
February, 2024

Tianying XIE

Available but Invisible: Assessing the Feasibility of Applying Privacy-preserving
Technologies in Deep Learning

利用可而不可視:深層学習におけるプライバシー保護技術の
適用可能性の評価

謝　天瀛





Available but Invisible: Assessing the Feasibility of Applying Privacy-preserving
Technologies in Deep Learning

利用可而不可視:深層学習におけるプライバシー保護技術の
適用可能性の評価

Tianying XIE
謝　天瀛

February, 2024

Department of Computer Science and Communications Engineering, Research on
Information Security

Waseda University Graduate School of Fundamental Science and Engineering





Contents

Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 Contribution 1: Efficient Integer Vector Homomorphic En-
cryption Using Deep Learning for Ciphertext Training in Neu-
ral Network 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 One-hot Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Functions of the HE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Deep Machine Learning Concepts and Notations . . . . . . . 18

2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Efficient Integer Vector Homomorphic Encryption . . . . . 19
2.4.2 Constructed Neural Network Model . . . . . . . . . . . . . . . . . . . . . 23

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3 Proposed Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Contents

2.6.1 Accuracy on the Separate Datasets . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Accuracy on the Improved Algorithm . . . . . . . . . . . . . . . . . . . 29
2.6.3 Accuracy on the Absolute Datasets . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3 Contribution 2: Channel-wise Homomorphic Encryption for
Ciphertext Inference in Convolutional Neural Network 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Privacy-preserving Deep Learning . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Threat Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Algorithms of the CHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Batch Normalization with Coefficient Merging . . . . . . . . . 59

3.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.1 Datasets and Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 4 Contribution 3: The Trade-offs of Privacy, Utility, and Ef-
ficiency in Differential Privacy-Enabled VQ-VAE for Image
Generation 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Preliminary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.3 Vector Quantized-Variational AutoEncoder Model . . . . . 79
4.2.4 Threat Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ii



4.3 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.2 Implementation for Training the VQ-VAE with the DP. 83
4.4.3 Description for Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.2 Optical Comparison in Latent Space for Processed Data 90
4.5.3 Implement the VQ-VAE Model with and without the

DP in the Vanilla Training Flow . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.4 Implement the VQ-VAE Model with and without the

DP in the Revised Training Flow . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.5 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 5 Discussion 113
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.2 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 6 Conclusion 121

Acknowledgement 125

Bibliography 127

List of Research Achievements 143

iii



Chapter 1

Introduction

1.1 Background
Over the past decade, the Internet has sparked a new revolution, that of Artificial
Intelligence (AI).AImodels built on big data have brought numerous conveniences to
people’s lives, such as online shopping, navigation, personal identification, targeted
advertising, etc. These beneficial applications are all based on information data
collected and stored from people’s daily lives. Advancements in AI have enhanced
the potential to harness and derive benefits from collecting private and sensitive
data.

Data gathered from sensors, mobile devices, browsers, and wearable technology
feeds into Machine Learning (ML) applications across diverse industries, including
finance, e-commerce, social media, healthcare, and recommendation systems. Lead-
ing service providers, such as Apple, Google, and Amazon, are rapidly engineering
a plethora of data-driven ML solutions [1], especially Deep Learning (DL), concen-
trated in the thesis. Often categorized as the “data user,” these service providers
utilize vast amounts of data from individuals, the “data owner,” to craft personalized
services. The result is sent to the “result owner,” the relationship among the three
parties is shown in Figure 1.1. It is common knowledge that these services accord
data owners tangible commercial and political advantages by facilitating tailored
recommendations, health tracking, precision advertising, and insightful predictions.
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User

Privacy-preserving Deep Learning

The data owner

The data user

The result owner

Figure 1.1. The relationship of three parties under the privacy-preserving situation.

Yet, the intrinsic sensitivity of owner data underscores the pivotal concern of privacy.
As the synergy between the cloud-based DL and computing crystallizes into robust
analytical tools, embedding privacy in the DL models on these platforms becomes
indispensable, especially with sensitive datasets in play.

The misuse or unintended use of sensitive and personal data can lead to its
exploitation for undue advantages. As we merge vast personal records with the
DL algorithms, the outcome becomes unpredictable, casting doubts on the potential
insights and the extent of unintentional privacy breaches. Hence, crafting the
DL algorithms with a primary focus on privacy is essential. In terms of privacy
considerations, three aspects warrant attention [2]:

I The methodology should prevent unauthorized users from leveraging per-
sonal data for their gain without the data owner’s consent.

II As rational and discerning individuals, everyone possesses private aspects
they prefer to remain concealed, irrespective of established legal norms.

III Distinct regions enforce diverse privacy regulations on varying datasets.

Consequently, when subjected to different local laws, the identical dataset can
yield contrasting outcomes based on the algorithm employed. The fundamental
challenge revolves around achieving an equilibrium between privacy and effective-
ness in the DL applications. This aims to maximize the potential of data while
ensuring individual privacy remains intact. Given distinct regulatory and applica-

2



1.1 Background

tion needs, compromising on privacy for added utility is not an option. Moreover,
privacy safeguards should be systematically implemented rather than relying on
arbitrary methods.

Thus, ensuring its privacy becomes paramount since the DL relies significantly
on the underlying data when data is sourced frommultiple parties in training or from
different parties in inference. The model should not reveal any information about
the training and inference data, which is named Privacy-preserving Deep Learning
(PPDL) [3]. Based on the methods used in papers published over the past decade,
this field can be divided into five categories [4].

First of all, Homomorphic Encryption (HE)-based PPDL combines HE [5] with
the DL [6] [7] [8] [9] [10] [11] [12]. In the HE-based PPDL, there are typically three
stages: training, inference, and result retrieval. During the training stage, a client
first encrypts their training dataset using HE and then transfers this encrypted set to
a cloud server. The cloud server performs secure training, which yields a trained
model, marking the completion of this phase. The client forwards the test dataset to
the cloud server in the inference stage. This dataset then serves as an input for the
previously trained model, leading to a prediction process that produces an encrypted
computational output. After this, the result retrieval phase commences. Here, the
cloud server packages and dispatches the encrypted output to the client. The client
decrypts this data upon receipt, deriving the final computational result. The threat
of the model is the leakage of AI users’ privacy to the computing server.

Secondly, Secure Multi-party Computation (SMPC)-Based PPDL introduces a
sharingmechanismbetween the client and the server [13] [14] [15]. In the framework
of the SMPC-based PPDL, the process begins with users performing local training
on their private data. The next step involves the local training’s resulting gradient
encoded using secret sharing. This encoded, or “secret-shared,” gradient is then
distributed to a set of servers. Each server is responsible for accumulating the
gradient values received from various users. This aggregation is a critical step
in the process. Once aggregation is completed, servers transmit the combined
gradient values back to all participating clients. After receiving the result, each
client undertakes the task of reconstructing the aggregated gradient from its encoded

3
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form. This reconstructed gradient is then applied to adjust the local training model
for the next iteration. This cycle of training, secret sharing, aggregation, and model
updating continues iteratively. In the broader context of multi-party computation,
secret sharing serves as a foundational technique to preserve data privacy. However,
a more robust approach is often adopted in specific contexts of secure two-party
computations. Here, a combination of garbled circuits and secret sharing is preferred.
This dual approach provides an enhanced level of security compared to using secret
sharing alone, making it a more suitable choice for specific two-party computational
scenarios where privacy and security are essential. Threats to the SMPC model
primarily jeopardize its core function of preserving the confidentiality of an AI
model’s data. These risks are significant as they can result in the exposure of
confidential information, encompassing the data fed into the AI model and the
results it generates. This vulnerability extends to all participants engaged in the
computation process, potentially compromising the integrity and privacy of the
sensitive data involved, especially the leakage of essential parameters in well-trained
AI models to the AI users or an adversary disguised as an AI user.

Thirdly, Differential Privacy (DP)-based PPDL puts forward the DP mechanism
into the DLwith perturbation [16] [17] [18] [19] [20] [21]. As for the structure of the
DP-based PPDL, initially, the teacher model is trained using the available training
data. This teacher model then facilitates the training of the student model, which in
this context is represented as a Generative Adversarial Network (GAN) comprising
both a generator and a discriminator. When generating synthetic training data, the
generator incorporates random noise. Concurrently, the teacher model educates the
student model using public data. The student model orchestrates a zero-sum contest
between the generator and the discriminator. Upon its completion, the student model
is primed for predictions. When a client forwards a query to the student model, it
executes the inference phase and subsequently delivers the prediction results to the
client. The primary vulnerabilities associated with the DP model pertain to the
potential identification of sensitive training and inference data from the inferential
outputs of the AI model. More precisely, there exists a possible risk that users who
analyze the model’s outputs could deduce confidential information. In response to

4
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this challenge, the deployment of DP is strategically designed to substantially reduce
the probability that an individual could ascertain sensitive specifics from the training
and inference dataset through meticulous scrutiny of the outputs generated by the
AI model.

Fourthly, Secure Enclaves (SE)-based PPDL combines Trusted Execution Envi-
ronments (TEEs) [22] with the DL [23] [24] [25]. Similarly, a client transmits data to
the SE environment. Subsequently, the model provider dispatches the DL model to
this enclave. Within the confines of the SE, the prediction is carried out utilizing the
client’s data and the provided DL model. Post-prediction, the result is relayed to the
client. The procedures within the SE are assuredly confidential; any data or models
inside remain inaccessible and undisclosed to external entities. The threats of this
method mainly focus on hardware dependency, limiting applicability and raising
concerns about hardware-level vulnerabilities and the limited computing resources,
restricting the complexity of the computation that can be performed securely.

Finally, Hybrid-based PPDL proposes different combinations of the previous
methods and other technologies [26] [27] [28]. Due to the various structures resulting
from different method combinations, it is necessary to discuss and analyze based on
actual situations and make improvements according to the application environment.
Therefore, specific model structures will not be described here. The threat of this
method is up to the exact combination of multiple methods, so we will not discuss
more about it.

In the PPDL model, in other words, the model should not reveal any private
information about the training and inference data from the data owner and result
owner. The data owner, as previously defined by us, is the party who contributes
the data for training; furthermore, the results owner is the party who contributes
the data for inference and wants to obtain computational results, such as a result of
classification, a prediction of future trends, and so on. Furthermore, the model also
should not reveal any sensitive information about itself. The model plays the role of
the data user, which accesses and investigates integrated datasets for statistical and
research purposes.

There are different approaches above to handling issues. These approaches can be
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broadly grouped into two classes [2]: cryptographic-based and perturbation-based
approaches. These two classification methods have different emphases. One focuses
on specific application methods, while the other concentrates on the macroscopic
application mechanisms. Through our research and comparison, we find and believe
that the two leading research focuses in the PPDL field currently are methods based
on encryption and those based on noise perturbation.

By categorizing each method, we can understand how different the PPDL tech-
niques either rely on cryptographic mechanisms to secure data directly or use per-
turbation methods to obscure data, ensuring that individual data points are not
compromised during the DL process.

The HE enables computations on encrypted data, ensuring that the data remains
in a cryptographically secure format throughout the process, which decides the
HE-based PPDL should be a cryptographic-based approach. Furthermore, since
the SMPC allows multiple parties to jointly compute a function over their datasets
without revealing their private information, relying heavily on cryptographic pro-
tocols for security, the SMPC-based PPDL should belong to a cryptographic-based
approach. Moreover, the SE provides a protected area of memory that isolates the
data and code execution from the external environment. The protection mecha-
nisms are generally cryptographic in nature. Thus, the SE-based PPDL is also a
cryptographic-based approach.

On the other hand, the DP introduces noise or perturbation to the data or to
the algorithm’s outputs to prevent the disclosure of individual entries, thereby pro-
tecting privacy while maintaining data utility, ensuring that the DP-based PPDL
is a perturbation-based approach. As the name suggests, the Hybrid-based PPDL
combines elements of both cryptographic methods, like the HE or SMPC, and
perturbation methods, like the DP, to provide enhanced privacy protection. The
combination depends on the implementation and the targeted privacy and security
requirements. Hybrid methods attempt to leverage the strengths of both approaches,
often to balance between the robust security of cryptographic methods and the
practical utility preservation of perturbation methods.

6
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1.2 Research Targets
This thesis aims to solve the privacy-preserving issue in theDLmodels that themodel
should not reveal any private information about the training and inference data from
the data owner and result owner. Furthermore, the model also should not reveal any
sensitive information about itself. The model plays the role of the data user, which
accesses and investigates integrated datasets for statistical and research purposes.
In particular, the DL model is utilized chiefly for big data in AI applications, and
we focus on the PPDL by cryptographic-based and perturbation-based approaches
to minimize the risk of privacy breaches as much as possible and strengthen the
awareness of privacy-preserving, thereby achieving “available but invisible.” The
areas this research targets are described and shown in Figure 1.2.

Cryptographic-based approach. This approach is defined as the cryptography
area and countermeasures by encryption and decryption. It can ensure storage secu-
rity and privacy protection if it is just encryption and decryption naively. However,
as mentioned earlier, the AI models need to implement this data to construct models,
so they need to process these private and sensitive data directly. The core of this
research is how to perform calculations on ciphertext without compromising the
data results. Following this comes the HE technology. The HE allows algebraic
operations on ciphertext without compromising the results of decryption. That is, it
ensures that the results after decryption are almost consistent with those obtained by
performing the same algebraic operations on the original data. Cryptographic-based
approaches, such as HE, often make significant computational overhead. This can
lead to inefficiencies, making these methods impractical for large-scale or real-time
applications. Furthermore, integrating cryptographic methods with existing data
processing and the DL frameworks can be complex. This complexity arises from
modifying standard algorithms to work with encrypted data.

Perturbation-based approach. This approach is recognized by adding noise
to smooth out the distribution without changing features in the data. The essence
of the DP is how to inject noise, with the main parameters related to the injection

7
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amount being the privacy budget and sensitivity. Sensitivity refers to the degree to
which adding or removing a single piece of data within a dataset affects the final
result. Meanwhile, the privacy budget refers to the amount of noise added. The
smaller the privacy budget value, the more noise is added, thus the higher the level
of privacy-preserving. The research problems in perturbation-based approaches,
particularly in the PPDL, primarily focus on balancing privacy protection with data
utility and system efficiency. Maintaining the utility or accuracy of the data after the
noise has been added is the fundamental problem. Furthermore, determining the
right amount and type of noise to add is also a complex problem. The challenge is
to develop methods for optimal noise addition that adequately balance privacy and
utility for the DL models.

1.3 Contributions
The contributions of this thesis are grouped into Contribution 1, Contribution 2 of
Target 1, and Contribution 3 of Target 2; the details are as follows.

Contribution 1: Efficient Integer Vector Homomorphic Encryption Using
Deep Learning for Ciphertext Training in Neural Network

The DL relies on a large amount of data. In image recognition tasks, such as
facial recognition, images contain a large amount of private information. It is
essential to ensure that the training and test data are not leaked while obtaining
a well-trained model through training. We have researched the Efficient Integer
Vector Homomorphic Encryption (EIVHE) scheme and proposed Improved EIVHE
(IEIVHE) for better accuracy, as image data contains integer pixels. This method
is more suitable for encryption and processing ciphertext on integers compared to
other encryption methods. From the EIVHE, the scheme has used a HE algorithm
to encrypt the data sets and then train and test the model. The core of the encryption
algorithm uses key-switching technology and function polynomialization to achieve
the Fully HE (FHE) on the premise of not adding excessive noise, implementing the
encryption of non-polynomial functions, and the algebraic operations of ciphertext.
The IEIVHE is an improved version of the EIVHE. It demonstrates a specific

8
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Data Owner / Result Owner

Privacy-preserving Deep Learning

Cryptographic-based
approach

Perturbation-based
approach

HE-based SE-based Hybrid SMPC-based DP-based

 Directional methods

Target 1 Target 2
Contribution 1
Contribution 2

Contribution 3

Data User

Figure 1.2. The relationship of main research targets and other representatives.

procedure for applying EIVHE to neural networks by combining techniques such as
key switching, batch normalization, and matrix transformations and then evaluating
its performance in latency and accuracy. The experiments have been tested on a
Modified National Institute of Standards and Technology (MNIST) database, and
the accuracy is constantly improved through repeated experiments and compared
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parameters such as training set accuracy, test set accuracy, time cost and period, etc.
In order to make the maximum improvement of accuracy, taking the absolute value
of data has been proposed in the IEIVHE, which has improved accuracy 3.08% via
the level of data from 86.42% to 89.05% on the MNIST dataset.

Contribution 2: Channel-wise Homomorphic Encryption for Ciphertext In-
ference in Convolutional Neural Network

This work aims to improve the performance of the image classification of HE-
based PPDL by combining two approaches ― Channel-wise Homomorphic En-
cryption (CHE) and Batch Normalization (BN) with coefficient merging. Although
these are commonly used schemes, their detailed algorithms and formulations have
not been clearly described. The main contribution of the current study is to provide
complete and reproducible descriptions of these schemes. By utilizing the CHE, we
aim for more efficient data processing at the channel level rather than pixel-by-pixel,
reducing inference latency.

More specifically, we propose explicitly tailored algorithms and a computational
scheme dubbed “Onion” to facilitate ciphertext inference in Convolutional Neu-
ral Network (CNN) using the CHE to address the HE-based ciphertext inference
problem in the CNN for higher accuracy and shorter latency. We also present two
variations of the convolution, activation, and BN layers in an abbreviation of the
layers: Convolution-BN-Activation (CBA) and Convolution-Activation-BN (CAB),
which are implementations of the CM, and the two schemes can reduce ciphertext
inference latency without increasing the MD. To underscore the stability of these
arrangements, we provide mathematical proofs. By merging the BN and activation
layer using the CM into a singular mapping layer, we observe a boost in accuracy
and a reduction in inference latency. The proposed method achieves the highest
accuracy of 99.32% and the shortest latency of 7.76 seconds on the MNIST dataset
compared to five previous architectures: the CryptoNets, the light CNN, the HCNN,
and so on. And it also attains an accuracy of 76.4% and a latency of 111.91 seconds
on the CIFAR-10.

Contribution 3: The Trade-offs of Privacy, Utility, and Efficiency in Differ-
ential Privacy-Enabled VQ-VAE for Image Generation

10



1.4 Outline

From the perspective of the Perturbation-based approach, in this work, we of-
fer a detailed exploration of a strategy that paves the way for safe data sharing.
The synthetic datasets, crafted by our privacy-preserving generative model, can be
shared extensively without breaching any privacy norms or ethical boundaries. We
showcase an enhanced privacy-preserving Vector Quantized-Variational AutoEn-
coder (VQ-VAE) framework, improving and speeding up the workflow with a lower
privacy budget. For the implementation of the DP, we adopted DP-Stochastic Gra-
dient Descent (DP-SGD) shown in the Tensorflow Privacy library [29] and applied
it to our model. This ensures the generation and reconstruction of lifelike images
while safeguarding the intrinsic data’s privacy and optimizing the privacy budget.
Furthermore, we thoroughly examine the balance between privacy, utility, and com-
putational efficacy in our advocated model. Focused on the privacy budget, in the
vanilla method, the privacy budgets consumed for four datasets are 3.86, 3.86, 4.94,
and 15.53, respectively; in the revised method, the privacy budgets consumed for
four datasets are 2.63, 2.63, 2.92, and 10.16, respectively, which reduces the privacy
budgets by 31.87%, 31.87%, 40.89%, and 34.58% on the corresponding datasets.
The proposed revised training flow can reduce the privacy budget by approximately
34.80%while maintaining a similar generation for images, resulting in a more robust
privacy-preserving level.

1.4 Outline
The remainder of this thesis is organized as follows. Chapter 2 details the concept
and core technology of implementing the EIVHE and the improved IEIVHE. It also
involves applying the algorithm to neural network models for experimental tests,
analyzing the resulting performance, discussing improvement plans to enhance ac-
curacy, and verifying its feasibility and effectiveness. Chapter 3 presents the CHE
for ciphertext inference in the DL, especially the CNN. The key idea behind the
proposed method is shifting pixel-wise encryption to pixel-wise encryption. It is
explicitly utilizing several designed algorithms for acceleration and optimization.
In Chapter 4, we implement the DP mechanism for a generative model VQ-VAE,
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which promotes reducing the privacy budget 𝜖 of training holding relevant perfor-
mance. Chapter 5 describes the limitations of privacy-preserving and future work
of preserving privacy in the DL. Finally, Chapter 6 summarizes this thesis.

