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Summary

This thesis presents the study on vehicle localization on an urban highway

scenario, which employs a novel technique that investigates the fusion of RF

signal and Fish-eye camera to improve object detection to further the future

realization of Autonomous vehicles and their safety on roads within a

Line-of-Sight(LOS) scenario. Firstly, various sensor technologies have been

studied thoroughly along with their role in localization and assessed on different

parameters such as low cost and computational resources and robustness to

different weather conditions and are assessed to gain the insights of current

dynamics and standards that primarily revolve around rules and regulations

which are vital to achieve Vehicle-to-Vehicle communication. Additionally, a

realistic 3D simulation environment is constructed, considering different

parameters, designing a transmitter car(TC) and receiver car(RC) to study signal

properties, receiver properties and the propagation model. And then, employing

RF signals, the Direction of Arrival (DOA) of the signal is computed through

the TOA-Trilateration method. The evaluation is done for the same-side DOA

and opposite-side DOA on road. Then, this DOA value is utilised to select the

Region of Interest (ROI) in the 360 degrees panoramic view made by the

images captured by the Fish-eye camera from all the directions. This is the first

work that talks about the fusion of RF signals with vision sensors. The selected

images are fed to YOLO for object detection. THe results have confirmed that
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this fusion will not only improve the overall classification but also reduce the

computational time for the detection. The results have shown that the

computation time has reduced by 10 percent , along with 17 percent

improvement in confidence score for ROI-selected images resulting in accurate

detection of targeted vehicles on the road.
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Chapter-1.

Introduction

In this section, the introduction of the research background and the

motivation behind the research is presented. After that, the outline and the

structure of the thesis are outlined.

1.1.Research Background

With the advancements in the Intelligent transportation system (ITS), the

Autonomous industry is inclining towards Autonomous vehicles(AVs) and their

road safety. Perception and localization play a crucial role in determining the

success of AVs by avoiding collisions. Because of the driver's negligence,

around 94% of road accidents have been estimated for different reasons, such as

poor visibility and over-speeding, which puts both their and others' lives on the

roads in danger[1].
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AVs have a great potential to reduce these accidents caused by the

careless behaviour of human drivers. Vehicle-to-vehicle (V2V) communication

plays an essential role in advancing these AVs. To do so, researchers have

investigated vehicle positions and information about the surroundings to

mitigate casualties. The deployment of these AVs publicly on roads, safety must

be ensured. Hence, a plethora of onboard sensors, such as cameras, Lidar, and

many more, have been equipped on the vehicle to understand better the

surroundings and position of the car and road dynamics and generate data from

these modalities, which assist the AVs in decision making, lane changing, or

collision avoidance. Hence, it paved the way for research on emerging object

identification and positioning techniques[2].

The basic idea is to utilise the sensory information from these sensors to

localise and identify the vehicles autonomously for which these sensor-based

systems find their application in various capacities [3] adequately. For example,

radar signals are robust to lousy weather conditions. However, the performance

degrades to the multipath effect[4]. Also, cameras give inaccurate results in

adverse weather conditions or bumpy roads and demand high computational

power. To tackle such issues, the data from different sensor modalities have

been fused to achieve robustness in various conditions. In [5], Lidar and thermal

infrared cameras detect and identify objects with poor visibility, such as fog,

smoke, or severe glare. The authors discuss the extrinsic calibration algorithm
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between two sensors to get the extrinsic parameters using 3D calibration targets.

In[6], the author uses radar and vision sensors for object detection. The author

focuses on data coordinate calibration algorithms between radar and vision with

actual sensors. These works focus on fusing sensors to achieve better

performance by improving the calibration algorithms in real-world scenarios. In

[7][8], the authors discuss the benefits of sensor fusion techniques in

localization and identification over single modalities. In [9] and [10], authors

demonstrated improvements in object detection when fusing radar and image

sensors. In [11], the author combines birds-eye camera images and LiDAR

views for 3D object detection. In [12], camera, LiDAR, and radar data fusion

are presented for Moving object classification and tracking.

