
Fan MO
バク　ボン

A Study of Recommendation Systems with Temporal and Geographical
Information

時間的・地理的情報を用いた推薦システムに関する研究

February, 2024

February, 2024

Fan MO
バク　ボン

Department of Computer Science and Communications Engineering,
Research on Parallel and Distributed Architecture

Waseda University Graduate School of Fundamental Science and
Engineering

A Study of Recommendation Systems with Temporal and Geographical
Information

時間的・地理的情報を用いた推薦システムに関する研究

iii

i

Abstract

In the age of big data, the information overload problem costs users much time and

energy to obtain useful information. Recommendation systems, as an effective tool to

alleviate information overload, are receiving increasing attention. Recommendation

systems intend to improve user satisfaction. Therefore, in industry as well as in academia,

researchers have studied and proposed a variety of metrics to evaluate user satisfaction.

The effectiveness of recommendation, measured by recall and precision ratios, is

considered the most responsive to user satisfaction because high effectiveness indicates

the system is better able to predict user interest. Adopting side information is a promising

and worthwhile approach to improving recommendation accuracy. This thesis targets two

side information- time and geographical information- because time and geographical

information are common in recommendation systems, modeling them to improve

performance and leaves other attributes such as category as future work. Previous works

attempted to model geographical information as distance and time information as a

sequence. However, previous work still suffers from insufficient use of side information.

This thesis aims to improve recommendation accuracy by fully using temporal and

geographical information. This thesis first focuses on accelerating model updates to

achieve real-time periodic recommendation systems. If the periodic updates can be

implemented, the model can capture changes in user behavior over time, improving the

accuracy of behavior estimation. This thesis uses advertisement (ad) recommendations as

an example of applying the technique. In recent years, the market for ad recommendations

has been growing. Advertisement recommendation has become an important service to

help users mine their interests. For an ad recommendation system, handling time

information is important, as user interests constantly change over time. This requires ad

recommendation optimization algorithms to be frequently updated to accommodate the

user's latest interests. To achieve that, this thesis models temporal information to propose

a real-time periodic recommendation technique. The technique adopts a quantum-inspired

computer, specifically, Fujitsu digital annealer, to accelerate the optimization process.

Experiments on the real Geniee dataset confirmed that the proposed real-time periodic

technique achieved a 35.86% improvement in ad recommendation compared with the

ii

state-of-the-art XGBoost+GA baseline.

After that, this thesis works on modeling geographical information to improve

recommendation accuracy. A typical application of geographical information is the Point-

of-interest (POI) recommendation. This thesis, therefore, uses the POI recommendation

as an example to illustrate our modeling. As an important application in location-based

social networks, POI recommendations help users filter massive amounts of information

and make decisions. POIs have a special attribute- geographical information. To handle

the geographical information, this thesis starts by mining users' active areas and

transforming the geographical information into the proposed "active area neighbor,"

which incorporates and extends the definition of neighbor in graph convolution network

(GCN) models for POI recommendation, where normally, "neighbor" is defined as check-

ins in a GCN model. Then, this thesis designs the user node for aggregating information

from check-ins and the proposed active area neighbors. The active area neighbors-based

technique improved the 𝑅𝑒𝑐𝑎𝑙𝑙@5 from 0.0788 to 0.0815 on the Gowalla dataset and

from 0.0453 to 0.0469 on the Yelp dataset compared with the state-of-the-art LightGCN.

 Then, this thesis focuses on proposing a methodology to simultaneously combine

temporal and geographic information. The thesis first proposes a new time-aware GCN

model to mine users' time-based high-order connectivity. Specifically, this thesis divides

the 24 hours of the day into multiple time slots, generating a subgraph for each time slot

and making the target user aggregate information from newly defined time-based high-

order connectivity. Time-based high-order connectivity refers to the relationship between

indirect neighbors with similar preferences in the same time slots. After modeling the

time information, this thesis integrates the active area neighbor-based technique for

modeling geographic information proposed in the previous paragraph. Experimental on

real datasets confirm that our model further improved 𝑅𝑒𝑐𝑎𝑙𝑙@5 to 0.0874 on the

Gowalla dataset and from 0.0360 to 0.0388 on the New York dataset compared with state-

of-the-art GCN-based models after mining abundant time information.

This thesis models the time and geographical information as auxiliaries to be combined

into recommendation systems. After constructing the models, this thesis conducted

experiments on real datasets, validating the effectiveness of the proposed techniques.

iii

Acknowledgments

I want to thank Prof. Hayato Yamana first. Prof. Yamana gave me a lot of care and

advice during my doctorate course, teaching me how to start from a survey to forming

my own ideas, how to conduct experiments, and how to describe my thoughts and

experimental results in the most straightforward tone from the readers’ point of view. I

still remember what Prof. Yamana said about the importance of “thinking differently,”

which gave me a lot of encouragement to conduct my brainstorming. The presentation

skills I learned from my professor helped me to be more courageous in attending

international conferences and communicating my ideas clearly. Besides, thank you for the

opportunity to conduct collaborative research with companies, which gave me a platform

to practice further and work on my thoughts. Such an experience would be very beneficial

to me.

Next, I would like to offer my respects and thanks to Prof. Tetsuya Sakai and Prof.

Kasai. Prof. Sakai gave me a lot of helpful advice on refining my idea and improving the

presentation of my paper. Thoughtful suggestions and comments have significantly

boosted my research and studies. Prof. Kasai also provided a lot of valuable advice to

standardize the writing of notations, improving the quality of the thesis while providing

thought-provoking comments for exploring future research directions. I have significantly

benefited from the help.

Mr. Tsuneo Matsumoto, Mr. Nao Fukushima, and Ms. Fuyuko Kido also gave me a lot

of help and support. Thank you to them for injecting new exploration directions for my

research on applications of recommendation systems. Combining the recommendation

system with the IUI domain made me think about the recommendation systems in a

unique manner. Thank you to Mr. Matsumoto for providing me with a lot of introductions

and explanations on legal regulations and economics. Without the support and effort, the

study could not have been conducted.

Next, I would like to thank all the lab members of Yamana lab. Mr. Takuya Suzuki has

https://cybozu.yama.info.waseda.ac.jp/ymncbz/cbag/ag.exe?page=MailSend&text=takuya%2Dsuzuki%2Eph%40toki%2Ewaseda%2Ejp

iv

contributed significantly to maintaining the server and solving problems in the area of

life. Mr. Huida Jiao and Mr. Shun Morisawa were instrumental in making the

experimental process run smoothly. In some of my work and papers, I listed them as co-

authors. Thanks to Mr. Xin Fan, Mr. Chongxian Chen, and Mr. Changhao Bai for

discussing with me to improve my proposed method.

Finally, I would like to thank my family and friends. Thank you for your continued

help and support in my daily life.

Fan Mo, 2023/12

v

vi

Contents

A Study of Recommendation Systems with Temporal and Geographical

Information .. i

A Study of Recommendation Systems with Temporal and Geographical

Information ... ii

Acknowledgments .. iii

List of Figures ... xii

1 Introduction .. 1

1.1 Background ... 1

1.2 Objective and Goal ... 2

1.3 Challenges .. 4

1.3.1 Acceleration of Recommendation Optimization (Challenge 1) 4

1.3.2 Insufficient Use of Side Information in Recommendation Systems...... 5

Insufficient Use of Geographical Information (Challenge 2) ... 5

Insufficient Use of Temporal Information (Challenge 3) ... 6

1.4 Contributions .. 6

Contribution 1. Adoption of digital annealers (DA) to accelerate advertisement recommendation and realize

periodic recommendation optimization .. 7

Contribution 2. Proposal of active area neighbor to model geographical information in the graph convolution

network. ... 8

Contribution 3. Proposal of subgraph (time slot) and edge (check-in) propagation-based technique to model

time information in the graph convolution network. .. 9

1.5 Organization of the Thesis ... 9

2 Related Work .. 12

2.1 Studies on Acceleration of Recommendation Optimization 12

2.2 Studies on Modeling Side Information ... 13

2.2.1 Studies on Modeling Geographical Information 13

vii

2.2.2 Studies on Modeling Temporal Information ... 14

2.3 Remained Problems .. 14

2.3.1 Problems with Acceleration .. 15

2.3.2 Problems with Modeling Side Information ... 15

3 Real-Time Periodic Advertisement Recommendation Optimization under

Delivery Constraint using Quantum-inspired Computer ... 17

3.1 Introduction ... 18

3.2 Related Work ... 20

3.2.1 CTR and CVR Prediction ... 20

3.2.2 Constrained Bidding Optimization .. 21

3.3 Proposed Method .. 22

3.3.1 Problem Formulation .. 22

3.3.2 Overview of Proposed Method ... 24

3.3.3 Conversion Probabilities of Ad Categories for Each User................... 24

3.3.4 Optimizing Category Predictions ... 25

DA and QUBO Model .. 25

DA-Based Category Prediction .. 26

3.3.5 Transforming Objective Function to The QUBO Model 27

3.3.6 Utilization of DA .. 30

3.4 Experiment Evaluation ... 31

3.4.1 Dataset .. 31

3.4.2 Evaluation Metrics .. 33

3.4.3 Prediction Algorithm ... 34

3.4.4 Baseline Methods ... 35

3.4.5 Time Parameters Tuning .. 36

3.4.6 Experimental Results Under the Delivery Constraints 37

3.4.7 Experiment on Comparing Proposed Transformation Method with
Polynomial Expansion .. 39

3.5 Conclusion ... 39

4 Preliminary of Combination of Side Information with Graph Convolution

Network (GCN) for Point-of-interest (POI) Recommendation 42

viii

4.1 Introduction ... 42

4.2 Related Work ... 43

4.2.1 Side information used in POI Recommendation 44

4.2.2 Graph Convolution Network in Recommendation System 45

4.2.3 Preliminary .. 47

5 GN-GCN: Combining Geographical Neighbor Concept with Graph

Convolution Network for POI Recommendation .. 50

5.1 Introduction ... 50

5.2 Preliminary .. 51

5.3 Proposed Method .. 52

5.3.1 Overview... 53

5.3.2 Modeling Active Area Neighbor ... 54

User Active Area Neighbor .. 54

POI Active Area Neighbor ... 55

5.3.3 Geographical Neighbor Concept-based Graph Convolution Network
(GN-GCN) ... 55

5.3.4 Geographical Neighbor Concept-based Graph Convolution Network
(GN-GCN) with Nonlinear Active Function ... 56

5.3.5 Model Prediction for POI Recommendation Task 57

5.3.6 Model Training .. 59

5.4 Experimental Evaluation ... 59

5.4.1 Datasets... 60

5.4.2 Baselines ... 60

5.4.3 Metrics .. 61

5.4.4 Hyperparameter Settings .. 63

Hyperparameters for DBSCAN Algorithm .. 63

Hyperparameters for Recommendation Algorithms ... 63

5.4.5 Experimental Results .. 64

5.4.6 Discussion on the Number of Trainable Parameters 66

5.5 Conclusion ... 66

6 EPT-GCN: Edge Propagation-based Time-aware Graph Convolution

ix

Network for POI Recommendation .. 68

6.1 Introduction ... 68

6.2 Preliminary .. 71

6.3 Proposed Method .. 72

6.3.1 Overview... 72

6.3.2 Time-aware Subgraph Mining Graph Convolution Network (SGM-
GCN) 73

6.3.3 Edge Propagation-based Time-aware Graph Convolution Network
(EPT-GCN) .. 78

6.3.4 Combination of EPT-GCN with Geographical Information (EPT-
GCN+ Geo) .. 80

6.3.5 Model Training .. 83

6.3.6 Time Complexity Analysis .. 83

6.3.7 Model Size Analysis ... 85

6.4 Experimental Evaluation ... 85

6.4.1 Datasets... 85

6.4.2 Baselines ... 86

6.4.3 Metrics .. 88

6.4.4 Hyperparameter Settings .. 88

Hyperparameters for DBSCAN Algorithm .. 88

Hyperparameters for Proposed Models .. 88

6.4.5 Experimental Results .. 90

Comparison among Models without Side-Information .. 91

Comparison between IMP-GCN and GNN-POI .. 91

Comparison between GPR (heavy reliance on geographical information) and Other Baselines 92

Comparison between SGM-GCN and IMP-GCN .. 92

Comparison between EPT-GCN and SGM-GCN ... 92

Comparison between EPT-GCN+Geo and Other Baselines ... 93

6.4.6 Number of Time Slots.. 93

Effect of the number of time slots on EPT-GCN .. 93

Effects of Combining Geographical Information on EPT-GCN with Different Number of Time Slots 95

6.5 Conclusion ... 95

7 Conclusion and Future Work .. 98

x

7.1 Conclusion ... 98

7.2 Discussion and Future Work .. 99

7.3 Discussion of Recommendation Beyond Accuracy 100

Reference ... 103

List of My Publications (Including co-authors) .. 113

xi

xii

List of Figures

Figure 3-1: Prediction model .. 24

Figure 3-2: Overview of periodic recommendation ... 33

Figure 3-3: Result of Accuracy_window without constraints when changing the

time parameters: (a) Fixed at t_train = 4 h, t_session= 6 h, and varying

t_window; (b) Fixed at t_window = 20 min, t_session= 6 h, and varying t_train;

(c) Fixed at t_window = 20 .. 36

Figure 4-1: POI recommendation. .. 49

Figure 5-1: An example of the proposed GN-GCN model to aggregate high-order

information from check-ins and active area neighbors. 53

Figure 5-2: The architecture of GN-GCN model ... 57

Figure 6-1: Example of check-in-based propagation to transmit users’ time-based

preferences. ... 70

Figure 6-2: Architecture of SGM-GCN model. .. 74

Figure 6-3: Leaning disentangled embeddings with importance matrix. 76

Figure 6-4: Architecture of user’s attention layer ... 77

Figure 6-5: Architecture of EPT-GCN model. .. 79

Figure 6-6: Influence of the number of time slots on EPT-GCN (edge sampling ratio

is set as 1/75 |E| on Gowalla dataset and 1/100 |E| on New York dataset). 94

Figure 6-7: Influence of the number of time slots on EPT-GCN+Geo (edge sampling

ratio is set as 1/75 |E| on Gowalla dataset and 1/100 |E| on New York dataset).

 .. 96

file:///C:/Users/mofan/Desktop/博士毕业论文/毕业论文修改/draft_of_the_doctor's_thesis＿rev_v2.9.docx%23_Toc152322833
file:///C:/Users/mofan/Desktop/博士毕业论文/毕业论文修改/draft_of_the_doctor's_thesis＿rev_v2.9.docx%23_Toc152322833

xiii

List of Tables

Table 1-1: Contributions and the corresponding chapters 11

Table 3-1 Experiment Results (𝑡𝑡𝑟𝑎𝑖𝑛 = 4 h and 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 = 6 h) 38

Table 5-1: Notations ... 52

Table 5-2: The statistics of datasets .. 60

Table 5-3: Grid Search of Hyper-parameters. Grid Search of Hyper-parameters .. 64

Table 5-4: Evaluation Result on Yelp Dataset .. 65

Table 5-5: Evaluation Result on Gowalla Dataset .. 65

Table 6-1: Notations ... 71

Table 6-2: Time complexity of proposed EPT-GCN and baselines 84

Table 6-3: Model sizes of proposed EPT-GCN and baselines 85

Table 6-4: Dataset statistics .. 86

Table 6-5: Summary of hyperparameter settings .. 89

Table 6-6: Experimental results on New York dataset .. 90

Table 6-7: Experimental results on Gowalla dataset .. 91

1

1 Introduction

1.1 Background

Recommendation systems have gained increasing attention for their ability to alleviate

the information overload problem. Information overload is described as making it

difficult for users to find their real needs in the face of large amounts of data. The issue

of information overload seriously affects user experience and wastes user time in the age

of big data. If recommendation systems can accurately predict and recommend user

preferences, it would significantly increase user satisfaction because accurate

recommendations can help users filter out the massive amount of information. Thus, most

researchers [3] [5] [11] [61] cite improving accuracy as a primary research goal for

recommendation systems. Based on related works [30] [39], adopting side information

like time and geographical information and integrating the information into

recommendation generation models in a potentially effective manner to improve accuracy.

Ye et al. [30] pioneered an attempt to use power-low distribution to model the

geographical distance between two POIs. Inspired by Ye et al., in recent years, deep

learning models [3] [4] also embedded distance-based geographic information to improve

the model representation ability. However, neglecting the area information prevents

further model performance improvement because of the geographical continuity. i.e.,

multiple POIs can form a geographical area. In addition to geographic information, time

information is an essential side information in recommendation systems. After Yuan et

al.’s [39] first attempt to use time information to describe cosine similarity among users,

the adoption of time information has received continued attention from researchers. In

recent years, the effort to model time information into sequences and combine it with

sequence mining techniques to drive model accuracy is in the dominant position and

widely used. Zhang et al. [4] adopted two long short-term memory (LSTM) networks to

represent the arrival and departure times of POIs. However, the technique still suffers

from insufficient use of time information. Users' time-based preferences can be divided

2

into time slots for better representation. For instance, two users who prefer Supermarket

A may not have a time-based high-order relationship based on differences in their visit

time slots.

In this thesis, we target to fully use two attributes- temporal and geographical

information, because temporal and geographical information is common in

recommendation systems [3] [4] [39] [40]. We model these two attributes as instances

and leave other attributes like categorical information as future work.

1.2 Objective and Goal

Our research goal is to improve recommendation accuracy by modeling temporal and

geographical information. We first focus on shortening model update time to achieve real-

time periodic recommendation systems. User preferences change constantly over time.

Once we can implement periodic updates, the accuracy of estimating user behavior can

be improved because the model can capture changes in user behavior in time. We adopt

advertisement (ad) recommendations as an example to apply the technique. With the

advent of the big data era, ad recommendation has been gradually integrated into people's

lives as an essential manner of data filtering. In ad recommendation, a demand-side

platform (DSP) needs to recommend ads with a high probability of being clicked by the

target user under specific constraints called recommendation optimization problems (for

example, 1,000 ads for category A and 5,000 ads for category B). Accurate ad delivery

reduces information overload problems for users and generates a high conversion rate for

DSP. However, the fickleness of user interests over time makes it difficult for

recommendation systems to capture users’ latest interests, preventing further

improvement in accuracy. Frequent model update is an important method to break down

the barriers. However, ad recommendation optimization is an NP-hard problem [81],

which is difficult to implement on a common computer. In this thesis, we propose to use

digital annealers (DA) [1], which are quantum-inspired annealing computers, to capture

the changes in user interests and realize real-time periodic recommendations.

3

We then work on modeling geographical information to improve recommendation

accuracy. Geographical information contains rich user behavioral characteristics. Our

study is based on the intuition that users in the same geographical area tend to have similar

check-in behaviors. A typical application of geographical information is the Point-of-

interest (POI) recommendation. Thus, the thesis explores POI recommendations as an

example of applied geographical information. Personalized POI recommendation systems

recommend the target user’s unvisited POIs, which are matched to his/her preference by

analyzing check-in history. In recent years, open-source datasets from location-based

social networks (LBSNs), such as Gowalla1 and Yelp2, allow users to share their check-

in experience, making a detailed analysis of users’ behavior and provision of better

recommendation services possible. POIs have an intrinsic attribute- geographical

information, which makes them different from recommending other items like movies

and music. To model the geographical information, previous research made some

attempts [27] [30]. With the development of deep learning techniques, especially for

graph convolution networks (GCN), Chang et al. [3] pioneered the modeling of

geographical information and integrated it into GCN. Based on Chang et al.’s work [3],

we simplify the model design and emphasize the geographical continuity of POIs. i.e.,

Multiple POIs can comprise an entire area, which is essential for modeling and designing

methodologies to integrate geographical information into GCN. We first mine users’

active areas and transform the geographical information into the proposed “active area

neighbor,” Then, we design the user node to aggregate information from both check-ins

and the proposed active area neighbors to generate the final representations (embeddings).

The last goal is to combine temporal and geographical information to co-complement

the deep learning models. When combining multiple side information, it is essential to

consider the harmonization between the information. We begin by modeling the time

information. In deep learning models, sequence-based techniques [3] [4] [42] have

1 http://snap.stanford.edu/data/loc-gowalla.html
2 https://www.yelp.com/dataset_challenge

4

received a great deal of attention. Inspired by the famous word2vec framework [43],

previous works [42] [4] proposed to utilize a sequence-based model to capture the users’

temporal interests. However, simply adopting time information by modeling users’ check-

in sequences is insufficient and ignores users’ time-based high-order connectivity. Note

that time-based high-order connectivity refers to the relationship between indirect

neighbors with similar preferences in the same time slot. The time slots-based technique

allows for more granular representations of user interests. For example, Assume the target

user and user A usually go to the supermarket after breakfast. However, user B prefers to

go to the supermarket in the evening. In this case, even though user B shares the same

preference as the target user, the system categorizes user A as a time-based high-order

neighbor because they have a similar time preference. Therefore, user B is filtered out

even if user B has the same preference. After modeling the temporal information, we use

the active area-based approach mentioned in the previous paragraph to model the

geographic information, combining both time and geographical information into the deep

learning model. In a graph convolution network, for a target user node, we aim to propose

a novel methodology that makes time information to control the graph structure division,

i.e., from which nodes to aggregate information while setting geographical information

to control the amount of aggregated information, i.e., how much information is

aggregated.

1.3 Challenges

1.3.1 Acceleration of Recommendation Optimization (Challenge 1)

Recommendation optimization - that is, improving accuracy while considering

constraints such as budget or cost-per-click (CPC) - is a complex problem in

recommendation systems. Achieving high accuracy and quick optimization can be

contradictory and present an NP-hard complexity, making the periodic updates of the

recommendation optimization problem remain an open question. Although previous

works [7] [20] attempted to accelerate optimization based on heuristics and linear

5

programming, the latency is still too high when dealing with real-time recommendation

optimization problems. A training process that fits the real-time task needs to be explored

to capture the user's preferences change because user preferences change rapidly over

time. Even if the system captures users’ preferences, applying the predictions over a long

time without updating the model is difficult. Besides, even though we optimize the

problem once, the optimized result cannot be applied to the real recommendation system

for a long time because the preconditions for the optimization vary over time, resulting

in a decrease in the effectiveness of the optimization result. Thus, real-time periodic

optimization is the key to breaking down the barriers. In the proposed periodic training

framework, we embed a Fujitsu digital annealer (DA), a quantum-inspired annealing

computer, to accelerate the recommendation optimization. DA itself is fast in dealing with

optimization problems. However, preprocessing the input data for DA is time-consuming,

i.e., expanding the objective function polynomials and organizing the coefficients, which

is a bottleneck to using DA in real-time periodic recommendation systems. This thesis

proposes an element-based method to quickly derive the inputs of DA directly.

1.3.2 Insufficient Use of Side Information in Recommendation

Systems

This section describes the development of side information (geographical and time

information) in POI recommendation systems, as well as the challenges and problems.

Insufficient Use of Geographical Information (Challenge 2)

Geographical information, as a latent attribute of POI, holds the potential to improve

recommendation accuracy. However, how to fully use geographical information remains

an open and challenging question. Previous research ignored that POIs have unique

geographical continuity, i.e., multiple POIs can form a geographical area. Simply

modeling the geography as distance [30] [3] in a deep learning model is inadequate,

causing loss of area information and thus preventing further enhancement of model

6

performance. Besides, in a deep learning-based recommendation system [3], multiple

trainable embeddings used to integrate geographical information can significantly

increase the number of parameters, making model training difficult and decreasing the

utility in practice. Thus, mining users’ geographical areas in a lightweight manner

(without increasing the number of trainable parameters) is essential in deep learning-

based recommendation systems.

Insufficient Use of Temporal Information (Challenge 3)

Time information is generated when a user interacts with a POI. In addition to

geographical information, time information is also utilized in models as important side

information to improve recommendation performance. However, methodologies for

modeling temporal information are still in the exploratory phase. In deep learning models,

simply modeling time information by sorting user check-ins in chronological order

(sequence) [39] [42] [4] cannot fully exploit collaborative signals in time information,

which is insufficient. Time information can be divided into time slots to represent the

users’ preferences during a certain period of time. For example, even two users who like

Supermarket A may be calculated as having no time-based high-order relationship due to

the differences in visit time slots. In this thesis, we adopt a subgraph technique to divide

the 24 hours of the day into multiple time slots and generate one subgraph for each time

slot. In the deep learning model, users only aggregate information from the nodes in the

same subgraph. In the proposed model, an edge propagation module is proposed to adjust

edge affiliation in subgraphs, where edges represent check-ins, to propagate the user’s

time-based preference to multiple time slots (subgraphs).

1.4 Contributions

This section describes the contributions of this thesis. The contribution of this thesis is

three-fold.

Contribution 1. We are the first to adopt Fujitsu digital annealers (DA) to accelerate

advertisement recommendation, along with a corresponding methodology to compute DA

7

inputs element by element and realize periodic recommendation optimization.

Contribution 2. Proposal of active area neighbor to model geographical information

in the graph convolution network.

Contribution 3. Proposal of subgraph (time slot) and edge (check-in) propagation-

based technique to model time information in the graph convolution network.

The last part of the section introduces the details of the contribution and how to deal

with the corresponding problems and challenges.

Contribution 1. Adoption of digital annealers (DA) to accelerate advertisement
recommendation and realize periodic recommendation optimization

Low-speed optimization limits the ability of recommendation models to capture the

changes in user interest over time. To solve the problem, we first propose a periodic

recommendation optimization framework. i.e., the model is periodically retained. The

proposed real-time recommendation system divides users' behaviors into three stages. 1)

We collect users’ data when they visit the websites. 2) we use the collected data to train

and optimize the prediction model in the training stage. 3) In the third step, we return the

optimized result to users and start the next model cycle. Then, a digital annealer (DA) is

adopted for acceleration. As a quantum-inspired computer, Fujitsu DA can only support

the inputs in a quadratic unconstrained binary optimization (QUBO) model [1]. How to

cast a recommendation optimization problem to a QUBO model quickly and thus can be

input to the DA to achieve periodic optimization is a challenging task. Specifically, we

analyze the objective function of the recommendation optimization problem,

decomposing the objective function to organize the binomial, monomial, and constant

terms. These three terms correspond exactly to the binomial, monomial, and constant

terms in the QUBO model. Thus, the objective function can be transformed into a QUBO

model. DA has 𝑛 units. To assign DA units to users, we propose a novel element-based

methodology to derive the inputs of DA directly: weight matrix 𝑾 ∈ ℝ𝑛×𝑛, vector 𝒃 ∈

ℝ1×𝑛, and constant 𝑐𝑜𝑛 ∈ ℝ1×1. The methodology allows for fast inference of DA inputs

8

and be applied to real-time recommendation systems. The adoption of DA with the

proposed training technique on advertisement (ad) recommendations results in improved

accuracy from 0.3703 to 0.5080 (37.19%) and acceleration of 10.6 times compared to a

genetic algorithm-based optimization technique. Note that the realization of acceleration

is contributed by the proposed fast DA input derivation methodology and the DA’s ability

to solve optimization problems. Although DA itself is fast in dealing with optimization

problems, preprocessing DA input based on polynomial expansion3 is time-consuming.

In the thesis, the proposed method avoids the use of polynomial expansion with the time

complexity 𝑂(|𝑇|2), where |𝑇| indicates the number of terms in the objective function.

