing performed in the spatial domain, lots of resources are needed for FPGA

implementation. Given that the scale change occurs continuously in the vi-

sual system with the high temporal resolution, it becomes possible to predict

the size of the template for the next frame using the current existing match-

ing results. The proposed method maps the feature-matching processing for

various sizes of templates into the temporal domain based on the temporal

template prediction rule, significantly reducing the complexity that exists in

the feature matching. The proposed method is implemented as a practical sys-

tem by integrating a high-speed camera (BASLER acA2000-340km) and an



FPGA (Xilinx XCZU7EV4). Hardware evaluation shows that the proposed

method is capable of handling a wide range of scale changes (11 templates)

at a resource cost of less than 80 % and achieves three times resource reduc-

tion in the matching module when compared with the conventional method.

Additionally, it also shows that the designed detection system is capable of

sensing and processing 1000 fps sequence (Resolution: 640×360) with a de-

lay of 0.97 ms/frame.

In Chapter 3, to achieve ultra-low delay tracking with high real-time ac-

curacy, temporal prediction-based parallel motion estimation and temporal

iterative tracking are proposed. Differential-based tracking estimates the mo-

tion between two image patches based on derivatives of image intensities.

Lucas Kanade method [CVPR, 1994] [CVIM 2003] is one of the representa-

tive differential methods. Methods that Accelerate LK with FPGA, such as

[IJASS 2019], have been presented. However, they rarely achieve high accu-

racy and low delay tracking for rotated objects. Estimating both translation

and rotation changes is crucial in practical applications. The conventional

method [CVIM 2003] estimates the translation first, and rotation is estimated

using the image patch that has been warped in accordance with the estimated

translation. The data dependency-based sequential processing introduces in-

termediate processing, which is the image patch updating, leading to signifi-

cant delays in addition to resource expenditures. The proposed method breaks

the data dependency between translation and rotation estimations by using the

translation predicted based on previously estimated translations for rotation

estimation, allowing the translation and rotation estimations performed in a



parallel way. The independent processing style of rotation and translation

estimations avoids the aforementioned problems caused by intermediate pro-

cessing. High accuracy over the subpixel level is usually required for precise

location. The conventional method [CVPR, 1994] applies Newton-Raphson

iteration to direct a more accurate motion estimation. However, the large

number of iterative processing performed on the spatial domain results in

significant resource costs in addition to delay. On the other hand, the object

moves along with being affected by disturbance while the tracking processing

is running, making the tracking error depend not only on the image process-

ing itself but also on the delay. The proposed method maps the spatial itera-

tive motion estimation into the temporal domain to avoid a large number of

spatial processing and predicts the motion that occurs during the tracking pro-

cessing ongoing to reduce the tracking error caused by delay. The proposed

methods are implemented as a practical system by integrating a high-speed

camera (BASLER acA2000-340km) and an FPGA (Xilinx ZCZU9EG). Al-

gorithm evaluation shows that the proposed method achieves subpixel-level

real-time accuracy while the conventional method fails to track the target in

case of tracking the object moving at a speed of 1 pixel/ms. Hardware evalu-

ation shows that the designed tracking system supports sensing and process-

ing 1000 fps sequence (Resolution: 640×360) with a delay of 0.94 ms/frame

while costing resources less than 30 %.

In Chapter 4, the overall dissertation is summarized, and the future works

are described. To realize ultra-low delay detection and tracking, temporal

mapping and temporal prediction-based algorithms and architectures are pro-



posed. The proposed methods are implemented as a practical system by in-

tegrating a high-speed camera and an FPGA. Tracking and detection systems

that have been proposed both achieve delays of less than 1 ms/frame when

processing a 1000 fps sequence with a resolution of 640×360.
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Chapter 1

Introduction

1.1 Visual feedback systems

Recently, there has been a surge of interest in many fields for a visual feedback system

that integrates real and virtual (computing) spaces through image information. As shown

in Fig. 1.1, the visual feedback system senses the real space and feedbacks valuable

information to real space after visual processing, playing a significant role in fields such as

factory automation (FA), robotics, and entertainment. In the field of FA, it helps industrial

robots bring components to the correct position, improving industrial productivity. In the

field of robotics, it aids daily-life robots in picking up falling objects, supporting humans

better. In the field of entertainment, it helps projectors map interesting content, providing

a splendid show. Therefore, the visual feedback system is key to creating a smarter life in

the future.

Since the camera serves as the machine’s eye and the image sequence it records pro-

vides a wealth of information, various visual processing technologies have been devel-

oped. The visual processing technology required for a visual feedback system varies de-

pending on the application’s needs. Object tracking is required to locate the 2D position

1
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Figure 1.1: Visual feedback system.

of the target. The 3D calculation is required to calculate the distance between the camera

and the target. To estimate the camera’s location in an environment while creating the

environment map, visual simultaneous localization and mapping (SLAM) are necessary.

1.2 Object tracking

Object tracking, which contains detection and tracking, is required in many visual

feedback applications. Fig. 1.2 shows three scenes that require object tracking. The pro-

jector must recognize the hands and follow them throughout the projection period in the

projection mapping scene where projectors project computer graphics onto the dancer’s

hands. When picking up components with an industrial robot arm, the robot must first

identify the component and then track it throughout the picking-up process. The daily-

life robot must first identify the falling cup before tracking it throughout the picking-up

process in the scene of falling cup picking. As a result, object tracking is an important

technology in visual feedback applications.

Various detection and tracking methods have been presented, depending on the type of
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Hand detection
Hand tracking

Component detection
Component tracking

Glass detection
Glass tracking
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Object tracking (detection + tracking) is required in many visual feedback 
applications

Figure 1.2: Object tracking in visual feedback applications.

target and applications. Fig. 1.3 shows several categories of detection and tracking meth-

ods. Detection methods are divided into categories based on whether the target can be

defined by a rule or not. Rule-based methods, such as keypoint matching-based detection

[1] and shape detection-based method [2], are used for the target that can be defined with

rules. Keypoint matching-based methods aim at targets with texture features, while shape

detection-based methods aim for targets with distinct contours. It’s noteworthy that the

keypoint matching-based method contains keypoint detection and feature matching where

feature matching differs according to the movement of the target is rigid or deformable.

For targets that are challenging to specify with rules, learning-based techniques such as

CNN-based detection [3] are used. Tracking methods are divided into categories accord-

ing to the application requirements. Some of them, such as differential-based iterative

tracking [4], focus on achieving high accuracy over the subpixel level, whereas others,

such as probability distribution-based tracking [5], focus on tackling complex situations.

In the fields of FA and robotics, detecting texture object with rigid movement and tracking

3
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Figure 1.3: Technologies of object tracking.

it with high accuracy is one of the key issues.

1.3 Importance of ultra-low delay

High integration of real and virtual (computing) spaces enables seamless actuation

of actuators, which also means that the actuators don’t need to stop actuating during the

processing period. The actuators’ seamless actuation enables tasks that need an immedi-

ate reaction, bringing better support for people by completing challenging tasks such as

picking up a falling glass, but also improving the productivity of the factory by effectively

completing industrial tasks such as component picking. The magnitude of the delay from

sensing to feedback determines how well real and virtual spaces can be integrated. Fig.

1.4 illustrates the significance of delay in the scene when the daily-life robot attempts to

complete the difficult task of picking up the falling cup. It has been noted that changes in

real space persist as visual processing is running in virtual space. When the processing
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Figure 1.4: Importance of ultra-low delay in real-time scene.

in virtual space is performed in a large-delay style, a significant change may occur in real

space during the processing period. With invalid information being fed back to the robot

at a low frequency, it’s difficult for the robot to actuate properly to handle changing situa-

tions in real space. In scenes where the change in real space is controlled by the actuator,

the large-delay style is applied by stopping the actuator’s action to prevent the change

from occurring during the processing period. This, however, leads to a decrease in pro-

ductivity. When the processing in virtual space is performed in the low-delay style, only

minor changes occur in real space during the processing period, suppressing the validity

of the virtual space’s output from decreasing. With valid information being fed back to
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Figure 1.5: Visual processing architectures.

the robot at high frequency, the robot actuates seamlessly to tackle the changing situa-

tion in real space. Therefore, the ultra-low delay visual system, which realizes real-time

computing, is one of the critical technologies for integrating real and virtual spaces.

In the real-time visual system, there’s a balance between the temporal resolution and

the spatial resolution due to the limitation of the camera. Here, the temporal resolution

is known as the camera frame rate, while the spatial resolution is known as the camera

resolution. In general, the temporal resolution decreases with the increase of spatial res-

olution. It’s possible to get higher temporal resolution with smaller spatial resolution.

Considering the balance between the temporal resolution and the spatial resolution, this

dissertation takes 1 ms, which is the interval of two successive images in a sequence with

a temporal resolution of 1000 fps, as a representative of ultra-low delay.

The existing visual processing architectures can be clustered into the general-purpose

type and specific-purpose type. The general-purpose type is with Neumann architecture,

implemented on processors such as CPU, and GPU. Thanks to the memory-based pro-

cessing style of Neuman architecture, it is widely compatible with various I/O devices
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1.3 Importance of ultra-low delay

and capable of implementing many complex visual algorithms, allowing it to realize a

variety of visual systems with visual processing times ranging from 10 to 100 ms/frame

[6, 7, 8]. Recently, with the development of GPU, some research [9] shows that it’s possi-

ble to achieve visual processing time below 10 ms/frame when implementing algorithms

with appropriate complexity. However, besides the visual processing time, a delay over

two frames exists in the sensing and feedback procedure due to the memory-based con-

nection between I/O and processor, which is also known as the I/O bottleneck. As a

result, the general-purpose type doesn’t satisfy our requirement due to the large delay.

The specific-purpose type is implemented with specific architecture on processors such

as FPGA, and other VLSI devices. Different from the general-purpose type, which has a

fixed hardware architecture, the specific-purpose type has a relatively flexible architecture

that the developer can control, making I/O bottleneck possible to be solved, which also

means that the ultra-low delay visual system gets possible to be realized. So far, two types

of ultra-low delay visual system, which targets sensing and processing image within mil-

liseconds/frame level, have been presented. Vision chip-based low delay system, which

integrates the photosensor and processing element, was presented by Ishikawa et.al [10].

Its special architecture solves the I/O bottleneck issue. Since then, various visual systems

[11, 12] based on vision chips have been developed. M. Ishikawa [13] presents the devel-

opment of the vision-chip-based low-delay system, including architectures, algorithms,

and applications. However, its special architecture also limits the algorithm complexity,

making it challenging to apply more practical algorithms with spatial complexity. FPGA-

based ultra-low delay visual system solves the I/O bottleneck by a stream-based architec-

ture that performs visual processing while transmitting the image data from the sensor to

the processor. Furthermore, when compared to the vision chip, FPGA allows for more

7



1. INTRODUCTION

Real 
space

𝑡1 𝑡𝑛

Image receiving

𝒕

…

…

𝑡2

Virtual 
space

…

Detection

Result output

Image receiving

Tracking

Result output

Image receiving

Tracking

Result output

< 1 msProcessor: FPGA

Minimize the 
difference between 
output and true states

Figure 1.6: Targets of this dissertation.

complex algorithms to be implemented with a more flexible architecture. Because of the

low delay and flexible architecture, an increasing number of FPGA-based ultra-low delay

visual systems [14, 15, 16, 17, 18, 19, 20, 21] have been presented. The aforementioned

three architectures are graphically depicted in Fig. 1.5.

1.4 Targets and problems

The goal of this dissertation is to develop object tracking that can adapt to changing

situations as they happen in real space, in other words, minimize the difference between

the object tracking’s result and the real space’s true state at the moment that the object

tracking result is outputted from virtual space. FPGA-based 1-ms object tracking archi-

tectures and algorithms are essential for achieving it, as graphically shown in Fig. 1.6.

Object tracking here includes both detection and tracking. The tracking method accu-

rately tracks the target after the detection method has identified it. Keypoint matching-
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based detection and differential-based iterative tracking methods are selected to recognize

and track the textured object with high accuracy, which is one of the important tasks in

the fields of FA and robotics. The detection and tracking are implemented individually in

two FPGA boards as two different systems in the first trial.

Reducing the delay is one of the keys to developing object tracking that can adapt to

changing circumstances. By using an FPGA-based stream architecture, it is possible to

achieve a delay of less than 1 ms while having a relatively high level of computational

complexity. However, simply implementing the detection and tracking algorithms into the

FPGA is hard to achieve a delay of less than 1 ms. There is a demand for object-tracking

algorithms and architectures that fit the stream-based architecture. Complex spatial pro-

cessing in the conventional object tracking algorithms is the bottleneck for them to be

implemented into stream-based architecture. Here introduces three representative com-
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1. INTRODUCTION

plex spatial processing in the object tracking algorithms.

• Spatial multi-search processing, which performs the same processing for different

parameters and selects the result with the most suitable parameter, exists in keypoint

matching-based detection. It’s graphically illustrated in Fig. 1.7, where B0, ..., Bn

are processing units of B for different parameters, and C is the selection unit that

selects the results with the most suitable parameter. B0, ..., Bn can be processed

parallelly in the spatial domain, however, a large number of paralleled heavy pro-

cessing requires a significant amount of resources when it’s implemented in FPGA

with a fully pipelined style.

• Dependent sequential processing, which sequentially performs two dependent pro-

cessing, exists in differential-based tracking. It’s graphically illustrated in Fig. 1.7,

where processing unit C relies on the processing result of processing unit B. Inter-

mediate processing, which updates the information from A based on the result of

B, is introduced due to the dependent relation between B and C. As a result, the

intermediate processing results in a significant delay as well as high resource costs.

• Spatial iterative processing, which performs the same processing iteratively with

the output of the previous processing as the input, exits in differential-based track-

ing. It’s graphically illustrated in Fig. 1.7, where Bi is the nth iterative processing

for B. B0, ..., Bn are dependent, therefore they can only be processed sequentially.