However, LIDAR is not adaptable to low visibility weather conditions

and higher cost and computation requirements, which limits its useability in

commonly occurring scenarios [13]. Radars also suffer from limitations such as

noisy interference and limited distance range, which restricts the advancement

of autonomous vehicles toward meeting safety requirements. Integrating these

modalities with vision also leads to complex systems, more power requirements,

and high costs.

Due to the above limitations, advances in RF signals with algorithmic-based

accident mitigation must be encouraged to overcome the issues mentioned
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earlier while reducing financial and spatial limitations. Neighbouring vehicles

can transmit information signals using V2V communication and optimise their

routes to minimise collisions. These transmitting information signals can be

utilised to accurately locate the position of the surrounding vehicles, which is

crucial for real-time road environments. Moreover, when combined with other

sensors, such as vision, the capabilities of RF signals can be improved.

Cameras offer significant visual data that assists in navigation and

information about surroundings. Cameras can also be used for depth perception

to recognize objects accurately and for distance measurements. In [14], cameras

have been used as depth estimators and distance predictors using a

transformer-based object detector framework. Despite being a cost-effective and

versatile sensor, it is sensitive to light conditions and demands significant

computational resources.

Furthermore, the existing works need a structure for combining the other

sensor types with vision. Additionally, there remains uncertainty about how

these different sensor modalities must be fused to improve situational

perception.

1.2 Contribution of Thesis

12



The critical contribution of this paper is to provide a methodology to

assist vision sensors by exploiting the advantages of RF signals. RF signals are

robust to all weather conditions and can penetrate obstacles. These advantages,

along with vision capabilities, are fused to not only reduce the computational

complexity but also to improve the overall detection accuracy and robustness in

all weather conditions.

1.3 Structure of Paper

The structure of the paper is as follows:

Chapter 2 introduces the Vehicle to everything communication as well as V2V.

Firstly, a brief introduction to the wireless communication systems which

revolves around vehicles will be introduced.

Chapter 3 talks about different sensor modalities. Firstly various sensors are

introduced briefly and the merits and demerits were discussed. After that a brief

introduction to the Sensor fusion and its significance is discussed.

Chapter 4 proposed Localization methods that have been commonly employed

and which are utilised within this research. .
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Chapter 5 extends its discussion on Object Detectors. The architecture and

workflow for widely used detectors have been mentioned. A comparison is

made between different detectors on the basis of different parameters.

Chapter 6 focuses on the system model and methodology. A detailed discussion

about the way this research is conducted and the proposed scenarios along with

details of various sub-part which are implemented in this research .

Chapter 7 discusses the Simulation study. The parameters used and the

considerations made to conduct this research.

Chapter 8 puts the light on the results in which firstly different scenarios have

been discussed for the DOA estimation and then the object detection results are

shown and discussed thoroughly.

Chapter 9 Concludes the research along with the future works.
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Chapter-2

Overview of V2X technology

2.1 Introduction to V2X Communication

The field of wireless communication in which the transmission of

data is in between different vehicles or any entity that may or may be

affected by vehicles on road is known as Vehicle-to-everything. This goal

is to improve overall road safety, Fuel usage reduction, improve the

overall traffic system and mass surveillance. V2X incorporate different

types of communication:

● Vehicle-to-Vehicle(V2V),

● Vehicle-to-Infrastructure(V2I),

● Vehicle-to-Pedestrian(V2P),

● Vehicle-to-Devices(V2D),

● Vehicle-to-Network(V2N)
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Figure 1. V2X Technologies[40]

2.2 V2V

Recently, V2V and V2I received a lot of attention from research and

many use case scenarios can be seen on the road. Basically, the communication

is in between the vehicles and vehicles and the infrastructure ( traffic lights,

base stations(BS)) to facilitate more safety on roads. As the number of vehicles

are drastically increasing on roads, a global standard is necessary to keep in

check the basic requirements for V2X applications and also to make a particular

standard for the manufactures all across the world to avoid conflict and

inconsistencies, hence mitigating fatal accidents.
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In 2010, the Institute of Electrical and Electronics Engineers(IEEE)

modified the standard 802.11 to 802.11p and introduced Wireless Access in

Vehicle Environment (WAVE)[41]. With this standard, creation of a new

management system which ensures rapid and reliable communication channels

for seamless vehicle communication with minimal chances of failure.

