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Abstract

As the demand for high-performance computing in today’s society continues to increase, most com-

mon processors provide advanced parallel processing capabilities, such as Single Instruction Multiple

Data (SIMD). Thanks to these new instruction sets, we can parallelize some computationally inten-

sive tasks to improve the efficiency of program execution. However, the concept of vector computing

by SIMD instruction set may be more difficult for developers to understand because it is not exactly

the same as traditional scalar computation;Moreover, using SIMD instruction sets requires developers

to have a deeper understanding of the underlying hardware, which adds difficulty to the use of SIMD

instruction sets. Although modern compilers can automatically convert some codes into SIMD in-

structions to implement implicit automatic vectorization, their optimization capabilities are limited

by multiple factors, and writing explicit vector code is still an important work in code optimization.

To address these challenges, this thesis presents a dynamic visualization method for SIMD assembly

language code and its implementation: PixelAssemblySIMD. PixelAssemblySIMD provides a user-

friendly interface. Developers can use this tool to represent SIMD instructions in the form of anima-

tion, which helps them understand how these instructions are executed in parallel in the processor.

Compared with other SIMD assembly language visualization tools, PixelAssemblySIMD has the fol-

lowing advantages:

• A universal visualizationmethod, which can use the same animation logic to represent different

SIMD instruction sets and SIMD instructions;

• Based on data flow rather than control flow, which is more in line with SIMD features;

• Supports a variety of different SIMD instruction sets, including SSE, AVX and AVX-512, etc.;

• Uses an independent CPU emulator named cpulib to ensure the correctness of CPU visualiza-

tion data;

• Visualization method used in PixelAssemblySIMD is more appropriate for teaching and learn-

ing than compared to debugger type visualization.

• PixelAssemblySIMD supports cross-platform compatibility; it can be compiled into native bi-

nary files formultiple platforms, and it can even be compiled intoWebAssembly to run directly

in browsers.

In the user-based research evaluation, PixelAssemblySIMD and its visualization method have been

proven to be a useful tool. The majority of developers believe that PixelAssemblySIMD is helpful in

assisting them to understand the execution process of SIMD instructions, and it has advantages in rep-

resenting complex SIMD instructions.

Keywords: Software visualization; SIMD; CPU emulation
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1

1
Introduction

This chapter not only states the background and purpose of the research but also presents a comprehensive

introduction to the research results. In the first section, the background and purpose of this study are

introduced, and the problem is analyzed at both technical and philosophical levels. Then the achieve-

ments and innovations of this study are summarized. Finally, the structure of this thesis is introduced

in the third section.

1.1 Background and Purpose of the Research

1.1.1 Background of the Research

Assembly Language

Utilization of Assembly Language in Programming With the development of high-level

programming languages andmodern compiler technology, the direct application of assembly language

is decreasing. As a normal developer, it is difficult to encounter code that uses assembly language; even

operating system developers rarely use assembly language for development. Most operating systems are

developed in high-level languages likeC, and assembly language is only introducedwhen there is a need

to initialize hardware.

As analyzed in A. Fog. Optimizing subroutines in assembly language: an optimization guide for x86

platforms, 2008, there are many reasons why we are not inclined to use assembly language for develop-

ment today, including:

• Development level : Using assembly language means it requires more development time and

maintenance cost; meanwhile, debugging and validation of the program becomemore difficult.

• Software level : As assembly language closely related to machine language and being a low-level
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programming language, the software written in assembly language is generally poor in portabil-

ity. Also, because there is no systematic method for testing and validation, the reliability and

safety of the software written in assembly language are often an issue.

• Alternatives: With the development of modern compilers, the performance of software devel-

oped in high-level languages is often sufficient to meet the requirements. And with the advent

of intrinsic functions, system-level code can also avoid using assembly language directly through

intrinsic functions.

However, as pointed out in this book, assembly language is still crucial and irreplaceable in certain

fields, such as:

• System-level code: Embedded systems, operating system code, drivers, and other areas that need

direct hardwaremanipulation. In these areas, assembly language is often indispensable, as high-

level languages typically cannot provide the capability to manipulate hardware.

• Software optimization: If you want to optimize code in terms of time and space at a deeper level,

assembly language is needed. Because although modern compilers can optimize code in many

cases, their optimization capabilities are still limited in some extreme examples.

• Special purposes: Self-modifying code, compiler writing, and other special-purpose code often

need to use assembly language.

• Teaching and Research: Assembly language is often used for education and research because it

can help students and researchers better understand how computers work. Observing assembly

language snippets generated by the compiler can also be used to learn principles of compiler

operation and optimization methods.

In addition, assembly language is essential in thefield of software security analysis, vulnerabilitymining,

reverse analysis, etc. It is commonly used for software analysis because assembly language code is closer

to machine language and easier to analyze.

Complexity ofAssembly LanguageProgramming Assembly language is known for its prox-

imity to machine code, posing huge challenges even for experienced programmers. The complexity of

assembly language can be reflected in the following points:

• Low level and hardware dependency: Assembly language provides direct control over hardware,

including processor registers, instruction sets, etc. This low-level control means that program-

mers need to have a deep understanding of the specific hardware that runs the code. Different

processor architectures have different assembly languages, so assembly language has strong plat-
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form dependence.

• Learning of mnemonics and instruction sets: Assembly language uses mnemonics to represent

machine instructions. Programmers need to learn and memorize these mnemonics and their

usagemethods, and their number is muchmore than the keywords in high-level languages. The

instruction set of each processor architecture may be different, so a deep understanding of the

specific instruction set is also needed.

• Difficulty of debugging and maintenance: Because assembly language is very close to machine

code, debugging assembly programs is usually difficult. When an error occurs, the error infor-

mation may not be as intuitive as in high-level languages. Also, assembly code maintenance is

relatively difficult because the code is usually not as readable as in high-level languages.

• Manual resourcemanagement: In assembly language programming, programmers need toman-

ually manage all resources, including memory allocation and register use. This increases the

complexity of programming, especially when managing large programs.

• Lack of high-level abstraction: High-level programming languages provide abstractions such as

functions, classes, and objects, making code easier to write and understand. Assembly language

does not have these abstractions, making the implementation of complex logic more difficult.

• Complexity of performance optimization: While assembly language allows for fine performance

optimization, this usually requires programmers to have a deep understanding of processor per-

formance characteristics, such as how the cache works, the execution cycle of instructions, etc.

• Portability issues: Because assembly language is closely dependent on a specific hardware plat-

form, porting assembly code between different platforms is very difficult.

It can be seen that writing or even understanding assembly language program has a certain complexity.

Single InstructionMultiple Data(SIMD)

Introduction of SIMD Single Instruction Multiple Data (abbreviated as SIMD) computing is a

commonly used parallel processing technique in modern computer architectures that allows for basic

operations to be performed on multiple data elements in parallel with fewer instructions to accelerate

application performance[2]. In the case of calculating intensive sets, programs using SIMD instruc-

tions can run much faster than traditional ones using scalar calculations[3]. For instance, a program

using SIMD instructions in the Prefix Sum algorithm can be about three times faster than an unopti-

mized one[4]. Currently, SIMDhas a wide range of applications in performance-demanding programs

such as multimedia processing, data security, database and scientific computing[2].

Figure 1.1 shows a comparison of addition calculations. On the left is an example of SISD (Single In-
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Figure 1.1: Comparison between SISD and SIMD

struction, SingleData), while on the right is an example of SIMD. SISD can only perform one addition

at a time, but SIMD can perform four additions simultaneously. Such data parallelism can significantly

speed up program performance to a certain extent.

At present, there are generally three methods to apply SIMD computation in programs:

1. Writing programs in high-level languages, then using the compiler for automatic SIMD opti-

mization;

2. Writing programs in high-level languages, then using intrinsic functions for explicit optimiza-

tion;

3. Writing assembly language programs directly using SIMD instruction sets.

As mentioned earlier, with the rapid development of compiler technology, automatic SIMD imple-

mented by the compiler is sufficient for general optimization; however, for performance-chasing appli-

cations, explicit SIMD instructions are sometimes needed, using intrinsic functions or even assembly

language for optimization.

SIMD Instruction Sets in x86_64 Architecture Table 1.1 lists the common SIMD instruc-

tion sets in the x86_64 architecture and their descriptions.
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Table 1.1: common SIMD instruction sets in the x86_64 architecture

Instruction Set Time Register Width Description

MMX 1996 MM0-MM7 64bits MMX(MultiMedia Extensions) is one

of the earliest SIMD instruction sets,

mainly used to accelerate multimedia

tasks, such as video processing, image

processing, and audio processing, etc.

MMX uses the registers of the existing

floating-point unit.

SSE 1999 XMM0-XMM15 128bits SSE(Streaming SIMD Extensions) is

an extension to MMX, adding sup-

port for single-precision floating-point

numbers. It has gone through mul-

tiple versions, from SSE1 to SSE4.2,

and the XMM registers have expanded

from the initial 8 to 16.

AVX 2011 YMM0-YMM15 256bits AVX(AdvancedVector Extensions) ex-

tends the register width of SSE, sup-

porting more advanced floating-point

operations. Includes AVX, AVX2. The

lower 128 bits of YMM registers are

XMM registers.

AVX-512 2013 ZMM0-ZMM31 512bits Extended the register width of AVX,

expanded the number of vector regis-

ters to 32, supporting more advanced

floating-point operations. The lower

256bits of theZMMregister areYMM

registers.

Table continued on next page 1.1 common SIMD instruction sets in the x86_64 architecture
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Continued on next table 1.1 common SIMD instruction sets in the x86_64 architecture

Instruction Set Time Register Width Description

FMA 2013 Vector registers - FMA(Fused Multiply-Add) provides

compound multiply-add instructions,

able to complete multiplication and

addition in one operation, improving

computational performance.

End of table 1.1 common SIMD instruction sets in the x86_64 architecture

Challenges of Implementing SIMD in Programs Apparently, SIMD computing offers signif-

icant performance advantages, especially when dealing with large amounts of data, but this advantage

comes at the expense of increased programming complexity and also makes understanding and debug-

ging programs more difficult[5][6]. Specifically, using SIMD computing encounters challenges in the

following aspects:

• Data alignment: Accessing memory blocks at locations that are not aligned on the natural vec-

torsize boundary is usually forbidden or results in severe performance penalty. This alignment

constraint significantly affects the effectiveness of SIMD vectorization and is also one of the

challenges encountered in writing compilers that automatically use SIMD extensions[2].

• Hardware dependencies: Different hardware platforms provide different SIMD instruction sets,

making it difficult to port programs using SIMD instructions across different hardware plat-

forms.

• SIMD implementation limitations: Tomake SIMD instructions perform at their best, program-

mers must assess the program segments to be implemented in SIMD computations in at least

the following four aspects: (1) The program segment must be computationally intensive; (2)

The execution frequency of program segments is enough to affect performance; (3) The pro-

gram segment cannot depend on the data’s control flow, if it does, it needs to be fragmented;

(4) The program segment needs help to effectively use the cache hierarchy. These assessments

require a deep understanding of the program’s structure and the hardware’s characteristics by

the programmers, which makes implementing SIMD computations a challenging task[2].

• Programming education: Teaching SIMD programming skills is also challenging because most

textbooks don’t cover practical knowledge of the SIMD execution model[7].
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Utilization of SIMD in Assembly Language

It’s not hard to see that using assembly language and SIMD computing are both great ways to opti-

mize the time and space performance of a program, and coding SIMD in assembly language is still the

most effective method. Although using SIMD instructions in assembly language is the most difficult

programming method, it offers the best performance[2]. Hence, situations that require dealing with

the complexity of assembly language and SIMD computation are common, and easily encountered in

software security analysis, vulnerability exploration, reverse analysis, and other fields.

Programming in assembly language using SIMD instructions is a relatively challenging task. I will show

you this challenge with an example. First, let’s consider the assembly language code shown in List-

ing 1.1.

Listing 1.1: Code for executing vperm2f128 instructions using assembly language
1 section .data

2 array1 dq 1.0, 2.0, 3.0, 4.0

3 array2 dq 5.0, 6.0, 7.0, 8.0

4 array3 dq 0.0, 0.0, 0.0, 0.0

5

6 section .text

7 global _start

8 _start:

9 vmovapd ymm0, [array1]

10 vmovapd ymm1, [array2]

11 vperm2f128 ymm2, ymm0, ymm1, 0x21

12 vmovapd [array3], ymm2

13 ; exit system call

14 xor rdi, rdi

15 mov rax, 60

16 syscall

The purpose of this code is to arrange the data in two arrays according to certain rules, and then store

the result in the YMM2 register. The vperm2f128 instruction is used in the code. This is a SIMD in-

struction. It arranges the data in the vector registers shown by the second and third operands according

to the immediate number in the fourth operand as control bits, and then stores the result in the vector

register indicated by the first operand.

Now the question is: What is the result of the vperm2f128 instruction (i.e., the value in the YMM2

register)? It is not difficult to find that if we only refer to this code, we can hardly understand its func-

tion. Because we can’t clearly know the function of the vperm2f128instruction through this code:

we only know that the operating register is YMM0 and YMM1, and the result is placed in YMM2, but we

know nothing about the role of control bits. If we want to understand the function of this code, we
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must have a certain understanding of the assembly language, the architecture of the computer, and the

working principle of SIMD instructions and the function of each instruction (and what their control

bits will control).

So, can we understand this code and its SIMD instructions more easily in high-level language? In List-

ing 1.2, I give the code with the same function as in Listing 1.1 using C language and Intel’s intrinsic

function.

Listing 1.2: Code for executing vperm2f128 instruction with C language and intrinsic functions
1 #include <stdio.h>

2 #include <immintrin.h>

3 int main() {

4 __m256d array1 = _mm256_setr_pd(1.0, 2.0, 3.0, 4.0);

5 __m256d array2 = _mm256_setr_pd(5.0, 6.0, 7.0, 8.0);

6 __m256d array3 = _mm256_permute2f128_pd(array1, array2, 0x21);

7 ; print the values in array3

8 double* res = (double*)&array3;

9 for (int i = 0; i < 4; +++i) {

10 printf("%lf\n", res[i]);

11 }

12 return 0;

13 }

It can be seen that this code is more concise and easier to understand than the code in Listing 1.1.

However, for the SIMD operation in this code, we still can’t directly know what the vperm2f128

instruction does, because we still don’t know the role of the control bits. Therefore, it can be said that

the intrinsic functions provided by high-level languages also do not solve the difficulty we have in un-

derstanding SIMD instructions.

One can see that assembly language has brought great challenges to programmers’ cognition. Adding

the need to deal with SIMD computations doubtlessly further complicates this situation. Although

SIMD allows multiple data points to be processed in parallel with a single instruction and that’s effi-

cient, this is somewhat at odds with humans’ cognitive model that tends to focus on single data ele-

ments. This discrepancy poses a conceptual hurdle to programmers; this complexity is not just a tech-

nical obstacle, but it also represents the cognitive gap between human intuitive processing andmachine

logical operations. Now I will delve into this and attempt to propose a new solution.
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1.1.2 Cognitive Dissonance Between Humans and Com-

puters

Understanding the Cognitive Challenges Posed by SIMDComputation

Herewediscuss centering aroundSIMD, in an attempt to reveal the fundamental difference between

humans and computers in the way they process information. In the use of SIMD, humans tend to

focus on individual elements and their changes, while computers focus on efficiently processing the

entire datasets. This disparity indeed can lead to cognitive conflicts, especially when designing and

understanding complex computational systems.

Cognitive Dissonance in Programming The challenge to understand SIMD programming,

decipher assembly language, and even grasp the application of SIMD instructions in assembly lan-

guage all stem from the cognitive dissonance between human and machine processing. Humans tend

to view data and tasks scalars and step-by-step, focusing on single elements and their transformations.

Machines, specifically under the context of SIMD operations, can process data in bulk, without distin-

guishing their constituent parts. This difference sparks philosophical questions on the nature of com-

putation, as well as the interface between human thinking andmachine processing. Programmersmust

reconcile the human-centric data view with the machine-oriented computational methods (referring

here to SIMD computation methods here).

Analogy of Thinking Processes If we regard the process the computer uses to execute com-

mands as a sort of thinking process, then the cognitive contradiction between humans and machines

arises: humans care more about how individual scalars within a vector change, while computers are

more eager to know how they should accurately compute a set of vector – they do not care about the

function of individual scalars, because they do not need to ”understand” the program. However, one

question arises: can we consider the process computers use to execute commands as a ”thinking pro-

cess”? This is a philosophical question concerning the definition of ”thinking.” Computer processes are

strictly preset and programmed, while human thinking is more complex and flexible. Computers may

not have real ”thinking,” but they indeed exhibit a ”decision-making process” when executing tasks.

Moreover, the root cause of this contradiction is not the difference between human thinking and the

computer’s ”decision-making process,” but the discrepancy of the human cognitive role.

Inner Contradictions of Cognition and Dual Nature of Programmer Cognition The

contradiction mentioned above actually originates from the conflict between different cognitive

roles within humans themselves, rather than a direct opposition between humans and computers.
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This concept implies that in understanding and operating computers, we need to simultaneously

acknowledge and deal with these different cognitive patterns. Programmers often oscillate between

these two realms: they need to explore the function of programs from a human-centric perspective,

and need to switch to a machine-centered perspective when writing programs and considering how

computers will solve problems. This binary nature is not only a technical skill but also a cognitive

exercise, requiring programmers to internalize and switch between different thought patterns.

”Programming Thinking” and its Impact on Humans A competent programmer should be

able to seamlessly switch between these two states, which we can call ”Programming Thinking”. How-

ever, for beginners, smoothly transitioning between these cognitive modes is challenging because the

”Programming Thinking” differs from cognition in everyday human life. Studies found that people

with high programming experience might develop a computational form of thought that can be used

for complex problem-solving tasks. In certain deductive tasks, experienced programmers exhibit more

efficient neural processing and improved performance. This suggests that programming experiencemay

be related to neural efficiency in programming-related psychological processes, such as pattern recogni-

tion and algorithmic thinking[8]. The ”computational way of thought”mentioned here and the result-

ing ”human psychological processes and thinking” are referred to as ”Programming Thinking”. These

experiments already show some differences exist between Programming Thinking and regular human

cognition, and these differences can impact howhumans understand computers—even how they think

and process thoughts in general.

Visualization: An Auxiliary Method for Bridging the Cognitive Gap

Among Programmers

AssistingHumanCognition: ANecessary Approach Given beginners’ difficulty in quickly

transitioning between cognitivemodes, tools helping human cognition should be available. These tools

not only lower the entry barrier for novices but also enable advanced programmers proficient in cod-

ing to complete tasks more leisurely without having to frequently switch cognitive modes during the

thought process. These tools can be programming languages, programming environments, and also

programming auxiliary tools, like the visualization tool proposed in this thesis. While visualization

has far lower information-delivering efficiency than writing code, it is indisputable that visualization

methods are more intuitive to humans and can aid programmers in better understanding programs

and algorithms[9].
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Exploring theConcept of Visualization Visualization refers to a method using graphics or im-

ages to represent and display information, data, or programs[9]. Its aim is to make complex data easier

to understand and interpret by visual representation. This technology is widely applied in numerous

fields, including science, engineering, medicine, education, and business. Visualization can also be used

in the programming realm, including visual programming and program visualization. The latter uses

graphs or animations to show program execution, data structures, or algorithms to help programmers

understand and debug programs. By leveraging the advantages of the human visual system, more intu-

itive, easier-to-grasp, and operable programming environments are provided[9]. In computer science

education, visualization has been proven an effective means to understand and learn abstract and com-

plicated concepts[10]. For programs using SIMD computation, graphical visualization reduces the

difficulties in understanding and debugging[5].

At present, the application of visualization in programming is increasing. Scratch[11] and Blockly[12]

are frequently-used visual programming tools whileAlice[13] and others serve as programvisualization

tools, all designed to guide beginners in understanding programming terms and simplifying program-

ming processes.

Using Visualization to Decode and Explain Code To prove that visualization does make up

for the cognitive gap of programmers to some extent, and serve as an auxiliary cognitive tool for begin-

ners, educators, and even expert programmers, let’s return to the code in Listing 1.1. This time Iwill use

a rudimentary method of visualization to illustrate the SIMD operations in the code. We can observe

whether the visualizingmethod used in Figure 1.2 can reveal the specific function of thevperm2f128

instruction in the code more simply.

From the static visualization of the given vperm2f128 instruction, we can easily see the specific op-

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

ymm0: ymm1:

3.0 4.0 5.0 6.0ymm2:

Figure 1.2: Visual representation of the vperm2f128 instruction

eration this instruction will perform when the control bit is 0x21, and easily derive the result stored

in the YMM2 register. Through static visualization, we can learn that when the control bit is 0x21, the
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lower 128 bits of the result come from the upper 128 bits of the second operand, and the upper 128

bits of the result come from the lower 128 bits of the third operand. Such understanding is clearly

impossible to perform and comprehend through the operand ”0x21”. It is obvious that the intuitive-

ness of visualization methods helps humans better understand the functions of programs and SIMD

instructions. However, there are still some limitations:

• This visualization method is only suitable for specific instructions. For other instructions, we

also need to redesign the visualization method;

• This visualizationmethod can only show the function of specific control bits of specific instruc-

tions. For control bits with other values, we need to redesign the visualization method;

These limitationsmake this visualizationmethod unable to be applied tomore complex code andmore

complex instructions. However, the emergence of this visualization method still proves that visual-

ization methods can indeed bridge the gap in programmer cognition to a certain extent, and proves

that visualization methods can indeed serve as an auxiliary method to help humans better understand

programs and algorithms.

