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Abstract

When humans listen to speech, they do not simply process the raw sound waves; instead, they
actively engage with layers of linguistic knowledge — semantic, syntactic, and contextual — to
accurately identify which words are spoken. This dissertation presents a series of studies focused
on the role of such top-down linguistic cues in performing automatic speech recognition (ASR),
with the primary goal of enhancing the capabilities of end-to-end systems. End-to-end ASR aims
to achieve direct conversion from speech to text by training a single deep neural network model
using pairs of speech utterances and their corresponding transcriptions. However, the modality gap
between audio input and text output poses a significant challenge in capturing linguistic informa-
tion directly from speech, which is essential for generating accurate textual output. In addressing
this challenge, this dissertation introduces four distinct yet interrelated approaches, each designed
to effectively extract and manage linguistic information within end-to-end ASR models.

The first study explores methods to hierarchically increase the abstraction level in linguistic
outputs, aiming to efficiently learn representations for sparse word-level units. In end-to-end ASR,
models are expected to implicitly learn representations conducive to word prediction. However,
this requires an extensive amount of training data to overcome the substantial abstraction gap
between input acoustic signals and output linguistic tokens. To facilitate word-level representa-
tion learning, I first develop a hierarchical conditional model. The proposed model is trained by
auxiliary connectionist temporal classification (CTC) losses applied to intermediate layers, where
the vocabulary size of each target subword sequence is gradually increased as the layers become
close to the word-level output. Each level of sequence prediction is explicitly conditioned on the
sequences predicted at previous levels, enabling the model to progressively construct word-level
representations by considering a hierarchy of linguistic structures. Then, I enhance the genera-
tion capability of the hierarchical model by employing a refinement mechanism at each stage of
intermediate prediction. This mechanism repeatedly uses the shared model parameters to refine
its intermediate representations, which leads to an improvement in the overall performance of the
model. Finally, I design an efficient pseudo-labeling-based algorithm for the proposed hierarchi-
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cal model, which utilizes audio-only data within a semi-supervised learning framework to further
boost the model performance.

The second study involves incorporating the concept of masked language modeling into end-
to-end ASR, with the goal of augmenting the model’s ability to capture long-range linguistic con-
texts. To this end, I first propose joint training and decoding strategies that synergize CTC with
masked language modeling. To mitigate the limitation of CTC in explicitly modeling depen-
dencies between output tokens, contextual information derived from masked language modeling
is used to enhance the performance of CTC-based ASR. The non-autoregressive nature shared
by both CTC and masked language modeling also enables fast inference without compromising
recognition accuracy. In addition to end-to-end ASR, the proposed framework shows promise
for application to end-to-end speech translation tasks, adeptly handling semantic information vital
for producing translated sequences. Then, I establish that the adoption of the masked language
model mechanism offers benefits to other end-to-end ASR models. The proposed model architec-
ture augments the transducer-based model by injecting explicit contextual linguistic cues into the
speech-encoding process, which is shown to push the limits of prior state-of-the-art results. Lastly,
I demonstrate that masked language modeling is advantageous in acquiring representations bene-
ficial for streaming end-to-end ASR models, allowing for the extraction of anticipated linguistic
contexts from constrained speech input.

The third study investigates the application of pre-trained masked language models (e.g.,
BERT) in end-to-end ASR, utilizing their versatile linguistic knowledge to guide the generation
process of linguistic sequences. In the field of natural language processing, large-scale pre-training
using vast amounts of text data has greatly advanced language models’ ability to learn diverse as-
pects of linguistic information. Such capabilities are expected to enhance end-to-end ASR systems
by empowering models to effectively interpret complex linguistic elements, which is important for
choosing words that are both grammatically correct and contextually appropriate. To harness this
potential, I first present a novel end-to-end ASR formulation that explicitly conditions BERT’s
contextualized word embeddings on the ASR process, adapting BERT for the CTC-based training
and inference framework. By seamlessly infusing BERT knowledge into audio information, the
proposed model improves over conventional approaches. Additionally, I demonstrate its potential
application in end-to-end spoken language understanding tasks, which typically require more ab-
stract linguistic processing. Subsequently, I introduce an extension of the proposed BERT-based
model by implementing an additional transducer-based decoder. The decoder is trained using a
vocabulary suitable for ASR training, aiming to bridge the gap between the text processed in end-
to-end ASR and BERT. This is shown crucial as these models utilize distinct vocabularies and
exhibit different text formats and styles, including variations in punctuation usage.

The last study further delves into the integration of pre-trained language models in end-to-
end ASR, with a specific emphasis on larger-sized and controllable language models. Modern
large language models (e.g., ChatGPT) are capable of performing a wide range of linguistic tasks
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within zero-shot learning, guided by precise instructions or prompts to direct the text-generation
process toward the desired task. I explore using this zero-shot capability inherent in large language
models to enhance end-to-end ASR. The proposed approach involves guiding a large language
model to perform zero-shot grammatical error correction, thereby extracting linguistic information
that contributes to improving ASR performance. The linguistic knowledge drawn from the large
language model is then used to trigger the ASR decoding process, along with acoustic information,
for achieving accurate sequence generation.
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1
Introduction

1.1 Background

Speech is an efficient and cost-effective medium for expressing one’s thoughts and feelings, en-
abling rapid and direct communication with minimal mental effort. Automatic speech recognition
(ASR) is the fundamental technology that facilitates spoken communication, allowing for nat-
ural interactions between humans and machines, as well as aiding interactions among humans.
By converting speech information to text information, ASR underpins a variety of applications,
including transcribing lectures and meetings, assisting in telephony services, enhancing acces-
sibility in television broadcasting, and building interactive spoken dialogue systems. Fueled by
the growing demand for these practical applications, the performance of ASR systems has wit-
nessed remarkable improvements, primarily thanks to emerging developments in deep learning-
based techniques (Hinton et al., 2012; Graves et al., 2013). Much of the recent advancements is
attributed to the end-to-end framework (Graves and Jaitly, 2014; Chorowski et al., 2015; Chan
et al., 2016; Li, 2022; Prabhavalkar et al., 2024) that directly models the speech-to-text conver-
sion using a single deep neural network (DNN) model. Building on foundational advances in
sequence-to-sequence modeling techniques (Graves et al., 2006; Graves, 2012; Sutskever et al.,
2014; Bahdanau et al., 2014), neural network architectures (Dong et al., 2018; Kriman et al., 2020;
Gulati et al., 2020), and large-scale training methods (Baevski et al., 2020; Hsu et al., 2021; Rad-
ford et al., 2023; Zhang et al., 2023), end-to-end ASR has demonstrated promising results across
a range of benchmarks and even exhibited reasonable performance in real-world environments.
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Feedback from linguistic information
• Hierarchy of subword construction …→ Chapter 3
• Contextualized token representation …→  Chapter 4
• Versatile knowledge from large-scale pre-training
• Masked language model  …→  Chapter 5
• Instruction-tuned language model  …→  Chapter 6

Bottom-up process

Top-down process

Speech
hello world

Text

Figure 1-1: Dissertation overview. In addition to unidirectional, bottom-up modeling of ASR in
conventional end-to-end approaches, bidirectional interactions with the top-down process, partic-
ularly through the use of linguistic information, are explored.

As illustrated in Figure 1-1, end-to-end ASR typically operates as a one-way process between
two different modalities, directly mapping speech input into text output. This is often achieved
through a sequence of stacked DNN layers, with each layer successively increasing the abstrac-
tion level of linguistic information being processed. As the speech input progresses through these
layers, the model initially works with phonetic-level representations and gradually assembles them
to form token (grapheme or word)-level representations (Belinkov and Glass, 2017; Shim et al.,
2021). In contrast to this unidirectional, bottom-up approach of end-to-end ASR, human transcrip-
tion involves a more dynamic and adaptive process, where both the speech input and the resulting
text output play integral roles in informing one another. This bidirectional, interactive mechanism
has been well-studied in traditional models of speech perception as part of human cognitive pro-
cesses (McClelland and Elman, 1986; Norris, 1994). For example, consider a dictation assessment
scenario in which individuals are tasked with transcribing a sentence spoken aloud, often repeated
a couple of times by the speaker. In this situation, transcribers do more than merely write down
the words they hear; they actively engage with the linguistic information derived from what they
write, including semantics (the meaning of words and phrases), syntax (the arrangement of words
and phrases to create complete sentences), and context (the relationship of words to the surround-
ing words and sentences). Such top-down clues from linguistic understanding can enhance their
transcription accuracy, enabling a more focused and precise interpretation of speech, particularly
in segments with challenging or ambiguous words.

In speech recognition, speech and text do not necessarily have a sequential or hierarchical
relationship, and end-to-end ASR could benefit from incorporating top-down linguistic feedback
or cues into its feature extraction and interpretation process. To explore this potential, this disser-
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tation delves into approaches for effectively capturing and utilizing linguistic information within
end-to-end ASR models, with the primary objective of enhancing the accuracy and reliability of
transcription generation. For the rest of this chapter, I first provide a review of prior work relevant
to the focus of this dissertation, along with the challenges and research questions associated with
end-to-end ASR. I then outline the proposed approaches for integrating top-down linguistic cues
in end-to-end ASR.

1.2 Related Work

This section reviews related work focusing on the processing of linguistic information in end-to-
end ASR. It begins by exploring the roles of decoder networks within end-to-end ASR models,
including a discussion regarding the significance of an explicit language modeling mechanism.
Subsequently, different techniques for integrating separate language models are compared, em-
phasizing their use of linguistic knowledge independently of acoustic information.

1.2.1 Language Modeling Mechanism in End-to-End ASR

In end-to-end ASR, attention-based encoder-decoder (Chorowski et al., 2015; Chan et al., 2016;
Bahdanau et al., 2016) and transducer (Graves, 2012; Graves et al., 2013) models are the current
predominant choices for model structures, which primarily consist of encoder and decoder net-
works. In alignment with the principles of the classical noisy channel framework (Jelinek, 1998),
the encoder network functions similarly to an acoustic model, extracting fine-grained phonetic pat-
terns from the input acoustic signal. Concurrently, the decoder network is analogous to a language
model, capturing causal dependencies among the output linguistic symbols (e.g., graphemes or
subwords).

While the encoder and decoder networks each perform distinct roles in processing different
modalities, recent findings suggest that the language modeling function in the decoder network
may be less significant than the language model established in the traditional framework. The
state-of-the-art encoder architecture, Conformer (Gulati et al., 2020; Tüske et al., 2021), only
adopts a single long short-term memory (LSTM) layer for its decoder network. In certain sce-
narios, the capacity of the decoder network can be further reduced to an n-gram (Tripathi et al.,
2020; Ghodsi et al., 2020; Prabhavalkar et al., 2021; Botros et al., 2021) or even a randomly
initialized embedding layer (Shrivastava et al., 2021) without sacrificing recognition accuracy.
Moreover, a model based on connectionist temporal classification (CTC) (Graves et al., 2006)
has shown practical performance even without the decoder network, particularly with the en-
coder pre-training (Baevski et al., 2020; Zhang et al., 2022c) or intermediate regularization tech-
niques (Sanabria and Metze, 2018; Lee and Watanabe, 2021; Nozaki and Komatsu, 2021). In this
context, with the sophisticated network architectures and training methods, the encoder network
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is capable of taking responsibility for a substantial amount of learning text information (Variani
et al., 2020; Ghodsi et al., 2020), reducing the reliance on the decoder network for explicit lan-
guage modeling.

Consequently, the conventional end-to-end ASR models tend to lack a dedicated structure for
language modeling. Yet, the ability to handle linguistic sequences is crucial for advancing ASR
systems beyond merely generating accurate transcriptions, particularly when extending ASR to
tasks that demand an understanding of spoken language. Such comprehension cannot be achieved
by simply looking at the limited context of the output linguistic symbols. This dissertation in-
troduces effective methods for incorporating linguistic knowledge into end-to-end ASR models,
suggesting the importance of explicit language modeling in enhancing the overall performance
and functionality of ASR systems.

1.2.2 Integration Methods with Separate Language Model

In classical ASR systems based on the noisy channel model (Jelinek, 1998), a separate language
model is commonly employed during the inference stage, facilitating the generation of the most
probable hypothesis in terms of language. Correspondingly, numerous studies have demonstrated
that incorporating separate language models similarly improves the recognition accuracy in end-
to-end ASR systems. Training the end-to-end models generally requires a substantial amount of
paired speech and text data. Language models, in contrast, can be trained solely with text data,
which is easier to collect and scale than paired data, such as through web crawling. Accordingly,
a separate language model can be trained using additional external text data, thereby providing
end-to-end ASR models with comprehensive linguistic knowledge for further enhancing their per-
formance.

There is a line of previous studies that have explored the incorporation of separate language
models into end-to-end ASR. In this context, these language models exhibit diverse architectures,
including n-gram (Jelinek, 1998; Miao et al., 2015; Chorowski and Jaitly, 2017), recurrent neural
network (RNN) (Sundermeyer et al., 2012; Mikolov et al., 2010), and Transformer models (Irie
et al., 2019; Karita et al., 2019), which are selected depending on the situation, such as balancing
accuracy with speed. Shallow fusion (Hannun et al., 2014a; Gulcehre et al., 2015; Chorowski
and Jaitly, 2017; Kannan et al., 2018) has been the predominant integration approach for utilizing
a separate language model during inference. This involves scoring hypotheses through a simple
linear interpolation of output probabilities, which are computed by end-to-end ASR and language
models. Deep fusion (Gulcehre et al., 2015) concatenates the hidden states from a separate lan-
guage model with those from the decoder in a trained end-to-end ASR model. Both models are
fine-tuned jointly to compute the output probability from the combined states, allowing for the se-
lective use of information from the language model. Cold fusion (Sriram et al., 2018; Shan et al.,
2019) is another integration approach, similar to deep fusion, where the end-to-end ASR model is
trained from scratch with a frozen language model. This enables the use of the language model for
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capturing language-specific information. Consequently, the end-to-end ASR model can concen-
trate on learning relevant information conducive to speech-to-text mapping, while also alleviating
the language bias inherent in the limited training text data.

Similar to the focus of this dissertation, such fusion techniques with separate language models
can be viewed as a top-down process for end-to-end ASR models. However, these approaches
primarily concentrate on refining the model outputs through the use of linguistic knowledge. In
contrast, my research explores the more direct incorporation of linguistic information into the
speech-to-text process of end-to-end ASR. This enables a flexible and adaptable interplay between
acoustic and linguistic information, thereby enhancing the capacity of end-to-end ASR models to
handle complex tasks that require both speech cues (such as prosody and emotion) and linguistic
understanding. This dissertation presents methods for integrating linguistic information into end-
to-end ASR, which shows potential not only in improving the recognition accuracy but also in
expanding the applicability in more linguistically challenging tasks.

