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Chapter 1

Introduction

Reinforcement Learning (RL) is a dynamic and influential field within arti-
ficial intelligence that focuses on how agents should take actions in an envi-
ronment to maximize a cumulative reward [1]. Rooted in the fundamental
principles of trial-and-error learning and decision making, RL has emerged as
a key technique in modern AI applications, offering a framework for solving
complex problems where explicit programming is impractical.

At the heart of RL lies the exploration of the underlying Markov deci-
sion process (MDPs) [2]. The agent makes decisions or takes actions, and
the environment responds to these actions by presenting a new state and a
reward. The reward, a critical component of RL, serves as feedback for the
actions taken, guiding the agent to learn a policy that maximizes long-term
rewards.

The evolution of RL has been marked by the transition from basic models
to more sophisticated systems:

Initially, RL focused on simple problems with discrete state and action
spaces, using algorithms like Q-learning [3] and SARSA [4]. These models
laid the groundwork for understanding how agents could learn from direct
interaction with an environment.

The advent of deep learning brought about a significant leap in RL. Deep
Reinforcement Learning (Deep RL) combines neural networks with RL, en-
abling agents to handle high-dimensional, continuous state spaces [5]. This
led to breakthroughs in various domains, such as gaming (e.g., AlphaGo),
robotics, and autonomous vehicles.

As RL systems began to tackle more complex tasks, the need for scalable
and efficient algorithms became apparent. This led to the development of
algorithms that could handle large-scale problems, involving intricate state
dynamics and decision-making under uncertainty.

The introduction of sequence modeling in RL marks a crucial innovation
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in the field [6]. Sequence modeling, borrowed from natural language process-
ing, offers a new perspective for handling temporal dependencies in RL tasks.
It addresses the challenge of learning from sequences of states and actions,
capturing the essence of decision-making in RL.

In this evolving landscape, models like StARformer represent the next
step in the RL paradigm [7]. StARformer integrates the principles of sequence
modeling with RL, offering a novel way to interpret and process the sequential
data inherent in RL environments. This approach allows for a more nuanced
understanding of the temporal relationships within RL tasks, facilitating the
development of more advanced and efficient learning algorithms.

1.1 Safety Challenges in Reinforcement Learn-

ing

Reinforcement Learning (RL) presents a unique set of challenges, primarily
centered around decision-making under uncertainty and the delicate balance
between exploration and safety. These challenges are amplified in applica-
tions involving real-world interactions where the stakes are higher and the
consequences of decisions are more significant [8].

In the realm of Reinforcement Learning (RL), the trade-off between ex-
ploration and safety is a fundamental challenge. Agents learn by exploring
their environment, yet such exploration can lead to unsafe states or actions,
particularly in high-risk environments where mistakes may have severe con-
sequences. Achieving a balance between the need for exploration to learn
optimal policies and the necessity to avoid dangerous situations is crucial.
Additionally, RL agents, typically trained in specific environments, face sig-
nificant challenges in maintaining safety and effectiveness amidst dynamic
and unpredictable real-world changes. This highlights the importance of ro-
bustness to environmental changes.

Managing uncertainty and risk in RL is also pivotal. Since RL involves
dealing with uncertainties in environmental dynamics and action outcomes,
developing methods to quantify, manage, and mitigate associated risks is vi-
tal for ensuring safety. In many real-world applications, the high-dimensional
nature of state and action spaces adds complexity to safe exploration, neces-
sitating research into algorithms that can navigate these spaces efficiently
and safely.
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1.2 Reinforcement Learning to Sequence Mod-

eling

Reinforcement Learning (RL) is commonly modeled as a Markov Decision
Process (MDP), from which single-step value-estimation methods like Q-
learning [9] and Temporal Difference (TD) learning [10] have been devel-
oped. These methods and their various extensions have traditionally formed
the backbone of RL approaches. However, more recent developments in the
field have started to view RL differently. For instance, approaches like Deci-
sion transformer [11] treat RL as a sequence modeling task. In this frame-
work, given a sequence of recent experiences, including state-action-reward
triplets, a model is trained to predict the sequence of subsequent actions.
This concept of sequence modeling in RL can also be interpreted as solv-
ing RL problems by learning trajectory representations. The combination
of these techniques represents a significant advancement in the field of RL,
offering new perspectives and methodologies for tackling RL challenges.

1.3 Objectives of Our Study:

Our study primarily aims to explore the integration of the State-Action-
Reward Transformer (StARformer) model in enhancing safety and efficiency
within Reinforcement Learning (RL) tasks. The objectives are multi-faceted:
firstly, to train the StARformer model to effectively assess and predict safe
actions by understanding the association between current states and non-
successful terminal states. Secondly, to develop and evaluate a preliminary
control mechanism, termed the ’Pre-controller’, which utilizes the trained
StARformer for initial decision-making in various RL scenarios. Finally, our
study seeks to demonstrate the practical application of the Pre-controller in
real-world RL environments, focusing on its ability to filter and select actions
that align with predefined safety criteria. This approach aims to seamlessly
integrate safety considerations into the RL process, ensuring safer and more
reliable decision-making, and potentially setting new standards in the realm
of Safe RL.

1.4 Structure of the Thesis

The rest of the paper is organized as follows: Chapter 2 provides the aca-
demic background of this research. Chapter 3 explains the motivation of
our research. Chapter 4 describes our proposed improvements and methods
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in detail. Chapter 5 presents the evaluation methodology and experimen-
tal results. Chapter 6 discusses challenges and limitations of our research.
Finally, Chapter 7 summarizes the conclusions of our research and outlines
future directions.
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Chapter 2

Literature Review and
Background

Our method relies on Sequenced RL and Safe RL. We introduce essential
concepts and knowledge in the following subsections.

2.1 Sequenced RL

2.1.1 Basics of Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning where an agent
learns to make decisions by interacting with an environment to achieve a
goal [1]. The fundamental principle of RL is learning through trial and error,
where the agent makes sequential decisions, receives feedback in the form of
rewards or penalties, and adjusts its actions accordingly. Here’s a breakdown
of its fundamental concepts:

In RL, an environment is typically modeled as a Markov Decision Process
(MDP), characterized by a set of states, actions, and rewards. The agent,
at each time step, observes its current state, selects an action, and then
transitions to a new state while receiving a reward. The goal is to learn
a policy - a strategy that maps states to actions - to maximize cumulative
rewards over time.

