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Abstract 

In the age of big data, the information overload problem costs users much time and 

energy to obtain useful information. Recommendation systems, as an effective tool to 

alleviate information overload, are receiving increasing attention. Recommendation 

systems intend to improve user satisfaction. Therefore, in industry as well as in academia, 

researchers have studied and proposed a variety of metrics to evaluate user satisfaction. 

The effectiveness of recommendation, measured by recall and precision ratios, is 

considered the most responsive to user satisfaction because high effectiveness indicates 

the system is better able to predict user interest. Adopting side information is a promising 

and worthwhile approach to improving recommendation accuracy. This thesis targets two 

side information- time and geographical information- because time and geographical 

information are common in recommendation systems, modeling them to improve 

performance and leaves other attributes such as category as future work. Previous works 

attempted to model geographical information as distance and time information as a 

sequence. However, previous work still suffers from insufficient use of side information. 

This thesis aims to improve recommendation accuracy by fully using temporal and 

geographical information. This thesis first focuses on accelerating model updates to 

achieve real-time periodic recommendation systems. If the periodic updates can be 

implemented, the model can capture changes in user behavior over time, improving the 

accuracy of behavior estimation. This thesis uses advertisement (ad) recommendations as 

an example of applying the technique. In recent years, the market for ad recommendations 

has been growing. Advertisement recommendation has become an important service to 

help users mine their interests. For an ad recommendation system, handling time 

information is important, as user interests constantly change over time. This requires ad 

recommendation optimization algorithms to be frequently updated to accommodate the 

user's latest interests. To achieve that, this thesis models temporal information to propose 

a real-time periodic recommendation technique. The technique adopts a quantum-inspired 

computer, specifically, Fujitsu digital annealer, to accelerate the optimization process. 

Experiments on the real Geniee dataset confirmed that the proposed real-time periodic 

technique achieved a 35.86% improvement in ad recommendation compared with the 
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state-of-the-art XGBoost+GA baseline. 

After that, this thesis works on modeling geographical information to improve 

recommendation accuracy. A typical application of geographical information is the Point-

of-interest (POI) recommendation. This thesis, therefore, uses the POI recommendation 

as an example to illustrate our modeling. As an important application in location-based 

social networks, POI recommendations help users filter massive amounts of information 

and make decisions. POIs have a special attribute- geographical information. To handle 

the geographical information, this thesis starts by mining users' active areas and 

transforming the geographical information into the proposed "active area neighbor," 

which incorporates and extends the definition of neighbor in graph convolution network 

(GCN) models for POI recommendation, where normally, "neighbor" is defined as check-

ins in a GCN model. Then, this thesis designs the user node for aggregating information 

from check-ins and the proposed active area neighbors. The active area neighbors-based 

technique improved the 𝑅𝑒𝑐𝑎𝑙𝑙@5 from 0.0788 to 0.0815 on the Gowalla dataset and 

from 0.0453 to 0.0469 on the Yelp dataset compared with the state-of-the-art LightGCN. 

 Then, this thesis focuses on proposing a methodology to simultaneously combine 

temporal and geographic information. The thesis first proposes a new time-aware GCN 

model to mine users' time-based high-order connectivity. Specifically, this thesis divides 

the 24 hours of the day into multiple time slots, generating a subgraph for each time slot 

and making the target user aggregate information from newly defined time-based high-

order connectivity. Time-based high-order connectivity refers to the relationship between 

indirect neighbors with similar preferences in the same time slots. After modeling the 

time information, this thesis integrates the active area neighbor-based technique for 

modeling geographic information proposed in the previous paragraph. Experimental on 

real datasets confirm that our model further improved 𝑅𝑒𝑐𝑎𝑙𝑙@5  to 0.0874 on the 

Gowalla dataset and from 0.0360 to 0.0388 on the New York dataset compared with state-

of-the-art GCN-based models after mining abundant time information.  

This thesis models the time and geographical information as auxiliaries to be combined 

into recommendation systems. After constructing the models, this thesis conducted 

experiments on real datasets, validating the effectiveness of the proposed techniques. 
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1 Introduction 

1.1 Background 

Recommendation systems have gained increasing attention for their ability to alleviate 

the information overload problem. Information overload is described as making it 

difficult for users to find their real needs in the face of large amounts of data. The issue 

of information overload seriously affects user experience and wastes user time in the age 

of big data. If recommendation systems can accurately predict and recommend user 

preferences, it would significantly increase user satisfaction because accurate 

recommendations can help users filter out the massive amount of information. Thus, most 

researchers [3] [5] [11] [61] cite improving accuracy as a primary research goal for 

recommendation systems. Based on related works [30] [39], adopting side information 

like time and geographical information and integrating the information into 

recommendation generation models in a potentially effective manner to improve accuracy.  

Ye et al. [30] pioneered an attempt to use power-low distribution to model the 

geographical distance between two POIs. Inspired by Ye et al., in recent years, deep 

learning models [3] [4] also embedded distance-based geographic information to improve 

the model representation ability. However, neglecting the area information prevents 

further model performance improvement because of the geographical continuity. i.e., 

multiple POIs can form a geographical area. In addition to geographic information, time 

information is an essential side information in recommendation systems. After Yuan et 

al.’s [39] first attempt to use time information to describe cosine similarity among users, 

the adoption of time information has received continued attention from researchers. In 

recent years, the effort to model time information into sequences and combine it with 

sequence mining techniques to drive model accuracy is in the dominant position and 

widely used. Zhang et al. [4] adopted two long short-term memory (LSTM) networks to 

represent the arrival and departure times of POIs. However, the technique still suffers 

from insufficient use of time information. Users' time-based preferences can be divided 
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into time slots for better representation. For instance, two users who prefer Supermarket 

A may not have a time-based high-order relationship based on differences in their visit 

time slots. 

In this thesis, we target to fully use two attributes- temporal and geographical 

information, because temporal and geographical information is common in 

recommendation systems [3] [4] [39] [40]. We model these two attributes as instances 

and leave other attributes like categorical information as future work.  

1.2 Objective and Goal 

Our research goal is to improve recommendation accuracy by modeling temporal and 

geographical information. We first focus on shortening model update time to achieve real-

time periodic recommendation systems. User preferences change constantly over time. 

Once we can implement periodic updates, the accuracy of estimating user behavior can 

be improved because the model can capture changes in user behavior in time. We adopt 

advertisement (ad) recommendations as an example to apply the technique. With the 

advent of the big data era, ad recommendation has been gradually integrated into people's 

lives as an essential manner of data filtering. In ad recommendation, a demand-side 

platform (DSP) needs to recommend ads with a high probability of being clicked by the 

target user under specific constraints called recommendation optimization problems (for 

example, 1,000 ads for category A and 5,000 ads for category B). Accurate ad delivery 

reduces information overload problems for users and generates a high conversion rate for 

DSP. However, the fickleness of user interests over time makes it difficult for 

recommendation systems to capture users’ latest interests, preventing further 

improvement in accuracy. Frequent model update is an important method to break down 

the barriers. However, ad recommendation optimization is an NP-hard problem [81], 

which is difficult to implement on a common computer. In this thesis, we propose to use 

digital annealers (DA) [1], which are quantum-inspired annealing computers, to capture 

the changes in user interests and realize real-time periodic recommendations.  
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We then work on modeling geographical information to improve recommendation 

accuracy. Geographical information contains rich user behavioral characteristics. Our 

study is based on the intuition that users in the same geographical area tend to have similar 

check-in behaviors. A typical application of geographical information is the Point-of-

interest (POI) recommendation. Thus, the thesis explores POI recommendations as an 

example of applied geographical information. Personalized POI recommendation systems 

recommend the target user’s unvisited POIs, which are matched to his/her preference by 

analyzing check-in history. In recent years, open-source datasets from location-based 

social networks (LBSNs), such as Gowalla1 and Yelp2, allow users to share their check-

in experience, making a detailed analysis of users’ behavior and provision of better 

recommendation services possible. POIs have an intrinsic attribute- geographical 

information, which makes them different from recommending other items like movies 

and music. To model the geographical information, previous research made some 

attempts [27] [30]. With the development of deep learning techniques, especially for 

graph convolution networks (GCN), Chang et al. [3] pioneered the modeling of 

geographical information and integrated it into GCN. Based on Chang et al.’s work [3], 

we simplify the model design and emphasize the geographical continuity of POIs. i.e., 

Multiple POIs can comprise an entire area, which is essential for modeling and designing 

methodologies to integrate geographical information into GCN. We first mine users’ 

active areas and transform the geographical information into the proposed “active area 

neighbor,” Then, we design the user node to aggregate information from both check-ins 

and the proposed active area neighbors to generate the final representations (embeddings). 

The last goal is to combine temporal and geographical information to co-complement 

the deep learning models. When combining multiple side information, it is essential to 

consider the harmonization between the information. We begin by modeling the time 

information. In deep learning models, sequence-based techniques [3] [4] [42] have 

 
1 http://snap.stanford.edu/data/loc-gowalla.html 
2 https://www.yelp.com/dataset_challenge 
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received a great deal of attention. Inspired by the famous word2vec framework [43], 

previous works [42] [4] proposed to utilize a sequence-based model to capture the users’ 

temporal interests. However, simply adopting time information by modeling users’ check-

in sequences is insufficient and ignores users’ time-based high-order connectivity. Note 

that time-based high-order connectivity refers to the relationship between indirect 

neighbors with similar preferences in the same time slot. The time slots-based technique 

allows for more granular representations of user interests. For example, Assume the target 

user and user A usually go to the supermarket after breakfast. However, user B prefers to 

go to the supermarket in the evening. In this case, even though user B shares the same 

preference as the target user, the system categorizes user A as a time-based high-order 

neighbor because they have a similar time preference. Therefore, user B is filtered out 

even if user B has the same preference. After modeling the temporal information, we use 

the active area-based approach mentioned in the previous paragraph to model the 

geographic information, combining both time and geographical information into the deep 

learning model. In a graph convolution network, for a target user node, we aim to propose 

a novel methodology that makes time information to control the graph structure division, 

i.e., from which nodes to aggregate information while setting geographical information 

to control the amount of aggregated information, i.e., how much information is 

aggregated. 

1.3 Challenges 

1.3.1  Acceleration of Recommendation Optimization (Challenge 1) 

Recommendation optimization - that is, improving accuracy while considering 

constraints such as budget or cost-per-click (CPC) - is a complex problem in 

recommendation systems. Achieving high accuracy and quick optimization can be 

contradictory and present an NP-hard complexity, making the periodic updates of the 

recommendation optimization problem remain an open question. Although previous 

works [7] [20] attempted to accelerate optimization based on heuristics and linear 
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programming, the latency is still too high when dealing with real-time recommendation 

optimization problems. A training process that fits the real-time task needs to be explored 

to capture the user's preferences change because user preferences change rapidly over 

time. Even if the system captures users’ preferences, applying the predictions over a long 

time without updating the model is difficult. Besides, even though we optimize the 

problem once, the optimized result cannot be applied to the real recommendation system 

for a long time because the preconditions for the optimization vary over time, resulting 

in a decrease in the effectiveness of the optimization result. Thus, real-time periodic 

optimization is the key to breaking down the barriers. In the proposed periodic training 

framework, we embed a Fujitsu digital annealer (DA), a quantum-inspired annealing 

computer, to accelerate the recommendation optimization. DA itself is fast in dealing with 

optimization problems. However, preprocessing the input data for DA is time-consuming, 

i.e., expanding the objective function polynomials and organizing the coefficients, which 

is a bottleneck to using DA in real-time periodic recommendation systems. This thesis 

proposes an element-based method to quickly derive the inputs of DA directly. 

1.3.2  Insufficient Use of Side Information in Recommendation 

Systems 

This section describes the development of side information (geographical and time 

information) in POI recommendation systems, as well as the challenges and problems. 

Insufficient Use of Geographical Information (Challenge 2) 

Geographical information, as a latent attribute of POI, holds the potential to improve 

recommendation accuracy. However, how to fully use geographical information remains 

an open and challenging question. Previous research ignored that POIs have unique 

geographical continuity, i.e., multiple POIs can form a geographical area. Simply 

modeling the geography as distance [30] [3] in a deep learning model is inadequate, 

causing loss of area information and thus preventing further enhancement of model 
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performance. Besides, in a deep learning-based recommendation system [3], multiple 

trainable embeddings used to integrate geographical information can significantly 

increase the number of parameters, making model training difficult and decreasing the 

utility in practice. Thus, mining users’ geographical areas in a lightweight manner 

(without increasing the number of trainable parameters) is essential in deep learning-

based recommendation systems.  

Insufficient Use of Temporal Information (Challenge 3) 

Time information is generated when a user interacts with a POI. In addition to 

geographical information, time information is also utilized in models as important side 

information to improve recommendation performance. However, methodologies for 

modeling temporal information are still in the exploratory phase. In deep learning models, 

simply modeling time information by sorting user check-ins in chronological order 

(sequence) [39] [42] [4] cannot fully exploit collaborative signals in time information, 

which is insufficient. Time information can be divided into time slots to represent the 

users’ preferences during a certain period of time. For example, even two users who like 

Supermarket A may be calculated as having no time-based high-order relationship due to 

the differences in visit time slots. In this thesis, we adopt a subgraph technique to divide 

the 24 hours of the day into multiple time slots and generate one subgraph for each time 

slot. In the deep learning model, users only aggregate information from the nodes in the 

same subgraph. In the proposed model, an edge propagation module is proposed to adjust 

edge affiliation in subgraphs, where edges represent check-ins, to propagate the user’s 

time-based preference to multiple time slots (subgraphs). 

1.4  Contributions 

This section describes the contributions of this thesis. The contribution of this thesis is 

three-fold.  

Contribution 1. We are the first to adopt Fujitsu digital annealers (DA) to accelerate 

advertisement recommendation, along with a corresponding methodology to compute DA 
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inputs element by element and realize periodic recommendation optimization. 

Contribution 2. Proposal of active area neighbor to model geographical information 

in the graph convolution network. 

Contribution 3. Proposal of subgraph (time slot) and edge (check-in) propagation-

based technique to model time information in the graph convolution network. 

The last part of the section introduces the details of the contribution and how to deal 

with the corresponding problems and challenges. 

Contribution 1. Adoption of digital annealers (DA) to accelerate advertisement 
recommendation and realize periodic recommendation optimization 

Low-speed optimization limits the ability of recommendation models to capture the 

changes in user interest over time. To solve the problem, we first propose a periodic 

recommendation optimization framework. i.e., the model is periodically retained. The 

proposed real-time recommendation system divides users' behaviors into three stages.  1) 

We collect users’ data when they visit the websites. 2) we use the collected data to train 

and optimize the prediction model in the training stage. 3) In the third step, we return the 

optimized result to users and start the next model cycle. Then, a digital annealer (DA) is 

adopted for acceleration. As a quantum-inspired computer, Fujitsu DA can only support 

the inputs in a quadratic unconstrained binary optimization (QUBO) model [1]. How to 

cast a recommendation optimization problem to a QUBO model quickly and thus can be 

input to the DA to achieve periodic optimization is a challenging task. Specifically, we 

analyze the objective function of the recommendation optimization problem, 

decomposing the objective function to organize the binomial, monomial, and constant 

terms. These three terms correspond exactly to the binomial, monomial, and constant 

terms in the QUBO model. Thus, the objective function can be transformed into a QUBO 

model. DA has 𝑛 units. To assign DA units to users, we propose a novel element-based 

methodology to derive the inputs of DA directly: weight matrix 𝑾 ∈ ℝ𝑛×𝑛, vector 𝒃 ∈

ℝ1×𝑛, and constant 𝑐𝑜𝑛 ∈ ℝ1×1. The methodology allows for fast inference of DA inputs 
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and be applied to real-time recommendation systems. The adoption of DA with the 

proposed training technique on advertisement (ad) recommendations results in improved 

accuracy from 0.3703 to 0.5080 (37.19%) and acceleration of 10.6 times compared to a 

genetic algorithm-based optimization technique. Note that the realization of acceleration 

is contributed by the proposed fast DA input derivation methodology and the DA’s ability 

to solve optimization problems. Although DA itself is fast in dealing with optimization 

problems, preprocessing DA input based on polynomial expansion3 is time-consuming. 

In the thesis, the proposed method avoids the use of polynomial expansion with the time 

complexity 𝑂(|𝑇|2), where |𝑇| indicates the number of terms in the objective function. 

Instead, the proposed methodology directly derives the DA inputs element by element 

with time complexity 𝑂(|𝑈|𝑛) . |𝑈|  indicates number of users, a real number much 

smaller than the DA units 𝑛. In addition, in the objective function of DA, |𝑇| is larger 

than 𝑛2. The method provides a new idea to calculate DA inputs without polynomial 

expansion, not only for real-time recommendation systems but also for other optimization 

tasks that require transforming DA inputs. 

Contribution 2. Proposal of active area neighbor to model geographical 
information in the graph convolution network. 

 To make full use of geographical information in a lightweight manner, we start by 

exploring the user active areas because POIs are geographically contiguous and thus form 

areas. To achieve the goal, for each user, we cluster the POIs that he/she visited to extract 

the user’s active areas. Note that a user may have multiple active areas among cities. The 

users whose active areas are close (at least one pair of active regions is less than 𝜆 km 

apart) are defined as active area neighbors. Then, we incorporate newly defined neighbors 

into deep learning, specifically a graph convolution network (GCN), to improve model 

representation. In a GCN-based recommendation system, a user’s neighbors are described 

as checked items. We extend the traditional definition of neighbor to active area neighbor. 

As a result, we can enhance a GCN model by adopting geographical information, which 

 
3 https://www.sympy.org/en/index.html 
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can extract high-order connectivity over collaborative filtering information. Note that the 

technique does not cause any increase in trainable parameters and keeps the model easy 

to train. In the related GCN-based recommendation system [3], modeling geographical 

information adds additional geography-based embeddings (trainable parameters), making 

the model size twice as large and reducing practicality. In contrast, extending the neighbor 

definition in a lightweight manner is valuable and challenging. Experiments on real 

dataset confirm that the proposed method improves 𝑅𝑒𝑐𝑎𝑙𝑙@5 𝑓𝑟𝑜𝑚 0.0788 to 0.0815 

on the Gowalla dataset and from 0.0453 to 0.0469 on the Yelp dataset compared with 

state-of-the-art LightGCN model. 

Contribution 3. Proposal of subgraph (time slot) and edge (check-in) propagation-
based technique to model time information in the graph convolution network. 

We analyze and model the time information in our third contribution to train more 

accurate representations (embeddings) of user preferences. We first divide user check-ins 

into multiple subgraphs, i.e., time slots, based on time information. In a GCN model, 

aggregating information only from nodes in the same subgraph enables better mining of 

users’ time-based interests. However, a monotonous subgraph division has drawbacks. 

i.e., the Monotonous subgraph division cannot propagate the learned time preference 

features over multiple time slots because the subgraphs are constructed in advance. Thus, 

we further propose an edge propagation module to adjust edge affiliation, where edges 

represent check-ins, to propagate the user’s time-based preference to multiple time slots. 

The propagation module is based on an unsupervised learning algorithm and does not 

require additional ground-truth labels. This approach to modeling time breaks with the 

traditional approach of treating temporal information simply as sequence information. 

Experimental results show that our proposed model further improved 𝑅𝑒𝑐𝑎𝑙𝑙@5  to 

0.0874 on the Gowalla dataset while from 0.0360 to 0.0388 on the New York dataset 

compared with state-of-the-art GCN-based models. 

1.5 Organization of the Thesis 
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In this section, we briefly describe the composition of the remainder of the thesis. The 

structure of the thesis is listed as follows: 

- Chapter 2 introduces the related works in three aspects, including 1) acceleration 

of recommendation optimization, 2) modeling geographical information in 

recommendation systems, and 3) modeling temporal information in 

recommendation systems. 

- Chapter 3 proposes a real-time periodic advertisement recommendation 

optimization model by using DA. (Contribution 1)  

- Chapter 4 describes basic knowledge of POI recommendation, followed by 

previous works on the use of time and geographical information. 

- Chapter 5 introduces a novel graph convolution network, combining the 

geographical neighbor concept to model geographical information for POI 

Recommendation. (Contribution 2) 

- Chapter 6 introduces a users’ interest propagation-based time-aware graph 

convolution network to model time information for POI Recommendation. After 

that, we combine the time-aware GCN with geographical information to further 

improve recommendation performance. (Contribution 3) 

- Chapter 7 consists of two parts. We first show the conclusion of the thesis. Then, 

we discuss the promising future research directions. 

We summarize our contributions and the corresponding chapters in Table 1-1. For 

convenience, we abbreviate contribution as C, and challenge as Ch. 
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Table 1-1: Contributions and the corresponding chapters 
Chapter Description Contribution Challenge 
Chapter 3 A real-time periodic advertisement 

recommendation optimization model by 
using DA 

C1 Ch1 

Chapter 5 A novel Graph Convolution Network, 
combining the geographical neighbor 
concept to model geographical information 
for POI Recommendation 

C2 Ch2 

Chapter 6 A users’ interest propagation-based time-
aware graph convolution network to model 
time information for POI Recommendation 

C3 Ch3 
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2 Related Work 

This thesis proposes the methodologies to model temporal and geographical 

information from three aspects- acceleration of recommendation optimization, modeling 

geographical information, and modeling temporal information in recommendation 

systems. Thus, in this chapter, we introduce the related works in the corresponding three 

aspects. 

2.1 Studies on Acceleration of Recommendation Optimization 

To solve the recommendation optimization- an NP-hard problem, methodologies [7] 

[20] based on heuristics and linear programming were pioneered to accelerate 

optimization. Grigas et al. [20] transformed the optimization problem with budget 

constraints into a linear programming problem. Linear programming is an acceleration 

technique for solving approximate solutions of NP-hard problems. However, the method 

sacrifices the accuracy of the model. Deep learning models [94] [79] [80] provided new 

solution ideas for combinational optimization problems. Dai et al. [80] combined 

reinforcement learning with graph embedding to target the problem. They first store the 

state of the combinational optimization problem as graph nodes, followed by learning a 

greedy selection policy to construct a solution incrementally. Since the learned greedy 

selection policy reduces the search space of the problem, the technique can accelerate 

optimization. Based on Dai et al.’s work, Li et al. [79] modeled the optimization problem 

using a graph convolution network and proposed using a guided tree to reduce graph size. 

The technique reduced the local search range. Thus, it can accelerate the optimization. 

Ma et al. [93] also adopted graph networks to construct combinatorial optimization 

problems hierarchically for acceleration. They used reinforcement learning to learn a 

hierarchical policy to find the optimal combinations under constraint at each layer. In their 

method, each layer of the hierarchy is designed with a separate reward function for stable 

training. Due to the localized search of the hierarchy, they achieve acceleration. However, 

the high latency makes related work suffer from applying real-time recommendation 
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optimization. 

2.2 Studies on Modeling Side Information 

This section describes the related works on side information (geographical and time 

information) in POI recommendation systems. 

2.2.1  Studies on Modeling Geographical Information 

The geographical information-specific attribute of POI is integrated into 

recommendation systems as auxiliary side information. Ye et al. [30] set a precedent for 

using geographical information to improve the accuracy of recommendation systems by 

advocating that users tend to check in POIs that are close to their familiar areas. Based on 

Ye et al.’s work, Zhang et al. [29] proposed to adopt a multi-center Gaussian distribution 

of geographical information to fit a user’s check-ins, which has profoundly impacted 

subsequent research on geographical information. The estimated geographical score is 

fused into the predicted preference score to complete the side information combination. 

