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Abstract 

 
Recommendation Systems (RS) play an important role in helping users find the items 
that they may choose, and RSs have been widely used in many areas, including news, 
music, restaurant, and movie. However, since the RSs suffer from the problems of cold-
starting and data sparsity, much side information has been adopted into RS, such as 
Knowledge Graph (KG). In recent days Knowledge Graph-based RSs usually start with 
a certain Knowledge Graph Embedding (KGE) layer to help represent the KG from the 
words in triples into the form of vectors or matrices, and then adopt these vectors or 
matrices to execute the later processing by enriching the attributes of users and items. 
However, the existing KGE layers in the original RSs have many problems, including 
lacking the ability to represent certain types of relations in KG, and ignoring the rich 
inference patterns contained in the multi-step relation paths. To solve these listed 
problems in the existing KG-based RS, we adopt three new KGE layers that are 
specifically designed to address those problems. The overall idea is that a KGE layer 
with higher accuracy performance can bring the whole system better recommendation 
results. To the best of our knowledge, this is the first research specifically targeting the 
KGE layers in RS. To confirm our assumption, we conducted two experiments on two 
RS models, Deep Knowledge-aware Network (DKN) and Knowledge Graph Attention 
Network (KGAT) with seven different KGE methods, trying to improve their 
performance. Compared to the baseline, the proposed DKN model increases by 4.3% 
and 4.6% on ACC and AUC, and the proposed KGAT model increases by 1.0% and 1.2% 
on recall@20 and ndcg@20 on three datasets. 
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1. Introduction 

Since the Internet brings overwhelming information to users, it becomes harder and 
harder to make the right decision when dealing with multiple choices and big data 
environments. Thus, building a precise Recommender System (RS) is always an 
important task. RSs have been widely used in many real-life areas. For example, movies, 
music, news, and book recommendation systems help users make decisions. However, 
data sparsity and cold start problems prevented the further performance 
improvement of RS. In recent years, minding multiple side information as a 
supplement is a potential method to solve the data sparsity and cold-start problem. 
Among all the side information, the usage of the Knowledge Graph (KG) in RS is a hot 
topic. 
 
KG describes the real-world relations connected between entities. KG stores every 
piece of information in the form of triples: (head entity, relation, tail entity), and then 
is formed as a graph. Based on the data structure, many large real-world knowledge 
bases have been established, such as Freebase [1], DBpedia [2], Yago [3], and Nell [4]. 
With a KG as supporting side information, users, items, and their attributes can be 
mapped into the KG, making the items’ mutual relations and the user preference can 
be better captured and understood in the process of user/item representation. Then 
the learned user/item representation will be used in the further training of a certain 
recommendation algorithm, forming a KG-based RS. 
 
Since the CKE [5] model is first proposed in 2016, the KG-based RS has become a hot 
topic in the RS area. CKE adds a Knowledge Graph Embedding (KGE) layer to the user-
item representation process. KGE aims to represent triples forms (entities, relations, 
entities) that existed in KGs. By embedding the semantic information of entities and 
relations into the form of vectors, semantic similarity can be calculated through the 
distance of those vectors. Then the preliminary representation of entities will be 
adopted into the later model training process of RS to improve accuracy. 
 
More recently, many new KG-based RS are proposed, such as DKN [6] in 2018, KGAT [7] 
in 2019, MKR [17] in 2019, and KGCL [8] in 2022. A common characteristic of those 
models is that they start from a KGE layer (e.g., TransE [9] layer in KGCL, TransH [10] 
layer in DKN, TransR [11] layer in KGAT, TransD [12] layer in DKN) in their system 
structure to get a preliminary embedding of entities in KG. After that, they adopt the 
embeddings into machine learning models, such as Convolutional Neural Network 
(CNN), Graph Neural Network (GNN), and Attention Mechanism (AM), to calculate the 
further embedding of users and items and complete recommendation task. 
 
However, adopting traditional KGE methods [9-12] causes the loss of representation 
ability, compared with state-of-the-art techniques that are used in the later user/item 
representation learning. Many researches [13-15] have pointed out the drawbacks of 
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those traditional KGE methods. According to the research result of RotatE [13], TransE 
lacks the ability to represent symmetry relations. TransH, TransR, and TransD cannot 
represent the inversion and composition relations, affecting the embedding results of 
triples in KG. The experiment of PTransE [14] confirmed the importance of the rich 
inference patterns contained in the multi-step relation paths, which are ignored in the 
traditional KGE methods. 
 