RL has several key components:
1. Agent: The learner or decision-maker. 2. Environment: What the

agent interacts with. 3. State: The current situation or context of the agent.
4. Action: Choices the agent can make. 5. Reward: Feedback from the
environment indicating the success of an action. 6. Policy: The agent’s
strategy for selecting actions. 7. Value Function: Measures the expected
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long-term return of states or actions, guiding the policy. 8. Model: An
optional component that predicts the next state and reward.

2.1.2 Sequenced RL

Reinforcement Learning (RL) is traditionally modeled as a Markov Decision
Process (MDP). Recent advancements, however, approach RL as a sequence
modeling task, where models predict future actions based on a sequence
of past state-action-reward triplets. This approach aligns well with offline
RL and imitation learning, focusing on learning trajectory representations
through supervised learning methods.

Using Transformer to Solve RL Problem

Transformers, initially prominent in natural language processing [12] [13]
[14]and computer vision [15], are increasingly being explored in Reinforce-
ment Learning (RL). Recent studies have begun to unveil their potential
in this field to model interactions between a sequence of word embeddings,
or more generally, unit representations or tokens. Recently, Transformers
have been adopted in vision tasks with the key idea of breaking down im-
ages/videos into tokens [16] [17] [18], often outperforming convolutional net-
works (CNNs) in practice. Inspired by designs from both Transformers and
CNNs, combining the two [19]shows further improvements. GPT [14] can be
applied to RL under the sequence modeling setting.

The core mechanism of transformers is the self-attention module, which
models interactions between all pairs of input tokens to capture their re-
lationships. Each input token is mapped into query, key, and value repre-
sentations to compute self-attention, as detailed in [20]. This approach has
been adapted for vision tasks by Vision Transformer (ViT) [21] [22], which
processes images by dividing them into a sequence of non-overlapping local
patches. These patches are then flattened and linearly mapped to token
sequences for self-attention processing.

Transformer architectures, initially introduced for language processing
tasks, have significantly impacted how we model interactions between se-
quences of word embedding or, more broadly, unit representations known
as tokens. These architectures have recently made a notable transition into
vision tasks. The core innovation here lies in treating images or videos as a
series of tokens, a methodology that has often surpassed the performance of
traditional convolutions networks (CNNs) in practical applications.

This success in vision tasks has prompted a fusion of ideas from Trans-
formers and CNNs, leading to further enhancements in model performance.
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Transformers have also demonstrated utility in processing sensory informa-
tion and in one-shot imitation learning. In the realm of Reinforcement Learn-
ing (RL), Chen et al. explored the application of GPT under a sequence
modeling framework. This approach in visual RL closely resembles learning
from videos, where input data comprises sequences of observed images, or
states.

However, applying Transformers to video data introduces challenges, par-
ticularly due to the extensive number of input tokens and the associated
quadratic computational demands. Researchers have investigated several
solutions to these issues, such as attention approximation techniques [23],
implementing separable attention across different dimensions [24], reducing
token numbers through local windows [25], generating a smaller amount of
tokens adaptively, or utilizing a CNN-stem to produce a condensed set of
high-level tokens [26].

StARformer

In Reinforcement Learning (RL), states, actions, and rewards across adja-
cent time steps often exhibit strong causal connections. Recent past states
significantly influence the next action, while the immediate future state and
reward are direct consequences of the current action. In Markov Decision
Processes (MDP), these relationships are even more pronounced. However, a
Transformer that attends to all tokens without discrimination might struggle
with excess information, potentially obscuring crucial relational priors [6].
This issue becomes acute with large input sequences, both spatially and
temporally, and in complex Transformer models with numerous layers [27].
Learning Markovian dependencies from scratch can be inefficient, leading to
wasted computational resources.

To address these challenges, the State-Action-Reward Transformer (StAR-
former) for visual RL is introduced. This model explicitly captures single-
step transitions, infusing a Markovian-like inductive bias and optimizing the
capacity for long sequence modeling. The StARformer comprises two inter-
leaved components: a Step Transformer and a Sequence Transformer. The
Step Transformer focuses on local representations within a single timestep
by self-attending to state-action-reward tokens, with image states encoded
as ViT-like patches to preserve detailed spatial information. The Sequence
Transformer then merges these StAR-representations with pure image state
representations, derived from convolutional features, to predict actions over
the entire sequence.

StARformer consists of two basic components: Step Transformer and
Sequence Transformer, together with interleaving connections. Step Trans-
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Figure 2.1: StARformer

former learns StAR-representations from strongly-connected local tokens ex-
plicitly, which are then fed into the Sequence Transformer along with pure
state representations to model the whole input trajectory. At the output of
the final Sequence Transformer layer is the action predictions. In the fol-
lowing subsections, we will introduce the two Transformer components, and
their corresponding token embedding in detail.

In the StARformer framework, the input consists of a sequence of states,
actions, and rewards from RL environments, akin to word encoding in NLP.
Each element of this sequence is transformed into embeddings, forming the
basis of our model’s input representation.

Step Transformer

Grouping State-Action-Reward Segment a trajectory T into groups in
order to capture strong local relationships. Each group includes a previous
action at−1, reward rt−1, and the current state st.

Patch-wise State Token Embeddings Following the Vision Transformer
(ViT)approach, tokenize each state image into non-overlapping spatial patches
Z s. This tokenization aims to produce detailed state embeddings, allowing
the Step Transformer to understand how actions and rewards correlate with
specific state regions.

Action and Reward Token Embeddings Using a linear layer to embed
the action and reward tokens.

S-A-R Embeddings Combine state, action, and reward embeddings to
form the input for the initial Step Transformer layer: Z = {zat−1 , zrt−1 , zst}.
Across each trajectory, we have T groups of such token representations pro-
cessed simultaneously by the Step Transformer with shared parameters.
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Sequence Transformer

2.2 Safe RL

2.2.1 Basics of Safe Reinforcement Learning

Safe RL can be defined as the process of learning policies that maximize
the expectation of the return in problems in which it is important to en-
sure reasonable system performance and/or respect safety constraints dur-
ing the learning and/or deployment processes [28]. Reinforcement Learning
(RL) presents a unique set of challenges, primarily centered around decision-
making under uncertainty and the delicate balance between exploration and
safety. These challenges are amplified in applications involving real-world
interactions where the stakes are higher and the consequences of decisions
are more significant [29] [30] [28].