The large number of processing being performed sequentially in the spatial domain

results in a significant delay as well as high resource usage.

On the other hand,the object moves along with being affected by disturbance during the

period when visual processing is running in the virtual space. The difference between the
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output state from virtual space and the true state in the real space caused by delay remains,

albeit greatly reduced by ultra-low delay processing, as shown in Fig. 1.7. The difference

introduces the tracking errors caused by delay, particularly for tracking.

1.5 Proposed concepts

To solve the problems addressed in Section 1.4, this dissertation proposes temporal

mapping and temporal prediction based on the characteristics of high temporal resolu-

tion in the ultra-low delay visual processing system. Fig. 1.8 gives an overview of the

proposed concepts.

Compared with the general visual processing system which has an input of about

60 fps, the ultra-low delay visual processing system has an input with a higher frame

rate of over 1000 fps. The high sampling rate brings the following merits. Firstly, the
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change between two adjacent frames is quite small compared with the 60 fps sampling

rate, allowing the heavy processing in one frame to be sampled into the adjacent frames.

Secondly, the detailed motion is possible to be captured, allowing temporal change to be

estimated with high accuracy. These advantages offer a fresh perspective for develop-

ing algorithms that consider not only the spatial domain but also the temporal domain.

In addition, derivative information is possible to be captured with a high sampling rate,

allowing the derivative-related information, such as force, acceleration, and so on, to be

estimated at high accuracy. We believe this will increase the scope of the ultra-low delay

visual processing system’s applications.

Based on the aforementioned characteristics of high temporal capturing, this disserta-

tion proposes:

• Temporal mapping, which maps a large number of spatial tasks into the temporal

domain. The change between adjacent frames is small under the high framerate

capture, so adjacent frames are assumed to contain the same data when the move-

ment is slow. It’s possible to map a large number of spatial tasks into the adjacent

frames based on the above assumption. As a result, the number of tasks in one

frame is significantly reduced.

• Temporal prediction, which predicts temporal change. With detailed motion cap-

tured by the high-framerate camera, the temporal motion change is estimated with

high accuracy. Here a prediction model, which predicts temporal change based on

the previously estimated results, is designed. The predicted change is applied to

compensate for changes due to movement.
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Combining the temporal prediction and temporal mapping, the problems addressed in

Section 1.4 are solved. Regards the problem of spatial multi-search processing, the spatial

searches are mapped into the temporal domain based on a temporal prediction-based map-

ping rule, significantly reducing the number of spatial processing. Regards the problem

of dependent sequential processing, the data dependency between B and C is mapped into

the temporal domain based on a temporal prediction, breaking the dependency relation

between B and C in the spatial domain. Regards the problem of spatial iterative pro-

cessing, the spatial iterations are mapped into the temporal domain, signicantly reducing

the number of spatial processing and delays. Additionally, applying temporal prediction

to predict the motion change significantly reduces the tracking error introduced by the

movement that occurred during the visual processing period.

1.6 Organization of dissertation

The contents of this dissertation is organized as follows.

Chapter 1 introduces the background of this dissertation, including the introduction of

visual feedback system, the importance of object tracking and ultra-low delay, the prob-

lems, and the concept of proposals. To achieve ultra-low delay object tracking, temporal

template prediction-based keypoint matching for ultra-low delay detection, and temporal

prediction-based temporal iterative tracking and parallel motion estimation for ultra-low

delay tracking are proposed in Chapter 2, and Chapter 3, respectively. Chapter 2 is based

on one paper [14] which describes the keypoint matching-based detection. Chapter 3 is

based on one paper [19] which describes the differential-based tracking.

Chapter 2 describes the proposed temporal template prediction-based keypoint match-

13



1. INTRODUCTION

ing for ultra-low delay detection. The proposed method maps the processing of spatial

search for suitable template into the temporal domain based on a temporal template pre-

diction mapping rule. Since less search processing is handled in the spatial domain, the

resource cost is significantly reduced when implemented in an FPGA.

Chapter 3 presents the temporal prediction-based temporal iterative tracking and par-

allel motion estimation for ultra-low delay tracking. Firstly, the proposed method breaks

the data dependency between the translation and rotation estimations by mapping it into

the temporal domain based on temporal prediction. Since there’s no spatial data depen-

dency, translation and rotation estimations are carried out in parallel, solving the delay

and resource costs issue caused by intermediate processing introduced by spatial data de-

pendency. Secondly, the proposed maps the spatial iterative processing into the temporal

domain, significantly reducing the resource cost and delay caused by spatial iterative pro-

cessing. Meanwhile, a temporal prediction, which predicts the translation and rotation

changes, is used to compensate for the motion change that occurs during the period of

visual processing.

In chapter 4, the whole dissertation is concluded and future works are introduced.
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Chapter 2

Temporal template prediction-based
keypoint matching for ultra-low delay
detection

2.1 Introduction

This chapter focuses on detection. Detection, which identifies and recognizes the

object, is one of the essential technologies in the fields of FA and robotics. In the field of

FA, it helps industrial robots such as orthogonal robots pick up the correct components

by recognizing the target component. In the field of robotics, it aids daily-life robots

in picking up the falling cup by identifying the falling cup. The ability to be robust to

rotation and scale changes, which broadens the application range, is critical in the above

applications.

Detection algorithms have been developed over the years as one of the key technolo-

gies in computer vision. Shape detecting-based methods, such as hough transform [2],

vote in a four-dimensional accumulator array that includes x, y, rotation, and scale, mak-

ing it possible to be robust to rotation and scale changes. However, voting in a four-
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2. TEMPORAL TEMPLATE PREDICTION-BASED KEYPOINT MATCHING
FOR ULTRA-LOW DELAY DETECTION
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Figure 2.1: Keypoint matching-based detection.

dimensional accumulator array and searching the maximum in the array bring huge com-

putation complexity, making the algorithm too complex to be implemented on a dedicated

device. CNN-based methods [22] have a significant advantage in terms of robustness

compared with many rule-based methods. However, dealing with complex situations al-

ways comes with complex network models, making the algorithm too complex to be im-

plemented on a dedicated device. Meanwhile, the learning process requires lots of data,

which are difficult to obtain in the field of FA. Keypoint matching-based methods, such as

SIFT [1], SURF [30], and ORB [31], generate rotation-robust features and scale pyramid,

making them possible to be robust to rotation and scale changes. As SIFT is not hardware-

friendly because of high computation complexity, SURF and ORB are proposed to reduce

the computation complexity. In comparison to the algorithms introduced above, the key-

point matching-based method is a good candidate that strikes a good balance between

computation complexity and robustness.

Keypoint matching, which extracts the feature from a local region around a keypoint

and finds the matches between keypoints with the extracted feature, plays an important

role in many computer vision technologies, such as object detection [23], 3D reconstruc-
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tion [24], and camera localization [25]. Fig. 2.1 illustrates the process for keypoint match-

ing being applied to template-based detection. Generally, the keypoint matching consists

of two parts: 1) feature detection; and 2) feature matching.

• Feature detection, which mainly consists of keypoint detection and keypoint de-

scription, detects and describes the feature in a local region. Firstly, intensities

in the local region surrounding a pixel are used to determine if a pixel in the im-

age is a keypoint or not. FAST [33] is commonly used for keypoint detection in

real-time systems because of its fast computational ability. However, FAST does

not provide a good measure of cornerness, which makes it not repeatable enough.

Harris corner detector [34], which defines a mathematical form to find the corners

according to the nature of the corner, is not fast as FAST, but provides a good mea-

sure of cornerness and is more repeatable. The results in Heinly’s work [35] also

shows that Harris does quite well when coupled with many descriptors. Secondly,

intensities in the local region surrounding the keypoint are used to describe the fea-

ture of the keypoint. Scale-invariant feature transform (SIFT) [1] and speeded-up

robust features (SURF) [30] are commonly used for keypoint description because

of their good performance. However, the high computational complexity and the

large dimensionality of the generated descriptor make it difficult to implement on

embedded systems in real time. In recent years, binary descriptors such as bi-

nary robust independent elementary features (BRIEF) [36] and oriented FAST and

rotated BRIEF (ORB) [31], can directly build short descriptors with low compu-

tational complexity by comparing the intensities of pixel pairs in the surrounding

area of the keypoint. Using comparison as the mostly basic operation and with the
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high parallel computational ability, BRIEF and ORB are much more suitable for

the FPGA implementation.

• Keypoint matching, which determines whether two keypoints are matched accord-

ing to the feature similarity, finds a set of matches between the query image and

the train image. With the development of feature matching, feature matchers such

as Brute force-based matcher, FLANN-based matcher, and ANNOY-based matcher

have been presented. The brute force matcher, which finds one best match for each

query descriptor, is commonly used in the implementation of embedded systems

because of its simple structure.

In recent years, several works [40]–[43] that try to accelerate the keypoint matching

by FPGA have been presented. So far, no work targets on the high frame rate and ultra-

low delay matching system is found. Suzuki’s work [40] and Rao’s work [41] support

processing 60 fps videos within 16 ms/frame. The processing time of Heo’s work [43]

reaches 18 ms/frame, which is far away from the need in a high frame rate and ultra-low

delay system. As a result, the current existing works do not support processing 1000 fps

videos within 1 ms/frame.

Directly implementing an algorithm on FPGA is difficult to achieve a delay lower

than 1 ms. The algorithm and architecture that adapt the FPGA-based stream processing

style are necessary. Complex spatial processing is the main problem preventing the con-

ventional methods from adapting the FPGA-based stream processing style. In order to

design a keypoint matching-based detection system, which senses and processes 1000 fps

sequences within 1 ms, the following two problems in the conventional methods need to

be solved.
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• A large number of spatial processing in the robust solution for scale change. In

general, in order to achieve scale change robustness, a scale pyramid is made for

keypoint detection and keypoint description to be applied. The generation of the

scale pyramid, however, is frame-level-dependent processing, resulting in frame-

level delay. Meanwhile, the heavy processing in scale pyramid generation makes

FPGA implementation challenging. In Suzuki’s work [40], instead of making a

scale pyramid, three templates of varying sizes are prepared for matching, avoiding

the significant delay caused by scale-pyramid generation. When dealing with a

wide-scale change, a large number of templates are prepared for feature matching.

This process is a spatial search for a suitable template. A large number of spatial

processing brings a significant resource consumption when it’s implemented on

FPGA.

• Complex operations in the rotation-robust feature detection. A keypoint orientation

operator is needed in the descriptor description part when considering the rotation

robustness of the matching system. Intensity centroid, first presented in Rosin’s

work [44], is a fast and accurate orientation operator. ORB [31] uses this method

to build a rotation-robust descriptor that is capable of real-time performance. How-

ever, several operations which are not friendly for FPGA implementation are in-

cluded in this method, such as multiplication, division, and inverse trigonometric

function. The conventional works [41], [42] try to implement the intensity centroid

into FPGA in a hardware-friendly way. However, they still cannot be capable of the

high frame rate and ultra-low delay performance. Symmetry is also an orientation

operator presented in Rosin’s work [44], which decides the keypoint orientation
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based on the corner symmetry. With high parallel computation ability and without

using operations such as division and inverse trigonometric function, symmetry is

more suitable for FPGA design. However, the orientation calculated by this method

is with a range of (0◦, 180◦), which is not enough for the improvement of the rota-

tion robustness in the matching system.

This chapter proposes an ultra-low delay keypoint matching-based detection system

and its real-time hardware implementation on FPGA. The main contributions of this work

are summarized as follows.

• A temporal template prediction-based feature matching method is proposed to re-

duce the number of spatial processing in spatial template search. The proposed

method maps the spatial template search into the temporal domain based on a

template-prediction rule.

• An intensity-directed symmetry method is proposed to calculate the keypoint ori-

entation in a hardware-friendly way from the algorithm level. Assumes that the

keypoint orientation will maximize the corner symmetry and it will point to a re-

gion with high intensity, intensity-directed symmetry uses the operations with less

computational complexity and can calculate keypoint orientation with a range of

(0◦, 360◦).

• An FPGA-based system-level architecture, based on one chip-level implementation

of the proposed algorithm, is proposed for real-time applications with sensing and

processing delays of less than 1 ms/frame. Extensive experiments on both algorithm

and hardware have been conducted to thoroughly validate the proposed algorithm

and system.
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Figure 2.2: Framework of the proposed keypoint matching-based detection.

The remainder of this chapter is organized as follows. Section 2.2 describes the pro-

posed keypoint matching-based detection method. Section 2.3 describes the hardware

architecture and system implementation. Section 2.4 presents the algorithm evaluation

results and analysis. Section 2.5 presents the hardware evaluation results and analysis,

followed by the conclusion in Section 2.6.

2.2 Proposed keypoint matching-based detection method

2.2.1 Framework of the proposed keypoint matching-based detec-
tion

The framework of the whole detection method is shown in Fig. 2.2. In the keypoint

detection part, Harris [34] is used to detect the corner as the keypoint. And the local
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maximum neighboring check presented in work [45] is applied to reduce the large delay

in Harris [34] caused by the global sorting. In the feature description part, the rotation-

robust binary descriptor of each keypoint is generated based on ORB [31]. And there are

mainly three important steps in the feature description part for generating the rotation-

robust descriptor. First, the orientation of the keypoint is calculated. Next, the patch used

to generate the descriptor is rotated according to the orientation. At last, the descriptor

generated in the new patch is robust to rotation. In the feature matching part, the matched

keypoint for each keypoint in the current frame of a video stream is found from the tem-

plate based on brute force matching. For each detected keypoint in the current frame, a

candidate match with the minimum distance in the object template can be found according

to the similarity of the keypoint descriptors, where the similarity can be measured by the

hamming distance. The candidate match is considered a match only when the correspond-

ing minimum distance is less than a certain threshold. Regarding the templates, templates

with different sizes are prepared to deal with size changes. Template predicted through

template prediction and two of its derivate templates are used for feature matching.