Even before the amendments of the standards, the automotive companies

were focused on integrating the different modalities to achieve a connected

environment on the road. With V2V communication, the vehicle can make

direct connections with other vehicles which further facilitates the increased

data transmission, hence information sharing which ensures the future with

increased efficiency and better driving assistance[42]. It also allows the vehicle

to share information such as speed, position and other relevant data with each

other which opens a new dimension of Vehicle localization hence assisting the

vehicle in the close proximity with lane change, emergency braking and

mitigating the collision that might be difficult for the human-drivers to

predict[43]. This helped vehicles to be more intelligent and enhanced the overall

awareness.

Despite being an advantageous technology, V2V has many challenges.

Security and accurate detection are few of them. Since the technique requires

absolute trust with V2V, any security breach can lead to hazardous results as the
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information can be manipulated for personal gain or terrorism which further

results in fatal accidents rather than mitigating them[24].
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Chapter-3

Sensor Technologies

Autonomous vehicles rely on a plethora of sensors which includes

camera, Lidar, Radar and Artificial Intelligence(AI) to assist it for driving

without any human operator. Experts have defined five levels in the evolution of

autonomous driving. Each level describes the extent to which a car takes over

tasks and responsibilities from its driver, and how the car and driver interact: 1)

Figure 2: SAE Levels of Driving Automation[47]
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Driver assistance, 2) Partly automated driving, 3) Highly automated driving, 4)

Fully automated driving 5) Full automation.

These sensors collect the data about the surroundings which is then processed

by a machine learning algorithm to detect or localise objects such as vehicles,

pedestrians and do decision-making for the vehicle’s action. Thus, Environment

perception plays a crucial role in extracting the information to assist such

decisions. Different Sensors have been discussed below:

3.1) LIDAR

LIDAR, or Light Detection and Ranging, was specifically originated for

aeronautical and aerospace terrains in the 1960s. In further research, it was

found the capability of Lidar can emit 2000 to 2500 pulses per second for

topographic mapping[20] which paved its way towards autonomous driving and

Advanced Driver Assistance Systems (ADAS). It is basically a laser scanning

which uses a laser to create a 3-D representation of the environment which it

has scanned, in the form of point cloud[21].
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Figure 3. Type and position of sensors in Automotive Vehicles[50]

3.2) Radar

Radar stands for Radio Detection and Ranging and the operational principle is

to analyse the wave that is scattered or reflected by objects in an environment

where electromagnetic waves are emitted. It was first developed before World

War II. Through these reflections Radar can determine the position and distance

of the obstacle near to it, leveraging Doppler property [22]

Radar is a widely employed and well-known sensor for Autonomous vehicles

both for night and day time. They are capable of mapping environments at
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different ranges and can identify the speed of the moving vehicle. However,

Radar suffers from low resolution as compared to vision sensors. Hence, it can

not be employed for Object detection. In[23], the road signs or guardrails were

difficult to differentiate for radar sensors. In vehicles, the positioning of radar is

crucial to avoid angular misalignment that might result in late or false detections

[24,25].

3.3) Cameras

Cameras are one of the widely used sensors in precipitation nowadays

especially in vehicular communication. The principle on which cameras work is

that different photosensitive surfaces(image planes) emit light which is captured

by the camera lens placed in front of the sensor, creating a clear image of the

surroundings[22,26]. Both moving and static within the Field of view the

surrounding can be detected. It is one of the inexpensive sensors. Cameras can

assist an autonomous vehicle’s perception system to identify the road signs, lane

markings. This perception is also helpful in detecting the position of a vehicle in

the surrounding, hence providing assistance with collision avoidance.