Instead, the proposed methodology directly derives the DA inputs element by element

with time complexity 𝑂(|𝑈|𝑛) . |𝑈| indicates number of users, a real number much

smaller than the DA units 𝑛. In addition, in the objective function of DA, |𝑇| is larger

than 𝑛2. The method provides a new idea to calculate DA inputs without polynomial

expansion, not only for real-time recommendation systems but also for other optimization

tasks that require transforming DA inputs.

Contribution 2. Proposal of active area neighbor to model geographical
information in the graph convolution network.

 To make full use of geographical information in a lightweight manner, we start by

exploring the user active areas because POIs are geographically contiguous and thus form

areas. To achieve the goal, for each user, we cluster the POIs that he/she visited to extract

the user’s active areas. Note that a user may have multiple active areas among cities. The

users whose active areas are close (at least one pair of active regions is less than 𝜆 km

apart) are defined as active area neighbors. Then, we incorporate newly defined neighbors

into deep learning, specifically a graph convolution network (GCN), to improve model

representation. In a GCN-based recommendation system, a user’s neighbors are described

as checked items. We extend the traditional definition of neighbor to active area neighbor.

As a result, we can enhance a GCN model by adopting geographical information, which

3 https://www.sympy.org/en/index.html

9

can extract high-order connectivity over collaborative filtering information. Note that the

technique does not cause any increase in trainable parameters and keeps the model easy

to train. In the related GCN-based recommendation system [3], modeling geographical

information adds additional geography-based embeddings (trainable parameters), making

the model size twice as large and reducing practicality. In contrast, extending the neighbor

definition in a lightweight manner is valuable and challenging. Experiments on real

dataset confirm that the proposed method improves 𝑅𝑒𝑐𝑎𝑙𝑙@5 𝑓𝑟𝑜𝑚 0.0788 to 0.0815

on the Gowalla dataset and from 0.0453 to 0.0469 on the Yelp dataset compared with

state-of-the-art LightGCN model.

Contribution 3. Proposal of subgraph (time slot) and edge (check-in) propagation-
based technique to model time information in the graph convolution network.

We analyze and model the time information in our third contribution to train more

accurate representations (embeddings) of user preferences. We first divide user check-ins

into multiple subgraphs, i.e., time slots, based on time information. In a GCN model,

aggregating information only from nodes in the same subgraph enables better mining of

users’ time-based interests. However, a monotonous subgraph division has drawbacks.

i.e., the Monotonous subgraph division cannot propagate the learned time preference

features over multiple time slots because the subgraphs are constructed in advance. Thus,

we further propose an edge propagation module to adjust edge affiliation, where edges

represent check-ins, to propagate the user’s time-based preference to multiple time slots.

The propagation module is based on an unsupervised learning algorithm and does not

require additional ground-truth labels. This approach to modeling time breaks with the

traditional approach of treating temporal information simply as sequence information.

Experimental results show that our proposed model further improved 𝑅𝑒𝑐𝑎𝑙𝑙@5 to

0.0874 on the Gowalla dataset while from 0.0360 to 0.0388 on the New York dataset

compared with state-of-the-art GCN-based models.

1.5 Organization of the Thesis

10

In this section, we briefly describe the composition of the remainder of the thesis. The

structure of the thesis is listed as follows:

- Chapter 2 introduces the related works in three aspects, including 1) acceleration

of recommendation optimization, 2) modeling geographical information in

recommendation systems, and 3) modeling temporal information in

recommendation systems.

- Chapter 3 proposes a real-time periodic advertisement recommendation

optimization model by using DA. (Contribution 1)

- Chapter 4 describes basic knowledge of POI recommendation, followed by

previous works on the use of time and geographical information.

- Chapter 5 introduces a novel graph convolution network, combining the

geographical neighbor concept to model geographical information for POI

Recommendation. (Contribution 2)

- Chapter 6 introduces a users’ interest propagation-based time-aware graph

convolution network to model time information for POI Recommendation. After

that, we combine the time-aware GCN with geographical information to further

improve recommendation performance. (Contribution 3)

- Chapter 7 consists of two parts. We first show the conclusion of the thesis. Then,

we discuss the promising future research directions.

We summarize our contributions and the corresponding chapters in Table 1-1. For

convenience, we abbreviate contribution as C, and challenge as Ch.

11

Table 1-1: Contributions and the corresponding chapters
Chapter Description Contribution Challenge
Chapter 3 A real-time periodic advertisement

recommendation optimization model by
using DA

C1 Ch1

Chapter 5 A novel Graph Convolution Network,
combining the geographical neighbor
concept to model geographical information
for POI Recommendation

C2 Ch2

Chapter 6 A users’ interest propagation-based time-
aware graph convolution network to model
time information for POI Recommendation

C3 Ch3

12

2 Related Work

This thesis proposes the methodologies to model temporal and geographical

information from three aspects- acceleration of recommendation optimization, modeling

geographical information, and modeling temporal information in recommendation

systems. Thus, in this chapter, we introduce the related works in the corresponding three

aspects.

2.1 Studies on Acceleration of Recommendation Optimization

To solve the recommendation optimization- an NP-hard problem, methodologies [7]

[20] based on heuristics and linear programming were pioneered to accelerate

optimization. Grigas et al. [20] transformed the optimization problem with budget

constraints into a linear programming problem. Linear programming is an acceleration

technique for solving approximate solutions of NP-hard problems. However, the method

sacrifices the accuracy of the model. Deep learning models [94] [79] [80] provided new

solution ideas for combinational optimization problems. Dai et al. [80] combined

reinforcement learning with graph embedding to target the problem. They first store the

state of the combinational optimization problem as graph nodes, followed by learning a

greedy selection policy to construct a solution incrementally. Since the learned greedy

selection policy reduces the search space of the problem, the technique can accelerate

optimization. Based on Dai et al.’s work, Li et al. [79] modeled the optimization problem

using a graph convolution network and proposed using a guided tree to reduce graph size.

The technique reduced the local search range. Thus, it can accelerate the optimization.

Ma et al. [93] also adopted graph networks to construct combinatorial optimization

problems hierarchically for acceleration. They used reinforcement learning to learn a

hierarchical policy to find the optimal combinations under constraint at each layer. In their

method, each layer of the hierarchy is designed with a separate reward function for stable

training. Due to the localized search of the hierarchy, they achieve acceleration. However,

the high latency makes related work suffer from applying real-time recommendation

13

optimization.

2.2 Studies on Modeling Side Information

This section describes the related works on side information (geographical and time

information) in POI recommendation systems.

2.2.1 Studies on Modeling Geographical Information

The geographical information-specific attribute of POI is integrated into

recommendation systems as auxiliary side information. Ye et al. [30] set a precedent for

using geographical information to improve the accuracy of recommendation systems by

advocating that users tend to check in POIs that are close to their familiar areas. Based on

Ye et al.’s work, Zhang et al. [29] proposed to adopt a multi-center Gaussian distribution

of geographical information to fit a user’s check-ins, which has profoundly impacted

subsequent research on geographical information. The estimated geographical score is

fused into the predicted preference score to complete the side information combination.

With the wide application of machine learning techniques in POI recommendation, matrix

factorization (MF)-based models [32] [33] can effectively solve data sparsity problems

by adopting geographical information. Li et al. [33] argued for the adoption of two latent

vectors to represent user information, where one is adopted to calculate user preferences

and the other for scoring geographical information. In recent years, deep learning models

[3] [38] are widely used to integrate geographical information. Chang et al. [3] pioneered

the adoption of integrating geographical information into a graph convolution network

(GCN) by modeling a power-law distribution, aggregating less information from distant

neighbor nodes. Chang et al. trained two embeddings to represent a POI: one for check-

in information and the other for geographical information. However, the related studies

[3] [33] ignored the fact that POIs have unique geographical continuity, causing a loss of

area information when modeling geographical information.

14

2.2.2 Studies on Modeling Temporal Information

In addition to geographical information, temporal information is also used as important

side information to improve recommendation effectiveness. Yuan et al. [39] and Gao et

al. [40] are pioneers in adopting time information to POI recommendations. In Yuan et

al.’s work, time slots were used as a new dimension to refine user preferences by

calculating the cosine similarity among users. The fused temporal information into a

classical collaborative user-based filtering (UCF) algorithm [95]. After entering the

machine learning [41] [42] era, sequence-based techniques [3] [4] [42] have received a

great deal of attention. Zhao et al. [42] introduced a sequential mining model that utilized

the word2vec framework [43] to capture the users’ temporal preferences. The model can

reflect different time characteristics on different days by training POI time embeddings.

Zhang et al. [4] further optimized the sequential model; in addition to the structure of

graph mining, they adopted two long short-term memory (LSTM) networks to extract the

features related to the arrival and departure times of POIs. In their model, each user is

assigned two trainable embeddings, one representing the user's preferences when arriving

at a POI and the other representing the preferences when leaving the POI. Similar to

Zhang et al., Liu et al. [96] also used LSTM networks to model temporal information. In

their work, they introduced time weight decay to exponentially forget a user's premature

history of clicks. Then, the learned temporal information is incorporated into the graph

embeddings to accomplish the final prediction. However, modeling time information by

sorting user check-ins in related work ignored users’ time slot-based preferences, which

is insufficient in modeling temporal information.

2.3 Remained Problems

In this chapter, we clarify the remained problems in previous studies from acceleration

and modeling side information.

15

2.3.1 Problems with Acceleration

For acceleration, although previous studies attempted to speed up the solution of

recommendation optimization problems, such as the use of deep learning algorithms in

recent years to reduce the search size of the problem, the latency is still too high when

dealing with real-time recommendation optimization problems. When solving highly

time-sensitive tasks, i.e., the optimized result cannot be applied for a long time; we still

need a novel periodic optimization strategy to update the optimization results in real time.

Based on this starting point, this thesis introduces a periodic training framework and

combines it with Fujitsu's digital annealer (DA) to accelerate recommendation

optimization.

2.3.2 Problems with Modeling Side Information

For the modeling side information part, this chapter explains the shortcomings in terms

of geographical and temporal information. In previous studies, geographical information

was simply modeled as geographical distance in a deep learning model, which is

inadequate. We still need a strategy to enable deep learning models to capture information

about spatial geographical areas because POIs have unique geographical continuity. i.e.,

multiple POIs can form a geographical area. Based on this point, this thesis explores the

user active areas and integrates geographical information into a graph convolution

network (GCN) as extended geographical neighbors.

Temporal information was also applied in previous studies as a side information. In

deep learning models, temporal information was simply modeled as a sequence of user

check-ins in chronological order, which is insufficient. We still need a learning strategy

to make the deep learning model learn the rich collaborative signals enriched in temporal

information; time information can be divided into time slots to represent the users’

preferences during a certain period of time. i.e., learning user preferences for time slots.

To solve the problem, this thesis adopts a subgraph technique to divide the 24 hours of

16

the day into multiple time slots and generate one subgraph for each time slot, along with

an edge propagation module to adjust edge affiliation in subgraphs.

17

3 Real-Time Periodic Advertisement

Recommendation Optimization under Delivery

Constraint using Quantum-inspired Computer4

In this chapter, we present our Contribution 1, using the quantum-inspired computer

(Fujitsu digital annealer) to accelerate recommendation optimization to capture changes

in user interest over time. Fujitsu digital annealer is one of the commercialized quantum-

inspired computers5. Combining time information into a recommendation model has the

potential to improve recommendation accuracy. However, simply using time information

as users’ check-in sequence to items is insufficient, especially for time-sensitive

recommendation tasks, such as advertising (ad) recommendations. i.e., users’ interest

changed over time quickly. We are the first to adopt quantum-inspired computers with

new proposed real-time periodic training techniques that can accelerate ad

recommendation optimization and solve the problem. The training technique is suitable

for periodic updating of user representations. However, the quantum-inspired computer

Fujitsu DA can only accept one form of input, the quadratic unconstrained binary

optimization (QUBO) model. In this chapter, we propose a technique to fast transform

optimization tasks into QUBO model and realize real-time recommendations. More

specifically, DA itself is fast in dealing with optimization problems. However,

preprocessing the input data for DA is time-consuming, which is a bottleneck to use DA

in real-time periodic recommendation systems. This chapter proposes an element-based

method to fast derive the inputs of DA directly: weight matrix 𝑾, vector 𝒃, and constant

𝑐𝑜𝑛. This work is the first to explore the application of quantum-inspired computers in

the field of ad recommendation, providing a new mindset for the field. DA, based on

4 This chapter is based on “Real-time Periodic Advertisement Recommendation Optimization under Delivery
Constraint using Quantum-inspired Computer”[68], by the same authors, which appeared in Proceedings of 2021
International Conference on Enterprise Information Systems (ICEIS 2021), pp. 431-441, 2021. Copyright(c) 2021.
5 Fujitsu digital annealer provides APIs for general users to research and use. The APIs allow the user to set the input
states and parameters of the DA and return the optimized results to the user after the DA is executed. In addition, DA
supports a Jupyter-based development platform for general users to code and visualize results easily.

18

quantum computing, is the state-of-the-art solver to calculate combination optimization

problems. By emulating qubits in a digital circuit, DA can quickly solve the NP-hard

problem, inspiring us to use DA in ad recommendations. Besides, the proposed novel

transformation method is for the QUBO model. QUBO model is general and widely used

in solvers and is one of the research directions for solving NP-hard problems. If we

displace the DA for other fast solvers, the proposed transformation method still possesses

generality.

3.1 Introduction

The development of recommendation technique helps the market size of online

advertising increase yearly. Real-time bidding (RTB) has become a typical delivery

mechanism of online advertisements (hereafter, ads). In RTB, the advertisers publish their

ads with the help of a demand-side platform (DSP). The DSP enables RTB and tracks the

delivery of ads. Ad delivery aims to increase the number of conversions, defined as the

cases when a customer completes a specific action with the advertiser’s product, such as

buying or subscribing. Whether a user converts or not reflects the performance of the ad

delivery. Thus, a DSP needs to choose ads with a high conversion rate (CVR) according

to each user’s behavior.

A common task of DSP is to meet the needs of advertisers to obtain as much user

engagement as possible. Previous studies [6] [7] aimed to optimize ads from advertisers’

perspective with budget constraints. Yang et al. [8] focused on maximizing the DSP’s

profit while helping advertisers obtain valuable impressions under a given bidding budget.

However, related studies neglected another critical requirement of DSP delivery

constraints. DSP may want to deliver a specific number of ads in each category from

many advertisers during a specific period because some categories have higher benefits

for DSP and have a higher probability of matching target users’ interests in a specific time.

Because maximizing the CVR while satisfying delivery constraints is a combinatorial

optimization problem, it is challenging and time-consuming to train, causing difficulty in

19

capturing changes in user interest over time and updating the ad optimization models

under the delivery constraints periodically with a general-purpose computer.

In this chapter, the adoption of an Ising computer — Fujitsu digital annealer (DA), a

quantum-inspired annealing machine [9], is proposed to accelerate and satisfy the

delivery constraints. We aim to improve the CVR by periodic ad recommendation

optimization. Periodic updates of the user model improve CVR because we can capture

the users’ latest behaviors to tune the recommendation model in real-time.

We model the periodic ad recommendation optimization problem as follows: in a short,

fixed period (e.g., 20 min), DSP needs to update the user model while satisfying the

constraints, such as delivering a specific number of ads in each category to users (for

example, 1,000 ads for category A and 5,000 ads for category B). Due to the massive

number of ads and users, it is challenging for the DSP to train the model quickly and

accurately to decide the ad category with the highest probability of conversion for the

target user. To solve the problem, we first predict the conversion probability of each ad

category for each user by adopting two prediction models. Then, a technique to transform

the optimization task into a quadratic unconstrained binary optimization (QUBO) model

[9] quickly is proposed to solve the optimization problem. The contributions of our work

are as follows.

-We propose a new real-time periodic recommendation model to speed up ad

recommendations while satisfying the ad delivery constraints. With offline experiments

on a real dataset, we show that the ad recommendation accuracy can be improved while

satisfying the constraints.

-Our model is the first attempt to combine ad recommendation with a quantum-inspired

computer DA, which can solve the combinatorial optimization problem quickly and

accurately. We propose how to use a DA computer to achieve ad recommendations under

the constraints, including transforming the problem to the QUBO model.

The remainder of this chapter is organized as follows. Related work is introduced in

20

Section 3.2. Our proposed method is presented in Section 3.3. Section 3.4 presents the

experimental evaluation, followed by the conclusion in Section 3.5.

3.2 Related Work

In this section, we review the previous works and techniques on computational
advertisement, including click-through rate (CTR) and conversion rate (CVR) prediction,
ad recommendation, and constrained bidding optimization, which are related to our work.

3.2.1 CTR and CVR Prediction

CTR and CVR predictions [11] [12], which play an essential role in the online

advertising industry, are modeled as classification problems. Logistic regression [11] [13]

and generalized linear models are the most popular techniques to model a prediction task

for achieving a high area under the curve (AUC). Shan et al. [11] proposed a triplet-wise

learning model, adopting regression to rank the impressions in the following order:

conversions (most valuable impressions), click-only impressions, and non-click

impressions (least valuable ones). In recent years, factorization machines (FMs) [14] [15]

have also been adopted for this purpose. FMs can work on large, sparse data to resolve

cold-start problems. Pan et al. [15] presented a field-weighted FM for improved capturing

of feature interactions between different fields. To further enhance the prediction accuracy,

several deep learning-based models [16] [17] have been proposed for learning nonlinear

features and historical information. Huang et al. [18] proposed a hybrid model using deep

neural networks as a deep layer to capture nonlinear relationships in advertisement data

while utilizing FM as a shallow layer to finish the prediction task. Their model

successfully overcame the obstacle where a shallow-layer model could not use high-order

features and reduced computational complexity.

Ad recommendation resembles CTR or CVR prediction. Kang et al. [19] proposed a

real-time ad recommendation system that preprocesses a user’s history data with a tree

structure to obtain accurate recommendation results.

21

3.2.2 Constrained Bidding Optimization

Although our work is close to the ad recommendation task, the difference is that we

need to satisfy constraints, making our problem more challenging. Maximizing the

conversion ratio under constraints is a combinatorial optimization problem- an NP-hard

problem.

 In computational advertising, most constraints, such as budgets, are set from the

advertiser’s perspective. In particular, the advertisers want to maximize their benefits

under budget constraints through a DSP. Abrams et al. [6] were among the first to consider

bidder’s budgets to optimize ad delivery while predicting bid prices. Wu et al. [7]

combined the Markov decision process with a model-free reinforcement learning

framework to address the complexity of optimizing the bidding strategy under budget

constraints. Yang et al. [17] considered two types of constraints: bidder budgets and cost-

per-click (CPC). They chose CPC as a crucial performance indicator constraint. After

defining two constraints, they proposed an optimal bidding strategy to maximize CVR

based on a linear programming problem. To the best of our knowledge, the study most

similar to ours is that of Grigas et al. [20]. They optimized ads from the DSP’s

perspective: under budget constraints, DSP aims to accurately predict users’ interest and

maximize users’ clicks while helping advertisers obtain valuable impressions. To achieve

this goal, they used Lagrangian relaxation to develop their model and then transformed

the problem into an optimization problem.

The research above aimed to optimize ads under various constraints, including budgets

and CPC; however, periodic updates of the optimization problem remained an open

question because of the time complexity. Even if we optimize the problem once, the

optimized result cannot be applied to the real system for a long time because the

preconditions for the optimization vary over time, which results in decreasing the

effectiveness of the optimization result. Thus, periodic updates of the optimization

problem are necessary to improve performance. Once we can realize periodic updates, we

22

may increase the accuracy of estimating the users’ behavior and improve the optimization

since the model can obtain users’ behavior changes.

3.3 Proposed Method

We propose a DA-based method to optimize ads periodically to meet the needs of DSP

for the ad delivery constraints and to reflect users’ behavior changes. We aim to achieve

a higher CVR by updating the optimization periodically in a short time. In each period,

we execute a prediction algorithm, such as the Logistic regression model or XGBoost, to

capture the probabilities of each user’s candidate ad category, after which we solve the

optimization problem by using DA, a quantum-inspired computer provided by Fujitsu.

3.3.1 Problem Formulation

Our goal is to optimize the delivered categories of ads for each user—with a high

possibility of user conversions—while satisfying the number of ad deliveries for each

category in a fixed period with periodic updates. We analyze each user’s web page visit

history to predict what ad category will be converted. For this, we adopt 26 categories

(shown as 𝐶) of ads defined by the IAB taxonomy6.

We formulate our problem as follows. Figure 3-1Figure 3-1: Prediction model shows

our prediction model of the training and testing phases. In the training phase, we create a

feature vector for each user 𝑢 ∈ 𝑈𝑡𝑟𝑎𝑖𝑛, using his/her visit history during period 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛.

𝑈𝑡𝑟𝑎𝑖𝑛 means the entire user set who converted during period 𝑡𝑡𝑟𝑎𝑖𝑛. By using the feature

vector, we train a classification model to predict the category of ads converted by each

user. In the testing phase, we predict and optimize ads to be delivered for every user,

shown as 𝑈𝑡𝑒𝑠𝑡, who visited web pages during 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 just before the prediction starting

time 𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡. After the prediction and the optimization, the results are adopted during

the next period 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 for the users in 𝑈𝑡𝑒𝑠𝑡. The process is different from the usual

6 IAB Tech Lab - Taxonomy, https://www.iab.com/guidelines/taxonomy/

23

machine learning models. We pre-calculate the ad delivery category for each user 𝑈𝑡𝑒𝑠𝑡

regardless of his/her future appearance in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 because we do not have enough time

to decide the ad category to deliver after knowing that he/she appears. We ignore

predicting the ad category for the users not included in 𝑈𝑡𝑒𝑠𝑡; that is, a different strategy

is adopted to deliver ads. Based on the know-how that users will appear in the log data

continuously in a short period, updating both the prediction and the optimization

frequently is necessary to achieve high accuracy. Besides, to satisfy the constraints while

capturing changes in user interest over time, frequent updates of the optimization problem

are indispensable.

Assume that each ad in 26 categories has constraints, where 𝑟𝑐 is a non-negative real

number, representing the delivery ratio of category 𝑐 against the entire categories 𝐶

satisfying ∑ 𝑟𝑐 𝑐∈𝐶 = 1. The actual constraint is the number of deliveries defined for each

ad. We calculate 𝑟𝑐 based on the given number of ads in each ad category during 𝑡𝑤𝑖𝑛𝑑𝑜𝑤.

Subsequently, for each ad category 𝑐 ∈ 𝐶 , we estimate the conversion probability for

each user 𝑢 in the set 𝑈𝑡𝑒𝑠𝑡, shown as 𝑝𝑢,𝑐, based on the pre-trained prediction model

and his/her access log during 𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 to 𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡. Because the ratio of

delivered ad categories for test users set 𝑈𝑡𝑒𝑠𝑡 must satisfy the number of delivery

constraints ∀𝑐 ∈ 𝐶, 𝑑𝑐 = 𝑟𝑐 · |𝑈𝑡𝑒𝑠𝑡|, we optimize to choose the category for each user 𝑢

in 𝑈𝑡𝑒𝑠𝑡 with as high 𝑝𝑢,𝑐 as possible under the delivery constraints. |𝑈𝑡𝑒𝑠𝑡| denotes

the size of 𝑈𝑡𝑒𝑠𝑡. Although some users appear in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 multiple times, for simplicity,

we assume that each user appears only once during 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, which is acceptable if we

can shorten 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 by adopting our proposed method.

24

Figure 3-1: Prediction model

3.3.2 Overview of Proposed Method

Our framework consists of two steps: 1) a preprocessing step on standard CPUs and 2)

an optimization step on DA. In the preprocessing step, for each user, our method predicts

the CVR of each candidate category by using a pre-trained prediction algorithm. In the

optimization step, we combine the predicted CVR with the delivery constraints and

generate the final category for each user using DA. We use DA to accelerate the

optimization of the delivery categories under the constraints. Note that the prediction

algorithm and the optimization method are independent, which makes our method highly

portable.

3.3.3 Conversion Probabilities of Ad Categories for Each User

In this subsection, we describe a method to calculate the probability of the ad category

that a user will convert. Training data is collected to extract each user’s visited web pages’

categories and his/her converted ads’ categories. Each user 𝑢 ∈ 𝑈𝑡𝑟𝑎𝑖𝑛 has a feature

vector 𝒉𝑢 = (ℎ𝑢,1, … , ℎ𝑢,|𝐶|), where ℎ𝑢,𝑐 represents the ratio of the web page category

𝑐 ∈ 𝐶 user 𝑢 visited during 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 weighted by time, as shown in Eq. (3.1). In the

thesis, we denote vectors and matrices in italicized bold type. Besides, in the thesis, a

vector is represented as a row vector if not otherwise specified. Here, the weighting is

25

linear from 0 to 1, where the recent history has a more significant weight.

ℎ𝑢,𝑐 =
ℎ𝑢,𝑐
′

∑ ℎ𝑢,𝑐
′

𝑐∈𝐶


(3.1)

where ℎ𝑢,𝑐
′ = ∑ (1 −

𝑠−𝑡

𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛
)(𝑡,𝑐)∈𝑉𝑢 

𝑉𝑢 = {

(𝑡, 𝑐)| user 𝑢 visited a web page
of ad category 𝑐 ∈ 𝐶
at time 𝑡 in 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛

}

𝑠 = {
𝑡𝑢,𝑐𝑣 (when training)

𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡 (when predicting)

(3.2)

We use a prediction algorithm to calculate the conversion probabilities of each ad

category. To train the prediction algorithm, 𝒉𝑢 is used as the input vector, and the

converted category 𝑐𝑢 is used as the output label for each user 𝑢 ∈ 𝑈𝑡𝑟𝑎𝑖𝑛 who

converted during 𝑡𝑡𝑟𝑎𝑖𝑛. At 𝑡𝑝𝑟𝑒𝑑,𝑠𝑡𝑎𝑟𝑡, we input the feature vector of each user 𝑢 ∈ 𝑈𝑡𝑒𝑠𝑡

and calculate the conversion probability 𝑝𝑢,𝑐 for each candidate ad category 𝑐 ∈ 𝐶.

3.3.4 Optimizing Category Predictions

DA and QUBO Model

DA by Fujitsu Ltd. [9] aims to solve NP-hard combinatorial optimization problems,

which are difficult to solve by using today’s classical computers at high speed. DA can

search for the minimum value of the energy function of a QUBO model. As a quantum

computer, DA can only adopt the input of the QUBO model, as shown in Eq. (3.3).

𝐸(𝒙) = −
1

2
∑∑𝑊𝑖,𝑗𝑥𝑖𝑥𝑗

𝑗≠𝑖𝑖

−∑𝑏𝑖𝑥𝑖
𝑖

+ 𝑐𝑜𝑛, (3.3)

where 𝑾 ∈ ℝ𝑛×𝑛, 𝒃 ∈ ℝ1×𝑛, and con ∈ ℝ1×1 are the inputs of DA, and 𝑥𝑖 ∈ {0,1} is a

26

bit. 𝑛 means the number of units in DA. Weight matrix 𝑾 reflects the quadratic

coefficients of the model, while vectors 𝒃 and 𝑐𝑜𝑛 represent linear coefficients and a

constant, respectively. The value of con, the elements in 𝑾, and the elements of b must

be integers. Subscripts represent elements of a matrix or vector. i.e., 𝑊𝑖,𝑗 represent the

element in row 𝑖 and column 𝑗 of matrix 𝑾 while 𝑥𝑖, 𝑏𝑖 denoting the 𝑖-th element

of the vector 𝒙 and 𝒃, respectively. DA calculates the global minimum value of 𝐸(𝑥)

and outputs the value of all bits x, when 𝐸(𝑥) reaches a minimum.

