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Abstract 

Over the past decades, several emerging memory devices have been introduced with the aim 

of enhancing circuit performance. Spin-transfer torque magnetic tunnel junction (STT-MTJ) 

is one of the most promising emerging memories and has found widespread applications 

because of its excellent physical properties, scalability potential and compatibility with 

CMOS technology. 

To leverage the potential of STT-MTJ, it is necessary to develop circuit simulation models 

within electronic design automation (EDA) tools. For different types of applications, there are 

varying requirements for STT-MTJ simulation models. These requirements encompass 

various aspects such as model accuracy, CPU time, memory requirement and information on 

magnetization dynamics. The primary objective of this article is to develop appropriate circuit 

simulation models for STT-MTJ tailored to different types of applications. These models will 

be used to simulate various applications and validate their utility. 

For STT-MTJ, the stochastic Landau-Lifshitz-Gilbert-Slonczewski (s-LLGS) equation 

provides the rigorous description of the dynamics in magnetization. However, the model 

based on solving the equation leads to long simulation times and high memory requirements 

since it requires calculating a random Langevin field at each timestep and using a smaller 

timestep for accurate results. The s-LLGS equation based model costs an unacceptable CPU 

time for large-scale circuits simulations such as spin-transfer torque magnetoresistive 

random-access memory (STT-MRAM). Under this situation, a circuit simulation model based 

on switching probability which includes several equations to describe the switching 

characteristics for different current conditions is proposed. Compared with the s-LLGS 

equation based model, it significantly reduces simulation time. Unlike other circuit 

simulation models based on switching probability, the proposed model addresses a limitation 

of that there is no physical model for a certain range of injection current by introducing a 

framework that connects existing equations which were derived from two extreme physical 

condition. 

However, the switching probability based model cannot be used for the applications which 

need the information on magnetization change such as spiking neural networks (SNNs). For 

this requirement, a simulation model based on the Fokker-Planck equation (FPE) which is the 
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master equation of the s-LLGS equation is proposed. The FPE is solved by the finite 

difference method (FDM) and the impact of the solvers on computational efficiency and 

accuracy is analyzed. A framework is proposed which traces dynamics of a particular 

STT-MTJ’s theta between the magnetic moments of the free and the pinned layers and 

achieves performance comparable to that of the s-LLGS equation is achieved. The proposed 

model represents the first model for STT-MTJ based on the FPE to be implemented into a 

defacto-standard circuit simulator HSPICE. 

The two proposed models show excellent accuracies when compared with experimental data 

and they demonstrate high CPU time efficiency in comparison with other models for large 

scale circuit simulations. The models were applied to two different applications to verify their 

effectiveness in practical use. Specifically, these applications are STT-MRAM and a spiking 

neural network (SNN) that is proposed by the author. The two applications utilize different 

characteristics of STT-MTJ. The results show that the proposed models have been applied 

well in different types of circuits.  Furthermore, the simulation results validate that the 

proposed SNN implements an automatic reset function on the neuron and can be used in 

recognition tasks. It achieves a low-power SNN with an energy consumption of 0.23pJ per 

synaptic operation, which is a significant improvement compared with existing designs.  

The dissertation contains seven chapters as follows: 

Chapter 1 provides an introduction to the underlying principles and historical development of 

MTJ, as well as an overview of its basic physical properties. This chapter also introduces an 

overview of the s-LLGS model and its limitations in circuit simulation. 

Chapter 2 describes the switching probability models which includes the Sun model and 

Néel-Brown model for the injection current much larger and smaller than the critical current, 

respectively. A problem that there is no physical model around the critical current is 

explained. A mathematical framework is proposed to calculate the switching characteristics in 

the vicinity of the critical current based on two existing models. The model for the resistance 

and Joule heating effect are also shown. The model is compared with experimental data and 

the results validate the effectiveness. 

In Chapter 3, we present a circuit simulation model based on the FPE that utilizes the finite 

difference method (FDM) for solving the FPE. We analyze various forms of FDM and 

demonstrate that the implicit form of FDM offers the best trade-off between computation 
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time and accuracy. We also propose a framework for extracting theta information of the 

magnetization from the probability density distribution of the theta. The simulation results 

obtained from the FPE based model are in good agreement with both experimental data and 

the results of the s-LLGS model. 

Chapter 4 shows two specific applications that are applied by the two different circuit 

simulation models. The first application utilizes the resistance characteristics of STT-MTJ 

and focuses on the simulation of 4T2MTJ STT-MRAM. The both models were evaluated for 

their performance in simulating STT-MRAM, and the results demonstrate their effectiveness. 

The second application demonstrates the use of theta information in STT-MTJs to design an 

SNN with STT-MTJ-based auto-reset neurons and synapses. The simulation results have 

confirmed the effectiveness of the proposed model based on the FPE for analyzing the circuit 

operations in the SNN. Additionally, the simulation confirms the efficient implementation of 

the proposed SNN neuron and the overall SNN system has achieved a low energy which can 

be reduced to 0.23pJ/SOP. Overall, these specific applications provide further evidence of the 

practical applicability and versatility of the proposed circuit simulation models. 

Chapter 5 shows a comparison between proposed models and existing circuit simulation 

models, examining their basic characteristics and CPU time requirements. The results 

indicate that the proposed switching probability based model is unique in solving the 

intermediate regime problem and accommodating time-varying currents. The proposed FPE 

model is the first circuit simulation model based on the FPE equation. The comparison of 

CPU time across circuits of varying sizes and complexities indicates that the switching 

probability based model requires the least amount of CPU time. Moreover, the FPE based 

model can provide the same information as the s-LLGS equation based model but with only 

3% of the CPU time. At last Chapter 5 concludes the dissertation. 
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1.1 Magnetic tunnel junction history 

The complementary metal-oxide-semiconductor (CMOS) technology is approaching the 

physical limitation these years. In this situation, emerging memory devices are used to 

continuously improve the performance. Magnetic tunnel junction (MTJ) which is based on 

tunneling magnetoresistance (TMR) becomes an important candidate for the next generation 

memory device. The structure of MTJ is shown in Fig. 1.1. [1] The device consists of three 

layers: one oxide layer (MgO) and two ferromagnetic layers (CoFeB). The directions of 

magnetizations in the two ferromagnetic layers are constant (pinned layer) or variable (free 

layer). When the magnetizations of the two ferromagnetic layers change relative direction, the 

TMR effect causes a significant change in the electrical tunneling resistance of a thin oxide 

layer (with a typical thickness of several nanometers) sandwiched between them. [2] When the 

magnetizations of the free layer and pinned layer in an MTJ are parallel (P state), the device 

is in a low resistance state (Rp). Conversely, when the magnetizations are anti-parallel (AP 

state), the device is in a high resistance state (Rap).  

 

Fig. 1.1. Structure of magnetic tunnel junction.  

In 1975, Julliere first observed TMR in thin oxide films. [2] The Julliere model explains this by 

a two-current model which is shown in Fig. 1.2. This model assumes the conservation of spin 

in the tunneling process, and it divides the total current into two independent partial currents. 

One partial current is attributed to the spin-up electrons, while the other partial current is 

attributed to the spin-down electrons. Unfilled states in the second layer and spin-aligned 

electrons from the first layer determine the current. This is the underlying reason for the two 

resistance states to be exhibited by the MTJ. The conductance of MTJ in P and AP state can be 

expressed as: [3] 
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𝑅𝑝
−1 ∝ 𝐷1(+, 𝐸𝑓)𝐷2(+, 𝐸𝑓) + 𝐷1(−, 𝐸𝑓)𝐷2(−, 𝐸𝑓)                               (1.1) 

𝑅𝑎𝑝
−1 ∝ 𝐷1(+, 𝐸𝑓)𝐷2(−, 𝐸𝑓) + 𝐷1(−, 𝐸𝑓)𝐷2(+, 𝐸𝑓)                              (1.2) 

where D(+, 𝐸𝑓) is the density of states for electrons with majority spin state at the Fermi 

energy (𝐸𝑓) and D(-, 𝐸𝑓) is the density of states for electrons with minority spin states at the 

Fermi energy (𝐸𝑓). The footnotes 1 and 2 represent the pinned layer and free layer in MTJs, 

respectively. The TMR ratio (TMRR) which is defined as the ratio between the maximum and 

minimum resistance of an MTJ can be expressed by the spin polarization: 

𝑇𝑀𝑅𝑅 =
𝑅𝑎𝑝 − 𝑅𝑝

𝑅𝑝
=

2𝑃𝑜𝑙1𝑃𝑜𝑙2
1 − 𝑃𝑜𝑙1𝑃𝑜𝑙2

                                         (1.3) 

𝑃𝑜𝑙𝑖 =
𝐷𝑖(+, 𝐸𝑓) − 𝐷𝑖(−, 𝐸𝑓)

𝐷𝑖(+, 𝐸𝑓) + 𝐷𝑖(−, 𝐸𝑓)
                    (𝑖 = 1,2)              (1.4) 

where Pol1 and Pol2 are the spin polarizations of the pinned layer and free layer in MTJs. The 

spin polarization refers to the difference in the density of spin states at the Fermi level. 

 

Fig. 1.2. Two-current model (Julliere model) for tunneling magnetoresistance.  

However, the limited resistance change of approximately 14% for the high and low states has 

restricted the broader recognition of this phenomenon. By changing the oxide layer materials to 

Al2O3, the TMR ratio increases and the maximum value can reach 70.4% in 2004. [4] At the 

same year, Yuasa used MgO as the oxide layer and resulted in 180% TMR ratio. [5] Nowadays, 

the CoFeB/MgO/CoFeB structure is widely used as MTJ materials. 

MTJs can be divided into three generations based on their switching mechanisms. The first 
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generation MTJs use the magnetic fields to switch the magnetic moment of free layer. The 

only commercially available first-generation MTJ product is the Toggle magnetoresistive 

random-access memory (MRAM), which is manufactured by Freescale Semiconductor. [6]-[7] 

The field switching doesn’t have wear-out effects which lead to a strong write endurance. 

However, the use of field switching in MRAMs is limited by the requirements of high 

switching current and complex control, which constrains the scalability of MRAMs to 

smaller technology nodes. [8] The example of structure of the field-switching MTJ is shown 

in Fig. 1.3. Cladding is a technique that involves adding permeable ferromagnetic material at 

write line sides which is far from the MTJ. This technique helps to focus the magnetic field 

towards the side without the permeable ferromagnetic material, where the MTJ is located. It 

can realize a stronger magnetic field to switch the state of MTJ. 

 

Fig. 1.3. (a) and (b) Structure of field-switching MTJ and its equivalent circuits. 

Under the circumstances, the spin-transfer torque effect which was theoretically predicted 

independently by Berger [9] and Slonczewski [10] is used to design the second generation 

MTJ. Spin-transfer torque effect means when current flows through the ferromagnetic layer, 

the current will be polarized. Then the polarized current will exert a torque to the next 

ferromagnetic layer. [9]-[10] Compared with field-switching magnetic tunnel junctions, 

spin-transfer torque magnetic tunnel junctions exhibit the potential for significant reduction 

in both the required switching current and the size of the cell. [8] The structure of 

spin-transfer torque MTJ (STT-MTJ) is shown in Fig. 1.4. Unlike the field-switching MTJ, 

the STT-MTJ does not require a write word line to provide the switching field for magnetic 

switching which results in the size of STT-MTJ cell which can be reduced to 6F2 (F stands for 

a minimum feature size). STT-MTJ also has two categories: in-plane and perpendicular 

STT-MTJ. The key distinction between these two structures lies in the relative orientation of 
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easy axis with respect to the injection current direction. In MTJs, the orientation of the 

magnetic moment of the fixed and free layers is the easy axis which determines the magnetic 

configuration. When the easy axis lies in perpendicular to injection current direction, the MTJ 

is in-plane MTJ. When the easy axis is oriented parallel to the direction of injection current, 

the MTJ is perpendicular MTJ. The perpendicular structure uses the materials with 

perpendicular magnetic anisotropy (PMA) and can lead to sufficient energy barrier, lower 

switching current and high TMR ratio. [1] Everspin announced their 1Gb commercial 

STT-MRAM in 2021. [11] 

 

Fig. 1.4. (a) and (b) Structure of spin-transfer torque MTJ and its equivalent circuits. 

Even if the switching current have been reduced to tens of microamps [1], people still explore 

the third generation MTJ which has smaller switching current. The physical phenomenon just 

like voltage-controlled magnetic anisotropy (VCMA) [12]-[14], spin-orbit torque switching 

(SOT) [15]-[17] and spin Hall effect (SHE) [18] are used to improve the performance. 

However, there still are many problems for each technology about the materials, the 

compatibility with high-density memory or reliability problems like parameter drift. [8] 

Therefore, the third generation of MTJ is still under active investigation and development. 

1.2 MTJ characteristics 

Figure 1.5 illustrates the structure of a perpendicular STT-MTJ and the corresponding I-V 

characteristics curve. STT-MTJs have two ferromagnetic layers and one oxide layer in 

between. The magnetization in the pinned layer keeps stable. The magnetization of the free 

layer changes its direction with precessional motion accompanied when spin-polarized 

electrons are injected. And this motion is subject to fluctuation caused by microscopic 
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thermal agitation from environment such as phonons, conducting electrons and nuclear spins, 

being well described by a Brownian motion model. [19] The change in the magnetization of 

the free layer in an STT-MTJ is determined by the joint effects of spin-polarized current 

injection and thermal fluctuation, which give rise to the stochastic switching behavior of the 

device. The Ic in the Fig. 1.5 is the critical current which is defined as 

𝐼𝑐𝑝 =
2𝛼𝛾𝑒

𝜇𝐵𝜂𝑝
𝜉                 (𝑃 𝑡𝑜 𝐴𝑃)                                              (1.5) 

𝐼𝑐𝑎𝑝 =
2𝛼𝛾𝑒

𝜇𝐵𝜂𝑎𝑝
𝜉              (𝐴𝑃 𝑡𝑜 𝑃)                                              (1.6) 

𝜉 =
𝐸

𝑘𝐵𝑇
                                                                   (1.7) 

 

Fig. 1.5. (a) Structure of perpendicular STT-MTJ. (b) I-V characteristics of STT-MTJ. 

 

 

Fig. 1.6. (a) Switching characteristics of STT-MTJ for constant switching probability. (b) 

Switching characteristics of STT-MTJ. (i=I/Ic) 

where α, γ, e, μB, 𝜂𝑝 , 𝜂𝑎𝑝 , 𝜉 , E, kB and T are the Gilbert damping coefficient, the 
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gyromagnetic ratio, the electronic charge, the Bohr magneton, the spin polarization factor for 

P state, the spin polarization factor for AP state, the thermal stability factor, the energy barrier, 

the Boltzmann constant and the temperature, respectively. The resistance of an STT-MTJ is 

determined by the relative orientation of the magnetizations in the pinned layer and the free 

layer.  

 

Fig. 1.7. Temperature-dependent R-V curve. 

 

 

Fig. 1.8. Survey of TMR ratio. 

The relationship between the injected current and the corresponding time required to switch 

the STT-MTJ in a certain probability is illustrated in Fig. 1.6 (a) and Fig. 1.6 (b) depicts the 

relationship between the switching probability and time for constant input currents. The 

direction of the injected current required for switching the MTJ from the P state to AP state is 

opposite to that required for switching it from the AP state to the P state. To make the MTJ 

from the P state to the AP state, the current direction must be from the pinned layer to the free 

layer and vice versa. 
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Figure 1.7 shows the temperature-dependent R-V curve. The TMRR of an STT-MTJ is 

affected by both the temperature and the voltage across the two terminals of MTJ. The low 

resistance Rp keeps constant. The TMRR0 corresponds to the maximum TMRR observed 

when the voltage across the two terminals is 0. As the voltage across the terminals increases, 

the TMRR decreases. Meanwhile, the increase in temperature will also lead to a decrease in 

the TMRR. Most of the MTJs’ TMR ratios are in the range of 100% ~ 300% [20] and the 

largest value of the TMR ratio can reach 604% in the room temperature [21]. Figure 1.8 

shows a survey of TMRR. [20], [22]-[26]. 

1.3 MTJ applications and circuit simulation models with issues 

The primary application of MTJs is as the core device in MRAM technology. Due to the 

favorable physical properties of MTJs, MRAM has become an important candidate of next 

generation non-volatile memories. Characteristics of conventional and emerging memories 

are shown at Table 1.1.[27]-[29] The colors red, yellow, and green in the table indicate the 

performance of memories levels of excellent, moderate, and poor, respectively. 

Table 1.1. Comparison of conventional and emerging memories 

 

 

Because of the good physical characteristics, STT-MTJ also has been widely used in many 

fields except for MRAM, such as the weights in deep neural networks (DNN) [30], and 

computing in memory [31]. They are all based on the resistance property of the STT-MTJ. 

Based on the stochastic switching property, it is used in spiking neural networks (SNN) [32], 
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random number generators [33], and stochastic computing [34]. Fig. 1.9 shows the typical 

circuits of each application which includes MRAM [35]. Nevertheless, there exist certain 

challenges in MTJ-based circuit. The most significant of these challenges include achieving a 

favorable power-stability tradeoff, the fabrication process, and managing the 

back-end-of-the-line (BEOL) thermal budget. [36]  

To utilize a device in the circuit simulation, a circuit simulation model for the device in the 

electronic design automation (EDA) tools is necessary. The existing devices are mainly used 

by two methods in the EDA tools. The standard devices just like resistor, capacitor and 

MOSFET have already been programmed in the source code of the EDA tools as the built-in 

models. For emerging devices like MTJs, phase change memory devices, and memristors, 

there are no standard models. To simulate emerging devices which are implemented in 

CMOS circuits, it is necessary to import a model to be used in the circuit simulations. 

 

Fig. 1.9. STT-MTJ structure and its applications. 

An appropriate device circuit simulation model should meet the following criteria: have high 

accuracy, describe device characteristics as comprehensively as possible to enable its use in 

various applications, and minimize resource consumption, such as CPU time and memory 

usage. In comparison with other emerging devices, the switching mechanism of MTJ is fully 

characterized by fundamental physical theories, which facilitates the development of 

simulation models. [37] The clear underlying mechanism facilitates the analysis and the 

improvement of device performance, providing a solid foundation for further development 



 

10 

 

and optimization of these devices. 

1.4 Stochastic Landau-Lifshitz-Gilbert-Slonczewski model 

1.4.1 Landau-Lifshitz equation 

To utilize the MTJ in the circuit design, it is necessary to have a simulation model in the EDA 

tools. However, there is no standard model for MTJ in the EDA tools. Therefore, modeling is 

an important work for MTJ. The most important characteristics of MTJ modeling is the 

switching. The orbital angular momentum and the spin angular momentum of atomic nuclei 

and bound electrons provide the magnetic moments. It is explained that all the magnetic 

moments of nanometric size of free layer or pinned layer provides a single domain. [37] 

Stochastic Landau-Lifshitz-Gilbert-Slonczewski (s-LLGS) model describes the dynamic 

characteristics of magnetization (�⃗⃗� ) by this assumption. In 1935, Landau and Lifshitz 

developed the Landau-Lifshitz (LL) model which explains that an effective field (𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) leads 

to precession of magnetization in the ferromagnetic material. This model also incorporates 

damping which is proportional to the perpendicular component of 𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ with respect to the 

magnetization. [38] The LL equation is shown as follows: 

𝜕�⃗⃗� 

𝜕𝑡
= −𝛾𝐿�⃗⃗� × 𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −

𝛼𝛾

𝑀𝑆
�⃗⃗� × (�⃗⃗� × 𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)                              (1.8) 

where 𝛾, 𝛼, and 𝑀𝑆 are the gyromagnetic ratio, the damping factor and the saturation 

magnetization, respectively.  