12



Chapter 2

Contribution 1: Efficient Integer
Vector Homomorphic
Encryption Using Deep
Learning for Ciphertext Training
in Neural Network *1

2.1 Introduction
Nowadays, DeepNeural Networks (DNNs) have been applied in a significant number
of applications, which can be roughly divided into six fields, including image and
object recognition, electronic games, voice generation and recognition, imitation of
art and style, prediction, and website design modification [30] [31].

However, expanding these fields has revealed limitations in local computing re-

*1 This chapter is based on the paper: [Efficient Integer Vector Homomorphic Encryption Using
Deep Learning for Neural Networks, ICONIP, 2018].



Chapter 2 Contribution 1: Efficient Integer Vector Homomorphic Encryption
Using Deep Learning for Ciphertext Training in Neural Network

sources. Personal computers are increasingly found inadequate for these demanding
tasks, leading many users to turn to cloud computing for enhanced performance.
While cloud computing offers significant computational advantages, it also raises
critical concerns about data security. Amajor challenge in cloud-based data process-
ing is ensuring data privacy and usability. Although the performance of computing
has been improved, it still faces a problem of how cloud platforms can guarantee
the security and privacy of the user’s data. Ensuring the privacy of data and its
usability is an intractable problem in the process of computing data. Homomorphic
Encryption (HE) technology, as a critical method to solve this problem, has been a
hot issue in international and domestic academic circles in recent years.

The HE is primarily of two types: Fully Homomorphic Encryption (FHE) and
Somewhat Homomorphic Encryption (SWHE). The FHE supports any given func-
tion as long as the function can be described by an algorithm and implemented
in a computer. The FHE solution is a great solution, but the computational over-
head is enormous. Conversely, the SWHE, while only supporting specific functions,
presents reduced computational demands and more straightforward implementation.
The SWHE scheme is slightly weaker, but it also means that the overhead will be
more negligible and more accessible.

Moreover, the four key algorithms – HE on integer vectors [32], SWHE [33],
practical FHE [34], and the FHE without bootstrapping [35] – are noted for their
efficiency. TheDL techniques based onDNNs have achieved significant applications
in various domains. There is an excellent risk of disclosing the user’s privacy when
researchers train a high-performing model with many datasets collected from the
users without any protection.

In this chapter, we utilize an Efficient Integer Vector Homomorphic Encryption
(EIVHE) [32] scheme using Deep Learning (DL) for the DNN model to address
this issue and propose an Improved EIVHE for better accuracy. The EIVHE is
a natural extension of the Peikert-Vaikuntanathan-Waters (PVW) [36] method of
packing many plaintext elements in a single Regev-type ciphertext [37], which we
make the improvement from the original EIVHE based on level of data to the
IEIVHE. Image data contains integer pixels, so this method is more suitable for
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encryption and processing ciphertext on integers than other encryption methods.
We use the EIVHE and IEIVHE to encrypt the dataset, feed the encrypted datasets
into a DNN model, and finally obtain the well-trained model for the DNN. It is an
innovative bridge between cryptography and deep learning. It aims to protect the
user’s privacy, combining the State-Of-The-Art (SOTA) DLmethods with advanced
cryptography [35]

Our contributions are summarized as follows:

• We utilize an EIVHE and propose an improved IEIVHE using the DL to
protect users’ data privacy in the DNN model.

• To protect privacy in training and test images for our scheme, we exploit the
FHE scheme to encrypt the input data using the EIVHE encryption scheme
before feeding them into the DNNs.

• We evaluate the EIVHE and IEIVHE on the Modified National Institute of
Standards and Technology (MNIST) database, and the experimental results
show that we can train the DNN model with encrypted datasets without
privacy leakage and achieve an accuracy of 89.05% on the MNIST with the
absolute value in the IEIVHE.

2.2 Related Work
The HE was first proposed by Rivest and others [5] in 1978 as a concept: the HE
is a method of encryption that allows users to perform certain specific algebraic
operations, such as addition, subtraction, multiplication, and division, directly on
ciphertext that has been encrypted using the HE. The results of these operations,
still in encrypted form, can then be decrypted by the user using the corresponding
decryption method to yield plaintext results consistent with those obtained by per-
forming the same algebraic operations directly on the original plaintext. The core
idea of the HE is to add random noise to the plaintext, so each time an algebraic
operation is performed at the level of the HE, a portion of the noise is added to the
ciphertext. Correct decryption results cannot be obtained once the noise exceeds a
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set threshold. Hence, researchers have been trying to find ways to reduce the noise.
It wasn’t until 2009 that Gentry [38] proposed a fully HE scheme based on ideal

lattices, solving a problem that had plagued researchers for years. This method can
handle computations of any depth, referred to by the author as “bootstrapping.” This
technique can reduce the amount of noise in the ciphertext. Still, its computational
cost is very high, making it impractical for real-world applications.

Later, to reduce time overhead, researchers proposed a faster HE scheme: Leveled
HE (LHE).Without using bootstrapping, this approach reduces computational depth
to speed up processing. Furthermore, the DL based on the HE has become an
important research method in the field of the DL. To protect user privacy, Shokri
and others [3] proposed a Privacy-preserving Deep Learning (PPDL) system based
on the HE. This system allows multiple users to train using their local datasets while
learning about the DNNmodel from the joint dataset. The authors primarily made a
trade-off between accuracy and gradients, ensuring that as much privacy as possible
is protected while sharing user-provided gradients for training.

Similarly, to ensure the feasibility of running the DNNs on encrypted data, Dowlin
and other researchers [6] in 2016 introduced a CryptoNets, the first to implement
DNNmodel using the FHE for the PPDL. The authors deployed one of the four most
popular HE algorithms, Yet Another Somewhat HE (YASHE) [35], which does
not support floating-point operations and instead uses fixed-precision real numbers,
converting floating-point numbers into integers at a fixed ratio. Additionally, Ehsan
and others [13] focused on how to use the HE for privacy protection in Convolutional
Neural Networks (CNNs) in the DL. The authors primarily used approximation
methods, utilizing polynomials as activation functions to implement the CNNs.
Their CryptoDL model provided efficient, accurate, and scalable privacy-protected
predictions.

Furthering research on implementing polynomials as activation functions, Chou
and others [14] utilized pruning and quantization schemes to find the optimal poly-
nomial approximation of activation functions, ensuring a more efficient application
of the HE in DNN, balancing approximation error with practical usability. On the
other hand, based on the framework in CryptoNets [6], Badawi and others [11] ap-
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plied Graphics Processing Unit (GPU) acceleration to the FHE technology to realize
efficient Homomorphic Convolutional Neural Networks (HCNNs). This means that
as many polynomial approximations of activation functions as possible can be used
for computation, allowing the use of larger datasets and deeper DNNs.

2.3 Background

2.3.1 One-hot Encoding

In the development of data science projects, datasets commonly feature mixed data
types comprising both categorical and numerical columns. Notably, many Machine
Learning (ML) models are incompatible with categorical data, necessitating their
conversion to a numerical format for model integration, especially the DL. A preva-
lent issue with categorical data, often represented as string labels, is the potential
misinterpretation by the DL models as having an inherent order or hierarchy. To
address this, label encoding can be employed, assigning numerical values to these
categorical labels, thereby facilitating their effective utilization in the DL algorithms.
One-hot encoding is a method employed to convert categorical variables into nu-
merical representations for use in the DL models, which we take to replace the label
of structured data. This technique offers several advantages:

• EnablingNumerical Integration: It facilitates the incorporation of categorical
variables into models that necessitate numerical inputs, thus broadening the
applicability of these models.

• Enhanced Model Performance: By providing a more detailed representation
of categorical variables, one-hot encoding can potentially improve model
accuracy and efficacy.

• Mitigation of Ordinality Issues: It addresses the challenge of ordinality in
categorical data. Ordinality arises when a categorical variable possesses
a natural order, such as animals categorized as “cat” and “dog.” One-hot
encoding ensures that these inherent orderings do not bias the model’s inter-
pretation of the data.
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2.3.2 Functions of the HE

The HE was initially proposed by Rivest, Adleman, and Dertouzous soon
after they developed the Rivest–Shamir–Adleman (RSA) public-key cryptosys-
tem [5] [39] [40]. The HE facilitates the execution of operations on plaintexts by
applying them to the corresponding ciphertexts, all while keeping the plaintexts
confidential [35]. Typically, a HE scheme is composed of four key algorithms:
KeyGen, Encrypt, Decrypt, and Evaluate [38] [41]. Based on the established
definition of the HE, these four functions can be clearly outlined, as referenced
in [42], in the following manner:

• KeyGen. It takes the security parameter 𝑤 and then produces a secret key 𝑠𝑘

and a public key 𝑝𝑘 , i.e., 𝑘𝑒𝑦𝐺𝑒𝑛(𝑤) → (𝑝𝑘 , 𝑠𝑘)
• Encrypt. It takes the public key 𝑝𝑘 and a plaintext 𝑚 as input and produces a
ciphertext 𝑐 of 𝑚, i.e., 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑚, 𝑝𝑘) → 𝑐

• Decrypt. It takes the secret key 𝑠𝑘 and 𝑐 as input and produces the plaintext
𝑚 of 𝑐, i.e., 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐, 𝑠𝑘) → 𝑚

• Evaluate. It takes the public key 𝑝𝑘 , a circuit 𝐶 and a tuple of cipher-
text (𝑐1, 𝑐2, · · · , 𝑐𝑛) as input and produces the encrypted result 𝑐, i.e.,
𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑠𝑘 , 𝑐) = 𝑓 (𝑚1,𝑚2, · · · ,𝑚𝑛), where 𝑓 is the functionality that we
want to perform.

2.3.3 Deep Machine Learning Concepts and Notations

Given a training dataset, the learning task is to determine these weight variables to
minimize a pre-defined cost function such as the cross-entropy or the squared-error
cost function [43].

The DL refers to the multi-layer neural network using various DL algorithms to
solve the algorithm set’s image, text, and other problems. The DL can be classi-
fied into the DNNs in broad categories, but implementation has many differences.
The core of the DL is feature learning, which aims to obtain hierarchical feature
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information through the hierarchical network to solve the critical problems that need
artificial design features in the past.

Deep Neural Networks (DNNs), known for their impressive efficacy in various
DL tasks, represent parametric functions from inputs to outputs. They compose
multiple layers of fundamental elements like affine transformations and basic non-
linear functions [44]. By adjusting the parameters of these elements, we can “train”
these parametric functions to align with any specific finite collection of input and
output examples.

Typically, we divide a DNN into three layers: the input layer, the hidden layer,
and the output layer. An input layer is the interface to which we feed our dataset to
the network. The hidden layer is the processing unit of the model. The output layer
is the result we get from the model. And so-called DL means the network has many
hidden layers. Thus, we can regard it as the DL, a process of constant grinding, first
defining some standard parameters and then revising them.

2.4 Methodology

2.4.1 Efficient Integer Vector Homomorphic Encryption

We first introduce the used scheme to encrypt datasets, including the encryption
scheme and key-switching technique. To encrypt the dataset, the EIVHE algorithm
implemented in the DNNmodel has been clarified in the following outlined in Algo-
rithm 1. The encryption scheme we are examining represents a logical progression
from the Peikert-Vaikuntanathan-Waters (PVW) approach, which involves encapsu-
lating multiple plaintext elements within a single Regev-style ciphertext, as detailed
in [36] [37].

Encryption Scheme.
At first, the following describes the algorithm of EIVHE developed by Zhou et
al. [32]. Let x ∈ Z𝑛

𝑝 be an integer vector to encrypt, where 𝑛 denotes the length of
the vector and 𝑝 denotes alphabet size. Let c ∈ Z𝑛+1

𝑞 be the ciphertext of x with
length 𝑛 + 1 > 𝑛 and alphabet size 𝑞 ≫ 𝑝. The secret key is a matrix S ∈ Z𝑚×𝑛

𝑞 and
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it satisfies

Sc = 𝑤x + e (2.1)

where noise matrix e ∈ Z𝑚×𝑛. Here, 𝑤 is an integer parameter such that 𝑤 > 2|e|.
The encryption of x involves identifying a ciphertext c that ensures Sc complies
with Equation 2.1. Based on the secret key S, decryption of the ciphertext c as per
Equation 2.1 is achievable through the computation outlined in Equation 2.2:

x = ⌊Sc
𝑤
⌋ (2.2)

where ⌊·⌋ means rounding the number down to its nearest integer.
Considering the three basic operations on integer vectors - addition, multiplica-

tion, and weighted inner products that are readily executable within the encryption
scheme detailed in [32], it becomes feasible to efficiently compute any polynomial
on integers within the DNN.

Consider two integer vectors, x1 and x2, for which three fundamental operations
are defined:

I Addition, x1 + x2, necessitating equal lengths for x1.
II Linear transformation, Gx1 utilizing an arbitrary matrix G.
III Weighted inner products, {x𝑇1H 𝑗x2}, employing a set of weight matrices.

It is presumed that all values resulting from these operations fall within zero and
⌊ 𝑞
𝑤 ⌋, ensuring the absence of integer overflows. Additionally, let c1 and c2 represent

the ciphertexts corresponding to x1 and x2 with secret keys S1 and S2, respectively,
and they adhere to:

S𝑖c𝑖 = 𝑞𝑘𝑖 + 𝑤x𝑖 + e𝑖 (2.3)

with |S𝑖 |, |k𝑖 | and |e𝑖 | much smaller than 𝑞. Here, we show the three types of
fundamental operations, referring from the paper [32] for the demonstration.
I. Addition Operation: if c1 and c2 have the same secret key, i.e. S1 = S2 = S, then
c′ = c1 + c2 mod 𝑞 is an encryption of x1 + x2, since
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Sc′ = 𝑞k′ + 𝑤(x1 + x2) + (e1 + e2) (2.4)

Given that k′ is an integer vector of small magnitude, and assuming x1 and x2
may utilize different secret keys, our initial step involves aligning one secret key
with the other using key-switching techniques, for instance, changing S1 to S = S2.
Alternatively, if S1 and S2 are correlated, it becomes essential to switch both to
a common key S. Let us denote c′1 and c′2 as the ciphertexts resulting from key-
switching. These ciphertexts fulfill the condition Sc′𝑖 = 𝑞k′𝑖 + 𝑤x𝑖 + e′, where both
|k′ | and |e′ | are small. If we set c′ = c′1 + c′2 mod 𝑞, then

Sc′ = 𝑞k′ + 𝑤(x1 + x2) + e′ (2.5)

It is noted that |k′ | ≤ |k′1 | + |k′2 | and e′ = e′1 + e′2.
II. Linear Transformation: The linear transformationGx1 follows the observation
that

GSc1 = 𝑞Gk1 + 𝑤Gx1 +Ge1. (2.6)

Therefore, if the magnitude of |G| is significantly smaller than 𝑞, c′ = c1 can be
considered as the ciphertext representing Gx1, under the secret key S′ = GS.
III. Weighted Inner Products: A set of weighted inner products xT1Hjx2 can be
calculated using the method for multiplication through tensor products. The corre-
sponding formula is

s′𝑗𝑐′ = 𝑞k′𝑗 + 𝑤(x𝑇1H 𝑗x2) + e′𝑗 (2.7)

where s′𝑗 = 𝑣𝑒𝑐(S𝑇1H 𝑗S2)𝑇 be the 𝑗 th row of the new secret key S′, let c′ =

⌈ 𝑣𝑒𝑐 (c1c
𝑇
2 )

𝑤 ⌋𝑞 be the new ciphertext, and k′𝑗 is an integer, and k′𝑗 , e′𝑗 are much smaller
than 𝑤.

Key-switching Technique.
In their groundbreaking study, Brakerski andVaikuntanathan [36] presented a crucial
re-linearizationmethod that canmodify the secret key in Process-level Virtualization
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Machines (PVM) schemes to switch between various vector forms. Subsequently,
Brakerski, Gentry, and Halevi extended this innovation, developing a method for
transitioning between two matrix-form secret keys [37]. Brakerski and Vaikun-
tanathan’s re-linearization technique generally involves two stages. It is utilized to
transition a secret key S ∈ Z𝑞𝑚×𝑛 to a different secret key S′ ∈ Z𝑞𝑚×𝑛′ , using an
intermediate key S∗ ∈ Z𝑚×𝑛𝑙

𝑞 . This process is executed as follows, and in doing
so, we also obtain a new ciphertext c′ which continues to encrypt the same integer
vector x.

• Step 1: S → S∗, indicating that S is transformed to S∗, such that its cor-
responding new ciphertext c∗ has a smaller magnitude than c. The goal is
to represent each element c𝑖 in c with a binary vector or binary representa-
tion. Hence it results in a new ciphertext c∗ with |c∗ | = 1. Assuming that
c𝑖 = b𝑖0 + b𝑖12 + · · · + b𝑖 (𝑙−1)2𝑙−1, then we obtain c∗ by expressing each c𝑖 as
[b𝑖0, b𝑖1, · · · , b𝑖 (𝑙−1) ]. Then, we construct a secret key S∗ ∈ 2𝑚×𝑛𝑙 such that

S∗c∗ = Sc (2.8)

it can be replaced by each S𝑖 𝑗 in S with a vector [S𝑖 𝑗 , S𝑖 𝑗2, · · · , S𝑖 𝑗2𝑙−1].
• Step 2: S∗ → S′, showing that S∗ is transformed to S′. We construct an
integer matrixM ∈ Z𝑛′×𝑛𝑙 and a noise matrix E, such that

S′M = S∗ + E (2.9)

assume S′
= [I,T] with an identity matrix I,M can be constructed by:

M =
(S∗ + E − TA∗

A
)

(2.10)

where A ∈ Z(𝑛′−𝑚)×𝑛𝑙 is a random matrix.
• Step 3: S′,M → c′, indicating that we obtain a new ciphertext c′ byM:

c′ = Mc∗ (2.11)
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Algorithm 1. Efficient Integer Vector Homomorphic Encryption Scheme (EIVHE)
Input: 𝑤, x
Output: c, S
1: Get the row of x 𝑚 and the column of x 𝑛, respectively;
2: Generate 𝑘𝑒𝑦() : S = 𝑟𝑎𝑛𝑑𝑜𝑚.𝑟𝑎𝑛𝑑 (𝑚, 𝑛) × 𝑤;
3: Get 𝑇 () : T = 𝑟𝑎𝑛𝑑𝑜𝑚.𝑟𝑎𝑛𝑑 (𝑛, 1);
4: Get 𝑙: encode length for a maximum integer in |x|;
5: Get c∗;
6: for 𝑖 = 1 to 𝑚

7: for 𝑗 = 1 to 𝑛

8: b = 𝑏𝑖𝑛𝑎𝑟𝑦_𝑣𝑒𝑐𝑡𝑜𝑟 (c[𝑖] [ 𝑗]);
9: if c[i][j] ≤ 0 then b∗ = −1;

10: c∗ [𝑖] [( 𝑗 ∗ 1) + 𝑙 − 𝑙𝑒𝑛(b) : ( 𝑗 + 1) ∗ 𝑙]+ = b;
11: end for
12: end for
13: Get S∗;
14: for 𝑖 = 1 to 𝑙;
15: S∗ = S ∗ 2𝑙−𝑖−1;
16: end for
17: S′

= [I,T] and A = 𝑟𝑎𝑛𝑑𝑜𝑚.𝑟𝑎𝑛𝑑 (1, 𝑛 ∗ 𝑙) ∗ 10;
18: E = 𝑟𝑎𝑛𝑑𝑜𝑚.𝑟𝑎𝑛𝑑 (the row of S∗, the column of S∗) ∗ 𝑙;

19: M =
(−TA + S∗ + E

A
)
;

20: c′ = M ∗ T;
21: Return c = c′ and S = S′;

2.4.2 Constructed Neural Network Model

We construct six hidden layers to prevent gradient dispersion and use batch normal-
ization. The activation function is Rectified Linear Unit (ReLU), and the output
layer is the SoftMax function [45] to do classification, which is approximated and
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transformed into the polynomials. Moreover, the cost function is cross-entropy, and
the optimization function is Adaptive moment estimation (Adam) [46]. To train the
DNN, assume X denotes the training dataset, X_label denotes the label of X, Y
denotes the test dataset, and Y_label denotes the label of Y, then feed them into
a DNN model, so we propose a DL algorithm in Algorithm 2. We explain the
functions in the following:

Batch Normalization
According to the work [47], at each Stochastic Gradient Descent (SGD), the corre-
sponding activation is normalized by mini-batch so that the mean value of the result,
the output signal of each dimension, is zero and the variance is one.