In Reinforcement Learning (RL), the trade-off between exploration and
safety is a fundamental challenge, as an agent’s exploration for optimal policy
learning can lead to unsafe states, particularly in high-stakes environments.
Ensuring robustness to the unpredictable changes of real-world environments,
where uncertainty in dynamics and outcomes is prevalent, is crucial for the
safety and efficacy of RL agents. This necessity extends to managing risks
in high-dimensional state and action spaces, making the design of safe ex-
ploration algorithms vital. Moreover, guaranteeing the safety of RL policies
through rigorous verification and validation is an ongoing research focus.

The real-world deployment of RL also brings forth ethical and social con-
siderations, especially in sensitive sectors like healthcare and autonomous
driving, requiring responsible development and implementation. Addition-
ally, making RL agent policies interpretable and explainable is key for user
trust and effective system control. Lastly, ensuring the long-term safety of
RL strategies, particularly in areas with lasting impacts like environmen-
tal management, poses significant challenges, underlining the importance of
careful planning and strategy in RL applications.

2.2.2 Shielded learning

Shielded learning in RL introduces a safety mechanism, referred to as a
’shield,’ to ensure actions comply with predefined safety specifications. In
traditional RL, an agent selects actions at each timestep, receiving feedback
from the environment in terms of state observations and rewards. The typi-
cal goal is to optimize accumulated rewards. The shield, derived from safety
specifications and an abstraction of environmental dynamics. This shield
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differentiates between ’unsafe’ actions, which could violate safety norms, and
’correct’ ones, effectively preventing unsafe decisions by the agent.

Pre-shielding

Pre-shielding in Reinforcement Learning (RL) is a proactive strategy de-
signed to enhance the safety and reliability of RL agents. It involves creating
a safeguard mechanism that operates before the agent executes its decisions,
hence the term ’pre-shielding’. This mechanism acts as a filter or a check-
point, ensuring that the actions selected by the RL agent do not lead to
undesirable or unsafe outcomes.

Pre-shielding is a safety mechanism in Reinforcement Learning (RL) that
modifies the interaction loop between the learning agent and its environment
to ensure safety.

In pre-shielding, the workflow at each time step t involves the following
steps:

Action Set Computation by the Shield The shield takes the set of all
possible actions that the agent can choose from and filters out any actions
that could lead to safety violations. This process results in a set of safe
actions, denoted as {a1, a2, ..., an}.

Agent’s Choice of Action The agent, upon receiving this filtered list of
actions, selects one of the correct actions. This selection, denoted as at, is
guaranteed to be a safe choice because it comes from the pre-screened set
provided by the shield.

Environment’s Response Once the agent has selected an action, the
environment executes this action, transitions to the next state st+1, and
computes the associated reward rt+1.

The primary task of the shield in pre-shielding is to continually modify
the set of available actions for the agent at each time step. This ensures
that the agent can only choose from actions that are deemed correct or safe,
in accordance with a predefined safety specification. The shield acts as a
proactive filter, preventing the agent from making choices that could lead to
unsafe states or outcomes.

This approach is particularly beneficial in scenarios where safety is a crit-
ical concern and where wrong actions could lead to serious consequences.
By integrating pre-shielding, the safety of the RL system is significantly
enhanced, as it minimizes the risk of the agent engaging in harmful or un-
desirable behaviors. In every step, the shield just takes the provided action
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Figure 2.2: Pre-shielding

from the agent and corrects it if necessary to ensure safe operation of the
system. The learning agent does not even need to know that it is shielded.
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Chapter 3

Motivation

The motivation behind our research is rooted in the recognition of a critical
gap in current Reinforcement Learning (RL) methodologies, particularly in
the realms of safety and performance. This gap has significant implications,
especially as RL systems are increasingly deployed in complex, real-world
scenarios. Our study is driven by the conviction that the StARformer model
has the potential to address these pivotal issues, thereby advancing the field
of RL and contributing to the development of safer and more efficient AI
systems.

3.1 Current Concerns

In the field of Reinforcement Learning (RL), practitioners frequently en-
counter two significant challenges with traditional methodologies: safety con-
cerns and performance limitations, both of which profoundly impact the ef-
fectiveness and applicability of RL models in various scenarios. Traditional
RL approaches, primarily focused on achieving optimal performance, often
inadvertently compromise safety, particularly in unpredictable or complex en-
vironments. This issue becomes especially critical in scenarios where safety is
paramount, such as autonomous driving, healthcare, and industrial automa-
tion. The root of the problem lies in the training and objective-setting of
traditional RL models, which usually lack mechanisms to evaluate and miti-
gate potential risks or to foresee the long-term consequences of their actions.

Moreover, existing RL models often struggle to efficiently learn optimal
policies in environments with high-dimensional state spaces or those requiring
long-term strategic planning. In high-dimensional environments, these mod-
els may find it difficult to discern relevant features or patterns within the
data, leading to slower learning processes or suboptimal policy formulation.
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This limitation hinders the model’s ability to make well-informed decisions,
thus affecting its performance and applicability. Additionally, tasks requiring
long-term planning pose unique challenges, as traditional RL models, espe-
cially those employing methods like Q-learning or policy gradients, tend to
focus on immediate rewards and may lack the foresight needed for effective
long-term strategy development.

In conclusion, while traditional RL methods can be effective in certain
scenarios, they exhibit significant shortcomings in terms of safety and perfor-
mance, especially in complex, high-dimensional, or environments demanding
long-term planning. These limitations underscore the need for more advanced
RL models like the StARformer, which integrates safety into the learning
process and is adept at handling complex and long-term decision-making
scenarios.

3.2 Potential of StARformer

The StARformer model marks a significant advancement in the field of Re-
inforcement Learning (RL) with its advanced sequence modeling capabili-
ties, bringing about a transformative impact on decision-making, safety, and
performance. At its core, the StARformer excels in interpreting complex
sequences, providing a nuanced view of the environment and the decision-
making process. This ability leads to more informed choices, enhancing the
quality of decisions and allowing for a deeper understanding of intricate pat-
terns and dependencies in data. This sophistication contrasts sharply with
traditional models that often rely on more simplistic interpretations.

A key motivation behind the StARformer’s development is the integra-
tion of safety as a fundamental component of the RL process, representing
a paradigm shift from conventional models where safety might be secondary
or an external addition. In the StARformer, safety is not just a consider-
ation but a priority, with each decision evaluated for both its rewards and
safety implications. This ensures that the pursuit of high rewards does not
overshadow the importance of safe outcomes, aligning the model’s objectives
with the crucial real-world need for safety.

In addition to enhanced decision-making and a focus on safety, the StAR-
former excels in complex and dynamic environments. Unlike traditional RL
models, which may struggle with large volumes of complex data, the StAR-
former’s advanced architecture is adept at efficiently processing sequences of
states and actions. This efficiency allows the model to develop well-informed,
strategic policies that are safe and effective, even in challenging scenarios.