1.4.2 Landau-Lifshitz-Gilbert equation 

Experimental evidence suggests that magnetization decay occurs within a finite time period, 

despite the predictions of the LL model. This indicates that dissipative effects play a 

significant role in magnetization dynamics. The electron scattering is the main underlying 

mechanism for the damping. [39]-[40] Gilbert replaced the damping term in the LL model 

with a term that depends on the time derivative of the magnetization and incorporated the 

dissipative effect into the equation. [41]-[42] The Landau-Lifshitz-Gilbert (LLG) equation is 

shown as follows: 
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𝜕�⃗⃗� 

𝜕𝑡
= −𝛾�⃗⃗� × 𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ +

𝛼

𝑀𝑆
�⃗⃗� ×

𝜕�⃗⃗� 

𝜕𝑡
                                       (1.9) 

It is worth noting that when the damping in a system is weak, the LL equation and the LLG 

equation become equivalent. In comparison to the LL equation, the LLG equation provides a 

better description of magnetization dynamics in the presence of strong damping. [42]  

 

Fig. 1.10. State switching for STT-MTJ based on spin-transfer torque effect. 

1.4.3 Landau-Lifshitz-Gilbert-Slonczewski equation 

During flowing through the ferromagnetic material in STT-MTJ, the current will be polarized 

to the same direction as the magnetization direction. As a result of the conservation of angular 

momentum, the spin angular momentum of spin-polarized electrons is transferred to the 

magnetic moment of the free layer when these electrons flow from the pinned layer. This 

transfer induces a change in the spin angular momentum of the free layer, which drives the 

magnetization to align parallel with that of the pinned layer. When electrons flow from the 

free layer, the situation differs slightly. Electrons with an opposite spin polarization direction 

are reflected back into the free layer. The reflected electrons generate a torque on the 

magnetic moment of the free layer, driving it to align antiparallel with that of the pinned layer. 

[10] The schematic diagram of the processes is shown in Fig. 1.10. The spin-transfer torque 
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exerted on the free layer can be calculated using the equation proposed by Slonczewski, 

which leads to the LLGS equation: [40] 

𝑑�⃗⃗� 

𝑑𝑡
= −𝛾�⃗⃗� × 𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ +

𝛼

𝑀𝑆
�⃗⃗� ×

𝑑�⃗⃗� 

𝑑𝑡
+

𝛾𝜂ℏ𝐼

2𝑒𝑀𝑆
2𝑉𝑜𝑙

�⃗⃗� × (�⃗⃗� × 𝑝 )              (1.10) 

where 𝜂, ℏ, I, e, Vol and 𝑝  are the spin polarization factor of the incident current, the 

reduced Planck constant, the incident current, the electronic charge, the volume of the free 

layer and the unit vector in the direction of magnetization in the pinned layer, respectively. 

The three terms in the right side of the equation respectively represent the precession, the 

damping and the spin-transfer torque. Figure 1.11(a) elucidate the effects of individual terms 

on magnetization changes and Figure 1.11(b) illustrates an example of time-dependent 

magnetization variation under a spin-transfer torque. 

 

 

Fig. 1.11. (a) The effects of individual terms in the LLGS equation on magnetization changes. 

(b) MTJ switching dynamics. 

1.4.4 Thermal effects 

Thermal fluctuation has a significant impact on the spin dynamics in the magnetic system at 

the nanoscale. Figure 1.12 shows the magnetization switching trajectories with and without 

the thermal effect. The effect of finite temperature makes the spin do the random motion. The 

thermal fluctuation can be modeled by the Langevin field, which is proposed by Brown in 

1963. [37] The stochastic-LLGS (s-LLGS) model can be expressed as: 
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𝑑�⃗⃗� 

𝑑𝑡
= −𝛾�⃗⃗� × (𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐻𝑡ℎ⃗⃗ ⃗⃗ ⃗⃗  ) +

𝛼

𝑀𝑆
�⃗⃗� ×

𝑑�⃗⃗� 

𝑑𝑡
+

𝛾𝜂ℏ𝐼

2𝑒𝑀𝑆
2𝑉𝑜𝑙

�⃗⃗� × (�⃗⃗� × 𝑝 )      (1.11) 

𝐻𝑡ℎ⃗⃗ ⃗⃗ ⃗⃗  = √
2𝛼𝑘𝐵𝑇

𝛾𝑀𝑆𝑉𝑜𝑙∆𝑡
𝑋𝑖(𝑡)              (𝑖 = 𝑥, 𝑦, 𝑧)                (1.12) 

where kB, T, Δt and Xi(t) are the Boltzmann constant, the temperature in Kelvin, the 

simulation timestep and zero mean standard Gaussian distribution for the x, y and z axes, 

respectively.  

 

Fig. 1.12. (a) Magnetization switching trajectory without thermal effect. (b) Magnetization 

switching trajectory with thermal effect. 

It is worth noting that the theory only works when 𝑇 ≪ 𝑇𝐶.Tc is the Curie temperature and Tc 

is 1040℃ for CoFeB [44]. When temperature is larger than the Curie temperature, the 

ferromagnetic materials will transfer to paramagnetic material where the magnetization is 

greatly influenced by external fields. [45]  

Meanwhile, the thermal fluctuation also determines the initial magnetization probability 

distribution. The initial magnetization probability distribution for the parallel and the 

anti-parallel states are respectively modeled by:  

{
 
 

 
 𝜌𝑝𝑖𝑛𝑖(𝜃) =

𝑠𝑖𝑛𝜃𝑒𝑥𝑝 (−𝜉𝑠𝑖𝑛2𝜃)

∫ 𝑠𝑖𝑛𝜃𝑒𝑥𝑝 (−𝜉𝑠𝑖𝑛2𝜃)𝑑𝜃
𝜋
2
0

  (𝜃 <
𝜋

2
)

𝜌𝑝𝑖𝑛𝑖(𝜃) = 0                                                 (𝜃 >
𝜋

2
)

                         (1.13) 
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{
 
 

 
 𝜌𝑎𝑝𝑖𝑛𝑖(𝜃) = 0                                              (𝜃 <

𝜋

2
)

𝜌𝑎𝑝𝑖𝑛𝑖(𝜃) =
𝑠𝑖𝑛𝜃𝑒𝑥𝑝(−𝜉𝑠𝑖𝑛2𝜃)

∫ 𝑠𝑖𝑛𝜃𝑒𝑥𝑝(−𝜉𝑠𝑖𝑛2𝜃)𝑑𝜃
𝜋
𝜋
2

 (𝜃 >
𝜋

2
)
                        (1.14) 

where 𝜉 is the thermal stability factor. [46]  

1.5 Effective field 

The total effective field of perpendicular MTJ includes the anisotropy field (Hk), the external 

field (Hex) and the demagnetization field (HD): 

𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐻𝑘⃗⃗⃗⃗  ⃗ + 𝐻𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗  + 𝐻𝐷⃗⃗⃗⃗  ⃗                                                 (1.15) 

Sometimes, the external field is also named as applied field (Happ). In magnetic systems, the 

anisotropy field can arise from various sources, including interfacial or magnetocrystalline 

effects. When present, this anisotropy field can provide enough interfacial anisotropy energy 

to overcome the demagnetization field along the easy axis of the magnet, thereby maintaining 

the magnetization in the easy axis direction. [1] The Hk is calculated by: [47] 

𝐻𝑘⃗⃗⃗⃗  ⃗ =
2𝐾

𝑡𝑓𝑙𝜇0𝑀𝑆
𝑚𝑧⃗⃗ ⃗⃗  ⃗                                                       (1.16) 

Where K, tfl, 𝜇0 and 𝑚𝑧⃗⃗ ⃗⃗  ⃗ are the anisotropy coefficient, the thickness of the free layer, the 

vacuum permeability and the unit vector of the magnetization among z axes. The total 

external magnetic field is represented by 𝐻𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗  . For the perpendicular STT-MTJ, the 𝐻𝑒𝑥⃗⃗ ⃗⃗ ⃗⃗   is 

generally assumed to be zero by default.  

For s-LLGS equation, one assumption is that there is only one magnetic moment in the 

ferromagnetic layer. However, there are many magnetic moments in the ferromagnetic layer 

and the magnetic field of these magnetic moments interacts with each other. The magnetostatic 

interaction results in the parallel alignment of spins, forming a single domain. This 

phenomenon is modeled by the demagnetization field. It is toward to reduce the total spin 

torque in the ferromagnetic materials and lead to the shape anisotropy. It is modeled by: [48] 

𝐻𝐷⃗⃗⃗⃗  ⃗ = −𝑀𝑆𝑁𝑖𝑚𝑖⃗⃗ ⃗⃗  (𝑖 = 𝑥, 𝑦 𝑎𝑛𝑑 𝑧)                                      (1.17) 

where Ni and 𝑚𝑖⃗⃗ ⃗⃗   are the demagnetization factor for the x, y and z axes and the unit vector of 
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the magnetization for the x, y and z axes. The demagnetization factors satisfy the relation 

Nx+Ny+Nz=1. The demagnetization factor of right-circular cylinder which is shown in 

Fig.1.13 can be calculated by [49] 

𝑁𝑥 = 𝑁𝑦 =

2𝑛

√𝜋

2
2𝑛

√𝜋
+ 1

                                                (1.18) 

𝑁𝑧 =
1

2
2𝑛

√𝜋
+ 1

                                                      (1.19) 

The length is inversely proportional to N. Therefore, the demagnetization field is considered 

only existing in the z axes by assuming Nx=Ny=0 and Nz=1. [50] The demagnetization field 

can be rewrite as: 

𝐻𝐷⃗⃗⃗⃗  ⃗ = −𝑀𝑆𝑁𝑧𝑚𝑧⃗⃗ ⃗⃗  ⃗                                                      (1.20) 

 

Fig. 1.13. Schematic of right-circular cylinder ferromagnetic materials. 

1.6 Problems in stochastic LLGS model 

The s-LLGS model is the most rigorous physical model that describes the entire trajectory of 

magnetization during switching. It should be noted that while the s-LLGS model offers high 

accuracy in circuit simulations, it comes at a cost of increased computational demands. 

Specifically, for each simulation time step, a random Langevin field must be generated, 

which requires additional computational resources and memory allocation. As a result, longer 
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simulation times and larger memory requirements may be necessary to achieve the desired 

level of accuracy using the s-LLGS model. One example is about the write error rate (WER) 

which is the probability of non-switching. The WER needs to be 10-9 or lower in the 

STT-MRAM which means more than 109 times Monte Carlo simulation. [51] The number of 

required Monte Carlo simulations is unacceptably high, resulting in several days or more of 

simulation time. [52] Under the circumstances, it needs some other types of models to 

simulate the STT-MTJ based circuits in the EDA tools.  

1.7 Motivations and Proposals 

In this research, I focus on making a general purpose STT-MTJ circuit simulation model and 

costing less CPU time and memory with high accuracy. 

The fundamental concern of the general purpose STT-MTJ model lies in its switching 

dynamics. The existing STT-MTJ switching models are in three categories: stochastic 

Landau-Lifshitz-Gilbert-Slonczewski model, switching probability model and Fokker-Planck 

equation model. However, each method has each own problems that limit them to be used as 

a sole circuit simulation model. 

The switching probability model cannot work for all the current situations, which limits it to 

be used for the varying current. [53] To overcome this problem, a framework which connects 

the existing physical models which describe the switching characteristics in the very large 

and small current situations is introduced, as shown in Chapter 2. It is based on the 

conference paper in VLSI-DAT 2019 [54] and the journal article in IEICE 2020 [55]. I 

proposed a mathematic method to connect the existing physical models to obtain the 

switching curve which is close to the experimental results and used an interpolation method 

to obtain the switching time from the curve. The circuit simulation model is implemented by 

Verilog-A language which is a standard programming language to model the device in the 

HSPICE. The simulation results validate that my switching probability based model can work 

for all the current situations and only cost CPU time 20% larger than the original switching 

probability based model in large scale circuits. 

Even if the problem was solved that the switching probability based model cannot work for 

all the current situations, it still cannot work for all kinds of applications because of some 

fundamental limitations. Specifically, the switching probability based model simplifies the 
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resistance to two state (parallel and antiparallel) and cannot model the excitation and the 

relaxation in magnetization of the free layer in an STT-MTJ. As a result, it cannot be used for 

the applications that rely on magnetization changing information, such as spiking neural 

networks (SNNs). The s-LLGS model describes the magnetization changing. However, the 

large CPU time and memory requirements limit it to be used in large-scale circuit simulations. 

Meanwhile, this kind of model is hard to obtain the overall characteristics, i.e., switching 

probability, of an STT-MTJ. [52] 

To overcome the problems mentioned above, a novel circuit simulation model based on the 

Fokker-Planck equation (FPE) is proposed for STT-MTJ devices, which is shown in Chapter 

3. The FPE based model was reported in the conference paper in NANO 2022 [56]. The 

model is programmed by using Verilog-A. This is the first work in which FPE is solved to 

describe the switching characteristics as a circuit simulation model. I proposed an theta 

obtaining framework which specifies the most possible magnetization trace from the 

probability density distribution of theta. The theta obtaining framework can obtain the same 

information as the s-LLGS model and makes the FPE based circuit simulation model work 

for all kinds of applications. The simulation results validate that the model can fit the 

experimental data well and make the error rate less than 10%. It reduces the CPU time 

consumption to 1/30 compared with the original s-LLGS based model in large-scale circuit 

simulations. 

Table 1.2. Brief Comparison among STT-MTJ circuit simulation models 

 Applications 
Accuracy CPU time 

 STT-MRAM SNN 

s-LLGS based model ○ ○ High Long 

Conventional switching 

probability based model 
○ × Low Short 

Proposed switching 

probability based model 
○ × High Short 

Proposed FPE based model ○ ○ High Medium 

 

A brief comparison among the proposed model and existing models are shown in Table 1.2. 

The comparison shows the proposed switching probability based model has higher accuracy 

than the conventional ones. Meanwhile, it costs less CPU time than the s-LLGS or the FPE 

based model, which makes it usable for some applications. The FPE based model can work 

for wide range of applications and cost less CPU time than the s-LLGS based model. The two 



 

18 

 

proposed models are used for simulating MTJ/CMOS hybrid circuits in two applications: an 

STT-MRAM and a proposed SNN, which are shown in Chapter 4. The proposed STT-MTJ 

based low power binarized SNN (BSNN) was reported in the journal article JJAP 2023 [57]. I 

proposed a neuron which uses the magnetization to integrate the input spikes and its 

relaxation to express the leak mechanism in the leaky integrate-and-fire (LIF) neuron. The 

4T3MTJ structure makes it possible to be automatically reset to the initial state during 

outputting a spike. The BSNN is simulated by the FPE based model in HSPICE and reduces 

the energy consumption as low as 0.23pJ/SOP. 
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2.1 Switching probability model 

Switching probability model is a statistical model which describes the probability of the 

magnetization in the free layer changing the state from one to the other one. The model 

considers the impact of the external conditions such as incident current and the material 

properties such as interfacial anisotropy energy. Depending on the incident current and the 

critical current, the switching behavior can be classified into three regimes: (1) the adiabatic 

precessional regime in which the injected current is significantly greater than the critical 

current (I >> Ic). (2) the thermal activation regime in which the injected current is much 

smaller than the critical current (I << Ic). (3) the intermediate regime in which the injected 

current is close to the critical current (I ≈ Ic). [58] In the adiabatic precessional regime, the 

switching characteristics can be described using Sun model, [59]-[60] while the Néel-Brown 

model [61] is suitable for the thermal activation regime which is often used for checking the 

read disturb. However, there is currently no physical model available to describe the 

switching characteristics in the intermediate regime. [53] Figure 2.1 shows the performance 

of the two models in the whole region comparing with the experimental data from [58]. 

 

Fig. 2.1. Performance of Sun model and Néel-Brown model comparing with the experimental 

data from [58]. 

The switching probability can be expressed by the Néel-Brown relaxation-time formula 

which is shown as: [61] 

𝑃(𝑡) = 1 − 𝑒(−
𝑡
𝜏)                                                       (2.1) 

where 𝜏 is the relaxation time constant. The value is initially obtained using the Arrhenius 
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equation, which does not account for the spin-transfer torque effect. The Arrhenius equation 

directly provides the value as: [62] 

𝜏 = 𝜏0𝑒
(−

𝐸
𝑘𝐵𝑇

)
                                                           (2.2) 

where the 𝜏0, E, kB and T are the inverse of attempt frequency, the energy barrier, the 

Boltzmann constant and the temperature, respectively. The form with spin-transfer torque 

effect can be derived from the s-LLGS equation [61]. The s-LLGS equation can be rewritten 

by using a field (𝐻𝑆⃗⃗ ⃗⃗ ) to represent the contribution of the spin-transfer torque.  

1

𝛾

𝑑�⃗⃗� 

𝑑𝑡
= �⃗⃗� × (−𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐻𝑡ℎ⃗⃗ ⃗⃗ ⃗⃗  +

𝛼

𝑀𝑆
�⃗⃗� × (−𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐻𝑆⃗⃗ ⃗⃗ ))                     (2.3) 

𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the effective field in the s-LLG equation. The equation can be simplified by using a 

new effective field which is shown in Eq. 2.4. 

𝐻𝑒𝑓�̃� = (−𝐻𝑘 − 𝐻𝑒𝑥 + 𝐻𝑆)𝑚𝑧⃗⃗ ⃗⃗  ⃗ 

                          = (𝐻𝑘 + 𝐻𝑒𝑥)(
𝐻𝑆

𝐻𝑘 + 𝐻𝑒𝑥
− 1)𝑚𝑧⃗⃗ ⃗⃗  ⃗ 

       = (
𝐻𝑆

𝐻𝑘 + 𝐻𝑒𝑥
− 1)𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                                              (2.4) 

The Eq. 2.3 can be rewritten as: 

1

𝛾

𝑑�⃗⃗� 

𝑑𝑡
= �⃗⃗� × (−𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐻𝑡ℎ⃗⃗ ⃗⃗ ⃗⃗  −

𝛼

𝑀𝑆
(1 −

𝐻𝑆
𝐻𝑘 + 𝐻𝑒𝑥

)�⃗⃗� × 𝐻𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)               (2.5) 

The damping factor can be written as: 

�̃� = (1 −
𝐻𝑆

𝐻𝑘 + 𝐻𝑒𝑥
)𝛼 

= (1 −
𝐼

𝐼𝑐
)𝛼                                                                  (2.6) 

Whether or not the spin-transfer torque effect is considered, the Langevin field remains 

constant. Based on this, we can obtain the equation: 
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𝐻𝑡ℎ⃗⃗ ⃗⃗ ⃗⃗  = √
2𝛼𝑘𝐵𝑇

𝛾𝑀𝑆𝑉𝑜𝑙∆𝑡
𝑋𝑖(𝑡) 

= √
2�̃�𝑘𝐵�̃�

𝛾𝑀𝑆𝑉𝑜𝑙∆𝑡
𝑋𝑖(𝑡)                                                    (2.7) 

The temperature should also be a fictitious temperature to keep the Langevin field keep 

constant based on the effective damping factor. The relaxation time constant with the 

fictitious temperature can be written as: 

𝜏 = 𝜏0𝑒
(−

𝐸
𝑘𝐵�̃�

)
= 𝜏0𝑒

(−
𝐸
𝑘𝐵𝑇

(
�̃�
𝛼)) = 𝜏0𝑒

(−
𝐸
𝑘𝐵𝑇

(1−
𝐼
𝐼𝑐
))
                           (3.8) 

Finally, by substituting Eq. 2.1 into Eq. 2.8, the switching probability in the thermal 

activation regime can be expressed as: 

𝑃(𝑡) = 1 − 𝑒𝑥𝑝 {−
𝑡

𝜏0
𝑒𝑥𝑝 [−

𝐸

𝑘𝐵𝑇
(1 −

𝐼

𝐼𝑐
)]}  (𝐼 ≪ 𝐼𝐶)                     (2.9) 

Several different models have been proposed to describe the switching behavior in the 

adiabatic precessional regime, such as those presented in references [53], [59]-[60]. However, 

the Sun model is the most commonly used to describe the switching characteristics in this 

regime. The first Sun model is used for the in-plane STT-MTJ which is expressed as:[60] 

𝜏 =

𝜏𝐷 𝑙𝑛 (

𝜋
2
𝜃0
)

(
𝐼
𝐼𝑐
− 1)

                                                          (2.10) 

where τD is the relaxation time. Combine it with the Néel-Brown relaxation-time formula, 

the switching probability can be expressed by: 

𝑃(𝑡) = 1 − 𝑒𝑥𝑝

[
 
 
 
 
 

−

𝑡
𝜏𝐷
(
𝐼
𝐼𝑐
− 1)

𝑙𝑛 (

𝜋
2
𝜃0
)
]
 
 
 
 
 

                                       (2.11) 

However, it is not work well for the perpendicular STT-MTJ. In this situation, Sun proposed 
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another model which is shown as following: 

P(t) = exp(−
4E

kBT
exp(−

2t (
I
Ic
− 1)

τD
))                             (3.12) 

 

Fig. 2.2. Comparison among experimental data, SUN model and the newer model. Solid line 

represents newer model, dotted line represents SUN model and ◼ represents experimental data. 