1.1.3 Purpose of the Research

Themain goal of this research is to propose a universal data flow-based visualizationmethod and de-

velop its prototype tool, PixelAssemblySIMD, to unveil themystery of SIMDcomputation in assembly

languages, and to avoid the drawbacks mentioned in static visualization. PixelAssemblySIMD aims to

bridge the aforementioned cognitive gap by transforming machine-centered SIMD operations into a

format that is more intuitive for human programmers. This visualization tool can assist programmers

in the following areas:

• Enhancing programming education and practice: This tool is expected to contribute to program-

ming education by more closely integrating with human cognitive processes. Such consistency

couldmake learningmore efficient and intuitive, especially for beginners who have just been in-

troduced to concepts such as SIMD and assembly language; for those who want to understand

the workings of the computer, this visualization method is a good way to understand assembly

code; for those who want to understand SIMD computations, this visualization method can

help them understand the workings of SIMD computations better.

• Diagnostic tool : Debugging SIMDprograms and assembly language programs is a difficult task,

but this tool can also be used as a diagnostic tool for programs, thereby identifying and resolving
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issues in SIMD code more quickly through visualization methods.

• Applications in security and code analysis: This visualization method also impacts security pro-

fessionals, especially in the analysis of disassembled code. By providing a clearer understanding

of the SIMD computation process and assembly code flow, it can help with disassembly vul-

nerability assessment and debugging; or when analyzing code, it can better and more quickly

understand the data control flow of the code through visualization methods.

1.2 Contributions of the Research

This research mainly has the following contributions:

1. This study introduces a dynamic visualization method that can translate SIMD instructions

in assembly language into a format that human programmers can understand more intuitively,

thereby bridging the cognitive gap between humans and computers. This visualization method

has a certain universality in describing instruction behavior and canuse the sameoperation logic

to display the behavior of different types of instructions. Meanwhile, this method is based on

data flow rather than control flow to fit the characteristics of SIMD.

2. This research implements a prototype tool PixelAssemblySIMD. This tool, after several itera-

tions, implements the aforementioned visualization method and also implements a CPU em-

ulator based on the Rust language, and proposes a method for implementing asynchronous

behavior animation in synchronous systems based on the immediate mode graphical user in-

terface. Furthermore, PixelAssemblySIMD supports cross-platform compatibility; it can be

compiled into native binary files for multiple platforms, and it can even be compiled into We-

bAssembly to run directly in browsers.

3. This study conducted a user-based evaluation of the proposed visualization method. The eval-

uation results show that the method is effective in assisting humans (including programming

learners and those who do not understand programming at all) in understanding assembly in-

structions, with 34.3% (for simple instructions) and 42.2% (for complex instructions) respon-

dents acknowledging its effectiveness; whereas when assisting programmers in understanding

assembly instructions, 88.2% (for simple instructions) and 95.0% (for complex instructions) of

programmers believe it to be effective.

Compared to other SIMD instruction visualization methods, the visualization method and prototype

tool proposed in this study have several advantages:
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1. The visualization method proposed in this study has a certain degree of universality, it can use

the same operation logic to display behaviors of different types of instructions, while other

SIMD instruction visualization methods may need to design different visualization methods

for different types of instructions.

2. Thevisualizationmethodproposed in this study is based ondata flow,which ismore in linewith

the characteristics of SIMD; while other SIMD instruction visualization methods are mostly

based on control flow.

3. Compared to other tools created using frontend technology, PixelAssemblySIMD provides

better data accuracy. PixelAssemblySIMD uses a standalone CPU emulator to ensure data ac-

curacy, while other tools based on frontend technology might produce inaccurate data due to

the characteristics of JavaScript.

1.3 Structure of the Thesis

The structure of this thesis is as follows:

• Chapter 1Research Introduction. This section first states the background and purpose of this

study, and outlines the contributions and innovations of the research in the second section.

In the last section of this chapter, the structure of this thesis and the role of each chapter are

detailed.

• Chapter 2Research Background. This section introduces the technologies and professional ter-

minology used in this thesis, as well as the technologies and code libraries used in Chapter 4.

• Chapter 3Design and Proposal. This section proposes a visualization scheme and the design of

a prototype implementation of the scheme, PixelAssemblySIMD, detailing the attempts made

in other directions before reaching the final method, and analyzing the shortcomings of these

abandoned methods, thus highlighting the advantages of the current visualization method. It

then describes the design of the current visualization scheme and prototype tool PixelAssem-

blySIMD indetail: including the design of aCPUemulator introduced to ensure data accuracy,

the design of an animation executor capable of executing asynchronous behavior animations in

synchronous systems, and the design of the instruction executor in PixelAssemblySIMD.

• Chapter 4Implementation of the Prototype of the Visualization Method. This section describes

the implementation of the visualization method mentioned in Chapter 3 with Rust, mainly

including the CPU emulation library cpulib independent of the visualization tool, the anima-
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tion executor used for visual representation, and the instruction executor used when executing

instructions.

• Chapter 5Experiment and Evaluation. This chapter first introduces the difficulty of evaluating

the visualization scheme and proposes a method to evaluate the visualization scheme in this

thesis. Then it introduces the results of the evaluation using this method and analyzes the eval-

uation results. Finally, it provides some SIMDalgorithm examples based on assembly language,

which can be used to detect the effectiveness of the implemented functionalities in Chapter 4.

• Chapter 6Related Research. This section introduces other research works related to this thesis,

and compares thesemethods with this method in detail, highlighting the innovative points and

advantages of the visualization method mentioned in this thesis.

• Chapter 7Summary and Prospect. This section summarizes the research results of this thesis and

looks forward to the future research direction.
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2
Research Background

This chapter mainly states the background knowledge of the research. This chapter will introduce other

related background knowledge involved in this thesis besides assembly language, SIMD, and visualiza-

tion, including CPU simulators, the Rust programming language, and GUI design. The related back-

ground knowledge of assembly language, SIMD, and visualization has been introduced in Chapter 1.

2.1 CPU Emulator

2.1.1 AnOverview of CPU Emulator

ACPU emulator is a software tool that can emulate the operations of a physical CPU, allowing code

to be executed without the need for a real CPU. This enables it to run and test programs designed

for specific CPUs in different hardware or software environments. Generally, CPU emulators can be

used for various purposes, such as analyzing malicious software code, verifying code semantics, and

emulating cross-architecture console software[14]. For example:

• Software development and testing: Developers can test software on CPUs of different architec-

tures without actually owning the hardware.

• Hardware design verification: Hardware engineers can emulate a newly designed CPU to verify

its performance and functionality.

• Education and learning : Students and beginners can learn about the workings of CPUs of dif-

ferent architectures through emulators.

• System debugging : Debugging operating systems and other low-level software in a emulated

environment is convenient for identifying and fixing errors.

• Reverse engineering : Security researchers and hackers may use emulators to analyze malicious

software or conduct vulnerability research.



Chapter 2. Research Background 17

The most basic CPU emulators usually have the function of instruction set emulation, which can em-

ulate the instruction set of a specific CPU and allow programs designed for that CPU to run. More

advanced CPU emulators may also support dynamic translation and system emulation functions. The

former can combine instruction set emulationwith JIT compilation, dynamically translate the instruc-

tions of the target CPU into the instructions of the host machine’s CPU, and improve the efficiency of

the emulation. The latter can emulate the whole computer system, including other hardware compo-

nents such as memory, I/O devices, etc.

So, according to the functions that the CPU emulator can achieve, we can divide the emulator into

two basic types: instruction set emulators and full system emulators. The instruction set emulator can

only emulate the instruction set of a specific CPU and is used for testing and analysis of specific ap-

plications; whereas the full system emulator can emulate the entire computer system, including CPU,

memory, I/O, etc., and is generally used for more advanced operating system debugging or implement-

ing non-kernel level virtualization environments.

2.1.2 Comparative Analysis of CommonCPU Emulators

Table 2.1is a list of some commonly used CPU simulators.

Below, I will introduceQEMUandUnicorn, two of themost commonly usedCPU emulators, within

Table 2.1: Common CPU Emulators

Name Type Architecture Open Source

QEMU Full System ARM, MIPS, PowerPC, RISC-V, x86 Yes

Bochs Full System x86 Yes

Simics Full System ARM, MIPS, PowerPC, RISC-V, x86 No

Intel SDE Full System x86 Yes

Unicorn Instruction ARM, MIPS, PowerPC, x86 Yes

the context of full-system emulators and instruction set emulators.

QEMU (Quick EMUlator) is a multifunctional open source software, mainly used for creating virtual

machines and emulation environments. It is designed to emulate different hardware platforms, and fa-

cilitate the development and testing of complex systems. QEMUis capable of emulating different hard-

ware architectures. In hardware/software co-development, QEMU’s emulation ability allows testing

and verification of hardware concepts and kernel drivers and applications before the actual hardware

is available[15]. It allows running multiple operating systems on a single physical machine, making it
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a valuable tool for cloud service providers and large organizations seeking to optimize their server in-

frastructure[16]. Currently, QEMU is being used by various user groups including developers, system

administrators, researchers, and students. In academia and research fields, QEMU is often used as an

educational tool to teach computer architecture, operating system, and virtualization concepts[16].

Unicorn is a standalone CPU emulator framework which supports multiple architectures, providing

a clean, simple, lightweight and intuitive cross-architecture API. Unicorn is built based on QEMU,

thus it supports QEMU’s high performance and JIT technology. But it has modified QEMU code

to fix issues such as memory leaks, while only retaining CPU emulation code. In this way, Unicorn

not only builds a more lightweight and compact CPU emulation framework while retaining QEMU’s

advantages, but also improves the maintainability and security of Unicorn[14].

2.1.3 The Common Registers Supported by the x86_64

Architecture

The GPRs*1 supported by the x86_64 architecture vary from 8-bit to 64-bit width, as shown in Ta-

ble 2.2.

Table 2.2: GPRs Supported by The x86_64 Architecture

Width Registers

8 AH,BH,CH,DH,AL,BL,CL,DL, SIL,DIL,BPL, SPL,R8B,

R9B, R10B, R11B, R12B, R13B, R14B, R15B

16 AX, BX, CX, DX, SI, DI, BP, SP, R8W, R9W, R10W, R11W,

R12W, R13W, R14W, R15W

32 EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, R8D, R9D,

R10D, R11D, R12D, R13D, R14D, R15D

64 RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, R8, R9, R10,

R11, R12, R13, R14, R15

End of table 2.2 GPRs Supported by The x86_64 Architecture

The vector registers supported by the x86_64 architecture that supports AVX-512 include XMM

*1 GPR means General Purpose Registers
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registers, YMM registers, and ZMM registers, which are used to store vector data of 128 bits, 256

bits, and 512 bits, respectively. Each type of vector register has 32 indices from 0 to 31, i.e., XMM0-

XMM31, YMM0-YMM31, and ZMM0-ZMM31.

2.2 Rust Programming Language

Rust is a multi-paradigm system programming language developed with support from Mozilla, in-

tending to provide superior memory safety, concurrency, and performance. Since the first pre-release

version of the Rust compiler was released in January 2012, it has quickly gained widespread attention

from the developer community. It has also often been voted the ”most loved” programming language

in Stack Overflow’s developer surveys. To a certain extent, Rust deserves more attention and learn-

ing from programmers because it outperforms other mature languages in performance, security, and

confidentiality[17]. The Rust language has the following main advantages:

• Memory Safety: Rust, based on a strong type system of ownership and borrowing, resolved the

long-standing contradiction in programming language design between control and safety. It also

provides the resource management control of low-level system programming languages and the

safety of high-level languages[18].

• Performance: In comparisons among C, C++, Go, Java, Python and Rust, Rust surpasses Go,

Java and Python in terms of time and space performance. Compared with C and C++, Rust is

slightly behind in time comparison, but excels in memory usage[19][17].

• Zero-cost Abstractions: Rust offers high-level abstractions without sacrificing performance[17].

• Concurrency: Rust’s design supports concurrent programming without data races, making it

simpler towrite efficient,multithreaded programs. Manydata race issues related to concurrency

can be avoided through Rust’s type system design[20].

• Modern Language Features: Rust supports modern language features such as patternmatching,

closures, which makes programming more efficient and enjoyable.

However, Rust also has the following disadvantages:

• Unavoidable Concurrent Vulnerabilities: Programmers generally do not understand Rust’s rules

for concurrent checks well, and excessive reliance on the compiler’s checks may still lead to the

occurrence of concurrent vulnerabilities[21].

• Unproven Security Claims: Rust uses an ownership-based type system to ensure safety and ex-

pands the expressiveness of the systemby internally using librarieswithunsafe features[22]. This
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can potentially pose a security risk for libraries that use unsafe declarations that do not comply

with certain features.

• Learning Curve: The ownership and borrowing system of Rust might be difficult for new

users to understand, especially those who are not familiar with low-level memory management

concepts; the syntax of Rust might also be more complex than some other programming

languages[23].

• Fewer Libraries and Frameworks: Rust is still in a stage of rapid development, with a smaller

community, and may lack some libraries and frameworks[23].

Despite the above-mentioned shortcomings, Rust is still a programming language worth learning.

Rust’s memory safety and concurrency make it a language very suitable for system programming, and

Rust’s performance is also outstanding, which can be used to write high-performance programs. Rust’s

syntax is also very modern, supporting many modern language features, making programming more

efficient and enjoyable. Rust’s learning curve may be steep, but once the ownership and borrowing

system of Rust is mastered, it’s possible to write safer and more efficient programs.

2.3 GUI

2.3.1 GUI Design

DeclarativeUI programming and imperativeUI programming are two differentmethods for design-

ing user interfaces in software development. As the pace of software updates and iterations speeds up,

traditional imperative UI programming is gradually being replaced by declarative UI programming,

which is widely used in mobile and web applications. At present, the mainstream declarative UI pro-

gramming frameworks for web applications include React, Vue, Flutter, etc., and the new UI frame-

works formobile, like iOS’s SwiftUI andAndroid’s JetpackCompose, are declarativeUI programming

frameworks.

Declarative UI Programming

Declarative programming involves writing code to specify what you want, not explicitly defining the

control flow. This style doesn’t describe the steps to achieve a certain state, but describes the expected

state itself[24]. For example, the simplest example is using HTML markup language to represent the

expected view tree. The programmer writes code that directly represents the expected results, and au-

tomatic algorithms are responsible for converting the specifications into runtime structures or behav-
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iors[24].

Using declarative UI programming has many advantages and is becoming more and more popular in

UI programming:

• The code of declarative UI is usually more compact because the description of UI is usually at a

higher level of abstraction.

• Declarative UI focuses on the goals, not the process of achieving the goals.

• Declarative UI promotes the creation of authoring tools, as declarative specifications can be

easily loaded and saved by tools[24].

However, there are also some disadvantages of declarative UI programming:

• ThedeclarativeUI doesn’t directly describe the control flow,whichmakes debuggingmore chal-

lenging.

• Specialized debugging tools are required for debugging, such as Vue.js framework usually uses

Vue Devtools for debugging. Because the tools must comply with declarative specifications.

• Small changes in declarative code can lead to significant changes in output, which might bring

some difficulty to code maintenance and iteration[24].

Imperative UI Programming

Imperative programming requires developers to explicitly define the steps to reach the desired state

or perform operations. InUI creation, this involves writing detailed code instructions to tell the device

how to display the components[25][26]. Imperative UI programming is more focused on describing

which aspects of the state need to be reached, so it generally involves more specific and detailed step-

by-step instructions.

Imperative UI programming also has some advantages, such as it can provide more control over the ex-

ecution process, and due to the explicitness of the code, code written with imperativeUI programming

is generally easier to understand and debug. However, since imperativeUI programming requiresmore

code to describe the control flow when the UI changes, its code is usually more verbose, and program-

mers need to put more effort into managing the state and flow of the application.

Comparison and Analysis

Overall, declarative UI programming and imperative UI programming have obvious differences in

the following aspects:
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1. Approach: Declarative programming is more about stating what you want, while imperative

programming is about specifying how to do something[26].

2. Level of abstraction: Declarative programming operates at a higher level of abstraction and usu-

ally requires imperative implementation on lower-level to convert declarative commands into

executable instructions[26].

3. State management: In declarative programming, state changes are abstracted, making the code

more readable and reducing the focus on the state management mechanism. By contrast, im-

perative programming often involves explicit state operations[26].

4. Context dependency: Declarative code can be more independent of context, which means that

the same code can be used in different programs withoutmodification. Imperative code usually

depends on the context of the current state,making it less flexible in different environments[26].

In summary, declarative UI programming focuses on the final result, with a higher level of abstrac-

tion and less explicit control flow; whereas imperative UI programming spells out the exact steps to

achieve the desired state, providing more control, but may result in code that is more complex and ver-

bose. With the demand for faster software iteration speed now, declarativeUI programming has gained

widespread application on the Web and mobile, and imperative UI programming has been gradually

replaced by declarative UI programming.

2.3.2 Exploring the egui Library in Rust

When implementing the project of this thesis, theGUI is based on the egui library. Egui is an Imme-

diate Mode GUI(IMGUI) library written in Rust, aiming to provide a fast and easy-to-use experience

for building graphical user interfaces. In IMGUI, each part of the user interface is recalculated and

rendered in each frame. UI elements like buttons and sliders are dynamically created and rendered

each time the application draws its interface. This is contrary to traditional Retained Mode, where UI

elements are created once and retained until explicitly modified.

egui has the following main advantages:

• Good performance: Egui differs from traditional GUI toolkits in that it is not dependent on the

event-drivenmodel and adopts the immediate mode. This design is based on performance con-

siderations, as the immediatemode usually uses lessmemory and has faster rendering times[27].

• Multi-platform support: Egui provides multi-platform support and can be compiled into web

(WASM) and native binaries under multiple architectures, and it can even be embedded into
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game engines.

• Automatic layout: Egui supports automatic layout, making it easier to create cross-platform re-

sponsive designs.

• Simple and Efficient API Design: egui’s API design is simple and easy to understand and it pro-

vides an abundance of controls such as buttons, text boxes, and sliders, etc. A full-featuredGUI

program can be quickly implemented through natively provided APIs[27].

• High-level Features: egui also provides high-level features such as layout management[27].

• Excellent Documentation and Active Community: egui’s official website provides detailed tuto-

rials and examples and many third-party libraries and tools are available for development with

egui[27].

Safety, responsiveness, friendliness, and portability are the main goals of egui, which claims to be one

of the simplest libraries amongst Rust web applications[28].

However, due to the characteristics of the immediate mode GUI, egui does not support native anima-

tion and requires developers to implement animation logic themselves, such as by changing the state

or properties of components in successive frames to create animated effects. Since egui recalculates the

interface state in each frame, this makes the implementation of dynamic and responsive animations

feasible, though it may require more programming effort to manually handle animation logic. How-

ever, current animation libraries are usually event-driven because we typically want to execute certain

operations at the end of an animation rather than executing animations in every frame. Thus, due to

this characteristic of egui, implementing asynchronous behavior animations in such a synchronous en-

vironment can be challenging. Therefore, to achieve dynamic visual effects, we must expand upon the

foundation of egui and write a similar event-driven animator to display asynchronous action anima-

tions.
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3
Design of VisualizationMethod and

PixelAssemblySIMD

This chapter proposes a visualization method for representing SIMD calculations in assembly language

and the design of a tool that implements this method named PixelAssemblySIMD.Thefirst section of this

chapter introduces the evolution of this visualization method, elaborates on the limitations of the first

version of this visualizationmethod and the deficiencies of the first prototype of PixelAssemblySIMD,

leading to subsequent improvements. Starting from the second section of this chapter, it introduces

the improved visualization method and its implementation. Firstly, the second section provides a de-

tailed introduction to the design thought of the improved visualizationmethod, includingGUI design

and animation design; The third section introduces cpulib, a CPU simulation tool designed by Pixe-

lAssemblySIMD to ensure data reliability, to address the serious defect mentioned in the first section;

The fourth section introduces the design of an animation executor that can be used in egui framework,

which supports animations with asynchronous behaviors under a synchronous environment; Lastly,

this chapter presents the design of the instruction executor in the tool.

In this chapter, we use element to represent a scalar in a vector register.

There will be a lot of use of charts for illustration in this chapter and the legend used in these charts are

as shown in Figure 3.1.
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at the top left corner.

The rectangle contains a
description of the animation
process.