ReLU
The ReLU is an activation function that is commonly used in the DNNs. In general,
the linear rectification function refers to the slope function in mathematics [48]; the
ReLU is approximated as the polynomial function, such as:

𝑓 (𝑋) = 𝑚𝑎𝑥(𝑥, 0) → 𝑓 (𝑋) = 𝑥2 (2.12)

SoftMax
The SoftMax is a generalization of a logistic function that “squashes” or maps a
𝐾-dimensional vector Z, which compresses a 𝐾-dimensional vector of an arbitrary
natural number into another 𝐾-dimensional real vector, the values of each element
of the vector fall in the range (0, 1) and adds up to one.

𝜎(Z) 𝑗 =
𝑒Z 𝑗∑𝐾
𝑘=1 𝑒

Z𝑘
(2.13)

The SoftMax function defined in Equation 2.13 inherently involves exponential
operations incompatible with the HE due to their computational complexity and
non-polynomial nature. Consequently, this function cannot be directly applied to
the HE in its existing form. To solve this problem, it is necessary to approximate
Equation 2.13 with polynomials.
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In this study, a naive approximation is made by expanding both the numerator and
denominator using a Taylor series, truncating after the quadratic term. Although
the division process does not always result in a polynomial since the HE schemes
often operate in a ring of integers modulo a large prime or a power of a prime,
especially when the remainder is nonzero, we assume here that the remainder is
sufficiently negligible, thereby treating the division result as an approximate polyno-
mial representation of the softmax function. However, this assumption has not been
theoretically validated, indicating a crucial area for further investigation. As the fol-
lowing sections will show, the limited accuracy achieved in this study is likely due to
these naive approximations, highlighting the need for future theoretical exploration
and verification in this area.

Cross-entropy
Cross-entropy is a concept of the information theory, the earliest by the information
entropy change, which processes relative information entropy and compression ratio,
and then be used in many places, including communications, error correction cir-
cuits, game theory, machine learning, etc. [49]. The introduction of a cross-entropy
function for the DNN is to make up for the defect that the derivative form of the
Sigmoid function is easy to saturate, as Equation 2.14:

𝐿𝐻 (𝑥, 𝑧) = −
𝑑∑

𝑘=1
𝑥𝑘 log 𝑧𝑥 + (1 − 𝑥𝑘) log(1 − 𝑧𝑘) (2.14)

Adam
The Adam [46] is a first-order gradient-based algorithm that aims at optimizing
a random objective function. According to the first-order moment estimation and
second-order moment estimation of the gradient of each parameter via cost function,
Adam dynamically adjusts the learning rate of each parameter.
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Algorithm 2. Deep Learning with the EIVHE
Input: training data 𝑋 , labels of training data 𝑋_𝑙𝑎𝑏𝑒𝑙, validate data 𝑌 , labels of
validate data 𝑌_𝑙𝑎𝑏𝑒𝑙
Output: prediction accuracy 𝑝

1: Initial weight 𝑤 and parameters 𝑝𝑎𝑟 of the DNN
2: Feed training data 𝑋 into the DNN→ EIVHE(𝑋)
3: Get mini-batch 𝑏𝑎𝑡𝑐ℎ𝑥

4: Forward propagation: computing the cost
5: Backward propagation: computing gradients
6: Optimization: the Adam
7: Repeat steps 3 − 7 until the DNN becomes stable
8: Get the well-trained model
9: Input validate data 𝑌 into the well-trained DNN model→ EIVHE(𝑌 )

10: Return 𝑝

2.5 Experiments

2.5.1 Dataset

We conduct experiments based on the MNIST dataset for handwritten digit recog-
nition consisting of 60, 000 training examples and 10, 000 test examples [43]. Each
example is a 28 × 28 size gray-level image. One image has 784 feature points
before the HE, and we get 785 feature points per image using this method. In
other words, according to the key-switching technique, through matrix transforma-
tion, the feature point of one image has changed from 784 to 785. We use a simple
forward-propagation DNNwith the ReLU, SoftMax of 10 classes with cross-entropy
loss, mini-batch normalization, and the optimization algorithm Adam. We use our
scheme to apply to the MNIST and do three representative experiments on this
dataset.
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(a). Cost of model

(b). Training accuracy of model

(c). Validation accuracy of model

Figure 2.1. Cost and accuracy of the original MNIST dataset in 100 epochs
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2.5.2 Baseline Model

Our baselinemodel uses theMNISTdatasetwithout processing, where the input layer
has 784 units, six hidden layers with 512, 256, 128, 64, 32, and 16 units, respectively,
and the output layer has 10 units. As for the Adam, we set the parameters as default:
𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8. Using this method, we can reach an
accuracy of 94.87% in about 100 epochs.

As shown in Figure 2.1a, the cost of the original dataset maintains a downward
trend until convergence. Figure 2.1b shows the trend of training accuracy until
convergence, and it arrives at the training accuracy of 94.87%. Figure 2.1c shows
the validation accuracy of the original test dataset, and the convergence value is
90.19%. Details are shown in Table 2.1.

Table 2.1. Details of original dataset

Type
Training

Accuracy (%)
Validation

Accuracy (%)
Training

Time (minute)
Epoch

Original Dataset 94.87 90.19 26.28 100

2.5.3 Proposed Model

We test the proposedDLwith theHEmodelwith the same architecture as the baseline
model. It is different because we use the encrypted dataset to feed the DNN. The
original size of one image of the MNIST is 28 × 28, which is reshaped as 1 × 784.
Thus, training images become a 60, 000 × 784 matrix, and test images become a
10, 000 × 784 matrix. More than that, We use one-hot encoding to differentiate
the training and test labels. The encryption time of the two datasets is shown in
Table 2.2.
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Table 2.2. Homomorphic Encryption Time

Dataset Encryption Time (second) Cost per Pixel (second)
Training images 662.77 1.41 × 10−5

Test images 119.98 1.53 × 10−5

2.6 Performance Analysis

2.6.1 Accuracy on the Separate Datasets

At first, we encrypt training image datasets and test image datasets, respectively, as
shown in Algorithm 1. Then, we feed the encrypted training image datasets into
the DNN model, where the epoch is 100. Under encryption without using the same
key, the matrix we get is a non-homomorphic matrix that somewhat undermines the
internal relationship of the datasets. Then, to solve this issue, we let two datasets
encrypt together with the same key as shown in Section 2.4.2.

As shown in Figure 2.2a, the cost is much higher than the original dataset.
Furthermore, Figure 2.2b shows the training accuracy of the encrypted dataset is
85.97%. We think the reason for the decrease in accuracy is that after encryption,
our input dimension changed from 784 to 785. It seems like we artificially added
one fake feature point in every input picture, which can be regarded as a type of
noise. However, as shown in Figure 2.2c, we check out that our validation accuracy
is greatly low. By checking the dataset, we realize that the fatal point is that we
encrypt training and test datasets, respectively, but each encryption secret key is
randomly generated. Details are shown in Table 2.3.

2.6.2 Accuracy on the Improved Algorithm

To show a better performance, we improve Algorithm 1 as shown in the new Algo-
rithm 3-Improved EIVHE (IEIVHE).

Thus, we use the IEIVHE to encrypt our training and test datasets together, and
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(a). Cost of model

(b). Training accuracy of model

(c). Validation accuracy of model

Figure 2.2. Cost and accuracy of the separate encrypted MNIST dataset in 100
epochs.
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(a). Cost of 100 epochs

(b). Training accuracy of 100 epochs

(c). Validation accuracy of 100 epochs

Figure 2.3. Cost and accuracy of the encrypted MNIST dataset with the improved
algorithm in 100 epochs.
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Table 2.3. Accuracy of the separate encrypted dataset

Type
Training

Accuracy (%)
Validation

Accuracy (%)
Training

Time (minute)
Epoch

Encrypted Dataset
(respectively)

85.97 13.54 28.38 100

then we can get better results. As shown in Figure 2.3a, we find out that our cost
has declined, lower than the original dataset. In Figure 2.3b, we learn that our
training accuracy has improved to 87.29%, 1.32% higher than the original datasets.
Figure 2.3c shows that the validation accuracy has improved dramatically as 85.04%.
Details are shown in Table 2.4.

Algorithm 3. Improved efficient integer vector homomorphic encryption (IEIVHE)
Require: 𝑤,X,Y;
Ensure: c1, c2, S1, S2;
1: 𝑚 = X.𝑠ℎ𝑎𝑝𝑒[0], 𝑛 = X.𝑠ℎ𝑎𝑝𝑒[1] = Y.𝑠ℎ𝑎𝑝𝑒[1], ℎ = Y.𝑠ℎ𝑎𝑝𝑒[0];
2: S=generate_key(w, n);
3: T=get_T(n);
4: c1, S1=encrypt_via_switch(X, w, m, n, T, S);
5: c2, S2=encrypt_via_switch(Y, w, h, n, T, S);

Table 2.4. Accuracy of the improved algorithm on encrypted dataset

Type
Training

Accuracy (%)
Validation

Accuracy (%)
Training

Time (minute)
Epoch

Encrypted Dataset 87.29 85.04 28.08 100

As for the accuracy improvement, we havemademany attempts at hyper-parameter
tuning. Unfortunately, so many hyper-parameters are fixed, which are widely cir-
culated via the industry, so we set the recommended parameters as the default. On
the other hand, there is one parameter that still has a chance to impact the accuracy
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of the model: epochs. Following this clue, we change the epochs for accuracy
improvement. Details are shown in Table 2.5.

Table 2.5. Accuracy of the impact of epochs

Type
Training

Accuracy (%)
Validation

Accuracy (%)
Training

Time (minute)
Epoch

Encrypted Dataset
87.29 83.38 55.59 200

87.28 83.39 85.97 300

According to Table 2.5, as the number of epochs increases, the accuracy almost
arrives at a convergence level at 200 epochs, around 87.28%.

2.6.3 Accuracy on the Absolute Datasets

Besides accuracy improvement from the level of hyper-parameters, we try to discern
a new way to improve it. Through internal data analysis, we discover that the
encrypted data matrix alters from a non-negative matrix to a non-positive matrix.
In our DNN model, the active function is the ReLU. This causes most neurons to be
inactive. Hence, a delicate and easy method is devised to solve the issue that takes
the absolute value of the encrypted matrix.

As shown in Figure 2.4a, the cost is roughly the same as above. Figure 2.4b shows
improved accuracy, which means our method has an effect and improved slightly.
Then, as for Figure 2.4c, we can see that the validation accuracy has also improved.
Details are shown in Table 2.6.

From the above experiments, we observe the following:

• The HE protects the privacy of data. We can encrypt the dataset before using
it via neural networks. However, we need a lot of time to encrypt the dataset.
It just takes some time to encrypt the training dataset and to train our model,
and then every picture that needs to be encrypted takes a very short time to
encrypt.
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(a). Cost of 200 epochs

(b). Training accuracy of 200 epochs

(c). Validation accuracy of 200 epochs

Figure 2.4. Cost and accuracy of the absolute encrypted MNIST dataset with the
improved algorithm in 200 epochs.
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• When we take the absolute value of the encrypted dataset, accuracy has
improved 3.08% via the level of data.

• The training super-parameters have little impact on the model accuracy. As
for epochs, we get a stable and efficient value of 200.

Our algorithm allows for the PPDL. The first initial experiments did not show a
significant improvement, but it is interesting to consider more sophisticated schemes
for accuracy improvement.

Table 2.6. Accuracy of the absolute datasets

Type
Training

Accuracy (%)
Validation

Accuracy (%)
Training

Time (minute)
Epoch

Encrypted Dataset
(absolute)

89.05 84.98 256.73 200

2.7 Conclusion
We demonstrate the training of the DNN model with encrypted datasets of the HE,
preserving the user’s privacy and avoiding privacy loss when using a neural network
model computed over an entire model with many parameters. In our experiments
for the MNIST, we achieved 89.05% training accuracy with the encrypted dataset
with absolute value in the IEIVHE. Our scheme is based on a dataset of the HE;
after encryption, we use the encrypted dataset to train our DNN model. Since our
approach applies cryptography to the DL, it can be adapted to many other datasets
before using them to feed. Others cannot understand data without a secret key
when conducting data encryption. Thus, it can protect privacy and ensure users use
the neural network safely. However, it is recommended that accuracy will decline
when data is encrypted. The reason significantly is the noise. After encryption,
the dataset’s features will increase; we can call these features noise, which are not
fundamental features in datasets. This chapter demonstrates a specific procedure for
applying EIVHE to neural networks by combining techniques such as key-switching,
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batch normalization, and matrix transformations. Then, it evaluates its performance
in the EIVHE and proposed IEIVHE.
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Chapter 3

Contribution 2: Channel-wise
Homomorphic Encryption for
Ciphertext Inference in
Convolutional Neural Network *1

3.1 Introduction
Users upload data to cloud servers to make use of a service such as a training
Machine Learning (ML) model. These are known as Machine Learning as a Service
(MLaaS) [50], especially implementing Deep Learning (DL) for the platform set
as DL as a Service (DLaaS). However, the users can be reluctant to upload their
personal and sensitive data as the server might not be secure. Presently, servers
leverage encryption to protect the privacy of user data. Homomorphic Encryption
(HE) [5], which can perform arithmetic computations on ciphertext, is one of the
promising Privacy-preserving DL (PPDL) [3] methods.

*1 This chapter is based on the paper: [CHE: Channel-Wise Homomorphic Encryption for Ciphertext
Inference in Convolutional Neural Network, IEEE Access, 2022].
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Although there have been several studies [6] [7] [8] [9] [10] [11] [12] on HE-
based PPDL, the achieved latency was not short enough, and the accuracy was not
high enough. Gilad et al. [6] developed ciphertext inference of Modified National
Institute of Standards and Technology (MNIST) [51] dataset, but the accuracy was
96%, and the latency was 570 seconds. Furthermore, Ishiyama et al. [9] achieved
an accuracy of 99.18% and a latency of 21.15 seconds on the MNIST. We aim to
improve the performance by targeting image classification of the HE-based PPDL by
combining two approaches: Channel-wise Homomorphic Encryption (CHE) [52],
and Batch Normalization (BN) [47] with Coefficient Merging (CM) [53].

Most previous studies [6] [9] [11] have adopted Pixel-wise Homomorphic En-
cryption (PiHE) [54] for image classification, where multiple images are packed
together and processed at once. However, we argue that this approach may not be
suitable for all practical applications as the user may want the DLaaS to process only
one or a few images, not a batch of images. To implement empirical application and
improve processing efficiency, we aim to leverage the CHE, which provides shorter
inference latency because it processes the data in a channel instead of in a pixel. It
packs elements of one channel into a single ciphertext, forming a vector, which can
perform Single Instruction Multiple Data (SIMD) [55] processing.

Aharoni et al. [56] introduced a new packing-oblivious programming framework,
which somewhat generalized the CHE and PiHE. Although Dathathri et al. [57] and
Lou et al. [58] have previously proposed a conceptually similar CHE judged from
the provided figures, the algorithm was not described in detail. The BN layer is
widely used in the neural network (NN) [59] model to achieve high accuracy [47],
whitening the input images via the shift and the bias. Chabanne et al. [7] placed the
BN layer before the activation layer to attain a restricted stable distribution at the
entry of Rectified Linear Unit (ReLU) [60]. HEMET [58] set the BN layer behind the
activation layer and obtained excellent performance. Moreover, Ishiyama et al. [9]
placed the BN layer before the activation layer. However, there is still insufficient
evidence to decide if placing the activation layer before the BN layer is better or vice
versa. Given this background, we formulate several algorithms and one computation
scheme, “Onion,” to achieve ciphertext inference in Convolutional Neural Network
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(CNN) [61] through the CHE approach.
To address previous problems, we point out the two schemes with different or-

ders of the convolution layer, activation layer, and BN layer, namely, Convolution-
Activation-Batch (CAB) and Convolution-Batch-Activation (CBA) for utilizing the
MNIST and Canadian Institute for Advanced Research-10 classes (CIFAR-10) [62]
datasets. Each scheme is a method of the CM, and mathematical formulae are given
to demonstrate the scheme’s stability later. The latency is related to the number of
predefined levels, so naively deploying the BN layer increases multiplicative depth
(MD) [63]; since the number of the HE multiplications and rotations are highly
related to the execution time, which exploits a higher level, it leads to longer latency.
We fuse the BN and activation layer with the CM as amapping layer, which increases
accuracy, decreases the latency of ciphertext inference, and describes the functions
of the two schemes. In this chapter, we leverage the symbol “[.]” for ciphertext to
distinguish between plaintext and ciphertext more clearly.

Our contributions are summarized as follows:

• We propose the explicit algorithms of the CHE to address the HE-based
ciphertext inference problem in the CNN for higher accuracy and shorter
latency.

• We formulate the BN layer with the CM in the CAB and CBA schemes and
show the derivation of mathematical formulae. The two schemes can reduce
ciphertext inference latency without increasing the MD.

• We evaluate and compare the proposed CHE against five works [6] [7]
[8] [9] [11], and achieve 99.30% of accuracy and 7.76 seconds of latency
on the MNIST, 76.40% of accuracy and 111.91 seconds of latency on the
CIFAR-10, the result verifies that the CHE is practical to the end-user during
the DLaaS.
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3.2 Background

3.2.1 Homomorphic Encryption

The HE is an asymmetric cryptographic method that facilitates arithmetic computa-
tions over encrypted data or ciphertext. Since the HE operations introduce a certain
amount of noise into the ciphertext, when the accumulated noise grows beyond a
noise budget, decryption of the HE does not resolve the correct result [10]. Although
a bootstrapping operation proposed by Gentry [38] could reduce the accumulated
noise in a ciphertext, it is too time-consuming for practical applications. To address
this limitation, Cheon et al. [64] proposed the approximate HEwith Residue Number
System (RNS) [65] and named the RNS-variant as Cheon-Kim-Kim-Song (RNS-
CKKS) HE scheme. It is a Leveled HE (LHE) scheme, setting a threshold for noise
budget to compute finite HE operations without bootstrapping. The RNS-CKKS
HE scheme denotes the degree of polynomial modulus by 𝑁 , which is a power of
two, encodes data to 𝑁/2 fixed-point numbers, if not enough padding with zero, and
then encrypts 𝑁/2 numbers into 𝑁/2 slots of one ciphertext.

The following are the core algorithms of the RNS-CKKS HE scheme:

I Encode operation encodes the input vector into the polynomials for encryp-
tion.

II The HE operations include HE addition, HE multiplication, and HE rotation.
i The HE addition makes element-wise addition for slots in the corre-
sponding position.

ii The HE multiplication performs element-wise multiplication.
iii The HE rotation rotates the slots of ciphertext, similar to the left and

right panning.

A HE operation is performed simultaneously on all slots of the ciphertext. A
ciphertext is a polynomial of degree 𝑁 with each coefficient representing modulo
𝑄, where 𝑄 is a product of 𝑛 primes, describing the level of the HE. To reduce the
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noise, a rescaling operation is needed to convert 𝑛-level ciphertext to (𝑛 − 1)-level
ciphertext. The representative encode function and rotation function are shown as
follows:

• 𝐸𝑛𝑐𝑜𝑑𝑒(𝑧) −→ 𝑝 : the CKKS exploits the rich structure of integer polyno-
mial rings for its plaintext and ciphertext spaces. Nonetheless, data comes
more often in the form of vectors than in polynomials. Encoding input vector
𝑧 into a polynomial 𝑝 is necessary.

• 𝑅𝑜𝑡 ([𝑐], 𝑛) −→ [𝑐′] :Deploy linear rotation over ciphertext [𝑐], 𝑛 is the step
size, which cycles ciphertext horizontally to the left. 𝑛 starts from one rather
than zero, and this function needs one key, the Galois key, set as default.

3.2.2 Privacy-preserving Deep Learning

Security and privacy preservation of the data must be considered to convince the
user to upload their data to a server. The HE allows data to be processed in
ciphertext, maintaining a trade-off between privacy and performance. To protect the
user’s privacy, the PPDL is built to perform inference directly on encrypted data;
the ciphertext inference can be made over two paradigms: interactive paradigm or
onlinemode, such as GELU-NET [66] whosemodel was partitioned the NN into two
non-colluding parties, GAZELLE [26] which has high accuracy but huge memory
cost, and BAYHENN [67] whose inference was partitioned into linear and non-linear
computations; and non-interactive paradigm or offline mode, such as CryptoNets [6]
which is the first work developed in the PPDL, Chabanne et al. [7] which is the first
proposed work that combines activation function with the BN, Hesamiford et al. [8]
which suggested using derivative of polynomials to replace the activation function,
Ishiyama et al. [9] which proposed using the CM for decreasing the MD, Xie et
al. [68] which exploited the Efficient Integer Vector HE in the CNN and Dathathri
et al. [57] which initiated an optimizing compiler for the NN inference of the HE.