Our intuition is that a KGE layer with higher accuracy performance can bring the whole 
system better recommendation accuracy. Therefore, the goal of this research is to 
build an RS enhanced with the KG as side information, where the KGE method with 
higher representation accuracy is used, to improve the accuracy of the whole system. 
Specifically, we use a classic news recommendation model DKN and a general 
recommendation model KGAT as the baselines, which both adopt a KGE layer as their 
first input layer in the whole model structure. To test the influence of KGE layers, we 
try seven different KGE methods [9-14] mentioned above and PRRL [15] KGE methods, 
to improve the recommendation results of the original model.  
 
The main contributions of this thesis can be summarized as follows:  
 
(1) we conduct extensive experiments on the improved RS model, which confirm the 
effectiveness of the KGE layer in the RS models, that a KGE layer with higher accuracy 
performance can bring the whole system better recommendation results. 
 
(2) we propose a news recommendation model based on our experiment, which adopt 
three different KGE methods [13-15], making this news RS can approach all the 
relations patterns in the KGE phase, and also add the multi-step relation paths in the 
KGE layer. 
 
The remainder of this thesis is organized as follows: Section 2 explains the related work, 
including different KGE techniques and their two existing problems, collaborative 
filtering (CF) RS and other RSs. Section 3 details the proposed method, with different 
KGE methods. Section 4 presents the evaluation of the proposed method and 
discussions. Finally, Section 5 is the conclusion and future work for this thesis. 
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2. Related work 

In this section, we first introduce the fundamental idea of KGE and three types of KGE 
methods. Then we introduce the basic steps of collaborative filtering RS, the classic 
news RS model DKN and the general RS model KGAT in detail. 

2.1 Knowledge Graph Embedding Methods 

KGE is a hot topic in the research area of KG, aiming to represent entities and relations 
into the form of vectors/matrices or other forms while keeping the semantic 
information from the original KG structure. KGE methods can solve the problem that 
real-world KGs are often incomplete by predicting the missing links in the KG, therefore 
a recommendation task can be treated as a downstream task of KGE. 
 
The earliest KGE techniques are called translational distance models, such as TransE 
[9], TransH [10], TransR [11], TransD [12], STransE [20], and TranSparse [21]. The 
general idea of this kind of model is to map the entities and relations into a continuous 
vector space. By calculating the translational distance based on their well-designed 
score function and differentiating the score between positive triples and negative 
triples, the embeddings of entities and relations can be achieved.  
 
The TransE model represents both entities and relations as vectors in vector space. It 
is simple and efficient in the process of KGE and easy to be adopted in the downstream 
tasks, but it suffers from the problem of representing the N-to-1 and N-to-N relations. 
The TransH model solves this problem by embedding relations as vectors on the 
hyperplane and projects entities into this relation-specific hyperplane, yet the 
relations and entities are still encoded in the same space, thus the variety of aspects 
of entities and relations are ignored. The TransR model adopts relations-specific space 
for the mapping of entities with a projection matrix and fixes the problem of TransH. 
The STransE model also solves the problem of TransH by adopting two relation 
matrices to the head entity and the tail entity in each triple. The TransD model is 
designed to simplify the idea of the TransR model and the STransE model by changing 
the projection matrix with two vectors and their product. The TranSparse model also 
reduces the time consumption of TransR and STransE with a sparseness degree to 
reduce the parameter numbers in the projection matrices. 
 
Figures 1 and 2 adapted from [16] give a simple illustration of the idea of the above six 
translational distance models [9-13]. In these two figures, the vector of h, t, r 
represents the head entity, the tail entity, and the relation in a triple (h, r, t). The vector 
of ℎ! and 𝑡! represents the projected head/tail entity vectors. 𝑀"  in Figure 2 is the 
projection matrix of relation r designed to map the entities into relation space, noticing 
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that the TransR model, the STransE model, the TranSparse model, and the TransD 
model share the same projection approach. The score functions are calculated by the 
distance between the tail entity t and the result of head entity h translated by the 
relation r. Table 1 shows the mapping space of entity/relation and the pros and cons 
of these four translational distance models. 
 