With the wide application of machine learning techniques in POI recommendation, matrix 

factorization (MF)-based models [32] [33] can effectively solve data sparsity problems 

by adopting geographical information. Li et al. [33] argued for the adoption of two latent 

vectors to represent user information, where one is adopted to calculate user preferences 

and the other for scoring geographical information. In recent years, deep learning models 

[3] [38] are widely used to integrate geographical information. Chang et al. [3] pioneered 

the adoption of integrating geographical information into a graph convolution network 

(GCN) by modeling a power-law distribution, aggregating less information from distant 

neighbor nodes. Chang et al. trained two embeddings to represent a POI: one for check-

in information and the other for geographical information. However, the related studies 

[3] [33] ignored the fact that POIs have unique geographical continuity, causing a loss of 

area information when modeling geographical information. 
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2.2.2  Studies on Modeling Temporal Information 

In addition to geographical information, temporal information is also used as important 

side information to improve recommendation effectiveness. Yuan et al. [39] and Gao et 

al. [40] are pioneers in adopting time information to POI recommendations. In Yuan et 

al.’s work, time slots were used as a new dimension to refine user preferences by 

calculating the cosine similarity among users. The fused temporal information into a 

classical collaborative user-based filtering (UCF) algorithm [95]. After entering the 

machine learning [41] [42] era, sequence-based techniques [3] [4] [42] have received a 

great deal of attention. Zhao et al. [42] introduced a sequential mining model that utilized 

the word2vec framework [43] to capture the users’ temporal preferences. The model can 

reflect different time characteristics on different days by training POI time embeddings. 

Zhang et al. [4] further optimized the sequential model; in addition to the structure of 

graph mining, they adopted two long short-term memory (LSTM) networks to extract the 

features related to the arrival and departure times of POIs. In their model, each user is 

assigned two trainable embeddings, one representing the user's preferences when arriving 

at a POI and the other representing the preferences when leaving the POI. Similar to 

Zhang et al., Liu et al. [96] also used LSTM networks to model temporal information. In 

their work, they introduced time weight decay to exponentially forget a user's premature 

history of clicks. Then, the learned temporal information is incorporated into the graph 

embeddings to accomplish the final prediction. However, modeling time information by 

sorting user check-ins in related work ignored users’ time slot-based preferences, which 

is insufficient in modeling temporal information. 

2.3 Remained Problems 

In this chapter, we clarify the remained problems in previous studies from acceleration 

and modeling side information. 
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2.3.1  Problems with Acceleration 

For acceleration, although previous studies attempted to speed up the solution of 

recommendation optimization problems, such as the use of deep learning algorithms in 

recent years to reduce the search size of the problem, the latency is still too high when 

dealing with real-time recommendation optimization problems. When solving highly 

time-sensitive tasks, i.e., the optimized result cannot be applied for a long time; we still 

need a novel periodic optimization strategy to update the optimization results in real time. 

Based on this starting point, this thesis introduces a periodic training framework and 

combines it with Fujitsu's digital annealer (DA) to accelerate recommendation 

optimization. 

2.3.2  Problems with Modeling Side Information 

For the modeling side information part, this chapter explains the shortcomings in terms 

of geographical and temporal information. In previous studies, geographical information 

was simply modeled as geographical distance in a deep learning model, which is 

inadequate. We still need a strategy to enable deep learning models to capture information 

about spatial geographical areas because POIs have unique geographical continuity. i.e., 

multiple POIs can form a geographical area. Based on this point, this thesis explores the 

user active areas and integrates geographical information into a graph convolution 

network (GCN) as extended geographical neighbors. 

Temporal information was also applied in previous studies as a side information. In 

deep learning models, temporal information was simply modeled as a sequence of user 

check-ins in chronological order, which is insufficient. We still need a learning strategy 

to make the deep learning model learn the rich collaborative signals enriched in temporal 

information; time information can be divided into time slots to represent the users’ 

preferences during a certain period of time. i.e., learning user preferences for time slots. 

To solve the problem, this thesis adopts a subgraph technique to divide the 24 hours of 
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the day into multiple time slots and generate one subgraph for each time slot, along with 

an edge propagation module to adjust edge affiliation in subgraphs. 
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3 Real-Time Periodic Advertisement 

Recommendation Optimization under Delivery 

Constraint using Quantum-inspired Computer4 

In this chapter, we present our Contribution 1, using the quantum-inspired computer 

(Fujitsu digital annealer) to accelerate recommendation optimization to capture changes 

in user interest over time. Fujitsu digital annealer is one of the commercialized quantum-

inspired computers5. Combining time information into a recommendation model has the 

potential to improve recommendation accuracy. However, simply using time information 

as users’ check-in sequence to items is insufficient, especially for time-sensitive 

recommendation tasks, such as advertising (ad) recommendations. i.e., users’ interest 

changed over time quickly. We are the first to adopt quantum-inspired computers with 

new proposed real-time periodic training techniques that can accelerate ad 

recommendation optimization and solve the problem. The training technique is suitable 

for periodic updating of user representations. However, the quantum-inspired computer 

Fujitsu DA can only accept one form of input, the quadratic unconstrained binary 

optimization (QUBO) model. In this chapter, we propose a technique to fast transform 

optimization tasks into QUBO model and realize real-time recommendations. More 

specifically, DA itself is fast in dealing with optimization problems. However, 

preprocessing the input data for DA is time-consuming, which is a bottleneck to use DA 

in real-time periodic recommendation systems. This chapter proposes an element-based 

method to fast derive the inputs of DA directly: weight matrix 𝑾, vector 𝒃, and constant 

𝑐𝑜𝑛. This work is the first to explore the application of quantum-inspired computers in 

the field of ad recommendation, providing a new mindset for the field. DA, based on 

 
4 This chapter is based on “Real-time Periodic Advertisement Recommendation Optimization under Delivery 
Constraint using Quantum-inspired Computer”[68], by the same authors, which appeared in Proceedings of 2021 
International Conference on Enterprise Information Systems (ICEIS 2021), pp. 431-441, 2021. Copyright(c) 2021. 
5 Fujitsu digital annealer provides APIs for general users to research and use. The APIs allow the user to set the input 
states and parameters of the DA and return the optimized results to the user after the DA is executed. In addition, DA 
supports a Jupyter-based development platform for general users to code and visualize results easily. 
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quantum computing, is the state-of-the-art solver to calculate combination optimization 

problems. By emulating qubits in a digital circuit, DA can quickly solve the NP-hard 

problem, inspiring us to use DA in ad recommendations. Besides, the proposed novel 

transformation method is for the QUBO model. QUBO model is general and widely used 

in solvers and is one of the research directions for solving NP-hard problems. If we 

displace the DA for other fast solvers, the proposed transformation method still possesses 

generality. 

3.1 Introduction 

The development of recommendation technique helps the market size of online 

advertising increase yearly. Real-time bidding (RTB) has become a typical delivery 

mechanism of online advertisements (hereafter, ads). In RTB, the advertisers publish their 

ads with the help of a demand-side platform (DSP). The DSP enables RTB and tracks the 

delivery of ads. Ad delivery aims to increase the number of conversions, defined as the 

cases when a customer completes a specific action with the advertiser’s product, such as 

buying or subscribing. Whether a user converts or not reflects the performance of the ad 

delivery. Thus, a DSP needs to choose ads with a high conversion rate (CVR) according 

to each user’s behavior. 

A common task of DSP is to meet the needs of advertisers to obtain as much user 

engagement as possible. Previous studies [6] [7] aimed to optimize ads from advertisers’ 

perspective with budget constraints. Yang et al. [8] focused on maximizing the DSP’s 

profit while helping advertisers obtain valuable impressions under a given bidding budget. 

However, related studies neglected another critical requirement of DSP delivery 

constraints. DSP may want to deliver a specific number of ads in each category from 

many advertisers during a specific period because some categories have higher benefits 

for DSP and have a higher probability of matching target users’ interests in a specific time. 

Because maximizing the CVR while satisfying delivery constraints is a combinatorial 

optimization problem, it is challenging and time-consuming to train, causing difficulty in 
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capturing changes in user interest over time and updating the ad optimization models 

under the delivery constraints periodically with a general-purpose computer.  

In this chapter, the adoption of an Ising computer — Fujitsu digital annealer (DA), a 

quantum-inspired annealing machine [9], is proposed to accelerate and satisfy the 

delivery constraints. We aim to improve the CVR by periodic ad recommendation 

optimization. Periodic updates of the user model improve CVR because we can capture 

the users’ latest behaviors to tune the recommendation model in real-time. 

We model the periodic ad recommendation optimization problem as follows: in a short, 

fixed period (e.g., 20 min), DSP needs to update the user model while satisfying the 

constraints, such as delivering a specific number of ads in each category to users (for 

example, 1,000 ads for category A and 5,000 ads for category B). Due to the massive 

number of ads and users, it is challenging for the DSP to train the model quickly and 

accurately to decide the ad category with the highest probability of conversion for the 

target user. To solve the problem, we first predict the conversion probability of each ad 

category for each user by adopting two prediction models. Then, a technique to transform 

the optimization task into a quadratic unconstrained binary optimization (QUBO) model 

[9] quickly is proposed to solve the optimization problem. The contributions of our work 

are as follows. 

-We propose a new real-time periodic recommendation model to speed up ad 

recommendations while satisfying the ad delivery constraints. With offline experiments 

on a real dataset, we show that the ad recommendation accuracy can be improved while 

satisfying the constraints. 

-Our model is the first attempt to combine ad recommendation with a quantum-inspired 

computer DA, which can solve the combinatorial optimization problem quickly and 

accurately. We propose how to use a DA computer to achieve ad recommendations under 

the constraints, including transforming the problem to the QUBO model. 

The remainder of this chapter is organized as follows. Related work is introduced in 
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Section 3.2. Our proposed method is presented in Section 3.3. Section 3.4 presents the 

experimental evaluation, followed by the conclusion in Section 3.5. 

3.2 Related Work 

In this section, we review the previous works and techniques on computational 
advertisement, including click-through rate (CTR) and conversion rate (CVR) prediction, 
ad recommendation, and constrained bidding optimization, which are related to our work. 

3.2.1  CTR and CVR Prediction 

CTR and CVR predictions [11] [12], which play an essential role in the online 

advertising industry, are modeled as classification problems. Logistic regression [11] [13] 

and generalized linear models are the most popular techniques to model a prediction task 

for achieving a high area under the curve (AUC). Shan et al. [11] proposed a triplet-wise 

learning model, adopting regression to rank the impressions in the following order: 

conversions (most valuable impressions), click-only impressions, and non-click 

impressions (least valuable ones). In recent years, factorization machines (FMs) [14] [15] 

have also been adopted for this purpose. FMs can work on large, sparse data to resolve 

cold-start problems. Pan et al. [15] presented a field-weighted FM for improved capturing 

of feature interactions between different fields. To further enhance the prediction accuracy, 

several deep learning-based models [16] [17] have been proposed for learning nonlinear 

features and historical information. Huang et al. [18] proposed a hybrid model using deep 

neural networks as a deep layer to capture nonlinear relationships in advertisement data 

while utilizing FM as a shallow layer to finish the prediction task. Their model 

successfully overcame the obstacle where a shallow-layer model could not use high-order 

features and reduced computational complexity. 

Ad recommendation resembles CTR or CVR prediction. Kang et al. [19] proposed a 

real-time ad recommendation system that preprocesses a user’s history data with a tree 

structure to obtain accurate recommendation results. 
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3.2.2  Constrained Bidding Optimization 

Although our work is close to the ad recommendation task, the difference is that we 

need to satisfy constraints, making our problem more challenging. Maximizing the 

conversion ratio under constraints is a combinatorial optimization problem- an NP-hard 

problem. 

 In computational advertising, most constraints, such as budgets, are set from the 

advertiser’s perspective. In particular, the advertisers want to maximize their benefits 

under budget constraints through a DSP. Abrams et al. [6] were among the first to consider 

bidder’s budgets to optimize ad delivery while predicting bid prices. Wu et al. [7] 

combined the Markov decision process with a model-free reinforcement learning 

framework to address the complexity of optimizing the bidding strategy under budget 

constraints. Yang et al. [17] considered two types of constraints: bidder budgets and cost-

per-click (CPC). They chose CPC as a crucial performance indicator constraint. After 

defining two constraints, they proposed an optimal bidding strategy to maximize CVR 

based on a linear programming problem. To the best of our knowledge, the study most 

similar to ours is that of Grigas et al. [20]. They optimized ads from the DSP’s 

perspective: under budget constraints, DSP aims to accurately predict users’ interest and 

maximize users’ clicks while helping advertisers obtain valuable impressions. To achieve 

this goal, they used Lagrangian relaxation to develop their model and then transformed 

the problem into an optimization problem.  

The research above aimed to optimize ads under various constraints, including budgets 

and CPC; however, periodic updates of the optimization problem remained an open 

question because of the time complexity. Even if we optimize the problem once, the 

optimized result cannot be applied to the real system for a long time because the 

preconditions for the optimization vary over time, which results in decreasing the 

effectiveness of the optimization result. Thus, periodic updates of the optimization 

problem are necessary to improve performance. Once we can realize periodic updates, we 
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may increase the accuracy of estimating the users’ behavior and improve the optimization 

since the model can obtain users’ behavior changes. 

3.3 Proposed Method 

We propose a DA-based method to optimize ads periodically to meet the needs of DSP 

for the ad delivery constraints and to reflect users’ behavior changes. We aim to achieve 

a higher CVR by updating the optimization periodically in a short time. In each period, 

we execute a prediction algorithm, such as the Logistic regression model or XGBoost, to 

capture the probabilities of each user’s candidate ad category, after which we solve the 

optimization problem by using DA, a quantum-inspired computer provided by Fujitsu. 

3.3.1  Problem Formulation 

Our goal is to optimize the delivered categories of ads for each user—with a high 

possibility of user conversions—while satisfying the number of ad deliveries for each 

category in a fixed period with periodic updates. We analyze each user’s web page visit 

history to predict what ad category will be converted. For this, we adopt 26 categories 

(shown as 𝐶) of ads defined by the IAB taxonomy6. 

We formulate our problem as follows. Figure 3-1Figure 3-1: Prediction model shows 

our prediction model of the training and testing phases. In the training phase, we create a 

feature vector for each user 𝑢 ∈ 𝑈𝑡𝑟𝑎𝑖𝑛, using his/her visit history during period 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛. 

𝑈𝑡𝑟𝑎𝑖𝑛 means the entire user set who converted during period 𝑡𝑡𝑟𝑎𝑖𝑛. By using the feature 

vector, we train a classification model to predict the category of ads converted by each 

user. In the testing phase, we predict and optimize ads to be delivered for every user, 

shown as 𝑈𝑡𝑒𝑠𝑡, who visited web pages during 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 just before the prediction starting 

time 𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡. After the prediction and the optimization, the results are adopted during 

the next period 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 for the users in 𝑈𝑡𝑒𝑠𝑡. The process is different from the usual 

 
6 IAB Tech Lab - Taxonomy, https://www.iab.com/guidelines/taxonomy/ 
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machine learning models. We pre-calculate the ad delivery category for each user 𝑈𝑡𝑒𝑠𝑡 

regardless of his/her future appearance in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 because we do not have enough time 

to decide the ad category to deliver after knowing that he/she appears. We ignore 

predicting the ad category for the users not included in  𝑈𝑡𝑒𝑠𝑡; that is, a different strategy 

is adopted to deliver ads. Based on the know-how that users will appear in the log data 

continuously in a short period, updating both the prediction and the optimization 

frequently is necessary to achieve high accuracy. Besides, to satisfy the constraints while 

capturing changes in user interest over time, frequent updates of the optimization problem 

are indispensable. 

Assume that each ad in 26 categories has constraints, where 𝑟𝑐 is a non-negative real 

number, representing the delivery ratio of category 𝑐  against the entire categories 𝐶 

satisfying ∑ 𝑟𝑐 𝑐∈𝐶 = 1. The actual constraint is the number of deliveries defined for each 

ad. We calculate 𝑟𝑐 based on the given number of ads in each ad category during 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. 

Subsequently, for each ad category 𝑐 ∈ 𝐶 , we estimate the conversion probability for 

each user 𝑢 in the set 𝑈𝑡𝑒𝑠𝑡, shown as 𝑝𝑢,𝑐, based on the pre-trained prediction model 

and his/her access log during 𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 to 𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡. Because the ratio of 

delivered ad categories for test users set 𝑈𝑡𝑒𝑠𝑡  must satisfy the number of delivery 

constraints ∀𝑐 ∈ 𝐶, 𝑑𝑐 = 𝑟𝑐 · |𝑈𝑡𝑒𝑠𝑡|, we optimize to choose the category for each user 𝑢 

in 𝑈𝑡𝑒𝑠𝑡  with as high 𝑝𝑢,𝑐  as possible under the delivery constraints. |𝑈𝑡𝑒𝑠𝑡|  denotes 

the size of 𝑈𝑡𝑒𝑠𝑡. Although some users appear in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 multiple times, for simplicity, 

we assume that each user appears only once during 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, which is acceptable if we 

can shorten 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 by adopting our proposed method. 
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Figure 3-1: Prediction model 

3.3.2  Overview of Proposed Method 

Our framework consists of two steps: 1) a preprocessing step on standard CPUs and 2) 

an optimization step on DA. In the preprocessing step, for each user, our method predicts 

the CVR of each candidate category by using a pre-trained prediction algorithm. In the 

optimization step, we combine the predicted CVR with the delivery constraints and 

generate the final category for each user using DA. We use DA to accelerate the 

optimization of the delivery categories under the constraints. Note that the prediction 

algorithm and the optimization method are independent, which makes our method highly 

portable. 

3.3.3  Conversion Probabilities of Ad Categories for Each User 

In this subsection, we describe a method to calculate the probability of the ad category 

that a user will convert. Training data is collected to extract each user’s visited web pages’ 

categories and his/her converted ads’ categories. Each user 𝑢 ∈ 𝑈𝑡𝑟𝑎𝑖𝑛  has a feature 

vector 𝒉𝑢 = (ℎ𝑢,1, … , ℎ𝑢,|𝐶|), where ℎ𝑢,𝑐 represents the ratio of the web page category 

𝑐 ∈ 𝐶  user 𝑢  visited during 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛  weighted by time, as shown in Eq. (3.1). In the 

thesis, we denote vectors and matrices in italicized bold type. Besides, in the thesis, a 

vector is represented as a row vector if not otherwise specified. Here, the weighting is 
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linear from 0 to 1, where the recent history has a more significant weight. 

ℎ𝑢,𝑐 =
ℎ𝑢,𝑐
′

∑ ℎ𝑢,𝑐
′

𝑐∈𝐶
 

(3.1) 

where ℎ𝑢,𝑐
′ = ∑ (1 −

𝑠−𝑡

𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛
)(𝑡,𝑐)∈𝑉𝑢  

𝑉𝑢 = {

(𝑡, 𝑐)| user 𝑢 visited a web page 
of ad category 𝑐 ∈ 𝐶 
at time 𝑡 in 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛

} 

𝑠 = {
𝑡𝑢,𝑐𝑣     (when training )

𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡  (when predicting) 
 

(3.2) 

We use a prediction algorithm to calculate the conversion probabilities of each ad 

category. To train the prediction algorithm, 𝒉𝑢  is used as the input vector, and the 

converted category 𝑐𝑢  is used as the output label for each user 𝑢 ∈ 𝑈𝑡𝑟𝑎𝑖𝑛  who 

converted during 𝑡𝑡𝑟𝑎𝑖𝑛. At 𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡, we input the feature vector of each user 𝑢 ∈ 𝑈𝑡𝑒𝑠𝑡 

and calculate the conversion probability 𝑝𝑢,𝑐 for each candidate ad category 𝑐 ∈ 𝐶.  

3.3.4  Optimizing Category Predictions 

DA and QUBO Model 

DA by Fujitsu Ltd. [9] aims to solve NP-hard combinatorial optimization problems, 

which are difficult to solve by using today’s classical computers at high speed. DA can 

search for the minimum value of the energy function of a QUBO model. As a quantum 

computer, DA can only adopt the input of the QUBO model, as shown in Eq. (3.3). 

𝐸(𝒙) = −
1

2
∑∑𝑊𝑖,𝑗𝑥𝑖𝑥𝑗

𝑗≠𝑖𝑖

−∑𝑏𝑖𝑥𝑖
𝑖

+ 𝑐𝑜𝑛, (3.3) 

where 𝑾 ∈ ℝ𝑛×𝑛, 𝒃 ∈ ℝ1×𝑛, and con ∈ ℝ1×1 are the inputs of DA, and 𝑥𝑖 ∈ {0,1} is a 
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bit. 𝑛  means the number of units in DA. Weight matrix 𝑾  reflects the quadratic 

coefficients of the model, while vectors 𝒃 and 𝑐𝑜𝑛 represent linear coefficients and a 

constant, respectively. The value of con, the elements in 𝑾, and the elements of b must 

be integers. Subscripts represent elements of a matrix or vector. i.e., 𝑊𝑖,𝑗 represent the 

element in row 𝑖 and column 𝑗 of matrix 𝑾 while 𝑥𝑖, 𝑏𝑖 denoting the 𝑖-th element 

of the vector 𝒙 and 𝒃, respectively. DA calculates the global minimum value of 𝐸(𝑥) 

and outputs the value of all bits x, when 𝐸(𝑥) reaches a minimum. 

DA-Based Category Prediction 

Even after the conversion probabilities 𝑝𝑢,𝑐  for each user are calculated in Section 

3.3.3, we cannot simply choose the category with the highest probability as the prediction 

result because the number of ads in each category must satisfy the number of delivery 

constraints. Maximizing accuracy while satisfying the constraints is a combinatorial 

optimization problem, which is time-consuming and challenging to solve using a 

conventional computer. Instead, we use DA to accelerate the optimization. Note that 

accelerating and capturing changes in user interest is very important for time-sensitive 

services, like ad recommendation, because users’ interest constantly changes over time. 

We aim to maximize the prediction accuracy under the constraints of delivery 

distribution. The outputs of the DA must satisfy two constraints: 1) each user should be 

assigned only one category (constraint 1); 2) the number of ads to be delivered in each 

category must meet the delivery constraint (constraint 2).  

We combine the predicted probabilities with the constraints and apply them to the 

QUBO model. To achieve the QUBO model format, we define an objective function with 

three terms in Eq. (3.4). 
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𝐸′(𝒒) = −𝛼∑∑𝑝𝑢,𝑐𝑞𝑢,𝑐

|𝐶|

𝑐=1

|𝑈|

𝑢=1

+ 𝛽∑(∑𝑞𝑢,𝑐

|𝐶|

𝑐=1

− 1)

2|𝑈|

𝑢=1

+ 𝛾∑(∑𝑞𝑢,𝑐

|𝑈|

𝑢=1

− 𝑑𝑐)

2|𝐶|

𝑐=1

, 

(3.4) 

where 𝑝𝑢,𝑐  is the probability from 0 to 100 (in percent) that user 𝑢  will convert to 

category 𝑐, which is calculated from the prediction algorithm in Section 3.3.3; 𝒒 ∈ ℝ1×𝑛 

is the output result vector of DA. 𝑞𝑢,𝑐 is an element of 𝒒, denoting that we partition the 

vector 𝒒  to assign a unit to represent the allocation result of user 𝑢  to category 𝑐 . 