(Experimental data is from [59]) 

Figure 2.2 compares these two models with the experimental data and the results indicate that 

the Eq. 2.12 is more consistent with the experimental data. 

2.2 The problems in the switching probability model 

 

Fig. 2.3. The applied range differs among various models. 

Nevertheless, none of these models can accurately depict the magnetic behavior of materials 
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in the intermediate regime, which poses a significant problem in the field of MTJ modeling. 

[53] In practical applications, the adiabatic precessional region is the main region of interest. 

However, the intermediate regime is also used in some applications and this regime is 

important to handle the time varying current. The switching characteristics are greatly 

affected by the time varying current. The intermediate problem makes it difficult to handle 

the varying current. I simulated the switching characteristics for ideal and non-idea current 

based on the LLGS model. In Fig. 2.4, we can see that switching happens at 1.7ns for ideal 

current pulse. For non-ideal current pulse, switching happens at 2.2ns. There is 23% 

switching time difference between ideal and non-ideal current pulse. Some existing models 

[63]-[65] have employed various forms of model in the adiabatic precessional regime. They 

determine whether a switch occurs by comparing the precomputed switching time with the 

actual current input time. This approach makes it impossible to handle time varying currents 

even when using a single model.  

 

Fig. 2.4. Switching characteristic of ideal current pulse and non-ideal current pulse. 

The Néel-Brown model and Sun model cannot work for the intermediate regime. Figure 2.5 

illustrates a comparison among the switching occurrences in a single physical model and the 

experimental data. The critical current is 6.55mA in this simulation. For Sun model, there is a 

31% deference between Sun model and experimental data when I=1.07Ic and a difference 

larger than 100% when I a little bit larger than Ic. The Sun model tends towards infinity in the 

vicinity of the critical current region. It fits the experimental data well starting from 1.15Ic 

where switching time is 5ns. As for only using Néel-Brown model, there is also a l difference 



 

25 

 

larger than 100% when I a little bit larger than Ic. The results show that, it is hard to use the 

sole existing model to describe the switching characteristic around the critical current. In 

summary, accurately modeling MTJs is a challenging task that cannot be achieved using a 

single model or by directly switching between the two physical models. 

 

Fig. 2.5. Switching characteristic for different physical models. (a) Only Sun model (b) Only 

Néel-Brown model. (Experimental data is from [59]) 

2.3 Proposed switching probability model 

2.3.1 Framework to get the switching probability 

We proposed a mathematical framework to solve the problem of the intermediate regime. 

[54]-[55] The fundamental concept is to utilize the two types of models separately in their 

respective regimes and integrate them in the intermediate regime. The Néel-Brown model 

mainly describes the effect of thermal fluctuations, while the Sun model describes the 

dominance of the spin-transfer torque. The intermediate regime can be considered as the two 

kinds of effect work together. 

The process of each step of the framework is illustrated in Fig. 2.6, with the same color 
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scheme used in (a) and (b). In the first step, a model is chosen to calculate the switching time 

(t0) based on the current value. Because the Sun model trends to infinity around the critical 

current, we set a small positive constant value (λ) to select a suitable physical model. When 

the incident current is 1+λ times larger than the critical current, the t0 is equal to: 

 

Fig. 2.6. (a) Flow chart of the switching probability model in the intermediate region. (b) 

Schematic diagram of the switching probability model in the intermediate region. × represents 

experimental data which are from [59].  

𝑡 =
−𝜏𝐷𝑙𝑛(

𝑙𝑛(𝑃𝑡ℎ)
−4𝐸/𝑘𝐵𝑇

)

2(
𝐼
𝐼𝑐
− 1)

                                                 (2.13) 
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where Pth is a predetermined switching probability. If the incident current is 1-λ times smaller 

than the critical current, the t0 is equal to: 

𝑡 = −𝑙𝑛(1 − 𝑃𝑡ℎ)
𝜏0

𝑒
−
𝐸
𝑘𝐵𝑇

(1−
𝐼
𝐼𝑐
)
                                         (2.14) 

Otherwise, when the incident current is between 1+λ and 1-λ times critical current, t0 can be 

calculated as follows: 

𝑡 = −𝑙𝑛(1 − 𝑃𝑡ℎ)
𝜏0

𝑒
−
𝐸
𝑘𝐵𝑇

(1−
(1−𝜆)𝐼𝑐
𝐼𝑐

)
                                    (2.15) 

This step is illustrated in red color in Fig. 2.5. The second step obtains several time points 

around the t0 from tmin to tmax which are the values related to t0. The models can be rewritten as 

a relationship between the incident current and time: 

INéel = Ic(1 +
ln (−

ln(1 − Pth) τ0
t )

E
kBT

)                                (3.16) 

Inew = Ic(1 −
τD ln (

ln(Pth)
−4E/kBT

)

2t
)                                    (3.17) 

The current values corresponding to the time points can be calculated for the Néel-Brown 

model and Sun model. This step is illustrated in blue or in Fig. 2.6. 

The next step involves using a function to smoothly connect the two models. The function is 

shown as following: 

𝑓 =
1

1 + 𝑒−𝐴(𝑙𝑛(𝑡)−𝐵)
                                                 (3.18) 

where A and B are fitting parameters. We chose switching time as the parameter to connect 

the models due to the fact that the Sun model's calculation results in the thermal activation 

regime are negative, which is physically impossible. Meanwhile, we use the natural logarithm 

form to express time in the calculation. The reason is that the switching time for different 

incident current has several orders of magnitude differences which makes it hard to directly 

use the linear time. The real current corresponding with the time can be calculated by: 
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𝐼𝑟𝑒𝑎𝑙 = 𝑓𝐼𝑁é𝑒𝑙 + (1 − 𝑓)𝐼𝑆𝑢𝑛                                           (3.19) 

 

Fig. 2.7. The numerical calculation results obtained from framework for I-t curve compared 

with experimental data taken from [59]. 

 

 

Fig. 2.8. Numerical calculation results of switching probability compared with experimental 

data taken from [59]. Solid line represents calculation results and ● represents experimental 

data. 

This step is illustrated in orange color in Fig. 2.6. The orange curve in the Fig.15 can be 

thought as the real switching curve of the STT-MTJ. The last step is obtaining the real 

switching time (treal) by the real switching curve. Since the connection function is a function 

of time, switching time can be calculated by a interpolation method. R By repeating the 

framework for each timestep, the switching curve can be obtained. The simulation results 

obtained using Matlab are shown in Fig. 2.7 and Fig. 2.8. In Fig. 2.7, we simulated the 
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relationship between the incident current and the switching time at a switching time of 50%. 

The simulation results of the proposed framework are consistent with the experimental data 

from [59]. 

It is equally important for the model to have the ability to operate under time varying current 

conditions. My approach involves using an effective time to accumulate the contribution of 

each timestep. The value of effective time is between 0 and 1. For each timestep the effective 

time is update by: 

𝑡𝑒𝑓𝑓(𝑡 + ∆𝑡) = 𝑡𝑒𝑓𝑓(𝑡) +
∆𝑡

𝑡𝑟𝑒𝑎𝑙
                                        (2.20) 

Switching is determined to occur when teff equals 1. Using this method, the model can be 

applied to time varying currents. 

2.3.2 Interpolation method 

There are several interpolation methods just like linear interpolation, polynomial 

interpolation and cubic interpolation. Here, we compare the linear interpolation method and 

cubic interpolation method. The simplest interpolation method is linear interpolation. If we 

get two points (x0, y0) and (x1, y1), the value at x2 can be evaluated by: 

y2 =
𝑥 − 𝑥1
𝑥0 − 𝑥1

𝑦0 +
𝑥 − 𝑥0
𝑥1 − 𝑥0

𝑦1                              (2.21) 

 

Fig. 2.9. Schematic diagram of the linear interpolation. 

The next interpolation method is cubic spline interpolation. [66] With this method, greater 
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accuracy can be achieved by selecting more points. The result can be evaluated by: 

𝑦 =

{
 
 

 
 

𝑆0(𝑥) = 𝑎0𝑥
3 + 𝑏0𝑥

2 + 𝑐0𝑥 + 𝑑0 (𝑥0 < 𝑥 < 𝑥1)
.
.
.

𝑆𝑛−1(𝑥) = 𝑎𝑛−1𝑥
3 + 𝑏𝑛−1𝑥

2 + 𝑐𝑛−1𝑥 + 𝑑𝑛−1 (𝑥𝑛−1 < 𝑥 < 𝑥𝑛)

    (2.22) 

For every region, it uses a third-order polynomial to get the result. Figure 2.10 shows how 

this interpolation method work. 

 

 

Fig. 2.10. Schematic diagram of the cubic interpolation. 

Boundary conditions is S(x), the first derivative and the second derivative of every S(x) is 

continuous. It means Si-1(xi) = Si(xi), Si-1’(xi) = Si’(xi) and Si-1’’(xi) = Si’’(xi). Assume zi = 

S’’(xi). The linear spline is simply expressed as 

𝑆𝑖
′′(𝑥) = 𝑧𝑖

𝑥 − 𝑥𝑖+1
𝑥𝑖 − 𝑥𝑖+1

+ 𝑧𝑖+1
𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

                                 (2.23) 

We introduce hi = xi+1 – xi. After twice integration, we can obtain: 

𝑆𝑖(𝑥) =
𝑧𝑖+1
6ℎ𝑖

(𝑥 − 𝑥𝑖)
3 +

𝑧𝑖
6ℎ𝑖

(𝑥𝑖+1 − 𝑥)
3 + 𝐶𝑖(𝑥 − 𝑥𝑖) + 𝐷𝑖(𝑥𝑖+1 − 𝑥)    (3.24) 

Based on the Si(x) = yi and Si(xi+1) = yi+1, the Eq. 2.24 can be expressed as: 

Si(𝑥) =
𝑧𝑖+1
6ℎ𝑖

(𝑥 − 𝑥𝑖)
3 +

𝑧𝑖
6ℎ𝑖

(𝑥𝑖+1 − 𝑥)
3 
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+(
𝑦𝑖+1
ℎ𝑖

−
𝑧𝑖+1
6
ℎ𝑖)(𝑥 − 𝑥𝑖) + (

𝑦𝑖
ℎ𝑖
−
ℎ𝑖
6
𝑧𝑖)(𝑥𝑖+1 − 𝑥)                     (2.25) 

By substituting the above equation into the continuity equation (𝑆𝑖
′(𝑥𝑖) = 𝑆𝑖−1

′ (𝑥𝑖)) and 

solving, we obtain the following equation: 

6(𝑏𝑖 − 𝑏𝑖−1) = ℎ𝑖−1𝑧𝑖−1 + 2(ℎ𝑖−1 − ℎ𝑖)𝑧𝑖 + ℎ𝑖𝑧𝑖+1                      (2.26) 

 

Fig. 2.11. Comparison of cubic spline interpolation, linear interpolation and experimental data 

from [59]. 

Using Eq. 2.26 and applying the boundary conditions z0=zn=0, the value of zi can be 

determined. We tried the two different interpolation methods and the results are shown in Fig. 

2.11. The experimental data is taken from [59]. Linear interpolation requires less simulation 

time but has poor stability and exhibits a glitch around the critical current. In contrast, cubic 

spline interpolation does not exhibit a glitch and fits the experimental data well. Considering 

both the demand for accuracy and simulation time in the simulation task, we can determine 

which interpolation method to use specifically. 

2.3.3 Other physical models 

The resistance of STT-MTJ depends on the theta between the magnetizations of the pinned 

layer and free layer. However, the switching probability based STT-MTJ circuit simulation 

model can provide information about changes in the resistance state. In this situation, the 

resistance of STT-MTJ is simplified to two resistance state: low resistance (Rp) and high 

resistance (Rap). The low resistance can be expressed by [63] 
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𝑅𝑃 =
𝑡𝑜𝑥

𝐹 × 𝐴𝑟𝑒𝑎 × √𝜑𝐵
𝑒𝑥𝑝(1.025𝑡𝑜𝑥 × 𝜑𝐵)                           (2.27) 

Where tox, F, Area and φB mean thickness of the oxide layer, a fitting factor calculated from 

the resistance-area product (RA), the area of the MTJ surface and energy barrier height of the 

oxide layer, respectively. The high resistance state is calculated by a predefined TMR ratio: 

𝑅𝑎𝑝 = (1 + 𝑇𝑀𝑅𝑅)𝑅𝑝                                                (2.28) 

The value of TMR is not constant and can be influenced by the voltage applied to the two 

ends of the STT-MTJ. The voltage dependent TMRR can be calculated by: [63] 

TMRR(V) =
TMRR0

1 +
V2

Vh
2

                                                     (2.29) 

where TMRR0 and Vh are the TMRR at 0V and the bias voltage for TMRR = TMRR0/2, 

respectively. The critical current is calculated by: 

𝐼𝑐𝑝 =
2𝛼𝛾𝑒

𝜇𝐵𝜂𝑝
𝜉                 (𝑃 𝑡𝑜 𝐴𝑃)                                            (2.30) 

𝐼𝑐𝑎𝑝 =
2𝛼𝛾𝑒

𝜇𝐵𝜂𝑎𝑝
𝜉              (𝐴𝑃 𝑡𝑜 𝑃)                                            (2.31) 

The spin polarization factor 𝜂 of parallel and anti-parallel can be separately calculated by: 

[67] 

𝜂𝑝 = (−4+ (𝑃𝑜𝑙
−1
2
 
+𝑃𝑜𝑙

1
2)

3

/4)

−1

+
𝑃𝑜𝑙/2

1+𝑃𝑜𝑙
2
                            (2.32) 

𝜂𝑎𝑝 = (−4+ 0.5(𝑃𝑜𝑙
−1
2
 
+𝑃𝑜𝑙

1
2)

3

/4)

−1

+
𝑃𝑜𝑙/2

1−𝑃𝑜𝑙
2
                         (2.33) 

Many parameters of STT-MTJs are affected by temperature such as thermal stability factor, 

critical current, relaxation time and TMR ratio. The temperature dependent TMR ratio can be 

calculated using the following equation: [53] [64] 

𝑇𝑀𝑅𝑅(𝑇) = 𝑇𝑀𝑅𝑅(0𝐾) − 𝑘𝑇                                        (2.34) 
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Where TMRR(0K) and k are the TMR ratio at 0K and the TMR ratio slope with temperature, 

respectively. The temperature variation caused by the flowing current is modeled as two 

processes. When a current flows, the resulting temperature increase due to the current heating 

effect can be calculated by the following equations: [53] [64] 

𝑇ℎ𝑒𝑎𝑡 = 𝑇𝑟𝑜𝑜𝑚 + ∆𝑇𝑚𝑎𝑥 [1 − 𝑒𝑥𝑝 (−
𝐷ℎ𝑒𝑎𝑡
𝜏𝑡ℎ

)]                           (2.35) 

∆𝑇𝑚𝑎𝑥 =
𝑉𝑚𝑡𝑗𝐽𝑚𝑡𝑗𝑡𝑜𝑥

𝜆
                                                 (2.36) 

𝜏𝑡ℎ =
𝐶𝑣𝑡𝑀𝑇𝐽𝑡𝑜𝑥

𝜆
                                                     (2.37) 

where 𝑇ℎ𝑒𝑎𝑡, 𝑇𝑟𝑜𝑜𝑚, 𝐷ℎ𝑒𝑎𝑡 , 𝑉𝑚𝑡𝑗 , 𝐽𝑚𝑡𝑗 , 𝜆, 𝐶𝑣  and 𝑡𝑀𝑇𝐽  are the temperature during the 

heating period, the room temperature, the time duration of the heating period, the MTJ 

voltage, the current density of MTJ, the thermal conductivity, the heat capacity per unit 

volume and the thickness of MTJ. When no current flows through the MTJ, the resulting 

temperature decrease can be calculated using the following equation: [53] [64] 

𝑇𝑐𝑜𝑜𝑙 = 𝑇𝑟𝑜𝑜𝑚 + (𝑇ℎ𝑒𝑎𝑡 − 𝑇𝑟𝑜𝑜𝑚) exp (−
𝐷𝑐𝑜𝑜𝑙
𝜏𝑡ℎ

)                         (2.38) 

where 𝑇𝑐𝑜𝑜𝑙 and 𝐷𝑐𝑜𝑜𝑙 are the temperature during the cooling period and the time duration 

of the cooling period.  

The thermal model also suffers from the issue that it cannot be directly applied to situations 

where the current is changing with time. We use a similar method to solve this by setting an 

effective Dheat. For each timestep when current flows and 𝑇ℎ𝑒𝑎𝑡 > 𝑇𝑟𝑜𝑜𝑚, we calculate the 

effective Dheat by: 

𝐷ℎ𝑒𝑎𝑡𝑒𝑓𝑓 = −𝜏𝑡ℎ𝑙𝑛(
𝑇𝑟𝑜𝑜𝑚 − 𝑇ℎ𝑒𝑎𝑡𝑙𝑎𝑠𝑡

∆𝑇𝑚𝑎𝑥
+ 1)                              (2.39) 

where 𝑇ℎ𝑒𝑎𝑡𝑙𝑎𝑠𝑡 is the temperature at last timestep. Then, the 𝑇ℎ𝑒𝑎𝑡 of this timestep can be 

calculated based on 𝐷ℎ𝑒𝑎𝑡𝑒𝑓𝑓 + ∆𝑡. 
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2.4 Validation results 

For making the model compatible with the HSPICE, we implement the model in Verilog-A 

language. To implement the devices model, there are mainly two methods: subcircuit and 

Verilog-A. Comparing with the subcircuit method, the Verilog-A method is more flexible 

especially for the devices with complex physical theory. 

 

Fig. 2.12. The HSPICE results obtained from framework for I-t curve compared with 

experimental data taken from [59]. 

 

 

Fig. 2.13. HSPICE simulation results of model accuracy comparison. (The experimental data 

and the model results are taken from [68]). 