 
Figure 1. Simple illustrations of TransE (a) and TransH (b) based on Figure 1 in [16] 

 
 
 

 
Figure 2. Simple illustrations of TransR, STransE, TranSparse, and TransD, based on Figure 1 in 

[16]  
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Table 1. Comparison of TransE, TransH, TransR, STransE, TranSparse, and TransD 
 Projection 

space 
Pros Cons 

TransE [9] vector 
space 

Efficient in model building 
and triple representation 
with a small number of 
parameters 

Ignored N-to-N relation 
representation 

TransH 
[10] 

Relation-
specific 
hyperplan
e 

Solved the N-to-N relation 
representation problem 

Ignored entity/relation 
aspects  

TransR 
[11] 

Relation-
specific 
space 

Solved the triple aspects 
representation problem 

Large time consuming in 
the model building  

STransE 
[20] 

Relation-
specific 
space 

Solved the triple aspects 
representation problem 

Data sparsity problem, time 
consuming in model 
building 

TransD 
[12] 

Relation-
specific 
space 

Reduced the parameter 
numbers  

Ignored unobserved facts 

TranSpars
e [21] 

Relation-
specific 
space 

Dealt with entity/relation 
unbalance problem  

Only concerned sparsity 
patterns 

 
The rotation model is designed to solve the problem that the translational distance 
models cannot capture all the relation patterns. Rotation models represent the entities 
and relations with the modulus information and the angle information in the complex 
plane or polar coordinates plane. The RotatE [13] model is inspired by the Euler 
formula and projects the entities into the complex plane and then represents the 
relations as the rotation from the head entity to the tail entity. The HAKE [18] model 
specifically tackles the modulus setting based on the RotatE model and put the entities 
and relations into the polar coordinates plane where the modulus and angle can be 
adopted in the representation. The QuatE [22] model introduces the hyper-complex 
plane, where the entity and relation are trained as quaternionic vectors in the 
hypercomplex space with three imaginary components. Compared with RotatE, QuatE 
can be seen as rotation in two planes.  
 
Besides, different from the translational distance KGE models that only use the 
observed triples for the model training, many path-enhanced models are designed to 
mine the multi-step relation paths from the original KG, as a supplement to represent 
the relations and entities. The PTransE [14] model is the first model that mines the 
multi-step paths with its Path-Constraint Resource Allocation (PCRA) algorithm, then 
the paths are adopted in the training of relations. Later on, other models try to 
improve the representation of the paths. The RPJE [19] model adds the logical rules 
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mined from KG to improve the explainability and accuracy in the multi-step path 
representation. The PRRL [15] model adopts the Hadamard product of relations to 
represent the path and enhances the relation patterns representation ability of the 
paths. There are also many works that tackle the usage of the paths. The HRAN [23] 
model adopts the GNN framework to aggregate the entities and relations based on the 
multi-step paths and the attributed weight of the paths. The HARPA [24] model uses 
the original KG triples and the multi-step paths with a well-designed two-layer 
attention encoder and a GAN framework to learn the entity/relation embeddings. The 
BKENE [25] model adopts the KG triples and multi-step relation paths to generate a 
new view of KG for the replacement of the negative sampling process. 

2.2 Collaborative filtering RS and Other RS models 

To build a recommendation model, traditional collaborative filtering (CF) RS [26] is 
based on the User-Item interaction matrix, which is usually formed by each user's 
choice of each item (such as 1 represents like/checked and 0 means not), or the score 
each user gives to each item. Based on this matrix, RS can learn the user/item 
embedding with a well-designed objective function and calculate the preference score 
from each user to each candidate item, then rank items based on the scores and 
recommend the top-k items to a user.  
 
The DKN model [6] is also based on the general CF idea. Besides the User-News 
interaction matrix, which contains each user's historical checked news and if this user 
read the news or not, DKN also adopts a real-world KG as side information, and the 
title of each news as content information. Each title is represented as vectors through 
NLP techniques, also the useful words are extracted from those titles to link to their 
related entities in KG. After that, the embedding of the title, entities that appeared in 
that title, and the context entities form a three-dimension vector set, and the vector 
set is processed by a knowledge-aware CNN proposed by DKN to obtain the final 
embedding of each news. The next step is using the Attention mechanism to extract 
users' interests in different news. After that, the news' embedding and users' 
embedding can be obtained, and based on them the recommendation can be made. 
 