𝑞𝑢,𝑐 ∈ {0,1}  shows that ads of category 𝑐  are assigned to user 𝑢  when 𝑞𝑢,𝑐 = 1  and 

vice versa, are not assigned to user 𝑢  when 𝑞𝑢,𝑐 = 0 . We adopt one-hot encoding to 

represent each user’s assigned ad category with |𝐶| bits. |𝑈| and |𝐶| are the numbers 

of users and categories, respectively. Moreover 𝑑𝑐 = 𝑟𝑐 · |𝑈𝑡𝑒𝑠𝑡|  is the delivery 

constraint of category 𝑐 that we must satisfy, where 𝑟𝑐 is the delivery ratio of category 

c. Furthermore, 𝛼, 𝛽, and 𝛾 are three positive parameters. We assign category 𝑐 as a 

predicted result for user 𝑢 if and only if 𝑞𝑢,𝑐 = 1. 

The constraints in Eq. (3.4) are soft, which causes several users to violate the constraint. 

Thus, a following post-process is applied. If he/she has multiple assigned categories, the 

category with the highest probability is assigned from the multiple assigned categories 

that do not have full assignments, i.e., from remaining categories among the multiple 

assigned categories. Besides, if he/she has no categories, the category with the highest 

probability among the remained categories is assigned. 

3.3.5  Transforming Objective Function to The QUBO Model 

To utilize DA, we must transform our defined objective function into a QUBO model 

and to derive three necessary inputs: weight matrix 𝑾, vector, 𝒃, and constant 𝑐𝑜𝑛 of 

DA in Eq. (3.3). For convenience, we denote each bit 𝑥𝑘 as 𝑞𝑢,𝑐(𝑘 = 𝑢 ∙ |𝐶| + 𝑐). Same 



28 
 

as in a QUBO model, our objective function also has quadratic, linear, and constant terms. 

In our objective function, we mix quadratic, linear, and constant terms in the function's 

three terms. However, in a QUBO model, the input of the quadratic coefficient is a weight 

matrix 𝑾, the input of the linear coefficient is vector 𝒃, and the input constant is 𝑐𝑜𝑛. 

Thus, we must expand the objective function to extract coefficients of each term and 

reorganize them into 𝑾, 𝒃, and 𝑐𝑜𝑛 of the QUBO model. Subsequently, we feed three 

terms to DA as inputs. Because the function has three parts, for convenience and clarity, 

we introduce those three parts in the order below. 

The first part −𝛼∑ ∑ 𝑝𝑢,𝑐𝑞𝑢,𝑐
|𝐶|
𝑐=1

|𝑈|
𝑢=1  in Eq. (3.4) is to maximize the accuracy because the term 

can reach a lower value linearly when a category with higher probability is selected for 

the user. We extract the linear coefficient into 𝒃𝑝𝑟𝑜𝑏 ∈ ℝ1×𝑛, as in Eq. (3.5). 

𝒃𝑖
𝑝𝑟𝑜𝑏 = 𝛼⌊𝑝𝑢,𝑐⌋, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑢 ∗ |𝐶| + 𝑐 (3.5) 

⌊𝑝𝑢,𝑐⌋  indicates to apply the floor function to 𝑝𝑢,𝑐 . The second part 𝛽∑ (∑ 𝑞𝑢,𝑐
|𝐶|
𝑐=1 −

|𝑈|
𝑢=1

1)
2ensures the existence and uniqueness of the assigned category for each user. If and only 

if there exists one assigned category recommended to one user, both ∑ 𝑞𝑢,𝑐
|𝐶|
𝑐=1 − 1 term and 

its square are 0. If there are no or multiple solutions, (∑ 𝑞𝑢,𝑐
|𝐶|
𝑐=1 − 1)

2
 becomes larger than 0, 

producing a penalty value. This part generates quadratic terms, linear terms, and constants 

of the QUBO model shown in Eq. (3.3). We sort quadratic coefficients, linear coefficients, 

and constants into 𝑾𝑢𝑠𝑒𝑟 ∈ ℝ𝑛×𝑛,  𝒃𝑢𝑠𝑒𝑟 ∈ ℝ1×𝑛,  and 𝑐𝑢𝑠𝑒𝑟 ∈ ℝ1×1 , as shown in Eq. 

(3.6), Eq. (3.7), and Eq. (3.8). 

𝑾𝑖,𝑗
𝑢𝑠𝑒𝑟 = 2𝛽, 𝑤ℎ𝑒𝑟𝑒 ⌊

𝑖

|𝐶|
⌋ = ⌊

𝑗

|𝐶|
⌋ 

(3.6) 

𝒃𝑖
𝑢𝑠𝑒𝑟 = −2𝛽 (3.7) 

𝑐𝑢𝑠𝑒𝑟 = |𝑈|𝛽 (3.8) 
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The third part 𝛾 ∑ (∑ 𝑞𝑢,𝑐
|𝑈|
𝑢=1 − 𝑑𝑐)

2|𝐶|
𝑐=1   ensures that the number of ads for each category 

satisfies the delivery constraints. For each category, the closer the number of the predicted 

category to the upper bound, the smaller (∑ 𝑞𝑢,𝑐
|𝑈|
𝑢=1 − 𝑑𝑐)

2 will be obtained. This part also 

generates a quadratic term, a linear term, and a constant of the QUBO model. Again, we 

sort quadratic coefficients, linear coefficients, and constant into 𝑾𝑐𝑎𝑡𝑒 ∈ ℝ𝑛×𝑛, 𝒃𝑐𝑎𝑡𝑒 ∈

ℝ1×𝑛 and 𝑐𝑐𝑎𝑡𝑒 ∈ ℝ1×1 in Eq. (3.9), Eq. (3.10), and Eq. (3.11). 

𝑾𝑖,𝑗
𝑐𝑎𝑡𝑒 = 2𝛾, where 𝑖 mod |𝐶| = 𝑗 mod |𝐶|, (3.9) 

𝒃𝑖
𝑐𝑎𝑡𝑒 = −2𝛾𝑑𝑐, where 𝑐 = 𝑗 mod 𝑐 (3.10) 

𝑐𝑐𝑎𝑡𝑒 = 𝛾∑𝑑𝑐
2

|𝐶|

𝑐=1

, 

(3.11) 

We combine quadratic, linear, and constant terms in three parts to form the final weight 

matrix 𝑾, vector 𝒃, and constant con of the QUBO model and feed them to DA as inputs, 

where 𝑾 = 𝑾𝑢𝑠𝑒𝑟 +𝑾𝑐𝑎𝑡𝑒 ; 𝒃 = 𝒃𝑝𝑟𝑜𝑏 + 𝒃𝑢𝑠𝑒𝒓 + 𝒃𝑐𝑎𝑡𝑒 ; 𝑐𝑜𝑛 = 𝑐𝑢𝑠𝑒𝑟 + 𝑐𝑐𝑎𝑡𝑒 . The 

process of transformation to the QUBO model is shown in Algorithm 1. 

Algorithm 1: Transforming an objective function to the QUBO model 

Input: 𝒑: conversion probability of all users 

          𝛼, 𝛽, 𝛾: parameters of trade-off  

          𝒅 : delivery constraint of all ad categories  

         |𝐶|: number of ad categories  

         |𝑈|: number of users 

Output: 𝑾,𝒃, 𝑐𝑜𝑛: coefficients of the QUBO model  

1 𝑛←|𝐶| ∙ |𝑈| 

2 Initialize 𝑾,𝑾𝑢𝑠𝑒𝒓,𝑾𝑐𝑎𝑡𝑒  as 𝑛 × 𝑛 zero matrices 

3 Initialize 𝒃, 𝒃𝑢𝑠𝑒𝑟 , 𝒃𝑐𝑎𝑡𝑒 , 𝒃𝑝𝑟𝑜𝑏  as 1 × 𝑛 zero vectors 

4 for 𝑖←1 to n do 

5     𝒃𝒖𝒔𝒆𝒓[𝑖] ← −2 𝒃𝒖𝒔𝒆𝒓[𝑖] means the 𝑖-th element in 𝒃𝒖𝒔𝒆𝒓 

6     𝒃𝒄𝒂𝒕𝒆[𝑖] ← −2 
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7 end for 

8 for 𝑖 ←1 to |𝑈| do 

9     enumerate each pair of categories, 𝑾𝑢𝑠𝑒𝑟[𝑥][𝑦] means the 𝑥 row 𝑦 

column element in 𝑾𝑢𝑠𝑒𝑟  

10     for 𝑘, 𝑗 in combinations (|𝐶|, 2) do 

11         𝑾𝑢𝑠𝑒𝑟[𝑖 ∙ |𝐶| + 𝑘][𝑖 ∙ |𝐶| + 𝑗]  ← 2 

12          𝑾𝑢𝑠𝑒𝑟[𝑖 ∙ |𝐶| + 𝑗][𝑖 ∙ |𝐶| + 𝑘]  ← 2 

13     end for 

14 end for 

15 𝑐𝑐𝑎𝑡𝑒  ← 0 

16 for 𝑖 ←1 to |𝐶| do 

17     enumerate each pair of users 

18     for 𝑘, 𝑗 in combinations (|𝑈|, 2) do 

19          𝑾𝑐𝑎𝑡𝑒[𝑘 ∙ |𝐶| + 𝑖][𝑗 ∙ |𝐶| + 𝑖]  ← 2 

20          𝑾𝑐𝑎𝑡𝑒[𝑗 ∙ |𝐶| + 𝑖][𝑘 ∙ |𝐶| + 𝑖]  ← 2 

21     end for 

22     𝑐𝑐𝑎𝑡𝑒  ← 𝑐𝑐𝑎𝑡𝑒 + 𝑑𝑖2 

23 end for 

24 𝑐𝑢𝑠𝑒𝑟  ←  |𝑈| 

25 for 𝑖 ←1 to |𝑈| do 

26     for 𝑗 ←1 to |𝐶| do 

27         𝒃𝒑𝒓𝒐𝒃[(𝑖 − 1) ∙ |𝑈| + 𝑗]  ← ⌊𝑝𝑖,𝑗⌋ 

28     end for 

29 end for 

30 𝑾 ← 𝛽 ∙ 𝑾𝑢𝑠𝑒𝑟 + 𝛾 ∙ 𝑾𝑐𝑎𝑡𝑒  ∙denotes the scalar multiplication 

31 𝒃 ← 𝛼 ∙ 𝒃𝒑𝒓𝒐𝒃 + 𝛽 ∙ 𝒃𝒖𝒔𝒆𝒓 + 𝛾 ∙ 𝒃𝒄𝒂𝒕𝒆 

32 𝑐𝑜𝑛 ← 𝛽 ∙ 𝑐𝑢𝑠𝑒𝑟 + 𝛾 ∙ 𝑐𝑐𝑎𝑡𝑒  

33 return 𝑾,𝒃, 𝑐𝑜𝑛 

3.3.6  Utilization of DA 

After we feed the weight matrix,𝑾, vector,𝒃, and constant con to DA as input, DA 

provides two annealing modes to be selected: normal mode and replica-exchange 

mode[9]. Because the normal mode requires us to train annealing parameters, for 

convenience, we choose the replica-exchange mode, which performs “parallel tempering” 
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and sets the temperature automatically. When the energy is stable, the DA returns the 

status of all bits. For each user, we check the status of the corresponding bits and judge 

whether both constraints are satisfied. We adopt the result only when the following two 

constraints are satisfied: a user is assigned to only one category c (constraint 1), and the 

total number of users receiving category c ads does not violate the maximum number DC 

(constraint 2). Otherwise, the post-process described in Section 3.3.4 is adopted. The 

process of utilizing DA is shown in Algorithm 2. 

3.4 Experiment Evaluation 

3.4.1  Dataset 

We used real log data for the experimental evaluation to verify our proposed method. 

The log data consists of an auction and conversion log accumulated by Geniee DSP7. The 

auction log is generated when a user visits a web page with an advertisement tag, and 

RTB is performed. The conversion log is generated when a user who views an 

advertisement performs a conversion.  

In this experiment, the identifier (id) assigned to each unique browser is assumed to be 

the user’s unique id. The visit history of web page categories used as input features can 

be aggregated from the auction log utilizing the user’s unique id and time stamp. We use 

the ratio of each advertisement category in the auction log in each 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 as the delivery 

constraint.  

We used raw data collected from November 6th, 2019, to November 8th, 2019. The 

24-hour data on November 7th was used to tune time parameters, i.e., 𝑡𝑡𝑟𝑎𝑖𝑛, 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 

and 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. As for 𝑡𝑝𝑟𝑒𝑑, it must satisfy less than  𝑡𝑤𝑖𝑛𝑑𝑜𝑤 so that we will confirm it 

in the experiment. The 24-hour data on November 8th was used for the experimental 

evaluation. We divided the evaluation data by 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 to simulate the proposed method. 

 
7 Geniee, Inc. https://en.geniee.co.jp/ 



32 
 

For example, 24-hour evaluation data are divided into72 windows when 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 20 

min. 

Algorithm 2: Utilizing DA 

Input: 𝒑: conversion probability of all users  

          𝛼, 𝛽, 𝛾: parameters of trade-off  

          𝒅 : delivery constraints of all ad categories  

         |𝐶|: number of ad categories  

         |𝑈|: number of users 

Output: result: predicted ad category for all users  

1 𝑾,𝒃, 𝑐𝑜𝑛 ← Transform(𝑝𝑢,𝑐 , 𝛼, 𝛽, 𝛾, 𝑑𝑐), shown in Section 3.3.5 

2 𝒒 ← DigitalAnnealing(𝑾, 𝒃, 𝑐)  DigitalAnnealing means the use of DA to 

obtain results 

3 𝑼′ ← ∅ 

4 for 𝑖 ←1 to |𝑈| do 

5     𝑠 ← ∑ 𝑞𝑖𝑗  
|𝐶|
𝑗=1  

6     if 𝑠=1 then only 1 result bit with value 1 

7         for 𝑗 ←1 to |𝐶| do 

8             if 𝑞𝑖,𝑗=1 then 

9                 𝑟𝑒𝑠𝑢𝑙𝑡𝑖  ←  𝑗 

10                 𝑑𝑗 ← 𝑑𝑗 − 1 

11             end if 

12         end for 

13     else 

14         𝑼′ ← 𝑼′ ∪ {𝑖}user 𝑖 needs a post-process 

15     end if 

16 end for 

17 

18 

apply post-process to ∀𝑢 in 𝑼′  

described in Section 3.4.2 

19 return 𝒓𝒆𝒔𝒖𝒍𝒕 

As shown in Figure 3-2, 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 slides over time, and we use the data during 𝑡𝑡𝑟𝑎𝑖𝑛 

period as training data. Importantly, when tuning time parameters with data on November 

7th, in several 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 (such as 00:00 to 00:20), we need to use data on November 6th 

to generate 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 and 𝑡𝑡𝑟𝑎𝑖𝑛. The number of converted users was 9,823 on November 
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6th, 9,328 on November 7th, and 9,874 on November 8th. The number of users in the 

training and test datasets, 𝑈𝑡𝑟𝑎𝑖𝑛 and 𝑈𝑡𝑒𝑠𝑡, depends on the time parameters. Notably, 

some of the converted users in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 did not visit the web pages during 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛, so 

they were not included in 𝑈𝑡𝑒𝑠𝑡. The number of converted users included in 𝑈𝑡𝑒𝑠𝑡 was 

4,706 out of 9,823 on November 8th. 

 

3.4.2  Evaluation Metrics 

The novelty of our proposed method is to solve the ad optimization problem 

periodically around a short period of time to capture changes in user interest over time, 

maximizing the CVR while satisfying the number of delivery constraints. To confirm that 

our proposed method predicts an ad category for each user with high accuracy while 

satisfying the delivery constraints in an appropriate duration, we use three metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙  and execution time. Here, we assume that the ground 

truth is the category in which each user converts in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. We do not use the AUC 

metric (which is common in CVR prediction) because our task is different from predicting 

the conversion category under the delivery constraints. We need to verify whether our 

prediction is correct. Thus, we adopted accuracy instead of AUC. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 is the average ratio of correctly predicted users to all converted users 

 
 

Figure 3-2: Overview of periodic recommendation 
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in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, shown in Eq. (3.12). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 = 𝑎𝑣𝑔𝑎𝑙𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
|𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡∩𝑐𝑣
𝑤𝑖𝑛𝑑𝑜𝑤 |

|𝑈𝑐𝑣
𝑤𝑖𝑛𝑑𝑜𝑤|

, 
(3.12) 

where 𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡∩𝑐𝑣𝑤𝑖𝑛𝑑𝑜𝑤  is the set of converted users with the same predicted category as the 
category in the ground truth; 𝑈𝑐𝑣𝑤𝑖𝑛𝑑𝑜𝑤 is the set of all converted users in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. 𝑎𝑣𝑔 
denotes the average value function. The input is a set of real numbers and the output is a 
real number. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙  shown in Eq. (3.13) is the ratio of correctly predicted users to all 

converted users in the test dataset. We introduce 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙   as a fair comparison 

between the different time parameters because when we change 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, it affects the set 

of converted users. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 =
∑ |𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡∩𝑐𝑣

𝑤𝑖𝑛𝑑𝑜𝑤 |𝑎𝑙𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

|𝑈𝑐𝑣|
, 

(3.13) 

where 𝑈𝑐𝑣 is the set of total converted users in the test dataset. 
Finally, the execution time measures the time (in seconds) spent to generate the 
recommendation. 

All the experiments were executed on a server with the following configuration: two 

Intel Xeon Gold 6148 CPUs, 2.40 GHz (20 cores, 40 threads), with 192 GB of memory, 

running on CentOS 7.6. The optimization process (finding the minimum value and bits 

of the QUBO function) was run on DA [9]. 

3.4.3  Prediction Algorithm 

To generate the conversion probabilities of ad categories for each user described in 

Section 3.3.3, we need to adopt a base algorithm to receive the input feature vector 𝒉𝑢 

and output the conversion probability 𝑝𝑢,𝑐 for each candidate ad category 𝑐 ∈ 𝐶. In our 

experiment, we chose Logistic regression and XGBoost [21] as prediction algorithms 

because of their effectiveness and high speed. 
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3.4.4  Baseline Methods 

We compared our proposed DA-based method8 with two baselines: “Random” and the 

genetic algorithm (shown as GA). 

The “Random” method omits the optimization step and adopts a random selection of 

ad categories but adopts the post-process shown in Section 3.3.4 to satisfy the delivery 

constraints. By comparing our method with Random, we can confirm the effectiveness of 

solving delivery constraints.  

The genetic algorithm (GA) [22] was also chosen to solve the combinational problem 

as a popular and efficient method to confirm the effectiveness of DA in solving delivery 

constraints more strictly. GA runs on common CPUs and does not require binary bits. 

Instead of one-hot encoding, we can use one variable to represent each user's candidate 

results so that the objective function is simplified as in Eq. (3.14). 

𝐸′′(𝒒) = −𝛿∑𝑝𝑢,𝑞𝑢

|𝑈|

𝑢=1

+ 𝜀∑(∑𝑓𝑢,𝑐 − 𝑑𝑐

|𝑈|

𝑢=1

)

2|𝐶|

𝑐=1

, 

(3.14) 

where 𝑝𝑢,𝑞𝑢 is the probability that user 𝑢 converts to category 𝑞𝑢; 𝑑𝑐 is the delivery 

number of category 𝑐 that we must satisfy; 𝑓𝑢,𝑐 ∈ {0,1} is a binary variable where 𝑓𝑢,𝑐 

equals 1 when the converted category 𝑞𝑢  equals category 𝑐 , as shown in Eq. 

(3.15);  ∑ 𝑓𝑢,𝑐
|𝑈|
𝑢=1  is used as a count for each category. i.e., how many ads are delivered; 

𝛿 and 𝜀 are two parameters.  

𝑓𝑢,𝑐 = {
1,          𝑤ℎ𝑒𝑛 𝑞𝑢 = 𝑐 
0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 
(3.15) 

Compared with (3.4), (3.14) omits the constraint, ensuring that each user has only one 

 
8 https://github.com/bakubonmo/Rec 
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prediction result. As in DA, GA does not guarantee the satisfaction of the given constraint. 

Therefore, we also adopt the post-process described in Section 3.3.4. 

3.4.5  Time Parameters Tuning 

In this section, we tune the parameters twindow, ttrain, and tsession to achieve the best 

average 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 by evaluating the classification using the prediction algorithm 

without considering the delivery constraints. We used the 24-hour data on November 7th 

to tune the parameters. 

 

 
Figure 3-3: Result of Accuracy_window  without constraints when changing the 

time parameters: (a) Fixed at t_train = 4 h, t_session= 6 h, and varying t_window; 
(b) Fixed at t_window = 20 min, t_session= 6 h, and varying t_train; (c) Fixed at 

t_window = 20 

Figure 3-3 shows the results of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 when parameters 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, 𝑡𝑡𝑟𝑎𝑖𝑛, 

and 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 are varied. As shown in Figure 3-3(a), the accuracy increases with a decrease 

in the model update interval 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 because the latest action of the user can be reflected 

by a decrease 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. In Figure 3-3(b), the accuracy peaks when the training data period 

𝑡𝑡𝑟𝑎𝑖𝑛  is four hours because if 𝑡𝑡𝑟𝑎𝑖𝑛  is small, the number of data points in 𝑡𝑡𝑟𝑎𝑖𝑛 

becomes small, resulting in poor learning outcomes. However, if 𝑡𝑡𝑟𝑎𝑖𝑛  is extremely 

large, the accuracy decreases due to training on old data. In Figure 3-3(c), a larger 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 

increases the accuracy because more visit history of the user is reflected by increasing 

𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛.  

Finally, we set the parameters as 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 20 min, 𝑡𝑡𝑟𝑎𝑖𝑛 = 4 h, and 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 = 6 h 
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for the rest of the experiments. Further tuning such as decreasing 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 and increasing 

𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 will be available as long as 𝑡𝑝𝑟𝑒𝑑  ≤ 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 holds. 

3.4.6  Experimental Results Under the Delivery Constraints 

We used the 24-hour data on November 8th for the evaluation, which was split into 72-

time slots because of 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 20. Parameters 𝛼, 𝛽, and 𝛾 in our objective function in 

Eq. (3.4) and parameters 𝛿  and 𝜀  in the GA’s objective function in Eq. (3.14) were 

tuned on the first 10 time slots of the data. In contrast, the remaining 62 time slots data 

were used for evaluation. By adopting a grid search, we chose 𝛼 = 1, 𝛽 = 5, 𝛾 = 10 , 

𝛿 = 1, and 𝜀 = 10. 

Table 3-1 shows the experimental results. Because the constraints in Eq. (3.4) and Eq. 

(3.14) are soft, we show the percentage of users who violated the constraints, shown as 

the violation rate in Table 3-1. The constraints in Eq. (3.4) are soft, which causes several 

users to violate the constraints. So, we define the violation rate as the percentage of users 

who violate the constraints. The During the post-process for violated users described in 

Section 3.3.4, we chose each user’s ad category among his/her top six ad categories. 

Recall that 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤  shows the average accuracy per window. Thus, we can 

compare with 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 only when the same parameters (𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, and 

𝑡𝑡𝑟𝑎𝑖𝑛) are used among the methods. On the contrary, if the different parameters are used, 

we cannot use 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 for fair comparison because the converted users in each 

window are different. In such a case, we must use 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙  which shows the 

correctly predicted users against all converted users in the whole test dataset. Compared 

with the result in Mo et al. [10], the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 of GA-based method improves because 

of fine-tuned batch size. 
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 We conducted a paired t-test for accuracies between each baseline and our proposed 

method. As a result, we confirmed that our proposed method outperforms the baselines, 

which is statistically significant at p < 0.01. In addition, we demonstrated that our 

proposed method achieved the shortest execution time. Notably, we do not compare the 

execution time with the Random method because the method is not a combinational 

optimization algorithm and has the lowest recommendation accuracy. 