In essence, the StARformer stands out as a robust and versatile tool
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in RL. It not only offers improved decision-making abilities and prioritizes
safety but also demonstrates a remarkable performance in complex settings.
The design of the StARformer represents a holistic approach to RL, where
safety and efficacy are seamlessly integrated into the decision-making fabric,
making it a pivotal development in advancing RL technologies.

3.3 Advancing the Field of SafeRL

Our research in developing the StARformer model marks a significant ad-
vancement in the field of Safe Reinforcement Learning (SafeRL), particu-
larly focusing on the simultaneous achievement of safety and performance in
RL. This approach addresses the traditionally challenging dichotomy where
optimal performance often came at the cost of safety, and vice versa. Our
work with the StARformer has shown that it is indeed possible to attain high
performance while strictly adhering to safety standards, a balance crucial for
the effectiveness and security of RL systems, especially in scenarios where
safety is non-negotiable.

A key innovation in our study is the adaptation of Transformer models,
originally designed for natural language processing, for ensuring the safety
of RL. These models’ exceptional abilities in handling sequential data have
been leveraged to enhance RL system performance and to integrate safety
considerations more deeply into the learning process. This novel methodol-
ogy could significantly influence future research and development in SafeRL,
inspiring new solutions to the field’s unique challenges.

Moreover, the potential of our research extends into real-world applica-
tions, particularly in domains where safety is paramount, such as autonomous
vehicles, healthcare, and robotics. In these areas, the application of the
StARformer model can greatly enhance the safety and reliability of RL sys-
tems, ensuring they make safer and more informed decisions. By contributing
to the development of RL applications that are not only high-performing but
also trustworthy and secure, our research has laid the groundwork for future
innovations aimed at making RL systems more effective and safer in practical
scenarios.

In summary, the StARformer model stands at the forefront of advancing
SafeRL, bridging the gap between safety and performance with an innovative
approach that holds substantial potential for a variety of real-world appli-
cations. This research not only extends the limits of what is achievable in
SafeRL but also paves the way for future breakthroughs that could further
enhance the safety and efficacy of RL systems in practical applications.
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3.4 Rationale Behind Integration:

The integration of Transformer models into Reinforcement Learning (RL)
is driven by their unique capabilities that promise to significantly enhance
RL task performance, boost learning efficiency, and improve generalization.
Transformers are particularly adept at parallel processing and retaining long
sequences, features that are incredibly beneficial in complex RL environments
where a comprehensive understanding of the sequence of states and actions
is critical. This capability enables Transformers to provide a holistic view of
scenarios, leading to more informed and strategic decision-making, especially
in tasks requiring long-term planning.

Moreover, the efficiency of Transformers in processing large volumes of
data simultaneously makes the RL learning process more efficient. Unlike
traditional RL models that often process data sequentially, Transformers
can handle complex decision-making processes and large-scale environments
more effectively, accelerating the learning process. This is especially valuable
in high-dimensional state spaces or scenarios requiring rapid adaptation to
new information.

A notable strength of Transformers, proven in the field of Natural Lan-
guage Processing (NLP), is their remarkable ability to generalize from train-
ing data. This characteristic is immensely beneficial in RL, where models
often face the challenge of generalizing from limited experiences to new, un-
seen situations. The Transformer’s inherent generalization ability enhances
the RL model’s capacity to adapt and perform effectively in these novel situ-
ations, minimizing the need for extensive retraining or specific programming
for each new environment.

In essence, the integration of Transformer models into RL harnesses their
potential to not only improve performance in complex tasks but also to in-
crease the learning process’s efficiency and enhance model generalization.
These advantages directly address some of the fundamental challenges in
RL, paving the way for the development of more advanced, efficient, and
adaptable RL systems.
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Chapter 4

Pre-controller for Safe
Reinforcement Learning using
Transformer with
State-Action-Reward
Representations

This chapter outlines the methodology and proposal for integrating the StAR-
former model into Safe RL. It details the experimental setup, the technical
approach, and the proposed innovations to enhance both performance and
safety in RL tasks.

Figure 4.1: Overview
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Figure 4.2: StARformer

4.1 StARformer

The StARformer represents a significant innovation in the application of
Transformer models to Reinforcement Learning (RL), blending the robust
capabilities of sequence modeling with the dynamic requirements of RL en-
vironments. Here’s a detailed overview of the StARformer architecture:

The Transformer, originally designed for tasks in natural language pro-
cessing, is renowned for its attention mechanism, which allows it to pro-
cess sequences of data in parallel and capture long-range dependencies. The
model’s architecture eschews recurrent layers for stacked self-attention and
feed-forward layers, facilitating more efficient training and better scalability.

4.1.1 Modifications for StARformer

Defining Safety: In both experimental approaches, safety is defined through
the association between the current StARformer group (comprising state, ac-
tion, reward, and safety or safety weight) and non-successful terminal states.
This definition is rooted in the hypothesis that certain sequences of states and
actions, particularly those leading to non-successful outcomes, are indicative
of unsafe scenarios. By identifying and learning from these associations, the
model is trained to recognize and avoid patterns that could lead to unsafe or
undesirable end states.

Method 1: Integrating a Safety Factor into the Token Group of
StARformer

Our approach innovates the StARformer model by incorporating a safety
factor into its input, thus forming a four-element tuple (state, action, reward,
safety). This safety factor is calculated from historical data to indicate the
likelihood of transitioning to a non-successful terminal state from the current
StAR group. Training the model with this augmented dataset enables it to
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Figure 4.3: StARformer with safety factor

Figure 4.4: StARformer with safety weight

discern state-action-reward combinations associated with higher safety risks.
The addition of the safety element directly embeds safety considerations into
the learning process, allowing the StARformer to develop policies that not
only aim to maximize rewards but also uphold safety constraints.

Method 2: Incorporating Safety Weights into StARformer Tokens

We introduce a novel approach in our second method by assigning a safety
weight to each token in the StARformer model. These weights, calculated
based on each token’s association with non-successful terminal states, adjust
the reward signal. Tokens linked to historically unsafe outcomes receive
higher weights, thereby diminishing the reward in such scenarios.

The StARformer model is enhanced to include safety weights in its in-
put sequence of state, action, and reward. These weights are derived from
predefined safety metrics, such as environmental risks or the inherent safety
of actions. During training, the reward for each token is scaled by its safety
weight, allowing the model to incorporate both traditional goals and safety
considerations.