1.3 Goal

The primary goal of this dissertation is to advance end-to-end ASR through the incorporation of
top-down linguistic cues into the direct speech-to-text conversion process. Recognizing the role
of linguistic knowledge in human speech perception, my research explores end-to-end ASR ap-
proaches that emphasize a dynamic and adaptive interaction between speech and text information.

More concretely, the modeling of top-down linguistic cues is achieved through the introduc-
tion of a “latent” linguistic sequence, which represents text information that is recognizable from
speech at any given moment. Given an input speech sequence O and an output linguistic sequence
W , the posterior probability of ASR p(W |O) is factorized into two models by marginalizing over
all possible latent linguistic sequences as

p(W |O) =
X

W̃2F(W )

p(W, W̃ |O), (1.1)

=
X

W̃2F(W )

p(W |W̃ ,O)| {z }
Top-down
modeling

p(W̃ |O)| {z }
Bottom-up
modeling

, (1.2)

where a latent linguistic sequence W̃ is derived from the output sequence through a mapping func-
tion of F(·). In Eq. (1.2), the term p(W̃ |O) is interpreted as a distribution of text sequences that are
readily recognizable from the speech input alone, indicative of bottom-up processing, and the term
p(W |W̃ ,O) is interpreted as a distribution of text sequences that necessitate additional linguistic
context beyond the speech input for accurate recognition, representing top-down processing. In
this context, top-down linguistic cues are defined as linguistic information supplied based on the
latent linguistic sequence, and the objective of this dissertation is to investigate methodologies for
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effectively designing these cues.
To this end, top-down linguistic cues, derived from various perspectives of language, are de-

signed to enhance ASR performance, as listed in Figure 1-1. Firstly, the hierarchy in constructing
subwords provides systematic information, involving the combination of smaller linguistic ele-
ments to form complete words. Given the huge modality gap between speech and text, such hier-
archy in linguistic structures is expected to aid end-to-end ASR models in constructing word-level
outputs more effectively. The second focus is on masked language modeling, originally devel-
oped for language model pre-training, which captures semantic information through the token-
infilling task. This is expected to empower end-to-end ASR models to account for long-range,
bi-directional dependencies among the output tokens, thereby yielding contextualized linguistic
representations for improving the accuracy of token prediction. The final approach examines the
effectiveness of integrating a pre-trained language model into end-to-end ASR models, aiming to
utilize versatile linguistic knowledge for accurate text generation. More specifically, two distinct
categories of pre-trained language models are explored. The first encompasses masked language
models (e.g., BERT), which are adept at processing semantic and syntactic information. The sec-
ond involves the more recent instruction-tuned large language models (e.g., ChatGPT), which can
further consider contexts through prompting.

Developing explicit mechanisms for handling linguistic information in end-to-end ASR mod-
els, I expect that the proposed approaches improve transcription accuracy while alleviating the
heavy reliance on paired data inherent in the fully data-driven approach. The incorporation of
comprehensive linguistic knowledge can also expand the applicability of end-to-end ASR models
in other speech-related tasks that necessitate an understanding of language.

1.4 Dissertation Organization

This chapter provided an introduction to the objectives and significance of my research, as well
as a review of the relevant technical trends associated with the topic. The rest of this dissertation
begins with an overview of background knowledge about end-to-end ASR, followed by my work
on incorporating top-down linguistic cues for end-to-end ASR (Figure 1-1). An overview of each
chapter is as follows, along with references to the corresponding papers that were published as a
result of my doctoral research.

• Chapter 2 reviews the fundamentals of end-to-end ASR, beginning with a comparison to
traditional hybrid systems. Subsequently, I compare the principal modeling approaches em-
ployed in end-to-end ASR, with a particular focus on the distinctions in their formulations.
Lastly, I explore neural network architectures utilized in sequence processing.

• Chapter 3 presents methods to hierarchically increase the abstraction level in linguistic out-
puts, with the goal of efficiently learning representations for sparse word-level units. In
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end-to-end ASR, models are expected to implicitly learn representations conducive to word
prediction. However, this requires an extensive amount of training data to overcome the sub-
stantial abstraction gap between input acoustic signals and output linguistic tokens. To facil-
itate word-level representation learning, I first develop a hierarchical conditional model. The
proposed model is trained by auxiliary CTC losses applied to intermediate layers, where the
vocabulary size of each target subword sequence is gradually increased as the layers become
close to the word-level output. Each level of sequence prediction is explicitly conditioned
on the sequences predicted at previous levels, enabling the model to progressively construct
word-level representations by considering a hierarchy of linguistic structures. Then, I en-
hance the generation capability of the hierarchical model by employing a refinement mech-
anism at each stage of intermediate prediction. This mechanism repeatedly uses the shared
model parameters to refine its intermediate representations, which leads to an improvement
in the overall performance of the model. Finally, I design an efficient pseudo-labeling-
based algorithm for the proposed hierarchical model, which utilizes audio-only data within
a semi-supervised learning framework to further boost the model performance. The hierar-
chical modeling approach was published as a conference paper at ICASSP 2022 (Higuchi
et al., 2022a). The efficient semi-supervised learning algorithm using pseudo-labeling was
introduced in a conference paper at Interspeech 2021 (Higuchi et al., 2021c) and a jour-
nal paper at JSTSP 2022 (Higuchi et al., 2022c), which was expanded into the hierarchical
model in a publication at ICASSP 2023 (Higuchi et al., 2023c).

• Chapter 4 proposes to incorporate the concept of masked language modeling into end-to-
end ASR, aiming to augment the model’s ability to capture long-range linguistic contexts.
To this end, I first propose joint training and decoding strategies that synergize CTC with
masked language modeling. To mitigate the limitation of CTC in explicitly modeling de-
pendencies between output tokens, contextual information derived from masked language
modeling is used to enhance the performance of CTC-based ASR. The non-autoregressive
nature shared by both CTC and masked language modeling also enables fast inference
without compromising recognition accuracy. In addition to end-to-end ASR, the proposed
framework shows promise for application to end-to-end speech translation tasks, adeptly
handling semantic information vital for producing translated sequences. Then, I establish
that the adoption of the masked language model mechanism offers benefits to other end-to-
end ASR models. The proposed model architecture augments the transducer-based model
by injecting explicit contextual linguistic cues into the speech encoding process, which is
shown to push the limits of prior state-of-the-art results. Lastly, I demonstrate that masked
language modeling is advantageous in acquiring representations beneficial for streaming
end-to-end ASR models, allowing for the extraction of anticipated linguistic contexts from
constrained speech input. This chapter includes conference papers published at Interspeech
2020 (Higuchi et al., 2020) and ICASSP 2021 (Higuchi et al., 2021b), which proposed the
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joint CTC and masked language modeling framework. The application to the transducer-
based model was presented at ASRU 2023 (Higuchi et al., 2023d). The representation learn-
ing method for streaming end-to-end ASR was introduced in conference papers at APSIPA
2021 (Zhao et al., 2021) and EUSIPCO 2023 (Zhao et al., 2023).

• Chapter 5 focuses on the application of pre-trained masked language models (e.g., BERT)
in end-to-end ASR, utilizing their versatile linguistic knowledge to guide the generation
process of linguistic sequences. In the field of natural language processing, large-scale pre-
training using vast amounts of text data has greatly advanced language models’ ability to
learn diverse aspects of linguistic information. Such capabilities are expected to enhance
end-to-end ASR systems by empowering models to effectively interpret complex linguistic
elements, which is important for choosing words that are both grammatically correct and
contextually appropriate. To harness this potential, I first present a novel end-to-end ASR
formulation that explicitly conditions BERT’s contextualized word embeddings on the ASR
process, adapting BERT for the CTC-based training and inference framework. By seam-
lessly infusing BERT knowledge into audio information, the proposed model improves over
conventional approaches. Additionally, I demonstrate its potential application in end-to-
end spoken language understanding tasks, which typically require more abstract linguistic
processing. Subsequently, I introduce an extension of the proposed BERT-based model by
implementing an additional transducer-based decoder. The decoder is trained using a vo-
cabulary suitable for ASR training, aiming to bridge the gap between the text processed in
end-to-end ASR and BERT. This is shown crucial as these models utilize distinct vocabular-
ies and exhibit different text formats and styles, including variations in punctuation usage.
This chapter covers a conference paper published at EMNLP 2023 (Higuchi et al., 2022d),
which explored the use of BERT in end-to-end ASR. The further improvement using the
additional decoder was presented at ICASSP 2023 (Higuchi et al., 2023b).

• Chapter 6 further delves into the integration of pre-trained language models in end-to-end
ASR, with a specific emphasis on larger-sized and controllable language models. Modern
large language models (e.g., ChatGPT) are capable of performing a wide range of linguis-
tic tasks within zero-shot learning, guided by precise instructions or prompts to direct the
text generation process toward the desired task. I explore using this zero-shot capability
inherent in large language models to enhance end-to-end ASR. The proposed approach in-
volves guiding a large language model to perform zero-shot grammatical error correction,
thereby extracting linguistic information that contributes to improving ASR performance.
The linguistic knowledge drawn from the large language model is then used to trigger the
ASR decoding process, along with acoustic information, for achieving accurate sequence
generation. The findings are reported in a preprint (Higuchi et al., 2023a).

• Chapter 7 concludes this dissertation by summarizing the studies presented and highlighting
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their core contributions. Additionally, I discuss future directions that are informed by the
findings gained from my research.
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2
Overview of End-to-End Speech Recognition

ASR is the process of mapping sequences, converting acoustic speech signals into corresponding
written text. Unlike natural language processing (NLP) tasks (e.g., machine translation) that pri-
marily focus on mapping discrete linguistic symbols, ASR presents unique properties due to the
complex nature of continuous speech signals. The high variability inherent in speech poses chal-
lenges in developing accurate ASR systems, arising from various factors such as the diverse char-
acteristics of individual speakers, a wide range of accents and dialects, inconsistencies in recording
conditions, and varying levels of background noise. Meanwhile, speech contains paralinguistic in-
formation, such as fillers and laughter, which offer valuable insights into the speaker’s mental
state. This can contribute to a richer understanding of spoken language that cannot be achieved
solely through linguistic symbols. Therefore, it is crucial to develop mechanisms in ASR systems
that can adeptly handle the complexities of both speech and text, thereby enriching the process of
linguistic understanding with additional layers of meaning.

Let O = (ot 2 RF |t = 1, · · · , T ) be an input sequence of length T , and W = (wl 2
V|l = 1, · · · , L) be the corresponding output sequence of length L, where ot is an F -dimensional
acoustic feature (e.g., log-mel filterbanks) at frame t, wl is an output token (e.g., a character,
subword1, or word) at position l, and V is a vocabulary. In general, the output length is much
shorter than the input length (i.e., L⌧ T ). The objective of ASR is to identify the most probable

1This refers to a language unit that forms part of a larger word, typically obtained through algorithms like byte pair
encoding (Sennrich et al., 2016).
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Feature 
Extraction

Acoustic 
Model

Pronunciation 
Model

Language 
Model

WMO

p(O|M) p(M |W ) p(W )

/G/  /OW/  /T/  /UW/
“ go to ”
“ go too ”
“ go two ”

“ I go to bed ”

Figure 2-1: Overview of hybrid ASR system. The posterior probability distribution of ASR
p(W |O) is decomposed into three separate probabilistic models through the intermediary of a
phoneme representation. These models include an acoustic model, a pronunciation model, and a
language model.

output sequence Ŵ that matches the input sequence O, defined as

Ŵ = arg max
W2V⇤

p(W |O), (2.1)

where V⇤ represents a set of all possible token sequences. In modeling the posterior probability
distribution of p(W |O) in Eq. (2.1), there are two predominant approaches: a hybrid system
(Figure 2-1) and an end-to-end system (Figure 2-2). This chapter primarily focuses on reviewing
the end-to-end ASR system, beginning with a comparison to the hybrid system. It then discusses
the principal frameworks of end-to-end ASR and explains the neural network architectures used
in building end-to-end ASR models.

2.1 Hybrid ASR System

The traditional approach to ASR employs a hybrid system (Bourlard and Morgan, 1994), grounded
in the probabilistic noisy channel model (Jelinek, 1998). As illustrated in Figure 2-1, this system
breaks down the speech-to-text conversion process into several modules, including an acoustic
model, a pronunciation model, and a language model. Each module is responsible for a specialized
role, working in coordination to effectively achieve the complex task of converting speech into
text.

The hybrid system factorizes the posterior distribution of p(W |O) in Eq. (2.1) based on Bayes’
theorem as

Ŵ = arg max
W

p(O|W )p(W ). (2.2)

Eq. (2.2) is further factorized by introducing a phoneme sequence M = (mi 2 P|i = 1, · · · , J)
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and marginalizing p(O|W ) over all valid M for W as

Eq. (2.2) = arg max
W

X

M

p(O,M |W )p(W ), (2.3)

⇡ arg max
W

X

M

p(O|M,⇢⇢W )p(M |W )p(W ), (2.4)

⇡ arg max
W

⇢
max
M

p(O|M)p(M |W )p(W )

�
, (2.5)

where the three posterior probability distributions p(O|M), p(M |W ), and p(W ) are an acoustic
model, a pronunciation model, and a language model, respectively. Eq. (2.4) makes a conditional
independence assumption of W (indicated by a slash sign), which is a reasonable assumption for
reducing the dependence in p(O|M). Eq. (2.5) makes the Viterbi approximation for the summation
over the phoneme sequences. The resulting formulation presented in Eq. (2.5) assumes that the
input speech signal O is not directly dependent on the output token sequence W ; instead, it is
indirectly determined through the intermediary of the phoneme sequence M . As a result, an ASR
system is implemented as a straightforward combination of the three simple sub-models.