We also conducted an experiment on different 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 to confirm the effectiveness of 

shorting window size. Because the DA completed the execution within 5 min, we set 

Table 3-1 Experiment Results (𝑡𝑡𝑟𝑎𝑖𝑛 = 4 h and 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 = 6 h) 

Method Prediction 
algorithm 

Optimization 
Technique 

𝐴𝑐𝑐𝑤 𝐴𝑐𝑐𝑎 Violation 
rate 

Execution 
time (s) 
(𝑡𝑝𝑟𝑒𝑑) 

Baseline  
Logistic 
regression 

Random 
(𝑡𝑤𝑖𝑛=20 min) 

0.180 0.219 0.595  

GA 
(𝑡𝑤𝑖𝑛=20 min) 

0.202 0.239 0.030 525 

Proposed DA 
(𝑡𝑤𝑖𝑛=20 min) 

0.229* 0.278* 0.020 108 

DA  
(𝑡𝑤𝑖𝑛=5 min) 

 0.324* 0.020 108 

Baseline  
XGBoost 

Random 
(𝑡𝑤𝑖𝑛=20 min) 

0.180 0.216 0.595  

GA  
(𝑡𝑤𝑖𝑛=20 min) 

0.198 0.237 0.029 526 

Proposed DA  
(𝑡𝑤𝑖𝑛=20 min) 

0.229* 0.277* 0.013 109 

DA 
(𝑡𝑤𝑖𝑛=5 min) 

 0.322* 0.013 108 

* Statistically significant at p < 0.01 when comparing with our proposed method, DA, 

with Random and GA 
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𝑡𝑤𝑖𝑛𝑑𝑜𝑤 to 5 min with the other time parameters as in the previous setting (𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛= 6 h 

and 𝑡𝑡𝑟𝑎𝑖𝑛  = 4 h). In Table 3-1, for convenience, we abbreviate 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤  as 

𝐴𝑐𝑐𝑤 , 𝑡𝑤𝑖𝑛𝑑𝑜𝑤  as 𝑡𝑤𝑖𝑛 , and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙  as 𝐴𝑐𝑐𝑎 . As shown in Table 3-1, we 

confirmed 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 increased drastically as 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 was shortened, which means 

that if the optimization algorithm runs faster, the number of users that we correctly predict 

their ad categories increase. Hence, shortening the periodic optimization of DA and 

capturing changes in user interest is essential. 

To summarize the experimental results, with Logistic regression, we successfully 

shortened the periodic advertisement recommendation from 525s to 108s and increased 

the accuracy from 0.239 to 0.324 (35.56%) compared to GA. With XGBoost, we also 

shortened the execution time from 526s to 108s while improving accuracy from 0.237 to 

0.322 (35.86%). 

3.4.7  Experiment on Comparing Proposed Transformation Method 

with Polynomial Expansion 

We also notice the experiment with the polynomial expansion(baseline) to the QUBO 

model as Algorithm 3. The execution time of polynomial expansion is long (551s for 

preparing the objective function of the QUBO) and even longer than the execution time 

(108s) of DA. Note that polynomial expansion involves symbolic computations and takes 

longer execution time than numerical computations. Our proposed method drastically 

reduces the transformation time to 0.7s, bridging the gap between DA and real-time ad 

recommendation applications. The proposed method overcomes the problem of too long 

a transformation time to adopt DA to ad recommendation. 

3.5 Conclusion 

In this chapter, we proposed a new method, namely the DA method, to optimize ads 

periodically in a short period by using DA to solve the optimization problem: maximizing  
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9 https://www.sympy.org/en/index.html 

Algorithm 3: Transforming an objective function to the QUBO model using polynomial expansion and 

sympy library9 

Input: 𝒑: conversion probability of all users 

          𝛼, 𝛽, 𝛾: parameters of trade-off  

          𝒅 : delivery constraint of all ad categories  

         |𝐶|: number of ad categories  

         |𝑈|: number of users 

Output: 𝑾,𝒃, 𝑐𝑜𝑛: coefficients of the QUBO model  

1 𝑛←|𝐶| ∙ |𝑈| 

2 𝒗 ← [′𝑥1′, ′𝑥2′, … , ′𝑥𝑛′] Initialize 𝑛 variables for polynomial expansion 

3 Initialize 𝒕𝟏, 𝒕𝟐, 𝒕𝟑 as empty symbolic lists to save three terms in Eq. (3.4) 

4 calculate the 𝒕𝒆𝒓𝒎𝟏 in Eq. (3.4) 

5 for 𝑖←1 to |𝑈| do 

6    for 𝑗 ←1 to |𝐶| do 

7 Note that this operation is a symbolic computation, not a numerical computation, 

hence the execution time is long 

8        𝒕𝟏 ← 𝒕𝟏 + ⌊𝑝𝑖,𝑗⌋ ∙  𝒗[𝑖 ∙ |𝐶| + 𝑗]  

9    end for 

10 end for 

11 calculate the 𝒕𝒆𝒓𝒎𝟐 in Eq. (3.4) 

12 for 𝑖 ←1 to |𝑈| do 

13 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ←empty symbolic list Used to calculate the constraint 1 for a user  

14     for 𝑗 ←1 to |𝐶| do 

15        𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ← 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 + 𝒗[𝑖 ∙ |𝐶| + 𝑗] Symbolic computation 

16     end for 

17     𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ← (𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 − 1)2 

18     𝒕𝟐 ← 𝒕𝟐 +  𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 

19 end for 

20 calculate the 𝒕𝒆𝒓𝒎𝟑 in Eq. (3.4) 

21 for 𝑖 ←1 to |𝐶| do 

22     𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ←empty symbolic list 

23     for 𝑗 ←1 to |𝑈| do 

24         𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ← 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 + 𝒗[𝑖 ∙ |𝑈| + 𝑗] Symbolic computation 

25     end for  
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CVR while satisfying the delivery constraints, that is, the number of ads delivered for 

each category. Our method consists of two steps: 1) prediction to generate ad candidates 

for each user, and 2) optimization of candidates to meet the number of ad delivery 

constraints, which is difficult to solve within an acceptable period on a general-purpose 

computer. Experiments on a real dataset showed that our proposed method successfully 

improved the accuracy by shortening the periodic advertisement recommendation: 0.239 

to 0.324 (35.56%) with prediction algorithm Logistic regression while shortening the 

execution time from 525s to 108s; and 0.237 to 0.322 (35.86%) with XGBoost while 

shortening the execution time from 526s to 108s. 

25     𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ← (𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 − 𝑑𝑖)2 

27     𝒕𝟑 ← 𝒕𝟑 +  𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 

28 end for 

29 𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 ← − 𝛼 ∙ 𝒕𝟏 +  𝛽 ∙ 𝒕𝟐 + 𝛾 ∙ 𝒕𝟑merge three terms 

30 use sympy library to transform QUBO model 

31 𝒆𝒙𝒑𝒂𝒏𝒅𝒆𝒅_𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 ←expand(𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍) Expand the polynomials 

using sympy library with time complexity 𝑂(|𝑇|2) of symbolic computation 

32 𝑾,𝒃, 𝑐𝑜𝑛 ←simplify(𝒆𝒙𝒑𝒂𝒏𝒅𝒆𝒅_𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍) Get the final output using 

sympy library, simplify() is a function to simplify polynomials 

33 return 𝑾,𝒃, 𝑐𝑜𝑛 
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4 Preliminary of Combination of Side Information 

with Graph Convolution Network (GCN) for Point-

of-interest (POI) Recommendation  

4.1 Introduction 

In this chapter, we introduce the related work and basics knowledge of combination of 

side information, including time and geographical information, with a graph convolution 

network to improve POI recommendation accuracy. The advent of the information age 

has improved people’s standard of living but has raised the problem of information 

overload. Recommendation systems are effective tools to help users filter massive 

amounts of information and assist them in making decisions. In location-based social 

networks (LBSNs), point-of-interest (POI) recommendation systems recommend 

unvisited POIs by analyzing user check-in history based on user and POI locations. Open-

source datasets from LBSNs, such as Gowalla10 and Yelp11, allow users to share their 

check-in experience, making a detailed analysis of users’ behavior possible. Accuracy is 

an important metric of the effectiveness of recommendation results and user satisfaction. 

Thus, many recommendation systems have improvement of accuracy as their primary 

goal. 

In recent years, the use of neural network techniques has led to a boom in the use of 

recommendation systems. Graph convolution network (GCN) models [2] [3] [4] have 

become state-of-the-art recommendation algorithms due to the effectiveness of 

calculating the embeddings of users and items while ranking higher predicted preference 

scores as the preferred items. By aggregating information from neighbor nodes and 

passing collaborative signals from high-order connectivity, GCNs combine the core idea 

of collaborative filtering, i.e., similar users have similar preferences, with machine 

 
10 http://snap.stanford.edu/data/loc-gowalla.html 
11 https://www.yelp.com/dataset_challenge 
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learning. Several related works have attempted to adopt GCNs for POI recommendation, 

considering that using various side information is a potential method to improve model 

performance. Inspired by lightweight models (e.g., LightGCN [5] and LR-GCCF [23]), 

Chang et al. [3] were the first to integrate the power-law distribution of the geographical 

distance between two POIs into a GCN model. The use of two GCNs, one for check-in 

information and the other for geographical information, improves the representation 

ability of user and POI embeddings. However, simply modeling geographic information 

as geographical distances is insufficient, ignoring users’ active areas in cities, which leads 

to sub-optimization of the model. The methodology of combination of users’ active areas 

with GCN models to improve recommendation performance need to be explored and 

designed. Besides, it leads to a significant increase in the number of trainable parameters, 

making the model training difficult. The proposed technique called GN-GCN to solve the 

above problem and make full use of geographical information will be introduced in 

Chapter 5. 

In addition to geographical information, time information is an essential side-module 

in GPR [3] and GNN-POI [4]. However, simply adopting time information by sorting 

user check-ins in chronological order and modeling user check-in sequences cannot fully 

exploit collaborative signals in time information. Although similar users can be extracted 

according to the check-in time for POIs, this is not sufficient. For example, both the target 

user and user A tend to go to a supermarket after breakfast, but for user B, checking a 

supermarket in the evening is a good selection. In this case, user A can be a time-based 

high-order neighbor to the target user, and the model filters out user B, even if user B has 

the same preference (going to a supermarket) as the target user. Thus, learning unique 

time-based embeddings for users and items is essential. A novel GCN model- EPT-GCN 

will be introduced in Chapter 6 in detail to combine time information and solve the above 

problem. 

4.2 Related Work 
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Our work for Contribution 2 and 3 are related to POI recommendations and GCN-based 

recommendations. Thus, in this chapter, we introduce two main aspects of previous works: 

1) side information, i.e., time and geographical information, used in POI recommendation, 

and 2) GCNs in recommendation systems. 

4.2.1  Side information used in POI Recommendation 

Geographical information: As an intrinsic attribute of POIs, geographical 

information is widely used in POI recommendation systems to model regions frequently 

checked by a target user. Ye et al. [30] were the first to apply geographical information to 

recommendation systems to improve accuracy. They suggested users are less likely to 

check in to POIs far from their familiar areas. Based on Ye et al.’s work, Baral et al. [27] 

and Zhang et al. [29] optimized geographical models. Zhang et al. proposed the famous 

multi-center Gaussian distribution of geographical information to fit a user’s check-ins, 

which has profoundly impacted subsequent research on geographical information. With 

the widespread use of machine learning techniques in POI recommendation, matrix 

factorization (MF)-based models [32] [33] can effectively solve data sparsity problems 

by adopting geographical information. Li et al. [33] argued for the adoption of two latent 

vectors to represent user information, where one is adopted to calculate user preferences 

and the other for scoring geographical information. Deep learning algorithms [3] [38] are 

increasingly being adopted for integrating geographical information. To the best of our 

knowledge, Chang et al. [3] were the first to integrate geographical information into a 

GCN by modeling a power-law distribution and aggregating less information from distant 

neighbor nodes. Chang et al. trained two embeddings to represent a POI: one for check-

in information and the other for geographical information. However, simply modeling 

geographical information as geographical distances is insufficient, ignoring users’ active 

areas in cities, which leads to sub-optimization of the model. How to combine users’ 

active areas with GCN models to improve recommendation performance is still an open 

question. 
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Time information: Time information is generated when a user interacts with a POI. 

Time information helps recommendation systems capture user preference changes over 

time. Yuan et al. [39] and Gao et al. [40] are pioneers in considering time information 

when making POI recommendations. Yuan et al. used time slots as a new dimension to 

refine user preferences by calculating the cosine similarity among users. After the era of 

the prevalence of machine learning models [41] [42] in recommendation systems, 

sequence-based techniques [3] [4] [42] have received a great deal of attention. Zhao et al. 

[42] proposed a sequential mining model to capture the temporal preferences of users 

inspired by the word2vec framework [43]. The well-trained POI time embeddings can 

reflect various time characteristics on different days. Zhang et al. [4] further optimized 

the sequential model from Ying et al.’s work; in addition to the structure of graph mining, 

they adopted two LSTM networks to extract the features of the arrival and departure times 

of POIs. 

The above models adopt time information; however, they struggle to mine users’ time-

based high-order connectivity, even for state-of-the-art GCN models [44] [4], limiting the 

representation ability and preventing further accuracy improvement. The users’ time-

based high-order connectivity enables the extraction of indirect neighbors with similar 

preferences in a time slot. 

4.2.2  Graph Convolution Network in Recommendation System 

With the development of machine learning techniques, network embedding-based 

models [45] [46], which condense the representation of a user or an item into an 

embedding, have gained breakthroughs and attracted the attention of researchers in the 

area of recommendation systems in recent years. Graph convolution network (GCN) 

models [44] [47] [48] [49] [50], as one of embedding-based models, are widely adopted 

to improve performance. Wang et al. [25] pioneered the application of GCNs to flesh out 

the concept of collaborative filtering. They used check-ins to compose a user-item 

interaction graph, where they performed neighbor aggregation to learn the unique 
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embeddings of users and items. Their performance improvement laid a solid foundation 

for subsequent GCN-based research. In subsequent developments, researchers realized 

that the nonlinear activation function might have a detrimental effect on the GCN model 

performance. Chen et al. [23] revisited and explored a technique for applying GCNs to 

recommendation systems. They suggested that eliminating the nonlinear activation 

function and constructing a residual network can simplify the model and improve 

accuracy. In their proposed LR-GCCF model, the embeddings of users and items are 

updated by a linear accumulation of self-connection and neighbor information 

aggregation. He et al. [5] further simplified the design of the GCN model; they not only 

eliminated the nonlinear activation function but also eliminated self-connection. 

Neighbor information is linearly propagated on the user-item interaction graph to output 

the learned embeddings at each hidden layer. Then, a weighted sum operation is adopted 

to gather the learned layer embeddings as the final embeddings. Experiments on real 

datasets confirmed that the simplified model has better representational ability, resulting 

in improved recommendation performance. 

Based on previous work, the application of the subgraph technique [2] [52] [53] [54] 

presents a new direction for GCN research. Liu et al. [2] pointed out that the learning 

process of user embeddings in GCN models may affect high-order nodes with no common 

interests with a target user. To solve this problem, they adopted three MLP layers to form 

an unsupervised subgraph generation module, aiming to filter out nodes of no common 

interest. They successfully avoided propagating negative information during the training 

process. As an application of the subgraph technique, Peng et al. [53] confirmed that only 

a small portion of latent rather than smoothed or rough features positively influence 

recommendation accuracy, whereas most noise features reduce accuracy. They then 

partitioned user-item interaction graphs into smooth, rough, and noisy graphs, which 

enabled the design of an effective graph denoising encoder (GDE) model to emphasize 

smoothed features while filtering out noise. 

Despite the above techniques, applying the subgraph technique to POI 



47 
 

recommendation systems remains an open problem, especially for time slot partitioning. 

However, the subgraph technique matches well with time slot applications, and two issues 

still need to be addressed. First, previous node-based subgraph techniques divide each 

node (user and item) into one subgraph, which is inconsistent with the real situation. 

Because a POI can have multiple suitable time slots for check-ins, the subgraph module 

should divide the check-ins into multiple time slots (subgraphs) based on the learned high-

order time slot embeddings. Second, although subgraph-based models, such as IMP-GCN 

[2], filter high-order neighbors with no common features, a subgraph generation module 

composed of only low-order features has difficulty representing high-order similarity. 

Low-order features mean that the module only considers zero- and first-layer embeddings 

to create a cluster maker, which lacks high-order information. The proposed model EPT-

GCN introduced in Chapter 6 will combine the time information with GCN by using a 

proposed novel subgraph technique. 

4.2.3  Preliminary 

In this section, we introduce the definitions within the POI recommendation domain. 

Note that due to the different structure of the models, different notations are used for 

different models. For convenience to find relevant notation, we list the notation for the 

models separately in Section 5.2 and Section 6.2. 

Definition 1 (POI recommendation): Assume that the dataset contains 𝑀 users and 

𝑁  items.  𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑀}  and 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁}  represent sets of 

users and POIs, respectively. Each POI has an intrinsic attribute representing geographical 

latitude and longitude, written as  {𝑙𝑎𝑡𝑝𝑗 , 𝑙𝑜𝑛𝑝𝑗}. To mine users’ active areas to represent 

his/her geographical information, we define 𝐴𝑢𝑖 = {𝑎𝑢𝑖,1, 𝑎𝑢𝑖,2, … , 𝑎𝑢𝑖,𝑚} as the set of 

active areas of user 𝑢𝑖. Note that a user may have multiple active areas among cities. A 

geographical distance-based clustering algorithm sets the number of each user’s active 

areas. For example, check-ins less than 1km away are merged into the same cluster. We 
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define a set of POI and timestamp pairs 𝐶𝑢𝑖 = {(𝑝𝑗, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)|𝑢𝑖 ∈ 𝑈, 𝑝𝑗 ∈ 𝑃, 𝑢𝑖 

checked 𝑝𝑗}  as user 𝑢𝑖 ’s check-in log. Shown in Figure 4-1, the purpose of POI 

recommendation for target user 𝑢𝑖 is to recommend a list of ranked POIs that target user 

𝑢𝑖  has not visited using the historical check-in logs 𝐶𝑢𝑖 ∈ 𝐶,  where 𝐶 = {𝐶𝑢1 , 𝐶𝑢2 ,

𝐶𝑢3 , … , 𝐶𝑢𝑀}.  

Definition 2 (User’s active area neighbor): The target user’s active area neighbors 

are set as the users who have close active areas to the target user’s active areas, shown as 

𝐺𝑁𝑢𝑖 = {𝑢𝑗   |  𝑢𝑗 ,  𝑢𝑖𝜖 𝑈, 𝑗 ≠ 𝑖, 𝑢𝑗
′𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎𝑠 𝑎𝑟𝑒 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑢𝑖′𝑠}. 

Definition 3 (Item’s active area neighbor): We call the POIs that are geographically 

close to the target POI its active area neighbors, shown as 𝐺𝑁𝑝𝑗 = {𝑝𝑖  | 𝑝𝑖, 𝑝𝑗𝜖 𝑃, 𝑖 ≠ 𝑗,

𝑝𝑖 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑝𝑖}. 

Definition 4 (Preference score): Experiments in our work are based on log datasets; 

therefore, we compared the prediction results with users’ real check-ins to determine the 

model performance. The predicted preference score of user 𝑢𝑖 for POI  𝑝𝑗 is indicated 

as  𝑟𝑢𝑖,𝑝𝑗 ,̂ , where 𝑟𝑢𝑖,𝑝𝑗 ,̂  is calculated as the inner product similarity between user 𝑢𝑖 ’s 

trained final embedding and POI  𝑝𝑗 ’s trained final embedding. If a recommendation 

system can give higher preference scores to real checked POIs than unchecked POIs, the 

model is considered to have good performance.  

Definition 5 (User-POI subgraph construction): Based on the check-in information 

𝐶, we construct a bipartite user-POI subgraph 𝒢𝑡 = (𝑈, 𝑃, ℰ𝑡) for time slot 𝑡, e.g., 6 to 

12 o’clock, where 𝑈 and 𝑃 are the sets of vertices of users and POIs, respectively, and 

ℰ𝑡  is a set of edges for time slot 𝑡  generated by check-in information 𝐶 . We further 

define 𝒢 = {𝒢1,  𝒢2,  𝒢3, … ,  𝒢|𝑇|} to denote a set of all subgraphs that cover 24 h, where 

𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡|𝑇|} is the set of time slots.  

Definition 6 (User’s and item’s representation): Our proposed models learn the 

unique representation (embedding) of each user and each POI by iteratively aggregating 
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the information of user-item check-ins and neighbors, where 𝑒𝑢𝑖  and 𝑒𝑝𝑗 are the 

embeddings of user 𝑢𝑖 and POI 𝑝𝑗, respectively. The GCN models output both 𝑒𝑢𝑖 and 

𝑒𝑝𝑗. 

 

 
Figure 4-1: POI recommendation. 
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5 GN-GCN: Combining Geographical Neighbor 

Concept with Graph Convolution Network for POI 

Recommendation12 

In this chapter, we introduce our Contribution 2. Although graph convolution 

networks (GCN) technique, like LightGCN [5], has been applied to recommendation 

systems to improve model performance, when the GCN models target Point-of-interest 

(POI) recommendation, setting up the goal of improving the accuracy of POI 

recommendation, how to apply the special attributes of POI - geographical information is 

worth considering since integrating side information always indicates higher accuracy. In 

this chapter, we propose a new technique to model geographical information as users’ 

active areas. The users whose active areas are close are defined as “active area neighbors”. 

Then, we further extend the definition of “neighbor” in GCN models to aggregate 

information from newly defined active area neighbors. Note that the proposed technique 

is lightweight, improving recommendation accuracy while keeping the model easy to 

train. 

5.1 Introduction 

By analyzing the vast amount of users’ check-in history, a POI recommendation system 

helps users filter information and discover their interests to improve users’ quality of life. 

To improve user satisfaction, the accuracy of the recommendation system has always been 

of great concern. A highly accurate recommendation system is like a close friend who 

understands a target user’s preferences and provides insightful suggestions. 

To combine the geographical information with GCN, in this chapter, inspired by the 

fact [27] [28] [29] that the use of power-law distribution and multi-center Gaussian 

 
12 This chapter is based on “GN-GCN: Combining Geographical Neighbor Concept with Graph Convolution 
Network for POI Recommendation”[57], by the same authors, which appeared in Proceedings of the 24th 
International Conference on Information Integration and Web Intelligence, pp. 153-165, 2022. Copyright(c) 2022. 
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distribution to model users’ geographical information of visited POIs could effectively 

increase recommendation accuracy, we newly define active area neighbors. Then, we 

adopt the active area neighbors when adding geographical information of users and POIs 

to a GCN, enabling the efficient extraction of indirect relationships caused by their 

locations. Moreover, similar to LightGCN [5], we simplify the design of GCN, which 

improves the performance of recommendations without increasing both the trainable 

parameters and the model complexity. 

We are the first to propose a lightweight-geographical neighbor concept-based graph 

convolution network (GN-GCN) model to integrate geographical information into GCN 

and keep the model easy to train. The contributions of this work are as follows: 

- We propose a new concept called active area neighbor to alleviate the problem of 

relationship sparsity when applying GCN models to POI recommendation systems. 

We model user-item check-ins and active area neighbors to mine high-order 

connectivity to improve recommendation accuracy. 