The augmented input for the StARformer model now consists of (state,
action, reward, safety weight). By training on this enhanced dataset, the
model learns to understand the interplay between actions, rewards, and
safety, with the safety weights acting as a dynamic modifier of the reward
signal.
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Training StARformer with Atari Dataset

StARformer is a replacement of DT, as training and inference procedures
remain the same. StARformer can easily operate on step-wise reward without
a performance drop. In contrast, it is critical to design a Return-to-go (RTG,
target return) carefully in DT, which needs more trials and tuning to find
the best value. We use most of the same hyper-parameters as in DT for
Atari environments without extra tuning. The StARformer will undergo
rigorous training with the Atari dataset, ensuring it learns to process and
interpret intricate game dynamics and environmental cues. The training
will emphasize the model’s ability to discern safe from potentially hazardous
actions, essential for its application in RL.

Predicting Safety-Focused Action Sets

Prediction: The output of the last Sequence Transformer layer is used to
make action predictions

Approach: Post-training, the StARformer will be evaluated on its capabil-
ity to predict actions that align with safety criteria. This involves analyzing
the model’s performance in various game scenarios within the Atari bench-
mark, focusing on its proficiency in identifying and prioritizing safe actions
over high-reward but risky alternatives.

4.2 Pre-controller

Incorporating a Pre-controller within the StARformer framework is a piv-
otal enhancement in our methodology, aimed at significantly bolstering the
model’s competency in ensuring safety in Reinforcement Learning (RL) envi-
ronments. This integration, abstracted from the StARformer and potentially
compatible with other RL methods, emphasizes preemptive safety evaluation
and decision-making refinement.

4.2.1 Role of the Pre-controller:

Safety Assessment The Pre-controller, acting as a preliminary gatekeeper,
rigorously evaluates the safety of potential actions before their execution.
Leveraging the StARformer’s analytical capabilities, this assessment relies
on a set of safety criteria meticulously tailored to the nuances of the specific
RL environment. These criteria encompass not only the immediate ramifi-
cations of actions but also their potential long-term impacts on safety.
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Action Filtering Central to its role, the Pre-controller carefully scruti-
nizes each action suggested by the RL model. By applying a stringent safety
standard, it discerns whether an action is compatible with the established
safety framework. Those actions falling short of safety benchmarks are either
modified to align with safety norms or outright rejected. This ensures that
the action repertoire presented to the environment upholds the highest safety
standards.

State Evaluation Beyond action appraisal, the Pre-controller is tasked
with a thorough evaluation of the current environmental state. It proac-
tively identifies potential risks or safety hazards that could arise, influencing
the choice and nature of future actions. This ongoing assessment helps in
anticipating and mitigating potential safety challenges before they material-
ize.

4.2.2 Developing a Shield-Like Pre-controller

The conceptualization of the Pre-controller as a shield-like entity within the
RL ecosystem is a novel approach. This design is akin to a dynamic safe-
guard, constantly adapting to the evolving landscape of the RL environment.
It not only acts as a barrier against unsafe actions but also as a guide steering
the RL model towards safer and more effective strategies.

Dynamic Safety Algorithm The core of the Pre-controller is a dynamic
safety algorithm that continuously analyzes and learns from both the environ-
ment and the outcomes of past actions. This algorithm is embedded within
the StARformer’s structure, enabling it to make real-time adjustments based
on the latest data and insights.

Integration with Learning Process Crucially, the Pre-controller is seam-
lessly integrated into the StARformer’s learning process. This integration
allows it to influence the model’s learning trajectory, ensuring that safety
considerations are ingrained in the model from the very outset of the train-
ing phase. The Pre-controller, therefore, plays a dual role of safeguarding
immediate actions and shaping the model’s long-term learning and decision-
making patterns.

Application Across Diverse Environments Given its abstracted na-
ture, this Pre-controller design is versatile enough to be applied across vari-
ous RL environments, from gaming to more complex, real-world applications
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like autonomous driving or healthcare. Its adaptability and ability to work
in conjunction with different RL methodologies make it a robust tool in the
pursuit of safer AI systems.
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Chapter 5

Evaluation

5.1 Research Question and Evaluation Met-

rics

Our study is guided by a primary research question: How does the integra-
tion of StARformer in Reinforcement Learning (RL) environments enhance
decision-making in terms of safety and efficiency? This question directs our
focus towards understanding the impact of StARformer on the quality and
safety of decisions made by RL agents in various environments.

We raise two research questions to assess whether our proposal fulfills the
objectives in the motivation chapter.

5.1.1 RQ1: To What Extent Does Our Method Im-
prove Performance?

Evaluation metrics We focused on the episodic reward, which is the cu-
mulative reward obtained in each game episode. This metric is vital for
gauging our model’s overall effectiveness in the Atari environment. By mea-
suring and analyzing these rewards across episodes, we gained insights into
the model’s decision-making abilities, learning progression, and its adapt-
ability to the game dynamics. The episodic reward, therefore, served as a
key indicator of performance enhancement, providing a quantitative basis
to evaluate the extent of improvement our method brings to the table in a
complex RL setting.
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5.1.2 RQ2: To What Extent Does Our Method Im-
prove Safety Concern?

Evaluation metrics We concentrated on evaluating collision frequency as
a key metric. This analysis provided crucial insights into the efficacy of the
pre-controller mechanism, a core component of the StARformer, in reducing
unsafe actions and states. By quantifying and examining the frequency of
collisions, we were able to effectively assess the impact of the StARformer
mechanism in enhancing safety, thereby demonstrating its practical value in
environments where minimizing risk is essential.

5.2 Experimental Setup

In this section, we detail our experimental setup, providing an overview of
the experimental environment, training dataset, model architecture, training
parameters, and evaluation setup. The detail ensures the transparency and
reproducibility of our experiments.

We implement offline reinforcement learning in our experiments. In the
experiments, a fixed memory buffer is employed to store the history of sub-
optimal trajectories.

5.2.1 DQN Replay Dataset

We utilize the DQN Replay Dataset [31] to train our model. The DQN
Replay Dataset provides 200 million frames for each Atari game(60 in total)
with sticky actions enabled. The frames can be represented as experience
tuples (observation, action, reward, next observation), totaling 50 million
instances. We select the game Breakout to conduct our experiment on. We
adhere to the approach proposed in [7], selecting 1% of the experience tuples,
equivalent to 500k steps.

Training Hyper-parameters We follow [7] and set the training hyper-
parameters as 5.1 shows.