In this work, the focus is on ciphertext inference in the non-interactive paradigm.
Table 3.1 shows the differentiation and comparison of the PiHE and CHE. Although
the CHE and PiHE obtain similar accuracy, the CHE can shorten the latency and

41



Chapter 3 Contribution 2: Channel-wise Homomorphic Encryption for Ciphertext
Inference in Convolutional Neural Network

reduce the consumed memory, but it will smaller the throughput.

3.2.3 Threat Model

The threat model is referenced from the prior PPDL works [57] [58]. We assume
that the machine learning server is a potential attacker, which is honest-but-curious,
implying that the server does not deviate from the defined protocol but attempts to
learn all the possible information from legitimately received messages [72]. The
mission of privacy-preserving is to protect users’ data while uploading to the cloud
and making inferences using the well-trained model, which assumes there is a man-
in-the-middle attack between the user and server and an adversary who tries to
analyze data in the server.

To be more realistic and safer, instead of generating the public and private keys by
the user, we assume that keys are distributed by a trusted third-party organization,
which differs from previous threat models. The third-party certificate authority
generates and distributes the user’s public and private keys. A public key of the HE
encrypts the data sent to the server and privacy-preserved by the encryption method.
The model is trained using plaintext data in a safe, and parameters are stored in
the server without revealing them to the user. The server accesses the plaintext
parameters, which causes data leakage. It performs private and secure inference
over encrypted data without decryption or accessing the secret key. Only the client
decrypts the ciphertext result by the local stored secret key, as shown in Figure 3.1.

3.3 Related Work
The research in the PPDL area can be divided into five camps that implement dif-
ferent X-based methods: the HE-based, Secure Multi-Party Computation (SMPC)-
based [73], Differential Privacy (DP)-based [74], Secure Enclaves (SE)-based [23],
and Hybrid-based [75].

CryptoNets [6] is the first work to use the HE-based method to make ciphertext
inference in the NN model. As CryptoNets became ineffective for the deeper NN,
Chabanne et al. [7] designed and evaluated the first privacy-preserving classification
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Data User

Certificate Authority

Result Owner

Client
Device
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Encryption

Raw Data

Encode

Ciphertext Inference

Encoded Parameters of Model Ciphertext Result Plaintext ResultParameters of Model

 Third-party
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Store Encryption

Encrypted  Data

Honest-but-curious
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Distribution

Figure 3.1. Threat model. There is no collusion. The server is honest-but-curious;
it can access the plaintext machine learning model and perform ciphertext inference.

in the NN model. To protect privacy without accuracy loss, Juvekar et al. [26]
and Zhang et al. [66] have proposed using the interactive paradigm to split the NN
model into two parts. Furthermore, Hesamiford et al. [8] deployed the NNmodel on
the server in the non-interactive paradigm, placing the activation function with the
polynomials. Due to the time-consuming PPDL inference, Lou et al. [58] proposed
implementing the mobile NNmodels to achieve shorter inference latency and higher
inference accuracy. In TenSEAL [10], the authors implement the image-to-column
(im2col) method to process the convolution layer. However, there is no way to find
a simple way to build a network with more than one convolution layer, which is the
non-interactive scheme.

The SMPC-based method exploited Yao’s garbled circuits for secure two-party
computation. Mohassel et al. [76] developed a combination of the garbled circuit
with oblivious transfer and secret sharing. Rizai et al. [70] suggested a distributed
training computation with a novel approach to secret sharing. Furthermore, Liu et

44



3.4 Methodology

al. [71] devised a distributed SMPC framework for privacy-preserving data mining
with one-hot encoding and a lower-upper decomposition algorithm.

The DP-based method adds random noise to a dataset and generates fake training
data. PATE [16] originated a DP learning process utilizing teacher and student
models. Fan et al. [77] initiated a local DP framework for data centers using the
Laplacian mechanism to measure privacy-preserving quality.

The SE-based PPDL is the method by which a client sends data to the secure
enclave environment where all the data and models are hidden from the outside
world, such as [78]. The Hybrid-based PPDL is the method that leverages several
techniques to build a secure and privacy-preserving model, such as GAZELLE [26].

Kim et al. [4] reported a comprehensive survey about the PPDL, showing a
high-level view of the PPDL research.

3.4 Methodology
We propose a detailed and explicit CHE to run inference over encrypted data in
the CNN and its workflow in Section 3.4.1. Moreover, we provide a high-level
description of the BN layer with the CM in Section 3.4.2.

3.4.1 Algorithms of the CHE

In the proposed method, the image data is pre-processed channel-wise instead of
pixel-wise. In practice, the pre-processing depends on the inference. Technically,
the PiHE processes data in a matrix or tensor, while the CHE processes a vector; the
direct difference is described in Figure 3.3. We introduce the data pre-processing
scheme and functions of layers in the CNN by deploying the CHE. The details of
different layers of methods over vector and tensor are shown in Table 3.2. The entire
data processing schemes of the CNN model are demonstrated in Figure 3.2. It will
be more comprehensible and readable to understand the following detailed designs
and processes of the model, which uses the proposed CHE.
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Pre-process and Encrypt Data
The image data consists of tensors from three channels. In the PiHE, the same pixels
of multiple images are packed in a single ciphertext, and the number of ciphertexts
equals the number of images. On the contrary, in the CHE, the first step is to flatten
each channel of an image into a vector, then pack and encrypt each vector into one
ciphertext, which is fed as the input to the NN model. In this case, the number of
ciphertexts equals the number of channels of the image. For a single image, the
CHE takes less time to transform the image into a ciphertext.

Reshape Convolution Layer
To deploy a deeper NN model with multi-convolution layers in a non-interactive
scheme, we split the convolution layer into two parts: rotation & accumulation, and
mask computation. Suppose the input has 𝐶 channels, a height of 𝐻, and a width of
𝑊 . It can then be encrypted into 𝐶 ciphertexts, assuming that the product of 𝐻 and
𝑊 is less than or equal to the slot size 𝑁/2, which packs 𝐻 ×𝑊 input elements or
pixels.

In rotation & accumulation, the HE rotation operation 𝑅𝑜𝑡 ([𝑐], 𝑛) is required to
compute the element-wise HE multiplication between the input and weight filter,
where [𝑐] is ciphertext and 𝑛 represents the stride for rotation. Obtaining corre-
sponding 𝑛 values is an essential step of the convolution layer, which has not been
described in previous works [57] [58]. We propose the algorithm Rotation Index
Searching (RIS) to find 𝑛 values, as depicted in Algorithm 4. Using a list of 𝑛 values
by the HE rotation operation 𝑅𝑜𝑡 ( [𝑐], 𝑛), the model can calculate the element-wise
HEmultiplication between the input and eachweight filter and accumulate the results
into a single ciphertext. The result of a single ciphertext is a semi-manufactured
output with two weaknesses: irrelevant slots in ciphertext, called noise, and chaotic
structure of ciphertext compared with the input. In mask computation, a plaintext
mask replaces the values of valid and irrelevant slots with one and zero, respectively,
to remove noise. Note that the mask variable is a temporary vector with zeros and
ones, where zeros represent redundant slots, and ones represent valid slots.

Next, the indexes of valid slots must be calculated to rearrange the chaotic struc-
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ture. For this, we propose the algorithm Valid Index Searching (VIS) that is used to
prepare themask, recorded in Algorithm 5, and the return of the algorithm represents
the indexes of ones.

After implementing mask computation, a well-structured vector, within valid
values listed one after another, is necessary to maintain the exact structure of the
input and output. We propose the algorithm Chaotic Rotation Index (CRIS) to
look for valid values, as shown in Algorithm 6. However, mask computation is
time-consuming and unsuitable for speedup inference. The method mentioned
above of processing a chaotic vector for the next layer may not be necessary for the
convolution layer, which we argue the model does not need to get the well-structured
output. Instead, we propose a computation scheme, “Onion,” shown in Figure 3.4,
which relates to Algorithm 4 and Algorithm 5. The computation scheme Onion
produces a chaotic vector as the output, which is a not well-structured vector of the
convolution layer. The rotation & accumulation, which calculates with filter, and
mask computation, which removes noise, cost the same as the one MD in ciphertext;
thus, the MD of the convolution layer is two.

The description follows from Figure 3.4. Consider a 4 × 4 orange-colored matrix
𝐴 filled with numbers from one to 16 left to right and top to bottom. In the first 2D
convolution layer, a single 2 × 2 filter 𝐹 with the stride 𝑠(1, 1) samples the upper
left corner element. After convolution, the ideal output is presented as numbers in
a blue-colored solid matrix 𝐵, and the practical output is in a dotted matrix. Using
the algorithm VIS, the model can get a list 𝑙1 of indexes of valid values.
Similarly, the second layer is sampled by filter 𝐹. The output of this layer

is presented in a purple-colored matrix 𝐶, and the index list 𝑙2 is calculated by
Algorithm 5. The objective of the model is to obtain the indexes of all the valid
values. However, elements in 𝑙2 cannot be used as subscripts of the output vector to
find valid values. Instead, the elements in 𝑙2 are regarded as subscripts in 𝑙1, and the
elements corresponding to these subscripts in 𝑙1 then form the index set. The model
leverages elements in the index set as the subscripts of the output vector. Hence, the
model can find the required indexes, layer by layer, like an onion. Notably, the model
must store an index list, passing and updating layer by layer, during the inference.
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Algorithm 4. Rotation Index Searching (RIS)
Input: input feature map size 𝑚, convolution filter size 𝑓

Output: indexing list 𝑟𝑖𝑠_𝑖𝑑𝑥
1: for 𝑖 = 0, ..., 𝑓 − 1 do
2: Set line anchor 𝑠𝑡𝑎𝑟𝑡 ←− 𝑖 × 𝑚

3: for 𝑗 = 0, ..., 𝑓 − 1 do
4: If 𝑖 = 𝑓 − 1& 𝑗 = 𝑓 − 1 : continue
5: Compute first point of line 𝑓 𝑝: 𝑓 𝑝 ← 𝑠𝑡𝑎𝑟𝑡 + 𝑗

6: If 𝑗 = 𝑓 − 1:
7: 𝑟𝑖𝑠_𝑖𝑑𝑥𝑖 ← (𝑖 + 1) × 𝑚

8: Else: 𝑟𝑖𝑠_𝑖𝑑𝑥𝑖 ← 𝑓 𝑝 + 1
9: end for

10: end for
11: return 𝑟𝑖𝑠_𝑖𝑑𝑥

Algorithm 5. Valid Index Searching (VIS)
Input: input feature map size 𝑚, output feature map size 𝑛, layer’s stride 𝑠
Output: indexing list 𝑣𝑖𝑠_𝑖𝑑𝑥
1: for 𝑖 = 0, ..., 𝑛 − 1 do
2: for 𝑗 = 0, ..., 𝑛 − 1 do
3: 𝑣𝑖𝑠_𝑖𝑑𝑥𝑖 ← 𝑖 × 𝑠 × 𝑚 + 𝑗 × 𝑠

4: end for
5: end for
6: return 𝑣𝑖𝑠_𝑖𝑑𝑥

Activation Layer
The HE data only supports the polynomial function. Thus, the activation function
should be approximated by a polynomial function to obtain high accuracy. The
approximation method depends on the desired performance of the model, and there
have been several studies [9] [69] [79]. As the method of approximating the polyno-
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Algorithm 6. Chaotic Rotation Index Searching (CRIS)
Input: input feature map size 𝑚, output feature map size 𝑛, layer’s stride 𝑠
Output: indexing list 𝑟𝑜𝑡_𝑖𝑑𝑥
1: Indexing list 𝑖𝑑𝑥 = 𝑉𝐼𝑆(𝑚, 𝑛, 𝑠)
2: for 𝑖 = 1, ..., 𝑛2 − 1 do
3: 𝑟𝑜𝑡_𝑖𝑑𝑥𝑖 ← 𝑖𝑑𝑥𝑖 − 𝑖

4: end for
5: return 𝑟𝑜𝑡_𝑖𝑑𝑥

mial is not the objective of the current study, the square function is used to replace
the ReLU. This square function is a second-order polynomial of the form 𝑎𝑥2+𝑏𝑥+𝑐,
where 𝑎 = 1, 𝑏 = 0, 𝑐 = 0. The MD of the activation layer is one.

Pooling Layer
As max-pooling is a non-polynomial function, a polynomial function is needed to
replace the max-pooling function. The HE scheme only supports multiplication and
not division. Note that 𝑓 is the size of the filter in the pooling layer. However, the
division by 𝑓 × 𝑓 can be considered as multiplication by 1/ 𝑓 × 𝑓 , as in Equation 3.1.
Thus, to modify the max-pooling layer into the average pooling layer, we adopt the
approach of multiplying the 1/ 𝑓 × 𝑓 the inverse of the number of the elements of
the filter directly over all the elements of the filter. Note that the multiplication is
performed over the ciphertext without decryption.

𝑎𝑣𝑔(𝑋) = 1
𝑓 × 𝑓

𝑓 × 𝑓∑
𝑖=1

𝑥𝑖 −→
𝑓 × 𝑓∑
𝑖=1

1
𝑓 × 𝑓

𝑥𝑖 (3.1)

where the mask vector consists of zero and 1
𝑓 × 𝑓 and the MD of the average-pooling

layer is one.

Batch Normalization
To ensure the stability of the NN training, it is necessary to carefully select the
initialization method and choose a small value of learning rate, despite its increasing
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complexity. To address the limitation, the Google team proposed the BN [47]
method to help train the network better. Average 𝜇 and variance 𝜎2 of elements
of the BN layer in mini-batch training are used to normalize elements into a fixed
range, subjected to natural distribution. Considering the effect of the normalization
on performance, the authors implemented two learnable parameters, 𝛾, and 𝛽, to
scale and shift values, respectively.

Because of the LHE scheme, the inference latency of the PPDL model is highly
related to the predefined level. Deploying the BN layer increases the MD, which
sets a higher level and leads to longer latency. Since the BN layer is adopted into the
typical NN model and then transformed for the NN model for ciphertext inference,
its parameters 𝜇, variance 𝜎2, scale 𝛾, and shift 𝛽 are deployed with multipli-
cation. These four parameters are implemented in several arithmetic operations,
which increases the MD. The CM is a required tool to reduce the MD. It focuses
on coalescing parameters used in the BN layer with the other layers, such as the
activation layer. Ioffe [47] et al. deployed the BN layer after each activation layer
to improve accuracy. We point out two schemes of fusing the BN and activation
layer in the encrypted model: one is Convolution-Activation-BN, which we call the
CAB scheme, and the other is Convolution-BN-Activation, which we call the CBA
scheme. We develop the fused layer via the CM as the mapping layer, described in
detail in Section 3.4.2.

Pack Layer
The ciphertexts are the chaotic vectors that must be rearranged before feeding feature
maps into the Fully Connected (FC) layer. Due to the vector-matrix multiplication
in the FC layer, the model needs to pack these ciphertexts into one ciphertext whose
valid slots must be equal to the input size of the following FC layer; otherwise, the
model is unable to perform the HE addition. The required method is flattening the
valid slots of all ciphertexts into one ciphertext. However, there are two problems
with this method:

I Ciphertext has redundant slots that do not casually concatenate the rear with
the head.
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II Each ciphertext is chaotic, which means that the valid slots of the ciphertext
are not neighbors.

The pack layer concatenates all the valid slots located along the length of the
flattened channel vector. The length of slots of one ciphertext is fixed, whose size
equals 𝑁/2, which is half of the polynomial degree 𝑁 . It is not feasible to connect
the end of one ciphertext to the head of another ciphertext, as it would exceed the
maximum length. Thus, concatenating slots equal to the flattened channel’s length
rather than the ciphertext length would be a better alternative. However, there is a
problem. If the length or the number of ciphertexts is too large, the concatenated
slots will exceed the specified length, which implies that the valid slots are sparse.
So, a well-structured output vector is needed in the FC layer. We propose the
algorithm Flatten Multi-ciphertext to Single-ciphertext (FM2S) to pack ciphertexts
into a single ciphertext, written down as Algorithm 7.

Fully Connected Layer
As for the FC layer of the NNmodel, the filter is a matrix of size, which shapes as an
“input channel× output channel,” and involves matrix multiplication of the input and
the filter matrix. In the privacy-preserving CNN, before feeding feature maps into
the FC layer, feature maps should be flattened into one ciphertext in the mentioned
pack layer, which shapes a single vector. The input and the output of the FC layer are
presented in a single ciphertext. However, the ciphertext encrypted by the HE does
not support matrix multiplication. Consequently, we estimated using the HE rotation
and HE multiplication to execute the matrix multiplication function. We change the
matrix-vector multiplication scheme into a vector-matrix multiplication scheme. We
leverage the approach proposed byHalevi and Shoup [80], a multiplication operation
between vector, tensor or matrix.

The first phase of this layer is to pre-process the weight matrix. Since the output
channel is smaller than the input channel, it is crucial to pad the matrix by zero to
the square matrix of size “input channel × input channel.” Next, the padded matrix
is diagonalized along with the raw. Vector-matrix multiplication performs element-
wise multiplication between the ciphertext and plaintext weight matrix, which can
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Algorithm 7. Flatten Multi-ciphertexts to Single-ciphertext (FM2S)
Input: input feature map [𝑥], last output feature map size 𝑛, valid list 𝑣, mask 𝑚

Output: packed ciphertext [𝑥_𝑝𝑎𝑐]
1: Obtain channels of [𝑥] : 𝑐 ←− 𝑙𝑒𝑛( [𝑥])
2: for 𝑖 = 1, ..., 𝑛2 − 1 do
3: 𝑟𝑜𝑡_𝑖𝑑𝑥𝑖 ←− 𝑣𝑖 − 𝑖

4: end for
5: for 𝑗 = 0, ..., 𝑐 − 1 do
6: [𝑦] ← [𝑥 𝑗 ]
7: 𝑚𝑎𝑠𝑘 ← 𝐸𝑛𝑐𝑜𝑑𝑒(𝑚)
8: [𝑍0] ← 𝐻𝐸𝑚𝑢𝑙𝑡 ([𝑦],𝑚𝑎𝑠𝑘)
9: for 𝑘 = 0, ..., 𝑛2 − 1 do

10: 𝑚𝑎𝑠𝑘𝑣𝑘+1 ← 1
11: [𝑍𝑘+1] ← 𝑅𝑜𝑡 (𝐻𝐸𝑚𝑢𝑙𝑡 ( [𝑦],𝑚𝑎𝑠𝑘), 𝑟𝑜𝑡_𝑖𝑑𝑥𝑘)
12: end for
13: [𝑦] ← 𝐻𝐸𝑎𝑑𝑑 ([𝑍0], ..., [𝑍𝑛2−1])
14: [𝑌𝑖] ← 𝑅𝑜𝑡 ( [𝑦],−(𝑛 × 𝑛 × 𝑖))
15: end for
16: [𝑥_𝑝𝑎𝑐] ← 𝐻𝐸𝑎𝑑𝑑 ([𝑌0], ..., [𝑌𝑐−1])
17: return [𝑥_𝑝𝑎𝑐]

only be achieved by the HE rotation.
We found that the vector-matrix multiplication has an unnecessary step, which

increases latency. Assuming the input channel is 𝐼, and the output channel is 𝑂,
it needs 2(𝐼 − 1) times the HE rotations and one time the HE addition, where
there is 2(𝐼 − 1)/2 times the HE rotation to the left and 2(𝐼 − 1)/2 times the HE
rotation to the right linearly. To reduce the HE operation, we propose the method
that implements fewer than 2(𝐼 − 1)/2 times the HE rotation to the right linearly,
as shown in Algorithm 8. Before reviewing the actual mechanism of the proposed
algorithm, Figure 3.6 should be checked for several operations with an easy example.
Thus, the instance of the FC layer is presented in Figure 3.7.
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Figure 3.6. The easy example to show how to compute the HE matrix multiplication
between a 1 × 3 ciphertext and a 3 × 1 weight without bias, which outputs a 1 × 3
ciphertext.