- Compared with Chang et al.’s work [3], we do not need to prepare an additional 

GCN to handle geographical information, enabling no increase in trainable 

parameters, which improves performance. 

- We explore the effect of nonlinear activation functions on geographical aggregation 

functions because nonlinear activation functions usually have no positive impact 

on GCN [9]; however, nonlinear functions are often used in POI recommendation 

systems to model geographical information. 

The rest of the chapter is organized as follows. First, Section 5.3 presents our proposed 

method, followed by the experiment in Section 5.4. Then, in Section 5.5, we present our 

conclusions. 

5.2 Preliminary 

This section summarizes the notations used in this chapter into Table 5-1. Note that all 
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of the embeddings of users and POIs have the same size of ℝ1×𝐷 , where 𝐷  means 

embedding size. 

5.3 Proposed Method 

To further improve the performance of the POI recommendation system, we propose a 

lightweight geographical neighbor concept-based graph convolution network (GN-GCN) 

model for integrating geographical information on GCNs. First, we extend the definition 

of neighbor in GCN. In addition to check-in relations (user-checked items and items 

checked by users), we introduce active area neighbors for each user and each POI as 

newly added relations to solve the relationship sparsity problem. For each user, we define 

his/her active area neighbors whose active areas in the city are near to his/her active areas. 

Similarly, for each POI, we describe the POI’s active area neighbors that are 

geographically close to the POI. Then, the GCN-based model learns each node’s unique 

representation (embedding) by iteratively aggregating information from the neighbors, 

similar to LightGCN [5]. Compared to Chang et al.’s model [3], we do not assign 

Table 5-1: Notations 

Notation Definition 
 𝑈 Set of users in the dataset 
𝑃 Set of POIs in the dataset 

𝑙𝑎𝑡𝑝𝑗 , 𝑙𝑜𝑛𝑝𝑗 Geographical latitude and longitude coordinates of POI 𝑝𝑗 
𝐴𝑢𝑖 Set of active areas  {𝑎𝑢𝑖,1, 𝑎𝑢𝑖,2, … , 𝑎𝑢𝑖,𝑚} of user 𝑢𝑖 
𝐶𝑁𝑢𝑖 User 𝑢𝑖’s check-in set 
𝐶𝑁𝑝𝑗 Set of users that checked POI 𝑝𝑗 
𝐺𝑁𝑢𝑖 User 𝑢𝑖’s active area neighbor set 
𝐺𝑁𝑝𝑗 POI  𝑝𝑗’s active area neighbor set 
𝒆𝑢𝑖 Final trained embedding of user 𝑢𝑖   
𝒆𝑝𝑗 Final trained embedding of POI 𝑝𝑗  
𝒆𝑢𝑖
𝑘  User 𝑢𝑖’s embedding output at layer k  
𝒆𝑝𝑗
𝑘  POI 𝑝𝑗’s embedding output at layer k  

𝑟𝑢𝑖,𝑝𝑗̂ Estimated preference of user 𝑢𝑖 for POI  𝑝𝑗 
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additional trainable parameters to mine geographical information because we only have 

one GCN. 

5.3.1  Overview 

The GN-GCN model, shown in Figure 5-1, involves two steps: 1) In addition to user-

item check-in interactions, we set the active area neighbors. We extract each user’s active 

areas by clustering the POIs that he/she visited. The users who have at least one nearby 

active area (the distance between active areas is less than 𝜆 km) are set to be active area 

neighbors. Similarly, for the POIs whose geographical distance is less than 𝜆 km, we 

consider them active area neighbors by calculating the distance between all combinations 

of two POIs; 2) We design the neighbor-aggregation-based neural network to train the 

representation (embedding) of each user and each POI followed by calculating the inner 

product similarity between user’s embedding and POI’s embeddings to score. As shown 

in Figure 5-1, through check-ins (black arrows) and active area neighbors (orange arrows), 

we aggregate high-order connectivity information to the target user node. As a result, we 

can enhance a GCN model to adopt geographical information, which can extract high-

order connectivity over collaborative filtering information. 

 

 
Figure 5-1: An example of the proposed GN-GCN model to aggregate high-order 

information from check-ins and active area neighbors. 
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5.3.2  Modeling Active Area Neighbor 

User Active Area Neighbor 

When analyzing user 𝑢𝑖’s check-in history 𝑐𝑢𝑖, we first use the DBSCAN algorithm 

[34] to cluster user 𝑢𝑖’s visited POIs based on POIs’ geographical latitude and longitude. 

Among cities and in a city, users may have multiple active areas where they have 

frequently checked in, such as the workplace and home. After the clustering, we have a 

set of active areas 𝐴𝑢𝑖  for user 𝑢𝑖 . Then, we define user pairs whose active areas’ 

minimum distance is less than threshold 𝜆 as active area neighbors, as in Eq. (5.1), and 

Eq. (5.2). When the minimum distance between the active areas of two users is less than 

𝜆, we define these two users as having similar geographical interests and are therefore 

defined as geographical neighbors. 

𝐺𝑁𝑢𝑖 = {𝑢𝑗   |   𝑢𝑗𝜖 𝑈, 𝑖 ≠ 𝑗, 𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 <  𝜆} 
(5.1) 

𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 = min (𝑑𝑖𝑠 (𝐴𝑢𝑖 , 𝐴𝑢𝑗)) 

𝑑𝑖𝑠(𝐴𝑢𝑖 ,  𝑝𝑗) = {𝑔𝑒𝑜𝑑𝑖𝑠(𝑎𝑢𝑖,𝑚
𝑐 ,  𝑝𝑗)|𝑎𝑢𝑖,𝑚 ∈ 𝐴𝑢𝑖} 

(5.2) 

where 𝑔𝑒𝑜𝑑𝑖𝑠()  is a function to receive two real-value geographical coordinates 

(latitude: [-90, 90], longitude: [-180, 180]) and outputs a real-value number ([0, 40075], 

40075 means the longest distance between two points on Earth in km), representing the 

geographical distance between two points on the Earth, calculated in radians. 𝑎𝑢𝑖,𝑘
𝑐  is the 

center of POIs located in user 𝑢𝑖 ’s active area 𝑎𝑢𝑖,𝑘 , where the center position is 

calculated by the arithmetic mean of latitude and longitude, respectively. Note that we set 

threshold 𝜆 as a small value so that too far away check-ins cannot be included in the 

same active area to prevent center shift problems. The process of calculating user active 

area neighbor is shown in Algorithm 4. 
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POI Active Area Neighbor 

Similar to the user’s active area neighbor, we define POI pairs whose distance is less 

than threshold 𝜆 as active area neighbors, shown in Eq. (5.3). 

𝐺𝑁𝑝𝑗 = {𝑝𝑖  | 𝑝𝑖, 𝑝𝑗𝜖 𝑃, 𝑖 ≠ 𝑗, 𝑚𝑖𝑛_𝑑𝑖𝑠𝑝𝑗,𝑝𝑖 <  𝜆}, 
(5.3) 

where 𝑚𝑖𝑛_𝑑𝑖𝑠𝑝𝑗,𝑝𝑖 is calculated by the distance function 𝑔𝑒𝑜𝑑𝑖𝑠(). 

5.3.3  Geographical Neighbor Concept-based Graph Convolution 

Network (GN-GCN) 

The basic idea of our proposed GN-GCN model is to extend the definition of the 

neighbor in a GCN. In addition to user-item check-in interactions, the GN-GCN model 

also mines rich geographical information from active area neighbors and learns the unique 

representation (embedding) for each node by smoothing features over the graph. 

The architecture of the GN-GCN model is illustrated in Figure 5-2. At each layer 𝑘, 

we aggregate information from check-ins and active area neighbors separately. 

Subsequently, a simple weighted (𝛼 and 𝛽) addition operation is executed to output the 

representation (embedding) of each node at the layer.  

The representations of users and POIs in the model are calculated by Eq. (5.4). 

𝒆𝑢𝑖
𝑘+1 = 𝛼 ∗ ∑

1

√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗|

𝑒𝑝𝑗
𝑘

𝑝𝑗∈𝐶𝑁𝑢𝑖

+ 𝛽 ∗ ∑
1

√|𝐺𝑁𝑢𝑖| ∗ 𝑑𝑢𝑖,𝑢𝑗

𝒆𝑢𝑗
𝑘

𝑢𝑗∈𝐺𝑁𝑢𝑖

 
(5.4) 

𝒆𝑝𝑗
𝑘+1 = 𝛼 ∗ ∑

1

√|𝐶𝑁𝑝𝑗| ∗ |𝐶𝑁𝑢𝑖|

𝒆𝑢𝑖
𝑘

𝑢𝑖∈𝐶𝑁𝑝𝑗

+ 𝛽 ∗ ∑
1

√|𝐺𝑁𝑝𝑗| ∗ 𝑑𝑝𝑗,𝑝𝑖

𝒆𝑝𝑖
𝑘

𝑝𝑖∈𝑁𝑝𝑗
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where  1/√|𝐶𝑁𝑢𝑖|√|𝐶𝑁𝑝𝑗|  is a normalized discount factor as same as the standard 

GCN-based model [3][9][14]; 𝛼 and 𝛽 are parameters from 0 to 1; 1/𝑑𝑢𝑖,𝑢𝑗 is the min-

max normalized value of 1/𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 in the range of 0 to 1; 1/√|𝐺𝑁𝑢𝑖| ranges from 

0 to 1; 1/𝑑𝑝𝑗,𝑝𝑖 is the min-max normalized value of 1/𝑚𝑖𝑛_𝑑𝑖𝑠𝑝𝑗,𝑝𝑖 in the range of 0 to 
1. When the left and right sides of the multiplication sign are two real numbers, "*" 
represents a multiplication of two real numbers. When the left and right sides of the 
multiplication sign are a real number and a vector, "*" denotes scalar multiplication. 

We adopt 1/𝑑𝑝𝑗,𝑝𝑖 instead of the number of neighbors to distinguish the importance 

of geographical neighbors without increasing trainable parameters. 

5.3.4  Geographical Neighbor Concept-based Graph Convolution 

Network (GN-GCN) with Nonlinear Active Function 

Both He et al. [5] and Chen et al. [23] mentioned that nonlinear active function has no 

positive effect on a GCN-based recommendation system. However, in POI 

recommendation systems, the relationship between user check-in probability and 

geographical distance is always nonlinear [30] [29], which inspires us to add a nonlinear 

𝒆𝑢𝑖
𝑘+1 = 𝛼 ∗ ∑

1

√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗|

𝒆𝑝𝑗
𝑘 +

𝑝𝑗∈𝐶𝑁𝑢𝑖

  

𝛽 ∗ 𝐴𝑐𝑡𝑖𝑣𝑒( ∑
1

√|𝐺𝑁𝑢𝑖| ∗ 𝑑𝑢𝑖,𝑢𝑗

𝒆𝒖𝒋
𝒌 )

𝑢𝑗∈𝐺𝑁𝑢𝑖

 

(5.5) 

𝒆𝑝𝑗
𝑘+1 = 𝛼 ∗ ∑

1

√|𝐶𝑁𝑝𝑗| ∗ |𝐶𝑁𝑢𝑖|

𝒆𝑢𝑖
𝑘

𝑢𝑖∈𝐶𝑁𝑝𝑗

+ 

𝛽 ∗ 𝐴𝑐𝑡𝑖𝑣𝑒( ∑
1

√|𝐺𝑁𝑝𝑗| ∗ 𝑑𝑝𝑗,𝑝𝑖

𝒆𝒑𝒊
𝒌

𝑝𝑖∈𝐺𝑁𝑝𝑗

) 
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active function to the integrated information of active area neighbors. Based on the above 

intuition, our updated user’s and POI’s representation (embedding) are altered as Eq. (5.5). 

Note that “𝐴𝑐𝑡𝑖𝑣𝑒” means the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 function. In this paper, we compare Eq. (5.5) 

with Eq. (5.4) to confirm the effect of the nonlinear active function. 

 

 

Figure 5-2: The architecture of GN-GCN model 

5.3.5  Model Prediction for POI Recommendation Task 

Algorithm 4: Calculating User Active Area Neighbor 

Input: 𝐶 = {𝑐𝑢1 , 𝑐𝑢2 , 𝑐𝑢3 , … , 𝑐𝑢𝑀}: user check-in history 

 𝐿𝑎𝑡 = {𝑙𝑎𝑡𝑝1 , 𝑙𝑎𝑡𝑝2 , 𝑙𝑎𝑡𝑝3 , … , 𝑙𝑎𝑡𝑝𝑁}: Latitudes of POIs 

 𝐿𝑜𝑛 = {𝑙𝑜𝑛𝑝1 , 𝑙𝑜𝑛𝑝2 , 𝑙𝑜𝑛𝑝3 , … , 𝑙𝑜𝑛𝑝𝑁}: Longitudes of POIs 

 𝜆: Threshold 

Output:     𝐺𝑁 = {𝐺𝑁𝑢1 , 𝐺𝑁𝑢2 , 𝐺𝑁𝑢3 , … , 𝐺𝑁𝑢𝑀}: Users’ active area neighbour 

1 for 𝑖 ← 1 𝑡𝑜 𝑀 do 

2     𝐺𝑁𝑢𝑖 ← ∅  initialize user 𝑢𝑖’s active area neighbour set 

3 end for 

4 for 𝑖 ← 1 𝑡𝑜 𝑀 do 
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It is worth mentioning that, in our GN-GCN model, although the concept of active area 

neighbor is adopted compared with LightGCN, it does not cause an increase in the number 

of trainable parameters, which allows our method to maintain the ease of training the 

GCN model. Same as LightGCN [5], the trainable parameters in our GN-GCN model are 

the user and the POI representation (embedding) at layer 0. 

After we input the embeddings of user and POI at layer 0 to the GN-GCN model and 

output high-layer embeddings, we adopt a weighted accumulator to calculate the final 

embedding of each node, shown in Eq. (5.6). 

𝒆𝑢𝑖 =∑𝛾𝑘

𝐾

𝑘=0

𝒆𝑢𝑖
𝑘 ,    𝒆𝑝𝑗 =∑𝛾𝑘

𝐾

𝑘=0

𝒆𝑝𝑗
𝑘  

(5.6) 

where 𝛾𝑘 = 1/(𝑘 + 1), indicating the importance of embedding decreases with the layer 

5      use DBSCAN algorithm to cluster user 𝑢𝑖’s visited POIs based on 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 and 

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 

6     𝐴𝑢𝑖 ←DBSCAN (𝑐𝑢𝑖) 

7     for 𝑘 ← 1 𝑡𝑜 |𝐴𝑢𝑖| do 

8         𝑎𝑢𝑖,k
𝑐 ← geographical centre of the cluster 𝑘 

9     end for 

10 end for 

11 for 𝑖 ← 1 𝑡𝑜 𝑀 − 1 do   enumerate each pair of users

12     for j← 𝑖 + 1 𝑡𝑜 𝑀 do 

13  calculate active areas’ similarity of user pair 

14           𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 ← 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 between 𝐴𝑢𝑖 and 𝐴𝑢𝑗 (calculated from Eq. 

(5.2)) 

15           if 𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 < 𝜆 then 

16               𝐺𝑁𝑢𝑖 ← 𝐺𝑁𝑢𝑖 ∪ {𝑢𝑗 } 

17               𝐺𝑁𝑢𝑗 ← 𝐺𝑁𝑢𝑗 ∪ {𝑢𝑖  } 

18     end for 

19 end for 

20      return 𝐺𝑁 
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increasing. To complete the prediction of user 𝑢𝑖’s interest in POI 𝑝𝑗, we use an inner 

product of the user’s and POI’s representation (embedding), as shown in Eq. (5.7). 

𝑟𝑢𝑖,𝑝𝑗̂ = 𝒆𝑢𝑖
𝑇𝒆𝑝𝑗 (5.7) 

When the embedding of user and POI are more similar, the POI has a higher prediction 

rate and is ranked at the top of the recommendation list. 

5.3.6  Model Training 

The widely used Bayesian personalized ranking (BPR) loss [5] [23] [35] is adopted to 

train the GN-GCN model. BPR loss considers observed user check-ins as positive cases 

and assigns several negative cases (unobserved counterparts) for each positive one. The 

BPR loss is trained so that the positive cases are rated higher and rank ahead of negative 

ones, as Eq. (5.8).  

𝐿𝐵𝑃𝑅 = − ∑ ∑ ∑ 𝑙𝑛𝜎(𝑟𝑢𝑖,𝑝𝑗̂ − 𝑟𝑢𝑖,𝑝𝑘̂)

𝑝𝑘𝜖 𝑃−𝑐𝑢𝑖𝑝𝑗𝜖𝑐𝑢𝑖

𝑀

𝑢𝑖=1

+ 𝜇‖𝜃‖2
2 

(5.8) 

where 𝜇  controls the importance of ℓ2  regularization. 𝜃  indicates the trainable 

parameters (𝑒𝑢𝑖
0  𝑎𝑛𝑑 𝑒𝑝𝑗

0  at layer 0) in our model. 𝑀 is the number of users in the dataset. 

5.4 Experimental Evaluation 

This section provides the experimental evaluation to confirm whether the proposed 

GN-GCN13 model can improve the performance while keeping the number of trainable 

parameters the same as LightGCN [5]. 

 
13 https://github.com/bakubonmo/Rec 
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5.4.1  Datasets 

We chose two widely used public datasets for offline testing, Yelp and Gowalla, 

collected by Liu et al. [36]. Both datasets contain geographical information. The Yelp 

dataset contains many geo-tagged businesses among several cities, including 30,887 users, 

18,995 items, and 860,888 check-ins, with a sparsity of 99.86% for the user-item check-

in matrix. The Gowalla dataset contains 18,737 users, 32,510 items, and 1,278,274 check-

ins, with a sparsity of 99.87% for the user-item check-in matrix. For each dataset, we 

follow the definition of Liu et al. [36], setting the earliest 70% of check-ins as a training 

set, using the latest 20% of check-ins as a testing set, and the remaining 10% as a tuning 

set. We summarize the statistics of two datasets in Table 5-2. 

  

5.4.2  Baselines 

In this chapter, we chose four state-of-the-art algorithms as baselines. 

1) RankGeoFM [33]: We selected the RankGeoFM model as a representative non-

GCN-based model to confirm a cross-sectional comparison between GCN-based and non- 

GCN-based models. RankGeoFM is an MF model that uses two latent matrices, the 

check-in preference matrix and geographical preference matrix, to represent user 

preferences. RankGeoFM has the best performance on POI recommendation according 

to a fine-grained comparative experiment conducted by Liu et al. [36]. 

Table 5-2: The statistics of datasets 

Dataset Number of 
users 

Number of 
items 

Number of 
check-ins  

Sparsity 

Gowalla 18,737 32,510 1,278,274 99.87% 
Yelp 30,887 18,995 860,888 99.86% 
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2) LR-GCCF [23]: LR-GCCF constructs a residual network and learns the embeddings 

of users and items through a linear aggregation function. This model suggests that 

eliminating the activation function during the aggregation operation can improve the 

performance of the GCN model. 

3) LightGCN [5]: LightGCN removes self-connection to further simplify the GCN 

model. In each hidden layer, the update of the embeddings depends only on the aggregated 

information from the neighbor nodes. In addition, the same as LR-GCCF, the nonlinear 

activation function is eliminated in LightGCN. 

4) GPR [3]: To the best of our knowledge, GPR is the state-of-the-art GCN-based 

model for POI recommendation using time and geographical information. The other side 

information, such as social or categorical information, is not used. GPR learns two 

embeddings for each POI representation, incoming and outgoing influence, to explore the 

wealth of information contained in consecutive check-ins. 

The comparison with baselines allows us to verify whether the performance of the 

recommendation is improved with the same number of trainable parameters as LightGCN, 

i.e., not increasing the parameters like GPR. Note that we do not compare with Elmi et 

al.’s work [37] due to the different research purposes. They focus on the next POI 

recommendation. That is, the ground truth contains only the last POI in chronological 

order of the target user. 

5.4.3  Metrics 

The experiment considered three widely adopted ranking metrics: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 , 

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , and 𝑁𝐷𝐶𝐺@𝑘  for the top𝑘  recommended POIs. The recommendation 

results of each algorithm were compared with the ground-truth to calculate the 

performance. For these three-evaluation metrics, larger values indicate better 

performance. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 are two classic metrics for measuring the performance 
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of a recommendation system, where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘  is the average of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑢𝑖@𝑘 , 

and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘  is the average of  𝑅𝑒𝑐𝑎𝑙𝑙𝑢𝑖@𝑘  for all users.  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑢𝑖@𝑘  and 

𝑅𝑒𝑐𝑎𝑙𝑙𝑢𝑖@𝑘 represent the probability that the recommended top𝑘 items are relevant to 

user 𝑢𝑖 ’s preference and that the items relevant to user 𝑢𝑖 ’s preferences are 

recommended in the top-k list, respectively, defined as Eq. (5.9) and Eq. (5.10). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑢𝑖@𝑘 =
|𝑅𝑒𝑐𝐿𝑖𝑠𝑡𝑢𝑖

𝑘 ∩ 𝐺𝑇𝑢𝑖|

|𝑅𝑒𝑐𝐿𝑖𝑠𝑡𝑢𝑖
𝑘 |

 (5.9) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑢𝑖@𝑘 =
|𝑅𝑒𝑐𝐿𝑖𝑠𝑡𝑢𝑖

𝑘 ∩ 𝐺𝑇𝑢𝑖|

|𝐺𝑇𝑢𝑖|
 (5.10) 

where 𝑅𝑒𝑐𝐿𝑖𝑠𝑡𝑢𝑖
𝑘   denotes user 𝑢𝑖 ’s topk recommended POIs, and 𝐺𝑇𝑢𝑖  is the ground-

truth for user 𝑢𝑖 (POIs in user 𝑢𝑖’s testing set).  

Because the dataset is divided into training and testing sets, the average number of 

ground truth POIs for target users in the testing set may be less than 𝑘, which results in 

a theoretical maximum value of precision and recall lower than 1. Therefore, we 

calculated the maximum precision and recall values for the two datasets. On the Gowalla 

dataset, the theoretical maxima were Precision@5 =0.949, Recall@5 =0.736, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 =0.673, and 𝑅𝑒𝑐𝑎𝑙𝑙@10 =0.909. On the Yelp dataset, the theoretical 

maximums were Precision@5 =0.789, Recall@5 =0.881, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 =0.483, and 

Recall@10=0.961. 

𝑁𝐷𝐶𝐺@𝑘 [23] [5] is the average of 𝑁𝐷𝐶𝐺𝑢𝑖@𝑘, which considers the position (i.e., 

rank) of the recommended items, as shown in Eq. (5.11). The metric gives a higher score 

to the relevant items that appear at the top of the recommendation list than to those that 

appear at the bottom. 

𝑁𝐷𝐶𝐺𝑢𝑖@𝑘 =
𝐷𝐶𝐺𝑢𝑖@𝑘

𝐼𝐷𝐶𝐺𝑢𝑖@𝑘
 (5.11) 

mailto:Precision@5=0.949
mailto:Recall@5=0.736,
mailto:Precision@5=0.841
mailto:Recall@5=0.581,
mailto:Recall@10=0.744.
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where 𝐷𝐶𝐺𝑢𝑖@𝑘 is calculated using Eq. (5.12). 𝐼𝐷𝐶𝐺𝑢𝑖@𝑘 is the maximum and ideal 

value of 𝐷𝐶𝐺𝑢𝑖@𝑘 , indicating that the hit items are ranked at the top of the 

recommendation list. 