Acoustic Model The acoustic model p(O|M) represents the emission probability of the input
speech signal O, given a phoneme sequence M . p(O|M) can be further factorized by introducing
a sequence of hidden Markov model (HMM) states S = (st 2 {1, · · · , J}|t = 1, · · · , T ) (Gales
and Young, 2008) as

p(O|M) ⇡ max
S

p(O|S)p(S|M), (2.6)

which is derived similarly to Eq. (2.5) using Bayes’ theorem and the conditional independence
assumption. In Eq. (2.6), p(S|M) is typically computed as the product of HMM state transition
probabilities, which correspond to a phoneme sequence M . p(O|S) is further factorized by using
a probabilistic chain rule with a conditional independence assumption as

p(O|S) =
TY

t=1

p(ot|o1, · · · ,ot�1, S), (2.7)

⇡
TY

t=1

p(ot|st). (2.8)

Before the deep learning era, the framewise likelihood function p(ot|st) was commonly computed
using Gaussian mixture models (GMMs) (Juang, 1985), an approach widely known as the GMM-
HMM system. The current mainstream has shifted from the use of GMM to DNN, resulting in the
widespread adoption of the hybrid DNN-HMM system (Bourlard and Morgan, 1994) due to its
superior recognition performance (Mohamed et al., 2011; Dahl et al., 2011; Hinton et al., 2012).
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In the DNN-HMM system, p(ot|st) is computed using Bayes’ theorem as

p(ot|st) =
p(st|ot)p(ot)

p(st)
/ p(st|ot)

p(st)
, (2.9)

where the state posterior probability p(st|ot) is modeled using a DNN, and p(st) is the prior
probability that can be obtained through the unigram count of target labels. To train the DNN
model for state classification, a framewise alignment between O and S is required for assigning
a specific target state label to each frame, which is often provided by a pre-trained GMM-HMM
system. Alternatively, the acoustic model can be trained without this explicit alignment by utilizing
sequence-level optimization techniques, such as lattice-free maximum mutual information (LF-
MMI) training (Povey et al., 2016).
Pronunciation Model The pronunciation model p(M |W ) defines a mapping between a phoneme
sequence M and a corresponding token sequence W , primarily words. Unlike the other sub-
models in the hybrid ASR system, the development of the pronunciation model relies predomi-
nantly on human expertise. Specifically, the mapping between phonemes and words is typically
based on manually created pronunciation dictionaries, such as the CMU Dictionary (CMUdict,
1993) for American English and the Julius dictionary for Japanese (Lee et al., 2001). These pre-
defined dictionaries are often used to build a finite-state transducer for representing the conversion
from a phoneme sequence to a word.
Language Model The language model p(W ) represents the prior probability of a token sequence
W . p(W ) can be further factorized using a probabilistic chain rule as

p(W ) =
LY

l=1

p(wl|w1, · · · , wl�1). (2.10)

With a conditional independence assumption, or an (n�1)th-order Markov assumption, Eq. (2.10)
is approximated as an n-gram language model as

Eq. (2.10) ⇡
LY

l=1

p(wl|wl�n+1, · · · , wl�1), (2.11)

where the likelihood of each token is estimated based on the occurrence of its preceding n � 1

tokens in a training dataset. To prevent the model from assigning zero probabilities to unseen
n-grams, smoothing techniques (Jelinek, 1980; Chen and Goodman, 1999) are applied to ad-
just the probability estimates. Eq. (2.10) can also be modeled directly without the conditional
independence assumption by training an RNN to predict the next token given the previous to-
ken sequence (Mikolov et al., 2010; Sundermeyer et al., 2012). While this RNN-based language
model (RNN-LM) allows for handling long-term dependencies, it makes the decoding process of
an ASR system more complex and computationally intensive compared to the n-gram language
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Feature 
Extraction End-to-End Model

WO

“ I go to bed ”

p(W |O)

Figure 2-2: Overview of end-to-end ASR system. The posterior probability distribution of ASR
p(W |O) is directly modeled using a single deep neural network model.

model. Consequently, the RNN-LM is frequently used as a second-pass rescorer, evaluating the
hypotheses generated by the n-gram language model in the first pass.

The modularity of the hybrid ASR system features the separate and independent training of its
distinct sub-models. This design allows for the flexible customization of each individual model,
making it especially advantageous for deploying ASR systems in production environments (Saon
et al., 2017; Xiong et al., 2018). For example, the pronunciation model can be customized to ac-
commodate new vocabularies by expanding its pronunciation dictionary with additional phoneme-
word pairs. The language model can be trained using large amounts of text-only data, thereby
enhancing the system’s generalization capability or adapting it to a specific domain of interest.
However, the independent optimization of the sub-models, each with different objectives, can re-
sult in incoherent optimization when considering the system as a whole. The heavy reliance on the
conditional independence assumptions within each model (as described in the above formulations)
may also be insufficient for accurately representing the complexities inherent in real-world data.

2.2 End-to-End ASR System

The end-to-end ASR system aims to achieve a direct mapping from speech to text using a single
DNN model, as illustrated in Figure 2-2. In contrast to the hybrid system shown in Figure 2-1, the
end-to-end approach does not require the independent training and integration of the sub-models.
This greatly simplifies both the training and inference processes of ASR, reducing the complexity
and costs associated with system development. Furthermore, the direct optimization of ASR can
lead to superior performance compared to the hybrid systems (Chiu et al., 2018; Karita et al.,
2019), particularly when an ample amount of training data is available.

This section reviews three principal approaches for directly modeling the posterior distribution
of ASR p(W |O) as defined in Eq. (2.1): CTC (Graves et al., 2006), transducer (Graves, 2012),
and attention-based encoder-decoder (AED) (Chorowski et al., 2015; Chan et al., 2016). Fig-
ure 2-3 presents a comparison of end-to-end ASR models constructed by these approaches. The
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Figure 2-3: Comparison of major end-to-end ASR models. All the models share a similar encoder
structure, but each has a unique decoder structure for estimating the output probability.

subsequent sections provide a detailed explanation of each model, with a specific focus on the
differences in their probabilistic formulations.

2.2.1 Connectionist Temporal Classification (CTC)

CTC (Graves et al., 2006) formulates end-to-end ASR by evaluating all possible alignments be-
tween an input sequence O and the corresponding output sequence W . To align the sequences
at the frame level, W is augmented by permitting repeated occurrences of the same token and
inserting a special blank symbol <b> for representing “no output token” (e.g., silence). Let
A = (at 2 V [ {<b>}|t = 1, · · · , T ) be an augmented sequence, which I refer to as an alignment
sequence that is valid for aligning O and W . An example alignment sequence is shown in Figure 2-
4, where the length of the input sequence T is 10 and the output token sequence W is (S,E,E).
In this case, a feasible alignment sequence can be A = (<b>,S,<b>,<b>,E,E,E,<b>,E,E),
which corresponds to W by removing repeated tokens and blank symbols.

With the introduction of the frame-level alignment sequence, CTC factorizes the posterior
distribution of p(W |O) from Eq. (2.1) as

p(W |O) ⇡
X

A2Bctc�1(W )

p(W |A,��O)p(A|O) (2.12)

⇡
X

A2Bctc�1(W )

p(A|O), (2.13)

16



CHAPTER 2. OVERVIEW OF END-TO-END SPEECH RECOGNITION
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Figure 2-4: Example alignment sequence for CTC model. The arrows represent all possible
alignment paths between the input encoder (speech) sequence and the target token sequence.

where Bctc : A 7! W is a collapsing function that removes repeated tokens and blank symbols
in A, and Bctc�1(W ) represents a set of all possible alignments that are compatible with W .
Similarly to Eq. (2.4), CTC assumes a conditional independence of O in Eq. (2.12), which is a
reasonable assumption to simplify the dependency of p(W |A). Furthermore, to obtain Eq. (2.13),
the deterministic transformation from A to W is assumed (i.e., p(W |A) = 1), as W can be
determined uniquely by the collapsing function. The posterior distribution p(A|O) in Eq. (2.13)
is further factorized by a probabilistic chain rule as

p(A|O) =
TY

t=1

p(at|a1, · · · , at�1, O), (2.14)

⇡
TY

t=1

p(at|O). (2.15)

In Eq. (2.15), CTC makes a conditional independence assumption between output tokens, where
p(A|O) is approximated as the product of token emission probabilities at each time frame. This
resembles the HMM-based acoustic model in Eq. (2.8) in that both formulations assume condi-
tional independence between observations at different time steps. To summarize, the posterior
distribution modeled by CTC is defined by substituting Eq. (2.15) to Eq. (2.13) as

pctc(W |O) ,
X

A2Bctc�1(W )

TY

t=1

p(at|O). (2.16)
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As illustrated in Figure 2-3(a), the token emission probability p(at|O) in Eq. (2.16) is com-
puted by building an encoder network that takes a speech sequence O as an input and produces a
Denc-dimensional hidden vector ht at each time frame:

ht = Encodert(O) 2 RDenc
, (2.17)

p(at|O) = Softmax
�
LinearDenc!|V|+1(ht)

�
2 [0, 1]|V|+1, (2.18)

where Softmax(·) is a softmax activation function, LinearDenc!|V|+1(·) is a linear layer for con-
verting a Denc-dimensional vector into a (|V|+1)-dimensional vector2, and Encodert(·) represents
an output of the encoder network at frame t.

Inference

Substituting Eq. (2.16) into Eq. (2.1), CTC estimates the most probable token sequence Ŵ us-
ing the best path decoding algorithm (Graves et al., 2006). In this algorithm, the most probable
alignment Â is first obtained by concatenating the most active tokens at each time frame in H:

Â =

✓
ât = arg max

at
p(at|O)

���� t = 1, · · · , T
◆
. (2.19)

Ŵ is then derived by applying the collapsing function to Â as Ŵ = Bctc(Â). Although this
greedy algorithm does not explicitly guarantee the identification of the most probable sequence,
it has been empirically demonstrated to deliver satisfactory results, particularly when the model
is trained using the recent advanced modeling techniques (Higuchi et al., 2021a). An alternative,
more sophisticated approach is based on the prefix search decoding algorithm (Graves et al., 2006).
This algorithm computes the probabilities of prefixes (i.e., a partial sequence in each hypothesis)
during beam search decoding, where the summation over all possible alignments of each prefix
is computed efficiently by a modified forward-backward algorithm. While prefix search decod-
ing enables the exploration of multiple alignment paths, it generally yields results only slightly
better than best path decoding. This is attributed to the “peaky” output distributions inherent
in CTC-based models, meaning that these models tend to exhibit overconfidence in their align-
ment predictions. Therefore, prefix search decoding is commonly used in situations where the
output probabilities of a CTC-based model are combined with those from a separate language
model (Hannun et al., 2014b; Graves and Jaitly, 2014) or other end-to-end ASR models (Watan-
abe et al., 2017; Jeon and Kim, 2021).

2|V| + 1 indicates the addition of the blank symbol <b> to V .
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Training

The CTC-based model is optimized to minimize the negative log-likelihood of Eq. (2.16) as

Lctc , � log pctc(W |O). (2.20)

During the computation of pctc(W |O), the summation over all possible alignments is efficiently
computed using dynamic programming (Viterbi or forward-backward algorithm).

2.2.2 Transducer

CTC estimates the distribution over alignment sequences solely based on the speech input (i.e.,
Eq. (2.15)), which can lead to an inaccurate capture of the conditional dependence of output to-
kens, often referred to as the multimodality problem (Gu et al., 2018). The transducer (Graves,
2012) overcomes this problem by making each token prediction explicitly conditioned on a previ-
ous sequence of output tokens, i.e., (w1, · · · , wl�1). Similar to A defined by CTC, let Z = (zu 2
V [ {<b>}|u = 1, · · · , T + L) be an alignment sequence used in the transducer-based model.
Here, the function of the blank symbol is slightly different from its role in CTC, which primarily
serves as a placeholder for permitting the model to emit nothing at a particular time frame. In
the transducer, the blank symbol is instead interpreted as a trigger for the model to proceed to
the next frame, accumulating information over multiple frames until the model is ready to emit
a non-blank symbol. Figure 2-4 shows an example alignment sequence of the transducer, repre-
senting Z = (<b>,<b>,S,<b>,<b>,<b>,<b>,E,E,<b>,<b>,<b>), where the length of the
input sequence T is 9 and the output token sequence W is (S,E,E). Notice that the length of each
transducer alignment is T + L, as the model does not consume acoustic frames when emitting
non-blank tokens (or during vertical transitions). In the alignment sequence of CTC in Figure 2-4,
the blank symbol is used to signify the separation of identical consecutive tokens, e.g., E,<b>,E.
The transducer model, in contrast, does not necessitate such specific treatment.

Similarly to the derivation of Eq. (2.13), the transducer marginalizes the posterior distribution
of p(W |O) over all possible alignment sequences as

p(W |O) ⇡
X

Z2Btra�1(W )

p(W |Z,��O)p(Z|O) (2.21)

⇡
X

Z2Btra�1(W )

p(Z|O), (2.22)

where Btra : Z 7! W is a collapsing function for the transducer that removes all blank symbols
from Z, and Btra�1(W ) is a set of all valid alignments for W . The posterior distribution p(Z|O)
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Figure 2-5: Example alignment sequence for transducer model. The arrows represent all possible
alignment paths between the input encoder (speech) sequence and the target token sequence.

is further factorized without the conditional independence assumption (cf. Eq. (2.15)) as

p(Z|O) =
T+LY

u=1

p(zu|z1, · · · , zu�1, O), (2.23)

⇡
T+LY

u=1

p(zu| w0, · · · , wlu�1| {z }
=Btra(z1,··· ,zu�1)

, O), (2.24)

where w0 = <sos> is a special start-of-sentence symbol for indicating the beginning of a to-
ken sequence, and lu is the number of non-blank tokens emitted up to an alignment index of u.
To obtain Eq. (2.24), the transducer approximates (z1, · · · , zu�1) ⇡ (w0, · · · , wlu�1), which is
reasonable because W can be determined uniquely from Z using the collapsing function. As a
result, the posterior distribution modeled by the transducer is defined by substituting Eq. (2.24) to
Eq. (2.22) as

ptra(W |O) ,
X

Z2Btra�1(W )

T+LY

u=1

p(zu|w0, · · · , wlu�1, O). (2.25)

The model structure for the transducer is illustrated in Figure 2-3(b), which consists of an
encoder network, a prediction network, and a joint network. Using these networks, the token

20



CHAPTER 2. OVERVIEW OF END-TO-END SPEECH RECOGNITION

emission probability p(zu|w0, · · · , wlu�1, O) in Eq. (2.25) is computed as

ht = Encodert(O) 2 RDenc
, (2.26)

slu = Prediction(w0, · · · , wlu�1) 2 RDpred
, (2.27)

rt,lu = Joint(ht, slu) 2 RDjoint
, (2.28)

p(zu|w0, · · · , wlu�1, O) = Softmax
⇣

LinearDjoint!|V|+1(rt,lu)
⌘
2 [0, 1]|V|+1. (2.29)

In Eq. (2.26), the encoder network Encodert(·) takes the speech sequence O as an input and outputs
a Denc-dimensional vector ht at each frame. In Eq. (2.27), the prediction network Prediction(·)
embeds the previous output tokens (w0, · · · , wlu�1) to a Dpred-dimensional hidden vector slu . In
Eq. (2.28), the joint network Joint(·) transforms each hidden vector from the encoder and predic-
tion networks into a Djoint-dimensional hidden vector, which are then added together and passed
through a hyperbolic tangent activation function. In Eq. (2.29), LinearDjoint!|V|+1(·) is a linear
layer for converting a Djoint-dimensional vector into a (|V| + 1)-dimensional vector. The intro-
duction of the prediction network is the key difference from CTC (Figure 2-3(a) vs. 2-3(b)), which
enables the explicit capture of causal dependencies in the output tokens.