The positions of the proposed two methods are also shown in Fig. 2.2. Temporal tem-

plate prediction-based feature matching is proposed to deal with the size-change problem

with a reasonable number of spatial procesing. Intensity-directed symmetry is proposed

to calculate the orientation of the keypoint in a hardware-friendly way from the algorithm

level. These two proposals will be introduced in detail in this section.

2.2.2 Temporal template prediction-based feature matching

Enabling the keypoint matching-based detection system to be robust to scale change

is a challenging task. In the software algorithm, a scale pyramid is generally used to
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Figure 2.3: Conceptual difference in feature matching.

make scale change robust descriptor by applying feature detection and description on

it. However, the complex procedure makes it difficult to adapt the FPGA-based stream

architecture. In order to handle large-scale changes in a hardware-friendly way, temporal

template prediction-based feature matching is proposed. This method makes use of the

advantages of high-framerate capture.

Fig. 2.3 shows the conceptual difference between the conventional multi-template

input-based method (MT) [40] and the proposed temporal template prediction-based method.

Multi-template input, which achieves robustness of scale change by performing feature

matching with multiple templates of different sizes, is presented for still image or low-

framerate sequences. With lots of processing performed in the spatial domain for template

search, huge resources are required to cover a wide range of scale changes. The scale

change is found to be successive under high temporal resolution, indicating that the scale

change is predictable using the temporal data. A temporal template prediction-based map-
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Figure 2.4: Temporal template prediction-based feature matching.

ping rule is made using the aforementioned characteristic, allowing the spatial template

processing to be mapped into the temporal domain. With a small amount of processing

performed in the spatial domain, the proposed method handles a wide-scale change at a

small resource cost.

The detail of temporal template prediction-based feature matching is illustrated in Fig.

2.4. Templates T0, ..., Tn, which have different sizes, are prepared in order of size. Instead

of performing feature matching for all templates, the template TM( f ) that best fitted the

scene in frame f is predicted according to the template prediction-based mapping. To

achieve a stable template prediction, TM( f )−1 that with a smaller size and TM( f )+1 with a

larger size are also selected for feature matching. Temporal template prediction for frame

f is based on the matching results of frame f − 1, as shown in Fig. 2.5. The predicted
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Figure 2.5: Example of temporal template prediction.

template number M( f ) of frame i is described as:

M( f ) = M( f − 1) + arg max
i

(R f−1(i)) (2.1)

where i is a flag including values of −1, 0, +1, andi = −1, i = 0, i = −1 are assigned to

template TM( f )−1, TM( f ), and TM( f )+1 respectively. R f−1(i) represents the number of matches

between frame f−1 and template which corresponding with flag i. For the example shown

in Fig. 2.5, template TM( f−1)−1 (i = −1) gets the maximum of matches, indicating that the

captured object is going to be smaller. Therefore, M( f ) = M( f − 1) − 1, and the template

with a smaller size is predicted as the template that is best fitted for frame i.

2.2.3 Intensity-directed symmetry

Fig. 2.6 gives the conceptual comparison between conventional methods and intensity-

directed symmetry. Conventional method Intensity centroid defines the vector points from

the keypoint to the intensity centroid as the keypoint orientation. Conventional method

symmetry assumes that the keypoint orientation maximizes the corner symmetry, and
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finds the line which bisects the patch around the keypoint best as the keypoint orienta-

tion. The proposed method assumes that the keypoint orientation will bisect the patch

best and will point to the region with high intensity. Firstly, the line which bisects the

patch is found based on the orientation definition that the keypoint orientation will bi-

sect the patch best. Next, the direction of this line is determined based on the orientation

definition that the keypoint orientation will point to the region with high intensity. The

orientation consists of the line and its direction is defined as the keypoint orientation.

Conventional1: 
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Proposal	
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Figure 2.6: Conceptual difference of orientation calculation.

The detailed process of the intensity-directed symmetry is as the following:

Step 1: Calculate the pre-orientation ϕ̂. The pre-orientation ϕ̂ is defined as the line that
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bisects the region surrounding the keypoint best. In order to find the pre-orientation, the

symmetry value S Vϕi for each hypothesized orientation ϕi is calculated. In the conven-

tional method symmetry [44], Rosin rotates the image window by the hypothesized orien-

tation, and the difference of the intensity sum between the two regions that are separated

by the x-axis is used to measure the corner symmetry. The pixel intensity in the rotated

patch is obtained by the bilinear interpolation, which is too complex for a high frame rate

and ultra-low delay system. Here, instead of rotating the image window and obtaining

the pixel intensity by bilinear interpolation, the pixel intensities in two regions (region1

and region2) that are separated by the hypothesized orientation ϕi in the patch around the

keypoint (corner) are directly used to measure the corner symmetry. The symmetry value

of a patch for each hypothesized orientation is defined as:

S Vϕi = |
∑

Iregion1ϕi −
∑

Iregion2ϕi | (2.2)

where
∑

Iregion1ϕi is the sum of intensities in region1 when hypothesized orientation is

ϕi,
∑

Iregion2ϕi is the sum of intensities in region2 when hypothesized orientation is ϕi.

With these symmetry values, the pre-orientation ϕ̂ can be found as which minimizes the

symmetry value in all the hypothesized orientations:

ϕ̂ = min
ϕi

S Vϕi (2.3)

It’s necessary to mention that 32 hypothesized orientations are prepared to calculate the

pre-orientation in the current system. The accuracy of the calculated orientation is pro-

portional to the number of the hypothesized orientations. It’s possible to select a different

number of hypothesis orientations according to the needs of the target.

Step 2: Determine the direction of the pre-orientation ϕ̂. After getting the pre-orientation
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ϕ̂, it’s needed to make sure which direction the final orientation ϕ⃗ points to along the pre-

orientation ϕ̂. The line which is perpendicular to the pre-orientation ϕ̂ divides the patch

into two regions (region3 and region4). The final orientation ϕ⃗ is determined by:

ϕ⃗ =

 ϕ⃗1,
∑

Iregion3ϕ⃗1
>
∑

Iregion4ϕ⃗2
ϕ⃗2,

∑
Iregion3ϕ⃗1

≤ ∑ Iregion4ϕ⃗2

(2.4)

where
∑

Iregion3ϕ⃗1
is the sum of intensities in region3 pointed by direction ϕ⃗1,

∑
Iregion4ϕ⃗2

is the sum of intensities in region4 pointed by direction ϕ⃗2. It’s worth mentioning that∑
Iregion3ϕ⃗1

and
∑

Iregion4ϕ⃗2
have been calculated in step 1, which makes the implementation

of this step quite simple.

In the implementation of intensity-directed symmetry, firstly, the sum of intensity

in region1
∑

I(x, y)region1ϕi and the sum of intensity in region2
∑

I(x, y)region2ϕi for each

hypothesized orientation ϕi are calculated. This process is called the region sum (RS)

calculation. In order to balance the processing speed and the resource cost, an asymptotic

structure is put forward to calculate the region sum (RS).

Fig. 2.7 shows the conceptual comparison between a general method and the proposed

method in the implementation of the region sum calculation part:

Fully parallel region sum calculation: With a high parallel computational capability,

it’s general to consider a fully parallel structure as shown in Fig. 2.7 (a). The region sum

(RS) for each hypothesized orientation ϕi is calculated by:

RS region1ϕi =
∑

Iregion1ϕi (2.5)

RS region2ϕi is calculated in the same way with RS region1ϕi . High process speed can be

achieved with this method while the problem of resource cost comes into consideration.

Firstly, the resource cost of RS PU itself is heavy when the patch used to calculate the
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Figure 2.7: Conceptual comparison of the region sum computation. (a) Fully paralleled
region sum calculation; (b) Asymptotic region sum calculation.

orientation is large. The resource cost in region sum calculation will become quite large

when all the RS PU are paralleled. Secondly, the resource cost is proportional to the

number of the hypothesized orientation, which leads to large increments in resource con-

sumption when the number of hypothesized orientations increases.

Asymptotic region sum calculation: Because of the small change in the number of

processing data between two adjacent hypothesis orientations as shown in Fig. 2.8, an

asymptotic structure is put forward to calculate the region sum according to:

RS region1ϕi = RS region1ϕi−1
+ DRS region1ϕi (2.6)

where DRS region1ϕi is the difference region sum in region1 between ϕi and ϕi−1. For the

first hypothesis orientation ϕ1, RS region1ϕ1
is calculated according to Eq. 2.5. RS region2ϕi is

calculated in the same way with RS region1ϕi . With the asymptotic region sum calculation,

the region sum can be calculated with less resource utilization. Furthermore, there will be
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Figure 2.8: The motivation of asymptotic region sum calculation.

a small change in resource consumption when the number of the hypothesis orientations

changes.

2.3 Hardware architecture and system implementations

2.3.1 Hardware environment

Fig. 2.9 shows the demonstration environment of the proposed ultra-low delay track-

ing system. A Camera⇒ PL (FPGA board)⇔ PS (FPGA board) system is designed with

a high-speed camera and system-on-chip FPGA board, where PS is the processing system

with the Debian operation system, and PL is the programmable logic.
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(a) FPGA 
board(PL+PS)

(b) Camera

Figure 2.9: Demonstration of the tracking system. (a) Camera: Basler acA2000-340km;
(b) FPGA: Zynq UltraScale+MPSoC ZCU104 (ZU7EV).

2.3.2 Overall hardware architecture

The system-level framework of the proposed detection system is shown in Fig. 2.10.

The tracking processing is completed on one chip, where PL serves as the main process-

ing unit of the tracking system, and PS serves as the initializer and postprocessor. The

PL receives a pixel stream from a high-speed camera, which is grayscale data fed in 10

pixels at a time. The data is transformed into four paralleled pixels in the camera link

receiver, serving as the image process core’s input. The primary means by which PS

communicates with PL is via a register-access bus. It carries out the two critical data

communications listed below. a) Transmit the template data from PS to PL when PS
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Figure 2.10: System-level framework of the proposed tracking system.

serves as the initializer; b) Transmit the predicted position and angle from PL to PS for

further post-processing when PS serves as the postprocessor. Besides, an external mem-

ory DDR4-SDRAM, which allows a large amount of data communication between PL

and PS, is provided for simulation and post-analysis.

In the image process core, The data goes through keypoint detection, orientation cal-

culation, image patch rotation, descriptor generation, and feature matching modules. Fi-

nally, 32-bit data outputs from the image process module. 16-bit data of the output in-

cludes image information, feature information, and matching information. The extra 16

bits can store additional information for further use.

2.3.3 Pixel selection-based 4-1-4 thread transformation

In the hardware design, it’s challenging to balance the process speed and resource cost

with the parallel structure. As shown in Fig. 2.11, if a system processes one data at one
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time, the resource cost of the system is small, but the processing speed is slow. If the

system processes four data (more than one) at one time, the processing speed becomes

four times faster while the resource cost becomes four times larger. However, in the

matching system, it’s found that the feature description and feature matching are only

needed for the pixel which is a keypoint. Therefore, the idea that making sure there is only

one keypoint in the simultaneously processed four pixels and selecting the pixel which is

a keypoint from these four pixels to do the main process comes into consideration.
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Figure 2.11: Motivation of pixel selection based 4-1-4 thread transformation.

Pixel selection based 4-1-4 structure makes it possible to use one-thread resource con-

sumption to do the four-thread processing. In the proposed 4-1-4 structure, the overall

matching system is paralleled into four threads, allowing for the processing of four pix-

els at the same time. There are mainly three parts in this method: 1) local maximum
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neighboring check; 2) pixel selection; and 3) allocation.

1) Local maximum neighboring check: In the keypoint detection part, the Local max-

imum neighboring check is utilized to reduce the large delay caused by the global sorting

in the Harris [34]. Here, it has another function. The block size of the local maximum

neighboring check is set as 7 × 7 to make sure that there is only one keypoint in the

simultaneously processed four pixels.

2) Pixel selection: Before feature description and feature matching, each pixel of

the four simultaneously processed pixels is distinguished whether it is a keypoint or not

according to the flag made for each pixel in the key point detection part, and only the pixel

which is a keypoint is selected to get its description in the feature description module and

find its match from the template in the feature matching module.

3) Allocation: Following feature description and matching, the corresponding results

are allocated to these four simultaneously processed pixels. For the pixel that is a key-

point, the result after the processing of the feature description and feature matching is

directly allocated to it. For the pixel that is not a keypoint, the result which represents

not matched is allocated to it. Although there is only one pixel processed in the feature

description module and feature matching module, the throughput of the system is four

pixels/clock.

2.3.4 Register storage-based parallel matching

In the feature matching part, a parallel matching based on the register storage is put

forward to accelerate the process of the descriptor matching. The conventional method

stores all the descriptors of the template in a RAM. Data stored in RAM can only be

accessed one by one, which leads to sequential processing with a large delay when finding
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Figure 2.12: Process flow of register storage based parallel matching.

the match from the template. It’s reasonable to store the data in the RAM when the

data length is large, such as Suzuki’s work [40] which implements SIFT (128 bytes for

each keypoint) based matching system on FPGA. However, the data length of the binary

descriptor is short, and a 16-byte binary descriptor is generated in the high frame rate and

ultra-low delay matching system, which makes it possible to store all the descriptor data

in a register. Register storage has the property that all the data stored in it can be accessed

at one time, which makes it possible to design a parallel process.

Fig. 2.12 shows the process flow of the register storage-based parallel matching. 64

descriptors selected from the template are stored in a template register. There are mainly

three parts in the matching process. Firstly, 64 128-bit xor data between the currently

processed descriptor and 64 descriptors in the template register can be obtained simul-
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taneously through the “XOR” operation. Secondly, the number of ‘1’ for each xor data

which represents the hamming distance between the currently processed descriptor and

each descriptor in the template is counted. In order to achieve a high maximum frequency,

64 128-bit xor data is divided into 4 parts, and every 64 32-bit xor data are processed si-

multaneously. At last, the minimum distance can be found after obtaining all the distance

between the currently processed descriptor and all the descriptors in the template, and a

distance threshold is prepared to eliminate the outmatching pairs. The whole matching

process is made fully paralleled and pipelined. In this way, a feature-matching module

with high process speed and low delay is designed.