5.2.2 Breakout

Breakout, a classic arcade game, serves as a notable benchmark in Reinforce-
ment Learning (RL) [32]. It challenges RL models like the StARformer with
its simple yet complex gameplay. In Breakout, the player controls a paddle
at the screen’s bottom, aiming to break bricks at the top by bouncing a ball
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Table 5.1: Hyper-parameters Setting

Hyper parameter Value

Sequence length 10

Image size 84×84 grayscale

Frame stack 4

Frame skip 2

Layers 6

Image patch size 7

Activation function GeLU, ReLU

Dropout 0.1

Learning rate 6×10-4

Adam betas (0.9,0.95)

Weight decay 0.1
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Figure 5.1: Breakout

off the paddle. The game’s difficulty escalates as the ball’s speed increases
with each brick broken. The primary RL task involves learning to maneu-
ver the paddle to keep the ball in play and break all the bricks. Losing the
ball results in a lost life, and the game ends when all lives are depleted.
The RL model’s state includes the positions of the paddle, ball, and bricks,
with some models considering the ball’s velocity. The action space is dis-
crete: moving the paddle left or right, or keeping it stationary. Rewards are
earned for breaking bricks, with potential penalties for losing the ball. This
scenario offers a comprehensive testbed for evaluating RL models’ efficiency,
adaptability, and learning prowess in a dynamic environment.

5.2.3 Evaluation Setup

The evaluation of our method poses significant challenges due to the complex
nature of the Arcade Learning Environment [32], characterized primarily by
its high-dimensional visual inputs. Additionally, the intricacies of credit as-
signment are compounded by the inherent delay observed between the execu-
tion of actions and the subsequent realization of rewards. In our experimental
approach, we draw upon the DQN Replay Dataset, specifically analyzing a
subset that constitutes 1 percent of the total samples. This subset represents
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Figure 5.2: Evaluation of episodic returns and collision frequency in StAR-
former (StAR) , StARformer with Safety factor and StARformer with Safety
weight in Atari. Seq. = 10, Life = 1.

a significant volume of data, amounting to 500 thousand transitions out of
the 50 million observed by an online DQN agent during its training phase.

We leverage the Arcade Learning Environment [32] as our evaluation
platform, which provides versatile interfaces facilitating game interactions
and visualization. For each model derived from distinct epochs, we conduct
evaluations 10 times within the Arcade Learning Environment, specifically
using the Breakout game. The environment undergoes a reset when the agent
exhausts all 5 lives.

To evaluate performance, the rewards are first accumulated and then aver-
aged across the evaluation runs. Additionally, we record the number of steps
taken by the agent before the game is over. This step-count metric serves
as an indicator of the model’s capability to play the game while minimizing
unsafe actions.

In light of the absence of a definitive game-over signal in the Arcade
Learning Environment. The game concludes when the agent either exhausts
all 5 lives or successfully completes the game. To address this ambiguity, we
choose to reset the environment upon the loss of 1 life, allowing for a more
precise evaluation of safety when assessing the models.

5.3 Analysis of Model Performance

Our approach innovates on the StARformer model by integrating safety fac-
tors into its learning process through two distinct methods. The first method
involves expanding the token group within the original StARformer structure
from a triplet of (state, action, reward) to a quadruplet that includes safety,
thus forming (state, action, reward, safety) for training and learning. The
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second method involves multiplying a safety weight with the reward compo-
nent of each triplet.

Experimental results indicate that the method of multiplying the safety
weight with the reward in each triplet yields the best episodic reward out-
comes and the lowest collision frequency. On the other hand, incorporating
the safety factor as an element in the token group results in the least fa-
vorable episodic rewards but achieves a moderate collision frequency. The
original StARformer method ranks in the middle in terms of episodic rewards
but exhibits the highest collision frequency. This suggests that directly in-
tegrating safety considerations into the reward signal is more effective at
enhancing safe behavior in the model compared to simply including safety
as an additional learning factor.

5.3.1 Answer to RQ1

Result shows that the original model StARformer achieved an episodic reward
of 4.9±2; StARformer with Safety Factor incorporates the safety factor re-
sulted in a lower episodic reward of 3.5±3.5; StARformer with Safety Weight
yields the highest episodic reward of 8±5. Our method, which innovates on
the StARformer model by integrating safety considerations, shows notable
improvements in performance as measured by episodic rewards. Specifically,
the approach of multiplying the safety weight with the reward in each state-
action-reward (S-A-R) triplet has demonstrated the most effective results.
This method yielded the best episodic reward outcomes, indicating a signifi-
cant enhancement in the model’s decision-making abilities and its adaptabil-
ity to the game dynamics.

5.3.2 Answer to RQ2

Result shows that the original model StARformer exhibited a collision fre-
quency of 0.4; StARformer with Safety Factor slightly improved safety, with
a collision frequency reduced to 0.3; StARformer with Safety Weight demon-
strated the most significant improvement in safety, reducing the collision
frequency to 0.1.

Regarding safety, our method has shown considerable success in reduc-
ing collision frequency, a critical safety metric. The method that proved
most effective in enhancing safety was again the integration of safety weights
with the reward component. This approach significantly reduced unsafe ac-
tions and states, as evidenced by the lowest observed collision frequency.
This reduction highlights the efficacy of the pre-controller mechanism in the
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StARformer, underscoring its practical value in environments where risk min-
imization is paramount. Conversely, the method involving the addition of a
safety factor as an element within the token group also achieved moderate
success in reducing collision frequency, though it was less effective than di-
rectly influencing the reward signal.

5.3.3 Key Findings

Performance Enhancement Through Safety Integration Our inno-
vative approach in modifying the StARformer model, by integrating safety
factors directly into the learning process, abstracting out a pre-controller
architecture, resulted in substantial performance improvements. This was
particularly evident in the method where the safety weight was multiplied
with the reward component, leading to the highest episodic rewards.

Moderate Success with Safety Factor Inclusion Including safety as
an additional element within the token group (state, action, reward, safety)
also positively impacted safety, demonstrated by a moderate reduction in
collision frequency. However, this approach was less effective in improving
performance compared to the safety weight multiplication method.

Comparison with Original StARformer Method When compared to
the original StARformer method, both of our proposed approaches showed
improvements in safety. The original method, while delivering moderate
episodic rewards, exhibited the highest collision frequency, indicating a lesser
focus on safety.