DA-Based Category Prediction

Even after the conversion probabilities 𝑝𝑢,𝑐 for each user are calculated in Section

3.3.3, we cannot simply choose the category with the highest probability as the prediction

result because the number of ads in each category must satisfy the number of delivery

constraints. Maximizing accuracy while satisfying the constraints is a combinatorial

optimization problem, which is time-consuming and challenging to solve using a

conventional computer. Instead, we use DA to accelerate the optimization. Note that

accelerating and capturing changes in user interest is very important for time-sensitive

services, like ad recommendation, because users’ interest constantly changes over time.

We aim to maximize the prediction accuracy under the constraints of delivery

distribution. The outputs of the DA must satisfy two constraints: 1) each user should be

assigned only one category (constraint 1); 2) the number of ads to be delivered in each

category must meet the delivery constraint (constraint 2).

We combine the predicted probabilities with the constraints and apply them to the

QUBO model. To achieve the QUBO model format, we define an objective function with

three terms in Eq. (3.4).

27

𝐸′(𝒒) = −𝛼∑∑𝑝𝑢,𝑐𝑞𝑢,𝑐

|𝐶|

𝑐=1

|𝑈|

𝑢=1

+ 𝛽∑(∑𝑞𝑢,𝑐

|𝐶|

𝑐=1

− 1)

2|𝑈|

𝑢=1

+ 𝛾∑(∑𝑞𝑢,𝑐

|𝑈|

𝑢=1

− 𝑑𝑐)

2|𝐶|

𝑐=1

,

(3.4)

where 𝑝𝑢,𝑐 is the probability from 0 to 100 (in percent) that user 𝑢 will convert to

category 𝑐, which is calculated from the prediction algorithm in Section 3.3.3; 𝒒 ∈ ℝ1×𝑛

is the output result vector of DA. 𝑞𝑢,𝑐 is an element of 𝒒, denoting that we partition the

vector 𝒒 to assign a unit to represent the allocation result of user 𝑢 to category 𝑐 .

𝑞𝑢,𝑐 ∈ {0,1} shows that ads of category 𝑐 are assigned to user 𝑢 when 𝑞𝑢,𝑐 = 1 and

vice versa, are not assigned to user 𝑢 when 𝑞𝑢,𝑐 = 0 . We adopt one-hot encoding to

represent each user’s assigned ad category with |𝐶| bits. |𝑈| and |𝐶| are the numbers

of users and categories, respectively. Moreover 𝑑𝑐 = 𝑟𝑐 · |𝑈𝑡𝑒𝑠𝑡| is the delivery

constraint of category 𝑐 that we must satisfy, where 𝑟𝑐 is the delivery ratio of category

c. Furthermore, 𝛼, 𝛽, and 𝛾 are three positive parameters. We assign category 𝑐 as a

predicted result for user 𝑢 if and only if 𝑞𝑢,𝑐 = 1.

The constraints in Eq. (3.4) are soft, which causes several users to violate the constraint.

Thus, a following post-process is applied. If he/she has multiple assigned categories, the

category with the highest probability is assigned from the multiple assigned categories

that do not have full assignments, i.e., from remaining categories among the multiple

assigned categories. Besides, if he/she has no categories, the category with the highest

probability among the remained categories is assigned.

3.3.5 Transforming Objective Function to The QUBO Model

To utilize DA, we must transform our defined objective function into a QUBO model

and to derive three necessary inputs: weight matrix 𝑾, vector, 𝒃, and constant 𝑐𝑜𝑛 of

DA in Eq. (3.3). For convenience, we denote each bit 𝑥𝑘 as 𝑞𝑢,𝑐(𝑘 = 𝑢 ∙ |𝐶| + 𝑐). Same

28

as in a QUBO model, our objective function also has quadratic, linear, and constant terms.

In our objective function, we mix quadratic, linear, and constant terms in the function's

three terms. However, in a QUBO model, the input of the quadratic coefficient is a weight

matrix 𝑾, the input of the linear coefficient is vector 𝒃, and the input constant is 𝑐𝑜𝑛.

Thus, we must expand the objective function to extract coefficients of each term and

reorganize them into 𝑾, 𝒃, and 𝑐𝑜𝑛 of the QUBO model. Subsequently, we feed three

terms to DA as inputs. Because the function has three parts, for convenience and clarity,

we introduce those three parts in the order below.

The first part −𝛼∑ ∑ 𝑝𝑢,𝑐𝑞𝑢,𝑐
|𝐶|
𝑐=1

|𝑈|
𝑢=1 in Eq. (3.4) is to maximize the accuracy because the term

can reach a lower value linearly when a category with higher probability is selected for

the user. We extract the linear coefficient into 𝒃𝑝𝑟𝑜𝑏 ∈ ℝ1×𝑛, as in Eq. (3.5).

𝒃𝑖
𝑝𝑟𝑜𝑏 = 𝛼⌊𝑝𝑢,𝑐⌋, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑢 ∗ |𝐶| + 𝑐 (3.5)

⌊𝑝𝑢,𝑐⌋ indicates to apply the floor function to 𝑝𝑢,𝑐 . The second part 𝛽∑ (∑ 𝑞𝑢,𝑐
|𝐶|
𝑐=1 −

|𝑈|
𝑢=1

1)
2ensures the existence and uniqueness of the assigned category for each user. If and only

if there exists one assigned category recommended to one user, both ∑ 𝑞𝑢,𝑐
|𝐶|
𝑐=1 − 1 term and

its square are 0. If there are no or multiple solutions, (∑ 𝑞𝑢,𝑐
|𝐶|
𝑐=1 − 1)

2
 becomes larger than 0,

producing a penalty value. This part generates quadratic terms, linear terms, and constants

of the QUBO model shown in Eq. (3.3). We sort quadratic coefficients, linear coefficients,

and constants into 𝑾𝑢𝑠𝑒𝑟 ∈ ℝ𝑛×𝑛, 𝒃𝑢𝑠𝑒𝑟 ∈ ℝ1×𝑛, and 𝑐𝑢𝑠𝑒𝑟 ∈ ℝ1×1 , as shown in Eq.

(3.6), Eq. (3.7), and Eq. (3.8).

𝑾𝑖,𝑗
𝑢𝑠𝑒𝑟 = 2𝛽, 𝑤ℎ𝑒𝑟𝑒 ⌊

𝑖

|𝐶|
⌋ = ⌊

𝑗

|𝐶|
⌋

(3.6)

𝒃𝑖
𝑢𝑠𝑒𝑟 = −2𝛽 (3.7)

𝑐𝑢𝑠𝑒𝑟 = |𝑈|𝛽 (3.8)

29

The third part 𝛾 ∑ (∑ 𝑞𝑢,𝑐
|𝑈|
𝑢=1 − 𝑑𝑐)

2|𝐶|
𝑐=1 ensures that the number of ads for each category

satisfies the delivery constraints. For each category, the closer the number of the predicted

category to the upper bound, the smaller (∑ 𝑞𝑢,𝑐
|𝑈|
𝑢=1 − 𝑑𝑐)

2 will be obtained. This part also

generates a quadratic term, a linear term, and a constant of the QUBO model. Again, we

sort quadratic coefficients, linear coefficients, and constant into 𝑾𝑐𝑎𝑡𝑒 ∈ ℝ𝑛×𝑛, 𝒃𝑐𝑎𝑡𝑒 ∈

ℝ1×𝑛 and 𝑐𝑐𝑎𝑡𝑒 ∈ ℝ1×1 in Eq. (3.9), Eq. (3.10), and Eq. (3.11).

𝑾𝑖,𝑗
𝑐𝑎𝑡𝑒 = 2𝛾, where 𝑖 mod |𝐶| = 𝑗 mod |𝐶|, (3.9)

𝒃𝑖
𝑐𝑎𝑡𝑒 = −2𝛾𝑑𝑐, where 𝑐 = 𝑗 mod 𝑐 (3.10)

𝑐𝑐𝑎𝑡𝑒 = 𝛾∑𝑑𝑐
2

|𝐶|

𝑐=1

,

(3.11)

We combine quadratic, linear, and constant terms in three parts to form the final weight

matrix 𝑾, vector 𝒃, and constant con of the QUBO model and feed them to DA as inputs,

where 𝑾 = 𝑾𝑢𝑠𝑒𝑟 +𝑾𝑐𝑎𝑡𝑒 ; 𝒃 = 𝒃𝑝𝑟𝑜𝑏 + 𝒃𝑢𝑠𝑒𝒓 + 𝒃𝑐𝑎𝑡𝑒 ; 𝑐𝑜𝑛 = 𝑐𝑢𝑠𝑒𝑟 + 𝑐𝑐𝑎𝑡𝑒 . The

process of transformation to the QUBO model is shown in Algorithm 1.

Algorithm 1: Transforming an objective function to the QUBO model

Input: 𝒑: conversion probability of all users

 𝛼, 𝛽, 𝛾: parameters of trade-off

 𝒅 : delivery constraint of all ad categories

 |𝐶|: number of ad categories

 |𝑈|: number of users

Output: 𝑾,𝒃, 𝑐𝑜𝑛: coefficients of the QUBO model

1 𝑛←|𝐶| ∙ |𝑈|

2 Initialize 𝑾,𝑾𝑢𝑠𝑒𝒓,𝑾𝑐𝑎𝑡𝑒 as 𝑛 × 𝑛 zero matrices

3 Initialize 𝒃, 𝒃𝑢𝑠𝑒𝑟 , 𝒃𝑐𝑎𝑡𝑒 , 𝒃𝑝𝑟𝑜𝑏 as 1 × 𝑛 zero vectors

4 for 𝑖←1 to n do

5 𝒃𝒖𝒔𝒆𝒓[𝑖] ← −2 𝒃𝒖𝒔𝒆𝒓[𝑖] means the 𝑖-th element in 𝒃𝒖𝒔𝒆𝒓

6 𝒃𝒄𝒂𝒕𝒆[𝑖] ← −2

30

7 end for

8 for 𝑖 ←1 to |𝑈| do

9 enumerate each pair of categories, 𝑾𝑢𝑠𝑒𝑟[𝑥][𝑦] means the 𝑥 row 𝑦

column element in 𝑾𝑢𝑠𝑒𝑟

10 for 𝑘, 𝑗 in combinations (|𝐶|, 2) do

11 𝑾𝑢𝑠𝑒𝑟[𝑖 ∙ |𝐶| + 𝑘][𝑖 ∙ |𝐶| + 𝑗] ← 2

12 𝑾𝑢𝑠𝑒𝑟[𝑖 ∙ |𝐶| + 𝑗][𝑖 ∙ |𝐶| + 𝑘] ← 2

13 end for

14 end for

15 𝑐𝑐𝑎𝑡𝑒 ← 0

16 for 𝑖 ←1 to |𝐶| do

17 enumerate each pair of users

18 for 𝑘, 𝑗 in combinations (|𝑈|, 2) do

19 𝑾𝑐𝑎𝑡𝑒[𝑘 ∙ |𝐶| + 𝑖][𝑗 ∙ |𝐶| + 𝑖] ← 2

20 𝑾𝑐𝑎𝑡𝑒[𝑗 ∙ |𝐶| + 𝑖][𝑘 ∙ |𝐶| + 𝑖] ← 2

21 end for

22 𝑐𝑐𝑎𝑡𝑒 ← 𝑐𝑐𝑎𝑡𝑒 + 𝑑𝑖2

23 end for

24 𝑐𝑢𝑠𝑒𝑟 ← |𝑈|

25 for 𝑖 ←1 to |𝑈| do

26 for 𝑗 ←1 to |𝐶| do

27 𝒃𝒑𝒓𝒐𝒃[(𝑖 − 1) ∙ |𝑈| + 𝑗] ← ⌊𝑝𝑖,𝑗⌋

28 end for

29 end for

30 𝑾 ← 𝛽 ∙ 𝑾𝑢𝑠𝑒𝑟 + 𝛾 ∙ 𝑾𝑐𝑎𝑡𝑒 ∙denotes the scalar multiplication

31 𝒃 ← 𝛼 ∙ 𝒃𝒑𝒓𝒐𝒃 + 𝛽 ∙ 𝒃𝒖𝒔𝒆𝒓 + 𝛾 ∙ 𝒃𝒄𝒂𝒕𝒆

32 𝑐𝑜𝑛 ← 𝛽 ∙ 𝑐𝑢𝑠𝑒𝑟 + 𝛾 ∙ 𝑐𝑐𝑎𝑡𝑒

33 return 𝑾,𝒃, 𝑐𝑜𝑛

3.3.6 Utilization of DA

After we feed the weight matrix,𝑾, vector,𝒃, and constant con to DA as input, DA

provides two annealing modes to be selected: normal mode and replica-exchange

mode[9]. Because the normal mode requires us to train annealing parameters, for

convenience, we choose the replica-exchange mode, which performs “parallel tempering”

31

and sets the temperature automatically. When the energy is stable, the DA returns the

status of all bits. For each user, we check the status of the corresponding bits and judge

whether both constraints are satisfied. We adopt the result only when the following two

constraints are satisfied: a user is assigned to only one category c (constraint 1), and the

total number of users receiving category c ads does not violate the maximum number DC

(constraint 2). Otherwise, the post-process described in Section 3.3.4 is adopted. The

process of utilizing DA is shown in Algorithm 2.

3.4 Experiment Evaluation

3.4.1 Dataset

We used real log data for the experimental evaluation to verify our proposed method.

The log data consists of an auction and conversion log accumulated by Geniee DSP7. The

auction log is generated when a user visits a web page with an advertisement tag, and

RTB is performed. The conversion log is generated when a user who views an

advertisement performs a conversion.

In this experiment, the identifier (id) assigned to each unique browser is assumed to be

the user’s unique id. The visit history of web page categories used as input features can

be aggregated from the auction log utilizing the user’s unique id and time stamp. We use

the ratio of each advertisement category in the auction log in each 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 as the delivery

constraint.

We used raw data collected from November 6th, 2019, to November 8th, 2019. The

24-hour data on November 7th was used to tune time parameters, i.e., 𝑡𝑡𝑟𝑎𝑖𝑛, 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛,

and 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. As for 𝑡𝑝𝑟𝑒𝑑, it must satisfy less than 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 so that we will confirm it

in the experiment. The 24-hour data on November 8th was used for the experimental

evaluation. We divided the evaluation data by 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 to simulate the proposed method.

7 Geniee, Inc. https://en.geniee.co.jp/

32

For example, 24-hour evaluation data are divided into72 windows when 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 20

min.

Algorithm 2: Utilizing DA

Input: 𝒑: conversion probability of all users

 𝛼, 𝛽, 𝛾: parameters of trade-off

 𝒅 : delivery constraints of all ad categories

 |𝐶|: number of ad categories

 |𝑈|: number of users

Output: result: predicted ad category for all users

1 𝑾,𝒃, 𝑐𝑜𝑛 ← Transform(𝑝𝑢,𝑐 , 𝛼, 𝛽, 𝛾, 𝑑𝑐), shown in Section 3.3.5

2 𝒒 ← DigitalAnnealing(𝑾, 𝒃, 𝑐)  DigitalAnnealing means the use of DA to

obtain results

3 𝑼′ ← ∅

4 for 𝑖 ←1 to |𝑈| do

5 𝑠 ← ∑ 𝑞𝑖𝑗
|𝐶|
𝑗=1

6 if 𝑠=1 then only 1 result bit with value 1

7 for 𝑗 ←1 to |𝐶| do

8 if 𝑞𝑖,𝑗=1 then

9 𝑟𝑒𝑠𝑢𝑙𝑡𝑖 ← 𝑗

10 𝑑𝑗 ← 𝑑𝑗 − 1

11 end if

12 end for

13 else

14 𝑼′ ← 𝑼′ ∪ {𝑖}user 𝑖 needs a post-process

15 end if

16 end for

17

18

apply post-process to ∀𝑢 in 𝑼′

described in Section 3.4.2

19 return 𝒓𝒆𝒔𝒖𝒍𝒕

As shown in Figure 3-2, 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 slides over time, and we use the data during 𝑡𝑡𝑟𝑎𝑖𝑛

period as training data. Importantly, when tuning time parameters with data on November

7th, in several 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 (such as 00:00 to 00:20), we need to use data on November 6th

to generate 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 and 𝑡𝑡𝑟𝑎𝑖𝑛. The number of converted users was 9,823 on November

33

6th, 9,328 on November 7th, and 9,874 on November 8th. The number of users in the

training and test datasets, 𝑈𝑡𝑟𝑎𝑖𝑛 and 𝑈𝑡𝑒𝑠𝑡, depends on the time parameters. Notably,

some of the converted users in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 did not visit the web pages during 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛, so

they were not included in 𝑈𝑡𝑒𝑠𝑡. The number of converted users included in 𝑈𝑡𝑒𝑠𝑡 was

4,706 out of 9,823 on November 8th.

3.4.2 Evaluation Metrics

The novelty of our proposed method is to solve the ad optimization problem

periodically around a short period of time to capture changes in user interest over time,

maximizing the CVR while satisfying the number of delivery constraints. To confirm that

our proposed method predicts an ad category for each user with high accuracy while

satisfying the delivery constraints in an appropriate duration, we use three metrics:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 and execution time. Here, we assume that the ground

truth is the category in which each user converts in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. We do not use the AUC

metric (which is common in CVR prediction) because our task is different from predicting

the conversion category under the delivery constraints. We need to verify whether our

prediction is correct. Thus, we adopted accuracy instead of AUC.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 is the average ratio of correctly predicted users to all converted users

Figure 3-2: Overview of periodic recommendation

34

in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, shown in Eq. (3.12).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 = 𝑎𝑣𝑔𝑎𝑙𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
|𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡∩𝑐𝑣
𝑤𝑖𝑛𝑑𝑜𝑤 |

|𝑈𝑐𝑣
𝑤𝑖𝑛𝑑𝑜𝑤|

,
(3.12)

where 𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡∩𝑐𝑣𝑤𝑖𝑛𝑑𝑜𝑤 is the set of converted users with the same predicted category as the
category in the ground truth; 𝑈𝑐𝑣𝑤𝑖𝑛𝑑𝑜𝑤 is the set of all converted users in 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. 𝑎𝑣𝑔
denotes the average value function. The input is a set of real numbers and the output is a
real number.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 shown in Eq. (3.13) is the ratio of correctly predicted users to all

converted users in the test dataset. We introduce 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 as a fair comparison

between the different time parameters because when we change 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, it affects the set

of converted users.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 =
∑ |𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡∩𝑐𝑣

𝑤𝑖𝑛𝑑𝑜𝑤 |𝑎𝑙𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

|𝑈𝑐𝑣|
,

(3.13)

where 𝑈𝑐𝑣 is the set of total converted users in the test dataset.
Finally, the execution time measures the time (in seconds) spent to generate the
recommendation.

All the experiments were executed on a server with the following configuration: two

Intel Xeon Gold 6148 CPUs, 2.40 GHz (20 cores, 40 threads), with 192 GB of memory,

running on CentOS 7.6. The optimization process (finding the minimum value and bits

of the QUBO function) was run on DA [9].

3.4.3 Prediction Algorithm

To generate the conversion probabilities of ad categories for each user described in

Section 3.3.3, we need to adopt a base algorithm to receive the input feature vector 𝒉𝑢

and output the conversion probability 𝑝𝑢,𝑐 for each candidate ad category 𝑐 ∈ 𝐶. In our

experiment, we chose Logistic regression and XGBoost [21] as prediction algorithms

because of their effectiveness and high speed.

35

3.4.4 Baseline Methods

We compared our proposed DA-based method8 with two baselines: “Random” and the

genetic algorithm (shown as GA).

The “Random” method omits the optimization step and adopts a random selection of

ad categories but adopts the post-process shown in Section 3.3.4 to satisfy the delivery

constraints. By comparing our method with Random, we can confirm the effectiveness of

solving delivery constraints.

The genetic algorithm (GA) [22] was also chosen to solve the combinational problem

as a popular and efficient method to confirm the effectiveness of DA in solving delivery

constraints more strictly. GA runs on common CPUs and does not require binary bits.

Instead of one-hot encoding, we can use one variable to represent each user's candidate

results so that the objective function is simplified as in Eq. (3.14).

𝐸′′(𝒒) = −𝛿∑𝑝𝑢,𝑞𝑢

|𝑈|

𝑢=1

+ 𝜀∑(∑𝑓𝑢,𝑐 − 𝑑𝑐

|𝑈|

𝑢=1

)

2|𝐶|

𝑐=1

,

(3.14)

where 𝑝𝑢,𝑞𝑢 is the probability that user 𝑢 converts to category 𝑞𝑢; 𝑑𝑐 is the delivery

number of category 𝑐 that we must satisfy; 𝑓𝑢,𝑐 ∈ {0,1} is a binary variable where 𝑓𝑢,𝑐

equals 1 when the converted category 𝑞𝑢 equals category 𝑐 , as shown in Eq.

(3.15); ∑ 𝑓𝑢,𝑐
|𝑈|
𝑢=1 is used as a count for each category. i.e., how many ads are delivered;

𝛿 and 𝜀 are two parameters.

𝑓𝑢,𝑐 = {
1, 𝑤ℎ𝑒𝑛 𝑞𝑢 = 𝑐
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.15)

Compared with (3.4), (3.14) omits the constraint, ensuring that each user has only one

8 https://github.com/bakubonmo/Rec

36

prediction result. As in DA, GA does not guarantee the satisfaction of the given constraint.

Therefore, we also adopt the post-process described in Section 3.3.4.

3.4.5 Time Parameters Tuning

In this section, we tune the parameters twindow, ttrain, and tsession to achieve the best

average 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 by evaluating the classification using the prediction algorithm

without considering the delivery constraints. We used the 24-hour data on November 7th

to tune the parameters.

Figure 3-3: Result of Accuracy_window without constraints when changing the

time parameters: (a) Fixed at t_train = 4 h, t_session= 6 h, and varying t_window;
(b) Fixed at t_window = 20 min, t_session= 6 h, and varying t_train; (c) Fixed at

t_window = 20

Figure 3-3 shows the results of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 when parameters 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, 𝑡𝑡𝑟𝑎𝑖𝑛,

and 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 are varied. As shown in Figure 3-3(a), the accuracy increases with a decrease

in the model update interval 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 because the latest action of the user can be reflected

by a decrease 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. In Figure 3-3(b), the accuracy peaks when the training data period

𝑡𝑡𝑟𝑎𝑖𝑛 is four hours because if 𝑡𝑡𝑟𝑎𝑖𝑛 is small, the number of data points in 𝑡𝑡𝑟𝑎𝑖𝑛

becomes small, resulting in poor learning outcomes. However, if 𝑡𝑡𝑟𝑎𝑖𝑛 is extremely

large, the accuracy decreases due to training on old data. In Figure 3-3(c), a larger 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛

increases the accuracy because more visit history of the user is reflected by increasing

𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛.

Finally, we set the parameters as 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 20 min, 𝑡𝑡𝑟𝑎𝑖𝑛 = 4 h, and 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 = 6 h

37

for the rest of the experiments. Further tuning such as decreasing 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 and increasing

𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 will be available as long as 𝑡𝑝𝑟𝑒𝑑 ≤ 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 holds.

3.4.6 Experimental Results Under the Delivery Constraints

We used the 24-hour data on November 8th for the evaluation, which was split into 72-

time slots because of 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 20. Parameters 𝛼, 𝛽, and 𝛾 in our objective function in

Eq. (3.4) and parameters 𝛿 and 𝜀 in the GA’s objective function in Eq. (3.14) were

tuned on the first 10 time slots of the data. In contrast, the remaining 62 time slots data

were used for evaluation. By adopting a grid search, we chose 𝛼 = 1, 𝛽 = 5, 𝛾 = 10 ,

𝛿 = 1, and 𝜀 = 10.

Table 3-1 shows the experimental results. Because the constraints in Eq. (3.4) and Eq.

(3.14) are soft, we show the percentage of users who violated the constraints, shown as

the violation rate in Table 3-1. The constraints in Eq. (3.4) are soft, which causes several

users to violate the constraints. So, we define the violation rate as the percentage of users

who violate the constraints. The During the post-process for violated users described in

Section 3.3.4, we chose each user’s ad category among his/her top six ad categories.

Recall that 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 shows the average accuracy per window. Thus, we can

compare with 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 only when the same parameters (𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, and

𝑡𝑡𝑟𝑎𝑖𝑛) are used among the methods. On the contrary, if the different parameters are used,

we cannot use 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 for fair comparison because the converted users in each

window are different. In such a case, we must use 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 which shows the

correctly predicted users against all converted users in the whole test dataset. Compared

with the result in Mo et al. [10], the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 of GA-based method improves because

of fine-tuned batch size.

38

 We conducted a paired t-test for accuracies between each baseline and our proposed

method. As a result, we confirmed that our proposed method outperforms the baselines,

which is statistically significant at p < 0.01. In addition, we demonstrated that our

proposed method achieved the shortest execution time. Notably, we do not compare the

execution time with the Random method because the method is not a combinational

optimization algorithm and has the lowest recommendation accuracy.

We also conducted an experiment on different 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 to confirm the effectiveness of

shorting window size. Because the DA completed the execution within 5 min, we set

Table 3-1 Experiment Results (𝑡𝑡𝑟𝑎𝑖𝑛 = 4 h and 𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛 = 6 h)

Method Prediction
algorithm

Optimization
Technique

𝐴𝑐𝑐𝑤 𝐴𝑐𝑐𝑎 Violation
rate

Execution
time (s)
(𝑡𝑝𝑟𝑒𝑑)

Baseline
Logistic
regression

Random
(𝑡𝑤𝑖𝑛=20 min)

0.180 0.219 0.595

GA
(𝑡𝑤𝑖𝑛=20 min)

0.202 0.239 0.030 525

Proposed DA
(𝑡𝑤𝑖𝑛=20 min)

0.229* 0.278* 0.020 108

DA
(𝑡𝑤𝑖𝑛=5 min)

 0.324* 0.020 108

Baseline
XGBoost

Random
(𝑡𝑤𝑖𝑛=20 min)

0.180 0.216 0.595

GA
(𝑡𝑤𝑖𝑛=20 min)

0.198 0.237 0.029 526

Proposed DA
(𝑡𝑤𝑖𝑛=20 min)

0.229* 0.277* 0.013 109

DA
(𝑡𝑤𝑖𝑛=5 min)

 0.322* 0.013 108

* Statistically significant at p < 0.01 when comparing with our proposed method, DA,

with Random and GA

39

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 to 5 min with the other time parameters as in the previous setting (𝑡𝑠𝑒𝑠𝑠𝑖𝑜𝑛= 6 h

and 𝑡𝑡𝑟𝑎𝑖𝑛 = 4 h). In Table 3-1, for convenience, we abbreviate 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑤𝑖𝑛𝑑𝑜𝑤 as

𝐴𝑐𝑐𝑤 , 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 as 𝑡𝑤𝑖𝑛 , and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 as 𝐴𝑐𝑐𝑎 . As shown in Table 3-1, we

confirmed 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑙𝑙 increased drastically as 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 was shortened, which means

that if the optimization algorithm runs faster, the number of users that we correctly predict

their ad categories increase. Hence, shortening the periodic optimization of DA and

capturing changes in user interest is essential.