Inference

Substituting Eq. (2.25) into Eq. (2.1), the transducer employs the beam search algorithm to iden-
tify the most probable token sequence Ŵ (Graves, 2012). The algorithm operates by exploring
and evaluating multiple hypotheses, keeping the top B hypotheses based on probability scores at
each prediction step. For the transducer model, the score of each hypothesis is calculated using
Eq. (2.25), taking into account the sum of all possible alignments that are compatible with the cur-
rent hypothesis. While prefix search decoding of CTC is also a viable choice for the transducer,
beam search decoding has been shown to yield both faster and more effective results (Graves et al.,
2013). All the experiments conducted in this dissertation follow the algorithm implementation as
detailed in Boyer et al. (2021).

Training

The transducer model is optimized by minimizing the negative log-likelihood of Eq. (2.25) as

Ltra , � log ptra(W |O). (2.30)

Similarly to the calculation of the CTC objective in Eq. (2.20), the summation over alignments
is efficiently computed using dynamic programming. For the previous tokens (w0, · · · , wlu�1)

inputted into the prediction network in Eq. (2.27), the ground truth tokens are used in a teacher-
forcing manner (Williams and Zipser, 1989). Compared with the other end-to-end ASR models,
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Figure 2-6: Example soft alignment learned by AED model. The size and color of each circle
represent the magnitude of the attention weights computed between the input acoustic frames and
each output token.

the training process of the transducer model tends to consume significantly large memory, requir-
ing the total memory complexity of O(T · L · |V|) for computing the loss. This can be mitigated
to some extent through the optimization of the training algorithm (Bagby et al., 2018; Li et al.,
2019b) or the adoption of advanced training techniques (Saon et al., 2021; Panchapagesan et al.,
2021; Lee et al., 2022).

2.2.3 Attention-Based Encoder-Decoder (AED)

AED is an alternative approach to addressing end-to-end ASR (Chorowski et al., 2015; Chan et al.,
2016; Bahdanau et al., 2016), functioning without the need for the explicit alignment modeling
required by the CTC and transducer models. This is achieved by employing the attention mech-
anism (Bahdanau et al., 2014), which implicitly learns soft alignments between the input speech
sequence and the output token sequence. An example alignment obtained by AED is visualized in
Figure 2-6, where each circle represents the strength of the relationship, or the attention weight,
between the input acoustic frames and each output token. Contrasting with the deterministic as-
signment of each acoustic frame to a specific token in the CTC and transducer alignments (as
illustrated in Figures 2-4 and 2-5), AED allows for the flexibility of assigning a single acoustic
frame to multiple tokens.

Unlike the formulations of CTC and the transducer, AED formulates end-to-end ASR with-
out relying on any conditional independence assumptions, which enables more precise sequence
modeling and has been shown to achieve higher recognition accuracy compared to the other end-
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to-end models (Prabhavalkar et al., 2017; Chiu et al., 2018). The posterior distribution p(W |O)

for Eq. (2.1) is estimated directly, using a probabilistic chain rule as

paed(W |O) ,
L+1Y

l=1

p(wl|w0, · · · , wl�1, O), (2.31)

where w0 = <sos> is a start-of-sentence symbol. AED also predicts an additional end-of-
sentence symbol wL+1 = <eos> for identifying the completion of the output token sequence.

Figure 2-3(c) depicts the model structure for AED, which consists of an encoder network, a de-
coder network, and an attention network. The token emission probability p(wl|w0, · · · , wl�1, O)

in Eq. (2.31) is computed using these networks as

H = (h1, · · · ,hT ) = Encoder(O) 2 RT⇥Denc
, (2.32)

ql = AttentionDecoder(w0, · · · , wl�1, H) 2 RDdec
, (2.33)

p(wl|w0, · · · , wl�1, O) = Softmax
⇣

LinearDdec!|V|+1(ql)
⌘
2 [0, 1]|V|+1. (2.34)

In Eq. (2.32), the encoder network Encoder(·) takes the speech sequence O as an input and out-
puts a sequence of Denc-dimensional hidden vectors H . In Eq. (2.33), AttentionDecoder(·) indi-
cates the combined attention and decoder networks, producing a Ddec-dimensional hidden vector
ql given the previous output tokens (w0, · · · , wl�1) and the encoder output H . In Eq. (2.34),
LinearDdec!|V|+1(·) represents a linear layer for converting a Ddec-dimensional vector into a
(|V| + 1)-dimensional vector3.

AttentionDecoder(·) in Eq. (2.33) computes the hidden vector ql as

cl = Attention(ql�1,al�1, H) 2 RDenc
, (2.35)

ql = Decoder(cl,ql�1, wl�1) 2 RDdec
, (2.36)

In Eq. (2.35), Attention(·) is the attention network that produces a Denc-dimensional context vec-
tor cl, using an attention mechanism to extract contextual acoustic representations useful for pre-
dicting the l-th token. In Eq. (2.36), Decoder(·) outputs a Ddec-dimensional hidden vector ql,
using a recurrent network (e.g., LSTM) conditioned on a context vector cl, a previous hidden
state ql�1, and a previously predicted token wl�1. Using the location-aware attention mecha-
nism (Chorowski et al., 2015) as an example, the attention network in Eq. (2.35) computes the

3|V| + 1 indicates the addition of the end-of-sentence symbol <eos> to V .
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context vector cl as

[f l,1, · · · , f l,T ] = K ⇤ al�1, (2.37)

el,t = v>tanh(Wqql�1 + Whht + Wff l,t + b), (2.38)

al = Softmax
⇣
[el,1, · · · , el,T ]>

⌘
, (2.39)

cl =
TX

t=1

al,tht. (2.40)

In Eq. (2.37), ⇤ represents a one-dimensional convolution operation with a learnable kernel ma-
trix K, which convolves the previous attention weights al�1 along the frame axis to produce the
output feature f l,t at each frame t. This convolution mechanism enables the attention network to
focus more on local frames, considering that the alignment between input and output sequences
is monotonic in ASR. Eq. (2.38) calculates the attention score el,t for quantifying the relevance
between the previous decoder state ql�1 and the encoder output ht at frame t, where v, Wq, Wh,
Wf , and b are learnable parameters. Eq. (2.39) computes the attention weights al at each output
step l, normalizing the scores over the entire frames using a softmax activation function. Finally,
in Eq. (2.40), the context vector cl is obtained at each output step l by calculating the weighted
sum of the encoder outputs based on the attention weights.

AttentionDecoder(·) in Eq. (2.33) can alternatively be implemented using the Transformer de-
coder (Vaswani et al., 2017), which incorporates the self-attention mechanism within the decoder
architecture (see Section 2.3.2).

Inference

Substituting Eq. (2.31) into Eq. (2.1), AED generally utilizes the beam search algorithm to find the
most probable token sequence Ŵ , keeping a subset of partial hypotheses with the top B probability
scores (computed by Eq. (2.31)) at each prediction step. However, with the standard beam search,
the AED model often experiences deletion and insertion errors due to the lack of explicit alignment
information (Chorowski and Jaitly, 2017), allowing the attention mechanism to flexibly refer to
any segment of the encoder output for token predictions (i.e., Eq. (2.35)). This issue can be
mitigated by incorporating heuristics into the decoding process. One straightforward solution is to
limit the length of a hypothesis by setting minimum and maximum length parameters, which are
manually determined according to the length of an input sequence (i.e., |O|). The other solution is
to add extra terms for adjusting the calculation of the probability score. The score of a hypothesis
Ŵ is computed using additional heuristic terms as

log p(Ŵ |O) = log paed(Ŵ |O) + �|Ŵ | + ⌘
TX

t=1

" 
LX

l=1

al,t

!
> ⌧

#
, (2.41)
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where � and ⌘ are tunable parameters for the corresponding terms. In Eq. (2.41), the second term
serves as the length penalty to prevent the generation of overly long hypotheses (Chorowski et al.,
2015). The third term is the coverage term for penalizing the excessive repetition of references to
the same frames (Tu et al., 2016; Chorowski and Jaitly, 2017).

Training

The AED model is optimized by minimizing the negative log-likelihood of Eq. (2.31) as

Laed , � log paed(W |O). (2.42)

For the previous tokens (w0, · · · , wlu�1) fed into the decoder network in Eq. (2.33), the ground
truth tokens are used in a teacher-forcing manner (Williams and Zipser, 1989). To mitigate the mis-
match between training and inference conditions caused by teacher-forcing training, techniques
such as scheduled sampling (Ranzato et al., 2016; Bengio et al., 2015) or minimum word error
rate training (Prabhavalkar et al., 2018) are commonly used.

Joint CTC/Attention-based Model

The AED model can be enhanced by integrating the CTC framework (Kim et al., 2017; Watanabe
et al., 2017) in a multi-task learning manner, applying an auxiliary CTC loss to the output of a
shared encoder network. The computation of the CTC loss, with its left-to-right constraint in the
forward-backward algorithm, aids the attention mechanism in effectively extracting a monotonic
alignment between the input and output sequences. The objective function of the joint CTC and
AED model is defined as a linear interpolation of Lctc from Eq. (2.20) and Laed from Eq. (2.42)
as

Lctc-aed = �ctc-aedLctc + (1� �ctc-aed)Laed, (2.43)

where �ctc-aed (0  �ctc-aed  1) is a tunable weight to control the balance between the two losses.
Similarly to the pure AED model, the joint model uses the beam search algorithm during

inference, but additionally considers the score derived from CTC (Hori et al., 2017a). The score
for a hypothesis Ŵ is defined as a log-linear interpolation of the posterior probabilities derived
from both CTC and AED:

log p(Ŵ |O) = ⇠ log pctc(Ŵ |O) + (1� ⇠) log paed(Ŵ |O), (2.44)

where ⇠ (0  ⇠  1) is a tunable weight to define the importance of each score. In order to
synchronize the scores at the token level, the CTC score is calculated based on the prefix proba-
bility (Graves et al., 2006), which involves calculating the total probability of all token sequences
that share the same prefix. Eq. (2.44) can also incorporate the penalty terms used in the pure
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AED decoding process (as described in Eq. (2.41)). However, as the CTC probability serves as an
effective regularization for achieving a robust alignment, these penalty terms are not commonly
considered for the joint CTC and AED model.

2.3 Network Architectures

This section reviews network architectures utilized for implementing key network components
(e.g., encoder network) within the end-to-end ASR models explained in the previous section.

2.3.1 Long Short-Term Memory (LSTM)

LSTM (Hochreiter and Schmidhuber, 1997) networks are an advanced form of RNNs that is de-
signed to effectively process sequential data of variable lengths. The traditional RNNs often strug-
gle with handling long sequences due to the vanishing or exploding gradient problem, where train-
ing becomes ineffective as gradients diminish or grow excessively. LSTMs address this issue by
introducing a gating mechanism, which maintains the consistency of gradient flow from previous
steps. This enhancement has improved the network’s ability to capture longer-term dependencies,
which is particularly crucial in language and speech-processing tasks. In the context of end-to-
end ASR, the majority of the initial models have primarily utilized the LSTM-based networks to
construct their network components (Graves and Jaitly, 2014; Chorowski et al., 2015; Chan et al.,
2016). An RNN-LM (for modeling Eq. (2.10)) is typically trained using LSTMs, which is also
used in end-to-end ASR to incorporate linguistic information into the decoding process (Hwang
and Sung, 2017; Hori et al., 2017b; Kannan et al., 2018).

In an N lstm-layer LSTM model, the j-th layer generates a Dlstm-dimensional hidden vector
s(j)
l 2 RDlstm at state index l as

s(j)
l = LSTM(j)(s(j�1)

l , s(j)
l�1), (2.45)

where s(j�1)
l is the output from the preceding layer, and s(j)

l�1 represents the previous hidden state.
In the case of language modeling, such as in the construction of RNN-LM or the prediction net-
work of the transducer, the input of the initial layer s(0)

l is obtained by embedding each token wl

in the output sequence W into a Dlstm-dimensional vector.

2.3.2 Transformer

Transformer (Vaswani et al., 2017) follows the AED structure, wherein both the encoder and
decoder networks are built based on the multi-head self-attention mechanism. Unlike RNNs,
which rely on recurrent connections to model contextual dependencies among inputs, Transformer
computes attention matrices to capture these dependencies. This exclusive reliance on the attention
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mechanism has allowed Transformer-based models to outperform RNN-based models across a
range of tasks, including end-to-end ASR (Dong et al., 2018; Karita et al., 2019; Zeyer et al.,
2019). Additionally, Transformer permits a more parallel and efficient sequence processing, which
is particularly advantageous for training on large-scale datasets (Devlin et al., 2019; Radford et al.,
2018; Baevski et al., 2020; Hsu et al., 2021).

Scaled dot-product attention is the fundamental component of the Transformer architecture,
which is defined as

Attention(Q,K,V) = Softmax
✓
QK>

p
Datt

◆
V, (2.46)

where Q, K, and V represent query, key, and value matrices, respectively, and Datt denotes the
dimension of the query and key matrices. In Eq. (2.46), the softmax function operates on each
row of the attention score matrix QK>, transforming the scores into a set of weights for the corre-
sponding values. These weights are then used to compute a weighted sum of the values, yielding
an output context vector for each query. Scaled dot-product attention modifies the standard dot-
product computation by scaling down the attention score matrix with a factor of

p
Datt. This

scaling factor plays a crucial role in preventing the occurrence of small gradients, which can arise
when large values are fed into the softmax operation.

To efficiently capture features from various representation subspaces at different positions,
Transformer employs the multi-head attention mechanism. Equipped with Nhead parallel heads,
multi-head attention simultaneously applies the scaled dot-product attention mechanism to inputs
that are projected into different subspaces. Given sequences of queries Xq 2 RT q

⇥Dmodel , keys
Xk 2 RT k

⇥Dmodel , and values Xv 2 RT k
⇥Dmodel , the output of the n-th attention head is computed

using Eq. (2.46) as
Headn = Attention(XqWq

n, X
kWk

n, X
vWv

n), (2.47)

where Wq
n 2 RDmodel

⇥Datt , Wk
n 2 RDmodel

⇥Datt , and Wv
n 2 RDmodel

⇥Datt are learnable weight
matrices for the projections. The multi-head attention (MHA) output is then obtained by concate-
nating and transforming the outputs from each attention head as

MHA(Xq, Xk, Xv) = Concat(Head1, · · · ,HeadNhead)Wo, (2.48)

where Wo 2 RNheadDatt
⇥Dmodel is a learnable weight matrix. Throughout the experiments con-

ducted in this dissertation, I consistently configured Datt to Dmodel/Nhead.