The KGAT model [7] is different. Since it can make recommendations for music, book, 
and spot, it only uses the KG that is related to these three targets as side information. 
In this model, user/item interactions are treated as a special triple and formed a 
collaborative KG (CKG) with side information KG. Then KGAT puts the CKG into the KG 
embedding layer to obtain the preliminary embedding of all the nodes on the CKG. 
Then KGAT proposes an attention-based graph convolution network to adopt the high-
order embedding propagation from entity to user, where the entities are treated as 
attributes to enrich the features of items, and the items are used to contribute to the 
representation of users. Finally, in the prediction layer, KGAT uses all the propagated 
information of users and items from all the graph layers, then conducts the prediction. 
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Besides, with the development of deep learning, many new technologies are adopted 
in the KG-based RS area. For example, the KGCL [8] model and the MCCLK [27] model 
divide the user/item matrix and the KG triples into different cross-view, then both use 
the Contrastive Learning method to reduce the noise between the cross-views. The 
Reinforcement Learning method is also a hot topic in the RS area. In the CGKR [28] 
model, the Reinforcement Learning technique is adopted in two counterfactual 
generators that generate fake interactions to reduce the spurious correlations in the 
RS, and the two generators are joint-trained with a GNN framework for the 
recommendation. The SAPL [29] model improves the explainability of RS with its 
sentiment-aware KG and Reinforcement Learning policy for the recommendation and 
reasoning. Yet in those models, the fundamental idea is based on the CF-RS to calculate 
the user/item preference. 

2.3 Summary 

The KGE-based RS model, such as the DKN [6] model, and the KGAT [7] model, use the 
translational KGE method to get the entity/relation embedding. However, the 
translational KGE methods have the following problems: 
 
(1) Relation pattern representation problem. Research on the Rotation models [13] 

raises the problem that translational distance KGE methods lack the ability to 
represent certain types of relations. To be specific, the TransE model cannot 
represent the variety of symmetry relations. Based on its score function, the 
symmetry relations tend to be trained as zero vectors, which fail to differentiate all 
the symmetry relations. The remaining three models TransH, TransR, and TransD 
are unable to represent the inversion and the composition relations, due to the 
projections being invertible matrix multiplications. 

 
(2) Multi-step relation path representation problem. Research of the Path-enhanced 

models [14] raises another problem: translational distance models ignore the 
connections between the multi-step relation paths, as they only adopt the 
observed triples in the original KG for the model training. Thus, the high-level 
semantic information will be wasted, which results in reducing the RS performance 
precision. 

 
We consider these two problems of the KGE layer would affect the whole 
recommendation system's performance by reducing the recommendation precision. 
Inspired by KGE model as RotatE [13], PTransE [14], and PRRL [15], we adopt different 
KGE layers in the DKN model and KGAT model to address these two problems. 
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3. Proposed Method 

In this section, we introduce how we solve the two problems listed in Section 2.3, i.e., 
1) the Relation pattern representation problem and 2) the Multi-step relation path 
representation problem. In Section 3.1, we first explain our idea with examples of the 
DKN model and the KGAT model, then we explain our idea, including the general 
structure of an RS and the KGE layer in the RS. Section 3.2 is the solution to the relation 
pattern representation problem: inspired by the RotatE model, we map the entities 
and relations into the complex vector space and define each relation as the rotation 
from the source entity to the target entity. Section 3.3 is the solution to the multi-step 
relation path representation problem: we use a path extraction approach proposed by 
the PTransE model and add the path information as a constraint in the KGE layer. In 
section 3.4, combining these two strategies, we add another method that can solve 
the two problems simultaneously. 

3.1 KGE layer in RS 

In this research, our idea is to replace the KGE layer in the original RS model with other 
KGE layers with better entity/relation representation ability. With the proper KGE layer 
processing the entity/relation as a supplement of the RS, the ability of the model to 
predict precision should be improved. For example, the DKN [6] model and the KGAT 
[7] model both adopt the translational KGE method to obtain entity/relation 
embedding. However, the translational KGE methods have two problems: lack the 
ability to represent certain patterns of relations in KG, and ignore the multi-step 
relation paths, thus affecting the prediction precision. Therefore, we try to adopt 
different KGE layers in the DKN model and KGAT model to address these two problems. 
 
A KGE layer in a certain KG-based RS is always used as a first layer, as an initial input 
representation of the user/item in the RS, while preserving the semantic information 
and the original KG structure. For example, in the DKN model, the KGE layer is TransD; 
in the KGAT model is TransR; in the KGCL model is TransE. The entities/relations in KG 
are adopted as attributes to the user/item in the RS, and the KGE layer is designed to 
help better encode the semantic words of entities and relations into the form of 
vectors or matrices. Then the embedding results of entities/items will be used with a 
specialized recommendation algorithm to build a KG-based RS. In Figure 3, we give a 
general structure of a KG-based RS that uses the KGE layer as the initial input.  
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Figure 3. General structure of KGE-RS such as DKN and KGAT 

 
The importance of the KGE layer in the RS can be summarized into two reasons: to 
improve the RS precision and build the pre-trained model.  
 