𝐷𝐶𝐺𝑢𝑖@𝑘 =∑
2𝑏𝑖𝑛𝑖 − 1

𝑙𝑜𝑔2(𝑖 + 1)

𝑘

𝑖=1

 
(5.12) 

where 𝑏𝑖𝑛𝑖 is a binary value: 1 if and only if the recommended POI at position 𝑖 hits 

and 0 otherwise. 

5.4.4  Hyperparameter Settings 

Hyperparameters were tuned in the predefined ranges and set as shown in Table 5-3, 

except for the hyperparameters of RankGeoFM. We used the same parameters of Liu et 

al. [36] for RankGeoFM. 

Hyperparameters for DBSCAN Algorithm 

In our proposed GN-GCN model, the DBSCAN algorithm is adopted to cluster user 

check-ins for active regions calculation. DBSCAN algorithm has two hyper-parameters 

(𝑒𝑝𝑠 and 𝑚𝑖𝑛𝑃𝑡𝑠). We search 𝑒𝑝𝑠 from 0.25 to 2 with the interval 0.25 and 𝑚𝑖𝑛𝑃𝑡𝑠 

from 2 to 5 with the interval 1. Finally, we find that 𝑒𝑝𝑠 equals to 1; 𝑚𝑖𝑛𝑃𝑡𝑠 equals to 

2 has the best performance. To calculated active area neighbors, we adopt a threshold 𝜆, 

introduced in Section 5.3.2. 𝜆 is grid searched from the range 0.25 to 1 with the interval 

0.25, and finally we set 𝜆 equals to 0.75. 

Hyperparameters for Recommendation Algorithms 

The only trainable parameters in our model are the embedding of the user and POI at layer 

0. We fix the embedding size as 64 and initialized the embedding by using a Gaussian 

distribution with a mean of 0 and a standard deviation of 1𝑒−2 . The learning rate is 

searched from {1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1} and we find that the learning rate equals to 1𝑒−2 
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has the best performance. The regularization coefficient 𝜇   is searched in the range 

{1𝑒−6 , 1𝑒−5 , …,1𝑒−1 } and finally we set 𝜇  equals to 1𝑒−4 . We have another two 

important hyper-parameters, 𝛼 and 𝛽 to balance the importance of check-ins and active 

area neighbors. We adopt grid search in the range from 0 to 1 with the interval 0.25 and 

find that 𝛼  equals to 0.5; 𝛽  equals to 1 has the best performance. We also set the 

hyperparameters for the baseline algorithms by using the same strategy to reach the 

optimal performance for a fair comparison.  

5.4.5  Experimental Results 

Table 5-4 and Table 5-5 show the experimental results on the Yelp and Gowalla datasets, 

respectively. We abbreviate 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘  as 𝑃@𝑘 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘  as 𝑅@𝑘 , and 

Table 5-3: Grid Search of Hyper-parameters. Grid Search of Hyper-parameters 

 
Algorithms 
 

Hyper-parameters setting 
Hyper-parameter Search-range 

 description 
Adopted value 

DBSCAN 
[34] 
 

𝑒𝑝𝑠 {0.25, 0.5, 0.75 , … , 2} 1 km 
𝑚𝑖𝑛𝑃𝑡𝑠 {2, 3, 4, 5} 2 

active area neighbor threshold 𝜆 {0.25, 0.5, 0.75 ,1} 0.75 km 
LR-GCCF 
[23], 
LightGCN 
[5], 
GPR [3], 
GN-GCN 
(proposed) 

embedding size same as Chen et al. 
[23] and He et al. [5] 

64 

embedding 
initialization 

same as Chen et al. 
[23] and He et al. [5] 

Gaussian dist. 
(Mean:0, SD:1𝑒−2) 

learning rate {1𝑒−4,1𝑒−3,1𝑒−2,1𝑒−1

} 
1𝑒−2 

regularization 
coefficient 𝜇 

{1𝑒−6,1𝑒−5,…,1𝑒−1} 1𝑒−4 

GN-GCN 
(proposed) 

check-in coefficient 𝛼 {0, 0.25, 0.5, 0.75, 1} 0.5 
geographical 
coefficient 𝛽 

{0, 0.25, 0.5, 0.75, 1} 1 
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𝑁𝐷𝐶𝐺@𝑘  as 𝑁@𝑘 . The proposed methods with and without the nonlinear active 

function mentioned in Section 5.3.3 and Section 5.3.4 are also compared, where GN-GCN 

represents our method without the nonlinear active function, whereas GN-GCN+Active 

represents the method with the nonlinear active function. The highest scores are noted 

boldly. The maximum values other than those of our proposed models are underlined. We 

adopt a two-tailed paired t-test to confirm the statistically significant improvement of our  

proposed method over the baselines. 

The results show that our proposed model obtains the highest performance for most 

metrics. Our method successfully improves 𝑅𝑒𝑐𝑎𝑙𝑙@5 from 0.0453 to 0.0469 (3.53%) 

Table 5-4: Evaluation Result on Yelp Dataset 

Algorithms P@5 R@5 N@5 P@10 R@10 N@10 
Baselines RankGeoFM[33] 0.0320 0.0304 0.0332 0.0273 0.0541 0.0300 

LR-GCCF [23] 0.0286 0.0350 0.0342 0.0252 0.0519 0.0420 
GPR [3] 0.0366 0.0382 0.0386 0.0321 0.0577 0.0345 
LightGCN [5] 0.0385 0.0453 0.0468 0.0303 0.0562 0.0507 

Proposed GN-GCN 0.0393* 0.0467* 0.0475+ 0.0311* 0.0590* 0.0523* 
GN-
GCN+Active 

0.0396* 0.0469* 0.0486* 0.0312* 0.0588* 0.0529* 

* Statistically significant for p<0.01 when comparing with all baselines. 
+ Statistically significant for p<0.05 when comparing with all baselines. 

 

Table 5-5: Evaluation Result on Gowalla Dataset 

Algorithm P@5 R@5 N@5 P@10 R@10 N@10 
Baselines RankGeoFM[33] 0.0684 0.0479 0.0719 0.0559 0.0755 0.0622 

LR-GCCF [23] 0.0640 0.0669 0.0721 0.0504 0.0762 0.0749 
GPR [3] 0.0775 0.0580 0.0671 0.0640 0.0881 0.0613 
LightGCN [5] 0.0760 0.0788 0.0859 0.0597 0.0865 0.0870 

Proposed  GN-GCN 0.0784* 0.0815* 0.0883* 0.0614* 0.0894* 0.0896* 
GN-GCN+Active 0.0782* 0.0812* 0.0886* 0.0619* 0.0898* 0.0900* 

* Statistically significant for p<0.01 when comparing with all baselines. 
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and 𝑅𝑒𝑐𝑎𝑙𝑙@10 from 0.0562 to 0.0590 (4.98%) on the Yelp dataset, while improving 

𝑅𝑒𝑐𝑎𝑙𝑙@5  from 0.0788 to 0.0815 (3.43%) and 𝑅𝑒𝑐𝑎𝑙𝑙@10  from 0.0865 to 0.0898 

(3.82%) on the Gowalla dataset, compared with LightGCN.  

On both datasets, comparing GN-GCN+Active and GN-GCN, we cannot confirm a 

statistically significant difference between GN-GCN+Active and GN-GCN, which 

concludes that the nonlinear active function cannot affects the performance. 

5.4.6  Discussion on the Number of Trainable Parameters 

Same as LightGCN, the trainable parameters in our GN-GCN model are the 

embeddings of users and items at layer 0, even with integrating geographical information. 

Since we set the embedding size to 64, both the LightGCN model and our GN-GCN 

model have 64*(M+N) trainable parameters, where M and N are the numbers of users and 

items, respectively. On the contrary, the GPR model has more than 64*(M+2N) trainable 

parameters, which does not include the trainable transformation matrixes (64*64) [3]. 

To further improve the performance of neural network recommendation systems, 

integrating multiple information, such as geographical information, is potentially feasible. 

However, integrating multiple information tends to introduce more trainable parameters, 

making the model more difficult to train and reducing its practicability. Thus, keeping the 

number of trainable parameters not increasing is indispensable. As shown in Table 5-4 

and Table 5-5, although GPR integrates geographical information, 𝑁𝐷𝐶𝐺@10 is smaller 

than LightGCN which does not integrate geographical information, which shows the 

difficulty in training. 

5.5 Conclusion 

We proposed the GN-GCN model to mine users’ active areas and integrate 

geographical information into GCNs in a lightweight manner by adopting a new concept 

called active area neighbors. Our experimental evaluation confirms that our model 
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outperforms all the baselines. Compared with LightGCN, 𝑅𝑒𝑐𝑎𝑙𝑙@10  improves from 

0.0562 to 0.0590 (4.98%) on the Yelp dataset and from 0.0865 to 0.0898 (3.82%) on the 

Gowalla dataset. 
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6 EPT-GCN: Edge Propagation-based Time-aware 

Graph Convolution Network for POI 

Recommendation14 

In this chapter, we introduce our Contribution 3, an edge propagation technique to 

model time information. For POI recommendation, time information expresses users’ 

interest at different time slots of the day. How to model users’ time-based preference is 

the key to integrating time information to graph convolution network (GCN) models. 

Existing GCN-based techniques simply adopt time information by modeling users’ check-

in sequences, which is insufficient and ignores users’ time-based high-order connectivity. 

Note that time-based high-order connectivity refers to the relationship between indirect 

neighbors with similar preferences in the same time slot. In this paper, we propose a new 

time-aware GCN model to extract rich collaborative signals contained in time information. 

Our work is the first to divide user check-ins into multiple subgraphs, i.e., time slots, 

based on time information. We further propose an edge propagation module to adjust edge 

affiliation, where edges represent check-ins, to propagate the user’s time-based preference 

to multiple time slots. The propagation module is based on an unsupervised learning 

algorithm and does not require additional ground-truth labels. This work is the first to cast 

time slots into multiple subgraphs to improve POI recommendation accuracy. After 

modeling time information, we further combine time and geographical information to 

jointly assist the GCN in filtering high-order collaborative signals. 

6.1 Introduction 

In addition to geographical information, time information is also an important side 

information for improving POI recommendation performance. To combine time 

 
14 This chapter is based on “EPT-GCN: Edge propagation-based time-aware graph convolution network for POI 
recommendation”[69], by the same authors, which appeared in Neurocomputing, 543, 126272, pp. 1-15, 2023. 
Copyright(c) 2023. 
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information with GCN, similar to IMP-GCN [2], a subgraph technique is well-matched 

with time slot disentanglement to solve the problem of learning unique time-based 

embeddings for users and items. A simple method is to divide the edges (check-ins) into 

individual subgraphs (time slots) according to timestamps, e.g., four 6-hour intervals over 

24 hours; however, a monotonous subgraph division has drawbacks. Monotonous 

subgraph division cannot propagate the learned time preference features over multiple 

time slots because the subgraphs are constructed in advance, and there is no 

reconstruction module to transmit the time-based preference. In Figure 6-1, for example, 

say a preference feature has been extracted that both the target user and user A prefer to 

check in at Chinese restaurant B at lunchtime. At the same time, another preference 

feature has been extracted in a different subgraph: user A visits the same restaurant B at 

dinner time. Although the target user has no experience checking in to restaurant B for 

dinner, we could infer that it is a good choice. The transmitted edge is indicated by the 

red dotted line in Figure 6-1. Therefore, an edge-based (check-in-based) propagation and 

subgraph reconstruction mechanism are important for automatically transmitting users’ 

time-based preferences. However, existing node-based subgraph construction techniques 

cannot be directly applied to POI time information mining. In IMP-GCN [2], each node 

(user or item) is clustered into one subgraph by an unsupervised learning module. 

However, a POI can have multiple suitable time slots for the target user to check in. In 

this paper, we propose an edge propagation module to repartition user check-ins and 

reconstruct subgraphs based on the similarity between the learned users’ high-order time 

slot embeddings and the POI’s initial layer embedding. Unlike IMP-GCN, our method is 

an edge-oriented (check-in-oriented) algorithm that does not focus on nodes. 
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(a) without transmitting users’ time-based preferences 

 

 

(b) transmitting users’ time-based preferences 

Figure 6-1: Example of check-in-based propagation to transmit users’ time-based 
preferences. 

The contributions of this chapter can be summarized as follows: 

- To better exploit time information, we are the first to combine time information with 

the GCN subgraph technique for POI recommendation, namely, subgraph mining GCN 

(SGM-GCN). 

- We propose a trainable diagonal matrix and attention mechanism to compute the 

disentangled embeddings of users and POIs for each time slot. 
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- We propose a novel edge sampling-based propagation algorithm to adjust the 

subgraph structure to improve the propagation ability of the SGM-GCN. 

The remainder of this paper is organized as follows. In Section 6.2, we present the 

notations used in this chapter. Our main idea, including the structure of the model, is 

described in Section 6.3, followed by the experiment in Section 6.4, where we introduce 

the dataset and compare the results with those of state-of-the-art models. Finally, the 

conclusions of this contribution are presented in Section 6.5. 

6.2 Preliminary 

Table 6-1: Notations 

Notation Definition 
 𝑈 Set of users in the dataset, where 𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑀} 
𝑃 Set of POIs in the dataset, where 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁}  

𝑙𝑎𝑡𝑝𝑗 , 𝑙𝑜𝑛𝑝𝑗 Geographical latitude and longitude coordinates of POI 𝑝𝑗 
𝐶𝑢𝑖 User 𝑢𝑖’s check-in logs, where 𝐶𝑢𝑖 = {(𝑝𝑗, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)|𝑢𝑖 ∈

𝑈, 𝑝𝑗 ∈ 𝑃, 𝑢𝑖 checked 𝑝𝑗}  
𝒢𝑡 = (𝑈, 𝑃, ℰ𝑡) User-POI check-in subgraph for time slot 𝑡 

ℰ𝑡 Edge set for time slot 𝑡 in subgraph 𝒢𝑡 
𝑇 Set of time slots, where 𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡|𝑇|}  
𝒢 Set of user-POI check-in subgraphs, where 𝒢 =

{𝒢1,  𝒢2,  𝒢3, … ,  𝒢|𝑇|} 
𝜀𝑢𝑖, 𝑝𝑗 Edge in 𝒢, where the two ends are user 𝑢𝑖 and POI 𝑝𝑗 
𝐶𝑁𝑢𝑖

𝑡  Extracted set of user 𝑢𝑖’s check-in neighbors at time slot 𝑡 
𝐶𝑁𝑝𝑗

𝑡  Extracted set of neighbor users that checked POI 𝑝𝑗 at time slot 
𝑡 

𝐶𝑁𝑢𝑖 User 𝑢𝑖’s check-in neighbors in the entire check-in set 𝐶𝑢𝑖 
𝐶𝑁𝑝𝑗 Set of neighbor users that checked POI 𝑝𝑗 in 𝐶 
𝒆𝑢𝑖
𝐼𝑛𝑖𝑡 User 𝑢𝑖’s embedding at initial layer 
𝒆𝑝𝑗
𝐼𝑛𝑖𝑡 POI 𝑝𝑗’s embedding at initial layer  

𝒆𝑢𝑖
(𝑡,𝑘) 

User 𝑢𝑖’s embedding at layer k for subgraph 𝒢𝑡 
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In this section, we summarize the notations used in this chapter in Table 6-1. Note that 

all of the embeddings of users and POIs have the same size of ℝ1×𝐷, where 𝐷 means 

embedding size. 

6.3  Proposed Method 

This section proposes three new time-aware GCNs for POI recommendation: 1) time-

aware subgraph mining GCN (SGM-GCN), 2) edge propagation-based time-aware GCN 

(EPT-GCN), and 3) EPT-GCN+Geo, which integrates EPT-GCN with geographical 

information.  

6.3.1  Overview 

Previous time-aware POI recommendation models [3] [4] successfully extracted time-

related user and POI features to improve the performance of POI recommendation; 

however, they struggle to mine users’ time-based high-order connectivity, i.e., the 

relationship among time slots, even adopting state-of-the-art GCN models. Our idea to 

tackle the above problem is to adopt subgraph models [2] [52] [53] but to modify the 

𝒆𝑝𝑗
(𝑡,𝑘) 

POI 𝑝𝑗’s embedding at layer k for subgraph 𝒢𝑡 

𝒆𝑢𝑖
𝑡  Learned user 𝑢𝑖’s time slot embedding for subgraph 𝒢𝑡 
𝒆𝑝𝑗
𝑡  Learned POI 𝑝𝑗’s time slot embedding for subgraph 𝒢𝑡 

𝒆𝑢𝑖
𝑇𝑖𝑚𝑒 Learned user 𝑢𝑖’s time embedding, calculated from 𝑒𝑢𝑖

1 , 

𝑒𝑢𝑖
2 , …, 𝑒𝑢𝑖

|𝑇| 

𝒆𝑝𝑗
𝑇𝑖𝑚𝑒 Learned POI 𝑝𝑗’s time embedding, calculated from 𝑒𝑝𝑗

1 , 

𝑒𝑝𝑗
2 , …, 𝑒𝑝𝑗

|𝑇| 

𝒆𝑢𝑖 Final learned embedding of user 𝑢𝑖 
𝒆𝑝𝑗 Final learned embedding of POI 𝑝𝑗 
𝑟𝑢𝑖,𝑝𝑗̂ Predicted preference score of user 𝑢𝑖 for POI 𝑝𝑗, where 𝑝𝑗 is 

user 𝑢𝑖’s unchecked POI 
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subgraph construction method to propagate users’ time-based preferences to multiple time 

slots, where preference is reflected as check-ins.  

Our proposed time-aware subgraph mining GCN (SGM-GCN) in Section 6.3.2 enables 

the extraction of user time-based high-order connectivity by partitioning users’ edges 

(check-ins) into multiple time slots and constructing multiple subgraphs. Then, time-

aware collaborative signals are propagated in different subgraphs and contribute to 

learning the embeddings of users and POIs in that time slot. Following SGM-GCN, we 

propose the edge propagation-based time-aware GCN (EPT-GCN) to propagate the edges 

(check-ins) and reconstruct subgraphs in Section 6.3.3; thereby we could reduce the loss 

of information, such as implicit feedback, including clicks and check-ins. Finally, we 

integrate geographical distance into the EPT-GCN to construct GCT-GCN+Geo in 

Section 6.3.4. After learning the embeddings of users and POIs, we adopt inner product 

similarity to calculate the prediction score to recommend the top k items to a target user. 

6.3.2  Time-aware Subgraph Mining Graph Convolution Network 

(SGM-GCN) 

The basic idea of time-aware subgraph mining GCN (SGM-GCN) is to learn the 

disentangled embeddings of users and POIs in different time slots through a graph 

convolution operation on the corresponding subgraph. Our proposed SGM-GCN enables 

the extraction of user time-based high-order connectivity by partitioning user check-ins 

into multiple time slots. When constructing the subgraph, the user’s check-in time is used 

hourly. We partition 24 hours into a set of time slots with equal intervals, e.g., 6 hours, 

with a one-to-one correspondence between the time slot and subgraph. The subgraph of 

time slot 𝑡 (𝒢𝑡) consists of a set of user nodes (U), POI nodes (P), and edges in time slot 

𝑡  (ℰ𝑡 ), written as 𝒢𝑡 = (𝑈, 𝑃, ℰ𝑡)   Unlike previously proposed node-based subgraph 

construction techniques [2], we adopt an edge-based subgraph technique, enabling an 

edge to appear in multiple subgraphs to generalize users’ time-based preferences to 

multiple time slots. Finally, we obtain a set of subgraphs, each with a different set of edges. 
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Figure 6-2 shows the overall architecture of the SGM-GCN model, including the graph 

convolution layer, attention layer, and prediction-making step. First, the SGM-GCN 

model initializes the embeddings of users and POIs ( 𝑒𝑢𝑖
(𝑖𝑛𝑖𝑡)  and 𝑒𝑝𝑗

(𝑖𝑛𝑖𝑡) )  using a 

Gaussian distribution.  Because we assign an initialized embedding  (𝑒𝑢𝑖
(𝑖𝑛𝑖𝑡) and 𝑒𝑝𝑗

(𝑖𝑛𝑖𝑡))  

to each user and POI, 𝑖 is in the range of 0 to 𝑀− 1, while 𝑗 in the range of 0 to 𝑁 −

1, where 𝑀 and 𝑁 are user number and POI number in dataset, respectively. Second, 

user (POI) nodes aggregate information from check-ins and output time slot embeddings 

𝑒𝑢𝑖
𝑡  ( 𝑒𝑝𝑗

𝑡 ) for the subgraph 𝒢𝑡. The attention layer mines the importance of time slots to 

represent user preferences and finally integrates users’ (POIs’) time embeddings into the 

final embedding representations 𝑒𝑢𝑖 (𝑒𝑝𝑗). 

 

 
Figure 6-2: Architecture of SGM-GCN model. 

For a subgraph 𝒢𝑡  with edges ℰ𝑡  at each layer 𝑘 , information is aggregated from 

neighboring nodes and is output as learned embeddings 𝑒𝑢𝑖
(𝑡,𝑘+1) and 𝑒𝑝𝑗

(𝑡,𝑘+1) . Our 

subgraph mining enables us to mine the importance of embedding dimensions over 

different time slots by proposing a diagonal importance matrix 𝑰𝒕 for time slot 𝑡, where 
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only the diagonal elements are nonzero, shown in Eq. (6.1).  

𝑰𝑡 = (

𝜃𝑡
1 0 ⋯ 0

0 𝜃𝑡
2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜃𝑡

𝐷

) 

(6.1) 

where 𝜃𝑡𝑑 is the 𝑑 − 𝑡ℎ trainable element in the matrix 𝑰𝑡 ∈ ℝ𝐷×𝐷. As shown in Figure 

6-3, a diagonal importance matrix is prepared for each time slot. In a subgraph, the 

importance matrix is shared between users and POIs and between multiple layers. 

Following the embedding size setting of related GCN models [5] [11] [33], user and POI 

embeddings have the same embedding size 𝐷. Therefore, sharing the importance matrix 

can be applied to generate disentangled embeddings by time slot units.  

The propagation rule between the graph convolution layers is expressed by Eq. (6.2). 

Note that 𝑒𝑢𝑖
(𝑡,1) (𝑒𝑝𝑗

(𝑡,1)) is calculated from 𝑒𝑝𝑗
(𝑖𝑛𝑖𝑡) (𝑒𝑢𝑖

(𝑖𝑛𝑖𝑡)). 

𝒆𝑢𝑖
(𝑡,𝑘+1)

= ∑
1

√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗|

𝒆𝑝𝑗
(𝑡,𝑘)

𝑰𝑡

𝑝𝑗∈𝐶𝑁𝑢𝑖
𝑡

 (6.2) 

𝒆𝑝𝑗
(𝑡,𝑘+1)

= ∑
1

√|𝐶𝑁𝑝𝑗| ∗ |𝐶𝑁𝑢𝑖|

𝒆𝑢𝑖
(𝑡,𝑘)

𝑰𝑡

𝑢𝑖∈𝐶𝑁𝑝𝑗
𝑡

 
 

where 1/√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗|  is a normalized discount factor controlling the amount of 

aggregated information from a neighbor node, 𝐶𝑁𝑢𝑖
𝑡  is defined as user 𝑢𝑖’s checked POIs 

set at time slot 𝑡, |𝐶𝑁𝑢𝑖| shows the number of POIs checked by user 𝑢𝑖 in the entire 

check-in set 𝐶𝑢𝑖, and 𝑰𝑡 is an importance matrix with trainable diagonal elements and 0 

in the remaining positions. 