The model is validated in two aspects. Firstly, the model is validated for individual devices. 

In this simulation, one STT-MTJ was directly connected to a current source. The cubic spline 
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interpolation is used in all the simulation. The relationship between the incident current and 

switching time for a constant switching probability which is equal to 50% is shown in Fig. 

2.12 and Fig. 2.13. Meanwhile, a LLGS model simulation result is also shown in Fig. 2.13 

and compare with our model. Compared to experimental data, the average error rate of my 

model is 8.96%, whereas that of the s-LLGS based model [68] is 25.5%. The relationship 

between the switching time and probability for a constant incident current is shown in Fig. 

2.14. Compared with the experimental data from [59], our model is consistent with the 

experimental results and effectively captures the switching behavior in the intermediate 

regime. 

 

Fig. 2.14. HSPICE simulation results of switching probability versus ln(t) compared with the 

experimental data taken from [59]. Solid line with × represents HSPICE simulation results and 

● represents experimental data. 

The thermal model was validated by simulating the switching characteristics under different 

temperatures and the results are shown in Fig. 2.15. Meanwhile, the Fig. 2.15 also shows the 

voltage dependence of the TMR ratio. Among the voltage range applied to the MTJ, the 

resistance of anti-parallel state shows a significant decrease. The temperature dependent 

TMR ratio is also shown in Fig. 2.15. The TMR ratio exhibits a decreasing trend with 

increasing temperature. 

A time varying input simulation is although necessary. Figure 2.16 illustrates the switching 

time for constant and time varying inputs. Despite the input voltage reaching the same value 

of 0.5V, a significant difference is observed in the switching time. Specifically, the switching 
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occurs at 1.77ns with constant input, while it occurs at 2.49ns for time varying input.  

 

Fig. 2.15. HSPICE simulation results of MTJ resistance versus voltage between two terminals 

of MTJ for different temperature. 

 

 

Fig. 2.16. HSPICE simulation results of constant and time varying current. 

Secondly, the model is simulated with other standard devices just like metal oxide 

semiconductor field effect transistor (MOSFET) and capacitor to validate the compatibility. 

The structure of 1T1C1MTJ circuit is shown in Fig. 2.17. I realize a single AP state writing 

and the results of the current and resistance state changing are shown in Fig. 2.18. Simulated 

results are consistent with expectations. The results shows that my switching probability 

based model can work with other standard devices in the EDA tools. The practical 

applications of switching probability based MTJ model in more complex applications will be 

demonstrated in Chapter 6. 
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Fig. 2.17. 1T1C1MTJ structure. 

 

 

Fig. 2.18. HSPICE simulation 1T1CMTJ structure with P to AP switch. The VSL keeps 0 during 

the simulation. 

The comparison between this model and other different MTJ simulation models is presented 

in Chapter 5. However, even if we solve the problem of lacking a physical model in the 

intermediate regime, the use of switching probability is still limited in some applications as it 

cannot provide information regarding the variation of theta. Under the circumstances, we 

proposed a general-purpose STT-MTJ simulation model based on the Fokker-Planck equation 

which is introduced in Chapter 4. 
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Model based on Fokker-Planck equation 
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3.1 Fokker-Planck equation 

Fokker-Planck equation (FPE) is used for describing the probability density function 

changing of the velocity of a particle based on the thermal fluctuations. It has been used for 

describing the Brownian motion. [69] A FPE for the stochastic motion of the spin moment 

can be derived if the random field is assumed to be sufficiently short-correlated. [70] The 

thermal fluctuations can be modeled as white noise with a frequency of approximately 10-13s, 

while the response time of the single domain particle is approximately 10-10s. [37] This 

satisfies the condition that the random thermal force has a much shorter correlation time than 

the response time of the magnetization. For STT-MTJ, the FPE is a master equation of the 

Langevin equation or the s-LLG equation which describes the MTJ’s probability density ρ(θ, 

t) of magnetization under the influence of thermal fluctuations, as in the Brownian motion. It 

was firstly derived from the s-LLG equation which is the LLG equation with thermal 

fluctuations by Brown in 1963. [37] The FPE can be written as: [71] 

𝜕𝜌

𝜕𝑡
= −∑

𝜕

𝜕𝑥𝑖
(𝐴𝑖𝜌)

2

𝑖=1

+∑∑
1

2

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(𝐵𝑖𝑗𝜌)

2

𝑗=1

2

𝑖=1

(𝑥1 = 𝜃, 𝑥2 = 𝜑)                      (3.1) 

𝐴𝑖 = lim
∆𝑡→0

1

∆𝑡
〈∆𝑥𝑖〉                                                      (3.2) 

𝐵𝑖𝑗 = lim
∆𝑡→0

1

∆𝑡
〈∆𝑥𝑖∆𝑥𝑗〉                                                  (3.3) 

where 𝜌 is the probability density (𝜌(𝜃)∆𝜃 is the probability for 𝜃 to take the value 

[𝜃, 𝜃 + ∆𝜃]), ∆𝑥𝑖 is the 𝑥𝑖 changing in ∆𝑡 and the statistical averages 〈 〉 are evaluated 

by the characteristic of Langevin field (Eq. 1.12). The A and B can be deviated from s-LLG 

equation and expressed as: [37] 

𝐴1 = −
𝛾

1 + 𝛼2
(𝛼𝐻𝜃 + 𝐻𝜑 +

𝛼𝑘𝐵𝑇

𝑀𝑆𝑉𝑜𝑙
𝑐𝑜𝑡𝜃)                                (3.4) 

𝐴2 =
𝛾

(1 + 𝛼2)𝑠𝑖𝑛𝜃
(−𝐻𝜃 + 𝛼𝐻𝜑)                                        (3.5) 

𝐵11 =
2𝛼𝛾𝑘𝐵𝑇

(1 + 𝛼2)𝑀𝑆𝑉𝑜𝑙
                                                  (3.6) 
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𝐵12 = 𝐵21 = 0                                                          (3.7) 

𝐵22 =
2𝛼𝛾𝑘𝐵𝑇

(1 + 𝛼2)𝑀𝑆𝑉𝑜𝑙𝑠𝑖𝑛
2𝜃
                                             (3.8) 

If we consider the effect of spin-transfer torque as a field, it is easy to obtain the s-LLGS 

equation based 2-D FPE: 

𝜕𝜌

𝜕𝑡
=

𝛾

1 + 𝛼2
{−

𝜕

𝜕𝜃
[(𝐻𝑒𝑓𝑓𝜑 + 𝛼𝐻𝑒𝑓𝑓𝜃 +

𝜂ℏ𝐼

2𝑒𝑀𝑆𝑉
𝑠𝑖𝑛𝜃 +

𝛼𝑘𝐵𝑇

𝑀𝑆𝑉𝑜𝑙
𝑐𝑜𝑡𝜃)]𝜌 −

𝜕

𝜕𝜑
[(𝛼𝐻𝑒𝑓𝑓𝜑 

+𝐻𝑒𝑓𝑓𝜃 +
𝛼𝜂ℏ𝐼

2𝑒𝑀𝑆𝑉
)]𝜌 +

𝜕2

𝜕𝜃2
𝛼𝑘𝐵𝑇

𝑀𝑆𝑉𝑜𝑙
𝜌 +

𝜕2

𝜕𝜑2
𝛼𝑘𝐵𝑇

𝑀𝑆𝑉𝑜𝑙𝑠𝑖𝑛
2𝜃
𝜌}              (3.9) 

 

Fig. 3.1. Probability density distribution of theta for different time. 

Due to the cylindrical symmetry of the perpendicular STT-MTJ, the 2-D FPE can be reduced 

to 1-D form and lead to a better computational efficiency. [72] It is worth to note that 2-D 

FPE method is required when dealing with fields that are not aligned with the easy axis. The 

1-D FPE is expressed as: [43] 

𝜕𝜌

𝜕𝑡
= −

1

𝜏𝐷

𝜕

𝜕𝜃
{[(
𝐼

𝐼𝑐
−
𝐻𝑎𝑝𝑝
𝐻𝑘

)𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 +
𝑐𝑜𝑡𝜃

2𝜉
]𝜌} +

1

2𝜉𝜏𝐷

𝜕2𝜌

𝜕𝜃2
    (3.10) 

𝜏𝐷 =
1 + 𝛼2

𝛼𝛾𝐻𝑘
                                                         (3.11) 

𝜉 =
𝐸

𝑘𝐵𝑇
                                                            (3.12) 
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The method to calculate the initial theta distribution is the same as shown in Chapter 2.1. 

Figure 3.1 shows an example about probability density distribution of theta (𝜃) changing 

based on a constant input current. The results show that the distribution of theta has been 

shifted from being around 𝜋 to being around 0. 

3.2 Problems in Fokker-Planck equation based model 

By solving the FPE, we can obtain the switching probability as the time-dependent 

probability density of theta. However, even though the Fokker-Planck equation does not have 

the intermediate regime problem, it requires several times longer simulation time compared 

with the switching probability model. It makes models based on the Fokker-Planck equation 

less attractive in the applications of large-scale circuits. Additionally, it only calculates the 

probability density of theta distribution rather than the theta changing information, which 

limits its applicability. To address this, we propose a framework that can obtain the theta 

changing information from the probability density of theta. 

3.3 Proposed Fokker-Planck equation based model 

3.3.1 Numerical method for solving Fokker-Planck equation 

To implement a Fokker-Planck equation-based model, the key aspect is to identify a suitable 

method to solve the Fokker-Planck equation. We use the finite difference method (FDM) [73] 

to solve the FPE. There are mainly three forms of FDM: the explicit method, the implicit 

method and the Crank-Nicolson method which can be thought of as a mixture of the explicit 

and implicit methods. Figure 3.2 shows the basic stencils of each form for a 1D problem. i 

means the position of the grid and t means time. 

 

Fig. 3.2. The explicit, implicit and Crank–Nicolson stencils for a 1D problem. 
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While the explicit method can significantly reduce simulation time, it is not sufficiently stable 

to guarantee the convergence in the simulation and therefore cannot be used in practice. In 

this situation, we mainly analyze the performance of the implicit method and Crank-Nicolson 

method. The equations of the implicit and Crank-Nicolson method are shown as following: 

{
 
 

 
 𝜕𝜌𝑖

𝜕𝜃
=
𝜌𝑖+1
𝑡+∆𝑡 − 𝜌𝑖−1

𝑡+∆𝑡

2∆𝜃
𝜕2𝜌𝑖
𝜕𝜃2

=
𝜌𝑖+1
𝑡+∆𝑡 − 2𝜌𝑖

𝑡+∆𝑡 + 𝜌𝑖−1
𝑡+∆𝑡

(∆𝜃)2

                                      (3.13) 

{
 
 

 
 𝜕𝜌𝑖

𝜕𝜃
=
(𝜌𝑖+1

𝑡+∆𝑡 − 𝜌𝑖−1
𝑡+∆𝑡) + (𝜌𝑖+1

𝑡 − 𝜌𝑖−1
𝑡 )

4∆𝜃
𝜕2𝜌𝑖
𝜕𝜃2

=
(𝜌𝑖+1

𝑡+∆𝑡 − 2𝜌𝑖
𝑡+∆𝑡 + 𝜌𝑖−1

𝑡+∆𝑡) + (𝜌𝑖+1
𝑡 − 2𝜌𝑖

𝑡 + 𝜌𝑖−1
𝑡 )

2(∆𝜃)2

               (3.14) 

Based on the implicit method, the FPE can be rewritten as: 

𝜌𝑖
𝑡 = −(𝑓𝑖−1 + 𝑏)𝜌𝑖−1

𝑡+∆𝑡 + (1 + 2𝑏)𝜌𝑖
𝑡+∆𝑡 + (𝑓𝑖+1 − 𝑏)𝜌𝑖+1

𝑡+∆𝑡              (3.15) 

𝑓𝑖 =
𝐼

𝐼𝑐
𝑠𝑖𝑛 𝜃𝑖 −𝑐𝑜𝑠𝜃𝑖 𝑠𝑖𝑛 𝜃𝑖 −

𝐻𝑎𝑝𝑝
𝐻𝑘

𝑐𝑜𝑠𝜃i +
𝑐𝑜𝑠𝜃𝑖
2𝜉𝑠𝑖𝑛𝜃𝑖

                    (3.16) 

𝑎 =
∆𝑡

2𝜏𝐷∆𝜃
                                                          (3.17) 

𝑏 =
∆𝑡

4𝜏𝐷𝜉∆𝜃
2
                                                       (3.18) 

Based on the Crank-Nicolson method, the FPE can be rewritten as: 

(−𝑐𝑓𝑖−1 + 𝑑)𝜌𝑖−1
𝑡 + (1 − 2𝑑)𝜌𝑖

𝑡 + (𝑐𝑓𝑖+1 + 𝑑)𝜌𝑖+1
𝑡  

= (𝑐𝑓𝑖−1 − 𝑑)𝜌𝑖−1
𝑡+∆𝑡 + (1 + 2𝑑)𝜌𝑖

𝑡+∆𝑡 − (𝑐𝑓𝑖+1 + 𝑑)𝜌𝑖+1
𝑡+∆𝑡                (3.19) 

𝑐 =
−∆𝑡

4𝜏𝐷∆𝜃
                                                          (3.20) 

𝑑 =
∆𝑡

2𝜏𝐷𝜉∆𝜃
2
                                                       (3.21) 

In fact, the Eq. 3.15 and Eq. 3.19 are the systems of linear equations with a tridiagonal matrix 

as the coefficient matrix. These special systems of linear equations can be solved by using the 
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Thomas method [74]. The Thomas method is that if a function Ax=B satisfy that A is a 

tridiagonal matrix: 

 

The variable x can be calculated by: 

{

𝑑1 = 𝑏1

𝑢𝑖 =
𝑐𝑖
𝑑𝑖

𝑑𝑖+1 = 𝑏𝑖+1 − 𝑎𝑖+1𝑢𝑖

(𝑖 = 1,2… , 𝑛 − 1)                              (3.23) 

{
 

 𝑦1 =
𝐵1
𝑑1

𝑦𝑖 =
𝐵𝑖 − 𝑎𝑖𝑦𝑖−1

𝑑𝑖

(𝑖 = 2,3, . . . , 𝑛)                                     (3.24) 

{
𝑥𝑛 = 𝑦𝑛

𝑥𝑖 = 𝑦𝑖 − 𝑢𝑖𝑥𝑖−1
(𝑖 = 𝑛 − 1, 𝑛 − 2, . . . ,1)                              (3.25) 

Based on these equations, we can calculate the value of 𝜌𝑡+∆𝑡. The switching probability can 

be calculated as: 

𝑃(𝑡) = ∫ 𝜌(𝜃, 𝑡)𝑑𝜃

𝜋
2

0

(𝐴𝑃 𝑡𝑜 𝑃)                                        (3.26) 

𝑃(𝑡) = ∫ 𝜌(𝜃, 𝑡)𝑑𝜃
𝜋

𝜋
2

 (𝑃 𝑡𝑜 𝐴𝑃)                                       (3.27) 

To analyze the performance of each method, the first thing is measuring the stability for 

different grid numbers. We simulated the two methods using different timestep (∆t) and grid 

number (G) in Matlab. We simulate the MTJ switching time for timestep equal to 10ps and 

100ps and compare them with the switching time for timestep equal to 1ps. The simulation 

result is shown in Fig. 3.3. The results indicate that while the difference in percentage of P for 



 

45 

 

different timesteps is greater for the implicit method than for the Crank-Nicolson method, the 

absolute values remain within an acceptable range.  

 

Fig. 3.3. Stability analysis for the implicit method and the Crank-Nicolson method of FDM. 

The solid line represents the difference in switching probability between ∆t =1ps and ∆t 

=100ps. The dotted line represents the difference in switching probability between ∆t =1ps and 

∆t =10ps.  

We evaluated the accuracy of the FPE results by comparing them to experimental data [59] 

and calculated the error rate ( error rate=(𝑡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
𝑃=50% − 𝑡𝐹𝑃𝐸

𝑃=50%)/𝑡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
𝑃=50%  ) as the 

averaged difference between the two results during the switching process. The timestep was 

set to 1ps. In Figure 3.4, it is observed that the results reach stability when the grid number is 

greater than or equal to 149. For this particular sample, the error rate can be reduced to less 

than 10% when the grid number equal to 149. Meanwhile, we have computed the total CPU 

times for the two methods in the simulation which entails multiple switching events of a 

single MTJ spanning hundreds of microseconds. The results show that, in the same 

simulation conditions, the Crank-Nicolson method consumes 40% more CPU time compared 

to the implicit method. Based on the above simulations, we conclude that the optimal 

configuration for the underlying solver is the implicit method with a grid number of 149.  

In the case where we assume the external field to be zero, the Fokker-Planck equation-based 

model only requires three parameters (𝐼𝑐 , 𝜏𝐷 and 𝜉 ), which simplifies the process of 

parameter fitting using experimental data in the Matlab. Figure 3.5 shows an example of 



 

46 

 

fitting result with the experimental data from [75]. The write error rate is a critical parameter 

in memory design which is the non-switching probability (1-P). In comparison with the 

s-LLGS-based model, the FPE-based model can obtain a write error rate of less than 10-6 in a 

single simulation. The results indicate that our model fits well with the experimental data 

even when the write error rate is very low. The parameter we set are 𝐼𝑐=68μA, 𝜉=44 and 

𝜏𝐷=0.25ns. 

 

Fig. 3.4. Stability and simulation time comparison with the grid number changed. The bars 

represent the error rates and the asterisks represent the simulation times. 

 

 

Fig. 3.5. Numerical calculation results of the FPE for write error rate compared with the 

experimental data [75]. 



 

47 

 

3.3.2 Framework to obtain the theta (θ) 

In some applications such as spiking neural network neurons, it is crucial to have access to 

information about the dynamic changes in the theta between the magnetic moments of the 

free and pinned layers. In order to overcome the limitation of FPE based models that do not 

provide theta information, we have developed a framework to obtain the changes in theta. [42] 

The FPE offers the probability density of theta as opposed to the switching probability in the 

switching probability model. This feature makes it is possible to monitor of the theta change 

process in an individual switching event of STT-MTJ for a particular device that is defined 

by a cumulative probability of the switching event. Figure 3.6 demonstrates the procedure for 

obtaining information on theta. A number P is predefined which can be considered to specify 

a specific STT-MTJ from the time-dependent cumulative probability. It specifies the most 

possible trace of magnetization for the device whose switching probability equals to the P at 

the last time step of the simulation. For different application scenarios, the P can be a constant 

value for all the STT-MTJs or different random numbers for the STT-MTJs in order to 

describe the extreme case or the reality. An example of P = 0.5 is shown in Fig. 3.6. The value 

of theta can be thought of as the cumulative probability of theta being equal to 1-P, which is 

0.5 in this case. By implementing this framework for each timestep, we can obtain the trace 

of theta. 

 

Fig. 3.6. Schematic diagram for obtaining θ from the FPE solutions for the probability density 

of θ. The curves with the different colors represent those for t=0.01, 0.3, 0.5, 0.6, 0.7 and 0.9ns 

from the bottom to the top, respectively. 

We compared the performance of my model with the s-LLGS based model. A 10000 times 
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Monte Carlo simulation is done for the s-LLGS model and compare the average trace of the 

theta with the trace obtained by the framework we proposed. We averaged the Monte Carlo 

simulation cases that reached 𝜋/2 at the same time as our model for different switching 

probabilities. The comparison results are presented in Fig. 3.7 and demonstrate that our 

framework agrees with the s-LLGS model. The parameters we used are 𝐼𝑐=8.26mA, 𝜉=80 

and 𝜏𝐷=0.254ns. 