First, in the traditional CF-based RS, which only uses user/item interactions as its input 
resource for model building, it only generates the first user/item embeddings with a 
random algorithm such as Gaussian distribution. Although they can be trained to be 
more sophisticated later with other deep learning mechanisms, the embeddings of 
users and items still lack the variety of different kinds of attributes and related 
connections that can be obtained from the KG. With the KG as the side information, 
the prediction precision will be improved.  
 
Second, the KGE as the initial input approach can be used to save the time of model 
training since the KGE process can be done separately from the RS process in the real-
life industry. With the rapidly growing KGE technology, many useful KGE models with 
delicate score functions and target-specific purposes are proposed, making the 
retrieving of entities/relations embeddings hard to avoid using KGE methods, 
especially in the KG-based RS area. After the entities and relations are pre-trained with 
the KGE methods, the embeddings can be adopted in the downstream task. 

3.2 Relation pattern representation 

The first problem that existed in the traditional KGE methods is that: certain relation 
patterns cannot be represented properly with the score function used in those KGE 
methods. According to RotatE [13], general relation patterns can be divided into four 
categories: the symmetry relation, the asymmetry relation, the inversion relation, and 
the composition relation. Among those relation patterns, the TransE model cannot 
represent the symmetry relations as all the relations will be encoded close to zero 
vectors; the TransH, TransR, and TransD models cannot represent the inversion and 
the composition relations due to the projection process of entities and relations are 
invertible matrix multiplications.  
 
We adopt the layer of RotatE method to solve this problem. The idea of this KGE layer 
is to project entity and relation into a complex plane, where a relation can be treated 
as rotation from its head entity to its tail entity. Figure 4 is an example adapted from 
[13] that shows the RotatE methods with only one dimension of embedding. The 
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vectors h and t are the head entity and the tail entity. Relation r is represented as a 
rotation angle, where lead the vector h rotates into a new vector hr. After that, the 
distance between the head entity and the tail entity can be calculated as |hr -t|. 
 
We give the score function of the KGE layer used for solving the problem that 
translational KGE methods can not represent a certain type of relations into various 
vector forms. Notice that in order to keep the embeddings of entities and relations in 
the form of vectors, we drop the dimension of the modulus in the embeddings, and 
only keep the angle dimension. The score function for learning the embedding of 
triple(ℎ, 𝑟, 𝑡) is shown in Equation (1), where 𝜃# , 𝜃" , 𝜃$ are high-dimensional vectors, 
which are used to represent the angles of entities and relations, and each dimension 
of those 𝜃 vectors should range between[−𝜋, 𝜋]:  
 
𝐸(ℎ, 𝑟, 𝑡) = ||𝑠𝑖𝑛((𝜃# + 𝜃" − 𝜃$)/2)||.                                   (1) 
 
With the help of score function (1), all the relations will be represented as vectors 
formed by angles, and each pattern of relations will be represented by vectors that 
satisfy the mathematical connections with their angles. For example, when 
representing a symmetry relation r, each dimension of the vector 𝜃"  will be 0, 𝜋, or 
2𝜋. For a pair of inversion relations 𝑟! and 𝑟%, the sum of the two vectors 𝜃"! and 
𝜃"% on each dimension should be 0 or 2π, as 𝜃"!, +𝜃"% = 0 or 𝜃"! + 𝜃"% = 2𝜋. For 
a set of three combination relations, such as 𝑟! and 𝑟% can combine as 𝑟&, each set 
of their dimension satisfies 𝜃"! + 𝜃"% = 𝜃"&  or 𝜃"! + 𝜃"% = 𝜃"& + 2𝜋. The formal 
mathematical proofs of these three conclusions are listed in the paper on RotatE [13] 
model. Therefore, the relation pattern representation problem can be solved. 
 

 
Figure 4. RotatE method with 1-dimensional embedding, based on Figure 1 in [13]. 
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3.3 Multi-step relation path representation 

Translational KGE models do not consider the connections between the multi-step 
relation paths, as they only use the observed triples in the original KG for the model 
training, making the embedding of entities and relations only need to be suitable for 
the original triples in KG but not compatible with the unobserved triples. Thus, the 
embeddings may not be useful for downstream tasks. 
 
Inspired by PTransE [14], we first use the Path-Constraint Resource Allocation (PCRA) 
algorithm to mine the path combined between two relations. PCRA algorithm 
measures the reliability of a multi-step relation path by comparing how many 
resources will be distributed from a head entity to a tail entity through a certain path.  
 