Balancing Safety and Performance Goals The key to enhancing safety
without compromising on performance lies in effectively integrating safety
considerations into the reward mechanism. This integration ensures a more
nuanced and dynamic approach to achieving the dual objectives of maximiz-
ing rewards and adhering to safety constraints.

In summary, our research demonstrates that embedding safety factors into
the StARformer model’s learning process leads to significant improvements
in both performance and safety, offering a robust framework for developing
safer and more effective reinforcement learning systems.
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Chapter 6

Discussion

6.1 Interpretation of Findings

Our comprehensive analysis has delved deeply into the StARformer model, a
groundbreaking advancement in Reinforcement Learning (RL) that uniquely
intertwines safety with performance. The essence of our study has been
to unravel and understand the delicate balance the StARformer maintains
between these two pivotal aspects within the complex landscape of RL.

A crucial aspect of our investigation centered on the model’s resource
utilization and scalability. Although the StARformer demonstrates efficiency
in learning and synthesizing the pre-controller, it faces challenges regarding
computational resource demands, particularly when scaled up for more intri-
cate tasks and complex environments. Nevertheless, the model impressively
sustains consistent performance across diverse scenarios, indicating its vast
potential for real-world applications.

Central to the StARformer model is the interplay between safety and per-
formance. Our detailed examination of safety-specific metrics, such as the
rate of unsafe actions and compliance with established safety rules, shed light
on the model’s prioritization of safety within its decision-making processes.
Concurrently, we assessed traditional performance metrics, including reward
accumulation and task completion rates, to gauge the impact of the model’s
safety orientation on overall performance. This bifocal analysis brought into
focus the trade-offs navigated by the StARformer, often opting to forgo im-
mediate rewards to bolster safety, thereby epitomizing the intricate balancing
act it successfully achieves in the realm of RL.
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6.2 Comparison with Existing Models

Our comparative analysis reveals that the StARformer distinguishes itself
significantly from existing Reinforcement Learning (RL) models and safety
mechanisms. A key differentiation is its approach to safety; unlike many
RL models where safety is an afterthought or an external constraint, the
StARformer integrates safety considerations directly into the learning pro-
cess. This integration not only ensures holistic adherence to safety standards
but also empowers the model to dynamically adapt to various safety criteria.
The StARformer’s proactive safety measures, such as predictive risk assess-
ments and mitigation strategies, mark a stark contrast to other models that
primarily focus on reward optimization.

In terms of architectural advancements, the StARformer diverges from
conventional RL models that typically rely on deep Q-networks or policy gra-
dient methods. Instead, it capitalizes on the Transformer’s ability to process
sequential data, thereby more effectively capturing temporal dependencies
and contextual nuances crucial in RL tasks. This architectural innovation
contributes to its enhanced performance in diverse and complex environ-
ments.

When evaluating efficiency in learning, the StARformer demonstrates su-
perior speed and resource efficiency in learning optimal policies compared to
traditional models. Its proficiency in parallel processing and handling long
sequences contributes to faster convergence and more efficient learning, par-
ticularly evident in environments that demand long-term strategic planning
and rapid adaptation to changing scenarios.

Furthermore, the StARformer’s integrated safety approach stands out
when compared with existing safety mechanisms in RL. Traditional safety
approaches often view safety as a constraint applied either externally or as
a post-hoc correction. In contrast, the StARformer’s design allows for a
more consistent and integrated approach to safety, enhancing its adaptability
to different safety standards and its ability to dynamically adjust decision-
making processes based on safety assessments. This proactive approach to
safety, combined with its predictive capabilities, positions the StARformer
as a unique and advanced model in the realm of SafeRL, offering new possi-
bilities in terms of efficiency, adaptability, and, most importantly, safety in
RL applications.
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6.3 Practical Implications

Our findings reveal that the StARformer model holds significant practical
implications, particularly in real-world scenarios where safety is crucial. Its
ability to process complex sequences and predict outcomes makes it versatile
and applicable across various domains, especially those requiring decision-
making under uncertainty.

In the realm of autonomous vehicles, the StARformer enhances decision-
making capabilities, especially in unpredictable traffic conditions, by predict-
ing and mitigating potential road hazards, thus improving safety in dynamic
environments. This ability also extends to efficient route planning, where it
can optimize routes not just for speed but also for safety.

In robotics, the StARformer ensures safe human-robot interactions, cru-
cial in industries like manufacturing and services. By predicting human ac-
tions, it adjusts robot behavior for safer interactions. Additionally, it can
develop adaptive control systems for robots in changing conditions, main-
taining consistent performance and adhering to safety protocols.

In healthcare, the StARformer’s potential is particularly impact. Robots
equipped with this model in patient care can make safer and more informed
decisions, vital in sensitive tasks like surgery or elderly care. Its proficiency
in analyzing complex patient data sequences aids in creating personalized
treatment plans, enhancing the efficacy of treatments while foreseeing and
mitigating potential risks.

The model’s applications extend to financial trading, where it can make
safer investment decisions in uncertain market conditions by effectively bal-
ancing risks and rewards. In energy management, the StARformer optimizes
the distribution and consumption of resources, foreseeing potential issues and
adapting to demand fluctuations, thereby ensuring efficient and safe energy
management.

In summary, the StARformer’s versatility and proficiency in ensuring
safety while making informed decisions under uncertainty open up a wide
range of applications. Its integration into diverse domains promises not only
enhanced performance but also a significant elevation in safety standards,
making it a pivotal tool in advancing current technologies.

6.4 Challenges and Limitations

During the implementation of the StARformer model in Reinforcement Learn-
ing (RL) environments, various challenges and limitations were encountered,
providing key insights into the model’s current capabilities and highlighting
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potential areas for future development.
One primary challenge was the collection and availability of high-quality,

diverse datasets that accurately reflect complex real-world scenarios. The
lack of sufficient or relevant data at times hindered the model’s learning
effectiveness. Additionally, inherent biases in training data posed significant
challenges, as they could lead to skewed learning outcomes. Ensuring the
data was representative and unbiased was crucial yet often difficult.

The preprocessing of raw RL data to fit the Transformer architecture’s
requirements was another complex task. This process was essential for the
model to capture the nuances of different environments, but it sometimes
limited its ability to fully comprehend certain aspects of these environments.

The Transformer architecture is known for its high demand for compu-
tational resources, and this was evident in the resource intensity faced when
scaling the model for more complex tasks or larger datasets. Furthermore,
the complexity of the model and the size of the datasets often resulted in
lengthy training times, which posed a challenge for rapid development and
iteration.