2.4 Algorithm evaluation

Algorithm evaluation is utilized to evaluate the validity of the intensity-directed sym-

metry in the matching system. The development environment for the software is Visual

Studio C++ 2013. Opencv 2.4.11 is utilized to finish the implementation.

2.4.1 Evaluation datasets introduction

In order to evaluate the validity of the intensity-directed symmetry in rotation robust-

ness, two sequences are made by the two images shown in Fig. 3.1. Fig. 3.1 (a) is from

the USC-SIPI image database1, and Fig. 3.1 (b) is from the Oxford dataset [46], [47].

The test sequences are shown in Fig. 3.2. For each test image, eight rotated images can

be got from rotating the original test image every 11.25◦. These 8 rotated images and the

original image together constitute a test sequence. The original image and every rotated

1http://sipi.usc.edu/database/
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image can constitute an image pair. Each test sequence includes 8 image pairs, and a total

of 16 image pairs are used to evaluate the rotation robustness of the proposed algorithm.

(a) (b) 

Figure 2.13: Images used for sequence making. (a) Lena: 512×512 pixels; (b) Boat:
800×640 pixels.

Five image pairs are used to test if the proposed algorithm has an influence on other

image conditions except for the rotation, such as blur changes, illumination changes,

JPEG compression, and viewpoint changes. These image pairs are from the Oxford

dataset [46], [47], which is widely used and publicly available.

2.4.2 Matching performance definition

There are two images in each image pair, which are called image (1) and image (2)

respectively. Given an image pair, for each keypoint in image (1), a match is succeeded

when the nearest neighbor of this keypoint in the image (2) is found. To evaluate the

matching performance, ”matching score” is used as a metric, which is recommended in

the Oxford benchmark [46], [47]. The ”matching score” is defined as:

matching score =
# correct matches

min (# kpts(1), # kpts(2))
× 100% (2.7)
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(a) 0o   (b) 11.25o   (c) 22.5o   (j) 90o   

(a) 0o   (b) 11.25o   (c) 22.5o   (j) 90o   

…… 

…… 

Figure 2.14: Sequences used for evaluation of rotation robustness.

where “# correct matches” represents the number of correctly matched keypoints between

2 images, “# kpts(1)” is the number of keypoints detected in the image (1), # kpts(1) is the

number of keypoints detected in the image (2).

# kpts(1) = # kpts(2) = 500 is set in this evaluation. A good performance always goes

along with a high “matching score”.

2.4.3 Experiment results and discussions

In order to check the validity of the proposed keypoint orientation calculation method,

the matching performance of the conventional method (intensity centroid [44]) and the

proposed method (intensity directed symmetry) are evaluated in the same matching sys-

38



2.4 Algorithm evaluation

(a) (b) 

(c) (d) 

(e) 

Figure 2.15: Datasets used for evaluation of other image conditions. (a) Bikes: 1000×700
pixels, blur change; (b) Trees: 1000×700 pixels, blur change; (c) Leuven: 921×614 pix-
els, illumination change; (d) UBC: 800×640 pixels, JPEG compression change; (e) Wall:
1000×700 pixels, viewpoint change.

tem (except the orientation calculation part).

Table 2.1 shows the matching performance in rotation. Column 3 shows the matching

performance of the proposed method. The matching scores of the proposed method for

all the image pairs are all more than 70 %, which verifies the validity of the proposed

method in rotation change. Column 4 shows the difference in the matching score between

the conventional method and the proposed method. The difference in the matching score

between these two methods is quite small (within 2.2 %), which implies the proposed

39



2. TEMPORAL TEMPLATE PREDICTION-BASED KEYPOINT MATCHING
FOR ULTRA-LOW DELAY DETECTION

Table 2.1: Matching performance in rotation on matching score (%).

Sequence IC(Conventional) IDS(Proposed) Difference

Lena

11.25◦ 78.8 79.2 +0.4
22.5◦ 80.4 79.2 -1.2

33.75◦ 78.8 76.8 -2.0
45◦ 76.8 75.8 -1.0

56.25◦ 75.4 73.8 -1.6
67.5◦ 77.8 77.6 -0.2

78.75◦ 80.5 79.2 -1.3
90◦ 99.6 99.6 0.0

Boat

11.25◦ 84.8 84.6 -0.2
22.5◦ 83.6 82.0 -1.6

33.75◦ 82.0 80.4 -1.6
45◦ 78.4 77.2 -1.2

56.25◦ 79.4 77.2 -2.2
67.5◦ 83.2 83.2 0.0

78.75◦ 85.8 86.2 +0.4
90◦ 100 100 0.0

IC: Intensity centroid
IDS: Intensity directed symmetry
Difference = IDS - IC (‘+’: IDS is better; ‘-’: IC is better)

method can achieve almost the same performance as the state-of-art orientation method -

intensity centroid in the case of rotation change.

Table 2.2 shows the matching performance in other image conditions, such as blur

change, illumination change, JPEG compression, and viewpoint change. Column 4 shows

the difference in the matching performance between the conventional method and the

proposed method. The difference in the matching score between these two methods is

quite small (within 1.0 %), which implies that the proposed method doesn’t cause a large
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Table 2.2: Matching performance in other image conditions on matching score (%).

Image pair IC(Conventional) IDS(Proposed) Difference
bikes 47.0 46.0 -1.0
trees 16.8 16.8 0.0

leuven 56.0 55.4 -0.6
ubc 82.0 82.2 +0.2
wall 20.0 20.0 0.0

IC: Intensity centroid
IDS: Intensity directed symmetry
Difference = IDS - IC (‘+’: IDS is better; ‘-’: IC is better)

influence in other image conditions, and the proposed method can achieve almost the

same performance as the conventional method.

2.5 Hardware evaluation

In the hardware evaluation, ZCU104 (ZU7EV) as FPGA offered by Xilinx, is used for

hardware evaluation. The logic synthesis on FPGA is performed by Vivado 2019.1.

Table 2.3: Hardware performance of the image process core.

Item Image process core

Logic
Utilization

# of LUT 167,938(72.89%)
# of FF 139,486(30.27%)

# of BRAM 45(14.42%)
# DSP 36(2.08%)

Performance
Frequency 100MHz

Process time(1 frame) 0.97(<1ms)

Table 2.3 shows the hardware performance of the designed image process core. Row
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(a) (b) 

(c) (d) 

Template 

Video stream 

Figure 2.16: Examples of the matching result using the image process core.

2–5 shows the resource utilization of the image process core. Row 6–7 shows the perfor-

mance of the image process core based on the input clock frequency of 100 MHz. The

whole system works at 100 MHz, and the processing time to perform one frame tracking

is around A (time to transmit one frame data) + B (4 lines’ delay), which is less than

1 ms/frame. Currently, the image process core is connected to the high-speed camera

(acA2000-340km) which captures 640 × 360 video at a frame rate of 1000 fps. Fig. 3.4

shows examples of the matching result using the designed image process core. As can be

seen that it’s successful to match the template object from the video stream in the case of

rotation.

The validity of the proposed temporal-template prediction-based feature matching is

evaluated by comparing its resource cost in feature matching unit with the conventional

method Multi template as shown in Table 2.4. Colum 2 shows the resource cost of the
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Table 2.4: Resource utilization of feature matching in case of matching with 11 templates.

Item
Multi template

(conventional method)
Proposed method

# of LUT 68,222(29.61%) 45,713(9.92%)
# FF 250,054(108.53%) 167,441(36.34%)

conventional method with templates of different sizes. As can be seen in Table 2.4, the

utilization of LUT exceeds the current FPGA board’s available LUT. Colum 3 shows

the resource cost of the proposed method with 11 templates. The results show that the

proposed method allows feature matching with more than 11 templates at a small resource

cost.

2.6 Conclusion

In this chapter, an ultra-low delay keypoint matching-based detection method, named

temporal template prediction-based keypoint matching, is proposed. Temporal template

prediction-based feature matching is proposed to make the keypoint matching robust to a

wide range of scale changes with a certain small resource cost. Intensity-directed sym-

metry is proposed to calculate rotation-robust descriptor, making it possible to calculate

keypoint orientation in a hardware-friendly way. The proposed method is implemented as

a practical system by integrating a high-speed camera and an FPGA. Hardware evaluation

shows that the proposed method is capable of handling a wide range of scale changes (11

templates) at a low resource cost (<80%) and achieves three times resource reduction in

the matching module when compared with the conventional method. Additionally, it also

shows that the designed detection system is capable of sensing and processing 1000 fps
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sequence (Resolution: 640× 360) with a delay of 0.97 ms/frame.

Our future research will dive more into the following aspects. In the technical as-

pect, descriptor pattern which is more compact for FPGA, is added into consideration for

decreasing the resource cost, so as to make it possible to combine it with other image

processing techniques, such as outline deleting for a more accurate matching result. In

the application aspect, we consider applying the detection on the FA sensor and robotics

sensor. We believe the combination of high-speed systems and actuators will bring new

value to the development of robotics.
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Chapter 3

Temporal prediction-based temporal
iterative tracking and prarallel motion
estimation for ultra-low delay tracking

3.1 Introduction

This chapter focuses on tracking. Tracking, which locates moving objects over time,

is one of the most important technologies in the fields of FA and robotics. In the field of

FA, it helps industrial robots such as orthogonal robots bring components to the correct

position by tracking the marker that indicates the target location. In the field of robotics,

it helps daily-life robots pick up a falling object by locating the falling target during the

picking process. Tracking accuracy and rotational robustness are critical in the above

applications. The ability to be robust to rotation change broadens the application range,

and high tracking accuracy allows for precise location. Meanwhile, in the real-time scene

introduced above, the sensor or tracking target is still moving during the period when the

object tracking is performing in the visual system, making the tracking accuracy depen-

dent not only on the image processing error but also on the error caused by the delay.
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Therefore, a rotation-robust tracking system with high real-time accuracy becomes im-

portant.

One of the ways to reduce the error caused by delay is to reduce the delay. In recent

years, FPGA-based ultra-low delay tracking systems [18, 19, 20] have been developed.

The low delay of less than 1 ms/frame significantly reduces delay error. However, none

of them succeeds in achieving both rotation robustness and high accuracy at the image

processing level. Some of them [19, 20] achieve high image processing level accuracy

over subpixel level while they are not robust to rotation change. Besides, it is noteworthy

that the delay error still exists, albeit greatly reduced due to the low delay.

Implementing a tracking algorithm that has both rotation robustness and high image

processing accuracy in an FPGA-based ultra-low delay system, is the key to suppressing

the delay error by reducing the delay. As a result, it becomes crucial to have a rotation-

robust tracking algorithm with high image processing accuracy and appropriate computa-

tion complexity. Tracking algorithms have been developed over the years as one of the key

technologies in computer vision. Area-based methods, including correlation-like meth-

ods (such as NCC [48]) and Fourier transform-based methods (such as Fourier phase-only

correlation [49]), have a great advantage over subpixel-level motion estimation. However,

the motion estimation process is associated with high computational complexity, and they

are generally suitable for high-contrast images with translation changes. B. S. Reddy et

al. [50] extends the phase-correlation method to rotation and scale-invariant while much

more computation complexity is introduced. Probability-based methods, such as parti-

cle filter [51], have an advantage in handling complex situations by estimating the post-

probability. However, they rarely achieve image processing accuracy over the subpixel

level, and computing complexity rises sharply as situation complexity rises. Differential
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Figure 3.1: LK-based tracking.

methods, such as Lucas Kanade (LK) [4], and Horn and Schunck algorithm [52], esti-

mates the motion between two image patches through the gradient information. The LK

algorithm, according to the performance evaluation [53], provides the best accuracy and

lowest computational complexity among many differential methods. The original LK is

proposed to solve the image registration problem by iteratively estimating translation mo-

tion. J. Shi et al. [54] extends the motion model of LK into the affine model, allowing it

to estimate affine motion. However, attempting to solve a complex affine motion problem

with six parameters to estimate in a small local region yields poor motion estimation. T.

Fukao et al. [55] proposed a two-step strategy to attain more accurate estimations for

translation, rotation, and scale change in a simple way. Compared with the algorithms in-

troduced above, the LK algorithm is a good candidate that strikes a good balance between

tracking accuracy, rotation robustness, and computation complexity.

As a key motion estimation algorithm, the LK algorithm makes significant contribu-

tions to real-time vision technologies such as optical flow, feature tracking, object track-

ing, active vision, and video stabilization. Figure 3.1 illustrates the process for LK being

applied to template-based tracking. Generally, LK-based tracking consists of two parts:
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1) image warp, which warps the template image or the input frame according to the pre-

viously estimated motion; and 2) motion estimation, which estimates the transformation

between the two image patches obtained from the image warp.

A number of works [19, 56, 57, 58, 59, 60, 61, 62, 63, 64] that attempt to accelerate

LK algorithm using FPGA have been presented. Most of them [56, 57, 59, 61, 62, 63]

are far away from ultra-low delay processing. Z. Chai et al. [62] simplified LK-based

feature tracking by oversampling video sequences, which supports to process of 182 fps

sequence. F. Barranco et al. [58] achieves 270 fps for 640 × 480 resolution. H. Seong

et al. [60] achieves 170 fps for 800 × 600 resolution. Even though, the delay of these

systems is not low enough for our target. As a result, the current existing works do not

support reading and processing 1000 fps sequence within 1 ms/frame. Besides, they are

all intended for translation estimation, and no work estimating complex motions such as

rotation and affine change has been found in our investigation. In addition, the existing

works don’t take the error caused by delay into consideration.