There are various types of camera systems, namely monocular cameras,

binocular cameras and Fish-eye cameras. Monocular camera systems use a

single lens which creates multiple images in series. Despite advancements, the

monocular cameras have limitations. Depth calculations is the huge limitation
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and to overcome this, generally binocular cameras systems are preferred. Even

though using dual-pixel autofocus hardware, the estimation of depth can be

done; however, it will get computationally heavy [27,28]. The stereo or

binocular cameras, two cameras, are used side-by-side and are separated by

some distance(baseline). This system captures two images and covers a wider

view as opposed to the monocular cameras and this assists with depth

estimations.

Fish-eye cameras [29-31] are other cameras generally used for vehicle

perceptions. It captures the 360-degree view of the surrounding which finds its

application in parking, traffic jam assistance. Four cameras are required to cover

the whole 360-degree view. There will be some overlapping area within the

images which can be further stitched or combined together to get a bird’s eye

view. Hence, in this research fish-eye cameras are considered. Compared to

Standard cameras, the field of view is 180-degrees wider. These cameras

usually suffer from radial distortion which is not considered within the research

and is kept for future works.
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Figure 4: Fisheye camera view with overlapping area

To mitigate accidents, rear-view fisheye cameras were made compulsory in the

United States in 2018[32]. These cameras were also employed in BMW to

capture the panoramic view of surroundings for parking application [33].
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Camera systems are computationally heavy and if the road is bumpy or any rain

drop is on camera lens, it will provide inaccurate results.
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Chapter-4

Localization Techniques

This chapter provides an overview of the techniques or methods that have

been widely used in solving localization challenges. This chapter also explores

the advantages and highlights the limitations associated with these methods.

4.1 Trilateration

The fundamental feature of this method is to compute the area under

many circles. Trilateration is a very common method employed in

localization and positioning systems especially in 2D plane.The

calculations are done mathematically and are both simple and effective.

To find the unknown point, this intersected area within the circle is

pinpointed.
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Figure 5: Example of Trilateration algorithm[34]

4.2 Time of Arrival(TOA):

Time of Arrival (TOA) is a localization method which computes the position of

an object on the basis of time the signal takes to travel from the transmitter to

multiple receivers. It is commonly utilised in indoor positioning systems and is

a practical approach to trilateration[32]. Fundamentally, the distance between

the receivers is calculated by computing the time at a known speed at which the

signal propagates. In the trilateration method, the circle's centre points are

replaced with the receivers of the vehicle which act as the nodes and detect the

signal once arrived. After that, calculation of the transmission source is

done[33]. Using this distance and keeping it as radius circles are constructed.
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The signal propagates at the speed of light. The measurement of TOA [48] can

be applied up to three reference points to facilitate the 2D positioning.

Therefore, to achieve high accuracy in a communication system at least three

nodes are required. This technique finds its practical application in Global

Positioning systems[49].

Figure 6: Localization through TOA measurements[35]

Since the synchronisation between the clocks is required, there is no need to

synchronise different systems. However, the precision between the clocks in the

TC and RC are considered to be synchronised to achieve high results, hence

location estimation.
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Chapter-5

Object Detection.

Every day our brain is engaging in the task of visual perception through

different experiences such as textures, locations, size and distance. Our

cognitive abilities empower us to comprehend and analyse the surroundings,

examining it and evaluating and categorising them on the basis of position and

characteristics. Computer vision, being a parallel concept deals with objects or

multiple objects contained within a series of images. The basic idea is to

classify and locate the object in which we are interested in the specific image

set. These tasks of classification and detection can be performed by various

object detectors. The common and widely employed object detectors are

discussed below:

5.1 Faster R-CNN

Faster R-CNN is a Two-stage detector because it will read the image twice. The

Regional Proposal Network(RPN) determines the existence of the object at

different positions by utilising the sliding window technique to extract features

from Convolutional Neural Network(CNN). Faster R-CNN employs a set of

nine predefined anchors at every location, hence determining various sizes and

29



ratios. These anchor boxes are characterised by six different parameters, out of

which four are the bounding box anchors and the rest two are the label

probabilities related to those anchor boxes which are related to ground truths.