Figure 2-7 illustrates the overall architecture of Transformer, which is built upon the multi-
head attention mechanism as defined in Eq. (2.48). The following provides detailed structures of
the encoder and decoder networks within the Transformer model.
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Figure 2-7: Block diagram of Transformer architecture, mainly consisting of multi-head atten-
tion (MHA) and feed-forward network (FFN) modules. Different from the original architec-
ture (Vaswani et al., 2017), layer normalization (LayerNorm) is applied before each module. The
multi-head attention module receives three inputs: key, value, and query from left to right.

Transformer Encoder

The Transformer encoder maps an input audio sequence O 2 RT⇥F into a discriminative latent
space as

H = TransformerEncoder(O) 2 RT 0
⇥Dmodel

. (2.49)

To obtain the hidden sequence H in Eq. (2.49), the encoder first applies two-dimensional
convolution (Conv2D) layers to the input sequence (Hori et al., 2017b), which down-samples the
sequence length to T 0 and transforms the feature dimensions to Dmodel. Positional encoding is
then added to each frame of the down-sampled sequence, resulting in an initial hidden sequence,

H(0) = Conv2D(O) + PosEmb(T 0) 2 RT 0
⇥Dmodel

, (2.50)
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where the positional embeddings PosEmb(T 0) 2 RT 0
⇥Dmodel assign a unique representation to

each frame within the down-sampled input sequence, thereby enabling the model to recognize
and differentiate the specific location of each position. Transformer adopts the absolute positional
encoding method, which computes each embedding based on sinusoidal functions as

PosEmbt,d(T 0) =

8
<

:
sin
⇣

t
10000d/Dmodel

⌘
if d is even,

cos
⇣

t
10000d/Dmodel

⌘
if d is odd,

(2.51)

where t is the position in the T 0-length sequence and d is the dimension of the Dmodel-dimensional
vector. Subsequently, the initial sequence H(0) is fed into a stack of N enc identical encoder blocks.
The i-th encoder block takes input as a previous sequence H(i�1) 2 RT 0

⇥Dmodel and outputs a
current sequence H(i) 2 RT 0

⇥Dmodel as

H̄(i) = H(i�1) + MHSA(i)(LayerNorm(H(i�1))), (2.52)

H(i) = H̄(i) + FFN(i)(LayerNorm(H̄(i))). (2.53)

In Eq. (2.52), MHSA(·) indicates a multi-head self-attention module, which computes Eq. (2.48)
using the same input source, i.e., Xq = Xk = Xv. In Eq. (2.53), FFN(·) indicates a point-wise
feed-forward module, which consists of two linear layers with an inner dimensionality of D↵

and a rectified linear unit (ReLU) activation applied between the layers. Slightly different from
the original architecture presented in Vaswani et al. (2017), layer normalization (LayerNorm) (Ba
et al., 2016) is applied before each module to stabilize the model training process (Wang et al.,
2019; Baevski and Auli, 2019; Brown et al., 2020). Finally, the output of the Transformer encoder
H is obtained by applying layer normalization to the output of the final block as

H = LayerNorm(H(N enc)). (2.54)

Transformer Decoder

The Transformer decoder embeds an output token sequence W 2 VL, utilizing the acoustic con-
ditioning provided by the encoder output H as

Q = TransformerDecoder(W,H) 2 RL⇥Dmodel
. (2.55)

In the embedding process of Eq. (2.55), the output sequence is initially transformed into vec-
tors with a dimensionality of Dmodel as

Q(0) = Embed(W ) + PosEmb(L) 2 RL⇥Dmodel
, (2.56)

where Embed(·) maps one-hot representations of output tokens into Dmodel-dimensional vectors,
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Figure 2-8: Masking schemes for self-attention.

and PosEmb(L) 2 RL⇥Dmodel represents the absolute positional embeddings computed in the same
manner as in Eq. (2.51). Then, the initial sequence Q(0) is inputted into a stack of Ndec identical
decoder blocks. The j-th decoder block takes input as a previous sequence Q(j�1) 2 RL⇥Dmodel

and outputs a current sequence Q(j) 2 RL⇥Dmodel as

Q̄(j) = Q(j�1) + MHSA(j)(LayerNorm(Q(j�1))), (2.57)
¯̄Q(j) = Q̄(j) + MHA(j)(LayerNorm(Q̄(j)), H,H), (2.58)

Q(j) = ¯̄Q(j) + FFN(j)(LayerNorm( ¯̄Q(j))). (2.59)

The multi-head attention mechanism in Eq. (2.58) takes queries from the decoder’s hidden states,
along with keys and values from the output of the encoder. This functions as the source-target
attention (or cross-attention) mechanism, which facilitates the integration of encoder and decoder
information. Instead of employing a separate neural network to calculate attention weights (i.e.,
Eq. (2.35)), the Transformer decoder derives these weights by performing a scaled dot product on
its intermediate representations. Finally, the output of the Transformer decoder Q is obtained by
applying layer normalization to the output of the final block as

Q = LayerNorm(Q(Ndec)). (2.60)

The Transformer decoder often adopts different masking strategies for its self-attention pro-
cess to control how each token in a sequence attends to other tokens. Figure 2-8 depicts mask
matrices that are used to determine whether to consider or ignore attention scores computed in
Eq. (2.46). In causal attention masking (Figure 2-8(a)), each token is restricted to attending only
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to itself and preceding tokens. This approach is intended for learning the generative process of
the output sequence (i.e., autoregressive language modeling), particularly applicable for the pre-
diction network of the transducer (in Eq. (2.27)) or the decoder network of AED (in Eq. (2.33)).
Full-context attention masking (Figure 2-8(b)) enables the attention mechanism to attend to every
other token in a sequence, irrespective of their positions. This is especially helpful for capturing
bidirectional information from both past and future contexts, facilitating the decoder’s ability to
process and interpret the complex interplay of tokens throughout the entire sentence (Devlin et al.,
2019; Ghazvininejad et al., 2019).

2.3.3 Conformer

Conformer (Gulati et al., 2020) is a variant of the Transformer encoder architecture, which mod-
ifies each encoder block by incorporating a convolution layer. The self-attention mechanism is
adept at modeling long-range global contexts. Meanwhile, the additional convolution layer en-
hances the capability of capturing local patterns within a sequence, which is particularly vital for
feature extraction from speech signals. This synergistic effect has demonstrated promising results
in various speech-related tasks (Guo et al., 2021).

Figure 2-9 presents a detailed view of the Conformer encoder architecture. In contrast to the
Transformer encoder depicted in Figure 2-7, each encoder block of Conformer is enhanced with
additional modules. A convolution module is introduced immediately after the multi-head self-
attention module. Moreover, the self-attention and convolution modules are sandwiched between
two feed-forward modules with half-step residual connections, a design inspired by the structure
of Macaron-Net (Lu et al., 2020). As shown in the right side of Figure 2-9, the convolution mod-
ule initiates with a gating mechanism (Dauphin et al., 2017), which is composed of a pointwise
convolution layer with a gated linear unit (GLU). This is then followed by a one-dimensional (1D)
depthwise convolution layer, batch normalization (BatchNorm), a swish activation function (Ra-
machandran et al., 2017), and another pointwise convolution layer. Under certain conditions, batch
normalization within the convolution module can negatively impact the generalization ability of
a Conformer-based model (Li et al., 2021; Liu et al., 2021; Kim and Lee, 2022; Higuchi et al.,
2022b). This is a common issue in batch normalization (Ioffe, 2017), particularly when faced with
constraints such as limited training data, high variability in data distributions, or significantly im-
balanced datasets. In such cases, layer normalization or group normalization (Wu and He, 2018)
can be utilized as stable alternatives in the convolution module.

The Conformer encoder transforms an input audio sequence O 2 RT⇥F into a sequence of
higher-level representations as

H = ConformerEncoder(O) 2 RT 0
⇥Dmodel

. (2.61)

Similar to the computational processes of the Transformer encoder block in Eqs. (2.52) and (2.53),
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Figure 2-9: Block diagram of Conformer architecture. Conformer enhances the Transformer
encoder by integrating the convolution module applied subsequent to the multi-head self-attention
module.

the i-th Conformer encoder block takes input as a previous sequence H(i�1) 2 RT 0
⇥Dmodel and

outputs a current sequence H(i) 2 RT 0
⇥Dmodel as

H̄(i) = H(i�1) +
1

2
FFN(i)(LayerNorm(H(i�1))), (2.62)

¯̄H(i) = H̄(i) + MHSA(i)(LayerNorm(H̄(i))), (2.63)

H̃(i) = ¯̄H(i) + Convlution(i)(LayerNorm( ¯̄H(i))), (2.64)

H(i) = H̃(i) +
1

2
FFN(i)(LayerNorm(H̃(i))). (2.65)

Unlike the Transformer encoder, the Conformer encoder solely utilizes the convolution down-
sampling layer to obtain the initial sequence, i.e., H(0) = Conv2D(O). Instead of adding absolute
positional embeddings to the input, Conformer employs relative positional encoding (Dai et al.,
2019) within each multi-head self-attention module, which helps the model to generalize better to
varying input lengths.
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2.4 Evaluation Metrics

This section outlines the key metrics utilized for evaluating the performance of ASR systems,
including the word error rate (WER) and the real-time factor (RTF).

2.4.1 Word Error Rate (WER)

WER is a common metric used for assessing the recognition accuracy of ASR systems. WER
measures the frequency of errors, including substitutions, deletions, and insertions, calculating the
Levenshtein distance between a generated hypothesis and a reference transcription as

WER[%] =
N sub + Ndel + N ins

Nword
⇥ 100, (2.66)

where N sub, Ndel, and N ins are the number of substitution, deletion, and insertion errors, respec-
tively, and Nword is the total number of words in the reference. In languages with the absence
of explicit word boundaries in their written forms, such as Mandarin and Japanese, Eq. (2.66) is
computed at the character level, which is known as the character error rate (CER).

2.4.2 Real-Time Factor (RTF)

RTF is a widely used metric for evaluating the decoding speed of ASR systems. RTF calculates
the ratio of the time taken by a system to recognize speech to the actual duration of the speech
itself as

RTF =
Time taken to recognize speech
Duration of the speech segment

. (2.67)

An RTF value lower than 1 indicates that the system is processing speech faster than real time,
thus delivering ASR results more promptly.

2.5 Summary

This chapter provided a comprehensive overview of end-to-end ASR, starting with a contrast
against traditional hybrid systems. Then, the major modeling approaches were compared, em-
phasizing the unique aspects of their formulations. Lastly, various network architectures were
introduced for developing end-to-end ASR models. Many parts of this chapter will be frequently
referred to throughout the following chapters.
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3
End-to-End Speech Recognition Guided by

Hierarchy of Subword Construction

3.1 Introduction

In the field of deep learning, there has been a notable trend towards building end-to-end mod-
els, which rely entirely on data to learn the process of mapping inputs to outputs. These models
are adept at implicitly acquiring representations that are intricately optimized for solving specific
tasks. For example, in image classification, such models have successfully captured different types
of shape features (Zeiler and Fergus, 2014). Similarly in language modeling, they have shown high
proficiency in understanding complex syntactic structures (Peters et al., 2018). However, in the
context of ASR, it can be more challenging for end-to-end models to learn effective representa-
tions purely from data. Having no access to segmentation or alignment information, end-to-end
ASR models are required to predict word-level linguistic tokens directly from frame-level acoustic
signals. This input-output gap in the level of abstraction makes it difficult to optimize end-to-end
ASR, unless a large amount of data or a strong language model is accessible during training or
inference (Zhang et al., 2020b; Irie et al., 2019).

With the aim of facilitating the representation learning process in end-to-end ASR, this chapter
introduces a mechanism designed to gradually increase the abstraction level in linguistic informa-
tion. Such a progressive approach is inspired by the traditional hybrid ASR system (outlined in
Section 2.1), where the processing of information transitions stepwise from speech to text, i.e.,
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speech! phonemes! words! text. The proposed concept involves training end-to-end ASR
models to explicitly use lower-level linguistic elements to capture more abstract, higher-level lin-
guistic information. This training approach is expected to enhance the models’ ability to learn
more precise representations for performing ASR, particularly aiding them in managing word-
level outputs, which are notably sparse and challenging for end-to-end ASR models to process.

To this end, Section 3.2 proposes hierarchical conditional modeling of end-to-end ASR. The
proposed model consists of multiple CTC (Graves et al., 2006) losses hierarchically applied to the
intermediate and last layers, inspired by previous studies (Fernández et al., 2007; Rao and Sak,
2017; Toshniwal et al., 2017; Sanabria and Metze, 2018; Krishna et al., 2018; Tjandra et al., 2020;
Lee and Watanabe, 2021). Each loss calculation targets sequences with a different granularity of
linguistic information: sequences with lower abstraction levels are predicted from the intermediate
layers, and a word-level sequence is predicted from the last layer. Specifically, I focus on subwords
(n-gram characters) (Sennrich et al., 2016) and increase the vocabulary size to word-level as the
model layer becomes close to the output (e.g., 256! 2k! 16k). In addition to this hierarchical
structure, the model is trained to predict each sequence at a specific level of abstraction, while
receiving explicit conditioning from sequences predicted at lower levels. This enables the model
to maintain subword information attributed to composing the higher-level sequence.

Section 3.3 further enhances the proposed hierarchical conditional model by designing a re-
finement mechanism within each intermediate prediction. Specifically, I build a Transformer-
based model (Vaswani et al., 2017) that incorporates recursive operations, which has been well-
studied in various fields including NLP (Dehghani et al., 2019; Bai et al., 2019; Lan et al., 2020),
computer vision (Shen et al., 2022), and ASR (Li et al., 2019c; Chi et al., 2021b; Komatsu, 2022).
This model involves the repeated use of Transformer layers with shared parameters, iteratively
refining its representations without the need for extra parameters. By employing the recursive op-
eration for each sequence prediction, I expect that the model accurately estimates the intermediate
sequences, which in turn should improve overall performance. Additionally, I implement a con-
ditioning feedback technique into the recursive process, enabling the model to explicitly refine its
output based on its previous predictions.

Section 3.4 introduces a semi-supervised learning approach designed to enhance the perfor-
mance of the hierarchical model. To efficiently train the model using unlabeled speech-only data,
I propose to extend the hierarchical training process to a pseudo-labeling-based framework (Lee,
2013), a simple yet effective semi-supervised learning method commonly adopted for ASR (Li
et al., 2019a; Kahn et al., 2020a; Masumura et al., 2020; Weninger et al., 2020; Hsu et al., 2020;
Xu et al., 2020; Chen et al., 2020; Park et al., 2020b; Likhomanenko et al., 2021; Moritz et al.,
2021). In typical pseudo-labeling, a teacher (seed) model is first trained on labeled data and used
to generate pseudo-labels by transcribing unlabeled data. A student model is then trained using the
labeled and pseudo-labeled data, to perform better than the teacher. The proposed approach gener-
ates multiple pseudo-labels from the intermediate layers of the hierarchical model. Here, linguis-
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Figure 3-1: Proposed hierarchical conditional CTC for end-to-end ASR. The model employs mul-
tiple CTC losses applied to intermediate layers, with the output linguistic unit gradually increasing
towards the last layer. The granularity of the output units is adjusted by modifying the subword
vocabulary size. This figure is reproduced from my conference paper (Higuchi et al., 2022a)

tic information captured at varying levels of granularity is expected to facilitate semi-supervised
learning by providing additional training signals.