There are mainly two challenges to designing an LK-based rotation-robust tracking

system, which supports sensing and processing 1000 fps sequences within 1 ms and

achieves high image processing accuracy. a) A large number of spatial iterative pro-

cessing. In the LK algorithm, Newton-Raphson iteration is used to direct a more accurate

motion estimation. In general, the more iterative processing, the more accurate the mo-

tion is estimated. However, the large number of spatial iterative processing not only cause

large resource cost but also cause large delay. Therefore, how to balance accuracy and

hardware performance becomes an important point in FPGA implementation. [62] lim-

its the number of spatial iterative processing to four, and implements iterative processing

by accessing two memory sessions that contain the gradient information of the reference
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frame and current frame. The memory access generates the I/O bottleneck, which makes

it hard to achieve a lower delay. [18] proposed the local search-based block matching to

replace spatial iterative tracking, making the feature tracking able to be implemented in

a full stream type. Tracking under 1 ms/frame is achieved by this method, however, the

accuracy of this method is limited. b) Sequential and dependent estimation of translation

and rotation. T. Fukao et al. [55] proposed a two-step strategy that allows for accurate

translation and rotation estimation. The translation is estimated first in the two-step strat-

egy, and rotation is estimated based on the image that has been warped according to the

estimated translation in the first step. The image-warping-based sequential structure not

only consumes a significant amount of computational resources but also causes a signifi-

cant delay, making the whole system quite complex.

In summary, since the two-step LK algorithm strikes a good balance between tracking

accuracy, rotation robustness, and computation complexity, it is therefore chosen as a

baseline for this work. However, as reviewed above, the following problems need to be

solved to achieve rotation-robust tracking with high real-time accuracy.

• The delay error still exists although ultra-low delay processing greatly reduces delay

error by reducing the delay.

• A large amount of spatial iterative processing consumes a large number of compu-

tational resources and introduces a significant delay, making the hardware system

quite complex.

• Sequential and dependent two-step estimation for translation and rotation consumes

a large number of computational resources and introduces a significant delay, mak-

ing the hardware system quite complex.
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The goal of this work is to achieve high real-time accuracy by suppressing both image

processing errors and delay errors. In terms of delay error, this work attempts to reduce it

not only by reducing the sensing and processing delay to 1 ms/frame but also by reducing

the existing delay error caused by 1 ms processing. The main contributions of this article

are summarized as follows.

• A temporal prediction-based temporal iterative tracking method is proposed to re-

duce the delay error caused by 1 ms processing and avoid the iterative processing

in the spatial domain.

• A temporal prediction-based parallel motion estimation method is proposed to solve

the resource consumption and delay problem caused by sequential and dependent

motion estimation.

• An FPGA-based system-level architecture, based on one chip-level implementation

of the proposed algorithm, is proposed for real-time applications with sensing and

processing delays lower than 1 ms/frame. Extensive experiments on both algorithm

and hardware have been conducted to deeply validate the proposed algorithm and

system.

The remainder of this chapter is organized as follows. Section 3.2 presents the related

works. Section 3.3 describes the proposed LK-based ultra-low delay tracking method.

Section 3.4 describes the hardware architecture and system implementation. Section 3.5

presents the algorithm evaluation results and analysis. Section 3.6 presents the hardware

evaluation results and analysis, followed by the conclusion in Section 3.7.
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3.2 Related work

3.2.1 Two-step LK algorithm

Two-step LK [55] estimates the translation and rotation change in two steps. Firstly,

only the translation is estimated in a small area. Secondly, changes other than the transla-

tion such as rotation and scale change are compensated in a larger area.

3.2.1.1 Translation estimation

The displacement da between two image patches, which are image I(x) and image

J(x), can be estimated by solving the following 2 × 2 linear system.

Gada = ea (3.1)

x = [x, y]T , da = [dx, dy]T

error vector ea, which depends on the difference between the two image patches, is written

as:

ea =

[
Ea1

Ea2

]
=

"
Wa

[
gtgx

gtgy

]
dx (3.2)

gx =
∂J
∂x
, gy =

∂J
∂y
, gt = I − J

and matrix Ga can be written as:

Ga =

[
Ga11 Ga12

Ga12 Ga22

]
=

"
Wa

[
g2

x gxgy
gxgy g2

y

]
dx (3.3)

As a result, da can be decribed as:

da =

[
dx

dy

]
=

[Ga12Ea2−Ga22Ea1
δa

Ga12Ea1−Ga11Ea2
δa

]
(3.4)
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δa = Ga12Ga12 −Ga11Ga22

3.2.1.2 Rotation and scale change estimation

Having obtained the estimated translation motion da, image patch in image J(x) is

updated to J(x + da). The rotation dθ and scale change ds can be estimated by solving the

following 2 × 2 linear system.

Gbdb = eb (3.5)

db = [dθ, ds]T

error vector eb is written as:

eb =

[
Eb1

Eb2

]
=

"
Wb

[
gt(−gxy + gyx)
gt(gxx + gyy)

]
dx (3.6)

and matrix Gb can be written as:

Gb =

[
Gb11 Gb12

Gb12 Gb22

]
=

"
Wb

[
(−gxy + gyx)2 (−gxy + gyx)(gxx + gyy)

(−gxy + gyx)(gxx + gyy) (gxx + gyy)2

]
dx (3.7)

As a result, db can be decribed as:

db =

[
dθ
ds

]
=

[Gb12Eb2−Gb22Eb1
δb

Gb12Eb1−Gb11Eb2
δb

]
(3.8)

δb = Gb12Gb12 −Gb11Gb22

and the transformation matrix A can be written as:

A =
[
1 + ds 0

0 1 + ds

] [
cosdθ −sindθ
sindθ cosdθ

]
(3.9)

52



3.3 Ultra-low delay rotation-robust tracking method

Having obtained the estimated motion da and db(A), image patch in image J(x) is

updated to J(Ax + da). A more accurate motion vector d = [da,db]T can be found by

repeating the above procedure in a Newton-Raphson style.

3.3 Ultra-low delay rotation-robust tracking method

3.3.1 Framework

The framework of the proposed ultra-low delay tracking method is shown in Fig. 3.2.

It mainly consists of five phases. In the first phase, an image patch Jw surrounding the

current known position in the input image is extracted by image warp 1, and a rotated

image patch Iw is extracted in image warp 2 by rotating the template image according to

the current known angle. The current known position and angle are prediction results at

time t − 1 (p(t|t − 1), θ(t|t − 1)) or the initial values (pinit, θinit). Furthermore, rotating the

template image rather than the input image patch is better suited for hardware implemen-

tation. In the second phase, spatial gradients gx and gy are calculated by differentiating the

image patch J, and gt is calculated by differencing image patches Iw and Jw. In the third

phase, position p(t) and angle θ(t) at time t are estimated by the translation estimation

and rotation estimation respectively, where p(t) = [x(t), y(t)]T . In the fourth phase, the

position p(t + 1|t) and angle θ(t + 1|t) at time t + 1 are predicted based on the previously

estimated states. Finally, p(t + 1|t) and θ(t + 1|t) are fed back to next temporal iterative

tracking. State prediction not only helps the temporal iterative tracking reduce the exist-

ing delay error and improve state estimation accuracy in high-speed cases but also enables

translation and rotation estimation to run parallelly without significant accuracy loss. A

video demonstration is available at https://wcms.waseda.jp/em/6422257c9c402.
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Figure 3.2: Framework of the proposed ultra-low delay tracking method.
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Temporal iterative trackingSpatial iterative tracking

Conventional method Proposed method

Low frame rate sequences High frame rate sequences

・The movement between 2 successive frames is smaller at a high frame rate capture
・LK tracker has advantages in smaller movement tracking 

target position

Initial position

Figure 3.3: Conceptual difference of the iterative tracking.

The positions of proposed methods are also shown in Fig. 3.2. In Sections 3.3.2

and 3.3.3, we describe the detail of the temporal prediction method and how it works in

temporal iterative tracking and state estimation.

3.3.2 Temporal prediction-based temporal iterative tracking

3.3.2.1 Temporal iterative tracking

The iterative procedure is an important part of the LK algorithm. It directs the dis-

placement to a more accurate one so as to achieve sub-pixel level accuracy. In general,

the iterative processing is performed in the spatial domain. However, this will lead to

large resource cost and delay in FPGA implementation. In this paper, high temporal

resolution-based temporal iterative tracking, a hardware-friendly algorithm, is proposed

to avoid iterative processing in the spatial domain. The proposed method mainly has two

advantages: 1) Lower delay is achieved since there’s no iterative processing in the spatial
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Figure 3.4: Frameworks of iterative tracking.

domain. 2) Dynamic tracking, which tracks faster-moving objects with coarse accuracy

and achieves higher accuracy when it slows down, becomes possible. Dynamic tracking

will be described in detail in Section 3.5.2.3.

Figure 3.3 shows the conceptual comparison between conventional spatial iterative

tracking and the proposed temporal iterative tracking. In the conventional tracking sys-

tem, the movement between two successive frames is large due to the low frame rate. In

order to track the moving object with high accuracy, iterative processing is applied to the

updated position in the same image. This is called spatial iterative tracking. According

to the experiment result shown in Section 3.5.2.3, we found that the LK tracker with one

local spatial processing has accurate tracking capabilities when the movement is small.
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Therefore, the idea that splitting the movement into several smaller ones by higher frame

rate capture and applying the iterations into the temporal domain, comes into considera-

tion.

In practice, the general real-time vision system works at 60 fps, while the high frame

rate and ultra-low delay vision system aims at working over 1000 fps. Compared to the

general spatial iterative tracking system working at 60 fps, the high frame rate and ultra-

low delay tracking system working at 1000 fps splits the movement into about 17 smaller

movements and applies 17 temporal iterative processing into the temporal domain.

The detail of the two kinds of iterative tracking is shown in Figure 3.4. Takes the

scene that glass moves from A to B as an example. Given the template image (template),

input sequence (imgi), and the initial position of A in the first frame of the input sequence

(p0 = pA), the motion estimation for movement from A to B with different visual tracking

systems is shown as follows:

1) General real-time tracking system (spatial iterative tracking): Assumes that the mo-

tion from A to B is recorded by two frames when it’s captured by a 60 fps camera, the

displacement from A to B that is estimated by a spatial iteration, is written as:

dS = di =

n∑
k=1

d(i,k) (3.10)

where n is number of spatial iteration; d(i,k) is the estimated motion vector at the kth

iteration in frame i; di is the estimated motion vector in frame i. In this case, s1 = sB. The

final estimated status is described as:

sB = sA + dS (3.11)

2) High frame rate and ultra-low delay tracking system (temporal iterative tracking): As-

sumes that the motion from A to B is recorded by 18 frames when it’s captured by a 1000

57



3. TEMPORAL PREDICTION-BASED TEMPORAL ITERATIVE TRACKING
AND PRARALLEL MOTION ESTIMATION FOR ULTRA-LOW DELAY
TRACKING

(a) Conventional method: 
Without temporal prediction

Proposed method: 
With temporal prediction 

:Predicted state:Estimated state :Searching range:Estimated history:Moving trajectory

Virtual space

Real space

𝒔𝒕

Virtual space

Real space

𝑡 𝑡 + 1 𝑡 𝑡 + 1

𝒔𝒕

ො𝒔𝒕+𝟏 ො𝒔𝒕+𝟏

𝒔𝒕 𝒔𝒕

Difference between 𝒔𝒕 and ො𝒔𝒕+𝟏 is large Difference between 𝒔𝒕 and ො𝒔𝒕+𝟏 is small

𝑡𝑖𝑚𝑒 𝑡𝑖𝑚𝑒
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fps camera, the displacement from A to B that is estimated by a temporal iteration, is

written as:

dT =

m∑
i=1

di =

m∑
i=1

d(i,1) (3.12)

where m is the number of frames that are applied to the temporal iterative tracking. In this

case, m = 17, and s17 = sB. The final estimated status is described as:

sB = sA + dT (3.13)

Compared with the general real-time tracking system with spatial iterative tracking,

the proposed tracking system performs tracking with only one local spatial processing,

effectively reducing the delay and resource cost caused by spatial iterative processing.
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3.3.2.2 Temporal prediction of target status

Temporal iterative tracking maps the spatial iterative processing into the temporal

domain, making FPGA implementation of iterative processing possible. Eq. (3.12) de-

scribes a motion tracked by temporal iterative tracking. The outcome of one temporal

iteration is described as:

st = st−1 + dt (3.14)

where st represents the output state vector of tracking for frame captured at time t; dt

represents the motion vector obtained in tracking for frame captured at time t. In the

conventional method [19], dt is the estimated motion vector d(t) calculated according to

Eq. (3.4) (3.8), and st is the estimated state s(t), where d(t) = [dx(t), dy(t), dθ(t)]T and

s(t) = [x(t), y(t), θ(t)]T . As shown in Fig. 3.5(a), the movement continues in the real space

when visual tracking is performed in the virtual space, resulting in a large difference

between output state st and the true state ŝt+1. The difference, which is primarily caused

by the tracking system’s delay when the tracking system’s estimation is accurate, persists

as long as the change occurs in real space. The difference, on the other hand, is required

to be estimated in the next temporal iteration, and it grows larger in high-speed moving

cases, resulting in a poorer estimation of the next temporal iterative tracking. As a result,

the tracking system’s output and the true state of the object differ significantly due to

the delay error and image processing error. To solve this problem, a temporal prediction

method is proposed to compensate for temporal change that occurs during the processing

period.

A predicted motion vector is introduced to compensate for the temporal change. The

predicted motion vector d(t + 1|t) and the estimated motion vector d(t) combine to form
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the motion vector dt, which is defined as:

dt = d(t) + d(t + 1|t) (3.15)

d(t + 1|t) is predicted based on previous estimated states, described as:

d(t + 1|t) = P(s(t), s(t − 1), ..., s(0)) (3.16)

s(t) = st−1 + d(t)

where P is the prediction function. In this paper, the prediction model, defined as the

velocity at time t, is formulated as:

P(s(t), s(t − 1), ..., s(0)) = s(t) − s(t − 1) (3.17)

It is worth noting that velocity estimation in an ultra-low delay visual system with a sam-

pling rate of more than 1000 Hz is much more accurate than in a general visual system

with a sampling rate of around 60 Hz, allowing for a more reliable prediction of d(t+1|t).