To summarize the experimental results, with Logistic regression, we successfully

shortened the periodic advertisement recommendation from 525s to 108s and increased

the accuracy from 0.239 to 0.324 (35.56%) compared to GA. With XGBoost, we also

shortened the execution time from 526s to 108s while improving accuracy from 0.237 to

0.322 (35.86%).

3.4.7 Experiment on Comparing Proposed Transformation Method

with Polynomial Expansion

We also notice the experiment with the polynomial expansion(baseline) to the QUBO

model as Algorithm 3. The execution time of polynomial expansion is long (551s for

preparing the objective function of the QUBO) and even longer than the execution time

(108s) of DA. Note that polynomial expansion involves symbolic computations and takes

longer execution time than numerical computations. Our proposed method drastically

reduces the transformation time to 0.7s, bridging the gap between DA and real-time ad

recommendation applications. The proposed method overcomes the problem of too long

a transformation time to adopt DA to ad recommendation.

3.5 Conclusion

In this chapter, we proposed a new method, namely the DA method, to optimize ads

periodically in a short period by using DA to solve the optimization problem: maximizing

40

9 https://www.sympy.org/en/index.html

Algorithm 3: Transforming an objective function to the QUBO model using polynomial expansion and

sympy library9

Input: 𝒑: conversion probability of all users

 𝛼, 𝛽, 𝛾: parameters of trade-off

 𝒅 : delivery constraint of all ad categories

 |𝐶|: number of ad categories

 |𝑈|: number of users

Output: 𝑾,𝒃, 𝑐𝑜𝑛: coefficients of the QUBO model

1 𝑛←|𝐶| ∙ |𝑈|

2 𝒗 ← [′𝑥1′, ′𝑥2′, … , ′𝑥𝑛′] Initialize 𝑛 variables for polynomial expansion

3 Initialize 𝒕𝟏, 𝒕𝟐, 𝒕𝟑 as empty symbolic lists to save three terms in Eq. (3.4)

4 calculate the 𝒕𝒆𝒓𝒎𝟏 in Eq. (3.4)

5 for 𝑖←1 to |𝑈| do

6 for 𝑗 ←1 to |𝐶| do

7 Note that this operation is a symbolic computation, not a numerical computation,

hence the execution time is long

8 𝒕𝟏 ← 𝒕𝟏 + ⌊𝑝𝑖,𝑗⌋ ∙ 𝒗[𝑖 ∙ |𝐶| + 𝑗]

9 end for

10 end for

11 calculate the 𝒕𝒆𝒓𝒎𝟐 in Eq. (3.4)

12 for 𝑖 ←1 to |𝑈| do

13 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ←empty symbolic list Used to calculate the constraint 1 for a user

14 for 𝑗 ←1 to |𝐶| do

15 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ← 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 + 𝒗[𝑖 ∙ |𝐶| + 𝑗] Symbolic computation

16 end for

17 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ← (𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 − 1)2

18 𝒕𝟐 ← 𝒕𝟐 + 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕

19 end for

20 calculate the 𝒕𝒆𝒓𝒎𝟑 in Eq. (3.4)

21 for 𝑖 ←1 to |𝐶| do

22 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ←empty symbolic list

23 for 𝑗 ←1 to |𝑈| do

24 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ← 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 + 𝒗[𝑖 ∙ |𝑈| + 𝑗] Symbolic computation

25 end for

41

CVR while satisfying the delivery constraints, that is, the number of ads delivered for

each category. Our method consists of two steps: 1) prediction to generate ad candidates

for each user, and 2) optimization of candidates to meet the number of ad delivery

constraints, which is difficult to solve within an acceptable period on a general-purpose

computer. Experiments on a real dataset showed that our proposed method successfully

improved the accuracy by shortening the periodic advertisement recommendation: 0.239

to 0.324 (35.56%) with prediction algorithm Logistic regression while shortening the

execution time from 525s to 108s; and 0.237 to 0.322 (35.86%) with XGBoost while

shortening the execution time from 526s to 108s.

25 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 ← (𝒔𝒖𝒎_𝒍𝒊𝒔𝒕 − 𝑑𝑖)2

27 𝒕𝟑 ← 𝒕𝟑 + 𝒔𝒖𝒎_𝒍𝒊𝒔𝒕

28 end for

29 𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 ← − 𝛼 ∙ 𝒕𝟏 + 𝛽 ∙ 𝒕𝟐 + 𝛾 ∙ 𝒕𝟑merge three terms

30 use sympy library to transform QUBO model

31 𝒆𝒙𝒑𝒂𝒏𝒅𝒆𝒅_𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 ←expand(𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍) Expand the polynomials

using sympy library with time complexity 𝑂(|𝑇|2) of symbolic computation

32 𝑾,𝒃, 𝑐𝑜𝑛 ←simplify(𝒆𝒙𝒑𝒂𝒏𝒅𝒆𝒅_𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍) Get the final output using

sympy library, simplify() is a function to simplify polynomials

33 return 𝑾,𝒃, 𝑐𝑜𝑛

42

4 Preliminary of Combination of Side Information

with Graph Convolution Network (GCN) for Point-

of-interest (POI) Recommendation

4.1 Introduction

In this chapter, we introduce the related work and basics knowledge of combination of

side information, including time and geographical information, with a graph convolution

network to improve POI recommendation accuracy. The advent of the information age

has improved people’s standard of living but has raised the problem of information

overload. Recommendation systems are effective tools to help users filter massive

amounts of information and assist them in making decisions. In location-based social

networks (LBSNs), point-of-interest (POI) recommendation systems recommend

unvisited POIs by analyzing user check-in history based on user and POI locations. Open-

source datasets from LBSNs, such as Gowalla10 and Yelp11, allow users to share their

check-in experience, making a detailed analysis of users’ behavior possible. Accuracy is

an important metric of the effectiveness of recommendation results and user satisfaction.

Thus, many recommendation systems have improvement of accuracy as their primary

goal.

In recent years, the use of neural network techniques has led to a boom in the use of

recommendation systems. Graph convolution network (GCN) models [2] [3] [4] have

become state-of-the-art recommendation algorithms due to the effectiveness of

calculating the embeddings of users and items while ranking higher predicted preference

scores as the preferred items. By aggregating information from neighbor nodes and

passing collaborative signals from high-order connectivity, GCNs combine the core idea

of collaborative filtering, i.e., similar users have similar preferences, with machine

10 http://snap.stanford.edu/data/loc-gowalla.html
11 https://www.yelp.com/dataset_challenge

43

learning. Several related works have attempted to adopt GCNs for POI recommendation,

considering that using various side information is a potential method to improve model

performance. Inspired by lightweight models (e.g., LightGCN [5] and LR-GCCF [23]),

Chang et al. [3] were the first to integrate the power-law distribution of the geographical

distance between two POIs into a GCN model. The use of two GCNs, one for check-in

information and the other for geographical information, improves the representation

ability of user and POI embeddings. However, simply modeling geographic information

as geographical distances is insufficient, ignoring users’ active areas in cities, which leads

to sub-optimization of the model. The methodology of combination of users’ active areas

with GCN models to improve recommendation performance need to be explored and

designed. Besides, it leads to a significant increase in the number of trainable parameters,

making the model training difficult. The proposed technique called GN-GCN to solve the

above problem and make full use of geographical information will be introduced in

Chapter 5.

In addition to geographical information, time information is an essential side-module

in GPR [3] and GNN-POI [4]. However, simply adopting time information by sorting

user check-ins in chronological order and modeling user check-in sequences cannot fully

exploit collaborative signals in time information. Although similar users can be extracted

according to the check-in time for POIs, this is not sufficient. For example, both the target

user and user A tend to go to a supermarket after breakfast, but for user B, checking a

supermarket in the evening is a good selection. In this case, user A can be a time-based

high-order neighbor to the target user, and the model filters out user B, even if user B has

the same preference (going to a supermarket) as the target user. Thus, learning unique

time-based embeddings for users and items is essential. A novel GCN model- EPT-GCN

will be introduced in Chapter 6 in detail to combine time information and solve the above

problem.

4.2 Related Work

44

Our work for Contribution 2 and 3 are related to POI recommendations and GCN-based

recommendations. Thus, in this chapter, we introduce two main aspects of previous works:

1) side information, i.e., time and geographical information, used in POI recommendation,

and 2) GCNs in recommendation systems.

4.2.1 Side information used in POI Recommendation

Geographical information: As an intrinsic attribute of POIs, geographical

information is widely used in POI recommendation systems to model regions frequently

checked by a target user. Ye et al. [30] were the first to apply geographical information to

recommendation systems to improve accuracy. They suggested users are less likely to

check in to POIs far from their familiar areas. Based on Ye et al.’s work, Baral et al. [27]

and Zhang et al. [29] optimized geographical models. Zhang et al. proposed the famous

multi-center Gaussian distribution of geographical information to fit a user’s check-ins,

which has profoundly impacted subsequent research on geographical information. With

the widespread use of machine learning techniques in POI recommendation, matrix

factorization (MF)-based models [32] [33] can effectively solve data sparsity problems

by adopting geographical information. Li et al. [33] argued for the adoption of two latent

vectors to represent user information, where one is adopted to calculate user preferences

and the other for scoring geographical information. Deep learning algorithms [3] [38] are

increasingly being adopted for integrating geographical information. To the best of our

knowledge, Chang et al. [3] were the first to integrate geographical information into a

GCN by modeling a power-law distribution and aggregating less information from distant

neighbor nodes. Chang et al. trained two embeddings to represent a POI: one for check-

in information and the other for geographical information. However, simply modeling

geographical information as geographical distances is insufficient, ignoring users’ active

areas in cities, which leads to sub-optimization of the model. How to combine users’

active areas with GCN models to improve recommendation performance is still an open

question.

45

Time information: Time information is generated when a user interacts with a POI.

Time information helps recommendation systems capture user preference changes over

time. Yuan et al. [39] and Gao et al. [40] are pioneers in considering time information

when making POI recommendations. Yuan et al. used time slots as a new dimension to

refine user preferences by calculating the cosine similarity among users. After the era of

the prevalence of machine learning models [41] [42] in recommendation systems,

sequence-based techniques [3] [4] [42] have received a great deal of attention. Zhao et al.

[42] proposed a sequential mining model to capture the temporal preferences of users

inspired by the word2vec framework [43]. The well-trained POI time embeddings can

reflect various time characteristics on different days. Zhang et al. [4] further optimized

the sequential model from Ying et al.’s work; in addition to the structure of graph mining,

they adopted two LSTM networks to extract the features of the arrival and departure times

of POIs.

The above models adopt time information; however, they struggle to mine users’ time-

based high-order connectivity, even for state-of-the-art GCN models [44] [4], limiting the

representation ability and preventing further accuracy improvement. The users’ time-

based high-order connectivity enables the extraction of indirect neighbors with similar

preferences in a time slot.

4.2.2 Graph Convolution Network in Recommendation System

With the development of machine learning techniques, network embedding-based

models [45] [46], which condense the representation of a user or an item into an

embedding, have gained breakthroughs and attracted the attention of researchers in the

area of recommendation systems in recent years. Graph convolution network (GCN)

models [44] [47] [48] [49] [50], as one of embedding-based models, are widely adopted

to improve performance. Wang et al. [25] pioneered the application of GCNs to flesh out

the concept of collaborative filtering. They used check-ins to compose a user-item

interaction graph, where they performed neighbor aggregation to learn the unique

46

embeddings of users and items. Their performance improvement laid a solid foundation

for subsequent GCN-based research. In subsequent developments, researchers realized

that the nonlinear activation function might have a detrimental effect on the GCN model

performance. Chen et al. [23] revisited and explored a technique for applying GCNs to

recommendation systems. They suggested that eliminating the nonlinear activation

function and constructing a residual network can simplify the model and improve

accuracy. In their proposed LR-GCCF model, the embeddings of users and items are

updated by a linear accumulation of self-connection and neighbor information

aggregation. He et al. [5] further simplified the design of the GCN model; they not only

eliminated the nonlinear activation function but also eliminated self-connection.

Neighbor information is linearly propagated on the user-item interaction graph to output

the learned embeddings at each hidden layer. Then, a weighted sum operation is adopted

to gather the learned layer embeddings as the final embeddings. Experiments on real

datasets confirmed that the simplified model has better representational ability, resulting

in improved recommendation performance.

Based on previous work, the application of the subgraph technique [2] [52] [53] [54]

presents a new direction for GCN research. Liu et al. [2] pointed out that the learning

process of user embeddings in GCN models may affect high-order nodes with no common

interests with a target user. To solve this problem, they adopted three MLP layers to form

an unsupervised subgraph generation module, aiming to filter out nodes of no common

interest. They successfully avoided propagating negative information during the training

process. As an application of the subgraph technique, Peng et al. [53] confirmed that only

a small portion of latent rather than smoothed or rough features positively influence

recommendation accuracy, whereas most noise features reduce accuracy. They then

partitioned user-item interaction graphs into smooth, rough, and noisy graphs, which

enabled the design of an effective graph denoising encoder (GDE) model to emphasize

smoothed features while filtering out noise.

Despite the above techniques, applying the subgraph technique to POI

47

recommendation systems remains an open problem, especially for time slot partitioning.

However, the subgraph technique matches well with time slot applications, and two issues

still need to be addressed. First, previous node-based subgraph techniques divide each

node (user and item) into one subgraph, which is inconsistent with the real situation.

Because a POI can have multiple suitable time slots for check-ins, the subgraph module

should divide the check-ins into multiple time slots (subgraphs) based on the learned high-

order time slot embeddings. Second, although subgraph-based models, such as IMP-GCN

[2], filter high-order neighbors with no common features, a subgraph generation module

composed of only low-order features has difficulty representing high-order similarity.

Low-order features mean that the module only considers zero- and first-layer embeddings

to create a cluster maker, which lacks high-order information. The proposed model EPT-

GCN introduced in Chapter 6 will combine the time information with GCN by using a

proposed novel subgraph technique.

4.2.3 Preliminary

In this section, we introduce the definitions within the POI recommendation domain.

Note that due to the different structure of the models, different notations are used for

different models. For convenience to find relevant notation, we list the notation for the

models separately in Section 5.2 and Section 6.2.

Definition 1 (POI recommendation): Assume that the dataset contains 𝑀 users and

𝑁 items. 𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑀} and 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁} represent sets of

users and POIs, respectively. Each POI has an intrinsic attribute representing geographical

latitude and longitude, written as {𝑙𝑎𝑡𝑝𝑗 , 𝑙𝑜𝑛𝑝𝑗}. To mine users’ active areas to represent

his/her geographical information, we define 𝐴𝑢𝑖 = {𝑎𝑢𝑖,1, 𝑎𝑢𝑖,2, … , 𝑎𝑢𝑖,𝑚} as the set of

active areas of user 𝑢𝑖. Note that a user may have multiple active areas among cities. A

geographical distance-based clustering algorithm sets the number of each user’s active

areas. For example, check-ins less than 1km away are merged into the same cluster. We

48

define a set of POI and timestamp pairs 𝐶𝑢𝑖 = {(𝑝𝑗, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)|𝑢𝑖 ∈ 𝑈, 𝑝𝑗 ∈ 𝑃, 𝑢𝑖

checked 𝑝𝑗} as user 𝑢𝑖 ’s check-in log. Shown in Figure 4-1, the purpose of POI

recommendation for target user 𝑢𝑖 is to recommend a list of ranked POIs that target user

𝑢𝑖 has not visited using the historical check-in logs 𝐶𝑢𝑖 ∈ 𝐶, where 𝐶 = {𝐶𝑢1 , 𝐶𝑢2 ,

𝐶𝑢3 , … , 𝐶𝑢𝑀}.

Definition 2 (User’s active area neighbor): The target user’s active area neighbors

are set as the users who have close active areas to the target user’s active areas, shown as

𝐺𝑁𝑢𝑖 = {𝑢𝑗 | 𝑢𝑗 , 𝑢𝑖𝜖 𝑈, 𝑗 ≠ 𝑖, 𝑢𝑗
′𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎𝑠 𝑎𝑟𝑒 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑢𝑖′𝑠}.

Definition 3 (Item’s active area neighbor): We call the POIs that are geographically

close to the target POI its active area neighbors, shown as 𝐺𝑁𝑝𝑗 = {𝑝𝑖 | 𝑝𝑖, 𝑝𝑗𝜖 𝑃, 𝑖 ≠ 𝑗,

𝑝𝑖 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑝𝑖}.

Definition 4 (Preference score): Experiments in our work are based on log datasets;

therefore, we compared the prediction results with users’ real check-ins to determine the

model performance. The predicted preference score of user 𝑢𝑖 for POI 𝑝𝑗 is indicated

as 𝑟𝑢𝑖,𝑝𝑗 ,̂ , where 𝑟𝑢𝑖,𝑝𝑗 ,̂ is calculated as the inner product similarity between user 𝑢𝑖 ’s

trained final embedding and POI 𝑝𝑗 ’s trained final embedding. If a recommendation

system can give higher preference scores to real checked POIs than unchecked POIs, the

model is considered to have good performance.

Definition 5 (User-POI subgraph construction): Based on the check-in information

𝐶, we construct a bipartite user-POI subgraph 𝒢𝑡 = (𝑈, 𝑃, ℰ𝑡) for time slot 𝑡, e.g., 6 to

12 o’clock, where 𝑈 and 𝑃 are the sets of vertices of users and POIs, respectively, and

ℰ𝑡 is a set of edges for time slot 𝑡 generated by check-in information 𝐶 . We further

define 𝒢 = {𝒢1, 𝒢2, 𝒢3, … , 𝒢|𝑇|} to denote a set of all subgraphs that cover 24 h, where

𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡|𝑇|} is the set of time slots.

Definition 6 (User’s and item’s representation): Our proposed models learn the

unique representation (embedding) of each user and each POI by iteratively aggregating

49

the information of user-item check-ins and neighbors, where 𝑒𝑢𝑖 and 𝑒𝑝𝑗 are the

embeddings of user 𝑢𝑖 and POI 𝑝𝑗, respectively. The GCN models output both 𝑒𝑢𝑖 and

𝑒𝑝𝑗.

Figure 4-1: POI recommendation.

50

5 GN-GCN: Combining Geographical Neighbor

Concept with Graph Convolution Network for POI

Recommendation12

In this chapter, we introduce our Contribution 2. Although graph convolution

networks (GCN) technique, like LightGCN [5], has been applied to recommendation

systems to improve model performance, when the GCN models target Point-of-interest

(POI) recommendation, setting up the goal of improving the accuracy of POI

recommendation, how to apply the special attributes of POI - geographical information is

worth considering since integrating side information always indicates higher accuracy. In

this chapter, we propose a new technique to model geographical information as users’

active areas. The users whose active areas are close are defined as “active area neighbors”.

Then, we further extend the definition of “neighbor” in GCN models to aggregate

information from newly defined active area neighbors. Note that the proposed technique

is lightweight, improving recommendation accuracy while keeping the model easy to

train.

5.1 Introduction

By analyzing the vast amount of users’ check-in history, a POI recommendation system

helps users filter information and discover their interests to improve users’ quality of life.

To improve user satisfaction, the accuracy of the recommendation system has always been

of great concern. A highly accurate recommendation system is like a close friend who

understands a target user’s preferences and provides insightful suggestions.

To combine the geographical information with GCN, in this chapter, inspired by the

fact [27] [28] [29] that the use of power-law distribution and multi-center Gaussian

12 This chapter is based on “GN-GCN: Combining Geographical Neighbor Concept with Graph Convolution
Network for POI Recommendation”[57], by the same authors, which appeared in Proceedings of the 24th
International Conference on Information Integration and Web Intelligence, pp. 153-165, 2022. Copyright(c) 2022.

51

distribution to model users’ geographical information of visited POIs could effectively

increase recommendation accuracy, we newly define active area neighbors. Then, we

adopt the active area neighbors when adding geographical information of users and POIs

to a GCN, enabling the efficient extraction of indirect relationships caused by their

locations. Moreover, similar to LightGCN [5], we simplify the design of GCN, which

improves the performance of recommendations without increasing both the trainable

parameters and the model complexity.

We are the first to propose a lightweight-geographical neighbor concept-based graph

convolution network (GN-GCN) model to integrate geographical information into GCN

and keep the model easy to train. The contributions of this work are as follows:

- We propose a new concept called active area neighbor to alleviate the problem of

relationship sparsity when applying GCN models to POI recommendation systems.

We model user-item check-ins and active area neighbors to mine high-order

connectivity to improve recommendation accuracy.

- Compared with Chang et al.’s work [3], we do not need to prepare an additional

GCN to handle geographical information, enabling no increase in trainable

parameters, which improves performance.

- We explore the effect of nonlinear activation functions on geographical aggregation

functions because nonlinear activation functions usually have no positive impact

on GCN [9]; however, nonlinear functions are often used in POI recommendation

systems to model geographical information.

The rest of the chapter is organized as follows. First, Section 5.3 presents our proposed

method, followed by the experiment in Section 5.4. Then, in Section 5.5, we present our

conclusions.

5.2 Preliminary

This section summarizes the notations used in this chapter into Table 5-1. Note that all

52

of the embeddings of users and POIs have the same size of ℝ1×𝐷 , where 𝐷 means

embedding size.

5.3 Proposed Method

To further improve the performance of the POI recommendation system, we propose a

lightweight geographical neighbor concept-based graph convolution network (GN-GCN)

model for integrating geographical information on GCNs. First, we extend the definition

of neighbor in GCN. In addition to check-in relations (user-checked items and items

checked by users), we introduce active area neighbors for each user and each POI as

newly added relations to solve the relationship sparsity problem. For each user, we define

his/her active area neighbors whose active areas in the city are near to his/her active areas.

Similarly, for each POI, we describe the POI’s active area neighbors that are

geographically close to the POI. Then, the GCN-based model learns each node’s unique

representation (embedding) by iteratively aggregating information from the neighbors,

similar to LightGCN [5]. Compared to Chang et al.’s model [3], we do not assign

Table 5-1: Notations

Notation Definition
 𝑈 Set of users in the dataset
𝑃 Set of POIs in the dataset

𝑙𝑎𝑡𝑝𝑗 , 𝑙𝑜𝑛𝑝𝑗 Geographical latitude and longitude coordinates of POI 𝑝𝑗
𝐴𝑢𝑖 Set of active areas {𝑎𝑢𝑖,1, 𝑎𝑢𝑖,2, … , 𝑎𝑢𝑖,𝑚} of user 𝑢𝑖
𝐶𝑁𝑢𝑖 User 𝑢𝑖’s check-in set
𝐶𝑁𝑝𝑗 Set of users that checked POI 𝑝𝑗
𝐺𝑁𝑢𝑖 User 𝑢𝑖’s active area neighbor set
𝐺𝑁𝑝𝑗 POI 𝑝𝑗’s active area neighbor set
𝒆𝑢𝑖 Final trained embedding of user 𝑢𝑖
𝒆𝑝𝑗 Final trained embedding of POI 𝑝𝑗
𝒆𝑢𝑖
𝑘 User 𝑢𝑖’s embedding output at layer k
𝒆𝑝𝑗
𝑘 POI 𝑝𝑗’s embedding output at layer k

𝑟𝑢𝑖,𝑝𝑗̂ Estimated preference of user 𝑢𝑖 for POI 𝑝𝑗

53

additional trainable parameters to mine geographical information because we only have

one GCN.

5.3.1 Overview

The GN-GCN model, shown in Figure 5-1, involves two steps: 1) In addition to user-

item check-in interactions, we set the active area neighbors. We extract each user’s active

areas by clustering the POIs that he/she visited. The users who have at least one nearby

active area (the distance between active areas is less than 𝜆 km) are set to be active area

neighbors. Similarly, for the POIs whose geographical distance is less than 𝜆 km, we

consider them active area neighbors by calculating the distance between all combinations

of two POIs; 2) We design the neighbor-aggregation-based neural network to train the

representation (embedding) of each user and each POI followed by calculating the inner

product similarity between user’s embedding and POI’s embeddings to score. As shown

in Figure 5-1, through check-ins (black arrows) and active area neighbors (orange arrows),

we aggregate high-order connectivity information to the target user node. As a result, we

can enhance a GCN model to adopt geographical information, which can extract high-

order connectivity over collaborative filtering information.

Figure 5-1: An example of the proposed GN-GCN model to aggregate high-order

information from check-ins and active area neighbors.

54

5.3.2 Modeling Active Area Neighbor

User Active Area Neighbor

When analyzing user 𝑢𝑖’s check-in history 𝑐𝑢𝑖, we first use the DBSCAN algorithm

[34] to cluster user 𝑢𝑖’s visited POIs based on POIs’ geographical latitude and longitude.

Among cities and in a city, users may have multiple active areas where they have

frequently checked in, such as the workplace and home. After the clustering, we have a

set of active areas 𝐴𝑢𝑖 for user 𝑢𝑖 . Then, we define user pairs whose active areas’

minimum distance is less than threshold 𝜆 as active area neighbors, as in Eq. (5.1), and

Eq. (5.2). When the minimum distance between the active areas of two users is less than

𝜆, we define these two users as having similar geographical interests and are therefore

defined as geographical neighbors.

𝐺𝑁𝑢𝑖 = {𝑢𝑗 | 𝑢𝑗𝜖 𝑈, 𝑖 ≠ 𝑗, 𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 < 𝜆}
(5.1)

𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 = min (𝑑𝑖𝑠 (𝐴𝑢𝑖 , 𝐴𝑢𝑗))

𝑑𝑖𝑠(𝐴𝑢𝑖 , 𝑝𝑗) = {𝑔𝑒𝑜𝑑𝑖𝑠(𝑎𝑢𝑖,𝑚
𝑐 , 𝑝𝑗)|𝑎𝑢𝑖,𝑚 ∈ 𝐴𝑢𝑖}

(5.2)

where 𝑔𝑒𝑜𝑑𝑖𝑠() is a function to receive two real-value geographical coordinates

(latitude: [-90, 90], longitude: [-180, 180]) and outputs a real-value number ([0, 40075],

40075 means the longest distance between two points on Earth in km), representing the

geographical distance between two points on the Earth, calculated in radians. 𝑎𝑢𝑖,𝑘
𝑐 is the

center of POIs located in user 𝑢𝑖 ’s active area 𝑎𝑢𝑖,𝑘 , where the center position is

calculated by the arithmetic mean of latitude and longitude, respectively. Note that we set

threshold 𝜆 as a small value so that too far away check-ins cannot be included in the

same active area to prevent center shift problems. The process of calculating user active

area neighbor is shown in Algorithm 4.

55

POI Active Area Neighbor

Similar to the user’s active area neighbor, we define POI pairs whose distance is less

than threshold 𝜆 as active area neighbors, shown in Eq. (5.3).

𝐺𝑁𝑝𝑗 = {𝑝𝑖 | 𝑝𝑖, 𝑝𝑗𝜖 𝑃, 𝑖 ≠ 𝑗, 𝑚𝑖𝑛_𝑑𝑖𝑠𝑝𝑗,𝑝𝑖 < 𝜆},
(5.3)

where 𝑚𝑖𝑛_𝑑𝑖𝑠𝑝𝑗,𝑝𝑖 is calculated by the distance function 𝑔𝑒𝑜𝑑𝑖𝑠().

5.3.3 Geographical Neighbor Concept-based Graph Convolution

Network (GN-GCN)

The basic idea of our proposed GN-GCN model is to extend the definition of the

neighbor in a GCN. In addition to user-item check-in interactions, the GN-GCN model

also mines rich geographical information from active area neighbors and learns the unique

representation (embedding) for each node by smoothing features over the graph.