The multi-step relation path can be seen as the constraints of the relations. Sharing 
the same idea with entities on the translational distance space, if a triple (h, r, t) and a 
path (h, p, t) hold respectively, the relation r and the path p should be as close as 
possible on the translational space. Figure 5 adapted from PTransE [14] shows the 
difference between translational distance KGE and Path-enhanced KGE, where the 
latter adopts the path information into consideration. As Figure 5 is shown, three 
relations BornInCity, CityInState, and StateInCountry can form a multi-step relation 
path, while the head entity is Bob and the tail entity is America. The path 
representations are computed by the semantic composition of relation embeddings, 
then the embedding of this path should be calculated nearly the same as the relation 
BornInCountry in the training phase, since (Bob, BornInCountry, America) is an 
observed triple in the KG.  
 

 

Figure 5. An example of a multi-step relation path used as a relation in a triple, based 
on Figure 2 in [14]. 

 
After the mining phase, we can get both the path and its weight in the embedding 
training. The score functions for triples and paths are designed as equations (2) and (3) 
respectively: 
 

𝐸(ℎ, 𝑟, 𝑡) = 7|ℎ + 𝑟 − 𝑡|7,                                              (2) 
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𝐸(𝑝, 𝑟) = ∑ 𝑅'∈)(#,$) (𝑝|ℎ, 𝑡)	||𝑝 − 𝑟||,                                   (3) 

 
where the path 𝑝 = {𝑟!, 𝑟%⋯𝑟-} is represented as 𝑝 = 𝑟! + 𝑟% +⋯+ 𝑟-, 𝑃(ℎ, 𝑡) is 
the set of paths from h entity to t entity, and 𝑅(𝑝|ℎ, 𝑡) is the reliability of each path. 
And this is the solution to adding the path information to the translational distance 
KGE methods. 

3.4 Combination of the two solutions 

We also propose a KGE layer that can deal with the relation pattern representation 
problem and the multi-step relation path representation problem simultaneously. 
PRRL [15] shows us the possibility to solve these two problems at the same time. In 
this method, we project the project entity and relation into a complex plane, where a 
relation can be treated as a rotation from its head entity to its tail entity. Likewise, we 
also project multi-step relations into this complex plane, where a path can be treated 
as a combination of rotations by the relations that forms this path. We adapt Figure 6 
from [15] to illustrate how the path is projected into the complex plane. The multi-
step path p can be seen as a combination of relations r1 and r2, where relations are 
the rotation directions on the complex plane. The head entity vector h is translated by 
the rotation path, then the distance with the tail entity t can be calculated. 
 

 
Figure 6. Path combined with its relations on 1-dimensional space, based on Figure 2 

in [15]. 
 
The scores functions are similar to what we used in the former two sections, where 
we adopt the angle vector 𝜃 as the representation of entities and relations, and the 
representation of path can be encoded by the combination of the relations: 
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𝐸(ℎ, 𝑟, 𝑡) = 7|𝑠𝑖𝑛(𝜃# + 𝜃" − 𝜃$/2)|7                                      (4) 

𝐸(𝑝, 𝑟) = ∑ 𝑅'∈)(#,$) (𝑝|ℎ, 𝑡)||sin	(𝜃' − 𝜃"/2)||	,                           (5) 
 

and here we have 𝜃' = 𝜃"! + 𝜃"" +⋯+ 𝜃"#, which is the representation of the multi-

step path on the complex plane. The same to section 3.2, each dimension of a 
symmetry relation will be encoded as  0, 𝜋,  or 2𝜋 . And for a pair of inversion 
relations 𝑟! and 𝑟%, the sum on each of their dimensions is 0 or 2π. For a set of three 
combination relations, such as 𝑟! and 𝑟% can combine as 𝑟&, on each dimension, the 
result of 𝜃"! + 𝜃"%  should be 𝜃"&	𝑜𝑟		𝜃"& + 2𝜋 . Therefore, the relation pattern 
representation problem can be solved. Also, since the multi-step path is used as a 
constraint to its target relation in the model training, we add the path information to 
the translational distance KGE methods.
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4. Experimental Evaluation 

This section presents the datasets, the baselines, the experimental setup, the 
experimental results, and our analysis. To validate our proposed methods, we conducted 
two experiments on improving the DKN model and the KGAT model separately. 

4.1 Datasets 

We used the dataset provided by the DKN group [6]. They minded the User and News 
information and the historical interactions from the Bing News logs, then separated the 
datasets into the training set and testing set by the timeline. The KG datasets related to 
the User/News interactions are extracted from the Microsoft Satori knowledge graph. 
  