It’s possible to use a more practical model for complex cases. Having obtained the pre-

dicted motion vector d(t + 1|t) and the estimated motion vector d(t), the state at time t + 1

is predicted as:

s(t + 1|t) = st−1 + d(t) + d(t + 1|t) (3.18)

The predicted state s(t+1|t) is taken as the output state st of the tracking system, output at

time t+1, and fed back as the initial state to the next temporal iterative tracking. As shown

in Fig. 3.5(b), the difference between the output state and the true state is significantly

reduced by the introduced prediction motion vector, bringing two merits: a) The error

introduced by the tracking system’s delay is reduced; b) The motion estimation of next
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temporal iterative tracking gets possible to be performed accurately even in high-speed

moving cases. As a result, the proposed method significantly improves tracking accuracy

from the perspective of real-time processing.

3.3.2.3 Temporal prediction-based temporal iterative tracking

Combining temporal prediction with temporal iterative tracking, temporal prediction-

based temporal iterative tracking, which has high real-time accuracy with a low spatial

computation complexity, is proposed.

Figure 3.6 graphically illustrates the conceptual difference between the conventional

spatial iterative tracking and the proposed temporal prediction-based temporal iterative

tracking method. In the conventional method, image warp and motion estimation are

performed iteratively in the spatial domain to achieve high image processing accuracy.

However, this iterative processing takes time, resulting in a significant delay. The object

in the real space continues to move during this delay, leading to a large difference be-

tween the output state and the true state at t16 even if the output state is quite close to the

true state at t0. The proposed method maps the spatial iterative processing of image warp

and motion estimation into the temporal domain. Besides, temporal prediction is applied

in each spatial processing to compensate for the change that happened during the spatial

processing. As sensing and feedback are performed at a higher frequency, temporal pre-

diction predicts the change with higher accuracy. As a result, the proposed method largely

reduces the difference between the output state and true state by the temporal prediction,

while reducing the amount of spatial processing through temporal iterative tracking.
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A:Image 
warp 

B:Motion 
estimation

Spatial domain

A B … A B

A B

Temporal domain

A B … A BC:Temporal 
prediction

C C

𝑡0 𝑡16

𝑡0 𝑡1 𝑡2 𝑡15 𝑡16

(a) Conventional method:
Spatial iterative tracking without prediction

(b) Proposed method:
Temporal iterative tracking with prediction :Predicted state

:Estimated state

:Estimated history

:Moving trajectory

Figure 3.6: Conceptual difference between spatial iterative tracking and temporal
prediction-based temporal iterative tracking.
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(a) Conventional method: 
Dependent sequential

(b) Proposed method: 
Independent parallel

Rotation 
estimation

Translation 
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𝒑(𝑡)

𝜃(𝑡) 𝜃(𝑡)

𝜃(𝑡 − 1)
𝜃(𝑡|𝑡 − 1)

𝒑(𝑡)

𝒑(𝑡|𝑡 − 1)

:Predicted state:Estimated state :Estimated history

𝒑(𝑡)

Rotation 
estimation

Translation 
estimation

Figure 3.7: Conceptual difference in motion estimation.

3.3.3 Temporal prediction-based parallel motion estimation

Motion estimation, which is part of state estimation shown in Fig. 3.2, estimates the

motion vector d(t) based on the difference of the corresponding image patches between

the previous output state st−1 and the current true state ŝt. It includes the estimations

for translation and rotation. In the translation estimation, the translation change da(t) is

estimated, where da(t) = [dx(t), dy(t)]T . In the rotation estimation, the rotation change

dθ(t) is estimated. Translation and rotation estimations are performed sequentially in the

conventional method [55], formulated as:

da(t) = T(J(t,p(t − 1)), I(t, θ(t − 1))) (3.19)
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dθ(t) = R(J(t,p(t)), I(t, θ(t − 1))) (3.20)

p(t) = p(t − 1) + da(t)

where T is the translation estimation function, which refers from Eq. (3.2)–(3.4); R is

the rotation estimation function, which refers from Eq. (3.6)–(3.8); J(t,p(t)) is the image

patch surrounding position p(t) in the input image captured at time t; I(t, θ(t)) is the image

patch obtained by rotating image I according to angle θ(t). To ensure accurate rotation

estimation, dθ(t) is estimated based on the estimated position state p(t) obtained after

estimating the translation change vector da(t), as shown in Fig. 3.7(a). This, however,

results in a data dependency between the estimation of da(t) and dθ(t), making the esti-

mation of da(t) and dθ(t) performed in sequential. Sequential processing causes not only

significant delays but also significant resource costs in FPGA implementation. To solve

this problem, a temporal prediction-based motion estimation method, which breaks the

data dependency by temporal prediction, is proposed to make the translation and rotation

estimation performed in parallel.

To break the data dependency between the translation and rotation estimations, pre-

dicted position p(t|t − 1) and angle θ(t|t − 1) are introduced. The estimation of translation

change da(t) and rotation change dθ(t) are performed independently based on the previ-

ously predicted states p(t|t−1) and θ(t|t−1), allowing translation and rotation estimations

to be processed parallelly, as shown in Fig. 3.7(b), formulated as:

da(t) = T(J(t,p(t|t − 1)), I(t, θ(t|t − 1))) (3.21)
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Image warp 1

Translation 
estimation

Rotation 
estimation

Translation 
estimation

Rotation 
estimation

(a) Conventional Method:
Dependent sequential 

(b) Proposed Method:
Independent parallel

Temporal 
prediction

Gradient info calculation 

Image warp 1

Gradient info calculation 

Image warp 1 Image warp 2

Gradient info calculation 

Image warp 2

Temporal 
predictionIntermediates

Figure 3.8: Comparison of motion estimation architectures.

dθ(t) = R(J(t,p(t|t − 1)), I(t, θ(t|t − 1))) (3.22)

A good prediction provides a displacement vector da(t|t − 1), which is a good substitute

of da(t) that compensates for the translation motion, allowing the translation and rotation

estimations to be performed in parallel while keeping the estimation accuracy.

Parallel motion estimation is greatly beneficial for hardware implementation. In the

conventional method, The rotation estimation and translation estimation are indirectly de-

pendent as shown in Fig. 3.8(a). Image warp 1 and gradient info calculation modules are

intermediates that help update the gradient information used in rotation estimation based

on the translation estimated in the translation module. The pixel stream used for rota-

tion estimation, however, must wait until translation estimation is complete before being
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processed in intermediate modules, resulting in a significant delay. Assumes tracking a

M×M template, where translation estimation is performed in a N×N (N < M) local area

and rotation estimation is performed in a M × M local area, the waiting process’s delay

demands are around M+N
2 lines. This waiting process generates not only significant de-

lays but also significant memory costs. Besides, the processing of intermediate modules

necessitates additional delays and resource costs. As a result of the indirectly depen-

dent processing style, a large number of resources and delays are required. The proposed

method overcomes these issues through the parallel architecture depicted in Fig. 3.8(b).

The independent processing style of rotation and translation estimations avoids the afore-

mentioned problems caused by intermediate modules.

3.4 Hardware architecture and system implementations

3.4.1 Hardware environment

Fig. 3.9 shows the demonstration environment of the proposed ultra-low delay track-

ing system. A Camera⇒ PL (FPGA board)⇔ PS (FPGA board) system is designed with

a high-speed camera and system-on-chip FPGA board, where PS is the processing system

with the Debian operation system, and PL is the programmable logic.

3.4.2 Overall hardware architecture

The system-level framework of the proposed tracking system is shown in Fig. 3.10.

The tracking processing is completed on one chip, where PL serves as the main process-

ing unit of the tracking system, and PS serves as the initializer and postprocessor. The

PL receives a pixel stream from a high-speed camera, which is grayscale data fed in 10
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(a) FPGA 
board(PL+PS) (b) Camera

Figure 3.9: Demonstration of the tracking system. (a) Camera: Basler acA2000-340km;
(b) FPGA: Zynq UltraScale+MPSoC ZCU102 (ZU9EG).

pixels at a time. The data is transformed into four paralleled pixels in the camera link

receiver, serving as the image process core’s input. The primary means by which PS

communicates with PL is via a register-access bus. It carries out the two critical data

communications listed below. a) Transmit the template data from PS to PL when PS

serves as the initializer; b) Transmit the predicted position and angle from PL to PS for

further post-processing when PS serves as the postprocessor. Besides, an external mem-

ory DDR4-SDRAM, which allows a large amount of data communication between PL

and PS, is provided for simulation and post-analysis.

In the image process core, the data stream flows from Pre-process to Prediction. The
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Figure 3.10: System-level framework of the proposed tracking system
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predicted position is fed back to the Position update module, updating the position used

for input image warping. The predicted angle is fed back to the Angle update & address

calculation module, updating the angle used for template image warping. To keep the

fully pipelined stream data flow, four-by-four sets of template data are read from cor-

responding Block RAMs (BRAM) that contain intensity and gradient information of the

template. Translation and rotation estimations are performed separately on different-sized

local areas, resulting in estimated position and angle output at different times. A synchro-

nization module is leveraged to synchronize them. The calculation in the image process

core is based on the 18-bit signed fixed point. Last but not least, a label scanner-based

multi-stream spatial processing style is applied to handle multi-template tracking with

low resource cost.

3.4.3 Label scanner-based multi-stream spatial processing

In the LK method, the motion between the input image patch and the template is

estimated through local spatial processing, which is shown in Figure 3.2. However, in

the FPGA-based high frame rate and ultra-low delay vision system, spatial processing

influences both the resource cost and the delay. Therefore, how to handle heavy spatial

processing properly becomes quite important. In this paper, label scanner-based multi-

stream spatial processing, a template tracking orientated hardware structure, is proposed

to handle this issue. It mainly has two advantages: 1) Small resource costs; 2) Handling

templates with different sizes.

Figure 3.11 shows the comparison of the hardware architecture of local spatial pro-

cessing between the conventional method and the proposed method. Sliding window-

based single stream, which accumulates all the data in the image patch by line buffers
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Figure 3.11: Hardware architectures of spatial processing.

and then applies PU1 to all of them in parallel, is commonly used in the FPGA-based

high-speed vision system, such as [18]. It works well with small image patches. How-

ever, in template tracking, applying motion measurement on large image patches becomes

necessary. This makes the resource cost caused by the parallelism of PU1 become a big

problem, where PU1 is a heavy processing unit to calculate the derivatives of each data in

the image patch. The proposed method - label scanner-based multi-stream spatial process-

ing, which avoids the parallelism of PU1 via label scanner and achieves multi-template

tracking via multi streams, is an architecture specialized for large-size template tracking.

The details of the label scanner-based multi-stream spatial processing when tracking

three templates are shown in Figure 3.12. A label map, which contains the information

that represents which template the pixel belongs to, is generated according to the positions

of templates and their sizes. In this way, the input to the local spatial processing becomes

a data stream that contains the current input pixel and its corresponding label. Instead of
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Figure 3.12: Label map-based label scanner.

accumulating all the data in the image patch before applying PU1, the proposed method

maps the local spatial processing into the temporal input data stream and performs PU1 to

each coming labeled data. Having obtained the derivatives of each labeled data, the label

scanner determines which PU2 stream the derivatives belong to according to the label, and

distributes them into the corresponding PU2 stream. In this process, the spatial data of the

image patch are aggregated into its corresponding stream for displacement estimation.

The proposed method is a template-tracking-oriented architecture. On the one hand,

the proposed method significantly reduces the resource cost caused by local spatial pro-

cessing in large image patches. Assume tracking T templates with the size of M × N,

the resource cost of the conventional and the proposed method are M × N × R + Q and

T × Q + R respectively, where R is the resource cost of PU1, Q is the resource cost of

PU2. The proposed method requires much fewer resources when tracking several tem-
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plates with large sizes. On the other hand, the hardware performance of the proposed is

not influenced by the template size, making it possible to handle multiple templates with

different sizes. Compared with the conventional method that only handles templates of

the same size, the proposed method has a better tracking ability by giving templates more

suitable sizes according to the shape of the tracking targets.

3.5 Algorithm evaluation

Algorithm evaluation is utilized to assess the validity of the proposed methods, includ-

ing temporal iterative tracking, temporal prediction-based temporal iterative tracking, and

temporal prediction-based parallel motion estimation.

3.5.1 Evaluation criterion

3.5.1.1 Tracking error

Tracking error (E), which represents the average of error of tracking targets are tracked

successfully, is described as:

Em =

∑i=n
i=1(1 − li)E(i,m)∑i=n

i=1(1 − li)
(3.23)

where n is the total number of tracking targets. li, which represents whether the ith target

fails to be tracked or not, is described in detail in Sec. 3.5.1.2. The error for each tracking

target can be the mean absolute error, which is written as:

E(m,i) = MAE(i,m) =
1
T

t=T∑
t=1

(|m(i,t) − m̂(i,t)|) (3.24)

The error for each tracking target can be the root mean square error, which is written as:

E(m,i) = RMS E(i,m) =

√√
1
T

t=T∑
t=1

(m(i,t) − m̂(i,t))2 (3.25)
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When it comes to feeding the tracking result back to the actuators, the accuracy of each

axis is critical. Therefore, tracking errors for x, y, and θ are evaluated separately in this

evaluation. m(i,t) = x(i,t) is set when evaluating tracking error for x, where x(i,t) is the output

x value of tracking target i in frame t. m(i,t) = y(i,t) is set when evaluating tracking error for

y. m(i,t) = θ(i,t) is set when evaluating tracking error for θ. m̂(i,t) is the corresponding ground

truth for m(i,t); When evaluating from the perspective of image processing, m̂(i,t) represents

the state of the object captured at frame t. When evaluating from the perspective of real-

time processing, m̂(i,t) represents the state of the object captured at frame t+ t0, where t0 is

the delay of the tracking system. Accurate tracking always goes along with a low tracking

error.