The structure of Faster R-CNN can be seen in Fig.7 [36]. The accuracy may

decrease if some unimportant bounding boxes are excluded, which reduces the

training time.

Figure 7: The structure of Faster R-CNN[36]
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5.2 YOLO

YOLO stands for You Only Look Once exploits the advantages as a non-linear

classifier which can handle much more complex problems as compared to

Support Vector Machines(SVM). It basically transforms a standard classifier

into an object detector by employing the strength of a CNN to accurately predict

the locations along with the classification. It is a single forward pass through the

network as the name itself suggests. YOLO v3 uses a convolutional layer with

stride 2 to down sample the feature maps. It has 75 convolutional layers with

up-sampling layers.

In term of operational mechanism, YOLO v3 divides the image which is input

to it into S*S grid where each grid predicts the N bounding boxes which would

have a confidence score that is directly linked to the presence of an object

within that bounding box. Through this YOLO is able to extract not only the

probability but also the position or location of the object within the image. The

depiction of YOLO workflow can be seen in Fig.8[37]
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Figure 8: Depiction of YOLO workflow[37]

5.3 SSD

SSD stands for Single Shot Multibox Detector, uses VGG-16 Simonyan and

Zisserman[38] and is a competitor of YOLO. In SSD, the values of the output

for the bounding box offsets such as centre, width and height are computed

relative to the default boxes and then imposing these default boxes to various

feature maps varying with different resolutions. This assists the model to detect

objects with different sizes and different scales.

By allowing various kinds of shapes and sizes of bounding boxes across the

feature maps allows the SSD model to train on a variety of object shapes and

sizes. Employing the ground truth with the default box by employing threshold,

during training.
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Figure 9: Example of SSD model with an input size of 300*300[39]

The default boxes with highest overlap are selected. This process ensures that

the model predicts the bounding boxes accurately which aligns with the real

objects within images. The Fig 9[39] shows the SSD model with 300*300 input

size and different feature layers until the end which predicts the offsets to the

default boxes of different sizes and ratios and related confidence score.
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Chapter-6

System Model and Methodology

6.1 System Model

The proposed scenario is conducted on a 3D plane to investigate the

model's effectiveness. The transmitter car(TC) and receiver car (RC) are both

travelling along the straight road in a line-of-sight(LOS) scenario with other

vehicles on the road travelling on the same and opposite sides. The RC car can

be on the same side as the TC car or it can be on the opposite side as well. The

conditions such as reflection have yet to be considered for ease of

implementation as these conditions severely distort the DOA estimation. The

RCcar has four receiving antennas placed on the four corners of the vehicle

along with four Fisheye Cameras placed on the centre of the car's roof to

capture the 360-degree surroundings. The receivers on the RC car receive the

signal when it arrives, and the cameras will capture the images simultaneously.

The positions of the Tand RC car are randomised using Uniform distribution.

The speed of the TC and RC is kept at 60 and 80 km/hr. The sizes of the

vehicles are kept similar for ease of implementation.
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Ray tracing propagation has been used for the propagation model. There

were two propagation methods within the model: the Shooting and bouncing

rays(SBR) method and the image method. Being faster in computing the

propagation, the SBR method has been opted for this research. To make the

system realistic, a signal is transmitted from the transmitter antennas from the

centre of the TC, which is isotropic and scatters the signal uniformly in all

directions at a transmitting frequency of 5.9 GHz, which lies in the bandwidth

for Intelligent Transport System[15].

Figure 10: Proposed Scenario
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6.2) Proposed Method:

The proposed methodology in this paper considers the advantages of both

RF signals and cameras to detect the transmitting vehicle. The proposed

methods are further divided into three parts, which are explained as follows:

i) Direction of Arrival(DOA) estimations

The transmitter on the TC starts propagating the RF signal as shown in

Fig. 11 in all directions from the car's centre. The RC car will receive the signal,

and the receivers will note the earliest time stamp at which the signal arrives. By

leveraging the signal's Time of Arrival(TOA), the distance of the transmitting

source is calculated using the Trilateration algorithm[16]. According to the

TOA-Trilateration algorithm[17], once the distance of the transmitting source is

known, it is considered a radii value, circles are constructed, and the trilateration

process continues.