Figure 3.1: Legend used in the visualization description

3.1 Evolution of Design

3.1.1 Design and Limitation of the VisualizationMethod in

the Initial Prototype

This section introduces the design of the visualization method in the initial prototype (hereinafter

referred to as ”Method1”) and its limitations. The design ofMethod1 only considered the visualization

of registers because most SIMD instructions interact with registers. The following first introduces the

visual representation of the registers in Method1.

Visual Representation of Registers

In Method1, registers are divided into two types: GPRs and vector registers. Because vector regis-

ters usually save a set of scalars, while a single general-purpose register generally saves a scalar, we make

the vector registers look like a collection of general-purpose registers in the graphic design of regis-

ter visualization. The illustration shown in Figure 3.2 is a visual representation of the elements in the

general-purpose register or vector register.
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This representation uses rectangles to represent the elements of general-purpose registers or vector reg-

Border

Use different border colors to
represent different types of
register categories. GPR,
XMM, YMM, and ZMM
registers all have different
border colors.

0xFF

Interior

Different colors are used internally to distinguish the
indices of registers, for example: XMM0 and XMM1
have different interior colors, while YMM0 and XMM0
have the same interior colors. In addition, the interior
also displays the value stored in the register (for
GPR) or the value of a single scalar in the register (for
vector registers).

Figure 3.2: Visual representation of GPR or element in vector registers

isters. However, the rectangle can be divided into three parts: the outer frame, the internal fill color,

and the internal value.

• Thecolor of the outer border represents different types of registers. Thus, different border colors

can distinguish 8-bit general-purpose registers, 16-bit general-purpose registers, 32-bit general-

purpose registers, 64-bit general-purpose registers, XMM vector registers, YMM vector regis-

ters, and ZMM vector registers in the x86_64 architecture.

• The internal fill color represents the registers of different indices in each type of register. In the

x86_64 architecture, except for the 8-bit general registers, each type of general register has 16

indices, so we use 16 different fill colors to distinguish registers of different indices; For 8-bit

general registers, since the high and low8bits of the 16-bit registersAX,BX,CX,DXhave been

divided into two independent 8-bit registers, and the chance to use these registers separately is

very rare, so we use the same color to represent the high and low 8 bits of these registers. For

vector registers, each type of vector register has 32 indices, so we use 32 different fill colors to

distinguish registers of different indices.

• The internal number represents the value in the GPR or element.

The complete representation of the register is shown inFigure 3.3.

The name of the register is displayed on the far left, followed by the visual representation of the register.
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0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFFXMM0:

0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFFYMM0:

0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFFZMM0:

0xFFRAX:
Register

Vector registers are represented by a set of
rectangles, where each rectangle represents a
scalar in the register; GPRs are represented
by a single rectangle. However, note that the
width of these rectangles does not represent
the width of the data.

Name

Indicates the name of the
register being represented.

Figure 3.3: Visualization of the registers in Method1

Here, as introduced above, theGPRuses the same representationmethod as Figure 3.2; while the vector

register is represented as a collection of elements, i.e., a group of rectangles in Figure 3.2. According to

this visualization scheme, we can easily distinguish different types of registers, as well as registers with

different indices, and know the values saved in them.

Visualization of SIMD Instrcutions

In Method1, for easier visualization, common SIMD instructions have been abstracted into three

specific operations: move, assignment and exchange. Through the combination of these three types

of operations, we can visualize most of the SIMD instructions, and this operation is also suitable for

GPRs.

move operation means moving a value from one register to another, or from one element to another. It

is worth noting thatmove in assembly language means copy rather than cut.

Figure 3.4 shows the animation design of the move operation. The animation design of the move

operation contains 5 steps:

1. Animation starts, determining the element to be moved and the target position;

2. Move the element to be moved to the target position. Note that here the border and internal

color of the moved element are not changed;

3. After completing step 2, the moved element will cover the target position, and there is still no

need to change the border and internal color of the moved element. But at this time it is nec-

essary to move the real data, i.e., to change the value of the target position to be the same as the
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Figure 3.4: Method1 instruction visualization animation: move operation

moved element;

4. Move the moved element back to the original position;

5. Animation ends, the element at the target position has been assigned the same value as the

moving element.

The animation of the move operation moves the moved element to the target position and changes the

data of the target position after the coverage, so from the user’s perspective, it is as if the value of the

moved element has been moved to the target position.

assignment operation means assigning a new value to a register or an element.

The animation design of the assignment operation is shown in Figure 3.5. The animation of the assign-

ment operation involves 6 steps in total. Despite the relatively high number of steps, the operations

performed are quite simple:

1. The animation begins by determining the target element (i.e., the element to be assigned) and
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Figure 3.5: Method1 instruction visualization animation: assignment operation

the target value;

2. In order to highlight the assignment operation, the target element is slightly moved upwards;

3. The target element is made to sway left and right to highlight the assignment operation. At this

point, the new value is assigned to the target element;

4. The swaying motion is ceased, and the value of the target element has been changed;

5. The target element is moved back to its original position;

6. The animation is complete, and the value of the target element has been changed.

The animation of the assignment operation has only completed the assignment operation on the target

element. However, because the representation of elements uses different border colors and internal

colors to distinguish different categories, it is difficult to highlight the target element of the assignment

operation just by changing the border color, so a more exaggerated animation is used to highlight the

target of the assignment operation.
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exchange operation means to exchange the values in two registers or two elements.

The animation design of the exchange operation is shown in Figure 3.6. The animation of the exchange
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Figure 3.6: Method1 instruction visualization animation: exchange operation

operation only includes 3 steps, which is very simple:

1. The animation begins by determining the two elements to be exchanged;

2. Theelements tobe exchanged aremoved to eachother’s positions, and their borders and internal

colors are changed to match the type at the target location;

3. The animation is complete, and the positions of the two elements have been successfully

swapped.

The exchange operation directly swaps the positions of two elements and changes their colors tomatch

the type of the other, such a simple operation is also intuitive to the user. It should be noted that there

is no direct exchange operation in SIMD instructions. We usually achieve the exchange operation by

using othermore generalmovement instructions. However, herewe visualize the exchange operation as

an independent operation, because the existing moving operation is not clear enough in the animation

representation when exchanging two elements.

Limitations of VisualizationMethod

Visualization Method1 abstracts common SIMD instructions into three operations that are more

conducive to visualization, and can perform visualization of most common SIMD instructions. How-
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ever, the design of this visualization method still has limitations in the following aspects:

• Inability to represent data width in the visualization of registers: Method1 does not differentiate

the visualization of registers based on data width, which can make it difficult for users to intu-

itively distinguish different width data stored in registers. For example, the visualization of an

XMM register that holds four 32-bit floating point numbers and a YMM register that holds four

64-bit floating point numbers is the same inMethod1 and has exactly the samewidth. This kind

of visualization method can confuse users.

• Unable to clearly represent the operational process: In Method1, the instruction involving op-

eration can be represented as ”assigning the result after operation to the register or element.”

However, such an abstraction cannot clearly represent the process of operation, for example:

when executing the vaddpd instruction, we cannot clearly represent the process of adding two

elements, but can only be represented as assigning the result of adding the two elements to a

new element. Such a representation can make complex computation instructions difficult to

understand, for example, the vfmadd132pd instruction involves addition andmultiplication,

and the current visualization method cannot clearly represent which elements are involved in

the operation.

• visualization method is not universal : Depending on Method1, the operation abstraction of

commonly used SIMD instructions can successfully model most SIMD instructions. How-

ever, this visualization animation scheme will operate on the visualization of the original reg-

isters, which can cause a lack of clear guidance for executing complex instructions or when

some operands of the instructions are the same, and cannot be used as a universal visualization

method. For example, for the instruction vmulpd xmm0, xmm0, xmm0, its three operands

are all the same, but the visualization of the register only has one, so such instructions in the

visualization animation of Method1 can cause difficulty for users to understand.

• visualization method binds data operations: The visualization animation of move and assign-

ment operations must carry out data operations in the middle to make the whole visualization

process understandable to users. But such a design makes the module of visualization display

boundwith themodule of data operation, which can lead to poor scalability of the visualization

method.
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3.1.2 Design and Shortcomings of the Initial Prototype of

PixelAssemblySIMD

The initial prototype of PixelAssemblySIMD uses Svelte, Vite, and Anime.js frontend technologies

based on JavaScript to implement the visualization method of Method1. The initial prototype of Pix-

elAssemblySIMD is hereinafter referred to as ”Prototype1”.

Software Architecture

Visualization Component
Register Data
Management
Component

Instruction Executor

Code Editor

Debugging Component

Figure 3.7: Design of Prototype1

The software architecture of Prototype1 is shown in Figure 3.7 with a UML component diagram.

From this component diagram, we can see that the visualization component depends on the debugging

component and the register data management component; the debugging component uses interfaces

from the code editor and instruction executor to update register data to achieve the function of as-

sembly code debugging; the instruction executor uses interfaces from the register data management

component when updating register data.

Here, the visualization component does not directly use interfaces from the register data management

component, but depends on it. This is because most frontend technologies are based on responsive

models when rendering graphics. When the instruction executor changes the register data, the regis-
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ter data management component will automatically notify the visualization component to update and

re-render the visualization graphics.

GUI Design
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Figure 3.8: Legend explaining graphical primitives for GUI design

I used a set of graphical primitives to show the functionality and nesting relationship of elements on

the user interface to display the software’s GUI design. The figure for this set of graphical primitives is

shown in Figure 3.8.

Figure 3.9 shows the GUI design of Prototype1. The top of the page is the software’s title, which is

in line with the design thoughts of most web APPs based on frontend production. The lower part of

the page is divided into left and right parts. The left half has an embedded code editor for entering

assembly code. The right half includes sections for visualization and debugging functions, with the

debugging function located at the bottom of the right half page. This GUI design presents the three

main functional areas in the simplestway on thewebpage, arranging them from large to small according

to their importance. Users can understand how to use the software without learning when they use it

for the first time.

Figure 3.10 uses UML state diagram is used to describe the software’s behavior after user operations,

which canhelp better understand the behavior of software based on the reactivemodel. As shown in the



34 3.1. Evolution of Design

XMM0 1 2 3 4

YMM0 1 2 3 4

YMM1 1 2 3 4 5 6 7 8

Step Run Undo Settings

PixelAssemblySIMD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

vaddps xmm0, xmm0, xmm0

vaddps xmm0, xmm0, xmm0

Code Editor

Write assembly
language code here.

Debug Function Block

Contains tools used for debugging,
such as step-by-step execution,
execute, rollback, etc.

Title/Header

The title of the
tool.

Visualization
Function Block

Displays the
visualization of
registers, as well
as the
visualization
animation of
running
instructions.

Figure 3.9: GUI design of Prototype1
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Figure 3.10: State diagram of Prototype1 GUI
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figure, after opening the software, itwill first automatically render a visual representationof the registers,

and then wait for user input. If the user exits the program, it enters a termination state; otherwise,

when the user starts debugging, the software will enter different states based on the correctness of the

debugging assembly code: if the code is correct, the software will execute the visual representation of

the code, and then optionally re-render the visual representation of the register based on whether the

instruction has updated the register data; if the code is wrong, it will return to the waiting state.

Register DataModel and Visualization Components

JavaScript is not a traditional Object-Oriented Programming (OOP) language, but UML class di-

agrams are used here to explain the design of software components, data structures, and relationships,

mainly for the following reasons:

• Wide readability and standardization: UML class diagram as a standard modeling language

is widely understood and accepted. Even in non-pure OOP environments, many developers

and analysts are familiar with class diagrams and can quickly comprehend the structures and

relationships they represent.

• Abstraction and conceptualization: UML class diagrams offer an abstract way of describing

entities in a system and their interrelationships without relying solely on specific programming

paradigms. This abstraction is useful even in non-OOP languages.

• Data modeling: Class diagrams are not just for describing OOP class structures; they can also

represent data models and relationships between data, which is essential for any programming

language.

Figure 3.11 uses UML class diagram describes the data structure and its relationship with the register

data model and visualization components in Prototype1. In the class diagram, Main is the main pro-

gramwith an aggregation relationshipwithVisualization (visualization component) and Instructions

(instruction execution component). That is, Main has Visualization and Instructions, but does not

affect their lifetimes. Registers is a collection of registers and forms part of the Visualization com-

ponent (i.e., a composition relationship). In addition, Instructions also depends on Registers and

Visualization because the instruction execution stage needs to read existing values from the registers

for crucial information andGUI operations are defined in the interface ofVisualization. Finally,Reg-

isters is a combination of Register, which is a data structure representing a single register.
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Register

+ name: String
+ size: Number
+ stroke: String
+ fill: String

Instructions

+ constructor(move, exchange, assignment): Null
+ clear_record(): Null
- update_registers(): Null
- get_size(reg): Null
- get_values(reg): Null
- get_type(reg): Null
+ movaps(reg, reg): Null
+ vshufps(reg, reg, reg, imm8): Null
...

Registers

+ registers: [Register]

Main

- instructions: Instructions
- visualization: Visualization

+ onMount(()=>{}): Null
- run(): Null
- step(): Null

Visualization

+ registers: Registers

+ exchange(reg, index, reg, index, ()=>{}): Null
+ assignment(reg, index, Number, [reg],()=>{}): Null
+ move(reg, index, reg, index,()=>{}): Null

Figure 3.11: Component Design of Prototype1

Deficiencies

Through analyze Figure 3.11, an obvious problem can be detected: the design of the software archi-

tecture has tied the visualization component and the register data management component together.

Also, the instruction execution component relies on the visualization component. This design has re-

sulted in poor scalability of the visualization solution, as improvements to the visualization solution

must simultaneously change the main program, register data management component, and instruc-

tion execution component. This is not a well-designed software system.

Moreover, another issue implicitly impacts the reliability of the software. JavaScript’s way of handling

types and data makes it unsuitable for handling low-level data. However, when modeling the register

files, it’s essential to handle the low-level data to recreate what the computer does when it interacts with

registers. We might use a lot of bitwise operations or even operate directly on bits. Therefore, while

the current version of the software does not have data accuracy issues when executing simple SIMD

instructions, it cannot accurately simulate the real interactions with the registers when handling more

complex SIMD instructions, especially those with different bit widths for input data and operation
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data, which could easily lead to data errors.

3.1.3 Improvement Plan

The preceding section has analyzed the problems with the visualization method and software im-

plementation of the first prototype. We proposed an improvement plan for these problems. For the

visualization method, we will explore a more generic animation effect to represent changes on the reg-

ister files by assembly language instructions and should more clearly represent the calculation process

of instruction execution. As for the software implementation, the design idea of the improvement plan

is to decouple the visualization method from the register data management component. This way, the

visualization method can be improved independently of the register data management component. To

solve the data reliability problem, we introduced a CPU emulator that can emulate the CPU’s execu-

tion process, thus ensuring data reliability.

3.2 VisualizationApproach forSIMDInstruction

3.2.1 Animation Design

The improved visualization method (hereinafter referred to as ”Method2”) uses a generic animation

effect to represent changes on the register files by assembly language instructions. It can be used to

represent instructions with any number of operands, and it won’t confuse users even when executing

instructions with a single operand. Also, this animation can more clearly illustrate the computation

process of instruction execution.

Visualization Representation of Registers

The register representation in Method2 is roughly the same as that in Solution One, but the register

representation in Method2 can be distinguished according to the data width, Figure 3.12 shows differ-

ent data widths. As shown in Figure 3.13, the register representation inMethod2 uses different rectan-

gle widths to distinguish different data widths, such a design can allow users to intuitively distinguish

registers of different data widths. In addition to this, Method2 removed the design of distinguishing

different types and indexes of registers according to color. Using toomany colors on the same interface

can confuse users, and such a design is not necessary because users can already distinguish different

registers through the names of the registers.

Among the different registers shown in Figure 3.13, GPRs are easier to understand because they have
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Figure 3.12: Different data widths in Method2
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Figure 3.13: Visual representation of registers in Method2

a fixed data width. For vector registers, for example, the displayed XMM0 register, it holds two 64-bit

data. In the graphical representation, the width of these two 64-bit data is the same as the width of the

64-bit GPR (such as RAX), which allows the user to intuitively understand the data width stored in the

current register without having to calculate based on the total register width and the number of data

stored.

Visualization of SIMD instructions

When representing SIMD instructions,Method2 divides the animation into three stages: Start,Ex-

ecute, and End. The following is a detailed description of the animation design of these three stages
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based on the assembly code vperm2f128 ymm1, ymm0, ymm0, 0x21.

Figure 3.14 details the Start stage of the animation inMethod2. Themain task of this stage is to create
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Figure 3.14: Animation design of instruction visualization in Method2 - Start stage

duplicates of the registers in the animation area according to the number of operands: if there are two

YMM0 registers in the operands, duplicate the YMM0 register in the animation area twice, represent-

ing the two operands. In the Execute phase, all instruction execution animations will be carried out in

the duplicate of the register, and the original register value will not be modified yet.

Figure 3.15 details the Execute stage of the animation in Method2. The main task of this stage is to

operate on the duplicate of the register according to the instruction. The advantage of doing this is that

most of the common SIMD instructions can be represented using a unique shift animation. In the ex-

ample of Figure 3.15, the second step executes the operation of the vperm2f128 instruction with the

control bit is 0x21, permuting the elements of the second and third operands into the corresponding

positions of the first operand.

Figure 3.16 details the End stage of the animation in Method2. The main task of this stage is to copy

the data in the duplicate of the register back to the original register. The advantage of doing this is that

in the Execute stage, any operation can be performed on the duplicate of the register without worrying

about affecting the value of the original register. In the example of Figure 3.16, the secondmovemoves
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Figure 3.15: Animation design of instruction visualization in Method2 - Execute stage

the new value of the first operand that has been modified to the real register; then in the third step, the

duplicate of the register that has not been used is discarded.

Since the animation design in Method2 is relatively complex, the just example did not demonstrate

the animation design of instructions containing calculation operations. Next, the animation design of

instructions containing calculation operations will be explained based on the assembly code vaddpd

ymm1, ymm0, ymm0.

What all instructions do in the Start and end stages is the same. Figure 3.17 is a detailed description

of the Execute stage of the vaddpd ymm1, ymm0, ymm0 instruction. In the second step, we first

move the second operand to the first operand; then in the third step, wemove the third operand to the

first operand and perform addition. It is worth noting that the execution of the addition in the third

step is not directly concluded, but the calculation formula is given. Afterwards, in the last step, we

calculate the result of the addition. Such a design can show the calculation process to the users before

giving out the calculation result, allowing users to better understand the instruction execution process.
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Figure 3.16: Animation design of instruction visualization in Method2 - End stage

3.3 Design of PixelAssemblySIMD

The improved version of PixelAssemblySIMD is written inRust language, and theGUI part is based

on the egui library. The following will refer to this version of PixelAssemblySIMD as ”Prototype2”.

3.3.1 Reasons for Using Rust and egui

”Prototype2” chose to use the Rust language primarily for the following reasons:
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Figure 3.17: Animation design of calculation instruction visualization in Method2 - Execute stage

• Support forLow-LevelOperations: Rust provides good support for low-level data andoperations,

exemplified by the development of cpulib in Rust.

• Modern Language Features: Rust supports modern language features, such as closures and iter-

ators, which can make the code more concise and efficient.

• Safety: Rust’s borrow checker ensures memory safety, significantly reducing bugs in the appli-

cation.

• High Performance: Rust offers performance comparable to C/C++ while ensuring safety.

• Cross-Platform: Rust can run on a variety of platforms and supports common operating systems
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as well as WebAssembly[29].

The reasons for ”Prototype2” choosing the egui library are:

• ImmediateModeGUI : egui eliminates the need for the complex state and lifecyclemanagement

of traditional retained mode GUIs.

• Declarative UI Programming : Provides a higher level of abstraction, accelerating application

development.

• Cross-Platform: egui can be compiled on a variety of platforms, including WebAssembly.

3.3.2 Software Architecture

cpulib

APP

Register Visualizer

Register Visualizer DataVisualizer Setting

FSM Instruction Executor

Code Editor

Figure 3.18: Design of Prototype2

The software architecture of Prototype2 is shown in Figure 3.18 with a UML component diagram.

Prototype2 has significantly improved the architecture compared to Prototype1 by decomposingmost

of the functional modules, reducing the coupling between each module, and making the functions of

each module clearer. According to the description in Figure 3.18, the APP component (i.e., the main

class of the software) uses interfaces frommost of the components because it needs to render all graph-
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ical interfaces from these components. In fact, the operation of theAPP component depends only on

the Instruction Executor component (providing instruction execution functions) and the FSM com-

ponent (providing a finite state machine to aid instruction execution) because of its integrated code

debugging functionality. The Register Visualizer Data component provides management of visual-

ization data, so the Register Visualizer component (providing visualization functionality) and Visu-

alizer Setting component (providing visualization setting functionality) depend on it. In addition, the

cpulib component provides management of CPU data, so both the Register Visualizer component

and Instruction Executor component depend on it.

3.3.3 GUI Design

Prototype1 is designed with a single GUI interface, while Prototype2 utilizes the egui framework

to implement a multi-interface GUI design. Users can open or close function windows as needed. To

explain the GUI design of Prototype2, I still use the graphical primitives introduced in Figure 3.8.