In Figure 3.7, elements of the part 𝜂 are computed as zero in the output, which
implies that the elements do not affect the output. Currently, as the HE rotation is a
linear operation, intersection 𝐼𝛿,𝜂 of the part 𝛿 and part 𝜂 are in serial, which means
that the HE rotation can assemble linear transformation simultaneously. On the
other hand, the intersection 𝐼𝜁 ,𝜂 of the part 𝜁 and 𝜂 are not in serial, which means
the transformation is non-linear, and two times of the HE rotations are necessary.
The previous method costs 2(𝐼 − 1) for the HE rotations in the FC layer. As for
the proposed enhanced approach, the intersection 𝐼𝛿,𝜂 requires 𝐼 −𝑂 times the HE
rotations, which runs one time for the HE rotation to each line; the intersection 𝐼𝜁 ,𝜂

expends 2(𝐼 − (𝐼 − 𝑂) − 1) = 2(𝑂 − 1) times for the HE rotations, which executes
two for the HE rotations to each line. The number of the HE rotations is changed to
𝐼 +𝑂 − 2, i.e., the latency of this step has become 𝐼 +𝑂 − 2/2(𝐼 − 1) of the original.
Thus, for the example mentioned above, which demonstrated that it is possible to
ignore a part of the HE rotation moving to the right, the latency becomes 7+3−2

2(7−1) =
2
3

of the original.
The relationship between the input channel and the output channel is drawn in

Figure 3.8. The 𝑥− and 𝑦− axes represent the FC layer’s input and output channels.
The 𝑧−axis is the ratio (%) of the number of the HE operations of original and
improved methods. Before implementing the enhanced algorithm, the HE operation
of the FC layer needs to be performed 2(𝐼 − 1) times. After that, the number of the
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HE operations becomes 𝐼 + 𝑂 − 2 times. This ratio implies that the latency of the
FC layer can be reduced to somewhat the original by using an improved algorithm,
depending on the number of input and output channels. A lower ratio means better
results for the improved algorithm.

Algorithm 8. Vector-matrix Multiplication (VMM)
Input: input feature map [𝑥], weight matrix 𝑤, bias 𝑏
Output: ciphertext [𝑥′]
1: [𝑡] ← [𝑥]
2: Obtain input feature map size 𝑚 ← 𝑙𝑒𝑛(𝑤)
3: Obtain output feature map size 𝑛 ← 𝑙𝑒𝑛(𝑏)
4: Set boundary 𝑒 ← 𝑚 − 𝑛 + 1
5: 𝑤 ← 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑃𝑎𝑑𝑑𝑖𝑛𝑔(𝑤))
6: for 𝑖 = 0, ...,𝑚 − 1 do
7: 𝑤𝑖 ← 𝐸𝑛𝑐𝑜𝑑𝑒(𝑤𝑖)
8: [𝑌𝑖] ← 𝐻𝐸𝑚𝑢𝑙𝑡 ([𝑡],𝑤𝑖)
9: IF 𝑖 ≠ 0 𝑜𝑟 𝑖 < 𝑒:

10: [𝑡] ← 𝑅𝑜𝑡 ([𝑥], 𝑖 + 1)
11: IF 𝑖 ≠ 𝑚 − 1 𝑎𝑛𝑑 𝑖 ≥ 𝑒 :
12: [𝑡] ← 𝐻𝐸𝑎𝑑𝑑 (𝑅𝑜𝑡 ( [𝑥], 𝑖 + 1), 𝑅𝑜𝑡 ( [𝑥], 𝑖 + 1 − 𝑚))
13: end for
14: [𝑌 ] ← 𝐻𝐸𝑎𝑑𝑑 ( [𝑌0], ..., [𝑌𝑚−1])
15: [𝑌 ] ← 𝑅𝑒𝑠𝑐𝑎𝑙𝑒([𝑌 ])
16: 𝐵 ← 𝐸𝑛𝑐𝑜𝑑𝑒(𝑏)
17: [𝑥′] ← 𝐻𝐸𝑎𝑑𝑑 ( [𝑌 ], 𝐵)
18: return [𝑥′]

3.4.2 Batch Normalization with Coefficient Merging

To improve the accuracy and reduce the MD of ciphertext inference in the CNN, we
process the BN layer with the CM. By employing qualitative modes of inquiry, we
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Figure 3.8. The relationship between the input channel and output channel of the
FC layer.

attempt to illuminate the two different schemes in mathematics. The derivations of
mathematical formulae of the schemes are shown as the following.

The formulae of the two schemes are described in order. A convolution layer
can be written down as in Equation 3.2, where [𝐼 𝑓 ] is the input feature map,
𝑓11, . . . , 𝑓1 𝑓 , . . . , 𝑓 𝑓 𝑓 are weight elements of the filter of size 𝑓 × 𝑓 , and [𝑋𝑐𝑜𝑛𝑣]
is the output of rotation & accumulation. Furthermore, [𝑌𝑐𝑜𝑛𝑣] can be obtained
by the mask computation, which leverages a mask 𝑚 to remove the redundant slots
“#,” as in Equation 3.3. The process of obtaining [𝑋𝑐𝑜𝑛𝑣] and [𝑌𝑐𝑜𝑛𝑣] are shown in
Figure 3.4.
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[𝑋𝑐𝑜𝑛𝑣] = [𝐼 𝑓 ] 𝑓11 + · · · + 𝑟𝑜𝑡 ([𝐼 𝑓 ], 𝑓 × 𝑓 − 1) 𝑓 𝑓 𝑓 (3.2)

[𝑌𝑐𝑜𝑛𝑣] = 𝑚 [𝑋𝑐𝑜𝑛𝑣] (3.3)

Convolution-Activation-BN (CAB) scheme: A second-order polynomial is used
to approximate the activation function, as in Equation 3.4. In the BN layer, the
normalized [𝑌𝑎𝑐𝑡 ] is calculated by the input [𝑌𝑎𝑐𝑡 ], the mean 𝜇 and variance 𝜎2. In
addition, due to the gradient dispersion problem, the output is multiplied by the scale
𝛾 or weight, and the shift 𝛽 or bias is also added. After simplifying the formula,
the actual second-order polynomial approximation is expressed as in Equation 3.5.
We replace the activation function with the square function, which implies that
the coefficients 𝑎, 𝑏, and 𝑐 of the second-order function are one, zero, and zero,
respectively. The mask 𝑚 used in the convolution layer is a vector containing only
zero and one. Its objective is to obtain a result without the redundant slots “#.”
So the value of 𝑚 is regarded as one logically, i.e., the value of 𝑚2 is viewed as
one. In conclusion, for the specific example of a square function, the output feature
map [𝑌𝑏𝑛] of the CAB scheme is changed into [𝑌 ′

𝑏𝑛], as in Equation 3.6. After
reducing the MD, as proposed by Ishiyama et al. [9], the output of the CAB scheme
is formulated as in Equation 3.7.

[𝑌𝑎𝑐𝑡 ] = 𝑎[𝑌2
𝑐𝑜𝑛𝑣] + 𝑏[𝑌𝑐𝑜𝑛𝑣] + 𝑐 (3.4)

[𝑌𝑏𝑛] = 𝛾 [𝑌𝑎𝑐𝑡 ] + 𝛽

=
𝛾𝑎𝑚2

√
𝜎2 + 𝜖

[𝑋2
𝑐𝑜𝑛𝑣] +

𝛾𝑏𝑚√
𝜎2 + 𝜖

[𝑋𝑐𝑜𝑛𝑣] (3.5)

+ (𝛽 − 𝛾(𝜇 − 𝑐)√
𝜎2 + 𝜖

)
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[𝑌 ′
𝑏𝑛] =

𝛾√
𝜎2 + 𝜖

[𝑋2
𝑐𝑜𝑛𝑣] + (𝛽 − 𝛾𝜇√

𝜎2 + 𝜖
) (3.6)

= [𝑋2
𝑐𝑜𝑛𝑣] + 𝐵 (3.7)

𝑤ℎ𝑒𝑟𝑒 𝐵 = (𝛽 − 𝛾𝜇√
𝜎2 + 𝜖

)/ 𝛾√
𝜎2 + 𝜖

Convolution-BN-Activation (CBA) scheme: In the BN layer, the normalized
[𝑌𝑐𝑜𝑛𝑣] is calculated by the mean 𝜇 and variance 𝜎2 with the input [𝑌𝑐𝑜𝑛𝑣]. In
addition, [𝑌𝑐𝑜𝑛𝑣] also needs to be multiplied by the scale 𝛾 and added with the shift
𝛽; the resulting well-structured formula is described in Equation 3.8. For the CBA
scheme, the output feature map of the BN layer is followed by the activation layer,
as in Equation 3.10. Furthermore, Equation 3.10 substituted [𝑌𝑐𝑜𝑛𝑣] with [𝑋𝑐𝑜𝑛𝑣]
combined within Equation 3.2. As for the specific example of a square function, the
output feature map [𝑌𝑎𝑐𝑡 ] of the CBA scheme is changed into [𝑌 ′

𝑎𝑐𝑡 ] after the CM,
as in Equation 3.11. After reducing the MD, as proposed by [9], the output of the
CBA scheme is formulated as in Equation 3.12.

[𝑌𝑏𝑛] = 𝛾 [𝑌𝑐𝑜𝑛𝑣] + 𝛽 (3.8)

[𝑌𝑎𝑐𝑡 ] = 𝑎[𝑌2
𝑏𝑛] + 𝑏[𝑌𝑏𝑛] + 𝑐 (3.9)

=
𝑎𝛾2𝑚2

𝜎2 + 𝜖
[𝑋2

𝑐𝑜𝑛𝑣] + [2𝑎(𝛽 − 𝛾𝜇√
𝜎2 + 𝜖

) 𝛾√
𝜎2 + 𝜖

+ 𝑏𝛾√
𝜎2 + 𝜖

]𝑚 [𝑋𝑐𝑜𝑛𝑣] + [𝑎(𝛽 − 𝛾𝜇√
𝜎2 + 𝜖

)2

+ 𝑏(𝛽 − 𝛾𝜇√
𝜎2 + 𝜖

) + 𝑐] (3.10)
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[𝑌 ′
𝑎𝑐𝑡 ] =

𝛾2

𝜎2 + 𝜖
[𝑋𝑐𝑜𝑛𝑣]2 + [2(𝛽 − 𝛾𝜇√

𝜎2 + 𝜖
)

𝛾√
𝜎2 + 𝜖

] [𝑋𝑐𝑜𝑛𝑣] + (𝛽 − 𝛾𝜇√
𝜎2 + 𝜖

)2 (3.11)

= [𝑋2
𝑐𝑜𝑛𝑣] + 𝐶 [𝑋𝑐𝑜𝑛𝑣] + 𝐷 (3.12)

𝑤ℎ𝑒𝑟𝑒 𝐶 = [2(𝛽 − 𝛾𝜇√
𝜎2 + 𝜖

) 𝛾√
𝜎2 + 𝜖

]/ 𝛾2

𝜎2 + 𝜖

𝐷 = (𝛽 − 𝛾𝜇√
𝜎2 + 𝜖

)2/ 𝛾2

𝜎2 + 𝜖

The MD of the mapping layer becomes one after the CM and optimization. The
BN and activation layers are separate when the NNmodel is deployed over plaintext.
Still, they are fused into one, the mapping layer, when deployed over ciphertext, to
optimize the MD. The mapping layer produces completely different outputs for the
two schemes when applied to the output of the convolution layer. The CAB scheme
produced a second-degree term with one constant, while the CBA scheme produced
an additional first-degree term. These different mappings result in their disparate
accuracy and latency.

3.5 Experiment
To verify if the latency of encryption and decryption for the CHE is lower than that
for the PiHE, we compare their performances for one instance. Furthermore, we
apply the CHE to the five previous NN architectures [6] [7] [8] [9] [11] andmeasured
the accuracy and latency of ciphertext inference for comparison.

3.5.1 Datasets and Networks

Datasets. We adopt the MNIST and CIFAR-10 datasets to evaluate our proposed
methods. We use the MNIST and CIFAR-10 datasets as the same datasets used
in previous papers. Both datasets are standard datasets in this research area. The
MNIST is a dataset of handwritten digits with a training set of 60, 000 images and a
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Table 3.3. The network architectures of privacy-preserving neural networks. C, A,
P, B, and F denote convolution, activation, pooling, batch normalization, and fully
connected layers, respectively.

Network Architecture
CryptoNets [6] C-A-P-A-F
Light CNN [7] C-P-C-P-F-B-A-F
HCNN [11] C-A-C-A-F
CNN A [8] C-P-C-A-P-F-F
CNN B [9] C-B-A-C-B-A-F

test set of 10, 000 images, each of size 28 × 28, divided into 10 classes of numbers
from zero to nine. It is a gray image dataset, where each image has a single channel.
The CIFAR-10 dataset consists of 60, 000 color images, each of the size 32 × 32
in 10 classes, with 6, 000 images per class. There are 50, 000 in training images
and 10, 000 in test images. Unlike the former, each image in CIFAR-10 has three
channels.
Networks. We adopt the CNN to evaluate performance and compare the five
networks shown in Table 3.3 with the proposed CHE. Initially, these studies adopted
the pixel-wise approach. We replicate their architecture precisely and apply the CHE
and the CM schemes to improve the models’ performance.

3.5.2 Experimental Setup

We run all comparison models on the same Linux server in parallel, equipped
with Intel Xeon E5-2660 with 126GB memory and 40 cores. We only focus on
the ciphertext inference stage and use Pytorch [81] to train all the NN models with
plaintext. The epoch is set as 100, and the Adaptive moment estimation (Adam) [46]
with 𝛽1 = 0.9 and 𝛽2 = 0.99 as the optimization, the learning rate as 0.01. We adopt
the Microsoft Simple Encrypted Arithmetic Library (SEAL) 3.7 [82] in Python
3.9 [83] using Python-SEAL [84] to encrypt and decrypt data with the RNS-CKKS
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HE scheme [64]. All the PPDLmodels in our experiments could achieve the 128−bit
security level.

To simulate an actual situation when the user sends one query to the server, we
set the inference image of every epoch to be one. Furthermore, the HE flattens each
image channel into one vector and encrypts it into ciphertext. For example, each
image of the CIFAR-10 has three channels flattened into three vectors and encrypted
as three ciphertexts. So, the model gets a list with three ciphertexts as the input to
the HE-friendly CNN. After running over the model, the model’s output is a single
ciphertext with valuable front parts with 10 slots and redundant rear parts or other
slots. To obtain the prediction, the user cuts down the decrypted output and feeds it
into the SoftMax function [45]. The convolution, pack, and FC layers are the three
tough layers in the model used for parallel computing; serial calculation is used for
the rest.

3.5.3 Result

Encryption and Decryption
We first evaluate the time required for encryption and decryption in the CHE and
PiHE simulating end-to-end. This experiment encrypts the same instance into
ciphertext using the CHE and PiHE, respectively, and then decrypts ciphertext
into plaintext, counting the encryption and decryption time. The encryption and
decryption run time depends on the number of ciphertexts.

The aim is to validate if the former takes less encryption and decryption time than
the latter. A random instance is chosen from the MNIST and CIFAR-10, and the
example image is processed using the two approaches while logging the encryption
and decryption times. The test is performed 100 times to obtain an average result,
shown in Figure 3.9. Statistically, under datasets, the MNIST and CIFAR-10,
deploying with the CHE, costs 0.02 seconds and 0.08 seconds for encryption and
costs 0.01 seconds and 0.03 seconds for decryption, respectively. On the contrary,
the PiHE takes 15.21 seconds and 59.21 seconds for encryption and 10.20 seconds
and 39.78 seconds for decryption, respectively. As expected, the CHE takes a
significantly shorter time for encryption and decryption.
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Figure 3.9. Encryption and decryption latency on the datasets MNIST and CIFAR-
10 datasets for one instance.

Coefficients Merging Schemes
To test the effect of different schemes on the performance, a simplemodelHCNN[11]
and the MNIST dataset are chosen. As shown in Table 3.4, the CAB and CBA
schemes obtained the accuracy of 98.50% and 99.03%, respectively, for ciphertext
inference. The attained latency is 10.35 seconds and 10.96 seconds, respectively.
The experimental results reveal that the CBA scheme has higher accuracy and longer
latency, which conforms with the formulae we derived in Section 3.4.2.
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Table 3.4. The accuracy and latency of different schemes in the CHE

Dataset Model Scheme
Ciphertext Inference

Accuracy (%)
Inference

Latency (second)

MNIST HCNN
CAB 98.50 10.35
CBA 99.03 10.96

Due to the fused layer output, the results of the CBA scheme are stable with high
accuracy, but the latency becomes a bit long. In contrast, as the CAB scheme does
not have enough lower-order terms to analyze the details of the feature map, certain
elements are ignored during inference. The CAB scheme results in a shorter latency
but reduced accuracy.

Accuracy and Latency
Accuracy is the primary performance measuring a parameter of the inference. As
the CBA scheme achieves higher accuracy than the CAB scheme, thus, we perform
the CHE with the CBA scheme to verify whether the CHE implementation improves
the accuracy and latency on the MNIST and CIFAR-10. The ciphertext inference
time is logged, and all recorded values are the average of 10 times experiments.

Table 3.5 shows the results of the five models and compares the accuracy and
latency of the original models and the proposed model on the MNIST. The proposed
method leverages the CHE to process the whole model, and the fused layer employs
the CBA scheme. It achieves an accuracy of 99.00% for the CryptoNets [6], 98.05%
for the light CNN [7], 99.30% for the HCNN [11], 99.32% for the CNN A [8],
and 99.30% for the CNN B [9]. The corresponding latency values for the five
models were 15.22 seconds, 17.89 seconds, 10.96 seconds, 16.14 seconds, and
7.76 seconds, respectively. Furthermore, the speedups are 37.45, − “no previous
inference latency,” 1.29, 23.96, and 2.73, respectively.

The results show better performance than the previous five works, especially
speedup. As only the work of the CNN B evaluated the CIFAR-10 dataset, Table 3.6
presents the single result of the CNN B model and compares it with the accuracy
and latency of the original and proposed models on the CIFAR-10. Our method
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leverages the CHE to process all models, and the BN layer employs the CBA scheme.
The proposed model achieves an accuracy of 76.40%, latency of 111.91 seconds,
and speedup of 9.28. Thus, in other words, the proposed model establishes better
results for this case.

3.6 Discussion
To perform inference on large datasets in the NNmodel, researchers packed the same
pixel of multiple images in a single ciphertext, which could test many ciphertext
images in one inference, called the PiHE. Previous research [8] [11] [69] have shown
reasonable accuracy and latency in interactive and non-interactive paradigms.

The PiHE uses tensors to process data, and each element of a tensor is ciphertext.
The CHE leverages data upon ciphertext; the data is ciphertext rather than plaintext.
Dathathri et al. [57] and Lou et al. [58] implemented a similar CHE presented in their
figures. However, it is challenging to derive their exact algorithm from the figures
in which it has been presented. Also, their method is used only for the convolution
layer. At the same time, our proposed algorithm applies to all kinds of layers in the
NN, including the convolution, pooling, activation, BN, and FC layers.

Consistent with previous studies, the work of this chapter shows that the CHE
can achieve higher accuracy and shorter latency than current PPDL models under
multi-processing. Applying the CHE to encrypt data into ciphertext in the number
of channels, we find out that the proposed HE-friendly algorithms for the CHE in
the CNN are prudent and reliable. Although the PiHE can package a large number
of pixels together, in the actual inference process, pixels in the same channel are
independent; that is, they are not in the same ciphertext. In contrast, the advantage of
the CHE is that during the actual inference process, pixels in the same channel are all
packaged in the same ciphertext, leading to performance differences. The algorithm
is predominantly expressed in different layers and easily exploited to transform the
NN models. As for the generalization of the CHE, since the algorithm inside the
model has been adapted to the ciphertext calculation, it is possible to transform any
NN model using the CHE. At the same time, it is only necessary to transform the
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input data into vector data encrypted by the HE for ciphertext inference.
The CAB and CBA schemes show only minor significant differences in accuracy

and latency. It must be pointed out that, due to the CAB formula, only the profile of
the image is used for the results, lowering the scheme’s accuracy. On the contrary,
due to the CBA formula, the image profile and other details are used for the results,
leading to a higher frequency but longer latency. Because there are different output
polynomial terms in the fused layer, the CAB scheme is more suitable for quick
inference over ciphertext, where the focus is on central architecture, and the CBA
scheme is more suitable for precise inference over ciphertext to not only see the main
body but also pay attention to the details. We believe that the minor differences in
the accuracy and latency are also because of the implementation of the second-
order square function. Nevertheless, the final formulae are not hugely different after
deploying the CM through the proposed CAB and CBA schemes because the CBA
has only one additional first-order term using the square function. If higher-order
polynomials are deployed, the final formulae after the CM present more significant
differences, increasing the variation in the accuracy and latency. Technically, the
CBA scheme provides a more stable analysis in ciphertext inference, and the CAB
scheme provides a quicker analysis.