The precise location is calculated using the reference points(vehicle's

receivers) and distance measurement given by the following equation[16]:
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Figure 11: TC Propagating signal

Now, the direction of arrival (DOA) of the signal from which it is arriving

can be calculated as shown in Fig. 12, as the angle between the triangle formed

by the receivers and the transmitting source. The value for DOA is calculated

for every 0.1ns.
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Figure 12: DOA Calculation

ii) Employing DOA for Region of Interest (ROI) selection

As the receivers are calculating the DOA of the signal, the Fisheye

cameras on the roof, upon receiving the signal, will also start capturing the

images from all four cameras. These four images from the four cameras will

capture the surroundings from four different directions: front view, back view,

left view, and right view as shown in Fig. 13. Then, the captured images were

put as one frame in a signal image using the Montage function in Matlab can be

seen in Fig. 14. This montage image is divided into four quadrants. The first
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quadrant ranges from -45(315) to 45 degrees, the second quadrant ranges from

45 to 135 degrees, the third quadrant from 135 to 225 degrees, and the fourth

quadrant from 225 to 315 degrees, covering 360-degree surroundings.

Figure 13: Image and Camera Selection
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Figure 14: Montage Image and Camera Selection

Now, employing the calculated DOA of the signal, the quadrant and the

corresponding image will be selected from the montage image, and all the other

unselected images will be masked, as shown in Figure [6]. This selected image

is then divided into an S*S grid as shown in Fig. 15(b)for The Region of

Interest (ROI), which is the area within the image in which the transmitting

vehicle may be present. The size of the selected image is 1280*720 pixels. The

calculation of ROI is done theoretically. After selecting the quadrant, the DOA

value is always re-adjusted between -45 to 45 degrees, and using this DOA

value, the equation 1 is applied to calculate ROI in vertical direction(VROI) and

equation 2 is used to calculate ROI in horizontal direction(HROI) within the

image:

VROI= 200: 200+height

HROI= 540+6(x):540+6(x)+ width
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where, the width and height of the ROI within this selected image are

200*200(height*width) pixels, respectively. As per the given formula, a

1-degree change in x will shift the ROI value by 6 pixels. For example, if the

TC is at DOA of 110 degrees from the RC, then second quadrant will be chosen

and x will be readjusted to 20 degrees, which will calculate HROI in the image

which is going to be from 660 to 860 pixels and VROI is also calculated within

the image from be 200 to 400 pixels. Hence, employing the calculated DOA

value, this ROI is selected, and the remaining pixels of the image will be

masked to 0 as shown in Fig. 15(c).

Figure 15: ROI selection and Object Detection
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iii) Object Detections

This ROI-selected image is now fed to the YOLO model for Object

detection. The YOLO [18] is a single-shot detector with excellent speed and

accuracy. The model takes the ROI selected image as an input and outputs an

image with a bounding box and confidence score, as shown in Figure 15(d). We

have trained the detector from scratch by feeding it with standard and

ROI-selected images of different scenarios from our dataset.
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Chapter-7

Simulation Study

7.1 Simulation Parameters

Matlab and Simulink were used to facilitate the simulation process, and

the following parameters written in Table 1 were used.

Table 1: Simulation Parameters
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7.2 Dataset Generation:

The dataset used in this paper was generated by using a Fisheye camera

in Simulink. The Fisheye camera's Field of View(Fov) is 171 degrees. Four

Fisheye cameras were used to have a more comprehensive view and to capture

the 360-degree panoramic view[19]. These cameras were placed in the center of

the RC car, covering all four directions and output videos, which were then

converted into images. In total, 2400 images were extracted from 10-second

videos for every scenario.
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Chapter-8

Results

8.1 DOA Estimation Results:

In Fig. 16, the DOA values demonstrate distinct behaviours in different

scenarios. In Scenario 1, the DOA remains constant, as both the vehicles travel

at constant speeds. A steady shift in values of DOA is noticeable as RC is

moving faster than the TC. Scenario 3 and 4 depict a significant increase in

DOA values as TC and RC, moving in opposite directions. The DOA values are

stable towards the end, indicating that vehicles are far from each other, resulting

in minimal changes in DOA values.
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Figure 16: Comparison of DOA values over time

Table. II shows the average DOA error for the TOA-Trilateration method

in both when the TC and RC car are on same-side and opposite-side scenarios at

different time stamps. The DOA errors depict that the method of

TOA-Trilateration was enough to provide accurate signal direction results.