As shown in Figure 3.19, the GUI design of Prototype2 is composed of main windows includingmain

three windows. The overall GUI design of Prototype2 resembles a standard software made up of a top

menu bar, left sidebar, and main window on the right. The menu bar provides basic functionalities

such as opening and saving files, displaying, or closing the sidebar, etc. The sidebar presents the main

functionality like visualization window, debugging window, etc. The main window is the main func-

tion window, offering a code editor. This design makes the software functions clearer, users can open

or close function windows as needed, without being forced to use all function windows.

The visualization setting provides a series of setting functionalities for visualization, including anima-

tion play speed, adding or removing registers, sorting registers, etc. With these features, users can cus-

tomize the visual effects as needed. The visualization window presents according to the settings in the

visualization setting window.

3.3.4 Code Editor

The code editor in Prototype2 uses a third-party library, egui_code_editor, since the egui frame-

work itself does not offer a professional code editor widget supporting line number display. The

egui_code_editor is a text editor widget based on egui, with line number displays and simple syntax

highlighting based on keyword sets[30]. However, egui_code_editor lacks line number highlighting

functionality needed for debugging and highlighting functionality for assembly code syntax. There-

fore, I improved upon egui_code_editor by adding line number highlighting and syntax highlighting
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functionality for assembly code. Currently, the modification of assembly language syntax highlighting

has been submitted as a Pull Request on GitHub and merged into the main branch of the project.

3.3.5 CPU Emulator: cpulib

To address data reliability and restore the operation method of CPU on registers, Prototype2 uses

an independent CPU emulation library ”cpulib” developed based on the Rust language to emulate the

execution process of CPU.

Figure 3.20 uses UML class diagram describes the data structure of cpulib and its relationships. cpulib

provides a CPU structure, which includes components of CPU such as register files, and memory, and

provides operation methods for register files, and memory, etc.

• Register Operations：cpulib categorizes registers into four major types and provides respective

methods for operating each type of register. In the four types of registers, in addition to GPR

and vector registers, it also provides support for status registers and instruction counters. Fur-

thermore, for vector registers, cpulib provides a variety ofmethods for readingorwriting register

values: full reads or writes, reading or writing vectors according to fixed data widths, and read-

ing or writing based on selectors (selectors serve as selection means just like pseudocodes in the

Intel official manual, XMM0[63:0] signifies selecting the lower 64 bits of the XMM0 register).

The implementation of these methods aspires for similar actual operations with the CPU, for

example, cpulib showcases the physical relationships between registers such as the XMM register

being the lower 128 bits of the YMM register, EAX being the lower 32 bits of the RAX register,

etc.

• Memory Operations：cpulib supports not only register operations but alsomemory emulations.

It providesmethods for reading andwritingmemory while supporting different data widths for

these operations. Moreover, cpulib supports batch reads and writes for memory, and such a de-

sign can better emulate CPU operations on the memory. To improve performance, operations

on cpulib’s memory are lazy, meaning that the actual data is written into the virtual memory

page only when necessary. When reading blank pages, it directly returns 0. This design en-

hances cpulib’s performance in emulating programs with a high number of memory accesses.

While designed, cpulib was referred to pseudocodes in the Intel official manual, aiming to mimic the

actual CPU operations as much as possible. In addition, as a CPU emulator mainly focused on emu-

lating instruction sets, cpulib can bypass issues found in emulators like QEMU. For instance, the large
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Figure 3.20: Design of cpulib

amount of I/Ohardware emulation inQEMU is redundant for visualized instruction tools. Moreover,

it considered AVX-512 expansion support during design, allowing cpulib to emulate AVX-512 archi-

tectural instructions. Meanwhile, a similar instruction set emulator, Unicorn, does not yet support

AVX-512 extensions.
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3.3.6 Animation Executor Based on egui

Theegui library doesn’t offer native animation functionality; thus, I have implemented an animation

executor based on the egui library that can produce simple animation sequences. There’s a challenge

here: egui is a synchronous library that doesn’t handle asynchronous operations directly nor offers any

inbuilt asynchronous or concurrent features. Most animations tend to use event-driven asynchronous

operations, such as the Anime.js library, which bases animation on JavaScript’s asynchronous opera-

tions. To solve this problem, I used Rust’s signals and closures to construct a simple animation library

featuring asynchronous operations. It’s non-blocking and event-driven and can seamlessly integrate

with egui’s main render loop to generate smooth animation sequences.

• Non-blocking：The animation library is non-blocking, meaning the animation execution won’t

block other parts of the program. Even with an ongoing animation, the program can still re-

spond to user inputs, manage other events, or execute other tasks.

• Event-driven：The animation library is event-driven, controlling the animation flow through

callback functions and signal mechanisms. After an animation segment ends, it can automati-

cally trigger the next segment or another operation, indicating that animation control is event-

based rather than sequential execution or synchronous waiting.

The design of the animation executor, described in Figure 3.21 based on the UML state diagram, pri-

marily functions to execute animation sequences. Animation sequences composed of multiple ani-

mation groups, they’re sequentially executed when the animation sequence runs. The execution of

animation is signal-based; each complete animation sends a signal caught by the animation executor,

triggering the execution of the next segment. This design makes the execution of animation sequences

non-blocking and event-driven. The animations executed by this executor demonstrate asynchronous

behavior in a synchronous system since the animation execution process doesn’t impede the program

from running other tasks, and the animation control is manipulated through callback functions and

signal mechanisms. The key point is the decoupling of animation handling from other parts of the pro-

gram.

According to the description in Figure 3.21, when the target position is the same as the UI element’s

current position (no animation) and no events (signals) are received, the software is in a rendering state,

continuously rendering UI elements. If it is found that the current position of the UI element is differ-

ent from the target position, animation execution begins. At this time, the position of the UI element

will be updated to become closer to the target position. The specific increment is determined by the
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Figure 3.21: Animation executor based on egui in Prototype2

speed setting of the animation; after updating the current position, if it overlaps with the target posi-

tion, the callback function after the end of the animation will be executed, and then it will return to

the rendering state after sending the ”Next Animation” signal; if it does not overlap with the target po-

sition, it will directly return to the rendering state. When in the rendering state, two different signals

can be processed:

• Next Animation：Start the next animation. This represents that the previous animation has

ended and the next animation can be started. After receiving this signal, the target position

of the UI element will be set according to the next animation set, and then it returns to the

rendering state.

• Animation End：Animation ends. Receiving this signal means that the set animation sequence

has been completed. At this time, the callback function after the end of the animation sequence

will be executed, then it will return to the rendering state.
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3.3.7 Instruction Executor

Start executing the instruction

Exit the programIdle

Complete

Create Layout

Complete

Run Animation

Complete

Update Data

Complete

Destroy Layout

Figure 3.22: Instruction Executor in Prototype2

The Prototype2 implements command execution based on the state machine. In Prototype Imple-

mentation 2, if you want to perform command animation, you first need to create a copy of the target

register, which requires additional space, so you need to create a Layout of the register copy during the

layout. After creation, the animation can start. After the animation ends, the data in cpulib needs to

be updated. Finally, delete the created Layout, and one animation process ends. Figure 3.22 describes

the state transition during this process.
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4
Implementation of PixelAssemblySIMD

This chapter will detail the implementation process of the design described in Chapter 3. This chapter first

introduces the implementation of the CPU emulation library cpulib, and then introduces the specific

implementation process of PixelAssemblySIMD from the aspects of GUI, animation executor, and

instruction executor.

4.1 CPU Emulator: cpulib

4.1.1 External Interface

Listing 4.1: External Interface of cpulib (Structure)
1 pub struct CPU {

2 pub registers: Registers,

3 pub memory: Memory,

4 }

The external interface of cpulib is very simple. It exposes the internal register and memory-related

structures directly. When it is called fromtheoutside, the exposed interfaces of the register andmemory

structures can be used directly. The code is shown in Listing 4.1.

Listing 4.2: Implementation of the external interface of cpulib
1 impl CPU {

2 pub fn new(base: usize) -> Self {

3 CPU {

4 registers: Registers:::new(),

5 memory: Memory:::new(base)

6 }

7 }

8 }
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9 impl Default for CPU {

10 fn default() -> Self {

11 CPU:::new(0x00400000usize)

12 }

13 }

Next, cpulib implements new and default, two methods for creating CPU instances, as shown in

Listing 4.2. The default method calls the new method, creating a default CPU instance using the

default memory base address value 0x00400000.

4.1.2 Register

Structure Definitions

Listing 4.3: Structural Definitions of Registers in cpulib
1 struct SIMDRegister {

2 bits: BitVec,

3 }

4 struct GPR {

5 value: u64,

6 }

7 pub struct Registers {

8 simd_registers: [SIMDRegister; 32],

9 gpr: [GPR; 16],

10 rflags: u64,

11 rip: u64,

12 }

In cpulib, there are three structures related to registers: SIMDRegister, GPR, and Registers,

as illustrated in Listing 4.3. The SIMDRegister structure represents a vector register and contains

a BitVec structure to represent the data in the SIMD register. The GPR structure represents a general-

purpose register and contains a u64 type value to represent the data in the general-purpose register. The

Registers structure represents the entire set of registers, containing 32 vector registers, 16 general-

purpose registers, an RFLAGS register, and a RIP register. Although only 32 512-bit vector registers

and 16 64-bit general-purpose registers are represented here, based on the physical implementation of

the CPU, other vector registers and general-purpose registers with lower data widths are essentially the

lower bits of these registers. Thus, operations on these registers can also facilitate operations on registers

with lower data widths.
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Method Implementation

The SIMDRegister in cpulib includes a series of read and write methods, including reading and

writing individual bits and reading andwriting the entire register as an array. Thebit-level read andwrite

operations are the most fundamental, with other operations built upon them. The implementation of

bit-level read and write operations is shown in Listing 4.4.

Listing 4.4: Implementation of Bit Read and Write in SIMDRegister of cpulib
1 fn set_bit(&mut self, position: usize, value: bool) {

2 self.bits.set(position, value);

3 }

4 fn get_bit(&self, position: usize) -> bool {

5 self.bits[position]

6 }

In these methods, the set_bit method sets the bit at the specified position to either 0 or 1; the

get_bitmethod returns the value of the bit at the specified position.

The implementation of methods for reading and writing the entire register is shown in Listing 4.5.

Listing 4.5: Implementation of Register Read and Write in SIMDRegister of cpulib
1 fn get_sections<T: SectionCompatible>(&self) -> Vec<T> {

2 let mut sections = Vec:::new();

3 let type_bits = std:::mem:::size_of:::<T>() * 8;

4 for i in (0...self.bits.len()).step_by(type_bits) {

5 let mut section_value: T = T:::from(0u8);

6 for j in 0...type_bits {

7 if i + j >>= self.bits.len() {

8 break;

9 }

10 if self.bits[i + j] {

11 section_value = section_value | (T:::from(1u8) << j);

12 }

13 }

14 sections.push(section_value);

15 }

16 sections

17 }

18 fn set_by_sections<T: SectionCompatible>(&mut self, sections: Vec<T>) -> bool {

19 self.clear();

20 let type_bits = std:::mem:::size_of:::<T>() * 8;

21 if type_bits * sections.len() != self.bits.len() {

22 return false;

23 }

24 let mut i = 0;
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25 for section in &sections {

26 for j in 0...type_bits {

27 if i + j >>= self.bits.len() {

28 break;

29 }

30 if (*section >> j) & T:::from(1u8) === T:::from(1u8) {

31 self.set_bit(i + j, true);

32 }

33 }

34 i += type_bits;

35 }

36 true

37 }

In these methods, the get_sectionsmethod divides the data in the register according to the spec-

ified data type and then stores the divided data in an array to be returned; the set_by_sections

method writes the data from the specified array into the register according to the specified data type.

The read and write methods in the GPR structure of cpulib are relatively simple, consisting only of

methods for reading and writing the entire register. The implementation of these methods is shown in

Listing 4.6.

Listing 4.6: Implementation of Register Read and Write in GPR of cpulib
1 fn get_value(&self) -> u64 {

2 self.value

3 }

4 fn set_value(&mut self, val: u64) {

5 self.value = val;

6 }

In these methods, the get_valuemethod returns the data in the register; the set_valuemethod

writes the specified data into the register.

The last to be introduced are the read andwritemethods inRegisters of cpulib, which are wrappers

around the read and write methods in SIMDRegister and GPR. Therefore, only the read operation

wrappers in Registers are shown here, as the write operation wrappers are similar to the read oper-

ations. First is the operation for reading bits of vector registers, as shown in Listing 4.7.

Listing 4.7: Implementation of Reading Vector Register Bits in Registers of cpulib
1 pub fn get_bit(&self, reg_type: VecRegName, reg_index: usize, bit_position: usize)

-> Option<bool> {

2 match reg_type {

3 VecRegName:::XMM if bit_position < 128 => {

4 Some(self.simd_registers[reg_index].get_bit(bit_position))
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5 }

6 VecRegName:::YMM if bit_position < 256 => {

7 Some(self.simd_registers[reg_index].get_bit(bit_position))

8 }

9 VecRegName:::ZMM if bit_position < 512 => {

10 Some(self.simd_registers[reg_index].get_bit(bit_position))

11 }

12 _ => None,

13 }

14 }

In this method, the corresponding vector register is first located based on the register name and index,

and then the specific bit is located based on its position, finally returning the value of the bit. When

reading, it is necessary to differentiate based on the size of the vector register, for example, reading XMM

registers must be within 128 bits to be valid. If the position of the bit to be read exceeds the data width

of the vector register, None is returned.

Next is the operation for reading the entire vector register, as shown in Listing 4.8.

Listing 4.8: Implementation of Reading Vector Registers in Registers of cpulib
1 pub fn get_by_sections<T: SectionCompatible>(&self, reg_type: VecRegName, reg_index

: usize) -> Option<Vec<T>> {

2 let sections: Vec<T> = self.simd_registers[reg_index].get_sections();

3 match reg_type {

4 VecRegName:::XMM => {

5 let n = 128 / (std:::mem:::size_of:::<T>() * 8);

6 let slice = &sections[...n];

7 Some(slice.to_vec())

8 }

9 VecRegName:::YMM => {

10 let n = 256 / (std:::mem:::size_of:::<T>() * 8);

11 let slice = &sections[...n];

12 Some(slice.to_vec())

13 }

14 VecRegName:::ZMM => {

15 let n = 512 / (std:::mem:::size_of:::<T>() * 8);

16 let slice = &sections[...n];

17 Some(slice.to_vec())

18 }

19 }

20 }

In this method, the corresponding vector register is first located based on the register name and index,

and then the data in the vector register is divided according to the specified data type, finally returning
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the divided data.

Following this is the operation for reading GPRs, as shown in Listing 4.9.

Listing 4.9: Implementation of Reading GPRs in Registers of cpulib
1 pub fn get_gpr_value(&self, reg_name: GPRName) -> u64 {

2 register_get!(self; reg_name;

3 RAX, EAX, AX, AL, AH,

4 RBX, EBX, BX, BL, BH,

5 RCX, ECX, CX, CL, CH,

6 RDX, EDX, DX, DL, DH;

7 R8, R8D, R8W, R8B,

8 R9, R9D, R9W, R9B,

9 R10, R10D, R10W, R10B,

10 R11, R11D, R11W, R11B,

11 R12, R12D, R12W, R12B,

12 R13, R13D, R13W, R13B,

13 R14, R14D, R14W, R14B,

14 R15, R15D, R15W, R15B,

15 RSP, ESP, SP, SPL,

16 RBP, EBP, BP, BPL,

17 RSI, ESI, SI, SIL,

18 RDI, EDI, DI, DIL

19 )

20 }

This method uses a macro to implement the reading operation for GPRs, with the definition of the

macro shown in Listing 4.10.

Listing 4.10: Macro for Reading GPRs in Registers of cpulib
1 macro_rules! register_get {

2 ($self:ident; $reg_name:expr; $( $r64:ident, $r32:ident, $r16:ident, $r8_l:

ident, $r8_h:ident ),*; $( $r64_:ident, $r32_:ident, $r16_:ident, $r8_:ident ),*

) => {

3 match $reg_name {

4 $(

5 GPRName:::$r32 => $self.gpr[GPRName:::$r64 as usize].value & 0

x00000000_FFFFFFFF,

6 GPRName:::$r16 => $self.gpr[GPRName:::$r64 as usize].value & 0

x00000000_0000FFFF,

7 GPRName:::$r8_l => $self.gpr[GPRName:::$r64 as usize].value & 0

x00000000_000000FF,

8 GPRName:::$r8_h => ($self.gpr[GPRName:::$r64 as usize].value & 0

x00000000_0000FF00) >> 8,

9 )*

10 $(
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11 GPRName:::$r32_ => $self.gpr[GPRName:::$r64_ as usize].value & 0

x00000000_FFFFFFFF,

12 GPRName:::$r16_ => $self.gpr[GPRName:::$r64_ as usize].value & 0

x00000000_0000FFFF,

13 GPRName:::$r8_ => $self.gpr[GPRName:::$r64_ as usize].value & 0

x00000000_000000FF,

14 )*

15 _ => $self.gpr[$reg_name as usize].get_value(),

16 }

17 }

18 }

Thismacro first locates the correspondingGPR based on its name, and then returns the data according

to the data width of the GPR. For example, for RAX, which has a 64-bit data width, the entire data in

the GPR is returned; for AX, which has a 16-bit data width, the lower 16 bits of data in the GPR are

returned.

Finally, Registers also providesmethods for reading andwritingRFLAGS andRIP, which are simi-

lar to themethods for reading andwritingGPRs, both involving reading andwriting au64 value. Only

the read operations are shown here, as shown in Listing 4.11.

Listing 4.11: Implementation of Reading RIP and RFLAGS in Registers of cpulib
1 pub fn get_ip_value(&self, reg_name: IPName) -> u64 {

2 match reg_name {

3 IPName:::RIP => {

4 self.rip

5 },

6 IPName:::EIP => {

7 self.rip & 0x00000000_FFFFFFFF

8 },

9 IPName:::IP => {

10 self.rip & 0x00000000_0000FFFF

11 }

12 }

13 }

14 pub fn get_flags_value(&self, reg_name: FLAGSName) -> u64 {

15 match reg_name {

16 FLAGSName:::RFLAGS => {

17 self.rflags

18 },

19 FLAGSName:::EFLAGS => {

20 self.rflags & 0x00000000_FFFFFFFF

21 },

22 FLAGSName:::FLAGS => {
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23 self.rflags & 0x00000000_0000FFFF

24 }

25 }

26 }

4.1.3 Memory

Structure Definitions

Listing 4.12: Structural Definitions of Memory in cpulib
1 struct MemorySegment {

2 start_address: usize,

3 data: Vec<u8>,

4 }

5 pub struct Memory {

6 segments: Vec<MemorySegment>,

7 base_address: usize,

8 }

In cpulib, there are two structures related to memory, namely MemorySegment and Memory, as

shown in Listing 4.12. The MemorySegment structure is used to represent a continuous segment

of memory, containing the start address and the data of that memory segment. The Memory structure

represents the entire memory, containing all memory segments and the base address of the memory.

Method Implementation

The MemorySegment structure in cpulib does not include any methods, while the Memory struc-

ture includes a series of read and write methods. Thesemethods cover operations like reading and writ-

ing individual bytes, single data items (integers of various data widths), and multiple data items (arrays

of integers of various data widths). Byte reading and writing is the most fundamental operation, with

other read and write operations built upon it. The implementation of byte reading and writing opera-

tions is shown in Listing 4.13.

Listing 4.13: Implementation of Byte Read and Write in Memory of cpulib
1 fn read_byte(&self, address: usize) -> u8 {

2 let real_address = address - self.base_address;

3 if let Some(index) = self.find_segment(real_address) {

4 self.segments[index].data[real_address - self.segments[index].start_address

]

5 } else {
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6 0

7 }

8 }

9 fn write_byte(&mut self, address: usize, value: u8) {

10 let real_address = address - self.base_address;

11 if let Some(index) = self.find_segment(real_address) {

12 let start = self.segments[index].start_address;

13 self.segments[index].data[real_address - start] = value;

14 } else {

15 let adjusted_address = (real_address / DEFAULT_SIZE) * DEFAULT_SIZE;

16 let mut new_data = Vec:::with_capacity(DEFAULT_SIZE);

17 new_data.resize(DEFAULT_SIZE, 0);

18 new_data[real_address - adjusted_address] = value;

19 let new_segment = MemorySegment {

20 start_address: adjusted_address,

21 data: new_data,

22 };

23 self.segments.push(new_segment);

24 self.segments.sort_by(|a, b| a.start_address.cmp(&b.start_address));

25 }

26 let mut i = 0;

27 while i + 1 < self.segments.len() {

28 if self.segments[i].start_address + self.segments[i].data.len() === self.

segments[i + 1].start_address {

29 let next = self.segments.remove(i + 1);

30 self.segments[i].data.extend(next.data);

31 } else {

32 i += 1;

33 }

34 }

35 }

In these methods, the corresponding memory segment is first located based on the address. The offset

in the memory segment is calculated using the address and the start address of the segment, and the

data at that offset is then returned. If no corresponding memory segment exists, 0 is returned. When

writing data, the corresponding memory segment is located and the offset is calculated in a similar

manner, after which the data is written at that offset. If no corresponding memory segment is found,

a new segment is created, and the data is written there. After writing data, the memory segments are

merged, combining contiguous memory segments into a single segment.