 

Fig. 3.7. Comparison between numerical calculation results of the FPE and the averaged 

s-LLGS solutions. From left to right, the lines represent the switching probability P = 0.1, 0.3, 

0.5, 0.7 and 0.9, respectively. 

We set two modes to adapt to different applications: one includes the theta obtaining 

framework, and the other does not. Different modes require different resistance models. The 

resistance model for the mode includes the theta obtaining framework (theta mode) is 

expressed by: [76] 

𝑅−1(𝜃) = (𝑅𝑝
−1 + 𝑅𝑎𝑝

−1)/2 +
(𝑅𝑝

−1 − 𝑅𝑎𝑝
−1)𝑐𝑜𝑠𝜃

2
                         (3.28) 

For the mode which does not include the theta obtaining framework (probability mode), the 

resistance is considered only to have two different resistance states, rather than being a 

function of theta. The low resistance state (Rp) is calculated by: [63] 

𝑅𝑃 =
𝑡𝑜𝑥

𝐹 × 𝐴𝑟𝑒𝑎 × √𝜑𝐵
𝑒𝑥𝑝(1.025𝑡𝑜𝑥 × 𝜑𝐵)                           (3.29) 

The high resistance state (Rap) is calculated by the TMR ratio: 
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𝑅𝑎𝑝 = (1 + 𝑇𝑀𝑅𝑅)𝑅𝑝                                                (3.30) 

In fact, the resistance model of the probability mode is the same as the switching probability 

model.  

Thermal fluctuations affect the initial theta distributions, so we update the random number P 

to account for this phenomenon when the system is at thermal equilibrium. The stability of 

the system is measured by the value S which is defined as: 

𝑆 =
∑ |𝜌(𝜃𝑖 , 𝑡 + Δ𝑡) − 𝜌(𝜃𝑖 , 𝑡)|
𝑛
𝑖=0

∆𝑡
                                     (3.31) 

where n is the total grid number for 𝜃 from 0 to 𝜋. Because the timestep in the HSPICE is not 

a constant value just like in the Matlab, the S is corresponding with the ∆𝑡 for each timestep 

in HSPICE. If S is smaller than the predetermined critical value, the system is regarded as 

being in thermal equilibrium and a new random number is generated. At the same time, the 

probability density is reset to the corresponding thermal equilibrium state. 

4.4 Validation results 

The model is implemented by Verilog-A and simulated in HSPICE. The equations in the 

implicit format made it challenging to use the built-in ‘idt’ function which is commonly used 

for integration in Verilog-A. In this situation, I constructed an architecture that uses the 

Thomas method to solve the linear system of equations described in Eq. 3.15.  

 

Fig. 3.8. HSPICE simulation results of switching time based on the FPE model for different 

incident currents compared with the experimental data with the switching probability equal to 
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50% [59][77]. The unit of data1 is mA. The unit of data2 and data3 is μA. 

The model is validated for individual devices. In this simulation, one STT-MTJ was directly 

connected to a current source. The first validation is for a constant switching probability. The 

switching time for different incident currents are simulated with the P equal to 50%. The 

parameters we use are 𝐼𝑐=8.26mA, 80.4μA and 93.2μA, 𝜉=80, 116 and 111 and 𝜏𝐷=0.254ns, 

1.38ns and 0.42ns for experimental data1, experimental data2 and experimental data3, 

respectively. The current changes across a broad range including the adiabatic precessional 

regime, the thermal activation regime and the intermediate regime. The FPE-based model only 

requires three simulation parameters to match experimental results. The Fig. 3.8 shows that the 

model work well in all the regimes and consistent with the experimental data [59][77]. 

 

Fig. 3.9. HSPICE simulation results of switching probability based on the FPE model for 

constant incident currents compared with the experimental data [59]. Solid lines represent 

HSPICE results and data points represent the experimental data. From left to right, the incident 

currents are 14.1mA, 9.87mA, 8.46 mA, 7.62 mA, 6.55 mA, 5.92 mA and 5.08 mA, 

respectively. 

The model Is also validated for t”e re’ationship between probability and the time for a 

constant incident current. Fig. 3.9 shows that the model fitting the experimental data [59] 

well. Furthermore, even if the results are not compared directly with the changing of the 

switching probability distribution, validating the correction of the model is sufficient since 

the probability is the summation of the switching probability density for each time step. The 

parameters I set are 𝐼𝑐=8.26mA, 𝜉=80 and 𝜏𝐷=0.254ns. Figure 3.10 illustrates the resistance 

characteristics of both modes along with the theta transition process in the angle mode with 

the predetermined number is 0.9. A constant voltage is input start from t=0. Different 
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resistance modes result in different switching speeds, as dynamic theta causes a change in 

current.  

 

Fig. 3.10. HSPICE simulation results of angle and resistance characteristics for different 

resistance modes. 

In order to validate the FPE based model can work with other standard devices in the EDA 

tools, I simulate a simple 1T1C1MTJ circuit. The structure of 1T1C1MTJ circuit is shown in 

Fig. 3.11. I realize a single P state writing and the results are shown in Fig. 3.12. The mode of 

FPE based model is set as theta mode. The parameters I set are 𝐼𝑐𝑎𝑝=80μA, 𝜉=100 and 

𝜏𝐷=0.15ns. The switching probability is set as 80%. The results shows that my FPE based 

model can work with other standard devices in the EDA tools. The practical applications of 

FPE based MTJ model in more complex applications will be demonstrated in Chapter 4. 

 

Fig. 3.11. 1T1C1MTJ structure. 
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Fig. 3.12. HSPICE simulation 1T1CMTJ structure with P to AP switch. The VSL keeps 0 during 

the simulation. 
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4.1 Introduction 

Due to its resistance and stochastic properties, STT-MTJs have been used in various 

applications. In this chapter, I have utilized STT-MTJs in two distinct types of applications. 

The first application involves utilizing the resistance property of STT-MTJs in STT-MRAM, 

whereas the second application involves the magnetization changing and resistance properties 

of STT-MTJs in a spiking neural network (SNN) which I proposed. [57] 

4.2 STT-MRAM 

 

Fig. 4.1. The top pinned (a) and the bottom pinned (b) structures of the 4T2MTJ MRAM cells 

with power-on operation, respectively. The bule color represents the pinned layer. 

 

 

Fig. 4.2. Read/write operations of the 4T2MTJ cell. 

There are many kinds of STT-MRAM cell. Here we deal with the 4T2MTJ cell [35], [78], 
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again. The structure of the 4T2MTJ cell is shown in Fig. 4.1. The control signals of read and 

write operations are shown in Fig. 4.2. For the write operation, it needs two steps to 

separately switch the two MTJs because the different state switching needs different 

directions of input current. For the read operation, it needs to pre-charge the BL and /BL. 

After that, the voltage of the node which connects the high resistance will decrease during the 

read operation. In Fig. 4.2, we used dotted line and solid line to show the signals of writing 

different information into the cell and different results of read operation. 

A noteworthy point is the type of STT-MTJ connection in this structure. There are two types 

of connections, namely the top-pinned structure and the bottom-pinned structure. The 

top-pinned structure refers to the configuration in which the pinned layer is connected to the 

power line (PL), while the bottom-pinned structure refers to the configuration in which the 

free layer is connected to the PL. During the read operation, the data in the STT-MTJs is 

loaded to the latch circuit. The node connecting to the P state STT-MTJ can reach a high 

voltage. A large current flows through the STT-MTJ at the AP state from the PL to the ground, 

whereas only a very small current flows through the STT-MTJ at the P state. The state 

changing of STT-MTJ depends on not only the intensity and duration of the current but also 

the direction of the current. To ensure that data is not corrupted in the STT-MTJ during 

wake-up operations, the 4T2MTJ cell must adopt the top-pinned structure because a large 

current flowing from the free layer to the pinned layer can switches the AP state to the P state.  

I simulate the 4T2MTJ MRAM by my switching probability based model and the probability 

mode of the FPE based model in the HSPICE. The mode assumes that the STT-MTJ only has 

two resistance states. The simulation results are shown in Fig. 4.3 and Fig. 4.4. The top figure 

of Fig. 4.3 and Fig. 4.4 shows the control signals. At the beginning and the end, the read 

operation was performed twice to verify the effectiveness of the write operation in between.  

For switching probability based model, I perform a simulation with switching probability 

equal to 50%. The switching of STT-MTJ takes place in the black dotted circles in the bottom 

figure of Fig. 4.3. For FPE based model, total 20 times simulation results of the BL and /BL 

under the same condition are depicted in the bottom figure of Fig. 4.4. The circuit 

demonstrates stochastic characteristics during the write operation due to the stochastic 

property of STT-MTJs. The switching of STT-MTJs takes place at various time points, as 

shown by the black dotted circles in the bottom figure of Fig. 4.4. The fact that the results of 

the two read operations were opposite to each other demonstrates the successful execution of 
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the write operations. 

The simulation results in the Fig. 4.4 prove that our FPE based model can work with standard 

CMOS devices in the EDA tools. Because of the resistance property, the STT-MTJ can be 

used in memory. 

 

Fig. 4.3. 4T2MTJ STT-MRAM cell Simulation based on switching probability based model. 

 

 

Fig. 4.4. 4T2MTJ STT-MRAM cell Simulation based on FPE based model. 
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4.3 Spiking neural networks (SNNs) 

I propose an STT-MTJ based leaky integrate-and-fire (LIF) neuron with auto-reset function. I 

also propose an STT-MTJ based synapse which solves the problem of small TMRR and 

resistance. An SNN s designed to validate the performance of the proposed neuron and 

synapse, and the results indicated that our design achieved high energy efficiency. 

4.3.1 Basic of SNN 

In the past decade, there have been significant advancements in deep neural networks (DNNs) 

which are now extensively applied across diverse domains such as image recognition [79], 

autonomous driving [80], and board games [81]. They have demonstrated a performance 

level comparable to, or in some cases, surpassing that of humans.[81]-[82] Despite significant 

advances in deep neural networks (DNNs), the computational demands for performing 

inference remain huge, as a vast number of multiply-accumulate operations are required. For 

instance, AlphaGo's victory over the human world champion in the game of Go was achieved 

at the cost of consuming energy orders of magnitude higher than that of the human player. 

While several approaches, such as the use of computing-in-memory architecture, have been 

proposed to reduce the energy consumption by minimizing data transmission between 

memories and processors, the power consumption of DNNs still remains significantly higher 

than that of the human brain, which consumes only 20 watts. [83] 

 

Fig. 4.5. The basic process of spiking neural network. 

The inefficiency of DNNs has led to increasing interest in SNNs which are inspired by 

biological neural networks. SNNs are event-driven, which is a key difference from deep 
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neural networks. [84] Neurons communicate via digital pulses instead of analog values. This 

approach capitalizes on the temporal representation of information and is expected to 

improve efficiency while consuming less energy. [85] SNNs offer distinct advantages for 

tasks that require real-time processing, such as speech and motion analysis. [84]  

Figure 4.5 provides a simple example of information processing in SNNs, where 

interconnected neurons communicate via synapses. Based on an encoding method, the 

information in the input pixels transfers to some discrete spikes. Spiking neurons integrate 

incoming spikes and generate output spikes to the next layer. The rules dictating spike 

generation differ depending on the specific neuron type. The recognition result is determined 

based on the output neuron with the highest firing rate or the first spike. The final recognition 

results are determined by either the firing rate of the neurons in the output layer or the 

sequence of their firing. While the example demonstrates the application of SNNs to static 

image recognition, it is worth noting that SNNs are more advantageous in handling 

time-related events, such as dynamic image processing. 

Neurons play a crucial role in SNNs because they receive, process and transfer the 

information in the SNNs. There are several existing neuron models such as the 

Hodgkin-Huxley (HH) model [86], the leaky integrate-and-fire (LIF) model [87], and the 

Izhikevich model [88]. Although their characteristics may differ, the core of these models is 

to accumulate different time-varying input signals and output when a threshold is reached.  

Some studies have attempted to leverage the performance advantages of spiking neural 

networks (SNNs) by utilizing non-von Neumann architectures such as in-memory computing. 

[89]-[97] The traditional complementary metal-oxide-semiconductor (CMOS) technology 

requires the large size capacitors to integrate the spikes, which makes it hard to increase the 

density of the circuit. [98] The research progress on novel memory devices has made it 

possible to design capacitorless SNNs and provides better energy efficiency. [99] Under the 

circumstances, I utilize the STT-MTJ to implement the SNNs. 

4.3.2 STT-MTJ based neuron 

The LIF neuron is one of the most widely used neuron models in current applications. The 

performance and the equivalent circuit of LIF neuron are shown in the Fig. 4.6. The u(t) is 

expressed as: [87] 
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𝑑𝑢

𝑑𝑡
= −

𝑢(𝑡)

𝜏𝑚
+
𝐽(𝑡)

𝐶
                                                     (4.1) 

where u, R, J and τm (=RC) are a membrane potential, a resistance, the incident current into 

the circuit and a time constant of the neuron, respectively. The neuron receives the input 

spikes and generates an output spike when the membrane potential u reached the Vth. The 

membrane potential will reset to the initial value after the neuron fires the output spike. The 

reset mechanism is not shown in the Eq. 4.1 and Fig. 4.6 (a).  

 

Fig. 4.6. (a) A simplified equivalent circuit of a leaky integrate-and-fire (LIF) neuron. (b) The 

response of the LIF neuron to incident currents. The spike firing with reset mechanism shown 

in (b) is not modeled in (a). 

 

 

Fig. 4.7. Structure of the auto-reset neuron. 

The magnetization switching process is similar to the membrane potential in the LIF neuron, 

which makes it possible to use STT-MTJ as the core device in the LIF neuron design. The 
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magnetization in STT-MTJ replaces the membrane potential. Comparing with the s-LLGS 

equation, the term -u(t)/τm can be replaced by the terms associated with precession and 

damping, which enables the magnetization to return to its initial state before it reaches half π. 

The π/2 can be considered as the threshold voltage (Vth) in the LIF neuron. The J(t)/C can be 

replaced by the spin-transfer torque term which makes the magnetization change the 

direction. 

The structure of the auto-reset neuron I proposed is shown in the Fig. 4.7. The relationship 

between the Rref and the STT-MTJ which is shown in the left determined the output signal. In 

order to implement this, the Rref is set to the value between Rp and Rap (Rp<Rref<Rap). When 

TMRR0 is set as 200% in this work, it can use two STT-MTJs in series as the reference. The 

relationship satisfies Rp<Rref=2Rp <Rap=3Rp. Three STT-MTJs and two cross-coupled NFETs 

constitute the core part of the neuron. The initial state of the STT-MTJ is P state. The 

magnetization in the STT-MTJ will be switched by the input from the BL. When the 

STT-MTJ switches to the AP state, the neuron will output a high voltage which can be 

consider as the fire. 

Different from the 4T2MTJ cell, the LIF neuron does not need the top pinned structure to 

keep the information during the read operation. In the opposite, the bottom pinned structure 

can provide better performance. In LIF neuron, a reset operation is necessary after one output 

spike is generated. For the neuron which is shown in the Fig. 4.7, it means that the STT-MTJ 

should be reset to the P state. Under the circumstances, I utilized the bottom pinned structure 

to realize the state of STT-MTJ automatically resets to the P state after firing rather than 

keeps AP state, which is exactly the error in read operation of 4T2MTJ. 

 

Fig. 4.8. Read operations of auto-reset neuron. 
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Table 4.1. Parameter of STT-MTJ used in BSNN 

Parameters Symbol Value 

Critical current (P to AP) Icp 93.1μA 

Critical current (P to AP) Icap 37.4μA 

TMR ratio TMRR0 200% 

Resistance of P state Rp 6.5kΩ 

Relaxation time τD 0.2ns 

 

 

Fig. 4.9. HSPICE simulation results of read operations. (a) The control signals of auto-reset 

neuron for read operation. (b) Results of read operation when STT-MTJ is AP state. (c) Results 

of read operation when STT-MTJ is P state. 

The read operations based on different STT-MTJ states are shown in the Fig. 4.8 and the 

HSPICE simulation results of the read operation are presented in Fig. 4.9. VL and VR are used 

to define the storage nodes. The parameters of STT-MTJ are shown in Table 4.1. The 

simulation is conducted using the 45nm technology node, while the CMOS transistor 

simulations are based on the Predictive Technology Model (PTM) model [100]. The output of 

the neuron is Vdd when the STT-MTJ is in the AP state, indicating logic 1. A large enough 

current flows through the STT-MTJ, switching the state to the P state. In the same read 

operation, the output can remain constant even if the state of STT-MTJ is changed because the 

information has already been latched. The output of the neuron is 0V when the STT-MTJ is in 

the P state, indicating logic 0, and the resistance remains constant. Because the VL is at Vdd, 

there is only a tiny current flowing the STT-MTJ. This tiny current has practically no impact on 

the magnetization changing. The simulation results shown in Fig. 4.9 demonstrate that the auto 
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reset neuron can generate spikes depending on the state of STT-MTJ and automatically reset to 

its initial state while maintaining the output. 

 

Fig. 4.10. Write operation of auto-reset neuron. 

The write operation is shown in Fig. 4.10. A current mirror is used to generate the input 

current and isolate the synapse array during the read operation. A simulation was conducted 

to validate the performance of the auto-reset neuron by observing changes in the resistance of 

the STT-MTJ for different input currents. The Fig. 4.11 shows that the neuron integrates the 

input information, which leads to that the STT-MTJs switch the states in different write 

operations for different input currents. Additionally, the relaxation of magnetization to the 

thermal equilibrium state, observed in the simulation results, can be considered as a leakage 

in the LIF neuron. 

 

Fig. 4.11. HSPICE simulation results for write operations of auto-reset neuron with different 

input currents. The voltage signal VPL is maintained at 0V throughout the simulation. 

The auto-reset neuron mainly has three merits. Firstly, the removal of independent reset 
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cycles enhances the throughput of SNNs. The second merit of my design is the elimination of 

the circuits used to detect spike occurrence and control the reset operation, which is 

especially beneficial for neurons that employ emerging devices requiring a reversal in current 

direction for resetting their state. To illustrate this, we compare with [94] which utilized the 

spin-orbit torque MTJ (SOT-MTJ) to implement SNN neuron. The structure of the SOT-MTJ 

and neuron form [94] are shown in the Fig. 4.12. The direction of the current flows through 

the heavy metal determines the SOT-MTJ switching. The control signals comparison is 

shown in Fig. 4.13. When compared to my proposed neuron design, the neuron presented in 

[94] not only requires an additional independent reset operation and control circuit, but also 

necessitates a latch circuit to preserve the spike until the completion of the write operation for 

the neuron in the next layer. 

 

Fig. 4.12. (a) Structure of spin-orbit torque MTJ. (b) Neuron structure from [93]. 

 

Fig. 4.13. (a) Control signals of the neuron from [94]. (b) Control signal of the auto-rest 

neuron. 
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The third merit is that the auto-reset neuron reuses the energy for the read operation. The 

energy consumed during read operations cannot be avoided. Whether or not an independent 

reset operation is performed, there will always be a current flowing through the STT-MTJ 

during read operations. By repurposing this current to reset the state of the STT-MTJ, the 

overall energy consumption can be reduced. 

4.3.3 STT-MTJ based synapse 

 

Fig. 4.14. Structure of the proposed STT-MTJ based synapse with a write circuit. 