The architecture of the GN-GCN model is illustrated in Figure 5-2. At each layer 𝑘,

we aggregate information from check-ins and active area neighbors separately.

Subsequently, a simple weighted (𝛼 and 𝛽) addition operation is executed to output the

representation (embedding) of each node at the layer.

The representations of users and POIs in the model are calculated by Eq. (5.4).

𝒆𝑢𝑖
𝑘+1 = 𝛼 ∗ ∑

1

√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗|

𝑒𝑝𝑗
𝑘

𝑝𝑗∈𝐶𝑁𝑢𝑖

+ 𝛽 ∗ ∑
1

√|𝐺𝑁𝑢𝑖| ∗ 𝑑𝑢𝑖,𝑢𝑗

𝒆𝑢𝑗
𝑘

𝑢𝑗∈𝐺𝑁𝑢𝑖

(5.4)

𝒆𝑝𝑗
𝑘+1 = 𝛼 ∗ ∑

1

√|𝐶𝑁𝑝𝑗| ∗ |𝐶𝑁𝑢𝑖|

𝒆𝑢𝑖
𝑘

𝑢𝑖∈𝐶𝑁𝑝𝑗

+ 𝛽 ∗ ∑
1

√|𝐺𝑁𝑝𝑗| ∗ 𝑑𝑝𝑗,𝑝𝑖

𝒆𝑝𝑖
𝑘

𝑝𝑖∈𝑁𝑝𝑗

56

where 1/√|𝐶𝑁𝑢𝑖|√|𝐶𝑁𝑝𝑗| is a normalized discount factor as same as the standard

GCN-based model [3][9][14]; 𝛼 and 𝛽 are parameters from 0 to 1; 1/𝑑𝑢𝑖,𝑢𝑗 is the min-

max normalized value of 1/𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 in the range of 0 to 1; 1/√|𝐺𝑁𝑢𝑖| ranges from

0 to 1; 1/𝑑𝑝𝑗,𝑝𝑖 is the min-max normalized value of 1/𝑚𝑖𝑛_𝑑𝑖𝑠𝑝𝑗,𝑝𝑖 in the range of 0 to
1. When the left and right sides of the multiplication sign are two real numbers, "*"
represents a multiplication of two real numbers. When the left and right sides of the
multiplication sign are a real number and a vector, "*" denotes scalar multiplication.

We adopt 1/𝑑𝑝𝑗,𝑝𝑖 instead of the number of neighbors to distinguish the importance

of geographical neighbors without increasing trainable parameters.

5.3.4 Geographical Neighbor Concept-based Graph Convolution

Network (GN-GCN) with Nonlinear Active Function

Both He et al. [5] and Chen et al. [23] mentioned that nonlinear active function has no

positive effect on a GCN-based recommendation system. However, in POI

recommendation systems, the relationship between user check-in probability and

geographical distance is always nonlinear [30] [29], which inspires us to add a nonlinear

𝒆𝑢𝑖
𝑘+1 = 𝛼 ∗ ∑

1

√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗|

𝒆𝑝𝑗
𝑘 +

𝑝𝑗∈𝐶𝑁𝑢𝑖

𝛽 ∗ 𝐴𝑐𝑡𝑖𝑣𝑒(∑
1

√|𝐺𝑁𝑢𝑖| ∗ 𝑑𝑢𝑖,𝑢𝑗

𝒆𝒖𝒋
𝒌)

𝑢𝑗∈𝐺𝑁𝑢𝑖

(5.5)

𝒆𝑝𝑗
𝑘+1 = 𝛼 ∗ ∑

1

√|𝐶𝑁𝑝𝑗| ∗ |𝐶𝑁𝑢𝑖|

𝒆𝑢𝑖
𝑘

𝑢𝑖∈𝐶𝑁𝑝𝑗

+

𝛽 ∗ 𝐴𝑐𝑡𝑖𝑣𝑒(∑
1

√|𝐺𝑁𝑝𝑗| ∗ 𝑑𝑝𝑗,𝑝𝑖

𝒆𝒑𝒊
𝒌

𝑝𝑖∈𝐺𝑁𝑝𝑗

)

57

active function to the integrated information of active area neighbors. Based on the above

intuition, our updated user’s and POI’s representation (embedding) are altered as Eq. (5.5).

Note that “𝐴𝑐𝑡𝑖𝑣𝑒” means the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 function. In this paper, we compare Eq. (5.5)

with Eq. (5.4) to confirm the effect of the nonlinear active function.

Figure 5-2: The architecture of GN-GCN model

5.3.5 Model Prediction for POI Recommendation Task

Algorithm 4: Calculating User Active Area Neighbor

Input: 𝐶 = {𝑐𝑢1 , 𝑐𝑢2 , 𝑐𝑢3 , … , 𝑐𝑢𝑀}: user check-in history

 𝐿𝑎𝑡 = {𝑙𝑎𝑡𝑝1 , 𝑙𝑎𝑡𝑝2 , 𝑙𝑎𝑡𝑝3 , … , 𝑙𝑎𝑡𝑝𝑁}: Latitudes of POIs

 𝐿𝑜𝑛 = {𝑙𝑜𝑛𝑝1 , 𝑙𝑜𝑛𝑝2 , 𝑙𝑜𝑛𝑝3 , … , 𝑙𝑜𝑛𝑝𝑁}: Longitudes of POIs

 𝜆: Threshold

Output: 𝐺𝑁 = {𝐺𝑁𝑢1 , 𝐺𝑁𝑢2 , 𝐺𝑁𝑢3 , … , 𝐺𝑁𝑢𝑀}: Users’ active area neighbour

1 for 𝑖 ← 1 𝑡𝑜 𝑀 do

2 𝐺𝑁𝑢𝑖 ← ∅  initialize user 𝑢𝑖’s active area neighbour set

3 end for

4 for 𝑖 ← 1 𝑡𝑜 𝑀 do

58

It is worth mentioning that, in our GN-GCN model, although the concept of active area

neighbor is adopted compared with LightGCN, it does not cause an increase in the number

of trainable parameters, which allows our method to maintain the ease of training the

GCN model. Same as LightGCN [5], the trainable parameters in our GN-GCN model are

the user and the POI representation (embedding) at layer 0.

After we input the embeddings of user and POI at layer 0 to the GN-GCN model and

output high-layer embeddings, we adopt a weighted accumulator to calculate the final

embedding of each node, shown in Eq. (5.6).

𝒆𝑢𝑖 =∑𝛾𝑘

𝐾

𝑘=0

𝒆𝑢𝑖
𝑘 , 𝒆𝑝𝑗 =∑𝛾𝑘

𝐾

𝑘=0

𝒆𝑝𝑗
𝑘

(5.6)

where 𝛾𝑘 = 1/(𝑘 + 1), indicating the importance of embedding decreases with the layer

5  use DBSCAN algorithm to cluster user 𝑢𝑖’s visited POIs based on 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 and

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

6 𝐴𝑢𝑖 ←DBSCAN (𝑐𝑢𝑖)

7 for 𝑘 ← 1 𝑡𝑜 |𝐴𝑢𝑖| do

8 𝑎𝑢𝑖,k
𝑐 ← geographical centre of the cluster 𝑘

9 end for

10 end for

11 for 𝑖 ← 1 𝑡𝑜 𝑀 − 1 do  enumerate each pair of users

12 for j← 𝑖 + 1 𝑡𝑜 𝑀 do

13  calculate active areas’ similarity of user pair

14 𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 ← 𝑚𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 between 𝐴𝑢𝑖 and 𝐴𝑢𝑗 (calculated from Eq.

(5.2))

15 if 𝑚𝑖𝑛_𝑑𝑖𝑠𝑢𝑖,𝑢𝑗 < 𝜆 then

16 𝐺𝑁𝑢𝑖 ← 𝐺𝑁𝑢𝑖 ∪ {𝑢𝑗 }

17 𝐺𝑁𝑢𝑗 ← 𝐺𝑁𝑢𝑗 ∪ {𝑢𝑖 }

18 end for

19 end for

20 return 𝐺𝑁

59

increasing. To complete the prediction of user 𝑢𝑖’s interest in POI 𝑝𝑗, we use an inner

product of the user’s and POI’s representation (embedding), as shown in Eq. (5.7).

𝑟𝑢𝑖,𝑝𝑗̂ = 𝒆𝑢𝑖
𝑇𝒆𝑝𝑗 (5.7)

When the embedding of user and POI are more similar, the POI has a higher prediction

rate and is ranked at the top of the recommendation list.

5.3.6 Model Training

The widely used Bayesian personalized ranking (BPR) loss [5] [23] [35] is adopted to

train the GN-GCN model. BPR loss considers observed user check-ins as positive cases

and assigns several negative cases (unobserved counterparts) for each positive one. The

BPR loss is trained so that the positive cases are rated higher and rank ahead of negative

ones, as Eq. (5.8).

𝐿𝐵𝑃𝑅 = − ∑ ∑ ∑ 𝑙𝑛𝜎(𝑟𝑢𝑖,𝑝𝑗̂ − 𝑟𝑢𝑖,𝑝𝑘̂)

𝑝𝑘𝜖 𝑃−𝑐𝑢𝑖𝑝𝑗𝜖𝑐𝑢𝑖

𝑀

𝑢𝑖=1

+ 𝜇‖𝜃‖2
2

(5.8)

where 𝜇 controls the importance of ℓ2 regularization. 𝜃 indicates the trainable

parameters (𝑒𝑢𝑖
0 𝑎𝑛𝑑 𝑒𝑝𝑗

0 at layer 0) in our model. 𝑀 is the number of users in the dataset.

5.4 Experimental Evaluation

This section provides the experimental evaluation to confirm whether the proposed

GN-GCN13 model can improve the performance while keeping the number of trainable

parameters the same as LightGCN [5].

13 https://github.com/bakubonmo/Rec

60

5.4.1 Datasets

We chose two widely used public datasets for offline testing, Yelp and Gowalla,

collected by Liu et al. [36]. Both datasets contain geographical information. The Yelp

dataset contains many geo-tagged businesses among several cities, including 30,887 users,

18,995 items, and 860,888 check-ins, with a sparsity of 99.86% for the user-item check-

in matrix. The Gowalla dataset contains 18,737 users, 32,510 items, and 1,278,274 check-

ins, with a sparsity of 99.87% for the user-item check-in matrix. For each dataset, we

follow the definition of Liu et al. [36], setting the earliest 70% of check-ins as a training

set, using the latest 20% of check-ins as a testing set, and the remaining 10% as a tuning

set. We summarize the statistics of two datasets in Table 5-2.

5.4.2 Baselines

In this chapter, we chose four state-of-the-art algorithms as baselines.

1) RankGeoFM [33]: We selected the RankGeoFM model as a representative non-

GCN-based model to confirm a cross-sectional comparison between GCN-based and non-

GCN-based models. RankGeoFM is an MF model that uses two latent matrices, the

check-in preference matrix and geographical preference matrix, to represent user

preferences. RankGeoFM has the best performance on POI recommendation according

to a fine-grained comparative experiment conducted by Liu et al. [36].

Table 5-2: The statistics of datasets

Dataset Number of
users

Number of
items

Number of
check-ins

Sparsity

Gowalla 18,737 32,510 1,278,274 99.87%
Yelp 30,887 18,995 860,888 99.86%

61

2) LR-GCCF [23]: LR-GCCF constructs a residual network and learns the embeddings

of users and items through a linear aggregation function. This model suggests that

eliminating the activation function during the aggregation operation can improve the

performance of the GCN model.

3) LightGCN [5]: LightGCN removes self-connection to further simplify the GCN

model. In each hidden layer, the update of the embeddings depends only on the aggregated

information from the neighbor nodes. In addition, the same as LR-GCCF, the nonlinear

activation function is eliminated in LightGCN.

4) GPR [3]: To the best of our knowledge, GPR is the state-of-the-art GCN-based

model for POI recommendation using time and geographical information. The other side

information, such as social or categorical information, is not used. GPR learns two

embeddings for each POI representation, incoming and outgoing influence, to explore the

wealth of information contained in consecutive check-ins.

The comparison with baselines allows us to verify whether the performance of the

recommendation is improved with the same number of trainable parameters as LightGCN,

i.e., not increasing the parameters like GPR. Note that we do not compare with Elmi et

al.’s work [37] due to the different research purposes. They focus on the next POI

recommendation. That is, the ground truth contains only the last POI in chronological

order of the target user.

5.4.3 Metrics

The experiment considered three widely adopted ranking metrics: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 ,

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , and 𝑁𝐷𝐶𝐺@𝑘 for the top𝑘 recommended POIs. The recommendation

results of each algorithm were compared with the ground-truth to calculate the

performance. For these three-evaluation metrics, larger values indicate better

performance.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 are two classic metrics for measuring the performance

62

of a recommendation system, where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 is the average of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑢𝑖@𝑘 ,

and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 is the average of 𝑅𝑒𝑐𝑎𝑙𝑙𝑢𝑖@𝑘 for all users. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑢𝑖@𝑘 and

𝑅𝑒𝑐𝑎𝑙𝑙𝑢𝑖@𝑘 represent the probability that the recommended top𝑘 items are relevant to

user 𝑢𝑖 ’s preference and that the items relevant to user 𝑢𝑖 ’s preferences are

recommended in the top-k list, respectively, defined as Eq. (5.9) and Eq. (5.10).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑢𝑖@𝑘 =
|𝑅𝑒𝑐𝐿𝑖𝑠𝑡𝑢𝑖

𝑘 ∩ 𝐺𝑇𝑢𝑖|

|𝑅𝑒𝑐𝐿𝑖𝑠𝑡𝑢𝑖
𝑘 |

 (5.9)

𝑅𝑒𝑐𝑎𝑙𝑙𝑢𝑖@𝑘 =
|𝑅𝑒𝑐𝐿𝑖𝑠𝑡𝑢𝑖

𝑘 ∩ 𝐺𝑇𝑢𝑖|

|𝐺𝑇𝑢𝑖|
 (5.10)

where 𝑅𝑒𝑐𝐿𝑖𝑠𝑡𝑢𝑖
𝑘 denotes user 𝑢𝑖 ’s topk recommended POIs, and 𝐺𝑇𝑢𝑖 is the ground-

truth for user 𝑢𝑖 (POIs in user 𝑢𝑖’s testing set).

Because the dataset is divided into training and testing sets, the average number of

ground truth POIs for target users in the testing set may be less than 𝑘, which results in

a theoretical maximum value of precision and recall lower than 1. Therefore, we

calculated the maximum precision and recall values for the two datasets. On the Gowalla

dataset, the theoretical maxima were Precision@5 =0.949, Recall@5 =0.736,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 =0.673, and 𝑅𝑒𝑐𝑎𝑙𝑙@10 =0.909. On the Yelp dataset, the theoretical

maximums were Precision@5 =0.789, Recall@5 =0.881, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 =0.483, and

Recall@10=0.961.

𝑁𝐷𝐶𝐺@𝑘 [23] [5] is the average of 𝑁𝐷𝐶𝐺𝑢𝑖@𝑘, which considers the position (i.e.,

rank) of the recommended items, as shown in Eq. (5.11). The metric gives a higher score

to the relevant items that appear at the top of the recommendation list than to those that

appear at the bottom.

𝑁𝐷𝐶𝐺𝑢𝑖@𝑘 =
𝐷𝐶𝐺𝑢𝑖@𝑘

𝐼𝐷𝐶𝐺𝑢𝑖@𝑘
 (5.11)

mailto:Precision@5=0.949
mailto:Recall@5=0.736,
mailto:Precision@5=0.841
mailto:Recall@5=0.581,
mailto:Recall@10=0.744.

63

where 𝐷𝐶𝐺𝑢𝑖@𝑘 is calculated using Eq. (5.12). 𝐼𝐷𝐶𝐺𝑢𝑖@𝑘 is the maximum and ideal

value of 𝐷𝐶𝐺𝑢𝑖@𝑘 , indicating that the hit items are ranked at the top of the

recommendation list.

𝐷𝐶𝐺𝑢𝑖@𝑘 =∑
2𝑏𝑖𝑛𝑖 − 1

𝑙𝑜𝑔2(𝑖 + 1)

𝑘

𝑖=1

(5.12)

where 𝑏𝑖𝑛𝑖 is a binary value: 1 if and only if the recommended POI at position 𝑖 hits

and 0 otherwise.

5.4.4 Hyperparameter Settings

Hyperparameters were tuned in the predefined ranges and set as shown in Table 5-3,

except for the hyperparameters of RankGeoFM. We used the same parameters of Liu et

al. [36] for RankGeoFM.

Hyperparameters for DBSCAN Algorithm

In our proposed GN-GCN model, the DBSCAN algorithm is adopted to cluster user

check-ins for active regions calculation. DBSCAN algorithm has two hyper-parameters

(𝑒𝑝𝑠 and 𝑚𝑖𝑛𝑃𝑡𝑠). We search 𝑒𝑝𝑠 from 0.25 to 2 with the interval 0.25 and 𝑚𝑖𝑛𝑃𝑡𝑠

from 2 to 5 with the interval 1. Finally, we find that 𝑒𝑝𝑠 equals to 1; 𝑚𝑖𝑛𝑃𝑡𝑠 equals to

2 has the best performance. To calculated active area neighbors, we adopt a threshold 𝜆,

introduced in Section 5.3.2. 𝜆 is grid searched from the range 0.25 to 1 with the interval

0.25, and finally we set 𝜆 equals to 0.75.

Hyperparameters for Recommendation Algorithms

The only trainable parameters in our model are the embedding of the user and POI at layer

0. We fix the embedding size as 64 and initialized the embedding by using a Gaussian

distribution with a mean of 0 and a standard deviation of 1𝑒−2 . The learning rate is

searched from {1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1} and we find that the learning rate equals to 1𝑒−2

64

has the best performance. The regularization coefficient 𝜇 is searched in the range

{1𝑒−6 , 1𝑒−5 , …,1𝑒−1 } and finally we set 𝜇 equals to 1𝑒−4 . We have another two

important hyper-parameters, 𝛼 and 𝛽 to balance the importance of check-ins and active

area neighbors. We adopt grid search in the range from 0 to 1 with the interval 0.25 and

find that 𝛼 equals to 0.5; 𝛽 equals to 1 has the best performance. We also set the

hyperparameters for the baseline algorithms by using the same strategy to reach the

optimal performance for a fair comparison.

5.4.5 Experimental Results

Table 5-4 and Table 5-5 show the experimental results on the Yelp and Gowalla datasets,

respectively. We abbreviate 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 as 𝑃@𝑘 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 as 𝑅@𝑘 , and

Table 5-3: Grid Search of Hyper-parameters. Grid Search of Hyper-parameters

Algorithms

Hyper-parameters setting
Hyper-parameter Search-range

 description
Adopted value

DBSCAN
[34]

𝑒𝑝𝑠 {0.25, 0.5, 0.75 , … , 2} 1 km
𝑚𝑖𝑛𝑃𝑡𝑠 {2, 3, 4, 5} 2

active area neighbor threshold 𝜆 {0.25, 0.5, 0.75 ,1} 0.75 km
LR-GCCF
[23],
LightGCN
[5],
GPR [3],
GN-GCN
(proposed)

embedding size same as Chen et al.
[23] and He et al. [5]

64

embedding
initialization

same as Chen et al.
[23] and He et al. [5]

Gaussian dist.
(Mean:0, SD:1𝑒−2)

learning rate {1𝑒−4,1𝑒−3,1𝑒−2,1𝑒−1

}
1𝑒−2

regularization
coefficient 𝜇

{1𝑒−6,1𝑒−5,…,1𝑒−1} 1𝑒−4

GN-GCN
(proposed)

check-in coefficient 𝛼 {0, 0.25, 0.5, 0.75, 1} 0.5
geographical
coefficient 𝛽

{0, 0.25, 0.5, 0.75, 1} 1

65

𝑁𝐷𝐶𝐺@𝑘 as 𝑁@𝑘 . The proposed methods with and without the nonlinear active

function mentioned in Section 5.3.3 and Section 5.3.4 are also compared, where GN-GCN

represents our method without the nonlinear active function, whereas GN-GCN+Active

represents the method with the nonlinear active function. The highest scores are noted

boldly. The maximum values other than those of our proposed models are underlined. We

adopt a two-tailed paired t-test to confirm the statistically significant improvement of our

proposed method over the baselines.

The results show that our proposed model obtains the highest performance for most

metrics. Our method successfully improves 𝑅𝑒𝑐𝑎𝑙𝑙@5 from 0.0453 to 0.0469 (3.53%)

Table 5-4: Evaluation Result on Yelp Dataset

Algorithms P@5 R@5 N@5 P@10 R@10 N@10
Baselines RankGeoFM[33] 0.0320 0.0304 0.0332 0.0273 0.0541 0.0300

LR-GCCF [23] 0.0286 0.0350 0.0342 0.0252 0.0519 0.0420
GPR [3] 0.0366 0.0382 0.0386 0.0321 0.0577 0.0345
LightGCN [5] 0.0385 0.0453 0.0468 0.0303 0.0562 0.0507

Proposed GN-GCN 0.0393* 0.0467* 0.0475+ 0.0311* 0.0590* 0.0523*
GN-
GCN+Active

0.0396* 0.0469* 0.0486* 0.0312* 0.0588* 0.0529*

* Statistically significant for p<0.01 when comparing with all baselines.
+ Statistically significant for p<0.05 when comparing with all baselines.

Table 5-5: Evaluation Result on Gowalla Dataset

Algorithm P@5 R@5 N@5 P@10 R@10 N@10
Baselines RankGeoFM[33] 0.0684 0.0479 0.0719 0.0559 0.0755 0.0622

LR-GCCF [23] 0.0640 0.0669 0.0721 0.0504 0.0762 0.0749
GPR [3] 0.0775 0.0580 0.0671 0.0640 0.0881 0.0613
LightGCN [5] 0.0760 0.0788 0.0859 0.0597 0.0865 0.0870

Proposed GN-GCN 0.0784* 0.0815* 0.0883* 0.0614* 0.0894* 0.0896*
GN-GCN+Active 0.0782* 0.0812* 0.0886* 0.0619* 0.0898* 0.0900*

* Statistically significant for p<0.01 when comparing with all baselines.

66

and 𝑅𝑒𝑐𝑎𝑙𝑙@10 from 0.0562 to 0.0590 (4.98%) on the Yelp dataset, while improving

𝑅𝑒𝑐𝑎𝑙𝑙@5 from 0.0788 to 0.0815 (3.43%) and 𝑅𝑒𝑐𝑎𝑙𝑙@10 from 0.0865 to 0.0898

(3.82%) on the Gowalla dataset, compared with LightGCN.

On both datasets, comparing GN-GCN+Active and GN-GCN, we cannot confirm a

statistically significant difference between GN-GCN+Active and GN-GCN, which

concludes that the nonlinear active function cannot affects the performance.

5.4.6 Discussion on the Number of Trainable Parameters

Same as LightGCN, the trainable parameters in our GN-GCN model are the

embeddings of users and items at layer 0, even with integrating geographical information.

Since we set the embedding size to 64, both the LightGCN model and our GN-GCN

model have 64*(M+N) trainable parameters, where M and N are the numbers of users and

items, respectively. On the contrary, the GPR model has more than 64*(M+2N) trainable

parameters, which does not include the trainable transformation matrixes (64*64) [3].

To further improve the performance of neural network recommendation systems,

integrating multiple information, such as geographical information, is potentially feasible.

However, integrating multiple information tends to introduce more trainable parameters,

making the model more difficult to train and reducing its practicability. Thus, keeping the

number of trainable parameters not increasing is indispensable. As shown in Table 5-4

and Table 5-5, although GPR integrates geographical information, 𝑁𝐷𝐶𝐺@10 is smaller

than LightGCN which does not integrate geographical information, which shows the

difficulty in training.

5.5 Conclusion

We proposed the GN-GCN model to mine users’ active areas and integrate

geographical information into GCNs in a lightweight manner by adopting a new concept

called active area neighbors. Our experimental evaluation confirms that our model

67

outperforms all the baselines. Compared with LightGCN, 𝑅𝑒𝑐𝑎𝑙𝑙@10 improves from

0.0562 to 0.0590 (4.98%) on the Yelp dataset and from 0.0865 to 0.0898 (3.82%) on the

Gowalla dataset.

68

6 EPT-GCN: Edge Propagation-based Time-aware

Graph Convolution Network for POI

Recommendation14

In this chapter, we introduce our Contribution 3, an edge propagation technique to

model time information. For POI recommendation, time information expresses users’

interest at different time slots of the day. How to model users’ time-based preference is

the key to integrating time information to graph convolution network (GCN) models.

Existing GCN-based techniques simply adopt time information by modeling users’ check-

in sequences, which is insufficient and ignores users’ time-based high-order connectivity.

Note that time-based high-order connectivity refers to the relationship between indirect

neighbors with similar preferences in the same time slot. In this paper, we propose a new

time-aware GCN model to extract rich collaborative signals contained in time information.

Our work is the first to divide user check-ins into multiple subgraphs, i.e., time slots,

based on time information. We further propose an edge propagation module to adjust edge

affiliation, where edges represent check-ins, to propagate the user’s time-based preference

to multiple time slots. The propagation module is based on an unsupervised learning

algorithm and does not require additional ground-truth labels. This work is the first to cast

time slots into multiple subgraphs to improve POI recommendation accuracy. After

modeling time information, we further combine time and geographical information to

jointly assist the GCN in filtering high-order collaborative signals.

6.1 Introduction

In addition to geographical information, time information is also an important side

information for improving POI recommendation performance. To combine time

14 This chapter is based on “EPT-GCN: Edge propagation-based time-aware graph convolution network for POI
recommendation”[69], by the same authors, which appeared in Neurocomputing, 543, 126272, pp. 1-15, 2023.
Copyright(c) 2023.

69

information with GCN, similar to IMP-GCN [2], a subgraph technique is well-matched

with time slot disentanglement to solve the problem of learning unique time-based

embeddings for users and items. A simple method is to divide the edges (check-ins) into

individual subgraphs (time slots) according to timestamps, e.g., four 6-hour intervals over

24 hours; however, a monotonous subgraph division has drawbacks. Monotonous

subgraph division cannot propagate the learned time preference features over multiple

time slots because the subgraphs are constructed in advance, and there is no

reconstruction module to transmit the time-based preference. In Figure 6-1, for example,

say a preference feature has been extracted that both the target user and user A prefer to

check in at Chinese restaurant B at lunchtime. At the same time, another preference

feature has been extracted in a different subgraph: user A visits the same restaurant B at

dinner time. Although the target user has no experience checking in to restaurant B for

dinner, we could infer that it is a good choice. The transmitted edge is indicated by the

red dotted line in Figure 6-1. Therefore, an edge-based (check-in-based) propagation and

subgraph reconstruction mechanism are important for automatically transmitting users’

time-based preferences. However, existing node-based subgraph construction techniques

cannot be directly applied to POI time information mining. In IMP-GCN [2], each node

(user or item) is clustered into one subgraph by an unsupervised learning module.

However, a POI can have multiple suitable time slots for the target user to check in. In

this paper, we propose an edge propagation module to repartition user check-ins and

reconstruct subgraphs based on the similarity between the learned users’ high-order time

slot embeddings and the POI’s initial layer embedding. Unlike IMP-GCN, our method is

an edge-oriented (check-in-oriented) algorithm that does not focus on nodes.