The implementation of reading and writing data and data arrays is based on the byte read and write

operations, as shown in Listing 4.14.

Listing 4.14: Implementation of Data Read and Write in Memory of cpulib
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1 pub fn read<T: MemoryIO>(&self, address: usize) -> T {

2 let mut bytes = Vec:::new();

3 for i in 0...T:::size() {

4 bytes.push(self.read_byte(address + i));

5 }

6 T:::from_bytes(&bytes)

7 }

8 pub fn write<T: MemoryIO>(&mut self, address: usize, value: T) {

9 let bytes = value.to_bytes();

10 for (i, byte) in bytes.iter().enumerate() {

11 self.write_byte(address + i, *byte);

12 }

13 }

14 pub fn read_vec<T: MemoryIO>(&self, address: usize, number_of_value: usize) -> Vec<

T> {

15 let mut result: Vec<T> = vec![];

16 for i in 0...number_of_value {

17 result.push(self.read(address + i * T:::size()));

18 }

19 result

20 }

21 pub fn write_vec<T: MemoryIO + Clone>(&mut self, address: usize, values: Vec<T>) {

22 for (i, value) in values.iter().enumerate() {

23 self.write(address + i * T:::size(), value.clone());

24 }

25 }

The readmethod reads a piece of data by reading the corresponding number of bytes according to the

data size and then converting these bytes into the data to be returned. Thewritemethodwrites a piece

of data by converting the data into bytes and writing the corresponding number of bytes according to

the data size. The read_vecmethod reads an array of data by calling the readmethod and storing

the multiple pieces of data read in an array to be returned. The write_vec method writes an array

of data by iterating through each piece of data in the array and using the writemethod to write each

piece of data into memory.

4.2 GUI

4.2.1 MainWindow

Listing 4.15: main function of PixelAssemblySIMD
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1 struct APP {

2 /// Member.....

3 }

4 impl eframe:::App for APP {

5 /// Methods.....

6 }

7 fn main() -> Result<(), eframe:::Error> {

8 let options = NativeOptions {

9 viewport: egui:::ViewportBuilder:::default().with_inner_size([1200f32, 800f32

]),

10 ...Default:::default()

11 };

12 eframe:::run_native(

13 "PixelAssemblySIMD",

14 options,

15 Box:::new(|_cc| Box:::new(APP:::default())),

16 )

17 }

The crux of PixelAssemblySIMD is an egui-based GUI application. Therefore, the main function of

the program displays the GUI part of the program by loading an instance of a structure with App traits

from the eframe framework of egui, as shown in Listing 4.15. The main function creates a GUI ap-

plication by executing the run_native method of eframe and returning it. This method specifies

the title of the window as ”PixelAssemblySIMD” and sets the window size to 1200*800 through the

options property. Finally, it loads an instance of the APP structure that implements the App trait of

eframe to execute the custom GUI interface.

According to the design of PixelAssemblySIMD, theAPP structurewill execute all the functions in Pix-

elAssemblySIMD. Therefore, components including the animation executor and instruction executor

exist as members of the APP structure. The specific implementation of the APP structure is shown in

Listing 4.16.

Listing 4.16: Definition of the APP structure in PixelAssemblySIMD
1 struct APP {

2 cpu: Arc<Mutex<CPU>>,

3 reg_visualizer_data: RegVisualizerData,

4 register_visualizer: Arc<Mutex<RegVisualizer>>,

5 visualizer_setting: VisualizerSetting,

6 animation_fsm: AnimationFSM,

7 code: String,

8 highlight: usize,

9 /// .....
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10 }

The members of the APP structure shown in Listing 4.16 are, from top to bottom, as follows: an in-

stance of CPU data (CPU emulator), an instance of visualization data, an instance of the window for

register visualization, an instance of the window for visualization settings, an instance of the FSM of

the instruction executor, the code input, and the row number highlighted in the editor. Some of the

members are wrapped in mutex locks and reference counters, allowing them to pass multiple distinct

references in a thread-safe manner.

Listing 4.17: Implementation of update in APP structure
1 impl eframe:::App for APP {

2 fn update(&mut self, ctx: &eframe:::egui:::Context, frame: &mut eframe:::Frame) {

3 eframe:::egui:::TopBottomPanel:::top("top_panel").show(ctx, |ui| {

4 egui:::menu:::bar(ui, |ui| {

5 egui:::menu:::menu_button(ui, "View", |ui| {

6 if ui.selectable_label(self.show_sidebar, "Sidebar").clicked()

{

7 self.show_sidebar = !self.show_sidebar;

8 }

9 });

10 });

11 });

12 if self.show_sidebar {

13 eframe:::egui:::SidePanel:::left("side_panel").show(ctx, |ui| {

14 ui.vertical(|ui| {

15 ui.label("Visualization Options:");

16 if ui.button("Settings").clicked() {

17 self.show_settings = true;

18 }

19 if ui.button("Visualizer").clicked() {

20 self.show_visualizer = true;

21 }

22 ui.label("Debug Options:");

23 if ui.button("Step").clicked() {

24 /// debug function .....

25 }

26 });

27 });

28 }

29 eframe:::egui:::CentralPanel:::default().show(ctx, |ui| {

30 CodeEditor:::default()

31 .id_source("code_editor")

32 .with_rows(24)

33 .with_fontsize(14.0)
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34 .with_theme(ColorTheme:::GRUVBOX)

35 .with_syntax(Syntax:::asm())

36 .with_numlines(true)

37 .show(ui, &mut self.code, &mut self.highlight);

38 });

39 }

40 }

The APP structure implements the App trait in eframe, which requires the structure to implement an

updatemethod. Theupdatemethod is executed in every rendering loop of egui, rendering the user-

defined GUI components. Since egui defines GUI based on declarative UI programming, we define

the main GUI interface using different layouts and components based on the layout position provided

by egui. For example, in Listing 4.17, we first defined a menu bar at the top, and in the menu bar, we

defined a ”View” menu that contains a ”Sidebar” option. When the user clicks on this option, the left

sidebarwill be shownorhidden. In the sidebar, wedefined a vertical layout that includes twoparts: ”Vi-

sualization Options” and ”Debug Options,” each containing a series of buttons for opening windows

related to visualization and debugging. In the center of the main interface, we used egui_code_editor

to define a code editor for users to input codes.

Listing 4.18: Windows in PixelAssemblySIMD
1 Window:::new("Settings")

2 .open(&mut self.show_settings)

3 .show(ctx, |ui| {

4 self.visualizer_setting.show(ui, &mut self.reg_visualizer_data);

5 });

6 Window:::new("Visualizer")

7 .open(&mut self.show_visualizer)

8 .show(ctx, |ui| {

9 let delta_time = ctx.input(|input|{

10 input.unstable_dt

11 });

12 let mut register_visualizer = self.register_visualizer.lock().unwrap();

13 register_visualizer.update(delta_time, self.reg_visualizer_data.factor,

self.reg_visualizer_data.min_speed, self.reg_visualizer_data.max_speed);

14 let cpu = self.cpu.lock().unwrap();

15 register_visualizer.show(ui, &self.reg_visualizer_data, &cpu);

16 drop(cpu);

17 register_visualizer.move_animation_sequence(ctx);

18 register_visualizer.move_animation_finish(ctx);

19 if register_visualizer.is_animating() {

20 ctx.request_repaint();

21 }
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22 drop(register_visualizer);

23 self.animation_fsm.run();

24 });

Important function windows also include: visualization settings window and register visualizer

window. These windows are implemented by the Window component of egui, as shown in List-

ing 4.18. Among them, the visualization settings window is mainly implemented by an instance of

the VisualizerSetting structure. The window only calls the show method of this instance

to display the window; The register visualizer window is more complex, with the visualization part

mainly implemented by an instance of the RegVisualizer structure. First, this window calls

the update method of this instance, which is used to update visualized data, so it needs to pass in

animation-related parameters, such as speed, time, etc.; After updating the data, the show method

is called to display the window. In addition, the window calls the move_animation_sequence

and move_animation_finishmethods, which are mainly used to execute and detect animation

sequences. After all GUI elements are output, the window immediately redraws the interface when

an animation occurs, ensuring the smooth display of the animation. Finally, this window executes the

instruction executor’s FSM to track the state of the instruction execution.

4.2.2 Visualization SettingWindow

Listing 4.19: Definition of the VisualizerSetting structure in PixelAssemblySIMD
1 pub struct VisualizerSetting {

2 factor: f32,

3 min_speed: f32,

4 max_speed: f32,

5 reg_type: RegType,

6 gpr_name: GPRName,

7 vec_name: VecRegName,

8 vec_index: usize,

9 data_type: ValueType,

10 }

The structure of VisualizerSetting is implemented as shown in Listing 4.19. This structure de-

fines the settings related to visualization, from top to bottom, they are: the factor of animation execu-

tion speed, the minimum speed of animation execution, the maximum speed of animation execution,

the selected register type, the name of the selected GPR and vector register, the index of the selected

vector register, the data type in the register. Themost importantmethod implemented in this structure
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is theshowmethod. The implementation of thismethod is relatively simple, it uses theUI components

provided by egui to implement the design of this window, so the code is not described in detail.

4.2.3 Register VisualizationWindow

Most of the content in the RegVisualizer structure instance is part of the animation executor,

so here only the parts related to graphics display in the RegVisualizer structure are introduced.

Element Structure

Thebasic ”element” used for displaying the register in RegVisualizer is the Element structure.

This structure is used to define and display each register element, that is, a GPR or a element in vector

registers. The definition of this structure is shown in Listing 4.20.

Listing 4.20: Definition of the Element structure in PixelAssemblySIMD
1 pub struct Element {

2 /// Data

3 value: Value,

4 string: Option<String>,

5 /// Animation

6 display: bool,

7 order: ElementOrder,

8 color: Color32,

9 border_color: Color32,

10 is_highlight: bool,

11 layout_position: Pos2,

12 position: Pos2,

13 target_position: Pos2,

14 animating: bool,

15 animation_finished_callback: Option<Box<dyn FnOnce(&mut Self) + Send + 'static

>>,

16 }

The Element structure includes data related to an element and animation-related attributes. The data

attributes include: the value of the data, the string form of the data; the animation-related attributes

include: whether to display, display order, color, border color, whether to highlight, layout position,

current position, target position, a flag indicating whether an animation is in progress, and a one-time

callback function that can be executed after the animation ends.

In addition, the Element structure has implemented update and show methods. The update

method is called by theupdatemethod ofRegVisualizer, used to update the information of each



66 4.2. GUI

element; the showmethod is called by the showmethod of RegVisualizer, used to display each

element. The implementation of the show method is relatively simple, it uses the drawing feature of

egui to draw a filled rectangle and an empty rectangle at the current position, which serve as the display

of the color of the element and the color of the border; then it draws the string form of the data in the

center of the rectangle; the basic logic of the code is as shown in Listing 4.21. The update method

is used to update the information of the elements, which is the most basic feature of the animation

implementation, and therefore will be described in the next section.

Listing 4.21: Implementation of show in Element structure
1 fn show(&self, ui: &mut Ui) {

2 let rect_size = get_size_from_value(&self.value);

3 /// Display Rectangle

4 ui.painter().rect_filled(

5 Rect:::from_min_size(self.position, rect_size),

6 0.0,

7 self.color,

8 );

9 /// Display Border

10 ui.painter().rect_stroke(

11 Rect:::from_min_size(self.position, rect_size),

12 0.0,

13 egui:::Stroke:::new(2.0, if self.is_highlight {Color32:::RED} else if self.

animating {Color32:::KHAKI} else {self.border_color}),

14 );

15 /// Display Text

16 let text_pos = self.position + rect_size / 2.0 - Vec2:::new(text_size / 2.0,

font_size / 2.0);

17 let galley = ui.painter().layout_no_wrap(

18 if let Some(text) = &self.string {

19 format!("{}", text)

20 } else {

21 format!("{}", self.value)

22 },

23 egui:::FontId:::new(font_size, egui:::FontFamily:::Monospace),

24 Color32:::BLACK,

25 );

26 ui.painter().galley(text_pos, galley);

27 }
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The showMethod of RegVisualizer

In addition, the show method of the previously mentioned RegVisualizer is also an impor-

tant part related to graphics display. Before understanding the implementation of this method, we

need to first understand the members of the RegVisualizer structure. The definition of the

RegVisualizer structure is as shown in Listing 4.22.

Listing 4.22: Definition of the RegVisualizer structure in PixelAssemblySIMD
1 pub struct RegVisualizer {

2 /// Visualization Data

3 layout_data: HashMap<Register, Vec<Vec<(Pos2, Vec2)>>>,

4 elements: HashMap<Register, Vec<Vec<Element>>>,

5 /// Animation Data

6 animation_config: HashMap<Register, RegAnimationConfig>,

7 animation_layout_data: HashMap<(Register, LayoutLocation), Vec<Vec<(Pos2, Vec2

)>>>,

8 animation_elements: HashMap<(Register, LayoutLocation), Vec<Vec<Element>>>,

9 /// Animation Sequence

10 sender: Sender<AnimationControlMsg>,

11 receiver: Receiver<AnimationControlMsg>,

12 sequence: Option<Vec<Arc<Mutex<Vec<(Vec<ElementAnimationData>, bool)>>>>>,

13 finish_sender: Sender<ElementAnimationFinishMsg>,

14 finish_receiver: Receiver<ElementAnimationFinishMsg>,

15 sequence_finished_callback: Option<Box<dyn FnOnce() + Send + 'static>>,

16 }

The RegVisualizer struct contains the data for graphical display and animation execution. From

top to bottom, the graphical display data includes: layout data, element data; the animation execution

data includes: animation configuration, animation layout data, animation element data; and the ani-

mation execution data includes: the sending end of the animation control message, the receiving end

of the animation control message, animation sequence, the sending end of the animation end message,

the receiving end of the animation endmessage, and the callback function after the animation sequence

is finished.

After understanding the members of the RegVisualizer struct, let’s take a look at the implemen-

tation of the show method. The implementation of this method is complex and includes multiple

parts, mainly including: creating the layout of the elements, displaying the elements, and displaying

the animation elements. Wherein the animation elements refer to the duplicate of the register in the

visualization method mentioned in Chapter 3. The code for creating the layout part is shown in List-

ing 4.23.

Listing 4.23: Implementation of show in RegVisualizer structure - Create Layout
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1 ui.vertical(|ui| {

2 data.registers[0].iter().for_each(|reg| {

3 /// Create Element's Layout through automatic layout

4 ui.vertical(|ui| {

5 ui.label(get_reg_name(reg).clone());

6 ui.spacing_mut().item_spacing.x = 0.0;

7 let location = if let Some(config) = self.animation_config.get(reg) {

8 config.location

9 } else {

10 LayoutLocation:::None

11 };

12 let size = get_size_from_value(&values[0]);

13 let repeat_number = if let Some(config) = self.animation_config.get(reg

) {

14 config.repeat_numbers

15 } else {

16 (0, 0)

17 };

18 /// Elements Layout

19 RegVisualizer:::create_layout(ui, size, reg, values.len(), 1, &mut self.

layout_data);

20 RegVisualizer:::create_elements(&values, reg, reg, &self.layout_data, &

mut self.elements, true);

21 /// Animation Layout

22 RegVisualizer:::create_layout(ui, size, &(reg.clone(), LayoutLocation:::

TOP), values.len(), repeat_number.0, &mut self.animation_layout_data);

23 RegVisualizer:::create_elements(&values, &(reg.clone(),

LayoutLocation:::TOP), reg, &self.animation_layout_data, &mut self.

animation_elements, false);

24 });

25 });

26 });

In this section, we first used the vertical method provided by egui to create a vertical layout,

then used the for_each method to traverse each register. For each register, we first created a

vertical layout and created a label in the layout to display the name of the register. Then, we used the

create_layout method to create a layout. This method will create a layout based on the number

of values in the register and the number of repetitions in the animation configuration, which includes

the position information of each element. Then, we used the create_elementsmethod to create

each element, which will create each element based on the position information in the layout. Finally,

we use the same method to create layouts and elements for animation elements.

The implementations of the create_layout and create_elements methods cited here are
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shown in Listing 4.24 and Listing 4.25.

Listing 4.24: Implementation of create_layout in RegVisualizer structure
1 fn create_layout<T: Hash + Clone + Eq + PartialEq>(ui: &mut Ui, size: Vec2, key: &T

, data_size: usize, repeat_number: usize, layout_data: &mut HashMap<T, Vec<Vec<(

Pos2, Vec2)>>>) {

2 ui.vertical(|ui| {

3 let mut layout_vecs = vec![];

4 (0...repeat_number).for_each(|_| {

5 ui.horizontal(|ui| {

6 let mut layout_vec = vec![];

7 (0...data_size).for_each(|_| {

8 let (layout_rect, _response) = ui.allocate_exact_size(size,

Sense:::hover());

9 layout_vec.push((layout_rect.min, size));

10 });

11 layout_vecs.push(layout_vec);

12 });

13 });

14 layout_data.insert(key.clone(), layout_vecs);

15 });

16 }

Listing 4.25: Implementation of create_elements in RegVisualizer structure
1 fn create_elements<T: Hash + Clone + Eq + PartialEq>(values: &Vec<Value>, key: &T,

reg: &Register, layout_data: &HashMap<T, Vec<Vec<(Pos2, Vec2)>>>, elements: &mut

HashMap<T, Vec<Vec<Element>>>, display: bool) {

2 if !elements.contains_key(key) ||| values_changed {

3 if let Some(vecs) = layout_data.get(key) {

4 let mut element_vecs = vec![];

5 vecs.iter().for_each(|vec| {

6 if vec.len() === values.len() {

7 let mut element_vec = vec![];

8 vec.iter().enumerate().for_each(|(index, (position, size))| {

9 element_vec.push(Element:::default()

10 .with_display(display)

11 .with_value(values[index].clone())

12 .with_position(position.clone()));

13 });

14 element_vecs.push(element_vec);

15 }

16 });

17 elements.insert(key.clone(), element_vecs);

18 }

19 }
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20 }

The create_layout method creates a vertical layout, then creates a horizontal layout within this

vertical layout. The number of horizontal layouts is determined by the repeat count in the animation

configuration. It then creates rectangles in the horizontal layout, the size of which is determined by the

value width of the data, and saves the position information of the rectangle in the layout data.

The create_elementsmethod then creates elements according to the position information in the

layout data. This method traverses each position information in the layout data, creates elements ac-

cording to the position information, and finally saves the elements in the element data.

The next part of the showmethod in the RegVisualizer structure is to display the Elements and

Animation Elements. The code for these two parts is very similar, so only the code for displaying the

Elements part is shown. The code is shown in Listing 4.26.

Listing 4.26: Implementation of show in RegVisualizer structure - Show Elements
1 let low_layer_id = LayerId:::new(Order:::Middle, Id:::new("

register_visualizer_animation_elements_low"));

2 let middle_layer_id = LayerId:::new(Order:::Foreground, Id:::new("

register_visualizer_animation_elements_middle"));

3 let high_layer_id = LayerId:::new(Order:::Tooltip, Id:::new("

register_visualizer_animation_elements_high"));

4 let top_layer_id = LayerId:::new(Order:::Debug, Id:::new("

register_visualizer_animation_elements_top"));

5 self.elements.iter().for_each(|(_, vec)| {

6 vec.iter().for_each(|elements| {

7 elements.iter().for_each(|element| {

8 show_element!(ui, element, low_layer_id, middle_layer_id, high_layer_id

, top_layer_id);

9 });

10 });

11 });

In these two sections, we first use theLayerIdprovided by egui to create four layers of different depths

to simulate the different hierarchical relations in the animation. Then, we used the show_element!

macro to display each element. The implementation of the show_element! macro is shown in List-

ing 4.27.

Listing 4.27: Implementation of show_element! in PixelAssemblySIMD
1 macro_rules! show_element {

2 ($ui:expr, $element:expr, $low_layer_id:expr, $middle_layer_id:expr,

$high_layer_id:expr, $top_layer_id:expr) => {

3 if $element.display {
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4 match $element.order {

5 ElementOrder:::Normal => {

6 $element.show($ui);

7 }

8 ElementOrder:::Low => {

9 $ui.with_layer_id($low_layer_id, |ui| {

10 $element.show(ui);

11 });

12 }

13 ElementOrder:::Middle => {

14 $ui.with_layer_id($middle_layer_id, |ui| {

15 $element.show(ui);

16 });

17 }

18 ElementOrder:::High => {

19 $ui.with_layer_id($high_layer_id, |ui| {

20 $element.show(ui);

21 });

22 }

23 ElementOrder:::Top => {

24 $ui.with_layer_id($top_layer_id, |ui| {

25 $element.show(ui);

26 });

27 }

28 }

29 }

30 };

31 }

This macro will select different layers according to the display order of the elements, and then call the

element’s showmethod to display the elements.