As I introduce in the previous chapters, the value of TMRR is only at the range of 

100%~300%. It is not a very large value for the synapse comparing with other devices just 

like RRAM. Meanwhile, the absolute resistance value is also small. For large-scale SNNs, 

the effective resistance of the synapse array may be less than several thousand ohms, which 

poses challenges to signal reading and processing. The operational amplifiers with negative 

feedback can solve the problem. However, the long delay time which avoids the oscillation 

limits it is used with STT-MTJ based neuron because the relaxation time of STT-MTJ is only 

about 1ns. 

Under the circumstances, I proposed a STT-MTJ based synapse to solve the problems. The 

structure of the 2T2MTJ synapse is shown in Fig. 4.14. Based on the state of two STT-MTJs, 

the NFET can be in three different conducting states. The relationship between the states of 

STT-MTJs and the conducting state is shown in Fig. 4.15. In this work, I implemented a 

binarized spiking neural network and I only used two different conducting state (0.3Vdd and 

0.7Vdd) to implement binarized weights. The conducting state with 0.3Vdd is considered as the 

logic 0 and the conducting state with 0.7Vdd is considered as the logic 1. 
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Fig. 4.15. (a) The relationship between the states of STT-MTJs and the voltage at the node 

between two STT-MTJs. (b) Conduction properties of the NFET at the three different gate 

voltages realized by the resistance combinations for the two STT-MTJs in the synapse shown 

in (a). 

As shown in Fig. 4.7, the output current generated by the current mirror in the neuron. A 

comparison between 2T2MTJ and 1T1TMJ is shown in Fig. 4.16. The structure of 1T1TMJ 

is shown in Fig. 4.16 (b). The resistance of P state in STT-MTJ is 6.5kΩ. The output current 

is a function of the weight equal to logic 1. I assumed total 10 WL is activated at the same 

time in the simulation. Because the lack of operational amplifier, the voltage of BL is 

changing, which leads to the nonlinearity between the number of synapses with logic 1 and 

the current input to the neuron. The output current range of the 2T2MTJ synapse is from 0 to 

110μA. The range difference of 1T1MTJ structure is only 23μA. Even if the resistance of P 

state is set as a larger value (50kΩ), the output current range is still much smaller than the 

2T2MTJ synapse. This suggests that achieving sufficient precision to distinguish inputs 

within a single write operation is challenging. Especially in situations where operational 

amplifiers cannot be used. 

 

Fig. 4.16. The current flowing through the left STT-MTJ in the neuron for different 
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multiply-accumulate (MAC) values (the number of the synapses with weight “+1”) when total 

number of the synapses is 10 for the proposed synapse (blue line). The other two lines (red and 

orange) are for the 1T1MTJ synapse for Rp=6.5 kΩ and 50 kΩ, respectively. (b) Structure of 

the 1T1MTJ synapse. 

4.3.4 Spiking neural network implementation 

 

Fig. 4.17. The structure of the single layer BSNN with the auto-reset neurons and the 2T2MTJ 

synapses. The write circuits of the synapses are not shown in the structure. 

This section validates the performance of the proposed neuron and synapse at a system level. 

I implemented a binarized spiking neural network (BSNN) on the standard MNIST dataset 

[101], which is used for handwritten digit recognition. The frame information of the 

handwritten digits is transferred to discrete spikes by the Poisson encoding [102]. The 

Poisson encoding is expressed as  

𝑃𝑝𝑜𝑖𝑠𝑠𝑜𝑛 =
(𝑟∆𝑡)𝑛

𝑛!
𝑒−𝑟∆𝑡                                                      (4.2) 

where r, ∆𝑡 and n are firing rate, timestep and the probability number of spikes during a 

time interval of length ∆𝑡. By mapping pixel intensities onto different firing rates, we obtain 

Poisson encoding probabilities for each input point. At each timestep, I compare the 



 

67 

 

probabilities of Poisson encoding with randomly generated numbers between 0 and 1 to 

determine whether to generate an input spike. 

I created a single-layer BSNN with 784 input neurons and 400 output neurons. The structure 

of the BSNN is shown in Fig. 4.17, where m=784 and n=400. The write circuit of the synapse 

is not shown in this figure. During the read operation, the read control signal is set to ground 

(GND) to isolate the synapse array from the neurons. During the write operation, it is set to 

Vdd. Because of the auto-reset function, the BSNN does not require additional external 

circuits for resetting. The Poisson encoding is a type of rate encoding method. Therefore, the 

recognition results are determined by comparing the firing rates of 𝑊𝐿𝑖
(2)

 shown in Fig. 4.16. 

The neuron with the highest firing rate is considered the winner and the corresponding digit 

which is predetermined during the training phase to be used as the recognized result. This 

step implements in a post-processor of software in MATLAB. 

The BSNN is trained by the spiking-timing-dependent plasticity (STDP) algorithm [103]. The 

algorithm adjusts the weights of synapses by the relative timing of output spikes and input 

spikes. The classical STDP algorithm is expressed as: [104] 

{∆𝜔 = 𝐴
+𝑒

−
∆𝑡
𝜏+            ∆𝑡 > 0

∆𝜔 = 𝐴−𝑒
∆𝑡
𝜏−               ∆𝑡 < 0

                                                 (4.3) 

Where 𝐴+ , 𝐴− , 𝜏+  and 𝜏−  are the learning rate of potentiation/depression and time 

constant of potentiation/depression. The process is performed like shown in Fig. 4.18.  

 

Fig. 4.18. Schematic diagram of spiking-timing-dependent plasticity algorithm 

The algorithm is for the full precision weights and I directly binarized the trained weights. 
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The training result of the weight matrix after binarization is shown in Fig. 4.19. Here I only 

show the weights of the first 100 neurons as an example. Each digit is composed of 28×28 

grids. Based on the weight matrix, it is easy to find each neuron separately represents a digit. 

I determine the success of this recognition by comparing the digit of the sample with the digit 

corresponding to the neuron with the highest firing rate. BSNN can reach 82% test accuracy 

in the software with the standard LIF neuron and linear binarized synapse. In this simulation, 

I used total 20 cycles of read and write operations. The duration of read and write operation is 

1ns and there is a 0.25ns transition between the read and write operations. 

 

Fig. 4.19. Binarized weight matrix (28×28) of 100 neurons in a 10 by 10 grid. 

The simulation results of a single output neuron are shown in Fig. 4.20. Figure 4.20 (a) and (b) 

are simulated based on the same situation and stochastic characteristics are shown. The 

output of a single neuron demonstrates that my design has effectively achieved the intended 

functionality. The input spikes are integrated by the neuron during the write operation which 

sets the voltage of the VPL(last layer) to Vdd. When the state of STT-MTJ changes to the AP state, 

the neuron outputs a spike and resets to the initial state during the read operation which sets 

the voltage of the VPL) to Vdd.  

To better demonstrate how SNN performs recognition tasks, Figure 4.21 presents an example 

of the output voltages of different neurons in an image recognition task. I selected ten 

neurons representing different digits to show their output when recognizing the digit “1”. The 

input figure is shown in the left of the Fig. 4.21. The weight matrix for each neuron is 

displayed either at the top or bottom of the output figure. It can find that the neuron which 
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represents “1” has the highest firing rate.  

 

Fig. 4.20. Simulation results of a single output neuron in the BSNN. (a) and (b) are simulated 

based on the same situation. 

 

 

Fig. 4.21. Simulation results of 10 neurons which represent digit “0” to “9”. The neuron 

represents the digit “1” has the highest firing rate. The input figure is shown in the left. The 

weight matrix for each neuron is displayed either at the top or bottom of the output figure. 

The accuracy of the recognition was 75% for 1200 patterns. The accuracy loss is from the 

mismatch between the training algorithm and the hardware design. The training is based on 

the standard LIF neuron and full precision synapse.  
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There are some methods can improve the accuracy such as using a suitable training algorithm 

based on the characteristic of STT-MTJ based BSNN, increasing the size of the network. 

Adding some techniques including winner-take-all [105] or classification layer [106] also 

works for increasing the accuracy.  

I tried to add one more SoftMax readout layer. The amount of output spikes for each neuron 

is counted and used as the input to the SoftMax readout layer. The fully connected SoftMax 

readout layer is trained on the whole dataset. The training uses the Adam optimizer and 

cross-entropy loss function. [105] With the SoftMax readout layer, the test accuracy can 

increase to 88% in the software and 83.71% for the HSPICE results (1200 patterns). The 

accuracy is enough to prove that my neuron and synapse can be used in the SNNs. 

4.3.5 Energy efficiency 

The energy efficiency of neural networks is a key performance indicator. For SNNs, people 

use the synaptic operation (SOP) to fairly compare the energy efficiency among different 

SNNs. The SOP is defined as a source neuron generates a spike which then flows through a 

non-zero synapse and is added to the membrane potential of the neuron in the next layer. It is 

unfair to directly compare the total inference energy, because the accuracy level or the 

datasets are variable in different SNNs. Under the circumstances, energy per SOP which 

means the energy per fundamental operational unit us a fairer metric to compare the energy 

efficiency among different SNNs. The merits of energy per SOP are it minimize the impact of 

weight values or the network size which have huge impact on the accuracy of SNNs. 

There is another similar indicator to evaluate the energy efficiency of the neuron: energy per 

spike. Energy per spike is defined as the total energy consumption includes the read, write 

and reset operation for a neuron to generate a spike to the next layer. It evaluates the energy 

consumption of a fundamental operation unit in a neuron. The mainly difference between the 

energy per spike and energy per SOP is that the energy per spike only evaluate the energy in 

neuron and guarantee one spike is generated. 

The resistance of STT-MTJ is greatly affects the power consumption of the BSNN. When the 

RP of STT-MTJ is set as 6.5kΩ, the energy consumption of the SNN is 0.23pJ/SOP. If the RP 

of STT-MTJ increases to 7.5kΩ, the total energy can reduce to 0.19pJ/SOP. The limitation of 

the STT-MTJ resistance is the read current of auto-reset neuron. The read current must be  
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Table 4.2. Performance Comparison with Other Works 

 This work 
TED  

2016[95] 

TCAS-I  

2020 [106] 

ISCAS  

2021 [90] 

TETCI 

2018 [97] 

ASSCC 

2020 [91] 

ISSCC 

2022 [92] 

Technology 

Node (nm) 
45 45 90 28 45 65 28 

Circuit Type 
STT-MTJ 

based 

SOT-MTJ 

based 
CMOS CMOS 

Memristor 

based 
CMOS CMOS 

Model type FPE s-LLGS - - - - - 

Network Size$ 
784-400/ 

784-400-10 

784-6c5-2s- 

12c5-2s-10o 

784-400/ 

784-400-10 
- 

784-6c5-2s- 

12c5-2s-10o 

256-128-128-

128-10 
(256)-256-16 

Voltage (V) 1 1 1.4 0.71/0.9 1 0.5-1 0.5-0.8 

Bit Width of 

Weight 
1 1 1 8 1 1 8 

Auto-reset YES NO NO NO NO NO YES 

Frequency 

(MHz) 
400 - 37.5 31.5/252 24 0.07 13-115 

Accuracy for 

MNIST Dataset 

75%/ 

83.71% 
94.6% 

65.9%/ 

92.3% 
- 97.84% 91.8%# 87.3%## 

Neuron Energy 

(pJ/spike) 
0.42! >0.08!! 8.4 - 0.75 - - 

Neuron and 

synapse Energy 

(pJ/SOP) 

0.23 - - 
0.34  

@ 0.71V 
- 1.5 @ 0.5V 5.3 @ 0.5V 

Normalized 

Energy* 

(pJ/SOP) 

0.23 - - 1.025 - 1.7941 27.93 

$ c, s and o in the Network Size column stand for convolutional kernel, subsampling kernel and output, 

respectively. 

# The dataset is Google Speech Command Dataset (4 Keywords). 

## The dataset is IBM DVS Gestures. 

! The neuron energy includes the energy for the current mirror, the neuron core (2T3MTJ) and the two 

inverters shown in Fig. 6.6. 

!! The energy is estimated by the currents which are written in the papers[94]-[95]. The energy of the write 

operation is only for the core device with the resistance state changed and does not include the energy for 

the external circuits. 

* Since 28nm technology node is not shown in the paper [107], we used 32nm node for the normalization. 
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enough to switch the STT-MTJ from AP state to P state in one read operation. For this work, 

7.5kΩ is the maximum resistance of STT-MTJ which guarantees the switch can happen in 

1ns read operation. Here, I assume that the STT-MTJs in the neurons and synapses are same. 

In fact, the resistance in the synapse can be larger than 7.5kΩ and leads to a better energy 

efficiency. The comparison among my work and state-of-the-art is shown in Table 4.2. It is 

unfair to compare the energy consumption in different technology nodes. In this table, I used 

a scaling equation to normalize the energy consumption to the 45nm technology node. [107] 

The scaling equations are expressed as: 

𝐸𝑥 =
𝐸𝐹𝑥
𝐸𝐹𝑦

𝐸𝑦                                                            (4.4) 

𝐸𝐹 = 𝑎𝑒2𝑉𝑑𝑑
2 + 𝑎𝑒1𝑉𝑑𝑑 + 𝑎𝑒0                                             (4.5) 

where Ex is the normalized energy, Ey is the original energy, EF is the energy factor and Vdd is 

the supply voltage. The coefficients ae0 – ae2 are shown in Table 4.3 and the values are from 

paper [107]. 

Table 4.3. Value of coefficients ae0 – ae2 

Type Node ae0 ae1 ae2 

Bulk - 90nm 1.975 -4.398 3.755 

High-k 

HP 

45nm 0.1539 -0.3107 1.018 

32nm 0.1701 -0.4341 0.8367 

LP 

45nm 0.2767 -0.362 1.103 

32nm 0.471 -0.7823 0.9559 

 

In comparison to other works, my design exhibits superior operational frequency and energy 

efficiency. There are mainly three factors in my design leading to a higher energy efficiency. 

The first factor contributing to the higher energy efficiency of my design is the utilization of 

magnetization to represent the membrane potential in the standard LIF neuron. The STT-MTJ 

provides moderate energy efficiency (the switching energy is about 1pJ) and two resistance 

states, which makes it possible to design low-power SNNs. [108] The second factor is that 
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the characteristics of STT-MTJ switching can happened in about 1ns and there are no  

operational amplifiers with negative feedback in the BSNN. This leads to a high-frequency 

operation and a high energy efficiency. The last factor is that the auto-reset technology in the 

neuron can reuse the read energy and reduce the energy consumption. 

It should be acknowledged that the energy per fundamental operational units and accuracy 

may still have some correlations, but determining and measuring these correlations can be 

complex and difficult. While the duration of the write operation may impact the energy 

consumption per SOP, it is not always directly correlated with accuracy. In this BSNN, If the 

duration of the write operation is adjusted by a factor of 10%, either increased or decreased, 

the test accuracy in the software will decrease to 80.5% or 81.6% from the current test 

accuracy of 82%, respectively. It proves that there exists an optimal value for the write 

operation duration, which corresponds to the training algorithm employed in the network. 

Because of lacking suitable training algorithm, it is difficult to analyze the how the energy 

consumption impacts the accuracy in my design. However, a comparison based on the 

fundamental operational unit is sufficient to demonstrate that my design exhibits a 

significantly higher energy efficiency compared to existing designs, thereby providing a 

competitive advantage. 
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5.1 Review of MTJ dynamic models 

There are many existing MTJ simulation models based on different switching models 

[53]-[55], [56], [63]-[65], [109]-[122]. This chapter presents a review of different models and 

compares their time efficiency. The review of switching models is shown in Table 5.1. Here, I 

compare the original switching model rather than the improved one. S-LLGS equation has the 

highest accuracy and switching probability model requires least CPU time. The FPE 

approach provides a more balanced solution compared to the other two models. From the 

information provided and application range, the s-LLGS model performs the best, while the 

probability model has a narrower application range. 

Table 5.1. Comparison among different switching models 

Type of 

switching 

model 

Accuracy Speed 
Memory 

Requirement 
Information 

Applied 

for all 

currents 

s-LLGS High Low High Angle Yes 

Switching 

probability 
Low High Low 

Switching 

probability 
No 

FPE Medium Medium Medium 
Switching 

probability 
Yes 

 

5.2 Review of MTJ circuit simulation models 

The summary of different MTJ circuit simulation models is shown in Table 5.2. The 

comparison of the models from seven different points of view: switching model, 

implementation, stochastic term, temperature effect, time varying current, intermediate 

regime problem-solving, and information obtained. The switching model and the 

Implementation are the type of the dynamic model and the implementation method of the 

model. The Langevin term which necessitates random number generation at each timestep is 

indicated by the stochastic term. The temperature effect denotes the incorporation of  
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Table 5.2. Comparison among different MTJ circuit simulation models 

Model 
Switching 

model 
Implementation 

Stochastic 

term 

Temperature 

effect 

Time 

varying 

current 

Intermediate 

regime 

problem 

solving 

Information 

obtained 

My work 

[54]-[55] 

Switching 

probability 
Verilog-A No Yes Yes Yes 

Switching 

probability 

My work [56] FPE Verilog-A No Yes Yes - 

Switching 

probability 

and angle 

Panagopoulos 

[68] 
s-LLGS Sub-circuit No Yes Yes - Angle 

Nigman [109] s-LLGS Sub-circuit Yes No Yes - Angle 

Panagopoulos 

[110] 
s-LLGS Sub-circuit No Yes Yes - Angle 

Lee [111] s-LLGS Verilog-A Yes No Yes - Angle 

Torunbalci 

[112] 
s-LLGS Sub-circuit Yes No Yes - Angle 

Garcia-Redondo 

[113] 

Modified 

s-LLGS 
Verilog-A No No Yes - 

Switching 

probability 

and angle 

s-LLGS Verilog-A Yes No Yes - Angle 

Kim [114] s-LLGS Sub-circuit No Yes Yes - Angle 

Rose [115] s-LLGS Verilog-A Yes No Yes - Angle 

Xu [116]-[117] LLGS Sub-circuit No No Yes - Angle 

Ahmed [118] LLGS Verilog-A No Yes Yes - Angle 

Zhang [63] 
Switching 

probability 
Verilog-A No No No No 

Switching 

probability 

Yang [119] 
Switching 

probability 
Verilog-A No Yes No Yes 

Switching 

probability 

Rose [53] 
Switching 

probability 
Verlog-A No Yes Yes No 

Switching 

probability 

Rose [120] 
Switching 

probability 
Verilog-A No No Yes No 

Switching 

probability 

Sakimura [121] 
Switching 

probability 
NS-SPICE No No Yes No 

Switching 

probability 

Zhang [65] 
Switching 

probability 
Verilog-A No No No No 

Switching 

probability 

Wang [64] 
Switching 

probability 
Verilog-A No Yes No No 

Switching 

probability 

Wang [122] 
Switching 

probability 
Verilog-A No No Yes No 

Switching 

probability 
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temperature-dependent TMR ratio or Joule heating effect. The time varying current column 

specifies the model’s capability to handle changing incident current over time. 

The s-LLGS based model can provide the most accurate magnetization trajectory. However, it 

requires generating multiple random numbers for each axis to implement Langevin field, 

which leads to a higher consumption of CPU time and memory. Furthermore, it only provides 

angle information, which means it is necessary to perform a large number of Monte Carlo 

simulations for some applications such as write error rate of STT-MRAMs. There are still a 

few models intending to reduce computational load. Nigman [109] proposed to use the 

thermal noise of the resistor for modeling the thermal fluctuation of STT-MTJ. 

Garcia-Redondo [113] uses an effective Langevin field which is a summation of Langevin 

field of each time step. The effective Langevin field is calculated in the Python based on FPE. 