70

(a) without transmitting users’ time-based preferences

(b) transmitting users’ time-based preferences

Figure 6-1: Example of check-in-based propagation to transmit users’ time-based
preferences.

The contributions of this chapter can be summarized as follows:

- To better exploit time information, we are the first to combine time information with

the GCN subgraph technique for POI recommendation, namely, subgraph mining GCN

(SGM-GCN).

- We propose a trainable diagonal matrix and attention mechanism to compute the

disentangled embeddings of users and POIs for each time slot.

71

- We propose a novel edge sampling-based propagation algorithm to adjust the

subgraph structure to improve the propagation ability of the SGM-GCN.

The remainder of this paper is organized as follows. In Section 6.2, we present the

notations used in this chapter. Our main idea, including the structure of the model, is

described in Section 6.3, followed by the experiment in Section 6.4, where we introduce

the dataset and compare the results with those of state-of-the-art models. Finally, the

conclusions of this contribution are presented in Section 6.5.

6.2 Preliminary

Table 6-1: Notations

Notation Definition
 𝑈 Set of users in the dataset, where 𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑀}
𝑃 Set of POIs in the dataset, where 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁}

𝑙𝑎𝑡𝑝𝑗 , 𝑙𝑜𝑛𝑝𝑗 Geographical latitude and longitude coordinates of POI 𝑝𝑗
𝐶𝑢𝑖 User 𝑢𝑖’s check-in logs, where 𝐶𝑢𝑖 = {(𝑝𝑗, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)|𝑢𝑖 ∈

𝑈, 𝑝𝑗 ∈ 𝑃, 𝑢𝑖 checked 𝑝𝑗}
𝒢𝑡 = (𝑈, 𝑃, ℰ𝑡) User-POI check-in subgraph for time slot 𝑡

ℰ𝑡 Edge set for time slot 𝑡 in subgraph 𝒢𝑡
𝑇 Set of time slots, where 𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡|𝑇|}
𝒢 Set of user-POI check-in subgraphs, where 𝒢 =

{𝒢1, 𝒢2, 𝒢3, … , 𝒢|𝑇|}
𝜀𝑢𝑖, 𝑝𝑗 Edge in 𝒢, where the two ends are user 𝑢𝑖 and POI 𝑝𝑗
𝐶𝑁𝑢𝑖

𝑡 Extracted set of user 𝑢𝑖’s check-in neighbors at time slot 𝑡
𝐶𝑁𝑝𝑗

𝑡 Extracted set of neighbor users that checked POI 𝑝𝑗 at time slot
𝑡

𝐶𝑁𝑢𝑖 User 𝑢𝑖’s check-in neighbors in the entire check-in set 𝐶𝑢𝑖
𝐶𝑁𝑝𝑗 Set of neighbor users that checked POI 𝑝𝑗 in 𝐶
𝒆𝑢𝑖
𝐼𝑛𝑖𝑡 User 𝑢𝑖’s embedding at initial layer
𝒆𝑝𝑗
𝐼𝑛𝑖𝑡 POI 𝑝𝑗’s embedding at initial layer

𝒆𝑢𝑖
(𝑡,𝑘)

User 𝑢𝑖’s embedding at layer k for subgraph 𝒢𝑡

72

In this section, we summarize the notations used in this chapter in Table 6-1. Note that

all of the embeddings of users and POIs have the same size of ℝ1×𝐷, where 𝐷 means

embedding size.

6.3 Proposed Method

This section proposes three new time-aware GCNs for POI recommendation: 1) time-

aware subgraph mining GCN (SGM-GCN), 2) edge propagation-based time-aware GCN

(EPT-GCN), and 3) EPT-GCN+Geo, which integrates EPT-GCN with geographical

information.

6.3.1 Overview

Previous time-aware POI recommendation models [3] [4] successfully extracted time-

related user and POI features to improve the performance of POI recommendation;

however, they struggle to mine users’ time-based high-order connectivity, i.e., the

relationship among time slots, even adopting state-of-the-art GCN models. Our idea to

tackle the above problem is to adopt subgraph models [2] [52] [53] but to modify the

𝒆𝑝𝑗
(𝑡,𝑘)

POI 𝑝𝑗’s embedding at layer k for subgraph 𝒢𝑡

𝒆𝑢𝑖
𝑡 Learned user 𝑢𝑖’s time slot embedding for subgraph 𝒢𝑡
𝒆𝑝𝑗
𝑡 Learned POI 𝑝𝑗’s time slot embedding for subgraph 𝒢𝑡

𝒆𝑢𝑖
𝑇𝑖𝑚𝑒 Learned user 𝑢𝑖’s time embedding, calculated from 𝑒𝑢𝑖

1 ,

𝑒𝑢𝑖
2 , …, 𝑒𝑢𝑖

|𝑇|

𝒆𝑝𝑗
𝑇𝑖𝑚𝑒 Learned POI 𝑝𝑗’s time embedding, calculated from 𝑒𝑝𝑗

1 ,

𝑒𝑝𝑗
2 , …, 𝑒𝑝𝑗

|𝑇|

𝒆𝑢𝑖 Final learned embedding of user 𝑢𝑖
𝒆𝑝𝑗 Final learned embedding of POI 𝑝𝑗
𝑟𝑢𝑖,𝑝𝑗̂ Predicted preference score of user 𝑢𝑖 for POI 𝑝𝑗, where 𝑝𝑗 is

user 𝑢𝑖’s unchecked POI

73

subgraph construction method to propagate users’ time-based preferences to multiple time

slots, where preference is reflected as check-ins.

Our proposed time-aware subgraph mining GCN (SGM-GCN) in Section 6.3.2 enables

the extraction of user time-based high-order connectivity by partitioning users’ edges

(check-ins) into multiple time slots and constructing multiple subgraphs. Then, time-

aware collaborative signals are propagated in different subgraphs and contribute to

learning the embeddings of users and POIs in that time slot. Following SGM-GCN, we

propose the edge propagation-based time-aware GCN (EPT-GCN) to propagate the edges

(check-ins) and reconstruct subgraphs in Section 6.3.3; thereby we could reduce the loss

of information, such as implicit feedback, including clicks and check-ins. Finally, we

integrate geographical distance into the EPT-GCN to construct GCT-GCN+Geo in

Section 6.3.4. After learning the embeddings of users and POIs, we adopt inner product

similarity to calculate the prediction score to recommend the top k items to a target user.

6.3.2 Time-aware Subgraph Mining Graph Convolution Network

(SGM-GCN)

The basic idea of time-aware subgraph mining GCN (SGM-GCN) is to learn the

disentangled embeddings of users and POIs in different time slots through a graph

convolution operation on the corresponding subgraph. Our proposed SGM-GCN enables

the extraction of user time-based high-order connectivity by partitioning user check-ins

into multiple time slots. When constructing the subgraph, the user’s check-in time is used

hourly. We partition 24 hours into a set of time slots with equal intervals, e.g., 6 hours,

with a one-to-one correspondence between the time slot and subgraph. The subgraph of

time slot 𝑡 (𝒢𝑡) consists of a set of user nodes (U), POI nodes (P), and edges in time slot

𝑡 (ℰ𝑡), written as 𝒢𝑡 = (𝑈, 𝑃, ℰ𝑡) Unlike previously proposed node-based subgraph

construction techniques [2], we adopt an edge-based subgraph technique, enabling an

edge to appear in multiple subgraphs to generalize users’ time-based preferences to

multiple time slots. Finally, we obtain a set of subgraphs, each with a different set of edges.

74

Figure 6-2 shows the overall architecture of the SGM-GCN model, including the graph

convolution layer, attention layer, and prediction-making step. First, the SGM-GCN

model initializes the embeddings of users and POIs (𝑒𝑢𝑖
(𝑖𝑛𝑖𝑡) and 𝑒𝑝𝑗

(𝑖𝑛𝑖𝑡)) using a

Gaussian distribution. Because we assign an initialized embedding (𝑒𝑢𝑖
(𝑖𝑛𝑖𝑡) and 𝑒𝑝𝑗

(𝑖𝑛𝑖𝑡))

to each user and POI, 𝑖 is in the range of 0 to 𝑀− 1, while 𝑗 in the range of 0 to 𝑁 −

1, where 𝑀 and 𝑁 are user number and POI number in dataset, respectively. Second,

user (POI) nodes aggregate information from check-ins and output time slot embeddings

𝑒𝑢𝑖
𝑡 (𝑒𝑝𝑗

𝑡) for the subgraph 𝒢𝑡. The attention layer mines the importance of time slots to

represent user preferences and finally integrates users’ (POIs’) time embeddings into the

final embedding representations 𝑒𝑢𝑖 (𝑒𝑝𝑗).

Figure 6-2: Architecture of SGM-GCN model.

For a subgraph 𝒢𝑡 with edges ℰ𝑡 at each layer 𝑘 , information is aggregated from

neighboring nodes and is output as learned embeddings 𝑒𝑢𝑖
(𝑡,𝑘+1) and 𝑒𝑝𝑗

(𝑡,𝑘+1) . Our

subgraph mining enables us to mine the importance of embedding dimensions over

different time slots by proposing a diagonal importance matrix 𝑰𝒕 for time slot 𝑡, where

75

only the diagonal elements are nonzero, shown in Eq. (6.1).

𝑰𝑡 = (

𝜃𝑡
1 0 ⋯ 0

0 𝜃𝑡
2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜃𝑡

𝐷

)

(6.1)

where 𝜃𝑡𝑑 is the 𝑑 − 𝑡ℎ trainable element in the matrix 𝑰𝑡 ∈ ℝ𝐷×𝐷. As shown in Figure

6-3, a diagonal importance matrix is prepared for each time slot. In a subgraph, the

importance matrix is shared between users and POIs and between multiple layers.

Following the embedding size setting of related GCN models [5] [11] [33], user and POI

embeddings have the same embedding size 𝐷. Therefore, sharing the importance matrix

can be applied to generate disentangled embeddings by time slot units.

The propagation rule between the graph convolution layers is expressed by Eq. (6.2).

Note that 𝑒𝑢𝑖
(𝑡,1) (𝑒𝑝𝑗

(𝑡,1)) is calculated from 𝑒𝑝𝑗
(𝑖𝑛𝑖𝑡) (𝑒𝑢𝑖

(𝑖𝑛𝑖𝑡)).

𝒆𝑢𝑖
(𝑡,𝑘+1)

= ∑
1

√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗|

𝒆𝑝𝑗
(𝑡,𝑘)

𝑰𝑡

𝑝𝑗∈𝐶𝑁𝑢𝑖
𝑡

 (6.2)

𝒆𝑝𝑗
(𝑡,𝑘+1)

= ∑
1

√|𝐶𝑁𝑝𝑗| ∗ |𝐶𝑁𝑢𝑖|

𝒆𝑢𝑖
(𝑡,𝑘)

𝑰𝑡

𝑢𝑖∈𝐶𝑁𝑝𝑗
𝑡

where 1/√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗| is a normalized discount factor controlling the amount of

aggregated information from a neighbor node, 𝐶𝑁𝑢𝑖
𝑡 is defined as user 𝑢𝑖’s checked POIs

set at time slot 𝑡, |𝐶𝑁𝑢𝑖| shows the number of POIs checked by user 𝑢𝑖 in the entire

check-in set 𝐶𝑢𝑖, and 𝑰𝑡 is an importance matrix with trainable diagonal elements and 0

in the remaining positions.

After obtaining the output of each layer, we adopt a weighted summation operation to

76

calculate the user and POI time slot embeddings 𝒆𝑢𝑖
𝑡 and 𝒆𝑝𝑗

𝑡 , shown in Eq. (6.3).

𝒆𝑢𝑖
𝑡 =∑𝛼𝑘

𝐾

𝑘=1

𝒆𝑢𝑖
(𝑡,𝑘)

， 𝒆𝑝𝑗
𝑡 =∑𝛼𝑘

𝐾

𝑘=1

𝒆𝑝𝑗
(𝑡,𝑘)

(6.3)

where 𝛼𝑘 = 1/(𝑘 + 1) , indicating that the importance of layer-outputted embeddings

decreases as the number of layers increases.

As users may have multiple active time slots [55], each time slot has different degrees

of importance to the user. Here, an attention layer is used to obtain the time embeddings

of users, with the architecture shown in Figure 6-4. The attention layer of POIs has the

same architecture as that of the users. After passing through multiple MLP layers,

important factors are generated as Eq. (6.4).

𝛽𝑢𝑖
𝑡 ′ = 𝑽𝑢

2𝑇(tanh (𝑾𝑢
1𝒆𝑢𝑖

𝑡 𝑇 + 𝒃𝑢))
(6.4)

𝛽𝑝𝑗
𝑡 ′ = 𝑽𝑝

2𝑇(tanh (𝑾𝑝
1𝒆𝑝𝑗
𝑡 𝑇 + 𝒃𝑝))

Figure 6-3: Leaning disentangled embeddings with importance matrix.

77

where 𝑾𝑢
1 , 𝑾𝑝

1 ∈ ℝ𝐷×𝐷 ; 𝑽𝑢2 , 𝑽𝑝2 ∈ ℝ𝐷×1 are trainable matrices and vectors for

dimensional transformation; 𝑏𝑢, 𝑏𝑝 ∈ ℝ𝐷×1 are trainable bias vectors; and 𝐷 is the

embedding size, which is set as a hyperparameter. In the first layer of the transformation,

we adopt the widely used hyperbolic tangent activation function tanh(𝑥) =

exp(𝑥)−exp (−𝑥)

exp(𝑥)+exp (−𝑥)
, the same as Jiang et al.’s work [56].

The proposed attention mechanism requires normalization to generate the final

importance factors, formulated as Eq. (6.5).

𝛽𝑢𝑖
𝑡 =

exp (𝛽𝑢𝑖
𝑡 ′)

∑ exp (𝛽𝑢𝑖
𝑡′ ′)𝑡′=|𝑇|

𝑡′=1

 , 𝛽𝑝𝑗
𝑡 =

exp (𝛽𝑝𝑗
𝑡 ′)

∑ exp (𝛽𝑝𝑗
𝑡′ ′)𝑡′=|𝑇|

𝑡′=1

(6.5)

The output time embeddings (𝒆𝑢𝑖
𝑇𝑖𝑚𝑒 and 𝒆𝑝𝑗

𝑇𝑖𝑚𝑒) are calculated by multiplying the

learned importance factors and time slot embeddings, as shown in Eq. (6.6). After

exploiting high-order time-aware connectivity, we adopt a simple summation to generate

the final embeddings of nodes (users and POIs), formulated as Eq. (6.7).

𝒆𝑢𝑖
𝑇𝑖𝑚𝑒 =∑𝛽𝑢𝑖

𝑡

|𝑇|

𝑡=1

𝒆𝑢𝑖
𝑡 , 𝒆𝑝𝑗

𝑇𝑖𝑚𝑒 =∑𝛽𝑝𝑗
𝑡

|𝑇|

𝑡=1

𝒆𝑝𝑗
𝑡

(6.6)

Figure 6-4: Architecture of user’s attention layer

78

𝒆𝑢𝑖 = 𝒆𝑢𝑖
𝐼𝑛𝑖𝑡 + 𝒆𝑢𝑖

𝑇𝑖𝑚𝑒 , 𝒆𝑝𝑗 = 𝒆𝑝𝑗
𝐼𝑛𝑖𝑡 + 𝒆𝑝𝑗

𝑇𝑖𝑚𝑒 . (6.7)

To predict the user preference score for a candidate unchecked POI, inner product

similarity is a suitable metric, as used in related works [23] [5] [2]. In our work, we also

used inner product similarity as the final output of the model. The inner product similarity

causes each dimension of the two embeddings bitwise multiply and accumulate, as shown

in Eq. (6.8).

𝑟𝑢𝑖,𝑝𝑗̂ = 𝒆𝑢𝑖
𝑇𝒆𝑝𝑗 . (6.8)

Based on the preference scores, we rank the candidate POIs and recommend the top 𝑘

POIs as results for the target user.

6.3.3 Edge Propagation-based Time-aware Graph Convolution

Network (EPT-GCN)

Edge (check-in) propagation-based time-aware GCN (EPT-GCN) adds a propagation

module based on SGM-GCN with the architecture as shown in Figure 6-5. The basic idea

of EPT-GCN is to propagate a user’s check-ins to multiple time slots and reconstruct

subgraphs to reduce the loss of information. For a checked POI, we aim to find multiple

suitable time slots for the target user. To achieve this, for a checked POI 𝑝𝑗, we calculate

the target user’s time-based preference score for POI 𝑝𝑗 in each time slot, followed by

calculating the average preference score. We extract the time slots with above-average

preference scores and set these time slots as “suitable” for the target user to check POI

𝑝𝑗.

79

Figure 6-5: Architecture of EPT-GCN model.

Our proposed edge propagation module is executed in each training epoch to reduce

the risk of over-smoothing. The variance of the final learned user (item) embeddings

increased from 0.545 (0.423) to 0.752 (0.500) on the New York dataset and increased

from 0.217 (0.104) to 0.356 (0.178) on the Gowalla dataset, compared with LightGCN

[5]. In edge propagation, we sample 𝑠 edges (e.g., 1
25
 of all edges in 𝒢) and cluster them

into subgraphs based on the similarity between users’ high-order time slot embeddings

and POIs’ initial embeddings. A higher similarity indicates a higher preference score.

Because the two ends of an edge (check-in) are a user and POI, we can simply estimate

the preference by calculating the similarity of these two ends (𝒆𝑢𝑖
𝑡 and 𝒆𝑝𝑗

𝐼𝑛𝑖𝑡). Edges

(check-ins) are propagated to subgraphs (time slots) with a similarity higher than the

average score, as shown in Eq. (6.9), based on which we reconstruct subgraph 𝒢𝑡. For

example, assume that there are four time slots. The similarity between a target user’s high-

order time slot embeddings and a supermarket’s initial embedding is 0.1, 0.5, 0.4, and 0.2

for the four time slots, respectively. Therefore, the average score is 0.3. Then, the target

user’s check-in for the supermarket will be propagated to time slot-2 and time slot-3,

80

which means that the supermarket is suitable for the target user to check in both time slot-

2 and time slot-3.

ℰ𝑡 = {
𝜀𝑢𝑖, 𝑝𝑗| 𝑠𝑖𝑚𝑢𝑖, 𝑝𝑗

𝑡 > 𝑎𝑣𝑔𝑢𝑖, 𝑝𝑗
, 𝜀𝑢𝑖, 𝑝𝑗 is sampled from edges in 𝒢

} (6.9)

where ℰ𝑡 denotes all edges of subgraph 𝒢𝑡 , used to reconstruct the subgraph. 𝜀𝑢𝑖, 𝑝𝑗

denotes that an edge in 𝒢 connecting user 𝑢𝑖 and POI 𝑝𝑗 , not related to time slot 𝑡 ;

𝑠𝑖𝑚𝑢𝑖, 𝑝𝑗
𝑡 means the inner product similarity between user 𝑢𝑖 ’s high-order time slot

embedding and POI 𝑝𝑗’s initial embedding, calculated using Eq. (6.10); and 𝑎𝑣𝑔𝑢𝑖, 𝑝𝑗 is

obtained by calculating the average similarity, as shown in Eq. (6.11).

𝑠𝑖𝑚𝑢𝑖, 𝑝𝑗
𝑡 = 𝒆𝑢𝑖

𝑡 𝑇𝒆𝑝𝑗
𝐼𝑛𝑖𝑡 (6.10)

𝑎𝑣𝑔𝑢𝑖, 𝑝𝑗 =
∑ 𝑠𝑖𝑚𝑢𝑖, 𝑝𝑗

𝑡′|𝑇|
𝑡′=1

|𝑇|

(6.11)

Note that the proposed technique is an unsupervised module, so it does not require

additional ground-truth label assistance. After training the first epoch to generate the

underlying time slot embeddings, the propagation module is activated. Simultaneously,

the sampled edges with similar intent are propagated to the appropriate time slots,

affecting the aggregation path of information in the next epoch.

6.3.4 Combination of EPT-GCN with Geographical Information (EPT-

GCN+ Geo)

We combine time and geographical information to jointly assist the GCN in filtering

high-order collaborative signals; thereby, we can improve the performance of POI

recommendation, where such a combination has been experimentally confirmed to

improve performance [3] [4].

81

To integrate the geographical information, we simplify our technique proposed in work

[57] of mining geographical information, which calculates the active area neighbors of

users and POIs. We first adopt the DBSCAN algorithm [34] to cluster user 𝑢𝑖’s visited

POIs based on the latitude and longitude of the POIs, followed by calculating the user’s

active areas 𝐴𝑢𝑖 in the same city. It should be noted that a user may have multiple active

areas. Compared with the technique introduced in Chapter 5, we simplify the

geographical distance similarity between user and POI as the shortest distance between

the user’s active areas and the POI, as Eq. (6.12).

𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖,𝑝𝑗 =
1

min (𝑑𝑖𝑠(𝐴𝑢𝑖 , 𝑝𝑗))
 (6.12)

𝑑𝑖𝑠(𝐴𝑢𝑖 , 𝑝𝑗) = {𝑔𝑒𝑜𝑑𝑖𝑠(𝑎𝑢𝑖,𝑚
𝑐 , 𝑝𝑗)|𝑎𝑢𝑖,𝑚 ∈ 𝐴𝑢𝑖}

where 𝑔𝑒𝑜𝑑𝑖𝑠() is a function which receives two real-value geographical coordinates

(latitude: [-90, 90], longitude: [-180, 180]) and outputs a real-value number ([0, 40075],

40075 means the longest distance between two points on Earth in km), representing the

distance between two points on Earth in radians; 𝑎𝑢𝑖,𝑚
𝑐 indicates the center of latitude

and longitude of POIs located in user 𝑢𝑖’s active area 𝑎𝑢𝑖,𝑚, as shown in Eq. (6.13).

𝑎𝑢𝑖,𝑚
𝑐 = (𝑎𝑣𝑔∀𝑝𝑗𝜖𝑎𝑢𝑖,𝑚

(𝑙𝑎𝑡𝑝𝑗) , 𝑎𝑣𝑔∀𝑝𝑗𝜖𝑎𝑢𝑖,𝑚
(𝑙𝑜𝑛𝑝𝑗))

(6.13)

where 𝑎𝑣𝑔() is the function used to calculate the average.

After calculating the geographical distance similarity, we rewrite the aggregation

function shown in Eq. (6.2) to apply it to the integration of geographical information,

formulated as Eq. (6.14).

82

𝒆𝑢𝑖
(𝑡,𝑘+1) = ∑

(

 𝛾 ∗
1

√|𝐶𝑁𝑢𝑖| ∗ |𝐶𝑁𝑝𝑗|

𝒆𝑝𝑗
(𝑡,𝑘) +

𝑝𝑗∈𝐶𝑁𝑢𝑖
𝑡

(1 − 𝛾) ∗
𝑠𝑢𝑖,𝑝𝑗

√|𝐶𝑁𝑢𝑖|

𝒆𝑝𝑗
(𝑡,𝑘)

)

 𝑰𝑡

= ∑
1

√|𝐶𝑁𝑢𝑖|(

𝛾

√|𝐶𝑁𝑝𝑗|

+ (1 − 𝛾) 𝑠𝑢𝑖,𝑝𝑗

)

 𝒆𝑝𝑗
(𝑡,𝑘)𝑰𝑡

𝑝𝑗∈C𝑁𝑢𝑖
𝑡

(6.14)

𝒆𝑝𝑗
(𝑡,𝑘+1)

= ∑

(

 𝛾 ∗
1

√|𝐶𝑁𝑝𝑗| ∗ |𝐶𝑁𝑢𝑖|

𝒆𝑢𝑖
(𝑡,𝑘) +

𝑢𝑖∈𝐶𝑁𝑝𝑗
𝑡

(1 − 𝛾) ∗
𝑠𝑢𝑖,𝑝𝑗

√|𝐶𝑁𝑝𝑗|

𝒆𝑢𝑖
(𝑡,𝑘)

)

 𝑰𝑡

= ∑
1

√|𝐶𝑁𝑝𝑗|(

𝛾

√|𝐶𝑁𝑢𝑖|

+ (1 − 𝛾)𝑠𝑢𝑖,𝑝𝑗

)

 𝒆𝑢𝑖
(𝑡,𝑘)𝑰𝑡

𝑢𝑖∈C𝑁𝑝𝑗
𝑡

where 𝛾 is a hyperparameter which controls the balance of the weight of check-in

information and geographical information, ranging from 0 to 1. Following previous work

[57], 𝑠𝑢𝑖,𝑝𝑗 is calculated from a min-max normalization operation on the similarity

𝑠𝑖𝑚_𝑔𝑒𝑜, as shown in Eq. (6.15).

83

𝑠𝑢𝑖,𝑝𝑗 =
𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖,𝑝𝑗 −min(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖)

max(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖) − min(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖)

(6.15)

where 𝑚𝑎𝑥(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖) and 𝑚𝑖𝑛(𝑠𝑖𝑚_𝑔𝑒𝑜𝑢𝑖) indicate the maximum and minimum

values of the geographical distance similarity between user 𝑢𝑖 and the checked POIs in

𝐶𝑢𝑖, respectively.

6.3.5 Model Training

We adopt Bayesian personalized ranking (BPR) loss, formulated as Eq. (6.16), as same

as related rank-oriented recommendation studies [23] [5] [58] [59], to optimize the

proposed model. BPR loss with positive and negative sampling mechanisms ranks

positive cases higher than negative ones. A positive case means an observed user check-

in to a POI, and a negative case means unobserved counterparts. Thus, POIs that have

more similar embeddings to the target user’s embedding will be recommended to the

target user.

𝐿𝐵𝑃𝑅 = − ∑ ∑ ∑ 𝑙𝑛𝜎(𝑟𝑢𝑖,𝑝𝑗̂ − 𝑟𝑢𝑖,𝑝𝑘̂)

𝑝𝑘𝜖 𝑃−𝐶𝑁𝑢𝑖𝑝𝑗𝜖𝐶𝑁𝑢𝑖

𝑀

𝑢𝑖=1

+ 𝜇‖𝜔‖2
2

(6.16)

where 𝑟𝑢𝑖,𝑝𝑗̂ indicates the predicted preference score for the positive case (user 𝑢𝑖 to POI

𝑝𝑗), 𝑟𝑢𝑖,𝑝𝑘̂ is the predicted preference score for a negative case (user 𝑢𝑖 to POI 𝑝𝑘),

𝑃 − 𝐶𝑁𝑢𝑖 denotes a residual set after removing check-in neighbors 𝐶𝑁𝑢𝑖 from the global

POI set 𝑃, 𝑀 is the number of users in the dataset. 𝜔 denotes all trainable parameters

in the model, and 𝜇 controls the strength of ℓ2 regularization to avoid overfitting.

6.3.6 Time Complexity Analysis

The time complexity for training our model and state-of-the-art baselines is analyzed

in this section. As lightweight GCN models, the execution time of LightGCN and LR-

84

GCCF mainly consists of gathering information from neighboring nodes, where the time

complexity of LightGCN and LR-GCCF can be analyzed as 3|𝑅+|𝐷2, with |𝑅+| as the

number of non-zero entities in the check-in matrix 𝑅 and 𝐷 indicates the embedding

size, because the model adopts 3 graph convolution layers and the time complexity for

each layer is |𝑅+|𝐷2 . IMP-GCN [2] has an additional subgraph construction module

based on the structure of lightweight models (LightGCN and LR-GCCF). Therefore, the

time complexity is calculated as 3|𝑅+|𝐷2 + 2(𝑀 + 𝑁)𝐷 ∗ 𝐷2 = 3|𝑅+|𝐷2 + 2(𝑀 +

𝑁)𝐷3. 𝑀 and 𝑁 are the user and POI numbers, respectively.