4.3 Animation Executor

4.3.1 The updateMethods

Thecoreof the animation executor includes theupdatemethodofElement andRegVisualizer

and the control part of the animation sequence. Among them, the update method can set the po-

sition of the element according to the set speed and execution time every time it is executed, thus

achieving the effect of animation, which is themain part of generating animation. The implementation

of the updatemethod of Element is shown in Listing 4.28.



72 4.3. Animation Executor

Listing 4.28: Implementation of update in Element structure
1 fn update(&mut self, delta_time: f32, factor: f32, min_speed: f32, max_speed: f32)

{

2 let direction = self.target_position - self.position;

3 let distance = direction.length();

4 if distance > 1.0 {

5 self.animating = true;

6 let base_speed = distance * factor;

7 let speed = base_speed.min(max_speed).max(min_speed);

8 let normalized_direction = direction.normalized();

9 self.position += normalized_direction * speed * delta_time;

10 } else {

11 self.position = self.target_position;

12 self.animating = false;

13 /// Run callback

14 if let Some(callback) = self.animation_finished_callback.take() {

15 callback(self);

16 }

17 }

18 }

This method first calculates the distance between the current position and the target position. If the

distance is greater than 1.0, it will update the current position according to the set speed; otherwise,

this means that the distance between the two is already close enough. At this time, the current position

will be directly set to the target position, and the animation flag is set to false, indicating that the

animation has been completed. After the animation is completed, the animation end callback func-

tion will be executed. The callback function is very important because it can be used to update some

information of the Element or send an animation end signal after the animation is over. The callback

function and the signal sending performed in it are important reasons why this animation executor can

implement event-driven.

Listing 4.29: Implementation of update in RegVisualizer structure
1 pub fn update(&mut self, delta_time: f32, factor: f32, min_speed: f32, max_speed:

f32) {

2 self.elements.iter_mut().for_each(|(_, vec)| {

3 vec.iter_mut().for_each(|elements| {

4 elements.iter_mut().for_each(|element| {

5 element.update(delta_time, factor, min_speed, max_speed);

6 });

7 });

8 });

9 self.animation_elements.iter_mut().for_each(|(_, vec)| {
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10 vec.iter_mut().for_each(|elements| {

11 elements.iter_mut().for_each(|element| {

12 element.update(delta_time, factor, min_speed, max_speed);

13 });

14 });

15 });

16 }

The implementation of the update method in the RegVisualizer structure is shown in List-

ing 4.29. The method is relatively simple, its basic purpose is to provide an external interface for the

updatemethod ofElement. It traverses all elements and then calls each element’supdatemethod,

thus updating the position of each element.

4.3.2 Animation Sequence Control

Thecontrol of the animation sequence is another important part of the animation executor. It is used

to generate an animation sequence that can be played continuously, thus achieving continuous anima-

tion playback. The control part of the animation sequencemainly includes the creation, execution, and

end detection of the animation sequence.

Creation of Animation Sequence

Listing 4.30: Creation of Animation Sequence
1 pub fn set_group_move_animation_sequence(&mut self, sequence: Arc<Mutex<Vec<(Vec<

ElementAnimationData>, bool)>>>) {

2 self.sequence = Some(vec![sequence]);

3 }

4 pub fn start_move_animation_sequence(&self) {

5 if !self.sequence.is_none() {

6 self.sender.send(AnimationControlMsg:::ExecuteAnimation(0)).unwrap();

7 }

8 }

The code for creating the animation sequence is shown in Listing 4.30. This code will be called before

the animation sequence starts and is used to create the animation sequence. This code will save the

animation sequence data in the animation sequence and then send a message to execute the animation

sequence. The execution message of the animation sequence will be received in the execution part of

the animation sequence, thereby starting the execution of the animation sequence.
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Execution of Animation Sequence

Listing 4.31: Execution of Animation Sequence
1 pub fn move_animation_sequence(&mut self, ctx: &Context) {

2 match self.receiver.try_recv() {

3 /// Receive Message

4 }

5 }

The code for executing the animation sequence is shown in Listing 4.31. This code will be called in

each render loop and it’s used to execute the animation sequence, and it will receive the message from

the animation control message receiver.

Listing 4.32: Execution of Animation Sequence - ExecuteAnimation Signal
1 Ok(AnimationControlMsg:::ExecuteAnimation(index)) => {

2 if self.sequence.is_none() {

3 self.sender.send(AnimationControlMsg:::Terminate).unwrap();

4 return;

5 }

6 let sequence = self.sequence.as_ref().unwrap()[0].clone();

7 let mut groups = sequence.lock().unwrap();

8 let length = groups.len();

9 let group = std:::mem:::take(&mut groups[index]);

10 if group.0.is_empty() {

11 if index + 1 < length {

12 self.sender.send(AnimationControlMsg:::ExecuteAnimation(index + 1)).

unwrap();

13 } else {

14 self.sender.send(AnimationControlMsg:::Terminate).unwrap();

15 }

16 } else {

17 let sender_clone = self.sender.clone();

18 self.group_move_animation(group.0, group.1, move ||| {

19 if index + 1 < length {

20 sender_clone.send(AnimationControlMsg:::ExecuteAnimation(index +

1)).unwrap();

21 } else {

22 sender_clone.send(AnimationControlMsg:::Terminate).unwrap();

23 }

24 });

25 }

26 }

When an ExecuteAnimation message is received as shown in Listing 4.32, the animation within the
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animation sequencewill be executed according to the information in themessage, followed by a request

to redraw the interface. ExecuteAnimation will receive the number of the animation sequence to be

executed.

Listing 4.33: Execution of Animation Sequence -Terminate Signal
1 Ok(AnimationControlMsg:::Terminate) => {

2 if let Some(s) = self.sequence.as_deref_mut() {

3 let mut s = s.to_vec();

4 s.remove(0);

5 self.sequence = Some(s.clone());

6 if s.is_empty() {

7 self.sequence = None;

8 if let Some(callback) = self.sequence_finished_callback.take() {

9 callback();

10 }

11 } else {

12 self.sender.send(AnimationControlMsg:::ExecuteAnimation(0)).unwrap();

13 ctx.request_repaint();

14 }

15 } else {

16 if let Some(callback) = self.sequence_finished_callback.take() {

17 callback();

18 }

19 }

20 }

If a Terminate message is received, as shown in Listing 4.33, it will carry out the clean-up work ac-

cording to the information in the message, and then request to redraw the interface. If no message is

received, no command will be executed, as the animation may still be ongoing, and there is no need

to switch the animation sequence. The group_move_animation method in the code is used to

execute a group of simultaneous animations in the animation sequence. The implementation of this

method is shown in Listing 4.34.

Listing 4.34: Execution of Animation Sequence - Animation Group
1 pub fn group_move_animation<F>(&mut self, data_vec: Vec<ElementAnimationData>,

is_layout: bool, callback: F)

2 where

3 F: FnMut() + Send + 'static,

4 {

5 let total_animations = data_vec.len();

6 let completed_animations = Arc:::new(Mutex:::new(0));

7 let shared_callback = Arc:::new(Mutex:::new(Some(callback)));

8 for data in data_vec.into_iter() {
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9 let completed_animations_clone = Arc:::clone(&completed_animations);

10 let shared_callback_clone = Arc:::clone(&shared_callback);

11 self.move_animation(data, is_layout, move ||| {

12 let mut callback = shared_callback_clone.lock().unwrap();

13 let mut completed_animations = completed_animations_clone.lock().unwrap

();

14 *completed_animations += 1;

15 if *completed_animations === total_animations {

16 if let Some(mut callback) = callback.take() {

17 callback();

18 }

19 }

20 });

21 }

22 }

Thismethod traverses each animation in the animation group and executes them. After each animation

is completed, a callback function will be executed. The callback function will increment the number

of completed animations by one. When all animations are completed, the callback function for the

animation sequencewill be executed, indicating that this group of animations has been completed. The

move_animationmethod in the code is used to execute an individual animation in the animation

group, and its implementation is as presented in Listing 4.35.

Listing 4.35: Execution of Animation Sequence - Individual Animation
1 pub fn move_animation<F>(&mut self, data: ElementAnimationData, is_layout: bool,

callback: F)

2 where

3 F: FnOnce() + Send + 'static,

4 {

5 elements_vec[data.source.2][data.source.3].target_position = target_data.0;

6 if elements_vec[data.source.2][data.source.3].order <<= target_data.1 {

7 elements_vec[data.source.2][data.source.3].order = target_data.1.get_higher

();

8 }

9 let sender = self.finish_sender.clone();

10 if let Some(callback_in_data) = data.callback {

11 elements_vec[data.source.2][data.source.3].set_animation_finished_callback(

move |element| {

12 callback_in_data(element);

13 callback();

14 sender.send(ElementAnimationFinishMsg:::SetTarget(data.source, data.

target)).unwrap();

15 });

16 } else {
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17 elements_vec[data.source.2][data.source.3].set_animation_finished_callback

(|_| {

18 callback();

19 });

20 }

21 }

This method will set the target position and display order of the animation into the elements, then set

the callback function after the animation finishes according to the animation’s configuration, and fi-

nally execute the animation. After the animation is completed, the callback function of the animation

will be executed to execute the next animation.

Overall, the implementation of the animation sequence part is based on three parts: animation se-

quence (include several animation groups), animation group (include several individual animations),

and individual animation. Among them, the difference of animation sequence and animation group

is: the groups in the animation sequencemust be executed one after another, but the individual anima-

tions in the animation group are performed simultaneously. The three of them realize the execution of

the animation sequence through their nested relationship.

End Detection of Animation Sequence

Listing 4.36: End Detection of Animation Sequence
1 pub fn move_animation_finish(&mut self, ctx: &Context) {

2 loop {

3 match self.finish_receiver.try_recv() {

4 Ok(ElementAnimationFinishMsg:::SetTarget(source, target)) => {

5 self.set_target_for_move_animation_finish(source, target);

6 ctx.request_repaint();

7 }

8 Err(TryRecvError:::Empty) => {

9 break;

10 //* Do nothing **/

11 }

12 Err(_) => {

13 //* Error **/

14 }

15 }

16 }

17 }

The code of end detection of animation sequence is as shown in Listing 4.36. This section of the code

is called every rendering loop to check whether the animation sequence is finished. This part of the
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code will receive messages from the receiver of the animation end message, if a message is received, it

will execute the cleanup work after the end of the animation sequence according to the information in

the message, and then request a redraw of the interface. If no message is received, it will break out of

the loop, that is, the end of the animation sequence check.

4.4 Instruction Executor

According to the design in Chapter 3, executing instructions needs to go through four parts: cre-

ating the layout of the register copies required for the animation, executing the animation, updating

CPU data, and deleting the copies and layout of the register. Therefore, the instruction executor is

implemented based on a finite state machine to execute these four parts. The states of this finite state

machine are as shown in Listing 4.37.

Listing 4.37: The status of FSM in Instruction Executor
1 pub enum AnimationFSMState {

2 Idle,

3 CreateLayout,

4 RunAnimation,

5 UpdateData,

6 DestroyLayout,

7 }

8 impl AnimationFSMState {

9 pub fn next(&mut self) {

10 *self = match self {

11 AnimationFSMState:::Idle => AnimationFSMState:::CreateLayout,

12 AnimationFSMState:::CreateLayout => AnimationFSMState:::RunAnimation,

13 AnimationFSMState:::RunAnimation => AnimationFSMState:::UpdateData,

14 AnimationFSMState:::UpdateData => AnimationFSMState:::DestroyLayout,

15 AnimationFSMState:::DestroyLayout => AnimationFSMState:::Idle,

16 }

17 }

18 }

The states of this status machine are sequentially from top to bottom: idle status (Idle), layout cre-

ation status (CreateLayout), animation execution status (RunAnimation), data update status (Up-

dateData), layout deletion status (DestroyLayout). Among them, the idle status is the initial state.

When the instruction executor receives an instruction, it will start executing from the idle state. In

each state, the instruction executor will perform the corresponding operations and then switch the

state to the next one. After the instruction executor completes the layout deletion status, it will switch
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the state back to the idle status, waiting for the arrival of the next instruction.

Listing 4.38: Implementation of the FSM in Instruction Executor
1 pub enum FSMCtrlMsg {

2 ToIdle,

3 Next,

4 }

5 pub struct AnimationFSM {

6 state: AnimationFSMState,

7 create_layout: Option<Box<dyn FnOnce(&mut Self) + Send + 'static>>,

8 run_animation: Option<Box<dyn FnOnce(&mut Self) + Send + 'static>>,

9 update_data: Option<Box<dyn FnOnce(&mut Self) + Send + 'static>>,

10 destroy_layout: Option<Box<dyn FnOnce(&mut Self) + Send + 'static>>,

11 pub sender: Sender<FSMCtrlMsg>,

12 receiver: Receiver<FSMCtrlMsg>,

13 }

Listing 4.38 shows the implementation of the state machine. In this, the FSMCtrlMsg enum type

is the event type for user control of the state machine states, and the AnimationFSM struct is used

for the implementation of the state machine. This struct includes the state of the state machine, the

function executed when creating the layout state, the function executed when running the animation

state, the function executedwhenupdating data state, the function executedwhendestroying the layout

state, the sender of control messages and the receiver of control messages. Among them, receiver for

the state machine control messages is used to receive control messages from the instruction executor

(sender), which controls the state of the state machine.

Listing 4.39: Execution of the FSM in Instruction Executor
1 pub fn run(&mut self) {

2 match self.state {

3 AnimationFSMState:::Idle => {}

4 AnimationFSMState:::CreateLayout => {

5 if let Some(f) = self.create_layout.take() {

6 f(self);

7 }

8 }

9 AnimationFSMState:::RunAnimation => {

10 if let Some(f) = self.run_animation.take() {

11 f(self);

12 }

13 }

14 AnimationFSMState:::UpdateData => {

15 if let Some(f) = self.update_data.take() {

16 f(self);
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17 }

18 }

19 AnimationFSMState:::DestroyLayout => {

20 if let Some(f) = self.destroy_layout.take() {

21 f(self);

22 }

23 }

24 }

25 match self.receiver.try_recv() {

26 Ok(FSMCtrlMsg:::ToIdle) => {

27 self.state = AnimationFSMState:::Idle;

28 self.create_layout = None;

29 self.run_animation = None;

30 self.update_data = None;

31 self.destroy_layout = None;

32 }

33 Ok(FSMCtrlMsg:::Next) => {

34 self.state.next();

35 }

36 Err(_) => {}

37 }

38 }

Listing 4.39 shows the execution of the state machine. When the state machine is executed, the

corresponding function will be first executed according to the state of the state machine. Then,

the control message reception end of the state machine will be checked. If a control message is

received, the state of the state machine will be switched according to the type of the control message.

Among them, FSMCtrlMsg:::ToIdle is used to switch the state machine to the idle state, and

FSMCtrlMsg:::Next is used to switch the state machine to the next state.

Based on this finite state machine, instructions can be executed in a fixed order. For example, when the

instruction executor receives an instruction, it will switch the statemachine to the layout creation state,

then execute the function of the layout creation state, which will create the layout of the register copy.

Then it will switch the state machine to the animation execution state, then execute the function of the

animation execution state, which will execute the animation. Then, it will switch the state machine to

the data update state, then execute the function of the data update state, which will update the CPU

data, then switch the state machine to the layout deletion state, then execute the function of the layout

deletion state, which will delete the layout of the register copy, and finally switch the state machine to

the idle state, waiting for the arrival of the next instruction. This finite state machine sets a custom

function for each state instead of executing through a fixed program, which makes the function of the
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instruction executor more flexible. For example, users can implement different animation effects or

implement more operations in a single step through custom functions.
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5
Evaluation

This chapter evaluates the visualization method and prototype program proposed earlier. This chapter first

discusses the difficulties of evaluating visualization methods, and then proposes to evaluate the visual-

ization method proposed in this thesis through user research based on the schemes in the references.

The second section records the evaluation results. The last section provides some SIMD algorithm ex-

ample questions implemented in assembly language, which can be used to verify the effectiveness of the

implemented functionality in Chapter 4.

5.1 EvaluationMethods

5.1.1 TheChallenges of Evaluating VisualizationMethods

It is generally believed that new technologies and applications must be formally verified to be con-

sidered a significant contribution. Therefore, visualization researchers also need to find objective indi-

cators that can show the value of their methods[31]. However, the evaluation of visualizationmethods

is considered challenging, mainly for the following reasons:

• There is no effective general quantitative evaluation standard: unlike tests in other fields such

as software performance, the evaluation of visualization methods is often subjective, without

effective quantitative evaluation standards. Different visualization methods focus on different

points, and the schemes often have diversity, which makes it difficult for others to repeat the

evaluation of visualizationmethods and to find a common evaluationmethod that can evaluate

various visualization methods.

• User diversity: Different users may have different background knowledge, skills, preferences,

and needs. This means that a visualizationmethodmay be very effective for some users, but not

so effective, or even counterproductive, for others.
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• User subjectivity: The evaluation of visualization methods is often subjective, which means that

the evaluation results may be influenced by the evaluator’s subjectivity. This subjectivity may

cause the inaccuracy or even unfairness of the evaluation results.

Current ways to evaluate the effectiveness of visualization methods usually rely on user research[31].

These methods are not only not general quantitative standards, the methods themselves are easily

affected by respondent bias, respondent diversity; and the difficulty of selection and implementation

of the sample during the evaluation usually brings difficulties to the evaluation.

Unfortunately, although five key challenges in empirical visualization research have been proposed

and possible methods to solve these issues have been suggested in C. Ziemkiewicz, M. Chen, D. H.

Laidlaw, B. Preim, and D. Weiskopf. Open challenges in empirical visualization research. Foundations

of Data Visualization:243–252, 2020, the implementation of these methods is still very challenging.

Moreover, user research is still the main approach for evaluating visualization methods and is an

important means of translating laboratory research into practical applications[32].

User research usually involves various techniques, from informal survey questionnaires, to crowd-

funded user research, to stringent laboratory research with a small number of participants. However,

in many situations, relying solely on laboratory research methods that collect evaluation results from

a small number of participants may result in a lack of statistical reliability[32]. Therefore, due to the

lack of conditions for professional crowdfunded user research, this thesis ultimately adopted a user

research method based on a wide range of survey questionnaires to evaluate the visualization method

proposed in this thesis.

5.1.2 EvaluationMethod Employed in this Thesis

This thesis employs empiricalmethods, specifically surveys, to collect information and conduct social

research on the following aspects:

1. Basic situation: the survey questionnaire did not collect sensitive personal information of the

respondents, including name, gender, age, etc. The questionnaire only collected information

such as the level of understanding of the computer field, experience with SIMD programming,

and experience with visualization tools.

2. Understanding of advanced programming languages: using a C language as an example, the sur-

vey questionnaire assessed respondents’ recognition of theC language code. AC language code

was shown to respondents, their understanding of the C language was determined by asking
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whether they had a clear understanding of the values of specific variables in the program. The

C language programs shown ranged from simple to complex, including:

• Scalar variable operations and assignment statements;

• Vector operations and assignment statements using SIMD intrinsics;

3. Understanding of assembly language: The survey questionnaire showed respondents a piece of

assembly language code, and determined their understanding of the assembly language by ask-

ing whether they had a clear understanding of the values of specific registers in the program.

This part of the test was essentially just testing the user’s understanding of the display of a single

SIMD instruction in assembly language, and did not contain a complete algorithm.

4. Testing static visualization method: the survey questionnaire showed respondents a static vi-

sualization method (i.e., picture) with the same semantics as SIMD instructions in assembly

language, to test whether this scheme could help users understand SIMD instructions, deepen

their understanding of SIMD instructions, or help users who already understand SIMD com-

putations understand SIMD instructions faster.

5. Testing dynamic visualization method: the survey questionnaire showed respondents a dynamic

visualization method (i.e., animation) with the same semantics as SIMD instructions in as-

sembly language, to test whether this scheme could help users understand SIMD instructions,

deepen their understanding of SIMD instructions, or help users who already understand SIMD

computations understand SIMD instructions faster.

6. Summary: The final part of the survey questionnaire directly asked respondents about their

views on SIMD computations and visualizations, including:

• Respondents’ understanding of the difficulty of SIMD computations versus scalar compu-

tations;

• Whether respondents received assistance fromthe visualizationmethodwhenunderstand-

ing code;

• Respondents’ preference for static and dynamic visualization methods in different situa-

tions;

• Respondents’ preference for pure code versus visualization methods when understanding

code;
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5.2 Evaluation Result

Before analyzing the results of the survey questionnaire, itmust benoted that this test has limitations.