Because of privacy reasons, DKN cannot provide the original news data, and a small 
sample of KG and News data was provided instead, about 10% of the size of the original 
data set used in the DKN paper. The dataset is separated by the DKN group in chronological 
order. Table 2 shows the data size of the KG we used, including the number of entities, 
relations, and triples. Table 3 shows the data size of the user/item interaction matrix, 
including users, news, and interactions we used in our tests. 
 

Table 2. Basic statistics of the KG. 
Entity Relation Triple 

36,350 1,166 772,258 
 

Table 3. Basic statistics of the User/News dataset for training and testing. 
 Train Test 

User 469 138 
News 8,663 407 

Interactions 10,401 462 
 
For the experiments on the KGAT model, we used the same datasets used in the original 
KGAT model [7], which are three datasets mined from three open source databases 
Amazon-book, Yelp2018, and Last-FM firstly by the KGAT group, then the three raw 
datasets are separated into the training set and testing set. The usage domains of these 
datasets are book, spot, and music recommendation, respectively. The KG datasets 
related to these three User/Item datasets are extracted from the Freebase [1] KG database, 
which are also public datasets we got from the original paper. Notice that the dataset is 
separated by the KGAT group. Table 4 and Table 5 give the basic statistics of the KG 
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datasets and the User/Item datasets. 
 

Table 4. Basic statistics of the KG, based on Table 1 in [7]. 
 Entity Relation Triple 

Amazon-book 88,572 39 2,557,746 
Yelp2018 90,961 42 1,853,704 

Last-FM 58,266 9 464,567 
 

Table 5. Basic statistics of the User/Item dataset for training and testing. 
  Train Test 

Amazon-book User 70,679 70,679 
Item 24,915 21,832 

Interaction 652,514 193,920 
Yelp2018 User 23,566 23,566 

Item 48,123 46,720 
Interaction 2,418,427 616,336 

Last-FM User 45,919 45,919 
Item 45,538 39,469 

Interaction 930,032 253,578 
 

4.2 Baselines and experiment settings 

In the experiment of improving the performance of the DKN model, we reproduced four 
different translational distance KGE layers as baselines: TransE [9], TransH [10], TransR [11], 
and TransD [12], on the dataset provided by DKN. Since the usage of the TransD layer got 
the highest prediction precision among the four baselines in the original DKN experiments, 
the comparison is mainly based on the DKN model with the TransD KGE layer and our 
three proposed methods, where we separately adopted the RotetE [13] KGE layer to solve 
the relation pattern representation problem, and the PTransE [14] layer for the multi-step 
path representation, and the PRRL [15] layer that can solve these two problems at the 
same time.  
 
We also conducted a small experiment on the KGAT model, to confirm our idea and 
methods are applied to different KGE-based RS models. We reproduced the KGE layer in 
the KGAT model with the TransE method as the baseline, and the RotatE method as the 
comparison, as for trying to improve the recommendation precision by enhancing the 
relation pattern representation ability. Table 6 shows the baselines and proposed methods 
used in these two experiments. 
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Table 6. Baselines and proposed methods 
 DKN KGAT 
Baseline TransE 

TransH 
TransR 
TransD 

TransE 

Proposed method RotatE 
PTransE 
PRRL 

RotatE 

 
For evaluation metrics, in the experiment of the DKN model, we chose AUC, ACC, and F1 
values following [30]. In the experiment of the KGAT model, we chose Recall@20 and 
NDCG@20 following the original KGAT [7] experiments. For the hyper-parameters, Table 
7 and Table 8 show the hyper-parameters used in these two models. 
 

Table 7. Hyper-parameters of DKN 
Embedding dimension 50 

Number of filters 100 
Filter size [1, 2] 

L2 regularization weight 0.01 
 Learning rate 0.0001 

Batch size 128 
Optimizer Adam 

 
Table 8. Hyper-parameters of KGAT 

Embedding dimension 64 
Aggregation output [64, 32, 16] 
Message dropout [0.1, 0.1, 0.1] 

L2 regularization weight 1e-5 
 Learning rate 0.0001 

Batch size 1024 
Optimizer Adam 

 
 

4.3 Experimental results 

4.3.1 DKN model 

Table 9 shows the results of the DKN model of four baselines and our three proposed 
methods. The proposed KGE layers and the best results are in bold font. Notice that the 
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improvement percentage we listed in the parenthesis is compared to the TransD layer, 
which is marked by the underscores.  
 