3.2 Hierarchical Conditional ASR with CTC and Multi-Granular
Subword Units

This section proposes hierarchical conditional CTC (HC-CTC), designed to facilitate the repre-
sentation learning process for end-to-end ASR by increasing the granularity of output linguistic
units in a progressive manner. Figure 3-1 illustrates the concept of the proposed HC-CTC model.
The model applies multiple CTC losses to intermediate layers, calculated using different sizes of
subword vocabularies. Each loss calculation is explicitly conditioned on the sequences predicted
at a lower level, which is expected to help the sequence predictions at higher levels.

3.2.1 Intermediate CTC Regularization

The proposed approach is based on the intermediate CTC method (Tjandra et al., 2020; Lee and
Watanabe, 2021). Intermediate CTC serves as a regularization technique for the training of a
CTC-based end-to-end ASR model, applying auxiliary CTC losses to the intermediate model lay-
ers. Considering a model based on the Transformer encoder (from Eq. (2.49)) or the Conformer
encoder (from Eq. (2.61)), an auxiliary CTC loss is computed similarly to the CTC loss Lctc
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Figure 3-2: Schematic diagrams of intermediate CTC techniques.

(defined in Eq. (2.20)) as

p(at|H(i)) = Softmax
⇣

LinearDenc!|V|+1(h
(i)
t )
⌘
2 [0, 1]|V|+1, (3.1)

Lctc(W |H(i)) = � log
X

A2Bctc�1(W )

T 0Y

t=1

p(at|H(i)), (3.2)

where H(i) = (h(i)
t |t = 1, · · · , T 0) is the output of the i-th encoder layer (e.g., Eq. (2.53)). When

using the final output of the encoder layer H (e.g., Eq. (2.54)), Eq. (3.2) becomes equivalent to
the standard CTC loss, i.e., Lctc = Lctc(W |H). The overall loss for an intermediate CTC-based
model is defined by combining Lctc and the loss computed in Eq. (3.2) as

Li-ctc =
1

|I| + 1

(
Lctc +

X

i2I

Lctc(W |H(i))

)
, (3.3)

where I = {i | 1  i < N enc} is a set of layer indices where the CTC losses are computed, and I
equally distribute the weight across the losses.

Self-Conditioned CTC

Intermediate CTC can be further extended by introducing the self-conditioning technique (Nozaki
and Komatsu, 2021), which conditions the encoder network using a sequence predicted at each in-
termediate layer. Specifically, after calculating the framewise probability distribution in Eq. (3.1),
the output of the i-the encoder layer is updated as

h(i)
t  h(i)

t + Linear|V|+1!Dmodel(p(at|H(i))), (3.4)
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where Linear|V|+1!Dmodel(·) is a linear layer for mapping the probability to a Dmodel-dimensional
vector. With this modification applied to the calculation processes in Eqs. (3.1) and (3.2), the
overall loss for a self-conditioned CTC-based model is defined similarly to Eq. (3.3) as

Lsc-ctc =
1

|I| + 1

(
Lctc +

X

i2I

Lctc(W |H(i))

)
. (3.5)

Figure 3-2 compares this self-conditioned CTC method to intermediate CTC. In addition to
incorporating the intermediate loss, self-conditioned CTC feeds the predicted sequence back into
the forward calculation of the encoder network, explicitly adding the framewise probabilities to
the current encoder states. This provides the subsequent loss calculation with output contexts,
which has been demonstrated to be effective in relaxing the conditional independence assumption
in CTC.

3.2.2 Subword Segmentation

For tokenizing text sequences, subword segmentation is a widely used approach for alleviating the
out-of-vocabulary (OOV) problem (Sennrich et al., 2016), where words in a sentence are split into
subword units. In the general algorithm for building a subword vocabulary, pairs of subword units
are repeatedly merged on the basis of the frequency appearing in a text corpus. The iteration stops
when the vocabulary reaches an arbitrary size.

The proposed approach employs subwords for tokenizing ASR transcriptions. As opposed
to characters, subwords can provide the model with shorter output sequences, thus reducing the
difficulty of modeling the dependency between outputs. This can be especially important for CTC-
based modeling with the conditional independence assumption. However, it should be noted that
increasing the subword vocabulary size makes a sequence close to word-level and potentially lead
to the data-sparsity problem (Soltau et al., 2017).

3.2.3 Hierarchical Conditional CTC (HC-CTC)

Figure 3-1 represents an overview of the proposed HC-CTC for training end-to-end ASR. It
is similar to the intermediate CTC method, but the granularity of subword units is gradually
increased to the word level as the sequence transduction proceeds in the encoder layers. Let
W (i) = (w(i)

l 2 V(i)|l = 1, . . . , L(i)) be an L(i)-length target subword sequence for calculating
the i-th intermediate loss, which is generated by the corresponding subword tokenizer with a vo-
cabulary of V(i). HC-CTC hierarchically increases the vocabulary size, as the position of the CTC
loss becomes close to the output layer (i.e., |V(<i)| < |V(i)|). Given the target sequences with
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different units, the intermediate loss of the proposed model is defined by modifying Eq. (3.2) as

Lctc(W (i)|H(i)) = � log
X

A(i)2Bctc�1(W (i))

T 0Y

t=1

p(a(i)
t |H(i)), (3.6)

where A(i) = (a(i)
t 2 V(i) [ {<b>}|t = 1, · · · , T 0) is an alignment sequence compatiable with

W (i). With the self-conditioning mechanism realized by Eq. (3.4), the overall loss for an HC-
CTC-based model is defined as

Lhc-ctc =
1

|I| + 1

(
Lctc +

X

i2I

Lctc(W (i)|H(i))

)
. (3.7)

The training based on Eq. (3.7) conditions each loss calculation on previously predicted sequences
with lower levels of subword units.

In the proposed HC-CTC model, the word-level recognition is achieved by progressively in-
tegrating subwords in a fine-to-coarse manner. By having the shallower layers predict frequent
subwords with small units and the deeper layers predict sparse subwords with large units, the
model is expected to use a hierarchy of linguistic structures and effectively learn word-level rep-
resentations.

3.2.4 Conventional Model with Parallel CTC Losses

To verify the effectiveness of the proposed model with the hierarchical structure, I also consider
training with CTC losses applied in parallel to the final layer, as it has been shown to be effective
in several studies (Li et al., 2017; Sanabria and Metze, 2018; Kremer et al., 2018; Heba et al.,
2019). The objective for the parallel CTC losses is defined by modifying Eq. (3.7) as

Lpara-ctc =
1

|I| + 1

(
Lctc +

X

i2I

Lctc(W (i)|H)

)
. (3.8)

Such training with parallel CTC losses treats the predictions of multi-granular sequences equally,
where finer subword predictions provide an inductive bias to promote coarse word-level model-
ing (Kremer et al., 2018).

3.2.5 Relationship to Prior Work on Hierarchical End-to-End ASR

Several studies have explored introducing auxiliary CTC losses to intermediate model layers
and demonstrated its effectiveness in improving various end-to-end ASR systems, based on the
AED (Kim et al., 2017; Moriya et al., 2018), transducer (Jeon and Kim, 2021), and CTC (Zweig
et al., 2017; Tjandra et al., 2020; Chi et al., 2021a; Lee and Watanabe, 2021) models. For the
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CTC-based system, hierarchically applying low-level supervision (e.g., phonemes) to the inter-
mediate CTC losses has been shown to improve a primary CTC loss with higher-level recogni-
tion (Fernández et al., 2007; Toshniwal et al., 2017; Rao and Sak, 2017; Krishna et al., 2018;
Sanabria and Metze, 2018). The proposed model can be considered an extension of these hierar-
chical CTC-based models. However, it differs from prior work in the following perspectives. 1)
Each CTC loss is explicitly conditioned on the sequences predicted previously at lower abstrac-
tion levels. In this way, the model is expected to maintain subwords that contribute to composing
a word-level sequence and promote the CTC training with conditional dependencies (Nozaki and
Komatsu, 2021). 2) Given that, in recent studies (Tjandra et al., 2020; Lee and Watanabe, 2021),
the intermediate CTC losses are effective even without the hierarchical supervision, I carefully
conduct a comparative experiment and further analyze the effectiveness of hierarchical model-
ing. 3) Target sequences are tokenized only using subwords, which does not require additional
labeling effort and is easy to control the granularity of target sequences. 4) The models are eval-
uated using the recent state-of-the-art architectures (i.e., Transformer (Vaswani et al., 2017) and
Conformer (Gulati et al., 2020)).

3.2.6 Experimental Setting

Data

The experiments were carried out using the LibriSpeech (LS) and TED-LIUM2 (TED2) datasets.
For LS, models were trained using the 100-hour subset (LS-100) or the 960-hour full set (LS-960).
See Appendix A for corpus details. As input speech features, I extracted 80 mel-scale filterbank
coefficients with three-dimensional pitch features using Kaldi (Povey et al., 2011), which were
augmented by speed perturbation (Ko et al., 2015) and SpecAugment (Park et al., 2019). I used
SentencePiece (Kudo, 2018) to construct subword vocabularies for each dataset.

Evaluated Models

CTC denotes a standard CTC-based model trained with Lctc from Eq. (2.20) (Graves and Jaitly,
2014). SC-CTC is a conventional model trained with the intermediate CTC losses (Tjandra et al.,
2020; Lee and Watanabe, 2021) and the self-conditioning mechanism (Nozaki and Komatsu, 2021)
defined by Lsc-ctc in Eq. (3.5). HC-CTC is the proposed hierarchical conditional model trained
with Lhc-ctc from Eq. (3.7). ParaCTC is a conventional model trained with the parallel CTC
losses (Li et al., 2017; Sanabria and Metze, 2018; Kremer et al., 2018) defined by Lpara-ctc in
Eq. (3.8).
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Training and Decoding Configurations

The ESPnet toolkit (Watanabe et al., 2018) was used for conducting the experiments. I used the
Transformer (Vaswani et al., 2017) architecture to train the above models, which consisted of two
Conv2D layers followed by a stack of N enc = 18 encoder layers. The number of heads Nhead, di-
mension of a self-attention layer Dmodel, and dimension of a feed-forward network D↵ were set to
4, 256, and 2048, respectively. I also trained the models using the Conformer architecture (Gulati
et al., 2020), which had a kernel size of 15 and the same configurations as the Transformer-based
models, except D↵ was set to 1024. The models were trained up to 100 epochs, using the Adam
optimizer (Kingma and Ba, 2015) with �1 = 0.9, �2 = 0.98, ✏ = 10�9, and Noam learning rate
scheduling (Vaswani et al., 2017). Warm-up steps and a learning rate factor were set to 25k and
5.0, respectively. SC-CTC and HC-CTC had a total of 3 CTC losses applied to the final layer and
I = {6, 12}. The output vocabulary sizes |V| for LS-100, LS-960, and TED2 were set to 16384,
32768, and 16384, respectively. Each vocabulary size was determined on the basis of the maxi-
mum number that could be set using SentencePiece, which can be large enough to be considered
as word-level. SC-CTC had intermediate losses with the same vocabulary size as the output. For
HC-CTC and ParaCTC, (|V(6)|, |V(12)|) was set to (256, 2048) for LS-100 and TED2, and (512,
4096) for LS-960. After training, a final model was obtained by averaging model parameters over
10 to 20 checkpoints with the best validation performance. During decoding, I did not use any
language model and carried out the best path decoding of CTC (see Section 2.2.1). All the codes
and recipes are publicly available to ensure reproducibility.1

3.2.7 Main Results

Table 3.1 lists the results on LS-100, LS-960, and TED2 in terms of the WER. Looking at the
Transformer results, all the models trained with multiple CTC losses led to an improvement over
the standard CTC-based model. Especially, SC-CTC and HC-CTC significantly reduced the WER
on all of the tasks. On LS-100, HC-CTC showed a clear improvement over SC-CTC, indicating the
effectiveness of hierarchically increasing subword units. In contrast, on LS-960 and TED2 with
more data, the performance gap was reduced, and HC-CTC performed slightly better than SC-
CTC. Therefore, it can be concluded that the proposed model is particularly effective for smaller-
scale data, in which the word-level units are likely to become sparser. SC-CTC was capable
of handling word-level units when there was a sufficient amount of data. However, the large
vocabulary-sized softmax calculation (in Eq. (3.1)) led to a severe slow-down of the SC-CTC
training and inference processes. HC-CTC, on the other hand, was able to perform faster training
and inference, using finer units for the losses from intermediate layers. Due to the same reason
regarding the softmax calculation, the model size of HC-CTC was much smaller than that of
SC-CTC (e.g., 36.4M vs. 67.6M on LS-960). By comparing HC-CTC with ParaCTC, HC-CTC

1https://github.com/YosukeHiguchi/espnet/tree/hierctc
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Table 3.1: WERs on LibriSpeech-{100h, 960h} and TED-LIUM2 tasks. Output subword vocab-
ulary size was set to 16k for LibriSpeech-100h and TED-LIUM2, and 32k for LibriSpeech-960h.
Decoding was performed without using a language model and beam search.

WER [%] (#)
LibriSpeech-100h LibriSpeech-960h TED-LIUM2

Dev Test Dev Test
Dev Test

Model clean other clean other clean other clean other

Transformer

CTC 11.5 24.8 11.8 25.5 4.2 10.0 4.5 9.9 11.8 10.7
SC-CTC 8.9 21.0 9.1 21.7 3.2 8.2 3.5 8.2 9.4 8.6
HC-CTC 8.2 19.9 8.4 20.6 3.1 8.0 3.4 8.0 9.1 8.6
ParaCTC 10.4 24.0 10.9 24.3 4.6 10.3 4.8 10.3 10.9 10.2

Conformer SC-CTC 7.1 17.7 7.7 18.3 2.8 6.7 3.0 6.9 8.5 7.8
HC-CTC 6.9 17.1 7.1 17.8 2.8 6.9 3.0 6.8 8.0 7.6

Table 3.2: WER on LibriSpeech-100h task for comparing Transformer-based models trained with
different combinations of subword vocabulary sizes.

WER [%] (#)

Model |V(1)|-|V(2)|-|V(3)| dev-clean dev-other

SC-CTC 256 - 256 - 256 8.4 22.8
SC-CTC 2k - 2k - 2k 8.5 22.0
SC-CTC 16k - 16k - 16k 8.9 21.0
HC-CTC 256 - 256 - 16k 8.2 20.2
HC-CTC 2k - 2k - 16k 8.4 20.2

HC-CTC 256 - 2k - 16k 8.2 19.9

achieved much lower WERs on all tasks, demonstrating the effectiveness of applying CTC losses
to intermediate layers as well as gradually increasing the subword units in a hierarchical manner.