This method can avoid the random number generation and provide switching probability. The 

comparison of simulation times between this model and my models is shown in chapter 5.2. 

For the switching probability based models, the main problem is the intermediate regime 

problem. Yang [119] solved the intermediate regime problem by a self-defined function to 

calculate the requirement of switching time. However, it uses a fitting variable k which is not 

constant fitting parameters, which limits it to be used for time varying current. Meanwhile, 

based on different types of the switching probability model, some other models can’t handle 

the time varying current, either. One of the more special methods to handle the time varying 

current is that Sakimura [121] utilized a customized NS-SPICE to enable the model to be 

used with time varying current. Compared to other works, my switching probability model 

has the merit of solving the problem of lacking a physical model in the intermediate regime. 

Moreover, the model is able to work with time varying current. 

The Fokker-Planck equation (FPE) based model presented in my work is the first to be 

developed for circuit simulation purposes. Other existing works have only used FPE to fit the 

parameters [113]-[114] or to analyze the performance of MTJ device [46], [52], [72], [123]. 

By using the framework proposed in this study, the FPE-based model can obtain switching 

probability and angle information, which makes it a general-purpose model. Compared with 

switching probability-based models, the FPE-based model does not suffer from intermediate 

regime inaccuracies. The number of parameters required to be fitted in the FPE-based model 

[56] is much smaller compared with the number of parameters required to be fitted in the 

switching probability based models [54]-[55] which use mathematical methods to solve the 



 

79 

 

intermediate region problem. Furthermore, compared with the s-LLGS model, it requires less 

CPU time and memories.  

5.3 Time efficiency comparison 

STT-MTJs have found widespread application in large-scale circuits such as neural networks 

and STT-MRAMs. The efficiency of CPU time is a crucial factor to consider while selecting 

the appropriate model for such applications. In this section, we provide a comparative 

analysis of various models across different categories. All simulations were performed using 

HSPICE. 

 

Fig. 5.1. HSPICE simulation results of model computing time comparison. 

Firstly, I compared the simulation times based on the reversal of a single STT-MTJ’s 

magnetic moment. The STT-MTJs are connected with independent voltage sources and 

switch the states simultaneously. For my switching probability model, I am comparing the 

time efficiency of two different interpolation methods: linear interpolation and cubic 

interpolation. Additionally, I am comparing my model with one that directly switches (jumps) 

between the Sun model and Néel-Brown model (which I have coded myself), as well as a 

s-LLGS equation based model from paper [68]. The comparison results are shown in Fig. 5.1. 

The total number of the STT-MTJs is changed in a large range from 101 to 105. The 

simulation time required for the s-LLGS model is orders of magnitude larger than that of the 

switching probability based model. In comparison to model that directly switching between 

the Sun model and Néel-Brown model, my model based on cubic spline interpolation solves 

the intermediate regime problem at the cost of approximately 20% higher CPU time 

consumption when simulating a circuit with 105 STT-MTJs.  
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A comparison which includes the FPE based model with the same circuit is shown in Fig. 5.2. 

The time is normalized by the CPU time of the switching probability model with 1 STT-MTJ 

and 1 voltage source. Each simulation was repeated 10 times and the average results were 

obtained for each simulation time. Compared with the s-LLGS based model, the FPE model 

can reduce CPU time by approximately 40% for a single MTJ structure. Among the models 

compared in the HSPICE simulation, the switching probability based model had the lowest 

CPU time consumption. However, the number of required parameters in the preprocessing 

step for fitting experimental data is larger than that of the FPE based model. With the 

assumption that there is no external field (Hex=0), FPE based model only needs to fit 3 

parameters (𝐼𝑐, 𝜉, and 𝜏𝐷), while my switching probability based model needs to fit 6 

parameters (A, B, 𝜏0, 𝐼𝑐, 𝜉, and 𝜏𝐷). More parameters to fit means a significantly increased 

amount of preparation work prior to the simulation. Additionally, the absence of theta 

information limits the applicability of my switching probability based model. 

 

Fig. 5.2. Simulation results of the computing time comparison among the switching probability 

based model [55], s-LLGS based model, and FPE model [56] with a single STT-MTJ structure. 

Given that various models may display different sensitivities to circuit complexity, I 

conducted simulations under increasingly complex circuit configurations to facilitate a more 

comprehensive comparison. We used a 4T2MTJ memory cell array to compare the CPU 

times. The structure and control signals of the 4T2MTJ memory cell array are shown in Fig. 

5.3 and Fig. 5.4, respectively. The simulation results of a single 4T2MTJ cell in the 

FPE-based model are shown in chapter 6.1. The array is set to have 100 rows and the 

numbers of columns ranges from 2 to 500. It is worth to note that the STT-MRAM array is 

just an example to compare the CPU time required for different complexity circuits. In 

actuality, the primary utilization of such large-scale circuits is in neural networks. The 
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s-LLGS based model we used in this comparison is from paper [113]. This model has two 

modes: constant thermal noise mode which uses the effective Langevin field and thermal 

mode which uses the random Langevin field. The absolute tolerance which is a simulation 

parameter in Verilog-A for this model is set as 10-6.  

The simulation includes one write operation to switch the states of STT-MTJs in 4T2MTJ 

memory cells and one read operation on the first column followed by checking the writing 

results. Meanwhile all other cells are in the state of power on in which VPL is Vdd and VWL is 0. 

 

Fig. 5.3. Structure of 4T2MTJ array. 

 

 

Fig. 5.4. Read/write operations of the 4T2MTJ cell. 
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Fig. 5.5. CPU time comparison among different MTJ models. G stands for grid number. Im 

means the implicit method and C-N means the Crank- Nicolson method. 

 

 

Fig. 5.6. Maximum memory consumption comparison among different MTJ models. G stands 

for grid number. Im means the implicit method and C-N means the Crank- Nicolson method. 

The comparison results are shown in Fig. 5.5. Here, each simulation also was repeated 10 

times as the single STT-MTJ simulation and the average results were obtained for each 

simulation time. The impacts of underlying solver in the FPE model are also compared in Fig. 

5.5. For a large-scale circuit, the s-LLGS model with a random Langevin field consumes 

several orders of magnitude longer CPU time. My FPE based model can reduce the total CPU 

time by 97% from the thermal mode of the model [113] when N=10. Moreover, the memory 

requirement poses a significant challenge to the utilization of this method in large-scale 

circuits. The switching probability model shows the same performance as the single 

STT-MTJ simulation which requires the least amount of CPU time. Compared with the 

constant thermal noise mode of the s-LLGS based model, the theta mode of the implicit 
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method demonstrates higher time efficiency as the circuit complexity increases. When N = 

500 and G (grid number) = 149, my model can reduce CPU time consumption by 68%. 

Despite the use of the Crank-Nicolson method in our FPE based model, it still demonstrates 

better time efficiency compared with the constant thermal mode of the s-LLGS based model. 

Meanwhile, I have also compared the maximum memory usage of different models. The 

results are shown in Fig. 5.6. The maximum memory used by different modes of the proposed 

FPE-based model is almost the same. In contrast, the original s-LLGS model consumes 

approximately 38 times more memory than the proposed FPE-based model when N=10. For 

N=500, my model is capable of reducing the maximum memory consumption by 48%. 

Notably, the switching probability-based model exhibits the lowest memory consumption 

across all N situations.  

5.4 Conclusion 

In this dissertation, I presented two kinds of spin-transfer torque magnetic tunnel junction 

simulation models. The switching probability based model solved the intermediate regime 

problem and has the capability to handle time varying currents. The FPE based model 

proposed a new framework to obtain the information on the theta between the magnetizations 

in the free layers as a function of time. The effectiveness of the models had been validated by 

comparing with experimental data. Comparing with other models, the Fokker-Planck 

equation based model has higher time efficiency while providing the same kinds of 

information. The models are capable of meeting the requirements of various types of 

applications which use STT-MTJ devices. I employed STT-MRAM and the BSNN that I 

designed as examples to demonstrate the practicality of the proposed model. 

In Chapter 1, I discussed the development history and basic characteristics of STT-MTJs, as 

well as their applications. I introduced the basic physical model of an MTJ’s switching 

dynamics, which is the Stochastic Landau-Lifshitz-Gilbert-Slonczewski model (s-LLGS). 

Additionally, I provided an explanation on how to calculate the effective fields in STT-MTJs. 

In Chapter 2, a switching probability based STT-MTJ simulation model was proposed. The 

switching probability is deviated from the s-LLGS equation with some assumptions, which 

makes it can only work in some current condition. The main problem with 

probability-switching models is the lack of a physical model in the intermediate region. The 
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problem was solved by using a framework that connects two existing models, each suitable 

only for regimes far greater or smaller than the critical current. Meanwhile, I also used an 

effective time which depends on the current other than the actual time to handle the time 

varying current. The validation results show that the model works in the intermediate regime 

with time varying current. Compared with some of the s-LLGS based model, this model 

consumes less CPU time with a higher accuracy. 

In Chapter 3, a Fokker-Planck equation (FPE) based STT-MTJ simulation model was 

proposed. The FPE is also deviated from the s-LLGS equation which can be thought of as the 

master equation of the s-LLGS equation. I proposed a new framework to obtain the 

magnetization changing information from the probability density distribution. This 

framework makes the model usable for all kinds of applications. The FPE was solved by the 

finite difference method. I conducted a detailed comparison of three forms of finite difference 

method and selected the optimum forms which balance the accuracy and computational load. 

The model's validity had been confirmed by comparing it with both the s-LLGS model and 

experimental data. 

In Chapter 4, I applied the proposed FPE based model to two kinds of applications which use 

different properties of STT-MTJ. One is the STT-MRAM with 4T2MTJ memory cells, which 

was to observe the resistance property and stochastic switching. The other was the proposed 

binaried spiking neural network (BSNN) which utilizes the magnetization changing to 

realizes LIF neuron in SNN. The 4T3MTJ structure implement the auto-reset function. 

Meanwhile, the 2T2MTJ synapse provides a writing current with a large signal and 

high-frequency operations. The BSNN shows a high potential for low-power SNN 

implementations. It is shown that the energy is reduced as low as 0.23pJ/SOP. 

In Chapter 5, I compared my models with other existing models. The comparison results 

shows that the proposed switching probability model is the only one which solves the 

intermediate regime problem and can handle time varying current. The proposed FPE based 

model is the first one using the FPE to make STT-MTJ simulation model. Compared with the 

directly switch model, the Néel-Brown model and Sun model, the proposed switching 

probability based model consumes roughly the same amount of time which is much smaller 

than the s-LLGS based model. Compared with the s-LLGS based models, the proposed 

Fokker-Planck equation based model can reduce the CPU time by 97% while providing same 

kinds of information in large-scale circuit simulation. 
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Appendix 

A. Switching probability based circuit simulation model code 

(Verilog-A) 

/// MTJ model 2022/04/23 

//Author: Haoyan LIU 

//email:liuhaoyan@ruri.waseda.jp 

//Switching probability based STT-MTJ circuit simulation model 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

module MTJ(out, in); 

inout in, out; 

electrical in;//pinned layer 

electrical out;//free layer 

electrical stat,resis,probability,cur; 

//Define nodes 

branch(in, out) mtj; 

 

//function control switch 

parameter real rswitch = 0 from (-inf:inf); //switch to control the RP calculation 

parameter real Iswitch = 0 from (-inf:inf); //switch to control the Ic calculation 

parameter real Tswitch = 0 from (-inf:inf); //switch to control the heat mode 

 

//basic parameter definition 

parameter real ini = 1 from (-inf:inf); //initial state 

parameter real Pth = 0.63 from (-inf:inf); //predetermined switching probability 

parameter real E1 = 18900 from (-inf:inf); //energy barrier 

parameter real Troom = 300 from (-inf:inf); //room temperature 

parameter real tau0 = 24e-12 from (-inf:inf); //inverse of attempt frequency 

parameter real tau_relax = 0.26e-9 from (-inf:inf); //relaxation time 

parameter real pi = 3.141592 from (-inf:inf); //pi 

parameter real Rp1 = 2e3 from (0:inf); //resistance of P state 

parameter real TMR01 = 2 from (-inf:inf); //TMR ratio at 0V and 0K 

parameter real VH = 0.8 from (-inf:inf); // Voltage for TMRR=TMRR/2 

parameter real F = 332.2 from (-inf:inf); //fitting factor 

parameter real tox = 0.85e-9 from (-inf:inf); //thickness of oxide layer 

parameter real dia = 65e-9 from (-inf:inf); //diameter of MTJ 

parameter real phiB = 0.4 from (-inf:inf); //energy barrier height of the oxide layer 

 

//critical current calculate parameter definition 

parameter real alpha = 0.027 from (-inf:inf);//damping factor 

parameter real el = 1.69e-19 from (-inf:inf);//electron charge 

parameter real muB = 9.27e-24 from (-inf:inf);//Bohr Magneton 

parameter real mu0 = 1.26e-6 from (-inf:inf);//Vacuum permeability 

parameter real hbar = 1.05e-34 from (-inf:inf); //reduced Planck constant 
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parameter real Hk = 1.13e5 from (-inf:inf); //Anisotropy field unit:T 

parameter real Ms = 4.56e5 from (-inf:inf); //Saturation magnetization:A/m 

parameter real polar = 0.56 from (-inf:inf); //polarization factor 

parameter real tfl = 1.3e-9 from (-inf:inf);//thickness of free layer 

 

//Temperature parameter definition 

parameter real thicks = 10e-9 from (-inf:inf); //thickness of MTJ 

parameter real Cv = 3.5e6 from (-inf:inf); //the heat capacity per unit volume  

parameter real lambda = 1.5 from (-inf:inf); //the thermal conductivity 

parameter real k = 0.002 from (-inf:inf); //TMRR slope with temperature 

 

//critical current definition 

parameter real Icp1 = 60e-6 from (-inf:inf); //critical current for P to AP switch 

parameter real Icap1 = -50e-6 from (-inf:inf); //critical current for AP to P switch 

 

//Parameter of alpha function 

parameter real pa = 4.2 from (-inf:inf); //fitting factor 

parameter real pb = 0.9 from (-inf:inf); //fitting factor 

parameter real pc = 1.01 from (-inf:inf); //fitting factor 

 

//variable define 

integer sta; 

genvar i; 

real Pp,Pap,R; 

real t,t8,t9; 

real curre; 

real k1,P,kk; 

real time,timelast,timeperiod; 

real Rp,Icp,Icap; 

real gp,gap,Energy,gamma,Vol,polar1; 

real E,TMR0,T,tauth,Tcool,Theat,Tmax,ticool,tiheat,tiheat1; 

real 

h[1:21],b[1:21],q[1:20],u[1:20],c[1:20],d[1:20],z[1:22],fun[1:22],x[1:22],z[1:22],part[1:4]; 

real 

cubicparlarge[1:22]={-100,-10,-5,-1,-0.5,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.2,1.5,1.7,2,3,5,1

0,500}; 

real 

cubicparsmall[1:22]={-10,-7,-5,-1,-0.5,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.2,1.5,1.7,2,3,5,10,

500}; 

real debug1; 

 

real tini,tinipre,tiniabs,count,tini_1; 

real t1[1:22],t1ex[1:22],Isum[1:22]; 

integer position; 

 

 

analog begin 

//initial step 

  @(initial_step) begin 

// Parameter initialization 
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      debug1 = 0; 

      Pp = 0; 

      Pap = 0; 

      time = 0; 

      timelast = 0; 

      timeperiod = 0; 

      curre = 0; 

      z[1]=0; 

      z[22]=0; 

      t = 0; 

      T = Troom; 

      E = E1/Troom; 

      P = -ln(1-Pth); 

      k1 = -tau_relax * ln(ln(Pth)/-4/E)/2; 

      kk=-tau_relax * ln(ln(Pth)/-4/E)/2; 

      TMR0 = TMR01-k*T; 

      sta = ini; 

//RP calculation 

      if (rswitch == 0) 

  Rp = Rp1; 

      else 

  Rp = tox/F/(dia*dia*pi/4)/sqrt(phiB)*exp(1.025*tox*sqrt(phiB)); 

//Ic calculation 

      if (Iswitch == 0) 

      begin 

  Icp = Icp1; 

  Icap = Icap1; 

      end 

      else 

      begin 

  Vol = tfl*dia*dia*pi/4; 

  gamma = 2*muB/hbar; 

  Energy = mu0*Ms*Vol*Hk/2; 

  polar1 = sqrt(1/polar)+sqrt(polar); 

  gp = 1/(-4+polar1*polar1*polar1); 

  gap = 1/(-4+polar1*polar1*polar1*0.5); 

  Icp = 2*alpha*gamma*el*Energy/muB/gp; 

  Icap = 2*alpha*gamma*el*Energy/muB/gap; 

      end 

//Joule effect calculation 

      if (Tswitch == 1) 

      begin 

  tauth = Cv*thicks/lambda*tox; 

   Theat = Troom; 

  Tcool = Troom; 

  ticool = 0; 

  tiheat = 0; 

      end  

  end 

//main part 
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  V(vgnd) <+ 0.0; 

  time = $abstime; 

  timeperiod = time-timelast; 

  timelast = time; 

// Resistance calculation 

  if(sta == 0) 

    R = Rp; 

  else 

    R = Rp*(1+abs(TMR0)/(1+V(mtj)*V(mtj)/VH/VH)); 

// current calculation 

  curre = V(mtj)/R; 

//Joule effect calculation 

  if (Tswitch == 1) 

  begin 

     if (curre==0) 

 begin 

  ticool=-ln((Tcool-Troom)/(Theat-Troom))*tauth; 

  Tcool=Troom+(Theat-Troom)*exp(-(ticool+timeperiod)/tauth); 

  T=Tcool; 

 end 

 else 

 begin 

  Tmax=V(mtj)*curre/(dia*dia*pi/4)*thicks/lambda; 

  tiheat=-ln(1-(Theat-Troom)/Tmax)*tauth; 

  Theat=Troom+Tmax*(1-exp(-(tiheat+timeperiod)/tauth)); 

  T=Theat;   

 end 

 TMR0 = TMR01-k*T; 

  end 

  if(sta == 0) 

    R = Rp; 

  else 

    R = Rp*(1+abs(TMR0)/(1+V(mtj)*V(mtj)/VH/VH)); 

  curre = V(mtj)/R; 

//switching time calculate 

//p state 

  count=0; 

// Framework to obtain switching time  

  if (curre > 0) 

  begin 

 debug1 = 0; 

     if (curre >= pc*Icp) 

 begin 

         tinipre=k1/(curre/Icp-1); 

 end 

     if ((curre >= 0.85*Icp)&&(curre < pc*Icp)) 

 begin 

         tinipre=P*tau0/exp(-E*(1-0.85)); 

 end 

     if (curre < 0.85*Icp) 
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 begin 

         tinipre=P*tau0/exp(-E*(1-curre/Icp)); 

 end 

 

     tini=ln(tinipre*1e9); 

     if (tini > 2)  

         //if (curre > pc*Icp) 

              tini = 2; 

     tiniabs=abs(tini); 

 position=22; 

    //data points 

 if (curre > 1.5*Icp) 

 begin 

  for(i=1;i<=22;i=i+1)  

  begin 

   t1[i]=tini + cubicparlarge[i] * tiniabs; 

   t1ex[i]=exp(t1[i])*1e-9; 