We conducted the statistically significant test between the four baseline layers and the 
three proposed layers, turned out they are statistically different as the p-values are all less 
than 0.05. From Table 9, we can observe the following results: 
 

Table 9. Experiment results on the DKN model 
KGE layers AUC ACC F1 
TransE 0.5774 0.4762 0.5526 
TransH 0.5795 0.4870 0.5604 
TransR 0.5907 0.5043 0.5663 
TransD 0.5925 0.5173 0.5685 
PTransE(proposed) 0.6177(+4.3%) 0.5411(+4.6%) 0.5688 
RotatE(proposed) 0.5987 0.5346 0.5680 
PRRL(proposed) 0.5935 0.5325 0.5681 
Significant T-Test was performed to confirm the statistically different (p<0.05) between 

baselines and the proposed methods 
 
(1) Among the four baselines with TransE, TransH, TransR, and TransD layer, DKN with the 

TransD layer got the best performance, and the significant t-test between TransD and 
the other three baselines also shows the statistical difference (p<0.05), which is the 
same as observed in the DKN [6] paper. 
 

(2) Although there is not a large gap between TransD and the three proposed methods in 
the F1 score, our proposed three methods can outperform TransD on AUC and ACC, 
which proves that the two problems we observed in the original DKN model affected 
the performance of the whole RS model. Compared to DKN with the TransD layer, the 
PTransE layer method gets the highest improvements, with a 4.3% improvement in 
AUC and a 4.6% improvement in ACC.  
 

(3) Although there are differences among the results of the three proposed methods, the 
significant T-test between each of the two proposed methods showed that there is no 
statistical difference among the three methods, as p>0.05. We suppose the reason 
probably is that the essence of these three methods is to enhance the representation 
of relations from different perspectives, so that their processing of relation 
embeddings may have similar expressions, making the statistical difference not 
significant. We will leave the more detailed research in future work. 
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4.3.2 KGAT model 

Tables 10 to 12 are the results of the experiments on the KGAT model in three different 
datasets. This experiment is used as side evidence to prove that our methods work on 
different RS models that adopt the KGE layer.  
 
We also conducted the statistically significant test between the baseline TransE layer and 
proposed RotatE layers on three datasets, turned out they are all statistically different as 
the p-values are all less than 0.05. From these three tables, we can observe that: 
 

 Table 10. Experiment results on the Amazon-book dataset of KGAT 
Amazon-book Recall@20 NDCG@20 p-value 
TransE 0.1352 0.0717  
RotatE(proposed) 0.1367(+1.1%) 0.0722(+0.7%) 0.0286 

 
Table 11. Experiment results on the Last-FM dataset of KGAT 

Last-FM Recall@20 NDCG@20 p-value 
TransE 0.0806 0.0684  
RotatE(proposed) 0.0814(+1.0%) 0.0694(+1.4%) 0.0218 

 
Table 12. Experiment results on the Yelp2018 dataset of KGAT  

Yelp2018 Recall@20 NDCG@20 p-value 
TransE 0.0656 0.0419  
RotatE(proposed) 0.0662(+0.9%) 0.0425(+1.4%) 0.0078 
 Significant T-Test was performed on each dataset to confirm that the Baseline model 

and our proposed model are statistically different (p<0.05) 
 
(1) All the improvements compared from the RotatE layer to the TransE layer baseline are 

around 1%, suggesting that the KGE layer in an RS that can represent the variety of 
relation patterns can bring an outperformed result. 

 
(2) The success of the KGAT model confirms our idea and methods are applied to different 

KGE-based RS models, which means a KG-based RS adopted a KGE layer as its initial 
input layer should consider a better KGE layer to obtain more accuracy and specific KG 
embeddings.  
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5. Conclusion 

In this research, we proposed a new strategy to improve the performance of an RS that 
adopted a KGE layer as its initial input layer. We adopted three different KGE layers and 
solved two problems that existed in the original model, including lacking the ability to 
represent certain types of relations in KG and ignoring the rich inference patterns 
contained in the multi-step relation paths. We assume that a KGE layer with higher 
accuracy performance will bring the whole system better recommendation results, and 
we conducted a large number of experiments to prove the correctness of our hypothesis, 
where we got around 4.5% improvement on AUC and ACC in the experiment of the DKN 
model, and around 1% improvement on Recall@20 and NDCG@20 on the KGAT model. 
 
Actually, in the real-life industry, the training of the KGE process is time-consuming, but 
since the training process of entity/relation embedding can be separated from the RS 
model build training, the time-consuming can be avoided. Also, the growing corpus of KG 
can help retrieve the KG embeddings with higher accuracy. Yet the time-consuming is still 
a problem. For future work, I may conduct research on how to deploy an RS in the real-
life industry and try to reduce the time-consuming, to better exploit the potential of the 
knowledge graph. 
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