3.5.1.2 Tracking lost rate

Tracking lost rate (LR), which represents the rate of tracking targets that failed to be

tracked, is described as:

LR =
1
n

n∑
i=1

li (3.26)

whether the target fails to be tracked is determined by:

li =

1, E(i,x) > h ∥ E(i,y) > h ∥ E(i,θ) > h
0, otherwise

(3.27)

where h is the threshold set for tracking loss. A stable tracking performance always goes

along with a low tracking lost rate.

3.5.1.3 Maximum tracking distance

Maximum tracking distance is the tracking target’s maximum moving distance that

can be tracked by the tracking algorithm. Given Di as the maximum tracking distance
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when applying the tracking algorithm with i local spatial processings to two consecutive

frames, the maximum tracking distance of spatial iterative tracking under I iterations can

be described as:

DS I = 1 × DI (3.28)

The maximum tracking distance of the temporal iterative tracking under I iterations can

be described as:

DTI = I × D1 (3.29)

In order to get an effective maximum tracking distance, the maximum distance that

can be tracked by 80% of templates is regarded as the maximum tracking distance. A

good tracking capability always goes along with a large maximum tracking distance.

3.5.2 Evaluation of temporal iterative tracking

This evaluation focuses on evaluating temporal iteration tracking using a translation

estimation model. The translation model consists of image warp, gradient info calcula-

tion, and state estimation which only contains the translation estimation.

3.5.2.1 Datasets

The following two kinds of datasets are used for evaluation.

1) Synthetic datasets: three sequences are made by the image shown in Figure 3.13.

Figure 3.13 is an 8K image, provided by ITE 1. Sequences, which contain the subpixel

information made by shrinking the 8K image (1/10), are shown in Figure 3.14. These

three sequences record the uniform linear motions along with the directions of 0◦, 45◦,

and 90◦, respectively. Each of the sequences generates two kinds of datasets. (a) Boat

1https://www.ite.or.jp/content/chart/uhdtv/
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1

Figure 3.13: Image used for sequence generation: 7680 × 4320 pixels.

dataset1, records uniform linear motions moving at the speed of n × v pixel/frame, where

v is the speed of the above basic sequence. (b) Boat dataset2, records uniform linear

motions moving at the n × v pixel/ms speed and captured at 30 fps, 62 fps, and 1000

fps separately. In the evaluation using synthetic datasets, 20 image patches from the first

frame are selected as templates for tracking. Figure 3.15 shows several examples of them.

2) Real datasets: two sequences captured by the high-speed camera at 1000 fps are

shown in Figure 3.16. These two sequences record the movement of the object moving

mainly along the direction of 0◦ and 90◦ respectively. Besides the movement in the main

direction, movement in other directions near the main direction is also included in the

real sequence. The object moves at a random speed. Each of the sequences generates a

dataset named people dataset, which records the motion that is captured at 30 fps, 62 fps,

and 1000 fps separately. In the evaluation using real datasets, 50 image patches from the
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(b)

frame 0 frame 499 frame 999 frame 1899

(a)

(c)

Figure 3.14: Synthetic sequences. (a) Moving along with the direction of 0◦: 360 × 240
pixels, 1900 frames, v = 0.1 pixel/frame; (b) Moving along with the direction of 90◦: 360
× 240 pixels, 1900 frames, v = 0.1 pixel/frame; (c) Moving along with the direction of
45◦: 360 × 240 pixels, 1900 frames, v = 0.141 pixel/frame.

Frame 0 Examples of templates

Figure 3.15: Examples of templates in synthetic sequences. Template size: 15×15 pixels.
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(b)

frame 0 frame 950 frame 1150 frame 1299

(a)

Figure 3.16: Real 1000 fps sequences. (a) Moving mainly along with the direction of 0◦:
640 × 360 pixels, 1860 frames, v =0.002∼0.783 pixel/ms; (b) Moving mainly along with
the direction of 90◦: 640 × 360 pixels, 1300 frames, v = 0.003∼0.875 pixel/ms.

first frame are selected as templates. Figure 3.17 shows several examples of them.

3.5.2.2 Evaluation on maximum tracking distance

In this evaluation, the maximum tracking distance of the conventional spatial iterative

tracking and the proposed temporal iterative tracking under the same iteration number is

evaluated based on the boat dataset1. With the same iteration number, the computation

complexity of spatial iterative tracking and temporal iterative tracking is the same.

Figure 3.18 shows the evaluation results of maximum tracking distance for spatial

iterative tracking and temporal iterative tracking performed on boat dataset1. With the

increase of the iteration number, the maximum tracking distance of the temporal iterative

tracking is proportional to the iteration number, while the maximum tracking distance

of the spatial iterative tracking is converged to a certain value. Therefore, under the

same computational complexity, temporal iterative tracking outperforms spatial iterative

tracking in terms of whether or not the object can be tracked.
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Frame 0 Examples of templates

Figure 3.17: Examples of templates in real sequences. Template size: 15×15 pixels.

3.5.2.3 Evaluation on tracking error and tracking lost rate from the perspective of
image processing

In this evaluation, tracking lost rate and tracking error of the following three methods

are evaluated based on boat dataset2 and people dataset from the perspective of image

processing: (Method 1) spatial iterative tracking with 33 spatial iterations performed on

30 fps sequences; (Method 2) spatial iterative tracking with 16 spatial iterations performed

on 62 fps sequences; (Method 3) temporal iterative tracking with one spatial iteration

performed on 1000 fps sequences. These three methods have the same computational

complexity for tracking the same scene due to the balanced framerate and the spatial

iteration numbers.

Figure 3.19 shows the evaluation results on the boat dataset2. In terms of tracking

error, temporal iterative tracking gradually approaches spatial iterative tracking as the

speed of the object decreases. As can be seen from tracking errors in the x-axis and y-

axis, temporal iterative tracking can achieve a relatively low tracking error of fewer than

0.1 pixels when tracking objects moving at a low speed. In terms of tracking lost rate,
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× 2

(a)

(b)

(c)

Figure 3.18: Evaluation results of maximum tracking distance. The evaluation is per-
formed on boat dataset1 that records boat moving along with the direction of (a) 0◦; (b)
90◦; (c) 45◦.
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Figure 3.19: Evaluation results of tracking error and tracking lost rate from the perspective
of image processing. The evaluation is performed on boat dataset2 that records boat
moving along with the direction of (a) 0◦; (b) 90◦; (c) 45◦.

temporal iterative tracking maintains lower tracking lost rate even when the moving speed

of the objects increases, which performs better than spatial iterative tracking methods. As

a result, temporal iterative tracking has the characteristic of tracking object with coarse

accuracy when it moves at high speed and obtaining higher accuracy when it slows down.

This characteristic is called dynamic tracking, which is preferred in robotics applications.

Table 3.1 and 3.2 show the evaluation results on the people dataset. The same as

the results on boat dataset2, the temporal iterative tracking method (Method 3) performs
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better than the spatial iterative tracking methods (Method 1, 2) in tracking lost rate. And

the spatial iterative tracking methods perform better than the temporal iterative tracking

method in tracking error.

Table 3.1: Tracking lost rate on people dataset.

Sequence Method 1 Method 2 Method 3
0◦ 0.82 0.40 0

90◦ 0.84 0.52 0

Table 3.2: Tracking error on people dataset.

Sequence
Method 1 Method 2 Mthod 3
x y x y x y

0◦ 0 0 0.0003 0.0001 0.1559 0.0509
90◦ 0.0067 0.009 0.0006 0.0003 0.0689 0.1698

3.5.2.4 Evaluation on tracking error from the perspective of real-time system

From the perspective of image processing, spatial iterative tracking gets more accurate

estimated positions than temporal iterative tracking. However, due to large delays, the

positions estimated by spatial iterative tracking can hardly reflect the actual position of

the object in a real-time system. In the real-time system, the object will continue moving

during the time used to calculate the estimated position. Therefore, the object may move

to a new position after we get the estimated position. This leads to a large gap between the

estimated position and the actual position of the object. The tracking error in the real-time
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Figure 3.20: Evaluation results of delay error.

system can be expressed as:

RMS ER = RMS EI + ED (3.30)

where RMS ER is the tracking error of the real-time vision system; RMS EI is the error

caused by image processing; ED is the error caused by delay. In this evaluation, RMS ER

of the three methods introduced in Section 3.5.2.3 is evaluated based on boat dataset2.

The delays of Method 1-3 are 30 ms, 16 ms, and 1 ms respectively when they are

implemented in real-time with architecture that has no I/O bottleneck. Figure 3.20 shows

the delay error (ED) of Method 1–3 at various moving speeds. It can be seen that the pro-

posed temporal iterative tracking outperforms the conventional spatial iterative tracking

methods due to the lower delay.

Combining the error caused by the delay (ED) and the error caused by the image

processing (RMS EI), the tracking error of the real-time system (RMS ER) is shown as
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Figure 3.21: Evaluation results of tracking error from the perspective of real-time system.
The evaluation is performed on boat dataset2 that records boat moving along with the
direction of (a) 0◦; (b) 90◦; (c) 45◦. The results are plotted in the same scale range for
comparison.

Figure 3.21. Compared with the RMS EI shown in Figure 3.19, it can be known that the

delay error affects the performance of the real-time system a lot, and it mainly happens

in the direction of the movement. As a result, the proposed temporal iterative tracking,

which has a smaller delay (1 ms), effectively suppresses the delay error, making the real-

time system achieves better performance.

3.5.3 Evaluation of temporal prediction-based temporal iterative track-
ing and prallel motion estimation

This evaluation focuses on evaluating temporal prediction-based temporal iteration

tracking and parallel motion estimation using a translation and rotation estimation model.

The translation and rotation model consists of image warp, gradient info calculation, state

83



3. TEMPORAL PREDICTION-BASED TEMPORAL ITERATIVE TRACKING
AND PRARALLEL MOTION ESTIMATION FOR ULTRA-LOW DELAY
TRACKING

estimation, and state prediction, where state estimation and state prediction contain esti-

mation and prediction for both translation and rotation.

3.5.3.1 Datasets

Initial frame Templates

Figure 3.22: Templates in synthetic sequences. Template size: 65×65 pixels.
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Figure 3.23: Templates in synthetic sequences. Template size: 65×65 pixels.

In FA scenes, such as object picking with orthogonal robots and position location

with an alignment system, the relative movement between the object and camera mainly
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Figure 3.24: Sequence and motion model in dataset B. (a) Basic sequence: 627×287 pix-
els, 1208 frames; (b) Velocity of motion model [pixel/frame]: vmaxx = vmaxy = 1, vmaxθ
= 5, vminx = vminy = -1, vminθ = -5; (c) Acceleration of motion model [pixel2/frame]:
amaxx = amaxy = 0.1, amaxangle = 0.5, aminx = aminy = -0.1, amaxθ = -0.5.
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Figure 3.25: Sequence and motion model in dataset C. (a) Basic sequence: 627×287 pix-
els, 2824 frames; (b) Velocity of motion model [pixel/frame]: vmaxx = vmaxy = 0.2, vmaxθ
= 1, vminx = vminy = -0.2, vminθ = -1; (c) Acceleration of motion model [pixel2/frame]:
amaxx = amaxy = 0.1, amaxangle = 0.5, aminx = aminy = -0.1, aminθ = -0.5.
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depends on the movement of actuators. With an actuator that moves at a maximum speed

of 480 mm/s, the target moves at about 1 pixel/ms when it ’s captured by the camera

with a specification of 0.46 mm/pixel. Synthetic datasets, which take this into account,

are made for evaluation.

Synthetic datasets are made by the image shown in Fig. 3.13. Sequences with subpixel-

level information are made by shrinking the 8K image into 1
10 . Meanwhile, the sequences

are created in grayscale because color information is not a necessity in the Lucas Kanade

algorithm that estimates motion using gradient information. Four image patches with

high-intensity variance, shown in Fig. 3.22, are selected as the tracking templates. In

this evaluation, the template size is set as 65 × 65 pixels, which is sufficient for tracking

precision components with small sizes in the field of FA. When tracking targets with large

sizes, it is also a good idea to use several interesting areas with small sizes in the object as

tracking templates rather than the entire object area. Two types of datasets with different

motion models are made for each template. a) Dataset A, which records uniform linear

motions, is used to evaluate the tracking performance under uniform moving at maximum

speed. Fig. 3.23 shows the basic sequence of one template and its motion model. It can

be extended to sequences captured at 62 fps and 1000 fps with the moving speed of n × v

pixel/ms, where v pixel/frame is the speed of the above basic sequence. In this evalua-

tion, dataset A contains sequences with speeds ranging from 0.1 pixel/ms to 1.9 pixel/ms

captured at both 62 fps and 1000 fps. And the maximum moving speed of the above-

illustrated FA scene (1 pixel/ms) is included in this dataset. b) Dataset B and dataset C,

which record non-uniform motion moving, are utilized to evaluate the tracking perfor-

mance in FA scenes. FA tasks, such as object picking and alignment, involve primarily

three types of motions: acceleration motion, uniform motion, and deceleration motion.
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These three motions are contained in datasets B and C. Fig. 3.24 and Fig. 3.25 show the

sequence of one template and its motion model with maximum speeds of 1 pixel/frame

and 0.2 pixel/frame respectively. They can be extended to sequences captured at 62 fps

and 1000 fps. In this evaluation, datasets B and C contain sequences captured at both 62

fps and 1000 fps with maximum speeds of 1 pixel/ms and 0.2 pixel/ms respectively. In

dataset B, the moving speed is accelerated to the maximum moving speed of the above-

illustrated FA scene (1 pixel/ms), and a deceleration motion starts to reduce the moving

speed to 0 pixel/ms after a uniform moving. The repetition of this series of motions con-

stitutes the reciprocating motion. Dataset C records the reciprocating motion with a lower

maximum speed of 0.2 pixel/ms.