After obtaining the output of each layer, we adopt a weighted summation operation to 
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calculate the user and POI time slot embeddings 𝒆𝑢𝑖
𝑡  and 𝒆𝑝𝑗

𝑡 , shown in Eq. (6.3). 

𝒆𝑢𝑖
𝑡 =∑𝛼𝑘

𝐾

𝑘=1

𝒆𝑢𝑖
(𝑡,𝑘)

，   𝒆𝑝𝑗
𝑡 =∑𝛼𝑘

𝐾

𝑘=1

𝒆𝑝𝑗
(𝑡,𝑘) 

(6.3) 

where 𝛼𝑘 = 1/(𝑘 + 1) , indicating that the importance of layer-outputted embeddings 

decreases as the number of layers increases. 

As users may have multiple active time slots [55], each time slot has different degrees 

of importance to the user. Here, an attention layer is used to obtain the time embeddings 

of users, with the architecture shown in Figure 6-4. The attention layer of POIs has the 

same architecture as that of the users. After passing through multiple MLP layers, 

important factors are generated as Eq. (6.4).  

𝛽𝑢𝑖
𝑡 ′ = 𝑽𝑢

2𝑇(tanh (𝑾𝑢
1𝒆𝑢𝑖

𝑡 𝑇 + 𝒃𝑢)) 
(6.4) 

𝛽𝑝𝑗
𝑡 ′ = 𝑽𝑝

2𝑇(tanh (𝑾𝑝
1𝒆𝑝𝑗
𝑡 𝑇 + 𝒃𝑝)) 

 

 

Figure 6-3: Leaning disentangled embeddings with importance matrix. 
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where 𝑾𝑢
1  , 𝑾𝑝

1 ∈ ℝ𝐷×𝐷 ; 𝑽𝑢2  , 𝑽𝑝2 ∈ ℝ𝐷×1  are trainable matrices and vectors for 

dimensional transformation; 𝑏𝑢, 𝑏𝑝 ∈ ℝ𝐷×1  are trainable bias vectors; and 𝐷  is the 

embedding size, which is set as a hyperparameter.  In the first layer of the transformation, 

we adopt the widely used hyperbolic tangent activation function tanh(𝑥) =

exp(𝑥)−exp (−𝑥)

exp(𝑥)+exp (−𝑥)
, the same as Jiang et al.’s work [56]. 

The proposed attention mechanism requires normalization to generate the final 

importance factors, formulated as Eq. (6.5). 

𝛽𝑢𝑖
𝑡 =

exp (𝛽𝑢𝑖
𝑡 ′)

∑ exp (𝛽𝑢𝑖
𝑡′ ′)𝑡′=|𝑇|

𝑡′=1

       , 𝛽𝑝𝑗
𝑡 =

exp (𝛽𝑝𝑗
𝑡 ′)

∑ exp (𝛽𝑝𝑗
𝑡′ ′)𝑡′=|𝑇|

𝑡′=1

 
(6.5) 

The output time embeddings (𝒆𝑢𝑖
𝑇𝑖𝑚𝑒  and 𝒆𝑝𝑗

𝑇𝑖𝑚𝑒 ) are calculated by multiplying the 

learned importance factors and time slot embeddings, as shown in Eq. (6.6). After 

exploiting high-order time-aware connectivity, we adopt a simple summation to generate 

the final embeddings of nodes (users and POIs), formulated as Eq. (6.7). 

𝒆𝑢𝑖
𝑇𝑖𝑚𝑒 =∑𝛽𝑢𝑖

𝑡

|𝑇|

𝑡=1

𝒆𝑢𝑖
𝑡         , 𝒆𝑝𝑗

𝑇𝑖𝑚𝑒 =∑𝛽𝑝𝑗
𝑡

|𝑇|

𝑡=1

𝒆𝑝𝑗
𝑡  

(6.6) 

 
 

Figure 6-4: Architecture of user’s attention layer 
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𝒆𝑢𝑖 = 𝒆𝑢𝑖
𝐼𝑛𝑖𝑡 + 𝒆𝑢𝑖

𝑇𝑖𝑚𝑒        , 𝒆𝑝𝑗 = 𝒆𝑝𝑗
𝐼𝑛𝑖𝑡 + 𝒆𝑝𝑗

𝑇𝑖𝑚𝑒 . (6.7) 

To predict the user preference score for a candidate unchecked POI, inner product 

similarity is a suitable metric, as used in related works [23] [5] [2]. In our work, we also 

used inner product similarity as the final output of the model. The inner product similarity 

causes each dimension of the two embeddings bitwise multiply and accumulate, as shown 

in Eq. (6.8). 

𝑟𝑢𝑖,𝑝𝑗̂ = 𝒆𝑢𝑖
𝑇𝒆𝑝𝑗 . (6.8) 

Based on the preference scores, we rank the candidate POIs and recommend the top 𝑘 

POIs as results for the target user.  

6.3.3  Edge Propagation-based Time-aware Graph Convolution 

Network (EPT-GCN) 

Edge (check-in) propagation-based time-aware GCN (EPT-GCN) adds a propagation 

module based on SGM-GCN with the architecture as shown in Figure 6-5. The basic idea 

of EPT-GCN is to propagate a user’s check-ins to multiple time slots and reconstruct 

subgraphs to reduce the loss of information. For a checked POI, we aim to find multiple 

suitable time slots for the target user. To achieve this, for a checked POI 𝑝𝑗, we calculate 

the target user’s time-based preference score for POI 𝑝𝑗 in each time slot, followed by 

calculating the average preference score. We extract the time slots with above-average 

preference scores and set these time slots as “suitable” for the target user to check POI 

𝑝𝑗. 
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Figure 6-5: Architecture of EPT-GCN model. 

Our proposed edge propagation module is executed in each training epoch to reduce 

the risk of over-smoothing. The variance of the final learned user (item) embeddings 

increased from 0.545 (0.423) to 0.752 (0.500) on the New York dataset and increased 

from 0.217 (0.104) to 0.356 (0.178) on the Gowalla dataset, compared with LightGCN 

[5]. In edge propagation, we sample 𝑠 edges (e.g., 1
25
 of all edges in 𝒢) and cluster them 

into subgraphs based on the similarity between users’ high-order time slot embeddings 

and POIs’ initial embeddings. A higher similarity indicates a higher preference score. 

Because the two ends of an edge (check-in) are a user and POI, we can simply estimate 

the preference by calculating the similarity of these two ends (𝒆𝑢𝑖
𝑡   and 𝒆𝑝𝑗

𝐼𝑛𝑖𝑡 ). Edges 

(check-ins) are propagated to subgraphs (time slots) with a similarity higher than the 

average score, as shown in Eq. (6.9), based on which we reconstruct subgraph 𝒢𝑡. For 

example, assume that there are four time slots. The similarity between a target user’s high-

order time slot embeddings and a supermarket’s initial embedding is 0.1, 0.5, 0.4, and 0.2 

for the four time slots, respectively. Therefore, the average score is 0.3. Then, the target 

user’s check-in for the supermarket will be propagated to time slot-2 and time slot-3, 
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which means that the supermarket is suitable for the target user to check in both time slot-

2 and time slot-3. 

ℰ𝑡 = {
𝜀𝑢𝑖, 𝑝𝑗| 𝑠𝑖𝑚𝑢𝑖, 𝑝𝑗 

𝑡 > 𝑎𝑣𝑔𝑢𝑖, 𝑝𝑗
, 𝜀𝑢𝑖, 𝑝𝑗  is sampled from edges in 𝒢

} (6.9) 

where ℰ𝑡  denotes all edges of subgraph 𝒢𝑡 , used to reconstruct the subgraph. 𝜀𝑢𝑖, 𝑝𝑗 

denotes that an edge in 𝒢  connecting user 𝑢𝑖  and POI 𝑝𝑗 , not related to time slot 𝑡 ; 

𝑠𝑖𝑚𝑢𝑖, 𝑝𝑗 
𝑡  means the inner product similarity between user 𝑢𝑖 ’s high-order time slot 

embedding and POI  𝑝𝑗’s initial embedding, calculated using Eq. (6.10); and 𝑎𝑣𝑔𝑢𝑖, 𝑝𝑗 is 

obtained by calculating the average similarity, as shown in Eq. (6.11). 

𝑠𝑖𝑚𝑢𝑖, 𝑝𝑗 
𝑡 = 𝒆𝑢𝑖

𝑡 𝑇𝒆𝑝𝑗
𝐼𝑛𝑖𝑡 (6.10) 

𝑎𝑣𝑔𝑢𝑖, 𝑝𝑗 =
∑ 𝑠𝑖𝑚𝑢𝑖, 𝑝𝑗 

𝑡′|𝑇|
𝑡′=1

|𝑇|
 

(6.11) 

Note that the proposed technique is an unsupervised module, so it does not require 

additional ground-truth label assistance. After training the first epoch to generate the 

underlying time slot embeddings, the propagation module is activated. Simultaneously, 

the sampled edges with similar intent are propagated to the appropriate time slots, 

affecting the aggregation path of information in the next epoch. 

6.3.4  Combination of EPT-GCN with Geographical Information (EPT-

GCN+ Geo) 

We combine time and geographical information to jointly assist the GCN in filtering 

high-order collaborative signals; thereby, we can improve the performance of POI 

recommendation, where such a combination has been experimentally confirmed to 

improve performance [3] [4].  
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To integrate the geographical information, we simplify our technique proposed in work 

[57] of mining geographical information, which calculates the active area neighbors of 

users and POIs. We first adopt the DBSCAN algorithm [34] to cluster user 𝑢𝑖’s visited 

POIs based on the latitude and longitude of the POIs, followed by calculating the user’s 

active areas 𝐴𝑢𝑖 in the same city. It should be noted that a user may have multiple active 

areas. Compared with the technique introduced in Chapter 5, we simplify the 

geographical distance similarity between user and POI as the shortest distance between 

the user’s active areas and the POI, as Eq. (6.12). 

𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖,𝑝𝑗 =
1

min (𝑑𝑖𝑠(𝐴𝑢𝑖 ,  𝑝𝑗))
 (6.12) 

𝑑𝑖𝑠(𝐴𝑢𝑖 ,  𝑝𝑗) = {𝑔𝑒𝑜𝑑𝑖𝑠(𝑎𝑢𝑖,𝑚
𝑐 ,  𝑝𝑗)|𝑎𝑢𝑖,𝑚 ∈ 𝐴𝑢𝑖}  

where 𝑔𝑒𝑜𝑑𝑖𝑠() is a function which receives two real-value geographical coordinates 

(latitude: [-90, 90], longitude: [-180, 180]) and outputs a real-value number ([0, 40075], 

40075 means the longest distance between two points on Earth in km), representing the 

distance between two points on Earth in radians; 𝑎𝑢𝑖,𝑚
𝑐  indicates the center of latitude 

and longitude of POIs located in user 𝑢𝑖’s active area 𝑎𝑢𝑖,𝑚, as shown in Eq. (6.13).  

𝑎𝑢𝑖,𝑚
𝑐 = (𝑎𝑣𝑔∀𝑝𝑗𝜖𝑎𝑢𝑖,𝑚

(𝑙𝑎𝑡𝑝𝑗) , 𝑎𝑣𝑔∀𝑝𝑗𝜖𝑎𝑢𝑖,𝑚
(𝑙𝑜𝑛𝑝𝑗) ) 

(6.13) 

where 𝑎𝑣𝑔() is the function used to calculate the average.  

After calculating the geographical distance similarity, we rewrite the aggregation 

function shown in Eq. (6.2) to apply it to the integration of geographical information, 

formulated as Eq. (6.14). 
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𝒆𝑢𝑖
(𝑡,𝑘+1) = ∑

(

 𝛾 ∗
1

√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗|

𝒆𝑝𝑗
(𝑡,𝑘) +

𝑝𝑗∈𝐶𝑁𝑢𝑖
𝑡

 

(1 − 𝛾) ∗
𝑠𝑢𝑖,𝑝𝑗

√|𝐶𝑁𝑢𝑖|

𝒆𝑝𝑗
(𝑡,𝑘)

)

 𝑰𝑡 

= ∑
1

√|𝐶𝑁𝑢𝑖|(

 
𝛾

√|𝐶𝑁𝑝𝑗|

+ (1 − 𝛾) 𝑠𝑢𝑖,𝑝𝑗

)

 𝒆𝑝𝑗
(𝑡,𝑘)𝑰𝑡

𝑝𝑗∈C𝑁𝑢𝑖
𝑡

 

(6.14) 

𝒆𝑝𝑗
(𝑡,𝑘+1)

= ∑

(

 𝛾 ∗
1

√|𝐶𝑁𝑝𝑗| ∗ |𝐶𝑁𝑢𝑖|

𝒆𝑢𝑖
(𝑡,𝑘) +

𝑢𝑖∈𝐶𝑁𝑝𝑗
𝑡

 

(1 − 𝛾) ∗
𝑠𝑢𝑖,𝑝𝑗

√|𝐶𝑁𝑝𝑗|

𝒆𝑢𝑖
(𝑡,𝑘)

)

 𝑰𝑡 

= ∑
1

√|𝐶𝑁𝑝𝑗|(

 
𝛾

√|𝐶𝑁𝑢𝑖|

+ (1 − 𝛾)𝑠𝑢𝑖,𝑝𝑗

)

 𝒆𝑢𝑖
(𝑡,𝑘)𝑰𝑡

𝑢𝑖∈C𝑁𝑝𝑗
𝑡

 

 

where 𝛾  is a hyperparameter which controls the balance of the weight of check-in 

information and geographical information, ranging from 0 to 1. Following previous work 

[57], 𝑠𝑢𝑖,𝑝𝑗  is calculated from a min-max normalization operation on the similarity 

𝑠𝑖𝑚_𝑔𝑒𝑜, as shown in Eq. (6.15). 
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𝑠𝑢𝑖,𝑝𝑗 =
𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖,𝑝𝑗 −min(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖)

max(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖) − min(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖)
 

(6.15) 

where 𝑚𝑎𝑥(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖)  and 𝑚𝑖𝑛(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖)  indicate the maximum and minimum 

values of the geographical distance similarity between user 𝑢𝑖 and the checked POIs in 

𝐶𝑢𝑖, respectively. 

6.3.5  Model Training 

We adopt Bayesian personalized ranking (BPR) loss, formulated as Eq. (6.16), as same 

as related rank-oriented recommendation studies [23] [5] [58] [59], to optimize the 

proposed model. BPR loss with positive and negative sampling mechanisms ranks 

positive cases higher than negative ones. A positive case means an observed user check-

in to a POI, and a negative case means unobserved counterparts. Thus, POIs that have 

more similar embeddings to the target user’s embedding will be recommended to the 

target user.   

𝐿𝐵𝑃𝑅 = − ∑ ∑ ∑ 𝑙𝑛𝜎(𝑟𝑢𝑖,𝑝𝑗̂ − 𝑟𝑢𝑖,𝑝𝑘̂)

𝑝𝑘𝜖 𝑃−𝐶𝑁𝑢𝑖𝑝𝑗𝜖𝐶𝑁𝑢𝑖

𝑀

𝑢𝑖=1

+ 𝜇‖𝜔‖2
2  

(6.16) 

where 𝑟𝑢𝑖,𝑝𝑗̂ indicates the predicted preference score for the positive case (user 𝑢𝑖 to POI 

𝑝𝑗 ),  𝑟𝑢𝑖,𝑝𝑘̂  is the predicted preference score for a negative case (user 𝑢𝑖  to POI 𝑝𝑘 ), 

𝑃 − 𝐶𝑁𝑢𝑖 denotes a residual set after removing check-in neighbors 𝐶𝑁𝑢𝑖 from the global 

POI set 𝑃, 𝑀 is the number of users in the dataset. 𝜔 denotes all trainable parameters 

in the model, and 𝜇 controls the strength of ℓ2 regularization to avoid overfitting. 

6.3.6  Time Complexity Analysis 

The time complexity for training our model and state-of-the-art baselines is analyzed 

in this section. As lightweight GCN models, the execution time of LightGCN and LR-
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GCCF mainly consists of gathering information from neighboring nodes, where the time 

complexity of LightGCN and LR-GCCF can be analyzed as 3|𝑅+|𝐷2, with |𝑅+| as the 

number of non-zero entities in the check-in matrix 𝑅 and 𝐷 indicates the embedding 

size, because the model adopts 3 graph convolution layers and the time complexity for 

each layer is |𝑅+|𝐷2 . IMP-GCN [2] has an additional subgraph construction module 

based on the structure of lightweight models (LightGCN and LR-GCCF). Therefore, the 

time complexity is calculated as 3|𝑅+|𝐷2 + 2(𝑀 + 𝑁)𝐷 ∗ 𝐷2 = 3|𝑅+|𝐷2 + 2(𝑀 +

𝑁)𝐷3. 𝑀 and 𝑁 are the user and POI numbers, respectively.  

Table 6-2: Time complexity of proposed EPT-GCN and baselines 

Algorithms Time Complexity for Pre-
process 

Time Complexity for Model 
Training 

LR-GCCF [23], 
LightGCN [5] 

 3|𝑅+|𝐷2 

IMP-GCN [2]  3|𝑅+|𝐷2 + 2(𝑀 + 𝑁)𝐷3 

SGM-GCN (proposed) |𝑇||𝑅+| 3|𝑅+|𝐷2 + (𝑀 +𝑁)𝐷3 

EPT-GCN+Geo 
(proposed) 

|𝑇||𝑅+| + 𝑀𝑁 4|𝑅+|𝐷2 + (𝑀 +𝑁)𝐷3 

 

In SGM-GCN, a pre-process is adopted to partition the edges into multiple time slots, 

which slightly increases the time complexity by |𝑇||𝑅+| , where |𝑇|  indicates the 

number of time slots. At the model training step, because SGM-GCN adopts an attention 

mechanism, we calculate the time complexity to generate node embeddings as 

3|𝑅+|𝐷2 + (𝑀 + 𝑁)𝐷3 . EPT-GCN also adds an edge-based propagation module, 

needing another |𝑅+|𝐷2, so the overall time complexity for model training is estimated 

as 3|𝑅+|𝐷2 + (𝑀 + 𝑁)𝐷3 + |𝑅+|𝐷2 = 4|𝑅+|𝐷2 + (𝑀 + 𝑁)𝐷3 . Using geographical 

information does not increase the training time complexity. However, the adoption of 

geographical information leads to unavoidably pre-calculate the distance between users 

and POIs, introducing the time complexity by 𝑀𝑁. Thus, the time complexity for pre-

process increases to |𝑇||𝑅+| + 𝑀𝑁, which is much smaller than the model training time 
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complexity. The results of the time complexity analysis are summarized in Table 6-2. 

6.3.7  Model Size Analysis 

This section analyzes the sizes of our proposed model and other state-of-the-art 

baselines. For LightGCN and LR-GCCF, the models use (𝑀 + 𝑁)𝐷 trainable parameters, 

where 𝑀 and 𝑁 represent the numbers of users and POIs, respectively, and 𝐷 indicates 

the embedding size. The node clustering module in IMP-GCN requires additional 

transformation weight matrices and bias vectors, which constitute an additional 2𝐷2 +

2𝐷  parameters. Therefore, the model size of IMP-GCN is (𝑀 + 𝑁)𝐷 + 2𝐷2 + 2𝐷 . 

Same to IMP-GCN, in our SGM-GCN model, the attention mechanism increases the 

parameters by 2𝐷2 + 2𝐷. The overall model size of SGM-GCN is (𝑀 + 𝑁)𝐷 + 2𝐷2 +

2𝐷. The adoption of geographical information does not cause any increase in the number 

of trainable parameters. The model size analysis results are summarized in Table 6-3. 

6.4  Experimental Evaluation 

This section introduces the experimental evaluations and results on two real POI 

datasets. We compared the three proposed models, SGM-GCN, EPT-GCN, and EPT-

GCN+Geo, with baselines. 

6.4.1  Datasets 

We chose two public datasets consisting of geographical and time information: the 

Gowalla dataset collected by Liu et al. [36] and the New York dataset collected by Liu et 

Table 6-3: Model sizes of proposed EPT-GCN and baselines 

Algorithms Model Size 
LR-GCCF [23], LightGCN [5] (𝑀 + 𝑁)𝐷 
IMP-GCN [2] (𝑀 + 𝑁)𝐷 + 2𝐷2 + 2𝐷 
EPT-GCN+Geo (proposed) (𝑀 + 𝑁)𝐷 + 2𝐷2 + 2𝐷 
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al. [60]. The Gowalla dataset covers worldwide check-in information, while the New York 

dataset consists of check-in information in New York City retrieved from Weeplace. Note 

that different from Chapter 5, we omitted the use of the famous Yelp dataset [36], which 

has been used in many POI recommendation studies, because the Yelp dataset does not 

have exact hourly information for each check-in, making it impossible to apply the time 

slot technique. 

 The datasets were preprocessed using the same approach as Liu et al. [36] and Section 

5.4.1, filtering out users with fewer than 15 check-in POIs and POIs with fewer than 10 

user check-ins. After preprocessing, the Gowalla dataset contained 18,737 users, 32,510 

POIs, and 1,278,274 check-ins, with a sparsity of 99.87% for the user-item check-in 

matrix. The New York dataset contained 654,054 check-ins by 3,286 users and 6,369 POIs, 

with a sparsity of 96.87%. Table 6-4 summarizes the statistics of the datasets. Same as 

Liu et al.’s work, we set the earliest 70% of check-ins as a training set to predict the latest 

20% of check-ins (testing set), and the remaining 10% was used as a tuning set. 

6.4.2  Baselines 

We compared our proposed methods15 with the six state-of-the-art baselines described 

below. 

1) RankGeoFM [33]: RankGeoFM [33] is based on factorization machines, a state-of-

the-art MF-based model. The detail has been described in Section 0, which is not repeated 

here to avoid redundancy. 

 
15 https://github.com/bakubonmo/Rec 

Table 6-4: Dataset statistics 

Dataset Number of 
users 

Number of 
items 

Number of 
check-ins  

Sparsity 

Gowalla 18,737 32,510 1,278,274 99.87% 
New York 3,286 6,369 654,054 96.87% 
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2) LR-GCCF [23]: LR-GCCF is a linear model used to form a residual network, 

described in Section 0.  

3) LightGCN [5]: LightGCN removes the self-connection to simplify the model, 

described in Section 0. 

4) GPR [3]: GPR integrates geographical information into GCN, where each POI is 

assigned two trainable embeddings to represent, same as Section 0. 

5) GNN-POI [4]: GNN-POI integrates various side information into POI 

recommendations. A complex nonlinear network structure with consecutive check-ins, 

social information, and geographical information is used to learn the unique embeddings 

of nodes (users and POIs). Same as GPR, the time information is reflected in consecutive 

check-ins. In this experiment, we omitted the social part of GNN-POI to keep the side 

information used consistently because our model only uses time and geographical 

information. 

6) IMP-GCN [2]: IMP-GCN is a state-of-the-art subgraph-based GCN model for 

recommendation systems. High-order neighboring users with no common interests are 

filtered through a node clustering technique composed of three MLP layers. Because our 

method also adopts the subgraph technique, compared with IMP-GCN, we can verify 

whether the performance of our time-aware GCN can be improved. 