   Isum[i]=Icp*(k1/t1ex[i]+1) *(1- 1/(1+exp(-(t1[i]-pa)*pb))) + 

Icp*(1+ln(P*tau0/t1ex[i])/E) * 1/(1+exp(-(t1[i]-pa)*pb)); 

   if ((curre>=Isum[i])&&(count==0)) 

   begin 

    position=i; 

    count=1; 

   end 

  end 

     end 

 else 

 begin 

  for(i=1;i<=22;i=i+1)  

  begin 

   t1[i]=tini_1 + cubicparsmall[i] * tiniabs; //t2 

   t1ex[i]=exp(t1[i])*1e-9; //t3 

   Isum[i]=Icp*(k1/t1ex[i]+1) *(1-1/(1+exp(-(t1[i]-pa)*pb))) + 

Icp*(1+ln(P*tau0/t1ex[i])/E) * 1/(1+exp(-(t1[i]-pa)*pb)); 

   if ((curre>=Isum[i])&&(count==0)) 

   begin 

    position=i; 

    count=1; 

   end 

  end 

 end 

 if (position>=2) 

 begin 

  position=position-1; 

 end  

// interpolation way 

// parameter prepare 

 for (i=1;i<=21;i=i+1) 

 begin 

  h[i]=Isum[i+1]-Isum[i]; 
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  b[i]=(t1[i+1]-t1[i])/h[i]; 

 end 

 for (i=1;i<=20;i=i+1) 

 begin 

  q[i]=2*(h[i]+h[i+1]); 

  u[i]=6*(b[i+1]-b[i]); 

 end 

 for (i=1;i<=20;i=i+1) 

 begin 

  if (i==1) 

  begin 

   c[i]=h[i]/q[i]; 

   d[i]=u[i]/q[i]; 

  end 

  else 

  begin 

   c[i]=h[i]/(q[i]-c[i-1]*h[i]); 

   d[i]=(u[i]-d[i-1]*h[i])/(q[i]-c[i-1]*h[i]); 

  end 

 end 

 for (i=21;i>=2;i=i-1) 

 begin 

  z[i]=d[i-1]-c[i-1]*z[i+1]; 

 end 

 part[1]=z[position+1]/6/h[position]*(curre-Isum[position])*(curre-Isum[position])*(

curre-Isum[position]); 

 part[2]=z[position]/6/h[position]*(Isum[position+1]-curre)*(Isum[position+1]-curre)

*(Isum[position+1]-curre); 

 part[3]=(t1[position+1]/h[position]-z[position+1]/6*h[position])*(curre-Isum[positio

n]); 

 part[4]=(t1[position]/h[position]-h[position]/6*z[position])*(Isum[position+1]-curre

); 

     t = part[1]+part[2]+part[3]+part[4];     

  end 

//ap state 

  if (curre <= 0) 

  begin 

 debug1 = 0; 

     if (curre <= pc*Icap) 

 begin 

         tinipre=k1/(curre/Icap-1); 

 end 

     if ((curre <= 0.85*Icap)&&(curre > pc*Icap)) 

 begin 

         tinipre=P*tau0/exp(-E*(1-0.85)); 

 end 

     if (curre > 0.85*Icap) 

 begin 

         tinipre=P*tau0/exp(-E*(1-curre/Icap)); 

 end 
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     tini=ln(tinipre*1e9); 

     if (tini > 2)  

         //if (curre > pc*Icap) 

              tini = 2; 

     tiniabs=abs(tini); 

 position=22; 

    //data points 

 if (curre > 1.5*Icap) 

 begin 

  for(i=1;i<=22;i=i+1)  

  begin 

   t1[i]=tini + cubicparlarge[i] * tiniabs; 

   t1ex[i]=exp(t1[i])*1e-9; 

   Isum[i]=Icap*(k1/t1ex[i]+1) *(1- 1/(1+exp(-(t1[i]-pa)*pb))) + 

Icap*(1+ln(P*tau0/t1ex[i])/E) * 1/(1+exp(-(t1[i]-pa)*pb)); 

   if ((curre<=Isum[i])&&(count==0)) 

   begin 

    position=i; 

    count=1; 

   end 

  end 

     end 

 else 

 begin 

  for(i=1;i<=22;i=i+1)  

  begin 

   t1[i]=tini_1 + cubicparsmall[i] * tiniabs; //t2 

   t1ex[i]=exp(t1[i])*1e-9; //t3 

   Isum[i]=Icap*(k1/t1ex[i]+1) *(1- 1/(1+exp(-(t1[i]-pa)*pb))) + 

Icap*(1+ln(P*tau0/t1ex[i])/E) * 1/(1+exp(-(t1[i]-pa)*pb)); 

   if ((curre<=Isum[i])&&(count==0)) 

   begin 

    position=i; 

    count=1; 

   end 

  end 

 end 

 if (position>=2) 

 begin 

  position=position-1; 

 end 

 

   

// interpolation way 

// parameter prepare 

 for (i=1;i<=21;i=i+1) 

 begin 

  h[i]=Isum[i+1]-Isum[i]; 

  b[i]=(t1[i+1]-t1[i])/h[i]; 
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 end 

 for (i=1;i<=20;i=i+1) 

 begin 

  q[i]=2*(h[i]+h[i+1]); 

  u[i]=6*(b[i+1]-b[i]); 

 end 

 for (i=1;i<=20;i=i+1) 

 begin 

  if (i==1) 

  begin 

   c[i]=h[i]/q[i]; 

   d[i]=u[i]/q[i]; 

  end 

  else 

  begin 

   c[i]=h[i]/(q[i]-c[i-1]*h[i]); 

   d[i]=(u[i]-d[i-1]*h[i])/(q[i]-c[i-1]*h[i]); 

  end 

 end 

 for (i=21;i>=2;i=i-1) 

 begin 

  z[i]=d[i-1]-c[i-1]*z[i+1]; 

 end 

 part[1]=z[position+1]/6/h[position]*(curre-Isum[position])*(curre-Isum[position])*(

curre-Isum[position]); 

 part[2]=z[position]/6/h[position]*(Isum[position+1]-curre)*(Isum[position+1]-curre)

*(Isum[position+1]-curre); 

 part[3]=(t1[position+1]/h[position]-z[position+1]/6*h[position])*(curre-Isum[positio

n]); 

 part[4]=(t1[position]/h[position]-h[position]/6*z[position])*(Isum[position+1]-curre

); 

     t = part[1]+part[2]+part[3]+part[4];     

  end 

 

//Switching judgement 

  t9=t; 

  t=exp(t)*1e-9; 

  if (sta == 0) 

  begin 

    if (curre > 0) 

        Pp = Pp+1/t*timeperiod; 

    else 

        Pp = Pp; 

  end 

  else if (sta == 1) 

  begin 

    if (curre <= 0) 

        Pap = Pap+1/t*timeperiod; 

    else 

        Pap = Pap; 
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  end 

  if (sta == 0) 

  begin 

    if (Pp >= 1) 

    begin 

        sta = 1; 

        Pp = 0; 

    end 

    else 

    begin 

        sta = 0; 

        R = Rp; 

    end 

  end 

  else if (sta == 1) 

  begin 

    if (Pap >= 1) 

    begin 

        sta = 0; 

        Pap = 0; 

    end 

    else 

    begin 

        sta = 1; 

        R = Rp*(1+abs(TMR0)/(1+V(mtj)*V(mtj)/VH/VH)); 

    end 

  end 

//Output 

  I(mtj) <+ V(mtj)/R; 

 

end 

endmodule 

 

B. Fokker-Planck equation based circuit simulation model code 

(Verilog-A) 

// MTJ model 2022/01/18 

//Author: Haoyan LIU 

//email:liuhaoyan@ruri.waseda.jp 

//Fokker-Planck equation based STT-MTJ circuit simulation model 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

module MTJ(out, in); 

inout in, out; 

electrical in;//pinned layer 
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electrical out;//free layer 

//Define nodes 

branch(in, out) mtj; 

 

//basic parameter define 

parameter real partten = 1 from (-inf:inf); //mode selector: 1 switching probability mode; 2 

angle mode. 

parameter real ini = 0 from (-inf:inf); //initial state selector: 0 Parallel state; 1 Anti-parallel 

state 

parameter real Ep = 100 from (-inf:inf); //Energy barrier for P to AP switch 

parameter real Eap = 36 from (-inf:inf); //Energy barrier for AP to P switch 

parameter real Hk = 0.245 from (-inf:inf); //Anisotropy field unit:T 

parameter real Happ = 0 from (-inf:inf); //External feild or Applied field unit:T 

parameter real pi = 3.1416 from (-inf:inf); //pi 

parameter real Troom = 300 from (-inf:inf); //room temperature 

parameter real Icp = 80e-6 from (-inf:inf); //critical current for P to AP switch 

parameter real Icap = 30e-6 from (-inf:inf); //critical current for AP to P switch 

parameter real VH = 0.8 from (-inf:inf); //Parameter for TMR ratio 

parameter real TMR0 = 2.5 from (-inf:inf); //TMR ratio for 0V and 0K 

parameter real Rp = 5e3 from (-inf:inf); //Resistance for Parallel state 

parameter real rnum = 0.8 from (-inf:inf); //The random number to control the probability 

//parameter real bstep = 10p from (-inf:inf); //Control the minimum timestep 

 

//variable define 

real control; 

genvar i; 

real time,timelast,timeperiod,curre,Rmtj,P,state,Rap,Gp,Gap,Pth; 

real P_total,tauD,dtheta,par1,par2p,par2ap,positionpre,control,stable; 

integer position; 

real P_stable; 

real Pd [1:199],Ic[1:199],Pdini[1:199]; 

real Pdlast [1:199]; 

real theta [1:199]; 

real f0[1:199]; 

real f[1:199]; 

real a[1:199],b[1:199],c[1:198],d[1:199],pu[1:198],y[1:199]; 

 

analog begin 

// initial step 

  @(initial_step) begin 

// Parameter initialization 

       P_stable = 0; 

 time = 0; 

 timelast = 0; 

  timeperiod = 0; 

 state=ini; 

 Pth = rnum; 

 Rmtj = 0; 

 Rap = Rp*(1+TMR0); 

 Gp=1/Rp; 
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 Gap=1/Rap; 

 tauD = 0.15e-9; 

 dtheta = pi / 100.0 / 2.0; 

       P_total = 0; 

 P = 0; 

// Initial angle distribution calculation 

 if (state<0.5) 

   begin 

        for(i=1;i<=100;i=i+1)  

      begin 

         theta[i] = i * pi / 100.0 / 2.0; 

         P_total = P_total + 2 * Ep *sin(theta[i]) * exp(-Ep * sin(theta[i]) * 

sin(theta[i])) * pi / 100 / 2; 

      end 

      for(i=1;i<=100;i=i+1)  

      begin 

         Pdlast[i] =  2 * Ep *sin(theta[i]) * exp(-Ep * sin(theta[i]) * 

sin(theta[i])) / P_total; 

   f0[i] = 

-cos(theta[i])*sin(theta[i])-Happ/Hk*cos(theta[i])+cos(theta[i])/sin(theta[i])/2/Ep; 

      end 

  for(i=101;i<=199;i=i+1)  

      begin 

         theta[i] = i * pi / 100.0 / 2.0; 

         Pdlast[i] =  0; 

   f0[i] = 

-cos(theta[i])*sin(theta[i])-Happ/Hk*cos(theta[i])+cos(theta[i])/sin(theta[i])/2/Ep; 

      end 

  position=1; 

   end 

   else 

   begin 

  for(i=100;i<=199;i=i+1)  

      begin 

         theta[i] = i * pi / 100.0 / 2.0; 

         P_total = P_total + 2 * Eap *sin(theta[i]) * exp(-Eap * sin(theta[i]) 

* sin(theta[i])) * pi / 100 / 2; 

      end 

  for(i=1;i<=99;i=i+1)  

      begin 

         theta[i] = i * pi / 100.0 / 2.0; 

         Pdlast[i] = 0; 

   f0[i] = 

-cos(theta[i])*sin(theta[i])-Happ/Hk*cos(theta[i])+cos(theta[i])/sin(theta[i])/2/Eap; 

      end  

      for(i=100;i<=199;i=i+1)  

      begin 

         Pdlast[i] =  2 * Eap *sin(theta[i]) * exp(-Eap * sin(theta[i]) * 

sin(theta[i])) / P_total; 

   f0[i] = 
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-cos(theta[i])*sin(theta[i])-Happ/Hk*cos(theta[i])+cos(theta[i])/sin(theta[i])/2/Eap; 

      end 

  position=199; 

   end 

 if (state==0) 

   begin 

      for(i=1;i<=199;i=i+1)  

      begin 

         Pdini[i] = Pdlast[i]; 

      end 

   end 

   else 

   begin 

      for(i=1;i<=199;i=i+1)  

      begin 

         Pdini[i] = Pdlast[200-i]; 

      end 

   end 

  end 

// main part 

  //$bound_step(bstep); 

  //timestep calculation 

  time = $realtime; 

  timeperiod = time-timelast; 

  timelast = time; 

// Resistance calculation 

  if (partten==0) 

  begin 

 if(state==0) 

   begin 

  Rmtj = Rp; 

   end 

   else 

   begin 

  Rmtj = Rp*(1+(TMR0/(1+V(mtj)*V(mtj)/VH/VH))); 

   end 

  end 

  else 

  begin 

   Rmtj=1/(1/2.0*(Gp+Gap)+1/2.0*(Gp-Gap)*cos(theta[position])); 

  end 

// Current calculation 

  curre = V(mtj) / Rmtj; 

// Tomas method 

  par1 = timeperiod / 2 / tauD / dtheta; 

  par2p = timeperiod / 2 / tauD / Ep / dtheta / dtheta; 

  par2ap = timeperiod / 2 / tauD / Eap / dtheta / dtheta; 

  P = 0; 

  for(i=1;i<=199;i=i+1)  

  begin 
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 if (i<=100) 

 begin 

  f[i] = curre/Icp*sin(theta[i]) + f0[i]; 

 end 

 else 

 begin 

  f[i] = curre/Icap*sin(theta[i]) + f0[i]; 

 end  

 if(i==1) 

 begin 

  a[1]=0; 

  b[1]=1+par2p+par1*f[1]; 

  d[1]=b[1]; 

  y[1]=Pdlast[1]/d[1]; 

 end 

       else if(i==199) 

 begin 

  a[i]=-par1*f[i-1]-par2ap; 

  b[i]=1+par2ap-par1*f[i]; 

 end 

 else 

 begin 

  if(i>100) 

  begin 

   a[i]=-par1*f[i-1]-par2ap; 

   b[i]=1+2*par2ap; 

  end 

  else 

  begin  

   a[i]=-par1*f[i-1]-par2p; 

   b[i]=1+2*par2p; 

  end 

   

 end          

  end 

  for(i=1;i<=198;i=i+1)  

  begin 

 if(i>100) 

 begin 

  c[i]=par1*f[i+1]-par2ap; 

 end 

 else 

 begin  

  c[i]=par1*f[i+1]-par2p; 

 end 

 pu[i]=c[i]/d[i]; 

 d[i+1]=b[i+1]-a[i+1]*pu[i];  

 if(i>1) 

 begin 

  y[i]=(Pdlast[i]-a[i]*y[i-1])/d[i]; 
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 end      

  end 

  y[199]=(Pdlast[199]-a[199]*y[198])/d[199]; 

  Pd[199]=y[199]; 

 

//switch control for different modes of the model 

  if (partten==1) //theta mode 

  begin 

  if ((position<100)&&(curre>0)) 

    begin 

   P_stable=0; 

   end 

    if ((position>=100)&&(curre<0)) 

     begin 

  P_stable=0; 

   end 

   positionpre = 0; 

   positionpre = positionpre + Pd[199]*dtheta; 

   control = 0; 

 //find the theta position 

 if((Pd[199]*dtheta>Pth)&&(control==0)) 

 begin 

  position = 199; 

  control=1; 

 end 

   for(i=198;i>=1;i=i-1)  

   begin 

  Pd[i]=y[i]-pu[i]*Pd[i+1]; 

  if (control == 0) 

  begin 

   positionpre = positionpre + Pd[i]*dtheta; 

   if(positionpre>Pth) 

   begin 

    position = i; 

    control=1; 

   end 

  end 

   end 

   if ((position<100)&&(curre<=0)&&(P_stable==0)) 

   begin 

  stable=0; 

  for(i=1;i<=99;i=i+1) 

  begin 

   stable=stable+abs(Pd[i]-Pdlast[i]); 

  end 

  if(stable>0) 

  begin 

   stable=timeperiod/stable; 

  end 

  if(stable>=10e-9) 
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  begin 

       for(i=1;i<=199;i=i+1)  

       begin 

          Pdlast[i] = Pdini[i]; 

       end 

   P_stable=1; 

  end  

  end 

   if ((position>=100)&&(curre>=0)&&(P_stable==0)) 

   begin 

  stable=0; 

  for(i=100;i<=199;i=i+1) 

  begin 

   stable=stable+abs(Pd[i]-Pdlast[i]); 

  end 

  if(stable>0) 

  begin 

   stable=timeperiod/stable; 

  end 

  if(stable>=10e-9) 

  begin 

       for(i=1;i<=199;i=i+1)  

       begin 

          Pdlast[i] = Pdini[200-i]; 

       end 

   P_stable=1; 

  end   

   end 

  if(P_stable==0) 

  begin 

  for(i=199;i>=1;i=i-1)  

    begin 

   Pdlast[i] = Pd[i]; 

  end 

  end 

  end 

  else //switching probability mode 

  begin 

 for(i=198;i>=1;i=i-1)  

   begin 

  Pd[i]=y[i]-pu[i]*Pd[i+1]; 

  if(state<0.5) 

  begin 

         if(i<=100) 

         begin 

          P = P + Pd[i]*dtheta; 

   end 

  end 

  else 

  begin 
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   if (i==198) 

   begin 

    P = P + Pd[199]*dtheta; 

   end 

   if(i>=100) 

         begin 

          P = P + Pd[i]*dtheta; 

   end 

  end 

  Pdlast[i] = Pd[i]; 

 end 

 Pdlast[199] = Pd[199]; 

 P=1-P; 

 if(state==0) 

   begin 

  if(P>rnum) 

  begin 

   state=1; 

  end 

   end 

   else 

   begin 

  if(P>1-rnum) 

  begin 

   state=0; 

  end 

   end 

  end 

//Output 

  I(mtj) <+ curre; 

end 

endmodule 

 

C. Simulation example (HSPICE netlist) 

// 1T1C1MTJ structure simulation example 

//Author: Haoyan LIU 

//email:liuhaoyan@ruri.waseda.jp 

 

.hdl "./probability.va" //using switching probability model 

//.hdl "./FPE.va" //using FPE model 

.include "./hspice/bu40n1.mdl" 

.lib "./hspice/bu40n1.skw" NT 

.lib "./hspice/bu40n1.skw" PT 

.include "./hspice/cmos45.pm" 

.option RUNLVL = 6; 

.probe V(*) 

.option psf=2 
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.option plot=1 

.save 

.param Vdd=1 

 

Vbl bl 0 PWL 0 0 0.9ns 0 1ns Vdd 12ns Vdd 12.1ns 0 

Vsl sl 0 PWL 0 0 

Vwl wl 0 PWL 0 0 1.5ns 0 1.6ns Vdd 11.5ns Vdd 11.6ns 0 

M1 in g co 0 nmos45 L=50n W=500n 

C1 co 0 1p 

X1 sl co MTJ ini=0 //Switching probability based model, ‘ini’ controls initial state of MTJ: 

ini=0: P state; ini=1: AP state 

//X1 0 co MTJ ini=0 pattern=1 //FPE based model, ‘pattern’ controls the mode. Pattern=1: 

theta mode; Pattern=0: probability mode 

.tran 1p 30ns START=1e-14 uic 

.end 

 

Fig. C1. 1T1C1MTJ structure. 
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