Despite the CHE’s preliminary character, this chapter’s study indicates that rea-
soning and corroborating the fundamentals of data structures can prove its effec-
tiveness and efficiency. However, there is a restriction on inference latency due to
the sophistication and black-box nature of ciphertext. In addition, the differences in
the accuracies and latencies of the CBA and CAB could be significant if a function
more sophisticated than the square function is used. Since there is no source code
to reproduce the previous works, we leave the direct comparison with the earlier
studies under a specific platform as a future study. Furthermore, the most significant
limitation of this work is the HEmethod. The ultimate goal of the HE-based method
is to operate using Fully HE (FHE). However, due to computational limitations
and differences in physical operations, researchers currently opt for a compromise
approach of using the LHE for operations to make methods based on the HE appli-
cable in practice. While this method significantly reduces computational overhead,
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professionals must pre-calculate the MD to set as a threshold. If this threshold is
exceeded, the result on the ciphertext will not be correctly restored due to excessive
noise.

Future iterations of inference over ciphertext from the CHE to instance-wise en-
cryption, which encrypts one instance as the single ciphertext, may demonstrate
even greater potency. Hopefully, the experimental results improve inference over
ciphertext, significantly changing the basic data structures used for the PPDL infer-
ence.

3.7 Conclusion
The study of this chapter sets out to improve the performance of the HE-based
PPDL by combining the proposed approaches of the CHE and the BN layer with
the CM. It also discusses several related algorithms in detail and the computation
scheme “Onion.” The CHE implements ciphertext inference for the end-user in
the non-interactive paradigm. The BN layer with the CM improves the accuracy
and decreases the latency by reducing the MD using two proposed schemes, the
CBA and CAB. The proposed method achieves the highest accuracy of 99.32%
and the shortest latency of 7.76 seconds on the MNIST dataset compared to five
previous architectures. It also attains an accuracy of 76.4% and a latency of 111.91
seconds on the CIFAR-10. Thus, our experiments demonstrate that the CHE can
serve as a tool to design a more robust and flexible PPDL model that performs
ciphertext inference in the CNN with better accuracy and latency. In future work,
we will target more challenging problems with processing on graphical processing
units, actual datasets, and deeper NN. We aim to achieve lower latency and higher
accuracy for instance-wise ciphertext inference that encrypts one instance as the
single ciphertext.
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Chapter 4

Contribution 3: The Trade-offs
of Privacy, Utility, and Efficiency
in Differential Privacy-Enabled
VQ-VAE for Image
Generation *1

4.1 Introduction
Deep Learning (DL) models have brought convenience to the public’s lives. How-
ever, behind this convenience lies reliance on vast amounts of data, especially various
sensitive data closely related to individuals. Therefore, when designing algorithms,
privacy-preserving of data needs to be considered in the DL.

*1 This chapter is based on the paper: [Towards Optimal Privacy-Preserving: The Trade-offs of
Privacy, Utility, and Efficiency in Differential Privacy-Enabled VQ-VAE for Image Generation (in
application)].
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Researchers refer to this as “Privacy Computing,” [85] a concept that allows for
the circulation and deep exploration of data value while ensuring the security of the
rights and interests of data owners and safeguarding personal privacy. The work by
Torkzadehmahani et al. [19] effectively integrated the concept of Differential Privacy
(DP) [74] with Generative Adversarial Network (GAN) [86] and proposed a novel
method for satisfying the DP constraints in the GAN framework by modifying the
training procedure and architecture of the GAN. Contrary to generating images with
the DP in a post-processing stage, they applied the DP during the learning process
itself, aiming to generate synthetic data that maintains the privacy of individuals
in the original dataset [20]. Jiang et al. [21] proposed a novel training method
that incorporated DP into pre-trained Variational AutoEncoder (VAE) [87]. By
integrating the DP into the pre-training phase, their approach aims to ensure that
the privacy of individuals in the original dataset is respected while preserving the
utility of the generated synthetic data. While effective in the VAE context, this
approach’s pioneering efforts in introducing the DP into the training process of
the VAE offer valuable insights. Furthermore, the Vector Quantized-VAE (VQ-
VAE) [88] is a state-of-the-art (SOTA) generative model known for its capacity to
learn discrete representations and synthesize high-quality images compared with the
VAE. However, the standard VQ-VAE framework does not inherently provide any
privacy guarantees.

Consequently, the prospect of adapting theVQ-VAE to incorporate theDPpresents
an exciting opportunity to propel advancements in the field of privacy-preserving
image reconstruction and generation. To ensure the DP, noise is often added during
the learning process, particularly during gradient computation, which is crucial in
algorithms like Stochastic Gradient Descent (SGD) [89]. This method can help
prevent the model from memorizing specific data instances, thereby protecting
individual data privacy. Furthermore, when applying the DP, one needs to consider
the privacy budget 𝜖 [74]. As the privacy budget decreases, more noise is added,
leading to higher privacy-preserving but lower accuracy. Directly applying the
DP and adjusting the privacy budget for the VQ-VAE model can impact the final
outcome. To reduce the privacy budget as much as possible without compromising
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accuracy, the work of this chapter introduces a new training method for the VQ-
VAE with the DP. Our method builds upon the existing VQ-VAE framework by
incorporating the Gaussian-DP mechanism [90] with implementing DP-SGD with
the Tensorflow Privacy library to ensure privacy-preserving for sensitive image data.
The critical contributions of our work are as follows:

• We present a comprehensive overview of the approach that introduces new
possibilities for secure data sharing, as synthetic datasets produced by a
privacy-preserving generative model could be distributed freely without in-
fringing on privacy regulations or ethical guidelines.

• We introduce a privacy-preserving VQ-VAE architecture that incorporates
the DP mechanisms, enabling the reconstruction and generation of realistic
images while protecting the privacy of the underlying data and conserving
the privacy budget 𝜖 .

• We deliver an in-depth analysis of the trade-offs between privacy, utility, and
computational efficiency in our proposedmodel. This analysis illuminates the
key factors that influence the performance of our privacy-preservingVQ-VAE
within the context of private computing.

4.2 Preliminary
In this section, we offer an overviewof the core concepts and techniques that underpin
our work. We briefly introduce the concept of the DP and discuss the generative
model, primarily focusing on VQ-VAE.

4.2.1 Differential Privacy

One rigorously defined privacy tool is the DP, which is utilized to publish statistics
across a wide range of domains and applications. Specifically, deep generative mod-
els have been proposed for differential private implementation, aiming to preserve
data privacy while generating synthetic data. The DP has seen successful applica-
tion across various data analysis tasks, but its adoption within the realm of image
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generation remains limited. The DP is a formal framework designed to protect
the privacy of individual data points in a dataset while still allowing for aggregate
statistical analysis. The DP achieves this by introducing a controlled amount of
noise to either the data or model parameters, ensuring that the presence or absence
of a single data point does not significantly influence the result of any analysis or
computation. The privacy guarantee the DP provides is encapsulated by the privacy
budget 𝜖 . A smaller value of 𝜖 corresponds to a stronger privacy guarantee.

𝑃𝑟 [𝑀 (𝑥) ∈ 𝑆] ≤ 𝑒𝑥𝑝(𝜖)𝑃𝑟 [𝑀 (𝑦) ∈ 𝑆] + 𝛿 (4.1)

In Equation 4.1, the 𝑀 denotes a randomized algorithm, while the 𝑆 represents all
potential output of the 𝑀 that could be predicted. The variable 𝑥 stands for entries in
the database, whereas the 𝑦 signifies entries in the parallel database. The symbol 𝜖
indicates the maximum distance between a query on database 𝑥 and the same query
on database 𝑦. Finally, the 𝛿 implies a probability of information accidentally being
leaked.

4.2.2 Generative Model

Generative models [91] constitute a class of Machine Learning (ML) models de-
signed to learn the underlying probability distribution of a dataset. This allows for
the creation of new samples that mimic the original data. The three widely known
generative models are the GAN, VAE, and Auto-Regressive (AR) models [92]. Gen-
erally, the aim of a generative model is to maximize the likelihood, which involves
two different schemes: implicit density and explicit density [93]. These are used to
estimate the probability distribution, which has been shown in Equation 4.2.

𝜃∗ = argmax
𝜃

E𝑥∼data log 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥 | 𝜃) (4.2)
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4.2.3 Vector Quantized-Variational AutoEncoder Model

The VQ-VAE is an extension of the traditional VAE framework that uses a discrete
latent space, also known as the codebook, instead of a continuous layer. In the VQ-
VAE setup, an encoder network produces continuous latent representations, which
are then quantized to a discrete set of codebook vectors. This effectively allows the
model to learn a discrete latent space. A decoder network then uses the quantized
latent codes as input to generate the output samples. The employment of discrete
latent representations enables the VQ-VAE model to generate higher-quality images
while maintaining enhanced control over the generated content. The operation of
this model can be readily understood by examining the loss function presented in
Equation 4.3.

𝐿 = log 𝑝(𝑥 | 𝑧𝑞 (𝑥)) + ∥𝑠𝑔[𝑧𝑒 (𝑥)] − 𝑒∥22 + 𝛽 ∥𝑧𝑒 (𝑥) − 𝑠𝑔[𝑒]∥22 (4.3)

During the training phase of the VQ-VAE, the original data is passed through an
encoder to a continuous latent space, which is then discretized using a codebook
of vectors and is regarded as the vector quantization step. The model is trained to
reconstruct the original data from the codebook indices, which results in a learned
mapping from the discrete latent to the data. After training, the categorical prior is
replaced with an ARmodel, which learns the dependencies between the latent codes.
This model, called PixelCNN [94], an AR model, treats each code as dependent on
the previous ones, allowing it to model complex joint distributions over sequences
of latent codes.

4.2.4 Threat Model

In the context of the DP and VQ-VAE, the threat model typically addresses the
following concerns; the detail is shown in Figure 4.1:

I Reconstruction attacks: an attacker tries to reconstruct original input data
from the model’s outputs or parameters. The threat is that if the model
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remembers too much about specific training data, it might leak sensitive
information when queried.

II Membership inference attacks: an attacker attempts to determine whether
a particular data was used in the model’s training dataset. This can be
particularly concerning if the presence of data in the training data is sensitive.

III Model inversion attacks: similar to reconstruction, but here, the attacker
focuses on inferring sensitive features or inputs from the model’s predictions.

They are printed as concerns I and II since after obtaining a well-trained VQ-VAE
model, only the decoder and PixelCNN of the VQ-VAE have been released to the
user, which allows the user to generate synthetic data which has no secure or privacy
concerns. What’s more, implementing the DP to add noise into the model while
training gives a formal guarantee that individual-level information about participants
in the database is not leaked, which aims to concern II. At the same time, due to
the presence of concern III, the published model also contains privacy related to
the model itself, namely the model’s parameters, such as weight and bias. When
users utilize the VQ-VAEmodel, they are not only generating synthetic data but also
using the reconstruction function to obtain de-privatized data. In this feature, users
have the opportunity to access the complete VQ-VAE model, thereby potentially
launching attacks. Therefore, we have also employed the DP-SGD training method
to protect the parameters of the model from being leaked, which also serves to
safeguard against threats related to concern III.

4.3 Related Work
In this section, we review the literature relevant to our work, focusing on three main
areas: generative models, the VQ-VAE, and Privacy-preserving DL (PPDL) [95]
with an emphasis on the DP.

Generative models have been a popular area of research in recent years, with
numerous advancements in unsupervised and semi-supervised learning techniques.
Some of the widely used generative models include the VAE [21] [87] [96] [97] [98],
the GAN [86] [99], and the AR models such as PixelRNN [100]. These models
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Figure 4.1. The threat model of the DP and VQ-VAE. There are three typical
concerns: I Reconstruction attacks, II Membership inference attacks, and III Model
inversion attacks.

have been employed to generate realistic images, learn powerful representations, and
enable novel applications in domains like Computer Vision (CV), Natural Language
Processing (NLP), and Reinforcement Learning (RL).

The VQ-VAE emerged as a significant advancement in the field of generative
modeling, combining the strengths of the VAE and discrete latent representations.
The VQ-VAE exploits a vector quantization layer to map continuous encodings to a
discrete latent space, enabling better control over the generated images and improved
sample quality. Since their introduction, the VQ-VAE has been further developed
and extended, with hierarchical architectures [101] leading to even higher-quality
image synthesis.

The importance of privacy-preserving in the DL, also named the PPDL, has
grown significantly, with various techniques being proposed to protect sensitive data
during model training and inference. One of the most prominent frameworks for
privacy-preserving is the DP, which introduces controlled noise to data or model
parameters to ensure that the presence or absence of any single data point does not
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significantly affect the model’s outputs. The DP has been applied to a wide range of
the DL tasks, including supervised learning [102], unsupervised learning [44], and
Federated Learning (FL) [17].

There have been several efforts to incorporate the DP into generative models,
primarily focusing on the VAE and GAN [19] [103] [104]. These approaches
generally involve modifying the model architecture, training procedure, or loss
functions to satisfy the DP constraints [105]. However, the integration of the DP into
the VQ-VAE has been relatively unexplored, leaving room for further investigation
and development.

4.4 Methodology
In this section, we discuss the methodology of integrating the DP in the VQ-
VAE model, emphasizing the privacy budget 𝜖 . Moreover, we follow the proof
for applying the DP in the VQ-VAE provided by Jiang et al. [21]. We observe that
directly embedding the DP in the VQ-VAEmodel for data processing results in using
the original data twice an epoch during model training [101]. The DP quantifies
privacy loss using a metric called the privacy budget, typically denoted by epsilon
𝜖 . Each query or computation on the dataset consumes a portion of this privacy
budget. The more the data is used, which means the more queries or computations
are performed, the more the privacy budget is expended.

The fact is that during the training, there are two times accessing training data
each epoch. In the scenario of the VQ-VAE with the DP, every time the model is
trained, updated, or a new query is made, a portion of the privacy budget is used up.
As the cumulative usage of the data increases, so does the total amount of privacy
budget spent, increasing the risk of privacy exposure. This is because each use
of the data adds a little more “information leakage,” gradually eroding the privacy
guarantees.

To mitigate this issue, we proposed modifying the conventional training process
for the DP integrating with the VQ-VAE model. This modification ensures that
the original data is accessed only once an epoch during training, thus reducing the
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privacy budget and increasing the level of data privacy protection without compro-
mising performance. For simplicity, we denote the vanilla training flow abbreviated
as the VTF, Algorothm 9 [101], and the revised training flow abbreviated as the
RTF, Algorithm 10, which merges the separate gradient updates of the VQ-VAE and
PixelCNN models into a single gradient update in each epoch.

4.4.1 Data Flow

Figure 4.2 illustrates the detailed data flow in the DP-integrated VQ-VAE model.
This model’s data flow comprises two distinct training flows: the VQ-VAE model,
which is represented by a black line, and the PixelCNN model, which is represented
by a blue line, constitute the complete VQ-VAEmodel. The black line, referred to as
“reconstruction,” depicts the VQ-VAE model’s training flow. Upon completion of
the VQ-VAE model training, the yellow line illustrates the data flow for generating
synthetic data from the latent distribution using randomized noise, known as “sam-
pling or generation.” A naive implementation of DP in the VQ-VAE model would
lead to accessing the training data twice an epoch, thereby consuming a significant
portion of the privacy budget 𝜖 . To resolve this issue, we propose the purple line,
which represents the deployment of the VQ-VAE model with the DP. This approach
accesses training data only once per epoch during the training stage.

4.4.2 Implementation for Training the VQ-VAE with the DP

Algorithm 9 describes how to train a VQ-VAE model under the DP in standard, and
instead, Algorithm 10 shows the revised training flow for integrating the VQ-VAE
with the DP. The core of the Algorithm 10 compared with Algorithm 9 is to combine
the two gradient updates, which are separate for the AutoEncoder and PixelCNN
models, into a single one. This reduces the time of accessing training data, thereby
achieving the goal of lowering privacy loss. To reduce the privacy budget 𝜖 , we
propose a modified training flow optimized explicitly for the VQ-VAE model. This
method ensures that only one access of the original data is needed to train both
the VQ-VAE and PixelCNN models during each training epoch, rather than training
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Algorithm 9. Deploy vanilla training for the VQ-VAE model (VTF)
Input: training data 𝑥, VQ-VAE 𝑚1, PixelCNN 𝑚2, epoch 𝑇
Output: Reconstructed data 𝑦1, Synthetic data 𝑦2
1: procedure Training for the VQ-VAE with the DP(𝑥,𝑚1,𝑚2)
2: 𝑚1,𝑚2 ← DP injection
3: for epoch 𝑡 ← 1 to 𝑇 do
4: 𝑥𝑒𝑛𝑐 ← 𝑚1.𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥)
5: 𝑥𝑖𝑛𝑑 ← 𝑚1.𝐶𝑜𝑑𝑒𝑏𝑜𝑜𝑘 (𝑥𝑒𝑛𝑐)
6: 𝑦1 ← 𝑚1.𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑥𝑖𝑛𝑑)
7: Backward propagation← 𝑚1.𝑙𝑜𝑠𝑠(𝑥, 𝑦1)
8: end for
9: for epoch 𝑡 ← 1 to 𝑇 do

10: 𝑥𝑒𝑛𝑐 ← 𝑚1.𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥)
11: 𝑥𝑖𝑛𝑑 ← 𝑚1.𝐶𝑜𝑑𝑒𝑏𝑜𝑜𝑘 (𝑥𝑒𝑛𝑐)
12: 𝑦𝑖𝑛𝑑 ← 𝑚2 (𝑥𝑖𝑛𝑑))
13: Backward propagation← 𝑚2.𝑙𝑜𝑠𝑠(𝑥𝑖𝑛𝑑 , 𝑦𝑖𝑛𝑑)
14: end for
15: 𝑦2 ← 𝑚1.𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑚1.𝐶𝑜𝑑𝑒𝑏𝑜𝑜𝑘 (𝑚2 (𝑛𝑜𝑖𝑠𝑒)))
16: end procedure

them separately twice.

4.4.3 Description for Metrics

We evaluate models based on several metrics, including Inception Score (IS) [106],
Fréchet Inception Distance (FID) [107], Peak Signal to Noise Ratio (PSNR) [108],
Latency, and privacy budget Epsilon 𝜖 [109]. The results are presented as mean
values with their respective standard deviations in parentheses. Using multiple
metrics will allow for a more comprehensive, robust, and balanced assessment of
our privacy-preserving generative model. It can also facilitate comparison with
different models in the field and provide a richer understanding of its performance
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Algorithm 10. Deploy revised training for the VQ-VAE model with the DP (RTF)
Input: training data 𝑥, VQ-VAE 𝑚1, PixelCNN 𝑚2, epoch 𝑇
Output: Reconstructed data 𝑦1, Synthetic data 𝑦2
1: procedure Training for the VQ-VAE with the DP(𝑥,𝑚1,𝑚2)
2: 𝑚1,𝑚2 ← DP injection
3: for epoch 𝑡 ← 1 to 𝑇 do
4: 𝑥𝑒𝑛𝑐 ← 𝑚1.𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥)
5: 𝑥𝑖𝑛𝑑 ← 𝑚1.𝐶𝑜𝑑𝑒𝑏𝑜𝑜𝑘 (𝑥𝑒𝑛𝑐)
6: 𝑦1 ← 𝑚1.𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑥𝑖𝑛𝑑)
7: 𝑦𝑖𝑛𝑑 ← 𝑚2 (𝑥𝑖𝑛𝑑))
8: Backward propagation← 𝑚1.𝑙𝑜𝑠𝑠(𝑥, 𝑦1),𝑚2.𝑙𝑜𝑠𝑠(𝑥𝑖𝑛𝑑,𝑦𝑖𝑛𝑑 )
9: end for

10: 𝑦2 ← 𝑚1.𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑚1.𝐶𝑜𝑑𝑒𝑏𝑜𝑜𝑘 (𝑚2 (𝑛𝑜𝑖𝑠𝑒)))
11: end procedure

under different conditions or aspects.
The IS and FID are both widely used objective metrics for evaluating the quality

of generated images, particularly those produced by generative models. The IS
measures the diversity and quality of generated images by assessing the output
distribution of a pre-trained Inceptionmodel [110]. A higher IS value indicates better
performance, suggesting that the generative model has produced images with diverse
and recognizable features. On the other hand, the FID compares the distribution
of generated images with the distribution of a set of real images, often referred to
as the “ground truth.” This metric calculates the Fréchet distance [111] between
activation values of the generated images and the real images in the latent or feature
space of a pre-trained Inception model provided by Google. A lower FID value
indicates better performance, suggesting that the generative model’s output is closer
to the real image distribution.