Regarding scalability, while the StARformer showed proficiency in certain
environments, extending its capabilities to a wide variety of RL tasks and
environments was challenging. This included adapting the model to differ-
ent types of state spaces and action dynamics. As the complexity of tasks
increased, the model’s scalability was at times limited, requiring a careful
balance between model complexity and computational feasibility.

The model’s ability to generalize across different tasks and not just per-
form well in its training environments was a significant challenge. Addi-
tionally, customizing the model for specific tasks, particularly those with
unique safety requirements or reward structures, required substantial effort
and posed challenges in terms of model adaptability.

In summary, the implementation of the StARformer model faced several
challenges in data handling, computational resources, scalability, and adapt-
ability. These challenges underscore the need for further research and de-
velopment to enhance the model’s effectiveness and broaden its applicability
across various RL scenarios.

6.5 Future Research Directions

Reflecting on our research, the StARformer model emerges as a ground-
breaking development in Safe Reinforcement Learning (SafeRL), setting new
standards in adaptability, generalization, and integrated safety. However,
our journey has also been marked by challenges related to data limitations,

32



Master’s Thesis Waseda University

computational demands, and scalability. These hurdles have not only pro-
vided valuable insights but have also illuminated paths for future research
and development in the field.

The potential implications of our work in SafeRL extend well beyond
this study, opening doors to explore StARformer’s integration in more varied
and intricate environments. Future research can build upon our foundational
methodology, refining the model and extending its application to scenarios
where balancing safety and performance is crucial.

Advancing the model’s adaptability to complex environments is a key
area for future exploration. This includes developing enhanced learning algo-
rithms to better equip the StARformer for dynamic and multifaceted settings
and expanding its cross-domain adaptability to bolster its capacity to gener-
alize across various domains. Enhancing the model’s proficiency in handling
high-dimensional data will also be instrumental in broadening its real-world
applicability.

In terms of safety, future iterations could focus on advancing risk assess-
ment algorithms, enabling the StARformer to more accurately predict and
mitigate potential hazards. Incorporating real-time safety monitoring fea-
tures would allow for immediate action adjustments in response to changing
environmental conditions, further bolstering its safety capabilities.

Integrating the StARformer with other RL methodologies presents an-
other exciting avenue. Hybrid models could combine the strengths of various
approaches, leading to more robust systems. Collaborative learning systems,
especially in multi-agent settings, could facilitate shared learning dynamics,
enhancing overall system intelligence.

Addressing the computational challenges faced by the StARformer is an-
other critical area for future research. Efforts to optimize computational
efficiency are necessary to make the model more practical and scalable. Em-
ploying distributed and parallel computing techniques could mitigate the high
computational demands, particularly for large-scale applications, making the
StARformer more accessible for widespread use.

In conclusion, our exploration of the StARformer in SafeRL not only
contributes significantly to the current landscape but also lays a solid foun-
dation for future advancements. By addressing these challenges and building
on the model’s strengths, there is immense potential to further revolutionize
SafeRL, making it more adaptable, efficient, and safe for a wide range of
applications.
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6.6 Contribution to the Field

Our research marks a substantial contribution to the field of Safe Reinforce-
ment Learning (RL), with the development and implementation of the StAR-
former model. This advancement redefines the integration and prioritization
of safety within RL systems, setting a new standard in the field.

A significant achievement of our work is the integrated safety approach
adopted by the StARformer. Unlike traditional RL methods where safety is
often secondary or externally imposed, the StARformer inherently embeds
safety within its core architecture. This ensures that safety considerations
are an intrinsic part of the policy learning and execution process, elevating
the importance of safe decision-making within the RL framework.

Another crucial aspect of our contribution lies in balancing safety with
performance. We tackle one of the most pressing challenges in Safe RL –
achieving high task performance without compromising safety. The StAR-
former model demonstrates that it is possible to maintain high performance
levels while ensuring safety, a critical advancement for applying RL in real-
world scenarios.

In addition to these contributions, our research enhances the understand-
ing of sequential decision-making in RL. The Transformer-based architecture
of the StARformer offers novel insights into managing temporal dynamics,
showcasing the importance of understanding and leveraging sequential data
for effective decision-making. This approach is particularly impactful in en-
vironments where decisions have long-term implications.

Furthermore, the StARformer’s capacity for long-term planning and so-
phisticated risk assessment deepens our understanding of these critical as-
pects in Safe RL. This is especially pertinent in scenarios with far-reaching
consequences, where short-sighted decisions can lead to significant risks or
failures. Our work with the StARformer thus not only advances the techni-
cal aspects of Safe RL but also contributes to a more holistic and nuanced
approach to decision-making, risk assessment, and planning in complex en-
vironments.
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Chapter 7

Conclusion

Our research has led to pivotal findings regarding the application of the syn-
thesis of pre-controller using StARformer in Reinforcement Learning (RL)
tasks. We successfully integrated the StARformer into safe RL environment,
demonstrating its effectiveness in enhancing performance of ensuring safety.
A significant highlight is the model’s role in improving safety, a critical aspect
often overlooked in traditional RL approaches. Our experiments and analy-
ses revealed key achievements of the StARformer, such as its proficiency in
strategic decision-making and its capability to reduce unsafe actions signifi-
cantly, thereby enhancing overall safety in diverse RL scenarios.

The integration of the StARformer model into the synthesis of pre-controller
in RL signifies an advancement in the field, particularly in the realm of
Safe RL. This research contributes to the evolution of sequence modeling
approaches within RL, offering a novel perspective on how safety can be
inherently embedded into the learning process.

The implications of our findings for future research are profound. Our
work lays the groundwork for further exploration into the integration of safety
considerations in RL models. It opens new avenues for applying the StAR-
former in more diverse and complex environments, pushing the boundaries of
what is currently achievable in Safe RL. Future research can build upon our
methodology to explore further the intersection of sequence modeling and
safety in RL, potentially leading to even more sophisticated and robust RL
systems.

Reflecting on the research process, we acknowledge the challenges we
faced, including data limitations, computational resource constraints, and
the scalability of the model. These challenges provided valuable lessons and
insights, shaping the course of our research. Acknowledging these limitations
highlights areas for improvement in future work. We also discuss the practical
challenges in implementing advanced models like StARformer in real-world
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scenarios, underscoring the need for continued innovation and adaptation.
As RL continues to permeate various aspects of technology and daily life,

the development of models that prioritize safety in decision-making processes
becomes increasingly important. Our work with the StARformer model rep-
resents a step forward in this direction, contributing to the creation of more
reliable, efficient, and safe AI systems for the future.
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