Note that we did not compare with works [61] [62] [63] [65] [64] because of the 

different research purposes. They studied the next POI recommendation, meaning that the 

ground truth contained only the target user’s last POI in chronological order. Thus, the 

next POI recommendation algorithm focuses more on mining check-in sequences. In 

addition, the evaluation metrics also make a significant difference. Influenced by the 

number of POIs contained in the ground truth of the target user, the next POI 

recommendation algorithm is evaluated only by recall and cannot calculate precision 

because the maximum precision is 1

|top 𝑘|
. 
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In addition, we did not compare with works [66] [67] represented by Zhong et al. [67] 

due to the use of different side information. They used social information, but we focused 

on time and geographical information. Different side information may have different 

degrees of influence on the recommendation performance and is difficult to compare 

directly. We used Python and PyTorch16 to implement the GCN baselines while using the 

source code of Liu et al. [36] for the RankGeoFM model. 

6.4.3  Metrics 

Same as Section 5.4.3, the experiment adopts three widely adopted ranking metrics: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , and 𝑁𝐷𝐶𝐺@𝑘  for the top𝑘  recommendation list, where 

larger values indicate better performance. The Equations are listed as Eq. (5.9) to Eq. 

(5.12).  

On the Gowalla dataset, the theoretical maximums were P@5 =0.949, R@5 =0.736, 

P@10=0.673, and R@10=0.909. On the New York dataset, the theoretical maximums 

were P@5=0.841, R@5=0.581, P@10=0.702, and R@10=0.744. 

6.4.4  Hyperparameter Settings 

This section describes the hyperparameter settings for the proposed model, except for 

the number of time slots, which is discussed in Section 6.4.6. 

 Hyperparameters for DBSCAN Algorithm 

The DBSCAN algorithm was adopted to mine the active areas of users. Same as 

Section 5.4.4, after searching 𝑒𝑝𝑠 from 0.25 to 2 with the interval 0.25 and 𝑚𝑖𝑛𝑃𝑡𝑠 from 

2 to 5 with the interval 1. We set 𝑒𝑝𝑠 to 1 and 𝑚𝑖𝑛𝑃𝑡𝑠 to 2 as the optimal parameters.  

 Hyperparameters for Proposed Models 

Same as previous works [3] [23] [5], we fixed the embedding size to 64 and the number 

 
16 https://pytorch.org/ 

mailto:Precision@5=0.949
mailto:Recall@5=0.736,
mailto:Precision@5=0.841
mailto:Recall@5=0.581,
mailto:Recall@10=0.744.
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of hidden layers 𝐾  to 3 for both the proposed models and all GCN-based baselines. 

Embeddings were initialized using a Gaussian distribution with mean 0 and standard 

deviation 1𝑒−2. The learning rate was searched from {1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1} to tune 

the best performance, finally set to 1𝑒−2. The regularization coefficient 𝜇  was searched 

in the range {1 𝑒−6 , 1 𝑒−5 , …,1 𝑒−1 }, finally set 𝜇  to 1 𝑒−4 . 𝛾  and 𝛿  are two 

hyperparameters that balance the importance of check-ins and geographical information.  

Table 6-5: Summary of hyperparameter settings 

Algorithms Hyperparameter settings 
 
 

Hyperparameter Search range Optimal value 

DBSCAN 
 

𝑒𝑝𝑠 {0.25, 0.5, 0.75 , … , 2} 1 km 
𝑚𝑖𝑛𝑃𝑡𝑠 {2, 3, 4, 5} 2 

LR-GCCF 
[23], 
LightGCN 
[5], 
GPR [3], 
GNN-POI 
[4], 
IMP-GCN 
[2], 
ECN-
GCN+Geo 
(proposed) 

embedding size same as Chen et al. [23] 
and He et al. [5] 

64 

embedding 
initialization 

same as Chen et al. [23] 
and He et al. [5] 

Gaussian dist. 
(Mean:0, SD:1𝑒−2) 

learning rate {1𝑒−4,1𝑒−3,1𝑒−2,1𝑒−1} 1𝑒−2 
regularization 
coefficient  

{1𝑒−6,1𝑒−5,…,1𝑒−1} 1𝑒−4 

ECN-
GCN+Geo 
(proposed) 

edge sampling 
ratio {1|ℰ|,

1

25
|ℰ|,

1

50
|ℰ|, 

1

75
|ℰ|,

1

100
|ℰ|} 

1

75
|ℰ| on Gowalla 

1

100
|ℰ| on New York 

number of time 
slots 

{2, 3, 4, 6, 8} 4 

check-in 
coefficient 𝛾 

{0, 0.25, 0.5, 0.75, 1} 0.25 
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 We searched 𝛾 and 𝛿 from 0 to 1 with the interval 0.25. Finally, we set 𝛼 to 0.5 and 

𝛽 to 1 as the best parameters. Hyperparameters for the GCN-based baselines were set 

using the same strategy as for our model. For RankGeoFM, the same parameters as those 

of Liu et al. [36] were set for a fair comparison. The settings of the hyperparameters are 

summarized in Table 6-5. 

6.4.5  Experimental Results 

Table 6-6 and Table 6-7 present our experimental results on the two real datasets. The 

maximum values other than those of our proposed models are underlined. The maximum 

value of each metric is bolded. 

Table 6-6: Experimental results on New York dataset 

Algorithms 𝑃@5 𝑅@5 𝑁@5 𝑃@10 𝑅@10 𝑁@10 
Baselines RankGeoFM [33] 0.0219 0.0244 0.0220 0.0184 0.0260 0.0197 

LR-GCCF [23] 0.0634 0.0248 0.0681 0.0553 0.0410 0.0410 
LightGCN [5] 0.1093 0.0338 0.1214 0.0831 0.0528 0.1055 
GPR [3] 0.1041 0.0307 0.1171 0.0836 0.0507 0.1047 
GNN-POI [4] 0.1114 0.0360 0.1262 0.0864 0.0546 0.1111 
IMP-GCN [2] 0.1100 0.0328 0.1236 0.0865 0.0534 0.1096 

Proposed SGM-GCN 0.1181* 0.0357 0.1333* 0.0921* 0.0567* 0.1171* 
EPT-GCN 0.1233* 0.0382* 0.1414* 0.0935* 0.0597* 0.1224* 
EPT-GCN+Geo 0.1248* 0.0388* 0.1420* 0.0951* 0.0601* 0.1240* 

 EPT-GCN+Geo’s 
improvement 
percentage compared 
with underlined value 
(absolute 
improvement 
difference from 
underlined value) 

12.03% 
(0.0134) 

7.78% 
(0.0028) 

12.52% 
(0.0158) 

9.94% 
(0.0086) 

10.07% 
(0.0055) 

11.61% 
(0.0129) 

* Statistically significant for p<0.01 when comparing with any baselines. 
 

 



91 
 

 

Comparison among Models without Side-Information 

Among all the GCN models without time or geographical information (i.e., LR-GCCF, 

LightGCN, and IMP-GCN), IMP-GCN achieved the best performance on both datasets. 

This indicates that the subgraph construction technique based on high-order neighbor 

similarity suits POI recommendation systems to prevent information aggregation from 

high-order dissimilar nodes. 

Comparison between IMP-GCN and GNN-POI 

On the New York dataset, GNN-POI outperformed IMP-GCN because of the 

Table 6-7: Experimental results on Gowalla dataset 

Algorithms 𝑃@5 𝑅@5 𝑁@5 𝑃@10 𝑅@10 𝑁@10 

Baselines RankGeoFM [33] 0.0684 0.0479 0.0719 0.0559 0.0755 0.0622 
LR-GCCF [23] 0.0640 0.0669 0.0721 0.0504 0.0762 0.0749 
LightGCN [5] 0.0760 0.0788 0.0859 0.0597 0.0865 0.0870 
GPR [3] 0.0775 0.0580 0.0671 0.0640 0.0881 0.0613 
GNN-POI [4] 0.0764 0.0792 0.0860 0.0607 0.0880 0.0877 
IMP-GCN [2] 0.0774 0.0803 0.0874 0.0613 0.0890 0.0889 

Proposed SGM-GCN 0.0803* 0.0834* 0.0914* 0.0632 0.0919* 0.0927* 
EPT-GCN 0.0827* 0.0859* 0.0940* 0.0636 0.0925* 0.0939* 
EPT-GCN+Geo 0.0843* 0.0874* 0.0953* 0.0648+ 0.0940* 0.0953* 

 EPT-GCN+Geo’s 
improvement 
percentage compared 
with underlined value 
(Absolute 
improvement 
difference from 
underlined value) 

8.77% 
(0.0068) 

8.84% 
(0.0071) 

9.04% 
(0.0079) 

1.25% 
(0.0008) 

5.62% 
(0.0050) 

7.20% 
(0.0064) 

* Statistically significant for p<0.01 compared to any baseline. 
+ Statistically significant for p<0.05 compared to any baseline. 
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integration of time and geographical information. However, on the Gowalla dataset, 

GNN-POI performed slightly worse than IMP-GCN. A possible reason is that GNN-POI 

uses complex models and nonlinear representations to train the embeddings of users and 

POIs, which tends to cause model overrepresentation, that is, complex yet ineffective 

representation and problems on extremely sparse datasets, such Gowalla with a sparsity 

of 99.87%, which is higher than that of the New York dataset. 

 Comparison between GPR (heavy reliance on geographical information) and 
Other Baselines 

The GPR model achieved a higher P@10 compared to the other baselines on the 

Gowalla dataset. The main reason for this is that the exponential function is adopted for 

aggregating information over a geographical distance, i.e., closer POIs gather 

exponentially more information in the GPR model, thereby improving the impact of 

geographical information. Because the Gowalla dataset is worldwide, GPR works well. 

The exponential geographic information makes the model recommend nearby POIs and 

thus filters distant POIs, improving the model performance in a large geographical range 

dataset. However, in the New York dataset, within the city range, the importance of 

geographical information decreases, preventing further improvement in model 

performance. 

 Comparison between SGM-GCN and IMP-GCN 

On both the New York and Gowalla datasets, the SGM-GCN outperformed the IMP-

GCN. The IMP-GCN adopts a node-oriented clustering module, whereas the SGM-GCN 

uses time information to partition edges (check-ins) into multiple time slots. The 

experimental results show that edge-oriented subgraph partitioning performs better than 

node-oriented subgraph partitioning in POI-recommendation tasks. 

 Comparison between EPT-GCN and SGM-GCN 

Comparing EPT-GCN with SGM-GCN, we can verify that the proposed propagation 

module can further improve the model performance based on high-order time slot 
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embeddings by 7.00% on the New York dataset and 3.00% on the Gowalla dataset in 

terms of R@5. The results confirm that not only the attention mechanism of SGM-GCN, 

the propagation module is effective in improving accuracy. Unlike IMP-GCN, EPT-GCN 

is a check-in-oriented method that enables an edge to be clustered into multiple time slots. 

For example, the learned characteristics that users prefer to check restaurants during 

lunchtime can be mapped and propagated to the dinner time slot by the propagation 

module. 

 Comparison between EPT-GCN+Geo and Other Baselines 

On both datasets, ECN-GCN+Geo exhibited the best performance. ECN-GCN+Geo 

successfully improved R@5 from 0.0360 to 0.0388 (7.78%) and R@10 from 0.0546 to 

0.0601 (10.07%) on the New York dataset while improving R@5 from 0.0803 to 0.0874 

(8.84%) and R@10 from 0.0890 to 0.0940 (5.62%) on the Gowalla dataset, compared to 

state-of-the-art baselines with underlined values. Comparing EPT-GCN+Geo with EPT-

GCN, the adoption of geographical information significantly improved the performance 

on the Gowalla dataset. In contrast, the improvement on the New York dataset was not as 

high as that of the former. The main reason for this is that the importance of geographical 

information decreases as the geographical range of the dataset reduces. Note that the 

Gowalla dataset is worldwide, while the New York dataset is a city-range dataset. 

6.4.6  Number of Time Slots 

This section investigates the effect of the number of time slots on the proposed EPT-

GCN and EPT-GCN+Geo. 

 Effect of the number of time slots on EPT-GCN 

The number of time slots may affect the performance of our proposed EPT-GCN; 

therefore, we confirmed the effects by varying the number of time slots from one to eight. 

For example, if the number of time slots is four, we have the following four time slots:12 

AM to 6 AM, 6 AM to 12 PM, 12 PM to 6 PM, and 6 PM to 12 AM local time. For 
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convenience, we start from midnight and equally divide 24 hours into four time slots. We 

use latitude and longitude coordinates to convert the timestamp to local time. 

   

Precision ratio on New York dataset Precision ratio on Gowalla dataset 

     

Recall ratio on New York dataset Recall ratio on Gowalla dataset 

     

F1-Score on New York dataset           F1-Score on Gowalla dataset 

Figure 6-6: Influence of the number of time slots on EPT-GCN (edge sampling 
ratio is set as 1/75 |E| on Gowalla dataset and 1/100 |E| on New York dataset). 
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Figure 6-6 shows the precision, recall, and F1-score of EPT-GCN on the two datasets  

by varying the number of time slots from 2 to 8, where the F1-score is the harmonic mean  

of precision and recall, calculated as 𝐹1@𝑘 = 2∗𝑃@𝑘∗𝑅@𝑘

𝑃@𝑘+𝑅@𝑘
. Similar trends in both datasets 

were confirmed, i.e., that EPT-GCN performs best when the number of time slots is four, 

which may conform to user behavior. We also tested the performance when the number 

of time slots was set to one. The algorithm degenerates to LightGCN, with P@5=0.0752, 

R@5 =0.0781, P@10=0.0599, and R@10 =0.0871 on the Gowalla dataset and 

P@5=0.1099, R@5=0.0341,  P@10=0.0848, and R@10=0.0531 on the New York 

dataset. 

Effects of Combining Geographical Information on EPT-GCN with Different 
Number of Time Slots  

Figure 6-7 illustrates the influence of the number of time slots on EPT-GCN+Geo. 

Comparing Figure 6-7 with Figure 6-6, we can observe a similar trend in performance 

with hyperparameter (number of time slots) variation, where the model performs best 

when the number of time slots is set to four. We also tested the performance when the 

number of time slots was set to one. The algorithm degenerates to only adopt geographical 

information and omit time information with P@5=0.0780, R@5=0.0810, P@10=0.0610, 

and R@10 =0.0881 on the Gowalla dataset and P@5=0.1114, R@5=0.0358, 

P@10=0.0858, and R@10=0.0529 on the New York dataset. 

6.5 Conclusion 

In this chapter, we proposed an edge propagation-based time-aware GCN for POI 

recommendation constituting the following: 1) a subgraph mining GCN model to divide 

24 hours into equal interval time slots and learning users’ and POIs’ disentangled time- 

mailto:R@5=0.0781
mailto:R@10=0.0871
mailto:R@5=0.0781
mailto:R@5=0.0781
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Precision ratio on New York dataset Precision ratio on Gowalla dataset 

  

Recall ratio on New York dataset Recall ratio on Gowalla dataset 

  

F1-Score on New York dataset          F1-Score on Gowalla dataset 

Figure 6-7: Influence of the number of time slots on EPT-GCN+Geo (edge 
sampling ratio is set as 1/75 |E| on Gowalla dataset and 1/100 |E| on New York 
dataset). 
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aware embeddings; 2) an edge propagation module to reconstruct subgraphs by 

calculating the similarity between users’ higher-order time slot embeddings and POIs’ 

initial embeddings; and 3) a modified aggregation function to combine check-in 

information with geographical information. Experimental evaluation on two real datasets 

(Gowalla and New York) confirms that our proposed method outperforms state-of-the-art 

baselines. On the Gowalla dataset, Recall @5 improved from 0.0803 to 0.0874 (8.84%), 

while on the New York dataset, Recall@5 improved from 0.0360 to 0.0388 (7.78%). The 

proposed subgraph mining technique and novel edge-based propagation module have 

high scalability and can be applied to other subgraph construction models.  
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7 Conclusion and Future Work 

7.1 Conclusion 

In this section, we summarize our work and contributions to combine side information, 

i.e., time and geographical information, with recommendation models into three-fold.  

In Contribution 1, the time information is modeled as training speed for ad 

recommendation. By using DA to accelerate recommendation optimization to achieve 

real-time periodic recommendation, the proposed technique can capture changes in user 

interest over time effectively while satisfying the delivery constraints. Experimental 

results on the real Geniee dataset confirmed that our proposed method outperforms the 

baselines by 35.56% with prediction algorithm Logistic regression while shortening the 

execution time from 525s to 108s and 35.86% with XGBoost while shortening the 

execution time from 526s to 108s, introduced in Chapter 3. 

In Contribution 2, we first introduced some basic knowledge of POI recommendation 

and previous works related to our contributions, i.e., graph convolution network and side 

information for POI recommendation (Chapter 4). Then, we divided two Chapters on how 

to adopt geographical (Chapter 5) and time (Chapter 6) information, named GN-GCN and 

EPT-GCN, respectively. For the geographical information, we modeled users’ multiple 

active areas. Further, we proposed the concept of active area neighbors, making the GCN 

model not only aggregate information from check-in but also from active area neighbors. 

Experiments on real Gowalla and Yelp datasets indicated that the proposed technique 

successfully improved 𝑅𝑒𝑐𝑎𝑙𝑙@5  from 0.0788 to 0.0815 on the Gowalla dataset and 

from 0.0453 to 0.0469 on the Yelp dataset compared with state-of-the-art LightGCN 

model. The technique and results were introduced in Chapter 5. 

In Contribution 3, we modeled users’ time-based high-order connectivity for the time 

information, defined as the relationship between indirect neighbors with similar 

preferences in the same time slot. For a POI recommendation, combining both time and 
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geographical information gives better results, which inspired us to modify the aggregation 

function to further combine the proposed EPT-GCN with geographical information. To 

verify the performance of the proposed technique, we conducted experiments on real 

Gowalla and New York datasets, which contain time information and can apply our 

proposed models. On the Gowalla dataset, Recall @5 improved from 0.0803 to 0.0874. 

On the New York dataset, Recall@5 improved from 0.0360 to 0.0388, compared with 

state-of-the-art GCN-based models. We introduced the technique and results in Chapter 

6. 

7.2 Discussion and Future Work 

In this section, we discuss the future research directions on side information. 

In the time dimension, we recognize that DA has high speed and can be adapted to 

various models. We advocate the DA application for other time-sensitive tasks, like the 

training of deep learning models. The training of deep learning models is slow. 

Converting the deep learning model into a form of QUBO, which can be executed on DA 

to increase the speed of training, will be a promising technique. Besides, as a quantum-

inspired computer, DA has a finite number of units. How to reduce the problem size and, 

thus, adapt the DA is also a future research direction. 

For side information technique with deep learning model to improve accuracy, the first 

thing worth mentioning is the integration of more information, such as categorical 

information, for recommendation accuracy. More information always means that 

performance can be further improved. Besides, we refocus our attention on geographical 

and time information. For geographical information, the proposed technique of modeling 

user active areas does not distinguish between urban and suburban areas. Typically, users 

behave differently in urban and suburban areas, leading to new thinking and research 

directions. For time information, a more fine-grained distinction between time-based 

high-order connectivity may yield a new research direction. For example, dividing the 

weekends and workdays to make more specific time slots division. Besides, subgraph 
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reconstruction techniques are also worth exploring. We proposed a technique to partition 

subgraphs based on edges. Subgraph partitioning that considers both edges and nodes to 

improve the time-based high-order mining may achieve better performance. 

7.3 Discussion of Recommendation Beyond Accuracy 

The above discussion is for the accuracy of recommendation systems. In addition, we 

would like to discuss other research goals of recommendation systems from a larger 

perspective. 

In addition to recommendation accuracy, the diversity of recommendation systems has 

received increasing attention from researchers in recent years. Recommendation diversity 

is primarily defined as categorical diversity [70] [71]. Let us consider the restaurant 

recommendation. Categorical diversity recommends a wide variety of restaurant 

categories, such as Chinese, Japanese, and French restaurants, that may interest the target 

user, not just Chinese restaurants, even if the target user likes Chinese food. 

Recommendation system diversity keeps the results fresh in users' minds, thus increasing 

users’ satisfaction. In the research area, improving the accuracy and beyond-accuracy 

aspects-diversity are conflicting tasks, which complicate the diversity improvement and 

accuracy maintenance tasks. Previous research [85] [86] attempted to adopt a re-ranking 

technique to alleviate the conflicts. i.e., first, use a base algorithm to generate a candidate 

recommendation list, followed by an optimization step for improving diversity. However, 

optimizing the diversity by reranking is independent of the basic candidate-item 

generation model, resulting in a suboptimal system. In recent years, designing the model 

of de-reranking [87] has still been in the exploratory stage. A worthwhile research 

direction is how to effectively represent users’ needs for diversity in machine learning 

models. 

Another research goal that is still in the exploratory stage is recommendation 

proportionality. Proportionality in recommendation results [72] is a further requirement 

beyond accuracy. More than diversity, recommendation proportionality ensures that the 
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past interests of the target user are proportionally reflected in a recommendation list. In 

several papers [73] [74], the technical term “calibration” is used to replace 

“proportionality.” Let us consider the previous example of the restaurant to explain the 

recommendation calibration (proportionality). Assume a target user checks 80, 10, and 

10% Chinese, Japanese, and French restaurants, respectively; the target user may be 

highly interested in receiving a recommendation list with the same distribution. 

Synthesizing the multiple interests of users will be a future research trend. Similar to 

recommendation diversity, reranking techniques are widely used in recommendation 

calibration [88] [89]. As a result, the future research direction is similar to that of diversity, 

which tends to remove reranking and directly represent the users' needs for calibration in 

the machine learning models. 

Recommendation explainability [75] [76] is also emphasized by researchers.  

Recommendation explainability is required when the list of recommendations is 

generated; the reasons for the recommendation items are also generated to make the 

results more acceptable to the target user. A simple method to provide explainability is 

using keywords [75]. For example, recommending the item 𝑖  because a similar user 

“purchased” the item. Another example is because the item “is described by” feature 𝑓. 

However, the keyword-based technique requires pre-designed templates for the 

explanation, making the explanation unnatural. In recent years, with the development of 

natural language processing (NLP) techniques like Transformer [82], combining 

recommendation systems and NLP techniques has made it possible to create 

recommendation reasons automatically and naturally, and it will be a promising research 

direction. 

Recommendation fairness [90] [91] is described as fair exposure to different items. i.e., 

no popularity bias among different items. The research aims to mitigate the long-tail effect 

and recommends unpopular items. While simultaneous optimization of accuracy and 

fairness in deep learning models [84] was proposed to alleviate the conflicting two goals 

(high fairness and high accuracy), recommending unpopular items still carries the risk of 
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reduced accuracy. How to improve fairness with minimal loss of accuracy will be a focus 

of research in the area. 

Recommendation acceleration [77] has also injected new challenges for 

recommendation systems. Current computing resources are expensive, including GPUs 

and high electricity costs. Slow training speed means high overhead. Therefore, working 

on improving the training speed of models is also an essential task in the field of 

recommendation systems. In addition to the possibility of using DA to accelerate model 

training, as mentioned in Chapter 7.2, techniques to accelerate model convergence [92] 

were proposed to reduce training time. However, the methods do not reduce the time 

complexity of the models, which leads to a less generalized approach. A generalized 

algorithm for reducing time complexity will be a promising research direction. 

Finally, we introduce the recommendation systems in incremental environments [78] 

[83]. Retaining the model is time-consuming. Therefore, we tend to update the already-

trained model after new data arrives instead of retraining it. In an incremental 

environment, selective retention of learned knowledge is challenging. Prior studies [78] 

[83] introduced a sampling-based technique to sample the learned knowledge but couldn't 

achieve the same performance as retaining. i.e., reduce performance. An approach 

suitable for model training in an incremental environment is worth considering, such as a 

mechanism to selectively update only part of the model's parameters.  
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