Using Conformer further improved the performance of SC-CTC and HC-CTC, and HC-CTC
again achieved more favorable performance than SC-CTC with faster training and inference. The
presented Conformer results are comparable with other strong CTC-based models of the same
size (Ng et al., 2021; Majumdar et al., 2021; Higuchi et al., 2021a), even without requiring ex-
haustive tuning.
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3.2.8 Analysis

Analysis on Subword Vocabulary Size

While using sparse word-level units can make training of an ASR model challenging (Soltau et al.,
2017), it is observed that the standard CTC-based model, with the Transformer-based architecture,
benefits from training with a large subword vocabulary size. By increasing the output vocabulary
size from 256 to 16k, the WERs for development sets changed from 11.1/28.1% to 11.5/24.8%
on LS-360, and 12.3% to 11.8% on TED2. Similarly, the performance on LS-960 changed from
4.6/12.1% to 4.4/10.5% by changing the vocabulary size from 2k to 32k. These decent improve-
ments from increasing the subword vocabulary size can be attributed to compensating for the
CTC’s incapability of modeling output dependencies (cf. Eq.(2.15)).

Considering the above observation, I evaluated SC-CTC and HC-CTC with different combi-
nations of vocabulary sizes, focusing on Transformer-based models trained on LS-100. From the
results for SC-CTC in Table 3.2, the performance on the dev-other set improved by increasing
the vocabulary size, benefiting from the CTC training with large subword units. HC-CTC per-
formed better than the 16k result of SC-CTC, indicating HC-CTC was more effective at modeling
word-level recognition besides the advantage of CTC training with a large vocabulary size. While
the SC-CTC performance on the dev-clean set degraded by increasing the vocabulary size, HC-
CTC succeeded in learning robust word-level representations and achieved the lowest WER with
the 16k-vocabulary size. Comparing the HC-CTC results, hierarchically increasing the subword
units resulted in better performance than using the same vocabulary size for intermediate losses,
suggesting the importance of gradually increasing the abstraction level for learning word-level
representations effectively.

Importance of Conditioning

I studied the effectiveness of the self-conditioning mechanism, which is one of the important
factors of the proposed model (see Section 3.2.1). The Transformer-based HC-CTC was trained on
LS-100 without conditioning each CTC loss. Note that this model becomes similar to those from
previous studies in Fernández et al. (2007); Toshniwal et al. (2017); Rao and Sak (2017); Krishna
et al. (2018); Sanabria and Metze (2018). Without the conditioning mechanism, HC-CTC achieved
WERs of 8.7/20.7% and 9.0/21.3% on the development sets and test sets, respectively. While these
results are better than those obtained from CTC, SC-CTC, and ParaCTC in Table 3.1, HC-CTC
with the conditioning mechanism achieved much lower WERs. Overall, it can be concluded that
1) hierarchical modeling based on multi-granular subword units as well as 2) the conditioning
mechanism for explicitly maintaining lower levels of predictions are effective for learning word-
level representations.
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Figure 3-3: Visualizations of attention weights and CTC spikes derived from (a) CTC and (b)
HC-CTC models trained on LibriSpeech-100h. A partial utterance was manually chosen from dev-
other set (116-288045-0000), transcription of which was “STREETS ASTIR WITH THRONGS OF
WELL DRESSED.” This figure is reproduced from my conference paper (Higuchi et al., 2022a).

Attention visualization

Figure 3-3 visualizes attention weights between a source (x-axis) and target (y-axis) sequences,
comparing Transformer-based (a) CTC and (b) HC-CTC models trained on LS-100 from Table 3.1.
I focused on weights that seemed to contribute to predicting a 16k-subword sequence in the final
CTC (from the 18-th layer). For both models, the CTC posteriors from the final 16k prediction
are visualized. For HC-CTC, I also show the CTC posteriors (from the 12-th layer) for predicting
a 2k-subword sequence in advance to see the relationship to the 16k prediction. Comparing the
overall attention weights, it appeared that HC-CTC learned more solid and confident weights
than CTC. HC-CTC seemed to exploit the lower-level 2k predictions to detect important frames
for predicting each token, effectively composing complex word-level tokens using the lower-level
tokens. For example, HC-CTC successfully recognized the words “THRONGS” and “DRESSED”
with proper conjunctions, while CTC failed to handle these infrequent words.
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Figure 3-4: Schematic diagram of recursive operation in hierarchical recursive CTC. In each
iteration, the output of the encoder is continuously looped back as input into the encoder stack. The
self-conditioning technique is also employed to condition the encoding process on the previous
predictions.

3.3 Hierarchical Multi-Task Learning with CTC and Recursive Feed-
back

This section introduces a simple extension to HC-CTC, aimed at enhancing the model’s hierar-
chical generation capability. While the self-conditioning mechanism in HC-CTC is an important
component of HC-CTC (see Section 3.2.8), there remains a potential issue associated with it; the
explicit dependence on intermediate predictions could propagate errors through the model layers.
Specifically, since the intermediate losses are applied to the shallower layers, they only affect the
updates of only a limited portion of the model parameters. As a result, the model may strug-
gle to learn to estimate lower-level targets accurately, consequently hurting the overall prediction
quality at the very last layer. To address this, hierarchical recursive CTC (HR-CTC) is proposed
as an enhancement to HC-CTC, which involves incorporating a refinement mechanism into each
intermediate prediction by repeatedly utilizing shared model layers for estimating targets.

3.3.1 Hierarchical Recursive CTC (HR-CTC)

HR-CTC is realized by incorporating recursive operations into HC-CTC. Specifically, using a par-
tial stack of encoder blocks, HR-CTC repeatedly performs forward computations for R times. As
illustrated in Figure 3-4, at the r-th iteration, a stack of encoder blocks outputs a hidden sequence
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H(i,r) 2 RT 0
⇥Dmodel as

H̄(i,r�1) =

8
<

:
H(i�N stack,R) (r = 1),

H(i,r�1) + Linear
|V (i)|+1!Dmodel(V (i,r�1)) (r > 1),

(3.9)

H(i,r) = EncoderStack(H̄(i,r�1)). (3.10)

where i 2 I [ {N enc} is the layer index where the CTC loss is computed, and N stack ( N enc)
represents the number of encoder blocks within each partial stack. In Eq. (3.9), when r = 1,
the input sequence is obtained from the output of the preceding encoder stack. Otherwise, when
r > 1, it is based on the output from the previous recursion, where self-conditioning is employed
using the previous predictions,

V (i,r�1) =
⇣
p(a(i)

t |H(i,r�1))
��� t = 1, · · · , T 0

⌘
2 [0, 1]T

0
⇥(|V(i)

|+1), (3.11)

with each framewise probability calculated similarly to Eq. (3.1). In Eq. (3.10), EncoderStack(·)
represents a series of forward computations performed by N stack encoder blocks, ranging from
layer index of i�N stack + 1 to i. The above recursion process within the same encoder stack en-
ables the model to refine its representations via the repeated use of its encoder layers. This thereby
virtually increases the model’s depth and facilitates more precise intermediate predictions com-
pared to HC-CTC. Furthermore, the conditioning mechanism similar to HC-CTC (with Eq. (3.9))
is expected to convey refined lower-level information that contributes to the improvement of the
final prediction.

The i-th encoder layer of the HR-CTC model accumulates the CTC losses computed at each
recursive operation as

L(i)(W (i)|O) =
1

R

RX

r=1

Lctc(W (i)|H(i,r)), (3.12)

where Lctc(W (i)|H(i,r)) is computed following the same procedure as described in Eq. (3.2).
The overall HR-CTC loss is defined as the summation of the losses calculated across all encoder
blocks:

Lhr-ctc =
1

|I| + 1

X

i2I[{N enc}

L(i)(W (i)|O), (3.13)

where W (N enc) = W is the target sequence for the final loss.

3.3.2 Experimental Setting

I used the ESPnet toolkit (Watanabe et al., 2018) for conducting ASR experiments.
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Data

I used various datasets with different amounts of data, speaking styles, and languages, including
LibriSpeech (LS), TED-LIUM2 (TED2), and Corpus of Spontaneous Japanese (CSJ). See Ap-
pendix A for corpus details. For LS, in addition to the full 960-hour training set (LS-960), I used
the 100-hour train-clean-100 subset (LS-100) for performing additional investigations and analy-
ses. For LS-100 and TED2, I constructed a subword vocabulary for tokenizing output texts, which
were extracted from each training set using SentencePiece (Kudo, 2018). For CSJ, I used Japanese
syllable characters (Kana) or Chinese characters (Kanji). As input speech features, I extracted 80

mel-scale filterbank coefficients with three-dimensional pitch features using Kaldi (Povey et al.,
2011). To avoid overfitting, I applied speed perturbation (Ko et al., 2015) and SpecAugment (Park
et al., 2019) to the input speech from LS and TED2, and only SpecuAugment to the input speech
from CSJ.

Evaluated Models

I conducted training and evaluation on models trained by HC-CTC and HR-CTC. HC-CTC is the
baseline model trained by Lhc-ctc from Eq. (3.7). HR-CTC is the proposed model trained by Lhr-ctc

from Eq. (3.13).

Network Architecture

All the models were composed of two Conv2D down-sampling layers followed by N enc = 12

encoder layers. The encoder layer was constructed using the Conformer (Gulati et al., 2020)
architecture, with each layer having the number of heads Nhead, dimension of a self-attention
layer Dmodel, dimension of a feed-forward network D↵ , and kernel size of 4, 256, 1024, and 31,
respectively. For LS and TED2, the intermediate CTC losses were applied at I = {6, 9}, and
N stack was set to 3. For CSJ, the intermediate CTC loss was applied at I = {8}, and N stack was
set to 4.

Training and Decoding

The models were trained up to 100 epochs for LS-100 and TED2, and 50 epochs for LS-960
and CSJ. The Adam (Kingma and Ba, 2015) optimizer with the Noam learning rate schedul-
ing (Vaswani et al., 2017) was used for updating model parameters, with warmup steps and a
learning rare factor set to 25k and 5.0, respectively. I followed the same setup as in Guo et al.
(2021) for regularization hyper-parameters (e.g., dropout rate and label-smoothing weight). For
the English tasks, each encoder block had targets with varying subword vocabulary sizes, where
(|V(6)|, |V(9)|, |V(12)|) was set to (256, 2048, 16384) for LS-100 and TED2, and (512, 4096, 32768)

for LS-960. For the Japanese task, V(8) consisted of Japanese syllable characters (181 in total) and
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Table 3.3: WERs on LibriSpeech-{100h, 960h} and TED-LIUM2 tasks, and CER on CSJ task.

WER [%] (#) CER [%] (#)
LibriSpeech-100h LibriSpeech-960h TED-LIUM2 CSJ

Dev Test Dev Test
Dev Test eval1 eval2 eval3

Model clean other clean other clean other clean other

HC-CTC 7.0 17.8 7.4 18.2 3.3 8.3 3.5 8.2 8.2 7.8 6.1 4.3 4.5
HR-CTC 6.6 16.7 6.8 17.0 2.9 7.2 3.0 7.3 7.7 7.2 5.6 4.0 4.3

Table 3.4: Ablation studies on LibriSpeech-100h task evaluated by WER. The hierarchical struc-
ture or self-conditioning mechanism was removed from HR-CTC.

WER [%] (#)
Dev Test

Model clean other clean other

HR-CTC 6.6 16.7 6.8 17.0

(|V(6)|, |V(9)|, |V(12)|) = (256, 256, 256) 6.2 18.5 6.7 18.7
(|V(6)|, |V(9)|, |V(12)|) = (16k, 16k, 16k) 7.9 18.7 8.1 19.3

w/o conditioning 6.7 17.2 6.9 17.5

V(12) consisted of both Japanese syllable and Chinese characters (3260 in total). The number of
the feedback operations in HR-CTC was fixed to R = 3, unless otherwise specified. After train-
ing, a final model was obtained by averaging model parameters over 10 checkpoints with the best
validation performance. For CTC decoding, the best path search algorithm was performed (see
Section 2.2.1).

3.3.3 Results

Table 3.3 shows the WER for LS-100, LS-960, and TED2, along with the CER for CSJ, evaluated
for HC-CTC and HR-CTC models. HR-CTC consistently outperformed HC-CTC across all tasks,
demonstrating its effectiveness regardless of data quantities, speaking styles, and languages. The
number of parameters remains consistent across all the models, and the improvement in HR-CTC
was accomplished without the need for additional parameters. This improvement is attributed to
the recursive feedback mechanism in HR-CTC, which is further analyzed in the following sections.
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Table 3.5: WERs of HC-CTC and HR-CTC on LibriSpeech-100h task, comparing predictions
generated by each encoder block. The results are divided into “dev-{clean / other}” sets.

Dev WER [%] (#)
Output Block Index HC-CTC HR-CTC

i = 6 (|V(6)| = 256) 10.3 / 27.4 8.0 / 21.9
i = 9 (|V(9)| = 2k) 7.4 / 20.3 6.4 / 17.7
i = 12 (|V(12)| = 16k) 7.0 / 17.8 6.6 / 16.7

3.3.4 Analysis

Ablation Study

To validate the effectiveness of our HR-CTC model design, I conducted ablation studies to assess
the impact of both the hierarchical loss and conditioning mechanism on its performance.

Hierarchical Loss Table 3.4 presents the HR-CTC results, which employed a consistent vocabu-
lary across the encoder blocks. As a result, HR-CTC with the hierarchical structure demonstrated
superior performance, achieving the averaged WERs of 11.7% and 11.9% on development and
test sets, respectively. This gain can be attributed to the model’s ability to learn helpful repre-
sentations for accurate word-level predictions, which is consistent with the findings presented in
Section 3.2.8.

Conditioning Mechanism In Table 3.4, I also report the HR-CTC results obtained without incor-
porating conditioning feedback, specifically, ablating the inclusion of posterior probability distri-
butions in Eq. (3.9). The performance of HR-CTC was degraded in the absence of this condition-
ing mechanism, indicating its significance. However, even without the conditioning mechanism,
HR-CTC still outperformed the HC-CTC results presented in Table 3.3. This observation under-
scores the critical role played by the recursive operations in improving the model performance.

WER on Intermediate Predictions

Table 3.5 provides a comparison of WERs for predictions produced by each encoder block within
HC-CTC and HR-CTC-based models. HR-CTC consistently outperformed HC-CTC across all
encoder blocks, indicating the effectiveness of performing recursive operations at each block.
Remarkably, the first encoder block (at i = 6) demonstrated the most substantial performance
improvement when compared to the other models. Given that the second and third blocks of
HR-CTC showed similar performance levels, the enhanced accuracy of the first encoder block in
particular attributed to the notable improvement in the quality of subsequent predictions.
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Table 3.6: WER and RTF on LibriSpeech-100h task, comparing HC-CTC to HR-CTC decoded
with different numbers of recursive operations.