The PSNR is another commonly usedmetric for evaluating the quality of generated
images, especially in the context of image reconstruction. The PSNR is derived
from Mean Squared Error (MSE) [112] between the original and the generated or
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reconstructed images. It measures the ratio between the maximum possible power
of the signal, i.e., the image’s pixel intensity, and the power of the corrupting noise,
i.e., the error introduced during image generation or reconstruction. The number
is expressed in decibels (dB), and a higher PSNR value typically indicates better
image quality, as it represents a more negligible difference between the generated
or reconstructed image and the original image. In other words, a higher PSNR
suggests that the generative model has successfully captured the essential features of
the original image with less distortion or noise, which serves as a useful quantitative
measure to compare the performance of different generative models in terms of their
ability to maintain image fidelity considering whether to deploy the DP.

Latency of training and privacy budget 𝜖 are also important metrics to consider
when evaluating the performance of privacy-preserving generative models, as they
provide insights into the efficiency and privacy guarantees of the models. The
latency measures the time that it takes for the VQ-VAE model to produce an output,
such as generating a synthetic image or reconstructing an input image. Latency
is typically expressed in seconds and can be crucial in assessing the real-world
applicability of a generative model, especially in scenarios where real-time or near-
real-time processing is required. A lower latency value indicates faster performance,
making the model more suitable for time-sensitive applications.

In the context of the DP, the Epsilon 𝜖 quantifies the level of privacy protection
provided by a privacy-preserving algorithm. A smaller Epsilon value signifies
stronger privacy guarantees, implying that the algorithm’s output is less sensitive to
changes in individual data points. However, achieving a lower Epsilon often comes
at the cost of reduced utility or performance, as more noise is introduced to preserve
privacy. The amount of noise depends on the sensitivity [113] of the function and
is drawn from a distribution. The sensitivity of a function indicates how much the
output might vary in response to changes in the input. Specifically, it represents the
most tremendous possible change in the output when a single individual is either
added to or removed from any potential input dataset. Sensitivity is a crucial concept
as it guides the amount of noise required to be introduced to the function’s output
to safeguard the privacy of individuals in any potential input dataset. A higher
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sensitivity necessitates the addition of more noise.

4.5 Evaluation
We carry out a comprehensive series of experiments to evaluate the effectiveness
of our proposed modified training flow for the VQ-VAE model with the DP. These
experiments are meticulously designed to measure both the quality of the image
generation produced by the model and the level of privacy-preserving afforded by
the training method. We evaluate the model using diverse datasets and various
performance metrics and compare it with the RTF against the standard training
method VTF to ensure a rigorous and exhaustive assessment.

In the VQ-VAE, the prior distribution over the discrete latent is a categorical
distribution and can be made autoregressive by depending on other vectors in the
feature map. While training the VQ-VAE, the prior is kept constant and uniform.
After training, we fit an autoregressive distribution over indices obtained from the
codebook to generate data via ancestral sampling. We use a PixelCNN model
over the discrete latent for the current work. The PixelCNN model is a type of
Convolutional Neural Network (CNN) model capable of generating images pixel by
pixel, conditioned on the previous pixels. It’s called “autoregressive” because each
pixel is a function of the previous ones, which is to learn a distribution over the
latent that can be sampled from to generate new data.

4.5.1 Experimental Setup

We conduct our experiments using Python 3.9.11 [83]. The VQ-VAE and PixelCNN
models are developed using TensorFlow 2.10.0 [114].
Datasets. We utilize popular image datasets, including Modified National Insti-
tute of Standards and Technology (MNIST) [115], the Fashion-MNIST [116], and
Canadian Institute for Advanced Research 10 classes (CIFAR-10) [117], to train the
VQ-VAE and PixelCNN models, both with and without the DP. The MNIST and
Fashion-MNIST are original 60, 000 of 28×28 grayscale images in both the training
and test datasets, and the CIFAR-10 is 60, 000 of 32 × 32 color image dataset for
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10 classes with 50, 000 training and 10, 000 test images per class. These datasets
primarily focus on supervised learning, but our objective centers around generative
models, particularly unsupervised learning. Consequently, we use the STL [118]
dataset, specifically designed for image recognition tasks and intended to facilitate
the development of the unsupervised DL approaches. This setup allows us to ex-
plore the potential benefits of the unsupervised and self-supervised DL techniques
that leverage a large amount of unlabeled data to improve model performance in
scenarios with limited labeled data.

Hardware and Software. Throughout our experiments, we utilize two different
devices for vanilla test and final validation purposes. A MacBook Pro is employed
for the test phase, featuring an M1 chip and RAM 16GB. For the validation phase,
we use a laptop running Windows 11, which is equipped with 12th Gen Intel(R)
Core(TM) i7-12700H 2.30GHz, RAM 32GB, NVIDIA GeForce RTX 3080. This
setup allows us to verify the consistency and compatibility of our results across
different operating systems and hardware configurations. All experimental results
are logged and recorded using the laptop with the operating system Windows 11.

Our experiments use Python 3.9 [83] to code and implement our methods. We
build the VQ-VAE and PixelCNNmodels using the TensorFlow library 2.10.0 [114],
a popular open-source framework for DL applications. This choice provides us with
the necessary tools and flexibility to develop and test our models efficiently.

For deploying the DP, we utilize the TensorFlow Privacy library 0.8.7 [29],
an extension of TensorFlow that provides privacy-preserving mechanisms for the
DL. The TensorFlow Privacy library enables us to integrate differential privacy
techniques into our models, ensuring that privacy constraints are met throughout
the training process. The main processes to guarantee the DP were done by the
TensorFlow Privacy library. The privacy budget 𝜖 is computed by the total number
of points in the training or test data, batch size, the number of epochs of training or
test, and delta 𝛿, which is set to be less than the inverse of the size of the training or
test dataset.
Metrics. We evaluate our models using several metrics, including the IS, FID, and
PSNR. Additionally, we assess training latency and consider the privacy budget 𝜖
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consumed during the training process. The numerical data of the training trends are
represented in Figure 4.3, which depicts the trend in training losses for four distinct
datasets using the VTF and RTF. Moreover, it shows the consumption of the privacy
budget 𝜖 throughout the process in the DP scenario. We implement the TensorFlow
Privacy library to calculate the privacy budget and add noise applied to the gradient
during forward propagation. Whether adding or deleting an image, the difference is
always one, and the sensitivity is one.

4.5.2 Optical Comparison in Latent Space for Processed Data

To observe and compare the feasibility of the proposed method more intu-
itively, we will visualize the latent space variables for comparisons at the
human eye level. The depicted latent figures in the middle column of Fig-
ure 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12 offer a more in-depth look at the data
gathered during our experiment, further supporting and enhancing the findings.
First, we show the ground truth images in Figure 4.4 for deploying the VQ-VAE
model with and without the DP in the VTF and RTF for four datasets. Each category
of the dataset shows 30 images representing samples.

In detail, the image results are divided into eight figures; each of these figures is
distinct based on the combination of the three attributes: the DP application with
affirmative or negative, method type with the VTF or RTF, and dataset coloration
with grayscale or color. Figure 4.5 includes images that have not applied the DP,
utilized the VTF method, and belong to the grayscale images. Figure 4.6 comprises
images that have not applied the DP, implemented the VTF, and belong to the color
images. In Figure 4.7, images are processed by the DP, generated by the VTF
method, and are part of grayscale images. In Figure 4.8, images are operated by the
DP, executed by the VTF method, and are part of color images. On the contrary,
images displayed in Figure 4.9 consist of results without the DP, realized by the
RTF method, and are from the grayscale images. Moreover, images illustrated in
Figure 4.10 consist of results without the DP, accomplished by the RTF method, and
are from the color images. Furthermore, Figure 4.11 contains images carried out by
the DP, put into action of the RTF method, and are the grayscale dataset. Finally,
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(a). Loss and epsilon of the MNIST in VTF (b). Loss and epsilon of the MNIST in RTF

(c). Loss and epsilon of the Fashion-MNIST
in VTF

(d). Loss and epsilon of the Fashion-MNIST
in RTF

(e). Loss and epsilon of the CIFAR-10 in
VTF

(f). Loss and epsilon of the CIFAR-10 in
RTF

(g). Loss and epsilon of the STL in VTF (h). Loss and epsilon of the STL in RTF

Figure 4.3. Visualizing loss and epsilon for the VQ-VAE with and without the DP
on datasets. Unraveling the learning dynamics of discrete representation. Under the
RTF, it can be clearly observed that each dataset accumulates less privacy budget as
the training epochs increase in the black line compared with the VTF.
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Figure 4.12 encloses images enforced by the DP, put into action of the RTF method,
and are the color images.

During the visualization images, from Figure 4.5 to Figure 4.12, there are three
parts presenting optical results. The left part is generated by the VQ-VAE model,
which is the generation result and has 30 generation images. Specifically, to show
the comparison among ground truth, generation, and latent space, 10 combinations
of images of the middle part are illustrated in order of ground truth, generation,
and latent space. Meanwhile, the VQ-VAE model includes the generation and the
sampling; in addition to presenting the generation results, it is also necessary to show
the sampling results. As for the sampling, 10 groups of latent space and images
sampled from noise for the sampling are displayed in the right part.

4.5.3 Implement the VQ-VAEModel with and without the DP in the

Vanilla Training Flow

In this subsection, we discuss the implementation of the VQ-VAE model with and
without the DP using the VTF, which is illustrated in from Figure 4.5 to Figure 4.8.
Implementing the VQ-VAEmodel without the DP in the VTF. To implement the
VQ-VAEmodel without theDP, we follow theVTF. Figure 4.5 and Figure 4.6 display
the results of grayscale and color datasets, respectively. This experiment follows
the standard training method for the VQ-VAE model without any modification or
the DP; in other words, it trains the encoder and the decoder of the VQ-VAE model
first, then trains the AR model tuning the vector quantized layer of the model and
the decoder. The entire flow is depicted in the order of the black line and the blue
line of Figure 4.2.
Implementing theVQ-VAEmodel with theDP in theVTF.To implement the VQ-
VAE model with the DP, we leverage the TensorFlow Privacy library, an extension
of the TensorFlow that provides a suite of DP preserving mechanisms. The images
results are shown in Figure 4.7 and Figure 4.8. This experiment verifies how to
implement the DP into the training of the VQ-VAE model. Furthermore, the exact
flow is depicted in Figure 4.2, including the orange line for the DP, the black line for
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(a). Ground truth of the MNIST (b). Ground truth of the Fashion-MNIST

(c). Ground truth of the CIFAR-10 (d). Ground truth of the STL

Figure 4.4. Ground truth images for grayscale datasets the MNIST and Fashion-
MNIST, and color datasets the CIFAR-10 and STL.
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the VQ-VAE model, and the blue line for the AR model.

4.5.4 Implement the VQ-VAEModel with and without the DP in the

Revised Training Flow

In this subsection, we will discuss the revised method for deploying the VQ-VAE
model with and without the DP, which reduces the privacy budget 𝜖 , enhancing
privacy-preserving. Moreover, it conducted a comparative experiment between the
VAE and the VTF, demonstrating improved performance when implementing DP
in the VQ-VAE model as opposed to the VAE model. The result can be seen in
Figure 4.13. Furthermore, the optical results are illustrated from Figure 4.9 to
Figure 4.12.
Implementing the VQ-VAE model without the DP in the RTF. Before deploying
the revised training flow with the DP in the VQ-VAE model, it is necessary to test
its feasibility in a non-DP environment. This step is crucial to evaluate the general
applicability of the proposed method, which validates whether the proposed method
RTF shows better performance, especially privacy budget 𝜖 , than the VTF in the DP
environment. The results are clearly presented in Figure 4.9 and Figure 4.10.
Implementing the VQ-VAE model with the DP in the RTF. The primary goal
of incorporating the DP into the VQ-VAE model is to preserve the privacy of the
input data while still generating high-quality images. The DP mechanism ensures
that the model learns the global patterns and structures from the dataset without
memorizing specific details of individual samples. Furthermore, as previously
mentioned, privacy budget 𝜖 is critical for privacy-preserving; the lower value of
privacy budget 𝜖 provides a higher level of privacy-preserving. Thus, reducing the
privacy budget while holing, to some extent, performance is the main objective of
this contribution, which is ensured by the proposed RTF method. Similarly, the
image results have been depicted in Figure 4.11 and Figure 4.12. Moreover, the
elaborated flow is drawn in Figure 4.2 with the purple line for the proposed RTF
method, the orange line for the DP, and the yellow line for the sampling.
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Figure 4.5. Visualizing latent space for deploying the VQ-VAE model without the
DP in the VTF for grayscale datasets the MNIST of the upper part, Fashion-MNIST
of the lower part in reconstruction and sampling. The left column is the input, and
the middle column is a combination of input, latent space, and reconstructed images.
The right column is the combination of latent space and sampled images.
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Figure 4.6. Visualizing latent space for deploying the VQ-VAE model without the
DP in the VTF for color datasets CIFAR-10 of the upper part, STL of the lower part
in reconstruction and sampling. The left column is the input, and the middle column
is a combination of input, latent space, and reconstructed images. The right column
is the combination of latent space and sampled images.
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Figure 4.7. Rendering latent space for the implementation of the VQ-VAE model
with the DP in the VTF for grayscale datasets like the MNIST of the upper part
and Fashion-MNIST of the lower part in both reconstruction and sampling. The left
column is the input, and the middle column is a combination of input, latent space,
and reconstructed images. The right column is the combination of latent space and
sampled images. 97
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Figure 4.8. Rendering latent space for the implementation of the VQ-VAE model
with the DP in the VTF for color datasets like the CIFAR-10 of the upper part
and STL of the lower part in both reconstruction and sampling. The left column
is the input, and the middle column is a combination of input, latent space, and
reconstructed images. The right column is the combination of latent space and
sampled images. 98
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Figure 4.9. Executing latent space visualization for the activation of the VQ-VAE
model devoid of the DP within the RTF pertaining to grayscale datasets such as the
MNIST of the upper part and Fashion-MNIST of the lower part for reconstruction
and sampling. The left column is the input, and the middle column is a combination
of input, latent space, and reconstructed images. The right column is the combination
of latent space and sampled images. 99
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Figure 4.10. Executing latent space visualization for the activation of the VQ-
VAE model devoid of the DP within the RTF pertaining to color datasets such as
the CIFAR-10 of the upper part and STL of the lower part for reconstruction and
sampling. The left column is the input, and the middle columnais the combination of
input, latent space, and reconstructed images. The right column is the combination
of latent space and sampled images. 100
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Figure 4.11. Illustrating latent space for executing the VQ-VAE model with the
DP in the RTF for grayscale datasets, including the MNIST of the upper part and
Fashion-MNIST of the lower part, in reconstruction and sampling. The left column
is the input, and the middle column is a combination of input, latent space, and
reconstructed images. The right column is the combination of latent space and
sampled images. 101
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Figure 4.12. Illustrating latent space for executing the VQ-VAE model without the
DP in the RTF for color datasets, including the CIFAR-10 of the upper part and STL
of the lower part, in reconstruction and sampling. The left column is the input, and
the middle column is a combination of input, latent space, and reconstructed images.
The right column is the combination of latent space and sampled images.
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4.5.5 Results Analysis

By observing the first and second columns of each evaluation metric in Figure 4.13,
we can see that the performance of the VQ-VAE models using the DP is superior to
that of the VAE models using the DP. This demonstrates that by applying the DP,
we can still achieve better performances on the VQ-VAE models than on the VAE
models.

We trained the VQ-VAE model without the DP in the VTF, which helps it to
understand and learn the underlying data structure and the complex relationships
between various data features. Once the VQ-VAE model had been well-trained, we
processed to train a prior model, the PixelCNN model. We trained the PixelCNN
on the discrete latent codes obtained from the well-trained VQ-VAE model. This
process is crucial because it allows the PixelCNN to learn the distribution of these
latent codes, enabling it to generate new ones that are likely to occur based on its
training. Consequently, this makes it possible to generate synthetic images from the
combined the VQ-VAE and PixelCNN models.

The training process of the RTF is refined to accommodate the requirements of
the DP, which includes the calculation of per-sample gradients, the implementation
of gradient clipping, and the injection of noise. To achieve privacy-preserving, we
utilized the DP-SGD optimizer, which calculates the average of clipped gradients
and adds Gaussian noise to the gradients before applying parameter updating. It
ensures that the model’s updates do not reveal any sensitive information about the
input data. In the DP-SGD, noise is added to the gradient computation during the
training process to ensure differential privacy. This is typically done in two steps:

I First, the gradients, which are derived from the training data, for a batch of
data are computed.

II Then, before applying these gradients to update the model parameters, an
appropriate amount of random noise is added to these gradients.

This noise ensures that the influence of any individual data point on the model’s
parameters is limited, providing privacy guarantees. With the revised training pro-
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cess utilized with the DP, it is possible to train the VQ-VAE model in a better
privacy-preserving manner, which is shown by the purple line in Figure 4.2. The
training method of the VQ-VAE with the DP in the RTF remains essentially un-
changed, with the primary difference being the integration of the DP-SGD into the
backpropagation step, being able to train a model that protects the privacy of the
input data while still learning effectively from it.

The image data shows the results of the training data under reconstruction and
sampling and presents the corresponding relationship of the latent space and distri-
bution map learned through the autoencoder. In addition, we display the comparison
diagram of the relationship between the latent space and the output under random
sampling. Through the image results, it can be clearly seen that the application of
the DP will not visually change the data too much. Still, from the perspective of
the data itself, sensitive privacy data has been removed, ensuring the privacy and
security of the output data. This also proves the effectiveness of the method we
proposed.

In our experimental results, as shown in Table 4.1 with separated analysis of ep-
silon for Table 4.2 and latency for Table 4.3, Figure 4.3, and Figure 4.13. To highlight
the effectiveness of the data, in Table 4.1, we conducted comparisons for the same
dataset under different schemes, different methods, and different evaluation criteria.
For the same dataset, data with a green background indicates superior performance
in different schemes; under different methods and the same evaluation criterion,
data in red indicates more excellent performance. Furthermore, we evaluate the
performance across three dimensions: horizontal, vertical, and privacy-preserving.

In horizontal comparison, by analyzing the results of each dataset under different
methods, the VTF and RTF, we can conclude that in the regular scheme, chang-
ing the training method does not have a particularly noticeable effect on the final
performance, and it may even cause a decline. In the DP scheme, we can see a
significant improvement in the results, which indicates that our proposed method
can effectively enhance the model’s performance under the DP scheme. However,
it should be noted that the final training latency is significantly lower for the VTF
compared to the VTF, as the VTF only calls the original dataset once during each
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training epoch.
In vertical comparison, for the VTF, by applying the DP scheme, we can observe

a noticeable decline in the results, as the DP introduces noise that affects the final
performance. On the other hand, for the RTF, after applying the DP scheme,
the performance has significantly improved, which demonstrates that our proposed
method has excellent adaptability for the DP scheme.

In privacy-preserving comparison, we calculate the privacy budget 𝜖 for the four
datasets under the two methods. In the VTF, the privacy budgets consumed for
the MNIST, Fashion-MNIST, CIFAR-10, and STL are 3.86, 3.86, 4.94, and 15.53,
respectively. In the RTF, the privacy budgets consumed for the MNIST, Fashion-
MNIST, CIFAR-10, and STL are 2.63, 2.63, 2.92, and 10.16, respectively. By
calculating the differences, it can be concluded that deploying the DP-enabled VQ-
VAE model using our proposed method RTF can reduce the privacy budgets by
31.87%, 31.87%, 40.89%, and 34.58% on the corresponding datasets. In other
words, the proposed method RTF can reduce the privacy budget 𝜖 by approximately
34.80% while maintaining the performance, resulting in a more robust privacy-
preserving level.

In Figure 4.13, we evaluate three models and methods, the VAE, VTF, and RTV,
on four datasets using both plaintext data and the DP-processed data. The test
metrics include the IS, which gets the higher the score, the better; the PSNR, which
obtains the higher the score, the better; and the FID, which performs the lower
the score, the better. Based on the experimental results, although the RTV model
proposed in this chapter does not achieve better results on plaintext data, it shows
outstanding performance on all four metrics across the four datasets when using the
DP-processed data. Our results suggest that the RTF strikes an effective balance
between privacy-preserving and image-generation performance. By reducing the
privacy budget 𝜖 without compromising the quality of reconstructed and generated
images, the RTF exhibits significant potential for various applications that demand
high-quality image generation coupled with robust privacy guarantees.
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Table 4.2. Quantitative analysis of epsilon. The RTF shows a lower privacy budget
compared with the VTF in different datasets.