Integrating the other factors such as reflections, noise, and many more, will

assist in providing more refined DOA values which are kept for future works.
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Time stamp Same-side DOA Opposite-side DOA

1ns 3.279 5.356

0.1ns 2.325 4.345

Table 2 Average DOA error

8.2 Object Detection Results:

We trained the YOLOv4 model on our dataset in Matlab. The below

graph shows the Precision-recall curve for the trained model. This trained model

is saved as a .mat file which is further used to compare the computational time

of normal image and ROI image.

Fig.17 provides the Precision-recall (PR) curve. The precision on the

Y-axis ranges from 0.94 to 1 and the recall on the x-axis ranges from 0 to 1.

Average precision is basically the overall performance of the model across

various recall levels.
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Figure 17: Precision-Recall Curve

It is concluded from Fig.17 that the model's performance achieves both

high precision and recall. It means the model can detect the vehicle accurately

while making a few errors.

The area under the curve(AUC) represents the average precision of the

detector, which comes out to be 89 percent. The PR curve in Fig. 17, As the

recall rate increases, false positive detections usually increase, and precision

decreases. Hence, the closer the curve is to the upper right corner, the better the

detection performance is.
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The object detection result comparison between the ROI image as shown

in Fig. 19 and the standard image as in Fig. 18 shows the following benefits of

using DOA for choosing ROI in the images.

1. It helps in selecting the object(transmitter vehicle in our case) that

interests us as shown in the image().

2. It decreases the computation time of the detector as it decreases the

overall region of interest for the detector which means the detector has

fewer features, objects, or pixels to process. Hence, decreasing the

overall complexity and computational time in comparison to the standard

image.

3. It helps in improving the confidence score of the detector as it removes

overall complexity or objects with similar features that might confuse the

detector that is present in the standard image.
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Figure 18: Object Detection in standard image

Figure 19: Object Detection in ROI image

We also iterated the ROI-selected images and the Standard images to compare

the average computational time. The comparison can be seen in Table 3.
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Number of Images Standard Image ROI-selected Image

1 1.4207 0.8858

10 0.90223 0.854480

100 0.83198 0.76747

Table 3: Average Elapsed Time

Number of Images Standard Image ROI-selected Image

1 0.79939 0.97676

10 0.810488 0.98967

100 0.8210 0.9853

Table 4: Average Confidence Score

From Table3, it is deduced that the average computational time for both

the ROI-selected image and Standard images has a significant difference which

is approximately 10 percent.

Table 4, summarises the average confidence score of vehicle detection for

both Standard and ROI-selected images. It is concluded from the Table IV, that

the confidence score has improved by 17 percent for ROI-selected images as

compared to Standard images.
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Chapter-9

Conclusion and FutureWorks

9.1 Conclusion

Sensor fusion is a great way to achieve high reliability for AVs. Extensive

research in this field is vital to improve the accuracy and reliability of various

sensors fused, especially in systems critical to user safety. This paper explores

the merits of the fusion of the RF signal and vision sensor to detect the

transmitting vehicle. The proposed method is successful in reducing the

computational time by 10 percent with an improved confidence score for

detection by 17 percent.

9.2 Future work

To further enhance the system, Non-Line of Sight(NLos) scenarios will

be incorporated to test the effectiveness of the whole system which further can

find its potential application in collision avoidance by improving the reliability

and accuracy through the fusion of on-board sensors. Additionally, we are also

considering introducing interference, noise and the complexity of the signal

environment in the future.
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