Table 6-2: Time complexity of proposed EPT-GCN and baselines

Algorithms Time Complexity for Pre-
process

Time Complexity for Model
Training

LR-GCCF [23],
LightGCN [5]

 3|𝑅+|𝐷2

IMP-GCN [2] 3|𝑅+|𝐷2 + 2(𝑀 + 𝑁)𝐷3

SGM-GCN (proposed) |𝑇||𝑅+| 3|𝑅+|𝐷2 + (𝑀 +𝑁)𝐷3

EPT-GCN+Geo
(proposed)

|𝑇||𝑅+| + 𝑀𝑁 4|𝑅+|𝐷2 + (𝑀 +𝑁)𝐷3

In SGM-GCN, a pre-process is adopted to partition the edges into multiple time slots,

which slightly increases the time complexity by |𝑇||𝑅+| , where |𝑇| indicates the

number of time slots. At the model training step, because SGM-GCN adopts an attention

mechanism, we calculate the time complexity to generate node embeddings as

3|𝑅+|𝐷2 + (𝑀 + 𝑁)𝐷3 . EPT-GCN also adds an edge-based propagation module,

needing another |𝑅+|𝐷2, so the overall time complexity for model training is estimated

as 3|𝑅+|𝐷2 + (𝑀 + 𝑁)𝐷3 + |𝑅+|𝐷2 = 4|𝑅+|𝐷2 + (𝑀 + 𝑁)𝐷3 . Using geographical

information does not increase the training time complexity. However, the adoption of

geographical information leads to unavoidably pre-calculate the distance between users

and POIs, introducing the time complexity by 𝑀𝑁. Thus, the time complexity for pre-

process increases to |𝑇||𝑅+| + 𝑀𝑁, which is much smaller than the model training time

85

complexity. The results of the time complexity analysis are summarized in Table 6-2.

6.3.7 Model Size Analysis

This section analyzes the sizes of our proposed model and other state-of-the-art

baselines. For LightGCN and LR-GCCF, the models use (𝑀 + 𝑁)𝐷 trainable parameters,

where 𝑀 and 𝑁 represent the numbers of users and POIs, respectively, and 𝐷 indicates

the embedding size. The node clustering module in IMP-GCN requires additional

transformation weight matrices and bias vectors, which constitute an additional 2𝐷2 +

2𝐷 parameters. Therefore, the model size of IMP-GCN is (𝑀 + 𝑁)𝐷 + 2𝐷2 + 2𝐷 .

Same to IMP-GCN, in our SGM-GCN model, the attention mechanism increases the

parameters by 2𝐷2 + 2𝐷. The overall model size of SGM-GCN is (𝑀 + 𝑁)𝐷 + 2𝐷2 +

2𝐷. The adoption of geographical information does not cause any increase in the number

of trainable parameters. The model size analysis results are summarized in Table 6-3.

6.4 Experimental Evaluation

This section introduces the experimental evaluations and results on two real POI

datasets. We compared the three proposed models, SGM-GCN, EPT-GCN, and EPT-

GCN+Geo, with baselines.

6.4.1 Datasets

We chose two public datasets consisting of geographical and time information: the

Gowalla dataset collected by Liu et al. [36] and the New York dataset collected by Liu et

Table 6-3: Model sizes of proposed EPT-GCN and baselines

Algorithms Model Size
LR-GCCF [23], LightGCN [5] (𝑀 + 𝑁)𝐷
IMP-GCN [2] (𝑀 + 𝑁)𝐷 + 2𝐷2 + 2𝐷
EPT-GCN+Geo (proposed) (𝑀 + 𝑁)𝐷 + 2𝐷2 + 2𝐷

86

al. [60]. The Gowalla dataset covers worldwide check-in information, while the New York

dataset consists of check-in information in New York City retrieved from Weeplace. Note

that different from Chapter 5, we omitted the use of the famous Yelp dataset [36], which

has been used in many POI recommendation studies, because the Yelp dataset does not

have exact hourly information for each check-in, making it impossible to apply the time

slot technique.

 The datasets were preprocessed using the same approach as Liu et al. [36] and Section

5.4.1, filtering out users with fewer than 15 check-in POIs and POIs with fewer than 10

user check-ins. After preprocessing, the Gowalla dataset contained 18,737 users, 32,510

POIs, and 1,278,274 check-ins, with a sparsity of 99.87% for the user-item check-in

matrix. The New York dataset contained 654,054 check-ins by 3,286 users and 6,369 POIs,

with a sparsity of 96.87%. Table 6-4 summarizes the statistics of the datasets. Same as

Liu et al.’s work, we set the earliest 70% of check-ins as a training set to predict the latest

20% of check-ins (testing set), and the remaining 10% was used as a tuning set.

6.4.2 Baselines

We compared our proposed methods15 with the six state-of-the-art baselines described

below.

1) RankGeoFM [33]: RankGeoFM [33] is based on factorization machines, a state-of-

the-art MF-based model. The detail has been described in Section 0, which is not repeated

here to avoid redundancy.

15 https://github.com/bakubonmo/Rec

Table 6-4: Dataset statistics

Dataset Number of
users

Number of
items

Number of
check-ins

Sparsity

Gowalla 18,737 32,510 1,278,274 99.87%
New York 3,286 6,369 654,054 96.87%

87

2) LR-GCCF [23]: LR-GCCF is a linear model used to form a residual network,

described in Section 0.

3) LightGCN [5]: LightGCN removes the self-connection to simplify the model,

described in Section 0.

4) GPR [3]: GPR integrates geographical information into GCN, where each POI is

assigned two trainable embeddings to represent, same as Section 0.

5) GNN-POI [4]: GNN-POI integrates various side information into POI

recommendations. A complex nonlinear network structure with consecutive check-ins,

social information, and geographical information is used to learn the unique embeddings

of nodes (users and POIs). Same as GPR, the time information is reflected in consecutive

check-ins. In this experiment, we omitted the social part of GNN-POI to keep the side

information used consistently because our model only uses time and geographical

information.

6) IMP-GCN [2]: IMP-GCN is a state-of-the-art subgraph-based GCN model for

recommendation systems. High-order neighboring users with no common interests are

filtered through a node clustering technique composed of three MLP layers. Because our

method also adopts the subgraph technique, compared with IMP-GCN, we can verify

whether the performance of our time-aware GCN can be improved.

Note that we did not compare with works [61] [62] [63] [65] [64] because of the

different research purposes. They studied the next POI recommendation, meaning that the

ground truth contained only the target user’s last POI in chronological order. Thus, the

next POI recommendation algorithm focuses more on mining check-in sequences. In

addition, the evaluation metrics also make a significant difference. Influenced by the

number of POIs contained in the ground truth of the target user, the next POI

recommendation algorithm is evaluated only by recall and cannot calculate precision

because the maximum precision is 1

|top 𝑘|
.

88

In addition, we did not compare with works [66] [67] represented by Zhong et al. [67]

due to the use of different side information. They used social information, but we focused

on time and geographical information. Different side information may have different

degrees of influence on the recommendation performance and is difficult to compare

directly. We used Python and PyTorch16 to implement the GCN baselines while using the

source code of Liu et al. [36] for the RankGeoFM model.

6.4.3 Metrics

Same as Section 5.4.3, the experiment adopts three widely adopted ranking metrics:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , and 𝑁𝐷𝐶𝐺@𝑘 for the top𝑘 recommendation list, where

larger values indicate better performance. The Equations are listed as Eq. (5.9) to Eq.

(5.12).

On the Gowalla dataset, the theoretical maximums were P@5 =0.949, R@5 =0.736,

P@10=0.673, and R@10=0.909. On the New York dataset, the theoretical maximums

were P@5=0.841, R@5=0.581, P@10=0.702, and R@10=0.744.

6.4.4 Hyperparameter Settings

This section describes the hyperparameter settings for the proposed model, except for

the number of time slots, which is discussed in Section 6.4.6.

 Hyperparameters for DBSCAN Algorithm

The DBSCAN algorithm was adopted to mine the active areas of users. Same as

Section 5.4.4, after searching 𝑒𝑝𝑠 from 0.25 to 2 with the interval 0.25 and 𝑚𝑖𝑛𝑃𝑡𝑠 from

2 to 5 with the interval 1. We set 𝑒𝑝𝑠 to 1 and 𝑚𝑖𝑛𝑃𝑡𝑠 to 2 as the optimal parameters.

 Hyperparameters for Proposed Models

Same as previous works [3] [23] [5], we fixed the embedding size to 64 and the number

16 https://pytorch.org/

mailto:Precision@5=0.949
mailto:Recall@5=0.736,
mailto:Precision@5=0.841
mailto:Recall@5=0.581,
mailto:Recall@10=0.744.

89

of hidden layers 𝐾 to 3 for both the proposed models and all GCN-based baselines.

Embeddings were initialized using a Gaussian distribution with mean 0 and standard

deviation 1𝑒−2. The learning rate was searched from {1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1} to tune

the best performance, finally set to 1𝑒−2. The regularization coefficient 𝜇 was searched

in the range {1 𝑒−6 , 1 𝑒−5 , …,1 𝑒−1 }, finally set 𝜇 to 1 𝑒−4 . 𝛾 and 𝛿 are two

hyperparameters that balance the importance of check-ins and geographical information.

Table 6-5: Summary of hyperparameter settings

Algorithms Hyperparameter settings

Hyperparameter Search range Optimal value

DBSCAN

𝑒𝑝𝑠 {0.25, 0.5, 0.75 , … , 2} 1 km
𝑚𝑖𝑛𝑃𝑡𝑠 {2, 3, 4, 5} 2

LR-GCCF
[23],
LightGCN
[5],
GPR [3],
GNN-POI
[4],
IMP-GCN
[2],
ECN-
GCN+Geo
(proposed)

embedding size same as Chen et al. [23]
and He et al. [5]

64

embedding
initialization

same as Chen et al. [23]
and He et al. [5]

Gaussian dist.
(Mean:0, SD:1𝑒−2)

learning rate {1𝑒−4,1𝑒−3,1𝑒−2,1𝑒−1} 1𝑒−2
regularization
coefficient

{1𝑒−6,1𝑒−5,…,1𝑒−1} 1𝑒−4

ECN-
GCN+Geo
(proposed)

edge sampling
ratio {1|ℰ|,

1

25
|ℰ|,

1

50
|ℰ|,

1

75
|ℰ|,

1

100
|ℰ|}

1

75
|ℰ| on Gowalla

1

100
|ℰ| on New York

number of time
slots

{2, 3, 4, 6, 8} 4

check-in
coefficient 𝛾

{0, 0.25, 0.5, 0.75, 1} 0.25

90

 We searched 𝛾 and 𝛿 from 0 to 1 with the interval 0.25. Finally, we set 𝛼 to 0.5 and

𝛽 to 1 as the best parameters. Hyperparameters for the GCN-based baselines were set

using the same strategy as for our model. For RankGeoFM, the same parameters as those

of Liu et al. [36] were set for a fair comparison. The settings of the hyperparameters are

summarized in Table 6-5.

6.4.5 Experimental Results

Table 6-6 and Table 6-7 present our experimental results on the two real datasets. The

maximum values other than those of our proposed models are underlined. The maximum

value of each metric is bolded.

Table 6-6: Experimental results on New York dataset

Algorithms 𝑃@5 𝑅@5 𝑁@5 𝑃@10 𝑅@10 𝑁@10
Baselines RankGeoFM [33] 0.0219 0.0244 0.0220 0.0184 0.0260 0.0197

LR-GCCF [23] 0.0634 0.0248 0.0681 0.0553 0.0410 0.0410
LightGCN [5] 0.1093 0.0338 0.1214 0.0831 0.0528 0.1055
GPR [3] 0.1041 0.0307 0.1171 0.0836 0.0507 0.1047
GNN-POI [4] 0.1114 0.0360 0.1262 0.0864 0.0546 0.1111
IMP-GCN [2] 0.1100 0.0328 0.1236 0.0865 0.0534 0.1096

Proposed SGM-GCN 0.1181* 0.0357 0.1333* 0.0921* 0.0567* 0.1171*
EPT-GCN 0.1233* 0.0382* 0.1414* 0.0935* 0.0597* 0.1224*
EPT-GCN+Geo 0.1248* 0.0388* 0.1420* 0.0951* 0.0601* 0.1240*

 EPT-GCN+Geo’s
improvement
percentage compared
with underlined value
(absolute
improvement
difference from
underlined value)

12.03%
(0.0134)

7.78%
(0.0028)

12.52%
(0.0158)

9.94%
(0.0086)

10.07%
(0.0055)

11.61%
(0.0129)

* Statistically significant for p<0.01 when comparing with any baselines.

91

Comparison among Models without Side-Information

Among all the GCN models without time or geographical information (i.e., LR-GCCF,

LightGCN, and IMP-GCN), IMP-GCN achieved the best performance on both datasets.

This indicates that the subgraph construction technique based on high-order neighbor

similarity suits POI recommendation systems to prevent information aggregation from

high-order dissimilar nodes.

Comparison between IMP-GCN and GNN-POI

On the New York dataset, GNN-POI outperformed IMP-GCN because of the

Table 6-7: Experimental results on Gowalla dataset

Algorithms 𝑃@5 𝑅@5 𝑁@5 𝑃@10 𝑅@10 𝑁@10

Baselines RankGeoFM [33] 0.0684 0.0479 0.0719 0.0559 0.0755 0.0622
LR-GCCF [23] 0.0640 0.0669 0.0721 0.0504 0.0762 0.0749
LightGCN [5] 0.0760 0.0788 0.0859 0.0597 0.0865 0.0870
GPR [3] 0.0775 0.0580 0.0671 0.0640 0.0881 0.0613
GNN-POI [4] 0.0764 0.0792 0.0860 0.0607 0.0880 0.0877
IMP-GCN [2] 0.0774 0.0803 0.0874 0.0613 0.0890 0.0889

Proposed SGM-GCN 0.0803* 0.0834* 0.0914* 0.0632 0.0919* 0.0927*
EPT-GCN 0.0827* 0.0859* 0.0940* 0.0636 0.0925* 0.0939*
EPT-GCN+Geo 0.0843* 0.0874* 0.0953* 0.0648+ 0.0940* 0.0953*

 EPT-GCN+Geo’s
improvement
percentage compared
with underlined value
(Absolute
improvement
difference from
underlined value)

8.77%
(0.0068)

8.84%
(0.0071)

9.04%
(0.0079)

1.25%
(0.0008)

5.62%
(0.0050)

7.20%
(0.0064)

* Statistically significant for p<0.01 compared to any baseline.
+ Statistically significant for p<0.05 compared to any baseline.

92

integration of time and geographical information. However, on the Gowalla dataset,

GNN-POI performed slightly worse than IMP-GCN. A possible reason is that GNN-POI

uses complex models and nonlinear representations to train the embeddings of users and

POIs, which tends to cause model overrepresentation, that is, complex yet ineffective

representation and problems on extremely sparse datasets, such Gowalla with a sparsity

of 99.87%, which is higher than that of the New York dataset.

 Comparison between GPR (heavy reliance on geographical information) and
Other Baselines

The GPR model achieved a higher P@10 compared to the other baselines on the

Gowalla dataset. The main reason for this is that the exponential function is adopted for

aggregating information over a geographical distance, i.e., closer POIs gather

exponentially more information in the GPR model, thereby improving the impact of

geographical information. Because the Gowalla dataset is worldwide, GPR works well.

The exponential geographic information makes the model recommend nearby POIs and

thus filters distant POIs, improving the model performance in a large geographical range

dataset. However, in the New York dataset, within the city range, the importance of

geographical information decreases, preventing further improvement in model

performance.

 Comparison between SGM-GCN and IMP-GCN

On both the New York and Gowalla datasets, the SGM-GCN outperformed the IMP-

GCN. The IMP-GCN adopts a node-oriented clustering module, whereas the SGM-GCN

uses time information to partition edges (check-ins) into multiple time slots. The

experimental results show that edge-oriented subgraph partitioning performs better than

node-oriented subgraph partitioning in POI-recommendation tasks.

 Comparison between EPT-GCN and SGM-GCN

Comparing EPT-GCN with SGM-GCN, we can verify that the proposed propagation

module can further improve the model performance based on high-order time slot

93

embeddings by 7.00% on the New York dataset and 3.00% on the Gowalla dataset in

terms of R@5. The results confirm that not only the attention mechanism of SGM-GCN,

the propagation module is effective in improving accuracy. Unlike IMP-GCN, EPT-GCN

is a check-in-oriented method that enables an edge to be clustered into multiple time slots.

For example, the learned characteristics that users prefer to check restaurants during

lunchtime can be mapped and propagated to the dinner time slot by the propagation

module.

 Comparison between EPT-GCN+Geo and Other Baselines

On both datasets, ECN-GCN+Geo exhibited the best performance. ECN-GCN+Geo

successfully improved R@5 from 0.0360 to 0.0388 (7.78%) and R@10 from 0.0546 to

0.0601 (10.07%) on the New York dataset while improving R@5 from 0.0803 to 0.0874

(8.84%) and R@10 from 0.0890 to 0.0940 (5.62%) on the Gowalla dataset, compared to

state-of-the-art baselines with underlined values. Comparing EPT-GCN+Geo with EPT-

GCN, the adoption of geographical information significantly improved the performance

on the Gowalla dataset. In contrast, the improvement on the New York dataset was not as

high as that of the former. The main reason for this is that the importance of geographical

information decreases as the geographical range of the dataset reduces. Note that the

Gowalla dataset is worldwide, while the New York dataset is a city-range dataset.

6.4.6 Number of Time Slots

This section investigates the effect of the number of time slots on the proposed EPT-

GCN and EPT-GCN+Geo.

 Effect of the number of time slots on EPT-GCN

The number of time slots may affect the performance of our proposed EPT-GCN;

therefore, we confirmed the effects by varying the number of time slots from one to eight.

For example, if the number of time slots is four, we have the following four time slots:12

AM to 6 AM, 6 AM to 12 PM, 12 PM to 6 PM, and 6 PM to 12 AM local time. For

94

convenience, we start from midnight and equally divide 24 hours into four time slots. We

use latitude and longitude coordinates to convert the timestamp to local time.

Precision ratio on New York dataset Precision ratio on Gowalla dataset

Recall ratio on New York dataset Recall ratio on Gowalla dataset

F1-Score on New York dataset F1-Score on Gowalla dataset

Figure 6-6: Influence of the number of time slots on EPT-GCN (edge sampling
ratio is set as 1/75 |E| on Gowalla dataset and 1/100 |E| on New York dataset).

95

Figure 6-6 shows the precision, recall, and F1-score of EPT-GCN on the two datasets

by varying the number of time slots from 2 to 8, where the F1-score is the harmonic mean

of precision and recall, calculated as 𝐹1@𝑘 = 2∗𝑃@𝑘∗𝑅@𝑘

𝑃@𝑘+𝑅@𝑘
. Similar trends in both datasets

were confirmed, i.e., that EPT-GCN performs best when the number of time slots is four,

which may conform to user behavior. We also tested the performance when the number

of time slots was set to one. The algorithm degenerates to LightGCN, with P@5=0.0752,

R@5 =0.0781, P@10=0.0599, and R@10 =0.0871 on the Gowalla dataset and

P@5=0.1099, R@5=0.0341, P@10=0.0848, and R@10=0.0531 on the New York

dataset.

Effects of Combining Geographical Information on EPT-GCN with Different
Number of Time Slots

Figure 6-7 illustrates the influence of the number of time slots on EPT-GCN+Geo.

Comparing Figure 6-7 with Figure 6-6, we can observe a similar trend in performance

with hyperparameter (number of time slots) variation, where the model performs best

when the number of time slots is set to four. We also tested the performance when the

number of time slots was set to one. The algorithm degenerates to only adopt geographical

information and omit time information with P@5=0.0780, R@5=0.0810, P@10=0.0610,

and R@10 =0.0881 on the Gowalla dataset and P@5=0.1114, R@5=0.0358,

P@10=0.0858, and R@10=0.0529 on the New York dataset.

6.5 Conclusion

In this chapter, we proposed an edge propagation-based time-aware GCN for POI

recommendation constituting the following: 1) a subgraph mining GCN model to divide

24 hours into equal interval time slots and learning users’ and POIs’ disentangled time-

mailto:R@5=0.0781
mailto:R@10=0.0871
mailto:R@5=0.0781
mailto:R@5=0.0781

96

Precision ratio on New York dataset Precision ratio on Gowalla dataset

Recall ratio on New York dataset Recall ratio on Gowalla dataset

F1-Score on New York dataset F1-Score on Gowalla dataset

Figure 6-7: Influence of the number of time slots on EPT-GCN+Geo (edge
sampling ratio is set as 1/75 |E| on Gowalla dataset and 1/100 |E| on New York
dataset).

97

aware embeddings; 2) an edge propagation module to reconstruct subgraphs by

calculating the similarity between users’ higher-order time slot embeddings and POIs’

initial embeddings; and 3) a modified aggregation function to combine check-in

information with geographical information. Experimental evaluation on two real datasets

(Gowalla and New York) confirms that our proposed method outperforms state-of-the-art

baselines. On the Gowalla dataset, Recall @5 improved from 0.0803 to 0.0874 (8.84%),

while on the New York dataset, Recall@5 improved from 0.0360 to 0.0388 (7.78%). The

proposed subgraph mining technique and novel edge-based propagation module have

high scalability and can be applied to other subgraph construction models.

98

7 Conclusion and Future Work

7.1 Conclusion

In this section, we summarize our work and contributions to combine side information,

i.e., time and geographical information, with recommendation models into three-fold.

In Contribution 1, the time information is modeled as training speed for ad

recommendation. By using DA to accelerate recommendation optimization to achieve

real-time periodic recommendation, the proposed technique can capture changes in user

interest over time effectively while satisfying the delivery constraints. Experimental

results on the real Geniee dataset confirmed that our proposed method outperforms the

baselines by 35.56% with prediction algorithm Logistic regression while shortening the

execution time from 525s to 108s and 35.86% with XGBoost while shortening the

execution time from 526s to 108s, introduced in Chapter 3.

In Contribution 2, we first introduced some basic knowledge of POI recommendation

and previous works related to our contributions, i.e., graph convolution network and side

information for POI recommendation (Chapter 4). Then, we divided two Chapters on how

to adopt geographical (Chapter 5) and time (Chapter 6) information, named GN-GCN and

EPT-GCN, respectively. For the geographical information, we modeled users’ multiple

active areas. Further, we proposed the concept of active area neighbors, making the GCN

model not only aggregate information from check-in but also from active area neighbors.

Experiments on real Gowalla and Yelp datasets indicated that the proposed technique

successfully improved 𝑅𝑒𝑐𝑎𝑙𝑙@5 from 0.0788 to 0.0815 on the Gowalla dataset and

from 0.0453 to 0.0469 on the Yelp dataset compared with state-of-the-art LightGCN

model. The technique and results were introduced in Chapter 5.

In Contribution 3, we modeled users’ time-based high-order connectivity for the time

information, defined as the relationship between indirect neighbors with similar

preferences in the same time slot. For a POI recommendation, combining both time and

99

geographical information gives better results, which inspired us to modify the aggregation

function to further combine the proposed EPT-GCN with geographical information. To

verify the performance of the proposed technique, we conducted experiments on real

Gowalla and New York datasets, which contain time information and can apply our

proposed models. On the Gowalla dataset, Recall @5 improved from 0.0803 to 0.0874.

On the New York dataset, Recall@5 improved from 0.0360 to 0.0388, compared with

state-of-the-art GCN-based models. We introduced the technique and results in Chapter

6.

7.2 Discussion and Future Work

In this section, we discuss the future research directions on side information.

In the time dimension, we recognize that DA has high speed and can be adapted to

various models. We advocate the DA application for other time-sensitive tasks, like the

training of deep learning models. The training of deep learning models is slow.

Converting the deep learning model into a form of QUBO, which can be executed on DA

to increase the speed of training, will be a promising technique. Besides, as a quantum-

inspired computer, DA has a finite number of units. How to reduce the problem size and,

thus, adapt the DA is also a future research direction.

For side information technique with deep learning model to improve accuracy, the first

thing worth mentioning is the integration of more information, such as categorical

information, for recommendation accuracy. More information always means that

performance can be further improved. Besides, we refocus our attention on geographical

and time information. For geographical information, the proposed technique of modeling

user active areas does not distinguish between urban and suburban areas. Typically, users

behave differently in urban and suburban areas, leading to new thinking and research

directions. For time information, a more fine-grained distinction between time-based

high-order connectivity may yield a new research direction. For example, dividing the

weekends and workdays to make more specific time slots division. Besides, subgraph

100

reconstruction techniques are also worth exploring. We proposed a technique to partition

subgraphs based on edges. Subgraph partitioning that considers both edges and nodes to

improve the time-based high-order mining may achieve better performance.

7.3 Discussion of Recommendation Beyond Accuracy

The above discussion is for the accuracy of recommendation systems. In addition, we

would like to discuss other research goals of recommendation systems from a larger

perspective.

In addition to recommendation accuracy, the diversity of recommendation systems has

received increasing attention from researchers in recent years. Recommendation diversity

is primarily defined as categorical diversity [70] [71]. Let us consider the restaurant

recommendation. Categorical diversity recommends a wide variety of restaurant

categories, such as Chinese, Japanese, and French restaurants, that may interest the target

user, not just Chinese restaurants, even if the target user likes Chinese food.

Recommendation system diversity keeps the results fresh in users' minds, thus increasing

users’ satisfaction. In the research area, improving the accuracy and beyond-accuracy

aspects-diversity are conflicting tasks, which complicate the diversity improvement and

accuracy maintenance tasks. Previous research [85] [86] attempted to adopt a re-ranking

technique to alleviate the conflicts. i.e., first, use a base algorithm to generate a candidate

recommendation list, followed by an optimization step for improving diversity. However,

optimizing the diversity by reranking is independent of the basic candidate-item

generation model, resulting in a suboptimal system. In recent years, designing the model

of de-reranking [87] has still been in the exploratory stage. A worthwhile research

direction is how to effectively represent users’ needs for diversity in machine learning

models.

Another research goal that is still in the exploratory stage is recommendation

proportionality. Proportionality in recommendation results [72] is a further requirement

beyond accuracy. More than diversity, recommendation proportionality ensures that the

101

past interests of the target user are proportionally reflected in a recommendation list. In

several papers [73] [74], the technical term “calibration” is used to replace

“proportionality.” Let us consider the previous example of the restaurant to explain the

recommendation calibration (proportionality). Assume a target user checks 80, 10, and

10% Chinese, Japanese, and French restaurants, respectively; the target user may be

highly interested in receiving a recommendation list with the same distribution.

Synthesizing the multiple interests of users will be a future research trend. Similar to

recommendation diversity, reranking techniques are widely used in recommendation

calibration [88] [89]. As a result, the future research direction is similar to that of diversity,

which tends to remove reranking and directly represent the users' needs for calibration in

the machine learning models.

Recommendation explainability [75] [76] is also emphasized by researchers.