Asmentioned in the previous section, compared to general quantitative evaluations in other fields, user

research-based evaluations of visualization methods are relatively limited and easily influenced by user

subjectivity. There are the following obvious limitations in this evaluation:

• The number of respondents participating in this survey questionnaire is relatively small com-

pared to large-scale Crowdsourced user research, as only 97 people participated in the com-

pletion of this survey questionnaire, which may result in a lack of statistical reliability in the

results;

• The vastmajority of respondents participating in this survey questionnaire are fromAsia, which

may lead to regional bias in the survey results;

• This survey did not collect information such as the age and gender of the respondents, but the

differences in age and gender could potentially impact human cognition to some extent, which

may limit the results of the survey;

• This survey primarily targets specific SIMD instructions in assembly language. Even though

we have selected ones with computation and data permuting, two typical types of SIMD in-

structions, it still cannot represent all SIMD instructions, which could potentially constrain

the survey results.

Therefore, the results of this survey may not be universally applicable, but they still can, to a certain

extent, work as preliminary evaluation for the visualization method proposed in this thesis.

5.2.1 Implementation of the Survey Questionnaire

84Copies

13Copies

Valid Questionnaires
Invalid Questionnaires

Figure 5.1: Implementation of the Survey Questionnaire

As shown in Figure 5.1, a total of 97 questionnaires were collected in this survey. Among them, 84
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were valid and 13 were invalid. The recovery rate of valid questionnaires was 86.6%. The criteria for

excluding invalid questionnaires were as follows: respondents showed obvious logical errors in their

answers to consecutive questions. For example, in the assessment of code cognition, they answered

”can understand,” but later indicated ”unable to understand the code” in subsequent responses.

5.2.2 Basic Information of Survey Respondents

19People

65People

CS Majors
Non-CS Majors

(a) Proportion ofRespondentswithComputer Sci-
ence Education

39People

6People

39People

School Courses
Self-taught
Never Studied

(b) ProportionofRespondentsWhoHaveLearned
Programming

5People

19People

27People

33People

Very Familiar
Studied Before
Heard of It
Never Heard of It

(c) Proportion of Respondents Familiar with As-
sembly Language

5People

5People
21People

53People

Very Familiar
Studied Before
Heard of It
Never Heard of It

(d) Proportion of Respondents Familiar with
SIMD

10People

22People

52People

Very Knowledgeable or Used Relevant Software
Heard of It but Never Used
Completely Unfamiliar

(e) Proportion of Respondents Familiar with Visualization or Who Have Used Related Software

Figure 5.2: Basic Information of Survey Respondents

As shown in Figure 5.2, the basic information of the survey respondents is presented. Figure 5.2a

shows the proportion of respondents who have received computer science education, which includes

majors such as Computer Science and Technology, Software Engineering, Information Security, etc. It
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can be seen that 19.6% of the respondents have received computer science education, meaning that the

majority of the respondents have not received such education. Figure 5.2b shows the proportion of re-

spondentswhohave learnedprogramming, including thosewhohave attended school courses or taught

themselves programming. It can be seen that 53.6% of the respondents have learned programming, in-

dicating that more than half of the participants have received some form of programming education.

This suggests that within the scope of the survey, even among non-computer science students, a con-

siderable number have studied programming.

Figure 5.2c and Figure 5.2d show the proportion of respondents familiar with assembly language and

SIMD computing. It can be seen that 28.6% are familiar with assembly language and 11.9% are famil-

iar with SIMD computing, indicating that the vast majority of respondents are not familiar with these

more advanced or challenging technologies. Even among those with formal computer science educa-

tion, the familiarity is not high.

Finally, Figure 5.2e shows the proportion of respondents familiar with visualization or who have used

related software. It can be seen that 38.1% have some understanding of visualization, with only 11.9%

being very knowledgeable or having used relevant visualization software. This suggests that most of

the respondents were unfamiliar with visualization prior to the survey, and even fewer had used related

software. This indicates that the prevalence of visualization within the surveyed group is not high.

5.2.3 Survey Respondents’ Understanding of Advanced

Programming Languages

Figure 5.3 shows the level of understanding of advanced programming languages among the survey

respondents. Figure 5.3a displays the proportion of respondents who understand ordinary scalar com-

putations in C language, with 28.6% fully understanding, 14.3% understanding the general meaning,

and 57.1% not understanding at all. It is evident that only a small proportion, 28.6%, fully understand

ordinary scalar computations in C language.

Figure 5.3b shows the proportion of respondents who understand complex scalar computations in C

language. Here, 26.2% fully understand, 9.5% understand the general meaning, and 64.3% do not

understand at all. Again, a relatively small proportion, 26.2%, fully understand complex scalar compu-

tations in C language.

Figure 5.3c presents the proportion of respondents who understand SIMD computations in C lan-

guage, with 21.4% fully understanding, 8.3% understanding the general meaning, and 73.8% not un-

derstanding at all. This indicates that only 21.4% of respondents have a full understanding of SIMD
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24People
12People

48People

Fully Understand
Understand Generally
Do Not Understand

(a) Proportion of Respondents Who Understand
Ordinary Scalar Computations in C Language

22People

8People

54People

Fully Understand
Understand Generally
Do Not Understand

(b) Proportion of Respondents Who Understand
Complex Scalar Computations in C Language

18People

7People

59People

Fully Understand
Understand Generally
Do Not Understand

(c) Proportion of Respondents Who Understand
SIMD Computations in C Language

13People

11People

60People

Fully Understand
Understand Generally
Do Not Understand

(d) Proportion of Respondents Who Understand
SIMD Permuting in C Language

Figure 5.3: Survey Respondents’ Understanding of Advanced Programming Languages

computations in C language.

Finally, Figure 5.3d shows the proportion of respondents who understand SIMD permuting in C lan-

guage. Here, 15.4% fully understand, 13.1% understand the general meaning, and 71.4% do not un-

derstand at all. This demonstrates that only a small fraction, 15.4%, fully understand SIMDpermuting

in C language.

According to the above statistics, as shown in Figure 5.4, it can be observed that as the difficulty of the

code increases (from ordinary scalar calculations to SIMD permuting, with the level of code abstrac-

tion gradually increasing, thus consideredmore challenging to understand), the number of people who

can understand the code behavior decreases. This confirms the problem raised inChapter 1: SIMD in-

struction code is indeed more difficult to understand compared to ordinary scalar operations.

In the following statistics, we will analyze the situations of both professional and non-professional pro-

grammers separately. Here, individuals who have received professional computer science education are

considered ”professional programmers,” while thosewhohave not received computer science education

but possess certain programming skills are considered ”non-professional programmers.” In the follow-

ing statistics, ”fully understand” and ”understand the general meaning” are collectively referred to as

”understand.”

Figure 5.5 displays the understanding level of professional programmers regarding advanced program-
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Figure 5.4: Influence of Programming Difficulty on Respondents’ Understanding of Advanced Pro-

gramming Languages
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Figure 5.5: Understanding of Advanced Programming Languages by Professional Programmers
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ming languages. According to Figure 5.5a, Figure 5.5b, and Figure 5.5c, the proportion of professional

programmers who understand ordinary scalar, complex scalar, and SIMD computations in C language

reaches 94.7%; according to Figure 5.5d, the proportion of professional programmers who understand

the more complex SIMD permuting in C language is also as high as 89.5%.

The data from Figure 5.6 show that, after receiving professional computer science education, the vast
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Figure 5.6: Influence of Programming Difficulty on the Understanding of Advanced Programming

Languages by Surveyed Professional Programmers

majority of students can understand the use of advanced programming languages, and the difficulty of

the code does not significantly affect their understanding of C language code.

Figure 5.7 illustrates the understanding level of non-professional programmers regarding advanced

programming languages. According to the data from Figure 5.7a, Figure 5.7b, Figure 5.7c, and Fig-

ure 5.7d, combined with Figure 5.8, it is evident that as the difficulty increases, the number of non-

professional programmers who can understand C language code behavior decreases. Moreover, the

majority of them have a weak ability to understand C language code behavior.

According to the data from Figure 5.9a, Figure 5.9b, Figure 5.9c, and Figure 5.9d, a very small por-

tion of people who have not studied programming at all can still understand C language code through

semantics. As indicated by Figure 5.10, the number of people who can understand code behavior gen-
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Figure 5.7: Understanding of Advanced Programming Languages by Non-Professional Programmers

erally follows the trend that fewer people understand as the code difficulty increases.

Based on the above analysis, one point worth noting is that for individuals who have received computer

science education, their ability to understand C language code is generally not affected by code diffi-

culty. However, for those who have not received computer science education, even if they have studied

programming or possess some programming ability, their understanding of C language code is gener-

ally affected by code difficulty. This might suggest that they are more accustomed to reading source

code and know how to extract information from it than others. Additionally, they may be able to use

reference materials (like documentation) more effectively to aid their understanding of the code.

5.2.4 Survey Respondents’ Understanding of Assembly

Language

According to the results of Figure 5.11, for both questions regarding the understanding of assembly

language, nearly 80%of respondents are unable to understand assembly language code. This percentage

is significantly higher than thosewho cannot understandC language code, confirming that understand-

ing assembly language is indeed more difficult than understanding high-level languages.
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Figure 5.8: Influence of Programming Difficulty on the Understanding of Advanced Programming

Languages by Surveyed Non-Professional Programmers

According to the results of Figure 5.12, it is evident that professional programmers, those who have re-

ceived computer science education, generally have a high level of understanding of assembly language.

However, this is still lower compared to the number who understand C language.

For non-professional programmers, understanding assembly language is very challenging. This is evi-

dent from Figure 5.13, where, among all surveyed non-professional programmers, only one person was

able to understand assembly language code for both questions.

According to Figure 5.14, for people who have not studied programming, their situation is similar to

that of non-professional programmers, with almost no one being able to understand assembly language

code.

Based on these results, it is not difficult to see that understanding assembly language is more challeng-

ing compared to understandingC language code. This confirms the issue raised inChapter 1: assembly

language code is indeed more difficult for people to understand compared to higher-level languages.

However, for thosewhohave received computer science education, their ability to understand assembly

language is still at a relatively high level, although it is lower compared to the number who understand

C language.
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Figure 5.9: Understanding of Advanced Programming Languages by People Who Have Not Studied

Programming

5.2.5 SurveyRespondents’UnderstandingofStaticVisu-

alizationMethods

Help of Static Visualization in Understanding SIMD Computations in

Assembly Language

Figure 5.15 shows the level of understanding among survey respondents regarding static visualization

methods for SIMDcomputations. It canbe seen that 54.8%of respondents are able tounderstand static

visualization, indicating that amajority of the surveyed individuals can comprehend these visualization

methods.

Figure 5.16a indicates that 43.3% of respondents could not understand the code when reading it, but

could comprehend it through static visualization. This suggests that static visualization indeed helps

somepeople in understanding the code. Furthermore, Figure 5.16b shows that the vastmajority believe

static visualization is beneficial in understanding SIMD computations in assembly language.
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Figure 5.10: Influence of Programming Difficulty on the Understanding of Advanced Programming

Languages by People Who Have Not Studied Programming
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Figure 5.11: Survey Respondents’ Understanding of Assembly Language

Help of Static Visualization in Understanding SIMD Permuting in As-

sembly Language

Figure 5.17 demonstrates the understanding level of survey respondents regarding static visualiza-

tion methods for SIMD permuting. It can be seen that 48.8% of respondents can understand static

visualization, which is lower than the proportion for simpler SIMD computations. This indicates that

the effectiveness of static visualizationmethods diminishes for more complex code like SIMDpermut-
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Figure 5.12: Understanding of Assembly Language by Professional Programmers
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Figure 5.13: Understanding of Assembly Language by Non-Professional Programmers
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Figure 5.14: Understanding of Assembly Language by People Who Have Not Studied Programming
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Figure 5.16: Help of Static Visualization in Understanding SIMD Computations
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ing.

Figure 5.18a reveals that 34.4% of respondents were unable to understand the meaning of the code
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(a) Proportion of Respondents Who Did Not Un-
derstand the Program by Reading Code, But Un-
derstood SIMD Permuting Through Static Visual-
ization
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(b) Proportion of Respondents Who Understood
the Program by Reading Code, and Found Static
Visualization Helpful in Understanding SIMD
Permuting

Figure 5.18: Help of Static Visualization in Understanding SIMD Permuting

when reading it, but could comprehend it through static visualization. This implies that static visual-

izationmethods can indeed assist some individuals in understanding the code, although the proportion

of people it helps is slightly lower formore complex SIMDpermuting compared to simpler SIMDcom-

putations. Additionally, Figure 5.18b shows that the vast majority believe static visualization is helpful

in understanding SIMD permuting in assembly language.

5.2.6 Survey Respondents’ Understanding of Dynamic

VisualizationMethods

Help ofDynamicVisualization inUnderstandingSIMDComputations in

Assembly Language

Figure 5.19 shows the level of understanding among survey respondents regarding dynamic visualiza-

tionmethods for SIMD computations. It can be seen that 47.6% of respondents are able to understand

dynamic visualization, indicating that a significant portion of the surveyed individuals can comprehend

these visualizationmethods. However, the number of respondents who understand dynamic visualiza-

tion for SIMD computations is fewer than those who understand static visualization.

Figure 5.20a indicates that 34.3% of respondents could not understand the meaning of the code when

reading it, but could comprehend it through dynamic visualization. This suggests that dynamic visual-

izationmethods do help some people understand the code, although the proportion of people it assists
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Figure 5.20: Help of Dynamic Visualization in Understanding SIMD Computations

is slightly lower compared to static visualization. Additionally, Figure 5.20b shows that the majority

believe dynamic visualization is beneficial in understanding SIMDcomputations in assembly language,

but this proportion is still lower compared to static visualization.

HelpofDynamicVisualization inUnderstandingSIMDPermuting inAs-

sembly Language

Figure 5.21 demonstrates the level of understanding among survey respondents regarding dynamic

visualization methods for SIMD permuting. It can be seen that 56.0% of respondents can understand

dynamic visualization, suggesting that a majority of the surveyed individuals can comprehend these

methods. Interestingly, the number of respondents who understand dynamic visualization for SIMD

permuting is higher than those for SIMD computations; dynamic visualization seems to be more ef-

fective for more complex SIMD permuting instructions compared to static visualization.

Figure 5.22a indicates that 42.2% of respondents could not understand the meaning of the code when
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Figure 5.22: Help of Dynamic Visualization in Understanding SIMD Permuting

reading it, but could comprehend it through dynamic visualization. This suggests that dynamic visual-

ization methods can indeed assist some people in understanding the code, and the proportion of assis-

tance is higher formore complex SIMDpermuting compared to static visualization. Furthermore, Fig-

ure 5.22b shows that the majority believe dynamic visualization is beneficial in understanding SIMD

permuting in assembly language, and this proportion is greater than those who find static visualization

helpful.

According to the analysis, for simpler SIMDcomputations, static visualization appears to bemore help-

ful in understanding the code; however, for more complex SIMD permuting instructions, dynamic vi-

sualization offers greater assistance. Figure 5.23 visually presents this conclusion more clearly.
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Figure 5.23: TheDegree ofAssistance Provided by Static andDynamicVisualization inUnderstanding

Different Levels of Code Complexity

5.2.7 Survey Respondents’ Preferences for Visualization

Methods
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Figure 5.24: Preferences of All Respondents for Visualization Methods

According to the results of Figure 5.24, overall, respondents tend to use visualization methods to

aid their understanding of code. For simple code, 70.2% of respondents prefer dynamic visualization

methods, while for complex code, this proportion rises to 77.4%. However, for those with a computer

science education, a greater number prefer using code and static visualization for understanding simple

code, while the preference for complex code aligns with the general trend favoring dynamic visualiza-

tion. This conclusion can be drawn from Figure 5.25.
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Figure 5.25: Preferences of Professional Programmers for Visualization Methods

5.2.8 Conclusion

Overall, based on the results of this survey, visualization can assist people in understanding themean-

ing of code to a certain extent. However, the effectiveness of static and dynamic visualizations varies

with the complexity of the code. For relatively simple code, static visualization is more helpful than

dynamic visualization; for more complex code, dynamic visualization is more effective than static visu-

alization. The dynamic visualization method used in the survey corresponds to the method proposed

inChapter 3. Thus, it can be concluded that the visualization approach presented in this thesis can help

people understand the meaning of code to a certain extent, and this approach is particularly effective

in assisting the understanding of complex SIMD instructions, while for simple instructions, it is not as

intuitive as static visualization.

Additionally, individualswith computer science education generally have a higher ability to understand

code. For those without a computer science education, even if they have studied programming or pos-

sess some programming skills, their overall ability to understand code is on par with the general public.

This supports the view mentioned in the literature B. Helmlinger, M. Sommer, M. Feldhammer-Kahr,

G. Wood, M. E. Arendasy, and S. E. Kober. Programming experience associated with neural efficiency

during figural reasoning. Scientific Reports, 10(1):13351, 2020, which states that ”people with high

programming experience may develop a unique programming mindset distinct from others.”

5.3 Supplementary Evaluation

The supplementary evaluation provided a small group of interviewees with two versions of software,

”Prototype1” and ”Prototype2”, allowing them to thoroughly experience and evaluate these two pro-
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totype versions and their visualizationmethods. Due to the distribution of software copies, this survey

was conducted on a small scale, so the results may not be a statistically significant evaluation. More-

over, the participants in this survey were predominantly Asian, so regional preferences might affect

the accuracy of the final results. Despite these limitations, the supplementary evaluation still reflects

the interviewees’ opinions on ”Prototype1” and ”Prototype2” as well as the two different visualization

methods to a certain extent, and the results still hold some reference value.

Similar to the previous evaluation, the participants in this survey included students majoring in com-

puter science, students who have studied programming, and laypeople who are not familiar with pro-

gramming. This survey differed from the above questionnaire in that it used a matrix multiplication

algorithm as an example, allowing users to actually use the tool to execute the algorithm process.

Figure 5.26 shows the overall results of the supplementary evaluation.It can be seen that among the

0People6People
Prototype1 is better
Prototype2 is better

Figure 5.26: Supplementary Evaluation: Overall

6 participants in the survey, all of them considered Prototype2 to be generally superior. Based on the

feedback, they identified the following advantages of Prototype2 over Prototype1:

• Prototype2 can display complete computational results, which is important for understanding

SIMD (Single Instruction, Multiple Data) operation instructions.

• Prototype2 offers adjustable animation speeds, allowing users to quickly skip instructions that

do not require understanding or to slow down for instructions that need careful observation.

• Prototype2 provides clear guidance during animation execution, enabling users to see the start-

ing and ending points of movements.

• Prototype2 does not use an excessive amount of colors, making it more user-friendly for those

with color vision deficiencies.

• Prototype2 supportsmore features than Prototype1, such as loops, memory access, andwriting,

etc.

However, in comparing the GUIs, half of the participants preferred the GUI of Prototype1, as shown
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in Figure 5.27. They found that having the visualization window on one side was more intuitive for

users, and that the window in Prototype2 was somewhat cumbersome.

Additionally, based on user feedback, there are still areas for improvement in Prototype2 in the fol-

3People

3People

Prototype1 is better
Prototype2 is better

Figure 5.27: Supplementary Evaluation: GUI

lowing aspects:

• Replace the window mode with a more intuitive left-right layout, which is more favored by

beginners.

• Include options for Undo and Skip, allowing users to bypass animations directly without wait-

ing for them to complete when not needed.

• Consider using more contrasting colors in the color scheme to differentiate between different

sections.

5.4 Examples

In addition to evaluating with surveys, this thesis provides some examples to verify the effectiveness

of the proposed visualization scheme. This section will provide some examples of SIMD algorithms

implemented in assembly language.

5.4.1 Prefix Sum

Algorithm

Listing 5.1: Prefix Sum algorithm (_start Part)
1 section .data

2 array dd 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

3 result dd 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

4

5 section .text
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6 global _start

7 _start:

8 vmovdqu32 zmm0, [array]

9 call _prefix_sum

10 vmovdqu32 [result], zmm0

11 ; exit

12 xor rdi, rdi

13 mov rax, 60

14 syscall

Listing 5.2: Prefix Sum Algorithm (Algorithm Part)
1 _prefix_sum: ; arg: zmm0

2 vpxorq zmm2, zmm2, zmm2

3 valignd zmm1, zmm0, zmm2, 15

4 vpaddd zmm0, zmm0, zmm1

5 valignd zmm1, zmm0, zmm2, 14

6 vpaddd zmm0, zmm0, zmm1

7 valignd zmm1, zmm0, zmm2, 12

8 vpaddd zmm0, zmm0, zmm1

9 valignd zmm1, zmm0, zmm2, 8

10 vpaddd zmm0, zmm0, zmm1

11 ret

The code in Listing 5.2 shows the assembly language version of the Prefix Sum algorithm mentioned

in W. Zhang, Y. Wang, and K. A. Ross. Parallel prefix sum with simd, 2023. arXiv: 2312.14874

[cs.DC]. Using the _start function and the data provided in Listing 5.1, you can run the function

for testing.