Method

Dataset Scheme
VTF RTF

Epsilon

MNIST
Normal - -
DP 3.86 2.63

Fashion-MNIST
Normal - -
DP 3.86 2.63

CIFAR10
Normal - -
DP 4.94 2.92

STL
Normal - -
DP 15.53 10.16

Table 4.3. Summary of experimentally derived latency values with a certain degree
of variability or precision around each value.

Method

Dataset Scheme
VTF RTF
Latency (second)

MNIST
Normal 22.42 (±0.22) 15.19 (±0.45)
DP 20.09 (±0.37) 14.91 (±0.38)

Fashion-MNIST
Normal 21.01 (±0.36) 15.05 (±0.44)
DP 22.01 (±0.28) 15.12 (±0.37)

CIFAR10
Normal 24.53 (±1.28) 13.79 (±1.72)
DP 24.36 (±1.75) 13.75 (±1.34)

STL
Normal 22.78 (±1.21) 8.56 (±1.11)
DP 22.81 (±1.18) 8.83 (±1.23)
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(a). Numerical results of implementing the MNIST

(b). Numerical results of applying the Fashion-MNIST

(c). Numerical results of deploying the CIFAR-10

(d). Numerical results of utilizing the STL

Figure 4.13. Numerical metrics results for four datasets: the MNIST, Fashion-
MNIST, CIFAR-10, STL. The horizontal axis represents the model category, while
the vertical axis represents the score.
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4.6 Discussion
In the work of this chapter, we aim to apply the DP to a generative model of
the server that executes the model, which is trusted, specifically the VQ-VAE, to
generate synthetic images in a privacy-preserving manner. Indeed, the distributed
approach can connect data islands, but to truly implement it requires a large amount
of communication cost among people. Therefore, currently, the best way to obtain
high-performance models is to collect and centrally process data obtained in various
ways. Therefore, in our research, we implement the Gaussian-DP technology based
on the Central-DP as a benchmark. This approach contrasts with directly applying
the DP to input data, as it ensures privacy-preserving not just in the raw input data
but in the synthetic data generated by the model. The rationale for focusing on
the model rather than the data lies in the application of generative models. The
primary purpose is to generate synthetic data that accurately mirrors the original
data distribution without compromising the privacy of individuals whose data was
used in the training process, consuming less privacy budget. We introduce a novel
DP-enabled VQ-VAEmethod RTF that strikes a balance between preserving privacy
and maintaining image-generation performance. Based on our experiment results,
the method RTF we proposed has reduced the privacy budget by an average of
34.80% across four different datasets. This is a significant improvement from the
VTF of the VQ-VAE.

The effectiveness of the proposed RTF in preserving privacy while generating
high-quality images lends credence to the integration of privacy-preserving mecha-
nisms, such as the DP, in the realm of generative models. Our work harmonizes with
the body of existing literature advocating the need for such integration, challenging
the conventional approaches and setting a new benchmark in privacy-preserving
image generation tasks in a centralized scenario. The method’s versatility across
different datasets demonstrates its potential for broader applications in domains such
as medical imaging, biometric systems, and personalized user experiences, where
privacy preservation is critical.
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Despite the promising results, some limitations still exist in the RTF. For instance,
its scalability to larger and more complex datasets, the effect of the different gener-
ative models, and the impact of the decentralized implementation scenario on the
privacy-utility trade-offs remain unexplored. Significantly, the DP scheme used in
ourwork of this chapter is the centralDP, and the localDP is a tendency for distributed
computing. Additionally, integrating other privacy-preserving mechanisms, such as
Secure Multi-party Computation (SMPC) or Homomorphic Encryption (HE), could
strengthen the privacy guarantees of the method, opening up new possibilities for its
application. The single privacy-preserving mechanism has application bottlenecks
and cannot cope with more complex attack methods. Also, implementing the DP in
the VQ-VAE still needs more complete proof to confirm the correctness of applying
the DP to VQ-VAE.

Future research could address these limitations by conducting more extensive
experiments with various datasets and utilizing the FL to evaluate the performance
in decentralized scenarios. In conclusion, our work represented a significant stride
towards privacy-preserving image reconstruction and generation, providing a robust
and efficient solution in the face of growing data privacy concerns. By advancing
the SOTA in Privacy-preserving Artificial Intelligence (PPAI), we are optimistic
that our work lays a strong foundation for future research and development in this
rapidly evolving field.

4.7 Conclusion
In conclusion, this chapter presents a novel approach for privacy-preserving image
generation by integrating the DP into the VQ-VAE framework, offering a valuable
contribution to the field of privacy-preserving image reconstruction and generation.
Our proposed DP-enabled VQ-VAE training flow RTF successfully and effectively
balances privacy preservation and image generation performance, showcasing its
potential to meet the growing demand for the PPAI solutions. Our experimental
results reveal that the RTF reduces the privacy budget 𝜖 by approximately 34.80%
on average across four diverse datasets, the MNIST, Fashion-MNIST, CIFAR-10,
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and STL, while maintaining comparable performance to the VTF. This substantial
reduction in privacy budget consumption underscores the robust privacy-preserving
capabilities of our method when contrasted with the VTF. Despite the promising re-
sults achieved, there are still areas for further exploration and enhancement. Future
research can focus on examining the scalability of the method to more extensive
and more intricate datasets, optimizing the privacy-utility trade-offs through de-
centralized resolution such as the FL, and investigating the integration of other
privacy-preserving mechanisms to bolster the method’s privacy guarantees.
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Chapter 5

Discussion

In this chapter, we make a report on the motivation, trad-offs, and future work of
this study, which are described below.

5.1 Motivation
Data is collected through sensors, mobile devices, browsers, wearable devices, and
more. This data uses Deep Learning (DL) applications across sectors like finance,
e-commerce, social media, healthcare, and recommendation systems. As a result, an
increasing number of data-driven DL applications are being designed, created, and
optimized by major service providers, such as Apple, Google, and Amazon. These
providers can be termed as the “data user.” They harness vast quantities of data
sourced from the individual who is the “data owner” to deliver tailored services.
The public is aware that these services offer data owners both commercial and
political benefits by enabling user recommendations, health monitoring, targeted
advertising, and predictive insights. However, the data from these owners often
contains sensitive or private information, raising concerns about privacy. Moreover,
with the cloud-based DL services and computing converging to create powerful
analytical platforms, it’s crucial to prioritize privacy in the DL models on these
platforms, especially when handling sensitive data. This thesis delves into privacy-
preserving in the DL, outlining methods to ensure data confidentiality within the
DL.
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5.2 Trade-offs

5.2.1 Significance

When personal data is misused or used for unintended purposes, it can be ex-
ploited for unfair advantages. Combining large amounts of personal records with
the DL algorithms introduces unpredictability, making it uncertain what insights
might emerge or how much private information might be inadvertently disclosed.
Thus, designing the DL algorithms that prioritize privacy-preserving applications
is crucial. As for the consideration of privacy-preserving, there are three items that
should be recognized.

I The method should ensure other data users cannot use the personal data for
their own advantage without the data owner’s permission.

II As thoughtful and intelligent human beings, everyone has private things that
they do not want others to check or know, even if there are some legal rules
or requirements that have been announced.

III Different places have varying degrees of privacy protection measures and
regulations for different datasets. The same dataset, when used in different
locations and subject to local laws and regulations, can produce significantly
different results when modeled using various algorithms.

The core challenge lies in striking a balance between privacy and efficiency in DL
applications, aiming to harness the data’s potential while safeguarding individual
privacy. Due to specific regulatory and application demands, we must not compro-
mise privacy for the sake of enhanced utility. Furthermore, privacy measures should
be methodically integrated rather than relying on random mechanisms.

According to Chapter 2, setting the encryption algorithm as the benchmark, we
utilize an Efficient Integer Vector Homomorphic Encryption (EIVHE) scheme and
propose Improved EIVHE (IEIVHE), implementing it in the DL to preserve users’
privacy while using Deep Neural Network (DNN) model. To protect users’ privacy
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and security, a Fully Homomorphic Encryption (FHE) framework is used to encrypt
the training and test dataset, which the DNN model is also adjusted to operate ac-
cordingly. Based on the characteristics of the HE algorithm, combined with efficient
integral vectors, experiments are conducted on specific datasets. The algorithm is
mainly applied to key-switching techniques to achieve internal ciphertext conversion
and usage, ensuring that algebraic operations performed on ciphertext yield correct
results. A comparative study was carried out focusing on parameters such as training
set accuracy, test set accuracy, time overhead, and cycles. The results indicate that
although the framework may slightly reduce accuracy, it ensures the privacy and
security of users.

This technology can be applied to the DL on encrypted data, ensuring the con-
fidentiality of training and inference while keeping the data used in an encrypted
state. Even if the data is leaked, adversarial foes cannot decipher the actual meaning
at the human level without the correct key, making privacy breaches infeasible. This
prevents any damage to property, reputation, health, or honor. For example, in
healthcare, where patient data can be highly sensitive. Homomorphic Encryption
(HE) enables medical researchers and Artificial Intelligence (AI) models to develop
more personalizedmedicine, diagnostics, and treatment plans by securely leveraging
patient data without compromising privacy, which means that sensitive data can be
analyzed and processed by third-party services without exposing the actual data,
effectively protecting the privacy of the individuals or entities to which the data
pertains.

Based on Channel-wise Homomorphic Encryption (CHE) proposed in Chapter 3,
users who need to use cloud computing for secure and private computations can
achieve faster and more convenient cloud data processing requirements. Moreover,
this method tends to handle image data, so it is exceptionally advantageous for tasks
related to image processing. For instance, performing secretive image recognition,
image segmentation, and image generation using high-performance computers in
the cloud. A similar application is in Adobe PhotoShop, where the cloud-based AI
models are used to edit, crop, and transform images. Implementing more privacy-
preserving methods would be a more legally compliant approach. Furthermore,
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as it’s well known, videos comprise stacked frames of images. This means that
the method we propose can theoretically be applied to secretive video-processing
tasks as well. Utilizing video-processing technology with privacy-preserving for
government agencies will provide the public with safer and more secure surveillance
and tracking for specific sensitive tasks.

Additionally, in practical applications, it’s incredibly challenging to collect data
with privacy concerns and sensitive information due to various factors. Data, at
its essence, consists of facts readily transformed into computer-readable formats.
Data collection is pervasive, from business analytics and engineering optimization
to social science research and scientific studies. Each data set, with its unique pat-
terns and characteristics, serves specific objectives. Take healthcare as an example:
diverse imaging data, such as X-rays, Computed Tomography (CT) scans, and der-
moscopy images, bolster the DL applications in diagnosing diseases and enhancing
therapeutic methods.

Using the approach introduced in Chapter 4 we can implement more outsourced
applications and allow the acquisition of valuable synthetic data from sensitive
datasets through privacy-preserving means. For instance, most of the DL algorithms
are required to infer directly from the feature vectors of the datasets rather than
the statistics of the datasets; implementing Differential Privacy (DP) for privacy-
preserving synthetic data generation is to provide a synthetic dataset that maintains
the same statistical properties as the original dataset and has the same number of
features and samples. Introducing the DP paves the way for further specialized
application tasks, especially in healthcare, personalized education, and financial
forecasting.

5.2.2 Limitation

To address privacy-preserving issues in the DL applications according to the ap-
proaches broadly grouped into categories: cryptographic-based and perturbation-
based approaches; in this thesis, we propose two methods to process it, respectively.

In the study of Chapter 2, we discuss the EIVHE and IEIVHE algorithms to
make the training and inference for ciphertext in the DNN. The algorithm used in
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this chapter is, to some extent, capable of protecting user privacy while employing
deep learning. In the experiments, although the initial tests did not show significant
improvement, it is possible to consider more sophisticated schemes to enhance
accuracy. However, due to the limited data and models in the experiments, the
application as a whole is still somewhat biased. This is mainly reflected in the
need to conduct experiments on more diversified datasets, such as structured data,
and to test on more complex DNN models to seek more generalized results and
comparisons. Since the HE requires the addition of noise during encryption, the
final accuracy is definitely reduced, which is also a drawback of this scheme.

In the study of Chapter 3, we discuss the CHE method to make the inference over
the ciphertext. This thesis only implements the Leveled Homomorphic Encryption
(LHE)method instead of the FullyHomomorphic Encryption (FHE)method because
of inference latency. The FHE is an encryption scheme that allows any number of
functions on encrypted data without ever decrypting it. Instead of supporting an
unlimited number of operations, the LHE supports a limited number of operations.
The FHE should be able to evaluate any circuit; however, the LHE can evaluate
circuits with a bounded depth, Multiplicative Depth (MD). Although the library tool
of the LHE provided byMicrosoft is helpful for implementing a cryptographic-based
approach on the DL, it still needs to compute the MD in advance, which requires
professional knowledge to operate and deduce. Furthermore, this thesis compares
previous works according to the original paper’s results since leaking source code
of previous works and unable to record the exact results in the same situation, thus,
we leave the direct comparison with the earlier studies under the same situation as a
future work.

In the study of Chapter 4, we discuss the method of implementing a perturbation-
based approach tomake the synthetic image generation and sampling. Thismethod is
a DP-enabled method for the Vector Quantized-Variational AutoEncoder (VQ-VAE)
model, striking a balance between privacy-preserving and performance. Unfortu-
nately, this thesis only focuses on the centralized situation; in other words, it assumes
process data in the curator. Furthermore, the method is an extraordinary approach
for deploying the VQ-VAE model in the Gaussian mechanism DP, and we leave a
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more comprehensive comparison of different models and different DP mechanisms.
Also, implementing the DP in the VQ-VAE still needs more complete proof to con-
firm the correctness of applying the DP to VQ-VAE. The forward step should be
aimed at the decentralized situation, also known as Federated Learning (FL).

5.3 Future Work
According to the recently published papers for the last 10 years, the methods of
privacy-preserving in theDL can be roughly classed in five directions: theHE-based,
Secure Multi-party Computation (SMPC)-based, the DP-based, Secure Enclaves
(SE)-based, and Hybrid.

This thesis is only research on the two directions, the HE-based and DP-based, for
privacy-preserving in the DL. There are still more charming approaches to deploying
privacy-preserving in the DL. For instance, the SMPC-based method, the FL in
privacy-preserving, is current hot-topic research, which is our next primary step for
research in privacy-preserving concerning isolated data owners. Furthermore, the
SE-based method is an approach quite related to hardware and physical machines,
which can be set as the most secure approach in protecting the security and privacy
of data. The Hybrid method can freely integrate specific technical methods based
on application scenarios to achieve privacy-preserving for special requirements. Its
advantage is that it does not rely on a single technical condition, allowing for the
deployment of different privacy-preservingmethods at various nodes based on actual
requirements. However, this approach demands a relatively high level of knowledge
and capability from the technical personnel and is generally used in environments
with the highest privacy-preserving level.

In future work, judging from the two methods used in the thesis, firstly, the HE-
based method, we will deal with the FHE scheme instead of the LHE, transform
passive defense to active monitoring for privacy leakage and attack, and explore a
more generic method for the DL; secondly, the DP-based method, we will follow
up on input perturbation likes linear regression, algorithm perturbation which is
implemented in thesis, objective perturbation likes logistic regression, and output
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perturbation like naive bayes classification, respectively. For one step forward, we
mainly focus on exploring the DP-based method in the FL situation. The three
proposed methods of two targets are not entirely suitable for the complex network
environment because of issues concerning the data collection mechanism from dif-
ferent parties while preserving privacy. Implementing an efficient, reasonable, and
flexible privacy-preserving technique can improve the usability of more intelligent
DL models for secure applications and sensitive information, which is the purpose
of the “available but invisible.”
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Chapter 6

Conclusion

To address the privacy-preserving issues, the model should not reveal any private
information about the training and inference data from the data owner and result
owner, and meanwhile, the model also should not reveal any sensitive information
about itself from the data user in Deep Learning (DL) models, the current doctoral
thesis makes the systematical research on the privacy-preserving techniques, which
relies heavily on the underlying data whose features include private or sensitive
information.

In Chapter 2, we utilize an Efficient Integer Vector Homomorphic Encryption
(EIVHE) and propose Improved EIVHE (IEIVHE) schemes in the DL. This chapter
first outlines the HE algorithm based on efficient integer vectors, describing its defi-
nition and related fundamentals while also introducing the current state of research
in the DL based on the HE algorithms. Then, inspired by the properties of efficient
integer vectors and the characteristics of the HE algorithms, it proposes the applica-
tion of the HE algorithms based on efficient integer vectors in Deep Neural Network
(DNN) models. The main idea of this algorithm is first to encrypt the dataset using
the HE algorithm with efficient integer vectors and then perform calculations using
a DNN model. Experiments have proven that this method can protect user privacy
and avoid the occurrence of privacy leaks by encrypting the dataset while using
the DNN, which has improved accuracy 3.08% via the level of data from 86.42%
to 89.05% on Modified National Institute of Standards and Technology (MNIST)
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dataset with absolute value in the IEIVHE. Since this scheme applies cryptography
to the DL, it needs to be adjusted according to the structure of the dataset before
using other datasets. Because encrypted data is used in the DNN, attackers cannot
understand the sensitive data obtained without the key, thereby ensuring the privacy
and security of users. This scheme bridges cryptography and the DL and has more
profound implications for future use.

In Chapter 3, we propose a Channel-wise Homomorphic Encryption (CHE) and
BatchNormalization (BN) layerwithCoefficientMerging (CM) to process ciphertext
for inference, which is the cryptographic-based approach for preserving privacy.
The CHE is a Leveled HE (LHE), which mainly provides the novel computation
scheme “Onion” that makes HE rotation and mask operations on the vector of
ciphertext. Furthermore, during the LHE, the MD is critical to the latency and
computational complexity, and we propose two schemes, Convolution-Activation-
BN (CAB) and Convolution-BN-Activation (CBA), improving the accuracy and
decreasing the latency by reducing the MD logically; meanwhile, for validation
of it, we also show the mathematical deduction and experimental test comparing
the performance about two schemes. The results depict that the CHE realizes the
highest accuracy of 99.32% and the shortest latency of 7.76 seconds on the grayscale
MNIST dataset and an accuracy of 76.4% and a latency of 111.91 seconds on the
color Canadian Institute for Advanced Research-10 classes (CIFAR-10) dataset in
ciphertext inference.

In Chapter 4, we put forward integrating Differential Privacy-Stochastic Gradi-
ent Descent (DP-SGD) in the Tensorflow Privacy library into Vector Quantized-
Variational AutoEncoder (VQ-VAE) model for privacy-preserving image generation
and sampling, improving and speeding up the workflow with lower privacy budget,
which is the perturbation-based approach for protecting privacy. In the DP, privacy
budget 𝜖 and sensitivity are considerably related to the noise, affecting the privacy
protection level. Significantly, the smaller the privacy budget 𝜖 , the more noise
added, resulting in a higher level of privacy protection. We suggest our special ap-
proach for the VQ-VAE model by decreasing the privacy budget 𝜖 while presenting
relevant performance. The results show that the proposed Revised Training Flow
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(RTF) illustrates reducing privacy budget 𝜖 around 34.8% on average across four
diverse test datasets.

The advantages of the current doctoral thesis are the following:

I It further strengthens and refines the research in the DL regarding the “avail-
able but invisible” of privacy-preserving, outlining the associated threats and
proposing solutions for privacy-preserving.

II It bridges cryptography and the DL with an improved HE algorithm for train-
ing and test phases in the DNN model and has more profound implications
for future utilization.

III It implements a novel algorithm to process data encrypted by the LHE in
ciphertext inference and reduce latency for flexible applications.

IV It deploys an improved mechanism for the DP-enabled model, cutting down
the privacy budget 𝜖 in image generation and sampling.

To conclude, this thesis has made significant contributions to the emerging field of
Privacy-preservingDeepLearning (PPDL). This progress is rooted in the application
of cryptographic knowledge and perturbation techniques. This research represents
a fundamental step in addressing challenges within the PPDL domain. By outlining
the design of the framework, this work provides a roadmap for future explorations
in PPDL. It aims to foster the development of necessary measures to protect private
and sensitive data in data-driven models, ensuring that privacy is not compromised.
It is hoped that this study will serve as a catalyst for various advancements in the
PPDL, particularly in the area of discrete data application scenarios.
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