3.5.3.2 Related methods

Related methods, as shown in Table 3.6, are used for comparative evaluation. Among

them, Method 4 is the proposed method. They are classified according to model type,

prediction type, and tracking type. The model type, which can be sequential or parallel,

indicates the model used for translation and rotation motion estimation. The prediction

type, which can be on or off, indicates the existence of temporal prediction. The tracking

type, which can be temporal iterative tracking (TIT) or spatial iterative tracking (SIT),

indicates the iterative tracking type. In this evaluation, TIT is the temporal iterative track-

ing with one spatial iteration performed on 1000 fps sequences, and SIT is the spatial

iterative tracking with 16 spatial iterations performed on 62 fps sequences. Based on the

above settings, the computational complexity of SIT and TIT methods is comparable.
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Table 3.3: Related methods.

Methods
Description

Model type Prediction type Tracking type
Method 1 Sequential Off TIT
Method 2 Sequential Off SIT
Method 3 Parallel Off TIT

Method 4(∗) Parallel On TIT
Method 5 Parallel On SIT
Method 6 Parallel Off SIT

TIT: Temporal iterative tracking (1000 fps)
SIT: Spatial iterative tracking (62 fps)

3.5.3.3 Evaluation from the perspective of image processing

In this evaluation, tracking error and tracking lost rate of methods introduced in Sec.

3.5.3.2 are evaluated based on dataset A–C from the perspective of image processing.

The evaluation results for dataset A which records the uniform motions are shown in

Fig. 3.26. In terms of tracking error, spatial iterative tracking methods (Method 2, 5,

6) outperform all others, while the proposed method (Method 4) outperforms all other

temporal iterative tracking methods (Method 1,3). As shown by the tracking error of

temporal iterative methods (Method 1, 3, 4): a) Directly parallel rotation and translation

estimation (Method 3) degrades tracking performance when compared to the sequential

model (Method 1); b) The tracking errors of temporal iterative methods without temporal

prediction (Method 1,3) become more diverse as moving speed increases; c) The pro-

posed method (Method 4) significantly mitigates the negative effects as described in a)

b). In terms of tracking lost rate, the proposed method (Method 4) outperforms all others,

while the spatial iterative tracking methods have relatively poor tracking ability for high-
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Figure 3.26: Evaluation results from the perspective of image processing based on dataset
A.
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Figure 3.27: Evaluation results from the perspective of image processing based on dataset
B.
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Figure 3.28: Evaluation results from the perspective of image processing based on dataset
C.
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speed moving cases. As a result, the proposed method (Method 4) strikes a good balance

between tracking error and tracking lost rate performance.

Fig. 3.27 and Fig. 3.28 show the evaluation results for datasets B and C, respectively.

Similar results are observed in non-uniform motions. In the case of high-speed moving

ranges (Fig. 3.27), the proposed method (Method 4) outperforms all others, while the

spatial iterative tracking methods (Method 2, 5, 6) fail tracking. In the case of low-speed

moving ranges (Fig. 3.28), spatial iterative tracking methods (Method 2, 5, 6) outperform

all others without tracking loss, while the proposed method (Method 4) outperforms all

other temporal iterative tracking methods (Method 1, 3).

3.5.3.4 Evaluation from the perspective of real-time processing

In this evaluation, tracking errors of methods introduced in Sec. 3.5.3.2 are evaluated

based on dataset A–C from the perspective of real-time processing, where real-time track-

ing error denotes the error between the virtual space ’s output and the true state in the

real space.

The evaluation results for dataset A which records the uniform motions with speeds

ranging from 0.1 pixel/ms to 1.9 pixel/ms are shown in Fig. 3.29. In terms of tracking er-

ror, the proposed method (Method 4) outperforms all others. In other words, the proposed

method successfully minimizes the error between the virtual space’s output and the true

state in real space. In the real-time scene, the object continues to move during the process-

ing period. As a result, the error caused by delay significantly worsens the tracking error

of methods without temporal prediction (Method 1, 2, 3, 6), particularly spatial iterative

tracking methods (Method 2, 6) with significant delays over 16 ms, despite achieving the

highest tracking accuracy when evaluated from the perspective of image processing. As
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Figure 3.29: Evaluation results from the perspective of real-time processing based on
dataset A.
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Figure 3.30: Evaluation results from the perspective of real-time processing based on
dataset B.
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Figure 3.31: Evaluation results from the perspective of real-time processing based on
dataset C.
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shown by the tracking error of temporal iterative methods (Method 1, 3, 4), temporal pre-

diction (Method 4) suppresses the delay error a lot for temporal iterative tracking. The

tracking error of spatial iterative methods (Method 2, 5, 6) shows that temporal predic-

tion (Method 5) helps suppress the delay error, but a large error exists when compared to

the temporal prediction-based temporal iterative tracking method, and the error increases

with moving speed. In spatial iterative tracking, the large motion changes between two

successive frames cause poor speed prediction, resulting in insufficient suppression for

delay error. As a result, the proposed method (Method 4) outperforms all other related

methods in terms of not only tracking lost rate but also tracking error. It is noteworthy

that the proposed method achieves high accuracy over the subpixel level in the evaluated

speed range.

Fig. 3.30 and Fig. 3.31 show the evaluation results for datasets B and C, which records

non-uniform motion with a maximum speed of 1 pixel/ms and 0.2 pixel/ms respectively.

On the one hand, similar results are observed in non-uniform motions. The proposed

method outperforms all others in cases of both high-speed moving ranges (Fig. 3.30) and

low-speed moving ranges (Fig. 3.31). On the other hand, as illustrated by the tracking

lost rate of Fig. 3.31, the temporal prediction degrades the tracking ability of the spatial

iterative tracking method (Method 5) when compared to other spatial iterative methods

that do not apply temporal prediction (Method 2, 6). The speed dramatically changes

when the non-uniform motion is captured by the 60 fps visual system, whereas the cur-

rent instantaneous speed-based temporal prediction model is incapable of predicting the

temporal change in case of dramatic speed change, resulting in a high tracking lost rate.

In the object picking and alignment scenes, where the target moves at about 1 pixel/ms.

According to the evaluation result of uniform motion that is shown in Fig. 3.29, the pro-
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posed method (Method 4) achieves high accuracy over the subpixel level when the target

moves at speed of 1 pixel/ms, which is also the maximum moving speed of the above

scene. In the non-uniform moving case, which contains the three motion types (accelera-

tion motion, uniform motion, and deceleration motion) in the processing of object picking

and alignment, the proposed method (Method 4) still achieves high tracking accuracy over

the subpixel level in the case with a maximum speed of 1 pixel/ms, as shown in Fig. 3.30.

As a result, the proposed method (Method 4) is feasible in the specific FA scenes.

3.6 Hardware evaluation

In the hardware evaluation, ZCU102 (ZU9EG), an FPGA board from Xilinx, is used

for evaluation. The logic synthesis on FPGA is performed by Vivado 2019.2.

3.6.1 Overall hardware performance

Table 3.4 shows the hardware performance of the proposed tracking system. Row 2

– 6 shows the resource utilization of the whole system. The resource utilization rate of

the proposed tracking system is lower than 30% of the entire FPGA resources. Row 7 – 8

shows the speed performance of the proposed tracking system. The whole system works

at 200 MHz, and the processing time to perform one frame tracking is around A (time to

transmit one frame data) + B (4 lines’ delay), which is less than 1 ms/frame. Currently,

the tracking system is connected to the high-speed camera, which captures 640 × 360

sequences at a frame rate of 1000 fps.

Table 3.5 shows the comparison of resource utilization between the translation esti-

mation model [19] and the translation and rotation estimation model. The translation and

rotation estimation model significantly increases BRAM and DSP costs in comparison to
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Table 3.4: Hardware performance of the proposed ultra-low delay tracking system.

Item Proposed tracking system

Logic
Utilization

# of LUT 54,595(19.92%)
# LUTRAM 9,561(6.64%)

# FF 78,493(14.32%)
# BRAM 247(27.08%)

# DSP 373(14.80%)

Speed
Frequency 200MHz

Process time 0.94 (<1ms/frame)

about a 2% increase in resource costs for LUT and FF. When compared to the solution

for translation estimation shown in Eq. (3.2) (3.3), the solution for rotation estimation

shown in Eq. (3.6) (3.7) contains more complex computation, resulting in a significant

increase in DSP. Meanwhile, as shown in Fig. 3.10, four-by-four BRAM sets are used

to obtain the addresses of rotated template data while maintaining throughput, resulting

in a significant increase in BRAM. BRAM utilization can be reduced through more effi-

cient BRAM access methods. Overall, the translation and rotation estimation model has

reasonable resource utilization.

The detailed timing flow is shown in Fig. 3.32. The proposed system achieves ultra-

low delay by performing visual processing while receiving the image data from the cam-

era. To maintain this stream-based processing style, the overall processing is designed to

be fully pipelined. The processing time to perform one frame tracking is around A (time

to transmit one frame data, which is 925.2 us) + B (delay of the image processing mod-

ules, which is 10.99 us), which is less than 1 ms/frame. Among these image processing

modules, the gradient filter, which consumes over a three-line delay, takes up a huge por-
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Figure 3.32: Detailed timing flow of the whole proposed system.

tion of the overall processing time. Translation estimation, which consists of translation

model building and translation model solution, and rotation estimation, which consists of

rotation model building and rotation model solution, are performed in parallel in the pro-

posed system with a delay of 51 clocks (0.255 us). When compared to the conventional

sequential processing method, which takes a delay over 40 lines (102.8 us) in the case of

rotation estimation in a 65 × 65 local area and translation estimation in a 15 × 15 local
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area, the proposed temporal prediction-based parallel motion estimation significantly re-

duces the delay caused by the dependent relationship between the rotation and translation

estimations.

Table 3.5: Resource utilization comparision.

Item
Translation estimation model

[19]
Translation and rotation

estimation model
# of LUT 49,188(17.95%) 54,595(19.92%)

# FF 67,422(12.30%) 78,493(14.32%)
# BRAM 90.5(9.92%) 247(27.08%)

# DSP 103(4.09%) 373(14.80%)

3.6.2 Evaluation of label scanner-based multi-stream spatial process-
ing

Table 3.6: Hardware performance comparision.

Item
Sliding window

type[18]
Label scanner

type
Parameter Template size 5 × 5 free size

Logic
Utilization

# of LUT 177,172 49,188
# FF 106,800 67,422

Table 3.6 shows the comparison of hardware performance between the sliding window-

based architecture [18] and the proposed label scanner-based architecture based on the

translation estimation model. The label scanner type maintains a certain resource con-

sumption no matter how the size of the template changes, while the resource utilization of
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the sliding window type will increase a lot with the increase of the template size. Row 3 –

4 shows the comparison of resource utilization. As it can be seen that the sliding window

type requires much more resources than the label scanner type even when tracking a small

template with a size of 5 × 5.

3.7 Conclusion

An ultra-low delay rotation-robust tracking system with high real-time tracking per-

formance has been proposed in this chapter. Two methods are proposed to implement

this system. Firstly, to reduce complex computation caused by spatial iterative tracking

and error caused by delay, temporal prediction-based temporal iterative tracking is pro-

posed for mapping the spatial iterative tracking into the temporal domain and reducing

the difference between the system output state and true state. Secondly, to reduce signif-

icant delay and resource consumption caused by sequential estimation of translation and

rotation, temporal prediction-based parallel motion estimation is proposed for paralleling

estimation of translation and rotation. The proposed methods are implemented on FPGA

with a stream-based architecture. It is prototyped as a practical system by combining a

high-speed camera and an FPGA. Algorithm evaluation shows that the proposed method

achieves subpixel-level real-time accuracy while the conventional method fails to track

the target in case of tracking the object moving at a speed of 1 pixel/ms. Hardware eval-

uation shows that the designed tracking system supports sensing and processing 1000 fps

sequence (Resolution: 640 × 360) with a delay of less than 0.94 ms/frame, and costing

resources less than 30%.

Our future research will dive more into the following aspects. In the technical as-
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pect, a more practical prediction model that is adapted for more complex cases is added

into consideration. In the application aspect, a combination of ultra-low delay tracking

systems and actuators is added into consideration.
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Chapter 4

Conclusion and future work

4.1 Summary

This dissertation targets minimizing the difference between the object tracking sys-

tem’s output and the real space’s true state through ultra-low delay processing. Temporal

mapping and temporal prediction are proposed and combined to achieve detection and

tracking with a delay of less than 1 ms/frame.

The proposed temporal mapping and temporal prediction make significant contribu-

tions to real-time computing. Firstly, the combination of temporal mapping and temporal

prediction contributes significantly to the design of the 1-ms algorithm and architecture

with an input of 1000 fps sequence (Resolution 640×360). Temporal mapping maps

the complex spatial processing into the temporal domain, providing a solution for com-

plex processing to adapt the ultra-low delay processing architecture. Temporal prediction

predicts the change during the processing period, enabling the temporal mapping to be

applied without large accuracy loss. Secondly, temporal prediction compensates for the

change during the processing period, significantly reducing the difference between the

computing space’s output and real space’s true state, thus enabling high real-time track-

ing accuracy over the subpixel level.
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Real-time computing with ultra-low delay enables the high integration of virtual (com-

puting) and real spaces, making it possible to handle changing situations. In the field of

FA, ultra-low delay real-time computing allows industrial robots to actuate without halt-

ing, significantly improving productivity. In the field of robotics, it allows daily-life robots

to complete the challenging task that needs immediate reactions.

4.2 Future work

Among various visual processing techniques, this dissertation targets 2D object track-

ing, which is sufficient for FA applications that have a fixed depth. However, for ap-

plications that don’t have a fixed depth and need to estimate depth in real-time, such as

robotics, 3D calculation technology becomes crucial. Therefore, future work will dive

more into the ultra-low delay 3D calculation.
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