Recommendation explainability is required when the list of recommendations is

generated; the reasons for the recommendation items are also generated to make the

results more acceptable to the target user. A simple method to provide explainability is

using keywords [75]. For example, recommending the item 𝑖 because a similar user

“purchased” the item. Another example is because the item “is described by” feature 𝑓.

However, the keyword-based technique requires pre-designed templates for the

explanation, making the explanation unnatural. In recent years, with the development of

natural language processing (NLP) techniques like Transformer [82], combining

recommendation systems and NLP techniques has made it possible to create

recommendation reasons automatically and naturally, and it will be a promising research

direction.

Recommendation fairness [90] [91] is described as fair exposure to different items. i.e.,

no popularity bias among different items. The research aims to mitigate the long-tail effect

and recommends unpopular items. While simultaneous optimization of accuracy and

fairness in deep learning models [84] was proposed to alleviate the conflicting two goals

(high fairness and high accuracy), recommending unpopular items still carries the risk of

102

reduced accuracy. How to improve fairness with minimal loss of accuracy will be a focus

of research in the area.

Recommendation acceleration [77] has also injected new challenges for

recommendation systems. Current computing resources are expensive, including GPUs

and high electricity costs. Slow training speed means high overhead. Therefore, working

on improving the training speed of models is also an essential task in the field of

recommendation systems. In addition to the possibility of using DA to accelerate model

training, as mentioned in Chapter 7.2, techniques to accelerate model convergence [92]

were proposed to reduce training time. However, the methods do not reduce the time

complexity of the models, which leads to a less generalized approach. A generalized

algorithm for reducing time complexity will be a promising research direction.

Finally, we introduce the recommendation systems in incremental environments [78]

[83]. Retaining the model is time-consuming. Therefore, we tend to update the already-

trained model after new data arrives instead of retraining it. In an incremental

environment, selective retention of learned knowledge is challenging. Prior studies [78]

[83] introduced a sampling-based technique to sample the learned knowledge but couldn't

achieve the same performance as retaining. i.e., reduce performance. An approach

suitable for model training in an incremental environment is worth considering, such as a

mechanism to selectively update only part of the model's parameters.

103

Reference

[1] Aramon M., Rosenberg G., Valiante E., Miyazawa T., Tamura H., and Katzgrabeer
H. 2019. Physics-inspired optimization for quadratic unconstrained problems using a
digital annealer. Frontiers in Physics, 7(48), pp.1-14.

[2] Liu, F., Cheng, Z., Zhu, L., Gao, Z., and Nie, L. 2021. Interest-aware message-passing
GCN for recommendation. In Proceedings of the Web Conference 2021, pp. 1296-
1305.

[3] Chang, B., Jang, G., Kim, S., and Kang, J. 2020. Learning graph-based geographical
latent representation for point-of-interest recommendation. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp. 135-
144.

[4] Zhang, J., Liu, X., Zhou, X., and Chu, X. 2021. Leveraging graph neural networks for
point-of-interest recommendations. Neurocomputing, 462, 1-13.

[5] He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M. 2020. Lightgcn:
Simplifying and powering graph convolution network for recommendation.
In Proceedings of the 43rd ACM SIGIR, pp. 639-648.

[6] Abrams, Z., Mendelevitch, O., and Tomlin, J. 2007. Optimal delivery of sponsored
search advertisements subject to budget constraints. In Proceedings of the 8th ACM
conference on Electronic commerce, pp. 272-278.

[7] Wu, D., Chen, X., Yang, X., Wang, H., Tan, Q., Zhang, X., and Gai, K. 2018. Budget
constrained bidding by model-free reinforcement learning in display advertising.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, pp. 1443-1451.

[8] Yang, X., Deng, T., Tan, W., Tao, X., Zhang, J., Qin, S., and Ding, Z. 2019. Learning
Compositional, Visual and Relational Representations for CTR Prediction in
Sponsored Search. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 2851-2859.

[9] Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., and Katzgrabeer,
H., 2019. Physics-inspired optimization for quadratic unconstrained problems using
a digital annealer. Frontiers in Physics, 7(48), pp.1-14.

[10] Mo, F., Jiao, H., Morisawa, S., Nakamura, M., Kimura, K., Fujisawa, H.,
Ohtsuka, M., and Yamana, H. 2020. Real-Time Periodic Advertisement

104

Recommendation Optimization using Ising Machine. In Proceedings of 2020 IEEE
International Conference on Big Data, pp.5783-5785.

[11] Shan, L., Lin, L., and Sun, C. 2018. Combined Regression and Tripletwise
Learning for Conversion Rate Prediction in Real-Time Bidding Advertising. In
Proceedings of the 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, pp. 115-123.

[12] Su, Y., Jin, Z., Chen, Y., Sun, X., Yang, Y., Qiao, F., and Xu, W. 2017.
Improving click-through rate prediction accuracy in online advertising by transfer
learning. In Proceedings of the International Conference on Web Intelligence, pp.
1018-1025.

[13] Agarwal, D., Chen, B., and Elango, P. 2009. Spatio-temporal models for
estimating click-through rate. In Proceedings of the 18th international conference on
World wide web, pp. 21-30.

[14] Juan, Y., Lefortier, D., and Chapelle, O. 2017. Field-aware factorization
machines in a real-world online advertising system. In Proceedings of the 26th
International Conference on World Wide Web Conference, pp. 680-688.

[15] Pan, J., Xu, J., Ruiz, A., Zhao, W., Pan, S., Sun, Y., and Lu, Q. 2018. Field-
weighted factorization machines for click-through rate prediction in display
advertising. In Proceedings of the 2018 World Wide Web Conference, pp. 1349-1357.

[16] Wang, R., Fu, B., Fu, G., and Wang, M. 2017. Deep & cross network for ad click
predictions. In Proceedings of the ADKDD'17, pp. 1-7.

[17] Yang, X., Li, Y., Wang, H., Wu, D., Tan, Q., Xu, J., and Gai, K. 2019. Bid
optimization by multivariable control in display advertising. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1966-1974.

[18] Huang, Z., Pan, Z., Liu, Q., Long, B., Ma, H., and Chen, E. 2017. An Ad CTR
Prediction Method Based on Feature Learning of Deep and Shallow Layers. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 2119-2122.

[19] Kang, S., Jeong, C., and Chung, K. 2020. Advertisement Recommendation
System Based on User Preference in Online Broadcasting. In Proceedings of 2020
International Conference on Information Networking, pp. 702-706.

[20] Grigas, P., Lobos, A., Wen, Z., and Lee, K. C. 2017. Profit maximization for
online advertising demand-side platforms. In Proceedings of the ADKDD'17, pp. 1-
7.

105

[21] Chen, T., and Guestrin, C. 2016. XGBoost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 785-794.

[22] Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Company.

[23] Chen, L., Wu, L., Hong, R., Zhang, K., and Wang, M. 2020. Revisiting graph
based collaborative filtering: A linear residual graph convolutional network approach.
In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 27-34.

[24] Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin, D. 2019. Graph
neural networks for social recommendation. In Proceedings of the WWW, pp. 417-
426 .

[25] Wang, X., He, X., Wang, M., Feng, F., and Chua, T. 2019. Neural graph
collaborative filtering. In Proceedings of the 42nd international ACM SIGIR
conference on Research and development in Information Retrieval, pp. 165-174 .

[26] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W., and Leskovec, J.
2018. Graph convolutional neural networks for web-scale recommender systems.
In Proceedings of the 24th ACM SIGKDD, pp. 974-983.

[27] Baral, R., and Li, T. 2016. Maps: A multi aspect personalized poi recommender
system. In Proceedings of the 10th ACM RecSys, pp. 281-284.

[28] Liu, W., Wang, Z. J., Yao, B., and Yin, J. 2019. Geo-ALM: POI
Recommendation by Fusing Geographical Information and Adversarial Learning
Mechanism. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 1807-1813.

[29] Zhang, and Chow, C. 2015. Geosoca: Exploiting geographical, social and
categorical correlations for point-of-interest recommendations. In Proceedings of the
38th SIGIR, pp. 443-452.

[30] Ye, M., Yin, P., Lee, W. C., and Lee, D. 2011. Exploiting geographical influence
for collaborative point-of-interest recommendation. In Proceedings of the 34th ACM
SIGIR, pp. 325-334.

[31] Ference, G., Ye, M., and Lee, W. C. 2013. Location recommendation for out-of-
town users in location-based social networks. In Proceedings of the 22nd ACM
CIKM, pp. 721-726.

[32] Han, P., Shang, S., Sun, A., Zhao, P., Zheng, K., and Zhang, X. 2021. Point-of-
interest recommendation with global and local context. IEEE Transactions on
Knowledge and Data Engineering, 34(11), pp. 5484-5495.

106

[33] Li, X., Cong, G., Li, X., Pham, T., and Krishnaswamy. 2015. Rank-geofm: A
ranking based geographical factorization method for point of interest
recommendation. In Proceedings of the 38th ACM SIGIR, pp. 433-442.

[34] Ester, M., Kriegel, H. P., Sander, J., and Xu, X. 1996. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the
2nd ACM SIGKDD, pp. 226-231.

[35] Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. 2012. BPR:
Bayesian personalized ranking from implicit feedback. In arXiv preprint
arXiv:1205.2618, 10 pages.

[36] Liu, Y., Pham, T. A. N., Cong, G., and Yuan, Q. 2017. An experimental
evaluation of point-of-interest recommendation in location-based social networks. In
Proceedings of the VLDB Endowment, vol.10, no.10, pp. 1010-1021.

[37] Elmi, S., Benouaret, K., and Tan, K. L. 2021. Social and Spatio-Temporal
Learning for Contextualized Next Points-of-Interest Prediction. In Proceedings
of 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence,
pp.322-329.

[38] Cui, Q., Tang, Y., Wu, S., and Wang, L. 2019. Distance2Pre: Personalized
spatial preference for next point-of-interest prediction. In Proceedings of Pacific-Asia
Conference on Knowledge Discovery and Data Mining pp. 289-301.

[39] Yuan, Q., Cong, G., Ma, Z., Sun, A., and Thalmann, N. 2013. Time-aware point-
of-interest recommendation. In Proceedings of the 36th international ACM SIGIR
conference on Research and development in information retrieval, pp. 363-372.

[40] Gao, H., Tang, J., Hu, X., and Liu, H. 2013. Exploring temporal effects for
location recommendation on location-based social networks. In Proceedings of the
7th ACM conference on Recommender systems, pp. 93-100.

[41] Ying, Y., Chen, L., and Chen, G. 2017. A temporal-aware POI recommendation
system using context-aware tensor decomposition and weighted
HITS. Neurocomputing, 242, pp. 195-205.

[42] Zhao, S., Zhao, T., King, I., and Lyu, M. R. 2017. Geo-teaser: Geo-temporal
sequential embedding rank for point-of-interest recommendation. In Proceedings of
the 26th international conference on world wide web companion, pp. 153-162.

[43] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. 2013. Distributed
representations of words and phrases and their compositionality. Advances in neural
information processing systems, 26, pp. 1-9.

107

[44] Chen, C., Ma, W., Zhang, M., Wang, Z., He, X., Wang, C., Liu, Y, and Ma, S.
2021. Graph heterogeneous multi-relational recommendation. In Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 3958-3966.

[45] Shi, C., Hu, B., Zhao, W. X., and Philip, S. Y. 2018. Heterogeneous Information
Network Embedding for Recommendation. IEEE Transactions on Knowledge and
Data Engineering, 31(2), pp. 357-370.

[46] Yang, Y., Guan, Z., Li, J., Zhao, W., Cui, J., and Wang, Q. 2023. Interpretable
and Efficient Heterogeneous Graph Convolutional Network. IEEE Transactions on
Knowledge and Data Engineering, 35(2), pp. 1637-1650.

[47] Mao, K., Zhu, J., Xiao, X., Lu, B., Wang, Z., and He, X. 2021. UltraGCN: ultra
simplification of graph convolutional networks for recommendation. In Proceedings
of the 30th ACM International Conference on Information & Knowledge
Management, pp. 1253-1262.

[48] Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., and Xie, X. 2021. Self-
supervised graph learning for recommendation. In Proceedings of the 44th
international ACM SIGIR conference on research and development in information
retrieval, pp. 726-735.

[49] Yang, Z., Ding, M., Xu, B., Yang, H., and Tang, J. 2022. STAM: A
Spatiotemporal Aggregation Method for Graph Neural Network-based
Recommendation. In Proceedings of the ACM Web Conference 2022, pp. 3217-3228.

[50] Zhang, Y., Wang, P., Zhao, X., Qi, H., He, J., Jin, J., Lin, Z. and Shao, J. 2022.
IA-GCN: Interactive Graph Convolutional Network for Recommendation. arXiv
preprint arXiv:2204.03827, 11 pages.

[51] Liu, F., Cheng, Z., Zhu, L., Gao, Z., and Nie, L. 2021. Interest-aware message-
passing GCN for recommendation. In Proceedings of the Web Conference 2021, pp.
1296-1305.

[52] Liu, G., Wang, J., and Wu, J. 2021. Multi-Aspect Heterogeneous Graph
Convolutional Network for Recommendation. In Proceedings of 2021 IEEE 33rd
International Conference on Tools with Artificial Intelligence, pp. 1192-1196.

[53] Peng, S., Sugiyama, K., and Mine, T. 2022. Less is More: Reweighting
Important Spectral Graph Features for Recommendation. In Proceedings of the 45th
International ACM SIGIR conference on research and development in Information
Retrieval, pp. 1273-1282.

108

[54] Sun, T., Luo, M., Chen, R., Xia, Y., and Jiang, N. 2021. Rec-clusterGCN: An
Efficient Graph Convolution Network for Recommendation. In Proceedings of 2021
IEEE International Conference on Systems, Man, and Cybernetics, pp. 244-250.

[55] Mo, F., Jiao, H., and Yamana, H. 2020. Time distribution based diversified point
of interest recommendation. In Proceedings of 2020 IEEE 5th International
Conference on Cloud Computing and Big Data Analytics, pp. 37-44.

[56] Jiang, Y., Ma, H., Liu, Y., Li, Z., and Chang, L. 2021. Enhancing social
recommendation via two-level graph attentional networks. Neurocomputing, 449, pp.
71-84.

[57] Mo, F. and Yamana, H. 2022. GN-GCN: Combining Geographical Neighbor
Concept with Graph Convolution Network for POI Recommendation. In Proceedings
of the 24th International Conference on Information Integration and Web Intelligence,
pp. 153-165.

[58] Wu B., Zhong L., Yao L., and Ye Y. 2022. EAGCN: An Efficient Adaptive
Graph Convolutional Network for Item Recommendation in Social Internet of Things.
in IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16386-16401.

[59] Yi, Z., Wang, X., Ounis, I., and Macdonald, C. 2022. Multi-modal Graph
Contrastive Learning for Micro-video Recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 1807-1811.

[60] Liu, X., Liu, Y., Aberer, K., and Miao, C. 2013. Personalized point-of-interest
recommendation by mining users' preference transition. In Proceedings of the 22nd
ACM international conference on Information & Knowledge Management, pp. 733-
738.

[61] Elmi, S., Benouaret, K., and Tan, K. L. 2021. Social and Spatio-Temporal
Learning for Contextualized Next Points-of-Interest Prediction. In Proceedings of
2021 IEEE 33rd International Conference on Tools with Artificial Intelligence,
pp.322-329.

[62] Li, M., Zheng, W., Xiao, Y., Zhu, K., and Huang, W. 2021. Exploring Temporal
and Spatial Features for Next POI Recommendation in LBSNs. IEEE Access, vol. 9,
pp. 35997-36007.

[63] Li, Y., Chen, T., Yin, H., and Huang, Z. 2021. Discovering collaborative signals
for next POI recommendation with iterative Seq2Graph augmentation. arXiv preprint
arXiv:2106.15814, 7 pages.

109

[64] Wang, Z., Zhu, Y., Liu, H., and Wang, C. 2022. Learning Graph-based
Disentangled Representations for Next POI Recommendation. In Proceedings of the
45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 1154-1163.

[65] Luo, Y., Liu, Q., and Liu, Z. 2021. Stan: Spatio-temporal attention network for
next location recommendation. In Proceedings of the Web Conference 2021, pp.
2177-2185.

[66] Cai, Z., Yuan, G., Qiao, S., Qu, S., Zhang, Y., and Bing, R. 2022. FG-CF:
Friends-aware graph collaborative filtering for POI
recommendation. Neurocomputing, 488, pp. 107-119.

[67] Zhong, T., Zhang, S., Zhou, F., Zhang, K., Trajcevski, G., and Wu, J. 2020.
Hybrid graph convolutional networks with multi-head attention for location
recommendation. In World Wide Web, pp. 3125-3151.

[68] Mo, F., Jiao, H., Morisawa, S., Ohtsuka, M., Nakamura, M., Kimura, K.,
Fujssawa, H., and Yamana, H. 2021. Real-time Periodic Advertisement
Recommendation Optimization under Delivery Constraint using Quantum-inspired
Computer. In Proceedings of 2021 International Conference on Enterprise
Information Systems, pp. 431-441.

[69] Mo, F., and Yamana, H. (2023). EPT-GCN: Edge propagation-based time-aware
graph convolution network for POI recommendation. Neurocomputing, 543, 126272,
pp. 1-15.

[70] Ye, R., Hou, Y., Lei, T., Zhang, Y., Zhang, Q., Guo, J., Wu, H., Zhang, Q., and
Luo, H. 2021. Dynamic graph construction for improving diversity of
recommendation. In Proceedings of the 15th ACM Conference on Recommender
Systems, pp. 651-655.

[71] Zheng, Y., Gao, C., Chen, L., Jin, D., and Li, Y. 2021. Dgcn: Diversified
recommendation with graph convolutional networks. In Proceedings of the Web
Conference 2021, pp. 401-412.

[72] Dang, V., and Croft, W. B. 2012. Diversity by proportionality: an election-based
approach to search result diversification. In Proceedings of the 35th international
ACM SIGIR conference on Research and development in information retrieval, pp.
65-74.

[73] Steck, H. 2018. Calibrated recommendations. In Proceedings of the 12th ACM
conference on recommender systems, pp. 154-162.

110

[74] Liu, F., Cheng, Z., Zhu, L., Gao, Z., and Nie, L. 2021. Interest-aware message-
passing GCN for recommendation. In Proceedings of the Web Conference 2021, pp.
1296-1305.

[75] Xian, Y., Fu, Z., Muthukrishnan, S., De Melo, G., and Zhang, Y. 2019.
Reinforcement knowledge graph reasoning for explainable recommendation.
In Proceedings of the 42nd international ACM SIGIR conference on research and
development in information retrieval, pp. 285-294.

[76] Wang, X., He, X., Cao, Y., Liu, M., and Chua, T. S. 2019. Kgat: Knowledge
graph attention network for recommendation. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 950-
958.

[77] Ke, L., Gupta, U., Cho, B. Y., Brooks, D., Chandra, V., Diril, U., ... and Zhang,
X. 2020. Recnmp: Accelerating personalized recommendation with near-memory
processing. In Proceedings of 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture, pp. 790-803.

[78] Wu, Guile, Shaogang Gong, and Pan Li. 2021. Striking a balance between
stability and plasticity for class-incremental learning. In Proceedings of the
IEEE/CVF Int’l Conf. on Computer Vision, pp. 1124-1133.

[79] Li, Z., Chen, Q., and Koltun, V. 2018. Combinatorial optimization with graph
convolutional networks and guided tree search. Advances in neural information
processing systems, 31.

[80] Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. 2017. Learning
combinatorial optimization algorithms over graphs. Advances in neural information
processing systems, 30.

[81] DasGupta, B., and Muthukrishnan, S. 2013. Stochastic budget optimization in
internet advertising. Algorithmica, 65, 634-661.

[82] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ...
and Polosukhin, I. 2017. Attention is all you need. Advances in neural information
processing systems, 30, pp. 1-11.

[83] Fan, X., Mo, F., Chen, C., Bai, C., Yamana, H., Connectivity-aware Experience
Replay for Graph Convolution Network-based Collaborative Filtering in Incremental
Setting. In Proceedings of 2024 IEEE 9th International Conference on Big Data
Analytics. (Forthcoming)

111

[84] Dai, E., and Wang, S. 2021. Say no to the discrimination: Learning fair graph
neural networks with limited sensitive attribute information. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining, pp. 680-688.

[85] Qin, L., and Zhu, X. 2013. Promoting diversity in recommendation by entropy
regularizer. In Twenty-Third International Joint Conference on Artificial Intelligence,
pp. 2698-2704.

[86] Sha, C., Wu, X., and Niu, J. 2016. A framework for recommending relevant and
diverse items. In IJCAI’16, pp. 3868-3874.

[87] Zheng, Y., Gao, C., Chen, L., Jin, D., and Li, Y. 2021. Dgcn: Diversified
recommendation with graph convolutional networks. In Proceedings of the Web
Conference 2021, pp. 401-412.

[88] Steck, H. 2018. Calibrated recommendations. In Proceedings of the 12th ACM
conference on recommender systems, pp. 154-162.

[89] Seymen, S., Abdollahpouri, H., and Malthouse, E. C. 2021. A constrained
optimization approach for calibrated recommendations. In Proceedings of the 15th
ACM Conference on Recommender Systems, pp. 607-612.

[90] Li, Y., Ge, Y., and Zhang, Y. 2021. Tutorial on fairness of machine learning in
recommender systems. In Proceedings of the 44th international ACM SIGIR
conference on research and development in information retrieval, pp. 2654-2657.

[91] Mehrotra, R., McInerney, J., Bouchard, H., Lalmas, M., and Diaz, F. 2018.
Towards a fair marketplace: Counterfactual evaluation of the trade-off between
relevance, fairness & satisfaction in recommendation systems. In Proceedings of the
27th acm international conference on information and knowledge management, pp.
2243-2251.

[92] Wang, Y., Zhao, Y., Zhang, Y., and Derr, T. 2023. Collaboration-Aware Graph
Convolutional Network for Recommender Systems. In Proceedings of the ACM Web
Conference 2023, pp. 91-101.

[93] Ma, Q., Ge, S., He, D., Thaker, D., and Drori, I. 2019. Combinatorial
optimization by graph pointer networks and hierarchical reinforcement
learning. arXiv preprint arXiv:1911.04936, 8pages.

[94] Brasó, G., and Leal-Taixé, L. 2020. Learning a neural solver for multiple object
tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 6247-6257.

[95] Resnick, P., and Varian, H. R. 1997. Recommender systems. Communications
of the ACM, 40(3), pp. 56-58.

112

[96] Liu, J., Chen, Y., Huang, X., Li, J., and Min, G. 2023. GNN-based long and short
term preference modeling for next-location prediction. Information Sciences, 629,
pp.1-14.

113

List of My Publications (Including co-authors)

List of Research Achievements

Journal (1) (Web of science) (Scopus) (Peer-reviewed) Mo, F., and

Yamana, H. (2023). EPT-GCN: Edge propagation-based

time-aware graph convolution network for POI

recommendation. Neurocomputing, 543, 126272, pp.1-15.

International

conference

papers

(1) (Scopus) (Full paper) (Peer-reviewed) Feng, J., Mo, F.,

Yada, Y., Matsumoto, T., Fukushima, N., Kido, F., and

Yamana, H. (2023). Analysis of Dark Pattern-related

Tweets from 2010. In 2023 IEEE 8th International

Conference on Big Data Analytics (ICBDA), pp. 100-106.

(2) (Scopus) (Full paper) (Peer-reviewed) Chen, C., Mo, F.,

Fan, X., Bai, C., and Yamana, H. (2023). MOBARec-

GCNFP: Champion Recommendation for Multi-Player

Online Battle Arena Games Using Graph Convolution

Network with Fewer Parameters. In Proceedings of 2023

IEEE 8th International Conference on Big Data Analytics

(ICBDA), pp. 147-153.

(3) (Web of science) (Scopus) (Full paper) (Peer-reviewed)

Mo, F., and Yamana, H. (2022). GN-GCN: Combining

Geographical Neighbor Concept with Graph Convolution

Network for POI Recommendation. In Proceedings of

Information Integration and Web Intelligence: 24th

International Conference, iiWAS 2022, pp. 153-165.

114

(4) (Web of science) (Scopus) (Full paper) (Peer-reviewed)

Mo, F., Jiao, H., Morisawa, S., Ohtsuka, M., Nakamura,

M., Kimura, K., Fujssawa, H., and Yamana, H. (2021).

Real-time Periodic Advertisement Recommendation

Optimization under Delivery Constraint using Quantum-

inspired Computer. in Proceedings of 2021 International

Conference on Enterprise Information Systems (ICEIS

2021), pp. 431-441.

(5) (Scopus) (Full paper) (Peer-reviewed) Jiao, H., Mo, F., and

Yamana, H. (2021). Point of Interest Recommendation

Acceleration using Clustering. in Proceedings of 2021

IEEE International Conference on Big Data Analystics

(ICBDA 2021), pp. 175-180.

(6) (Scopus) (Full paper) (Peer-reviewed) Mo, F., Jiao, H., and

Yamana, H. (2020). Time Distribution based Diversified

Point of Interest Recommendation. in Proceedings of IEEE

5th International Conference on Cloud Computing and Big

Data Analytics (ICCCBDA 2020), pp. 37-44.

Workshop and

Poster papers

(1) (Scopus) (Workshop) (Peer-reviewed) Mo, F., Matsumoto,

T., Fukushima, N., Kido, F., and Yamana, H. (2022). Decoy

Effect of Recommendation Systems on Real E-commerce

Websites. in Proceedings of The Joint Workshop on

Interfaces and Human Decision Making for Recommender

Systems (IntRS@Recsys 2022), pp.151-163.

(2) (Scopus) (Poster) (Peer-reviewed) Mo, F., Jiao, H.,

Morisawa, S., Ohtsuka, M., Nakamura, M., Kimura, K.,

Fujssawa, H., and Yamana, H. (2020) Real-Time Periodic

115

Advertisement Recommendation Optimization using Ising

Machine. in Proceedings of 2020 IEEE International

Conference on Big Data (BigData 2020), pp. 5783-5785.

(3) (Scopus) (Workshop) (Peer-reviewed) Mo, F., and

Yamana, H. (2019) Point of Interest Recommendation by

Exploiting Geographical Weigh Center and Categorical

Preference. in Proceedings of 2019 International

Conference on Data Mining Workshops (ICDMW 2019),

pp. 73-76.

Domestic

conference

papers (non-

referred)

(1) (Non-reviewed) Ma, S., Mo, F., and Yamana, H. (2021)

Review-aware Explainable Recommendation System with

Aspect Matching. in Proceedings of 19th Forum on Data

Engineering and Information Management (DEIM 2021),

pp. 1-6.

(2) (Non-reviewed) Jiao, H., and Mo, F., and Yamana, H.

(2020) Evaluation of POI Recommendation System

Beyond Accuracy: Diversity, Explainability and

Computation Cost. in Proceedings of 18th Forum on Data

Engineering and Information Management (DEIM 2020),

March, pp. 1-5.

Awards (1) Excellent Presentation Award on 2020 IEEE 5th

International Conference on Cloud Computing and Big

Data Analytics (ICCCBDA 2020).

International

Conference

(1) Session Chair of 2021 International Conference on

Enterprise Information Systems. Session name: Industrial

116

Related

Activities

Applications of Artificial Intelligence

(2) Session Chair of 2021 International Conference on

Enterprise Information Systems. Session name: Enterprise

Architecture

(3) Review of Paper of the 6th international conference on

Computer science and Application Engineering (CSAE

2022).