Visualization Results of PixelAssemblySIMD

Figure 5.28: Visualization process of valignd zmm1, zmm0, zmm2, 15

Figure 5.28 shows the process of visualizing the instruction valignd zmm1, zmm0, zmm2,

https://arxiv.org/abs/2312.14874
https://arxiv.org/abs/2312.14874
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15 using the PixelAssemblySIMD tool. This instruction moves the last 32-bit integer of ZMM2 to the

first 32-bit integer of ZMM1, and thenmoves the first to fifteenth 32-bit integers of ZMM0 to the second

to sixteenth 32-bit integers ofZMM1. The image showsPixelAssemblySIMDmoving the corresponding

numbers from ZMM2 and ZMM0 to ZMM1, with the elements in motion highlighted by a yellow border

to alert the user that these elements are being animated; additionally, PixelAssemblySIMDdraws a sky-

blue arrow from the starting point to the endpoint of the animation, to remind the user of the starting

and ending positions of the elements. For clarity, the line of the arrow becomes lighter at the positions

that have already been moved, allowing the user to clearly see the main content behind while still un-

derstanding the starting and ending points of the animation.

Figure 5.29 shows the final visualization results of the Prefix Sum algorithm.

Figure 5.29: Visualization results of the Prefix Sum algorithm

5.4.2 Matrix Transpose

Algorithm

Listing 5.3: Matrix Transpose Algorithm (Data Declaration)
1 section .data

2 matrix dd 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0

3 dd 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0

4 dd 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0

5 dd 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0

6 dd 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0

7 dd 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0

8 dd 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0

9 dd 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0

10 result dd 0, 0, 0, 0, 0, 0, 0, 0

11 dd 0, 0, 0, 0, 0, 0, 0, 0

12 dd 0, 0, 0, 0, 0, 0, 0, 0

13 dd 0, 0, 0, 0, 0, 0, 0, 0

14 dd 0, 0, 0, 0, 0, 0, 0, 0

15 dd 0, 0, 0, 0, 0, 0, 0, 0

16 dd 0, 0, 0, 0, 0, 0, 0, 0
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17 dd 0, 0, 0, 0, 0, 0, 0, 0

Listing 5.4: Matrix Transpose Algorithm (_start Part)
1 section .text

2 global _start

3 _start:

4 vmovaps ymm0, [matrix]

5 vmovaps ymm1, [matrix + 0x20]

6 vmovaps ymm2, [matrix + 0x40]

7 vmovaps ymm3, [matrix + 0x60]

8 vmovaps ymm4, [matrix + 0x80]

9 vmovaps ymm5, [matrix + 0xA0]

10 vmovaps ymm6, [matrix + 0xC0]

11 vmovaps ymm7, [matrix + 0xE0]

12 call _matrix_transpose

13 vmovaps [result], ymm8

14 vmovaps [result + 0x20], ymm9

15 vmovaps [result + 0x40], ymm12

16 vmovaps [result + 0x60], ymm13

17 vmovaps [result + 0x80], ymm10

18 vmovaps [result + 0xA0], ymm11

19 vmovaps [result + 0xC0], ymm14

20 vmovaps [result + 0xE0], ymm15

21 ; exit

22 xor rdi, rdi

23 mov rax, 60

24 syscall

Listing 5.5: Matrix Transpose Algorithm (Algorithm Part)
1 _matrix_transpose:

2 vunpcklps ymm8, ymm0, ymm1

3 vunpcklps ymm9, ymm2, ymm3

4 vunpcklps ymm10, ymm4, ymm5

5 vunpcklps ymm11, ymm6, ymm7

6 vunpckhps ymm12, ymm0, ymm1

7 vunpckhps ymm13, ymm2, ymm3

8 vunpckhps ymm14, ymm4, ymm5

9 vunpckhps ymm15, ymm6, ymm7

10 vshufps ymm0, ymm8, ymm9, 0b01000100

11 vshufps ymm1, ymm8, ymm9, 0b11101110

12 vshufps ymm2, ymm10, ymm11, 0b01000100

13 vshufps ymm3, ymm10, ymm11, 0b11101110

14 vshufps ymm4, ymm12, ymm13, 0b01000100

15 vshufps ymm5, ymm12, ymm13, 0b11101110
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16 vshufps ymm6, ymm14, ymm15, 0b01000100

17 vshufps ymm7, ymm14, ymm15, 0b11101110

18 vperm2f128 ymm8, ymm0, ymm2, 0x20

19 vperm2f128 ymm9, ymm1, ymm3, 0x20

20 vperm2f128 ymm10, ymm0, ymm2, 0x31

21 vperm2f128 ymm11, ymm1, ymm3, 0x31

22 vperm2f128 ymm12, ymm4, ymm6, 0x20

23 vperm2f128 ymm13, ymm5, ymm7, 0x20

24 vperm2f128 ymm14, ymm4, ymm6, 0x31

25 vperm2f128 ymm15, ymm5, ymm7, 0x31

26 ret

An assembly language implementation of the Matrix Transpose algorithm is provided in Listing 5.5.

You can run the program to complete the test using the _start function given in Listing 5.4 and data

given in Listing 5.3.

Visualization Results of PixelAssemblySIMD

Figure 5.30 shows the final visualization results of the Matrix Transpose algorithm. The final results

are stored in YMM8-YMM15. In the Matrix Transpose algorithm, all are shift instructions similar to the

valignd instruction, therefore, the execution process will not be elaborated further.

5.4.3 Matrix Multiplication

Algorithm

Listing 5.6: The Matrix Multiplication algorithm
1 section .data

2 MatrixA dq 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14

.0, 15.0, 16.0

3 MatrixB dq 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0,

3.0, 2.0, 1.0

4 MatrixC dq 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0

.0, 0.0

5

6 section .text

7 global _start

8 _start:

9 vmovapd ymm0, [MatrixB]

10 vmovapd ymm1, [MatrixB + 32]

11 vmovapd ymm2, [MatrixB + 64]

12 vmovapd ymm3, [MatrixB + 96]
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Figure 5.30: Visualization results of the Matrix Transpose algorithm

13 mov rdi, 0

14 __loop:

15 vmovapd ymm15, [MatrixA + rdi]

16 vextractf128 xmm14, ymm15, 0

17 vbroadcastsd ymm4, xmm14

18 shufpd xmm14, xmm14, 1

19 vbroadcastsd ymm5, xmm14

20 vextractf128 xmm14, ymm15, 1

21 vbroadcastsd ymm6, xmm14

22 shufpd xmm14, xmm14, 1

23 vbroadcastsd ymm7, xmm14

24 vmulpd ymm7, ymm3, ymm7

25 vfmadd213pd ymm6, ymm2, ymm7

26 vfmadd213pd ymm5, ymm1, ymm6

27 vfmadd213pd ymm4, ymm0, ymm5

28 vmovapd [MatrixC + rdi], ymm4
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29 add rdi, 32

30 cmp rdi, 128

31 jne __loop

32 ; exit

33 xor rdi, rdi

34 mov rax, 60

35 syscall

Listing 5.6 is an implementation of the Matrix Multiplication algorithm in assembly language.

Visualization Results of PixelAssemblySIMD

Figure 5.31: Visualization results of the Matrix Multiplication algorithm

Figure 5.31 shows the final visualization results of the Matrix Multiplication algorithm. Since the

algorithm ultimately stores the result in memory, the diagram also shows the visualization of the mem-

ory, with the final result starting from memory address 0x40000080. The Matrix Multiplication al-

gorithm utilizes more complex computational instructions such as vfmadd213pd. Figure 5.32 shows

the computational process of vfmadd213pd. It can be seen that PixelAssemblySIMD demonstrates

how the final result is computed through a specific formula, which is very helpful for users to under-

stand SIMD computational instructions.
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Figure 5.32: Visualization process of vfmadd213pd ymm6, ymm2, ymm7
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6
Comparisonwith Related Research

This chapter mainly states related studies and compares the method proposed in this thesis with them. Al-

though there are many common visualization software at present, compared with them, there are rela-

tively few visualization tools specifically for SIMD. Some existing SIMD visualization tools are listed

in this chapter, they are briefly introduced and comparedwith the visualizationmethod and implemen-

tation proposed in this thesis.

6.1 SIMDGiraffe

6.1.1 Project Overview

SIMDGiraffe[33] is a project for visualizing SIMD instructions. The aim of the project is to make

SIMD code understandable through various visualization methods so that anyone with basic under-

standing of algebra can quickly and stress-free understand any given SIMD instruction or its intrinsic

functions. The basic features of SIMDGiraffe include capturing expert explanations, semantic SIMD

visualization, graphical visualization, and explanation of SIMD instructions/intrinsic functions.

This tool works according to the view chosen by the user (beginner’s view or expert view), and most

operations are done by clicking the mouse. The expert view is for explaining vector instructions, and

the beginner’s view is for looking at the traces left by experts while explaining through the expert view.

SIMDGiraffe offers a model of describing vector code behavior on a target vector architecture. This

model can describe the behavior of vector code as a path from the entry point of the function to the exit

point. The path can isolate independent or weakly related code blocks, where independent code blocks

can run independent of the rest of the function, and weakly related code blocks can execute within the

function, but their return values will be read by the function. The model also defines a relationship

that connects register read and write operations. Through this model, users can segment vector code
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by setting a starting point and an endpoint and establish an interactive correspondence between source

code and visualization representation[6].

6.1.2 Comparison

The differences are:

• SIMDGiraffe visualizes the code through its code behavior model, but this model is evidently

based on the control flow of the program. PixelAssemblySIMD abstracts instructions into dif-

ferent degrees of data transfer, which is a visualization based on data flow.

• SIMDGiraffe does not support newer SIMD instruction sets, such as AVX-512. But Pixe-

lAssemblySIMD has already supported these instruction sets.

• The usage of the SIMDGiraffe tool does not provide clear guidance, it is hard for users to use it

like PixelAssemblySIMD without prior learning.

6.2 SIMD-Visualiser

6.2.1 Project Overview

Listing 6.1: Example Code for SIMD-Visualiser: Prefix Sum Algorithm
1 #include <x86intrin.h>

2

3 __m128i PrefixSum(__m128i curr) {

4 __m128i Add = _mm_slli_si128(curr, 4);

5 curr = _mm_add_epi32(curr, Add);

6 Add = _mm_slli_si128(curr, 8);

7 return _mm_add_epi32(curr, Add);

8 }

SIMD-Visualiser[34] is a tool for graphically displaying SIMDcode, with its user interface consisting of

a code editor on the left half and a visualizationwindow on the right half. SIMD-Visualiser provides an

example code for the Prefix Sum algorithm, as shown inListing 6.1. The visualization process of execut-

ing this code is illustrated in Figure 6.1. This visualization tool aims to help humans understand SIMD

code designed for machines. Through the use of animation, color, and graphics, SIMD-Visualiser aims

to simplify and reveal SIMD code, making it easier for people with basic computer science knowledge

to understand.
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The main features of SIMD-Visualiser include graphical visualisation, the ability to handle Abstract

Figure 6.1: Visualization of the Prefix Sum Algorithm in SIMD-Visualiser

Syntax Tree (AST), and the functionality to write, compile and debug SIMD code. The tool uses the

Clang compiler to compile SIMD code into assembly language, then utilises JavaScript libraries such

as React (for the user interface) and Anime.js (for animation) for parsing and visualisation. SIMD-

Visualiser is capable of not only displaying visual results of SIMD intrinsic functions but also the ASTs

generated by Clang as shown in Figure 6.2.
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Figure 6.2: AST generated by SIMD-Visualiser
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6.2.2 Comparison

Similarities: Although SIMD-Visualiser aims to visualise SIMD intrinsic functions, it visualises

them after compiling the functions into assembly language using Clang, hence, this tool fundamen-

tally employs the same low-level visualisation as PixelAssemblySIMD. Both systems utilise animation

for dynamic visualisation of code.

Differences:

• SIMD-Visualiser is a web-based tool, made with JavaScript based on React and Anime.js. This

is very similar to the tech route of the first version of PixelAssemblySIMD.Therefore, they share

the same problem of having lower data reliability. From the demonstration of SIMD-Visualiser,

it can be inferred that its data might be incorrect during complex modifications. However, the

second version of PixelAssemblySIMD, using a CPU emulation library cpulib tomanage CPU

data, has solved this issue.

• SIMD-Visualiser visualises the procedural operation of each SIMD intrinsic function from top

to bottom, which leads to a problem: it ties the operation of SIMD to the control flow of the

data. However, SIMD should not rely on the program’s control flow[2], therefore PixelAssem-

blySIMD’s visualisation based on data flows conforms more to SIMD’s characteristics.

• SIMD-Visualiser sequentially presents multiple visualisation results, but there are no clear dis-

tinctions between them. This makes it difficult for users to discern which are the visualisation

results of the same instruction. PixelAssemblySIMD’s visualisation strategy based on data flows

does not encounter this problem.

• SIMD-Visualiser lacks support for more modern SIMD instruction sets such as AVX-512,

while PixelAssemblySIMD already supports visualisation of these instruction sets.

• SIMD-Visualiser generates beautiful dynamic visualisation animations with Anime.js. How-

ever, PixelAssemblySIMD uses a very simple animation system, resulting in a gap in animation

effects. In terms of code implementation, Anime.js is easy to use, but PixelAssemblySIMD’s an-

imator is more difficult to program, which poses certain challenges to adding new instruction

visualisation.
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6.3 NEVADA

6.3.1 Project Overview

NEVADA[35] is a tool developed in collaboration between University of Szeged and ARM, specif-

ically designed for ARM’s NEON*1 instruction set, which appears as shown in Figure 6.3 during op-

eration. The NEVADA tool enables developers to visualise and understand the execution of NEON

instructions, crucial for optimising software performance in embedded devices.

By allowing users to observe and modify the behaviour of NEON code snippets in a web browser

without a full development environment, NEVADA simplifies learning process. This makes the ex-

perimentation with NEON much more convenient and accessible. The tool is implemented in Java

and translated into HTML/JavaScript by the Google Web Toolkit, making it accessible through a web

browser. It emulates a simplified ARM CPU, inclusive of NEON and ARM registers, and includes a

linearmemory space for loading and storing data. The tool’s interface is similar to a simplified debugger,

allowing users to modify register or memory content, and execute code in different modes, including

step execution.

This emulator supports a wide range of NEON instructions, such as logical, arithmetic, comparison,

and conversion operations. It provides features like breakpoints, detailed views of NEON and ARM

core register sets, visualisation of memory data.

6.3.2 Comparison

Similarities: Both NEVADA and PixelAssemblySIMD provide assembly-level visualisation.

Differences:

• NEVADA is designed for ARM’s NEON instruction set, while PixelAssemblySIMD is de-

signed for x86_64’s SSE, AVX, and AVX-512 instruction sets.

• PixelAssemblySIMD emphasizes the description of instruction behavior based on animation,

while NEVADA displays the status of registers and memory in ARM in a graphical way, more

like a debugger with a graphical interface. When executing complex SIMD data shuffle opera-

tions, it may not be possible to know the real source of the data through NEVADA’s graphical

interface, while the animation of PixelAssemblySIMD can clearly show the changes in data.

*1 NEON is the SIMD extension of the ARM processor
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Figure 6.3: NEVADA

• AsNEVADAdoes not need to show animations, if the user does not need to have a deep under-

standing of the SIMD instruction execution process, then NEVADA’s graphical interface can

showdata changes faster, helping programmers debug faster. Therefore, NEVADA ismore suit-

able for programmers to debug, while PixelAssemblySIMD is more suitable for programmers

to learn.
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7
Conclusions and FurtherWork

This chapter concludes the work of the thesis and proposes the direction of subsequent work. This chapter

first summarizes the main work of this paper and then looks forward to future work.

7.1 Conclusions

This thesis first proposed the challenges humans face in understanding SIMD computing, and ana-

lyzed it from multiple aspects, positing that ”the conflict between different cognitive roles of humans”

and ”the duality of programmer cognition” might be the deeper causes. Therefore, the thesis proposes

the view that ”assisting humans in SIMD computing is necessary”. Subsequently, the thesis mentioned

that visualization is an effective means to understand abstract and complex concepts, thereby propos-

ing a method to assist humans in understanding SIMD calculations, that is, visualizing the execution

process of SIMD calculations through visualization technology to help humans understand SIMD cal-

culations.

Then, the thesis proposed a general data flow-based visualization method design, and implemented a

tool prototype that implemented this visualizationmethoddesign, whichnamedPixelAssemblySIMD.

The thesis first mentioned an initial design, analyzed its shortcomings, and proposed improvements,

finally achieving a usable and reliable tool prototype. During the design of the tool prototype, the the-

sis introduced a CPU emulation framework cpulib designed to ensure the correctness of visualization

data, and a method to implement asynchronous behavior animation in synchronous systems.

Next, the study used user research methods to evaluate the proposed visualization scheme. The results

showed that the visualization scheme proposed in the thesis could help humans understand SIMD cal-

culations; it also revealed the shortcomings of the visualization scheme, that it is not as intuitive as

static visualization methods in assisting simple code. In the user research-based evaluation, the paper

also confirmed through the results, the help of programming thinking in understanding abstract prob-
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lems. At the end of the evaluation, the thesis provided some algorithm examples of assembly language

using SIMD calculations, which can be used to test the correctness of the visualization tool.

Finally, the thesis introduced three different SIMD visualization tools, analyzed their strengths and

weaknesses, and compared them with the method proposed in this thesis.

7.2 FurtherWork

7.2.1 CPU Emulator

Function Extension

The current cpulib only completes the emulation of the CPU’s registers and memory, and the func-

tion of instruction execution is implemented in the visualization tool. However, the goal of cpulib is

to serve as a stand-alone CPU emulator, so it is necessary to incorporate the function of instruction ex-

ecution into cpulib. As part of future work, cpulib will implement a JIT technology-based instruction

execution function similar toQEMU, so that cpulib can efficiently execute instructions independently

of the visualization tool. In addition, cpulib needs to implement the emulation of other important

components in the CPU, such as the interrupt controller, clock, etc. These parts are not needed in the

visualization tool, but they are essential for a complete CPU emulator.

In addition, continuing to optimize the performance of cpulib is also part of future work. Currently,

cpulib’s performance is sufficient to support the use of visualization tools, but if cpulib were to function

as a stand-alone CPU emulator, its performance is still subpar. Therefore, the performance optimiza-

tion of cpulib is also part of future work.

Integration withWebAssembly

Currently, the Rust language can be easily compiled into WebAssembly[29], and the runtime envi-

ronment for WebAssembly has also matured. There are even some virtual machine software based on

WebAssembly[36]. Moreover, PixelAssemblySIMD can now run in WebAssembly based on browsers,

which means cpulib can also be compiled into WebAssembly. cpulib can run in browsers without the

need to install any software. At the same time, it can also serve as aWebAssembly library, used by other

WebAssembly programs. Therefore, utilizing web-based animation technologies for creating visual-

ization tools is one of the potential future works, allowing for more attractive animations in browsers

while ensuring data accuracy. Secondly, a new subject of interest is a virtual machine and debugging

environment that can run in browsers, which is an example of cpulib being used independently. This
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could become a new target for future work.

7.2.2 VisualizationMethod

According to the evaluation results shown in Chapter 5, the visualization method proposed in this

thesis has a significant impact on assisting human understanding of SIMD calculations. However, the

visualization method proposed in this thesis is less intuitive than static visualization methods when

explaining simple code. Therefore, part of the future work is to improve the proposed visualization

method, incorporate support for static visualization while maintaining the current dynamic visualiza-

tion, to accommodate different user groups and understanding levels.

7.2.3 PixelAssemblySIMD

Instructions Supported

Currently, PixelAssemblySIMD only supports common SIMD instructions. To make it a tool that

can be effectively used in most programs, part of the future work is to add support for more instruc-

tions.

In addition, PixelAssemblySIMD does not currently change the value of the flag register when execut-

ing an instruction, which to some extent limits the functionality of PixelAssemblySIMD. However,

cpulib itself already supports the flag register, so adding support for the flag register is also part of the

future work. After support for the flag register is added, PixelAssemblySIMD can natively support in-

structions such as jumps without the need to implement this feature in the debugger, which is a more

logical design.

Visualization of Memory

Thecurrent visualization ofmemory and the executionofmemory access instructions inPixelAssem-

blySIMD lacks special animations or even misses some key animations during execution. Therefore, in

the future, support for dynamic memory visualization could be added to PixelAssemblySIMD, allow-

ing memory access instructions to be understood more intuitively by users.
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A
Source Code Structure

The structure of the source code is shown below.

A.1 cpulib

• /src/lib.rs

External interface

• /src/registers.rs

Register-related data and operations

• /src/memory.rs

Memory-related data and operations

• /src/utilities.rs

Utility functions

A.2 PixelAssemblySIMD

• /src/main.rs

App entry point

• /src/visualizer_setting.rs

Visualization settings window

• /src/reg_visualizer_data.rs

Visualization data

• /src/reg_visualizer.rs

Register visualization window

• /src/mem_visualizer.rs
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Memory visualization window

• /src/animation_fsm.rs

FSM for instruction execution

• /src/instruction_actuator.rs

Instruction executor

• /src/utilities.rs

Utility functions
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