WER [%] (#)
Dev Test

Model #Repeat R RTF (#) clean other clean other

HC-CTC – 0.06 7.0 17.8 7.4 18.2

1 0.06 10.3 23.8 10.5 24.7
HR-CTC 2 0.09 6.8 17.2 7.1 17.8

3 0.12 6.6 16.7 6.8 17.0

Controllability of Balance Between Accuracy and Speed

Thanks to its ability to use the same encoder block repeatedly, HR-CTC can control the number
of recursive operations executed during inference. Table 3.6 compares HC-CTC to HR-CTC de-
coded with different settings of recursive operations, where recognition accuracy is measured by
the WER and inference speed is measured by the RTF. The RTF was measured using the LS-100
development sets using Intel(R) Core(TM) i9-10920X CPU, 3.50GHz. The WER of HR-CTC was
largely improved by increasing the number of repetitions, with the optimal performance observed
at R = 3. Nevertheless, this improvement comes at the expense of slower inference speed due
to the increased forward computation cost, resulting in a speed twice as slow as HC-CTC. This
slowdown, however, can be mitigated by decreasing the number of repetitions. For instance, by
setting R = 2, HR-CTC achieves an RTF of under 0.1 while still outperforming HC-CTC. Dif-
ferent from HC-CTC, HR-CTC has the ability to control both recognition accuracy and inference
speed within a single model, adjusting its performance based on the specific demands of the ASR
application.

3.4 Momentum Pseudo-Labeling with Intermediate CTC Loss

This section presents InterMPL, an advanced semi-supervised learning approach for improving
end-to-end ASR models trained with the intermediate CTC losses (i.e., SC-CTC and HC-CTC
from Section 3.2). By integrating intermediate losses into the training framework of momentum
pseudo-labeling (MPL) (Higuchi et al., 2021c, 2022c), InterMPL allows the model to benefit from
intermediate supervision through the use of multiple pseudo-labels. This is expected to facilitate
the model’s ability to effectively learn from unlabeled data.
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Figure 3-5: Overview of momentum pseudo-labeling for semi-supervised ASR. A dashed line
(L99) indicates the momentum update of the offline model using the online model parameters.
This figure is reproduced from my conference paper (Higuchi et al., 2023c).

3.4.1 Semi-Supervised ASR with Momentum Pseudo-Labeling

In semi-supervised ASR, a seed model is first trained on labeled data Dlab = {hOn,Wni|n =

1, . . . , N lab} using the CTC loss Lctc from Eq. (2.20). MPL (Higuchi et al., 2022c) is then ap-
plied to the seed model to improve the performance using unlabeled speech-only data Dunlab =

{On0 |n0 = N lab+1, . . . , N lab+Nunlab}. Figure 3-5 and Algorithm 1 describe the training process
of MPL based on a pair of online and offline models. Let ⇥ and � denote the parameters of the
online and offline models, which are initialized with the pre-trained seed model parameters.

Online Model Training

Given the n0-th unlabeled sample On0 2 Dunlab and its encoded sequence Hn0 from an encoder
network (e.g., Eq. (2.54)), the online model is trained on pseudo-labels Ŵn0 generated on the fly
by the offline model with �:

Ŵn0 = Bctc

✓
arg max

at
p(at|Hn0 ,�)

���� t = 0, · · · , T 0

◆
, (3.14)

which is obtained via the best path decoding algorithm of CTC (see Section 2.2.1). With the
pseudo-labeled sample hOn0 , Ŵn0i, the online model with ⇥ is trained via a gradient descent opti-
mization based on the CTC loss Lctc(Ŵn0 |Hn0 ,⇥), as calculated in Eq. (3.2). Here, the unlabeled
speech input On0 is augmented by SpecAugment (Park et al., 2019) (as shown in Figure 3-5) to
facilitate the model training on pseudo-labels (Masumura et al., 2020; Chen et al., 2020). Note
that MPL also uses the n-th labeled sample hOn,Wni 2 Dlab and trains the online model with
a supervised loss Lctc(Wn|Hn,⇥), which helps the online model stabilize and promote learning
from unlabeled data.
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Algorithm 1 Momentum pseudo-labeling
Input:

Dlab,Dunlab . Labeled and unlabeled data
⇥,� . Parameters of online and offline models
↵ . A momentum coefficient

1: Train a seed model on Dlab using the CTC loss from Eq. (2.20)
2: Initialize online and offline models with the parameters of the seed model
3: for the number of training epochs do
4: for all D 2 Dlab [Dunlab do
5: Obtain O ⇠ D

6: Obtain W =

(
W ⇠ D (D 2 Dlab)

Ŵ = arg maxW p(W |O,�) (D 2 Dunlab)
7: Compute encoder states H
8: Compute the CTC loss Lctc(W |H) and update the parameters ⇥ of the online model
9: Update the offline model as � ↵� + (1� ↵)⇥

10: end for
11: end for
12: return ⇥ . Online model is returned for final evaluation

Offline Model Training

After every update of the online model, the offline model accumulates the parameters of the online
model as

� ↵� + (1� ↵)⇥, (3.15)

an exponential moving average with a momentum coefficient of ↵ (0  ↵  1). This momentum
update makes the offline model serves as an ensemble of the online models at different train-
ing steps (Tarvainen and Valpola, 2017), preventing the pseudo-labels from deviating too quickly
from the labels initially generated by the seed model. Through the above interaction between the
two models, MPL realizes stable and continuous ASR training on unlabeled data, concurrently
improving the quality of pseudo-labels.

Tuning Momentum Coefficient

Instead of directly tuning ↵ in Eq. (3.15), a more intuitive method is designed to derive an appro-
priate value of ↵. Based on Eq. (3.15), the parameters of the offline model after K updates can be
written as

�(K) = ↵K�(0) + (1� ↵)
KX

k=1

↵K�k⇥(k), (3.16)
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Figure 3-6: Proposed InterMPL for semi-supervised ASR. A dashed line (L99) indicates the mo-
mentum update of the offline model using the online model parameters. The number of CTC losses
is set to three. These figures are reproduced from my conference paper (Higuchi et al., 2023c).

where �(k) and ⇥(k) denote the parameters of each model at the k-th update, and �(0) = ⇥(0).
Here, I assume that it is important to retain some influence of the seed model to stabilize the
pseudo-label generation. As a measure of this influence, I focus on the term ↵K�(0) in Eq. (3.16)
and define a weight ! of the seed model in �(K) as

! = ↵K , (3.17)

where K is the number of training iterations (i.e., mini-batches) in a training epoch. As K can
often be in the thousands, small changes in ↵ lead to huge differences in ! (e.g., 0.9993000 ⌧
0.99973000), requiring small adjustments on ↵ for different amounts of training data. Instead of
directly tuning ↵, the weight ! is used to tune the momentum update, which can be regarded as
the proportion of the seed model parameters retained after a training epoch. Given ! and K, ↵ is
calculated as

↵ = e(1/K) log!. (3.18)

By controlling the update through !, MPL becomes less affected by the amount of training data,
as demonstrated in Higuchi et al. (2021c).

3.4.2 InterMPL

I propose a semi-supervised ASR method that introduces the intermediate CTC technique to MPL.
The conventional MPL is founded on CTC-based modeling, whose performance can be limited
due to the conditional independence assumption. To further enhance MPL, I adopt SC-CTC or
HC-CTC for constructing a seed model, which is expected to facilitate better CTC training/decod-
ing and thus promote the succeeding semi-supervised process with higher-quality pseudo-labels.
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Given labeled data Dlab, a seed model is trained by a supervised loss based on SC-CTC (with
Eq. (3.5)) or HC-CTC (with Eq. (3.7)).

Initialized with the seed model trained by SC-CTC or HC-CTC, the online model can accept
intermediate supervision using pseudo-labels, and the offline model can generate multiple pseudo-
labels from its intermediate layers. This leads to the exploration of two different advancements
in MPL, namely InterMPL (Figure 3-6(a)) and InterMPL-Last (Figure 3-6(b)), for fully utiliz-
ing the intermediate mechanism in SC-CTC and HC-CTC to enhance the learning process with
unlabeled data.

InterMPL

In InterMPL, the offline model generates pseudo-labels from each prediction layer, as shown in
Figure 3-6(a), with three different outputs (one from the final layer and two from the intermediate
layers). These pseudo-labels are used to calculate a loss for the corresponding layer of the online
model. Given the n0-th unlabeled sample On0 2 Dunlab, the i-th offline encoder layer emits hidden
vectors H(i)

n0 and generates an i-th prediction Ŵ (i)
n0 as in Eq. (3.14) as

Ŵ (i)
n0 = Bctc

0

@arg max
a
(i)
t

p(a(i)
t |H(i)

n0 ,�)

����� t = 0, · · · , T 0

1

A , (3.19)

where i 2 I [ {N enc}. With the pair of unlabeled speech sample and multiple pseudo-labels
hOn0 , {Ŵ (i)

n0 }i2I[{N enc}i, the objective function of the online model is defined similarly to Eq. (3.5)
and Eq. (3.7) as

1

|I| + 1

X

i2I[{N enc}

Lctc(Ŵ (i)
n0 |H(i),⇥). (3.20)

This training strategy is compatible with both SC-CTC and HC-CTC-based InterMPL, which I
assume is particularly effective for HC-CTC with varying output units. HC-CTC trains an ASR
model to learn a progressive generation of a target sequence, using the intermediate loss with
increasing subword vocabulary size. I expect pseudo-labels generated at different granularities to
facilitate semi-supervised learning by providing ancillary training signals.

InterMPL-Last

For SC-CTC, InterMPL may not be an optimal choice, as SC-CTC calculates intermediate losses
using the same sequence targeted in the last layer. Hence, I design another variant called InterMPL-
Last. Different from InterMPL (Figure 3-6(a) vs. Figure 3-6(b)), InterMPL-Last utilizes only the
final hypothesis of the offline model as pseudo-labels for calculating all the losses in the online
model. Given the n0-th unlabeled sample On0 2 Dunlab and the last pseudo-labels generated by the
offline model Ŵ (N enc)

n0 , the objective function of the online model is defined similarly to Eq. (3.5)
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as
1

|I| + 1

X

i2I[{N enc}

Lctc(Ŵ (N enc)
n0 |H(i),⇥). (3.21)

InterMPL-Last enables the online model to be trained on the most accurate pseudo-labels predicted
by the offline model, which permits more effective use of SC-CTC for semi-supervised training.

3.4.3 Experimental Setting

I used the ESPnet toolkit (Watanabe et al., 2018) for conducting the experiments, and all the codes
and recipes are made publicly available.2

Data

The experiments were carried out using LibriSpeech (LS) and TED-LIUM3 (TED3). See Ap-
pendix A for corpus details. As input speech features, I extracted 80 mel-scale filterbank coef-
ficients with three-dimensional pitch features using Kaldi (Povey et al., 2011). I used Sentence-
Piece (Kudo, 2018) to construct subword vocabularies from the train-clean-100 transcriptions.

Semi-Supervised Settings

I regarded train-clean-100 (LS-100) as the labeled data Dlab. Based on a seed model trained on
LS-100, I simulated three semi-supervised settings using different unlabeled data Dunlab: LS-
100/LS-360, an in-domain setting using unlabeled train-clean-360 (LS-360); LS-100/LS-860,
an in-domain setting using unlabeled train-clean-360 and train-other-500 (LS-860); and LS-
100/TED3, an out-of-domain setting using unlabeled TED3 train set.

Model Architecture

I used the Conformer architecture (Gulati et al., 2020; Guo et al., 2021) consisting of two Conv2D
layers followed by a stack of N enc = 18 encoder blocks. The number of heads Nhead, the dimen-
sion of a self-attention layer Dmodel, the dimension of a feed-forward network D↵ , and the kernel
size were set to were set to 4, 256, 1024, and 7, respectively. Following Higuchi et al. (2022b),
batch normalization in the convolution module is replaced with group normalization (Wu and He,
2018) with the group size of 4.

Training and Decoding Configurations

The seed model was trained for 150 epochs using the Adam optimizer (Kingma and Ba, 2015)
with �1 = 0.9, �2 = 0.98, ✏ = 10�9, and Noam learning rate scheduling (Vaswani et al., 2017).

2https://github.com/YosukeHiguchi/espnet/tree/intermpl
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Warmup steps and a learning rate factor were set to 25k and 5.0. The MPL training was iterated up
to 200 epochs, and the online model was trained using the Adam optimizer with an initial learning
rate of 10�3, �1 = 0.9, �2 = 0.999, and ✏ = 10�8. The weight ! for deriving the momentum
coefficient, defined in Eq. (3.17), was set to 0.5. The subword vocabulary size of a CTC-based
model was set to 1024. SC-CTC and HC-CTC applied the intermediate CTC losses to the 6th and
12th encoder layers (i.e., I = {6, 12}). The output vocabulary size for each loss (|V(6)|, |V(12)|,
|V(18)|) was set to (1024, 1024, 1024) for SC-CTC and (256, 1024, 4096) for HC-CTC. A final
model was obtained for evaluation by averaging model parameters over 10 checkpoints that gave
the best validation performance. For the MPL-based methods, I followed Higuchi et al. (2021c)
and used the online model for evaluation. During decoding, the best path decoding algorithm of
CTC was performed (see Section 2.2.1).

Evaluation Metrics

The WER was used to measure the ASR performance. For evaluating the performance of semi-
supervised training, I measured the WER recovery rate (WRR) (Ma and Schwartz, 2008; Kahn
et al., 2020a). WRR compares WERs of the oracle model (trained using ground-truth transcrip-
tions for the unlabeled data as well) and the semi-supervised model by calculating the ratio be-
tween their absolute reductions from the seed model’s WER:

WRR[%] =
WERseed �WERsemi-supervised

WERseed �WERoracle
, (3.22)

where WER⇤ denotes WER for each model.

3.4.4 Results

Supervised Baseline and Oracle Results

Table 3.7 shows the WER of seed models trained on LS-100 (S*) and oracle models trained on
fully labeled data in each semi-supervised setting (A*, B*, and C*). Overall, consisted with the
findings presented in Section 3.2.7, SC-CTC and HC-CTC outperformed CTC by a large margin.
The quality of pseudo-labels is crucial for effective semi-supervised training, and I can expect
MPL to benefit from the seed models trained with the intermediate loss.

Main Results

In-domain setting Table 3.8 shows WER on LS, comparing the conventional MPL (Higuchi
et al., 2022b) against the proposed InterMPL and InterMPL-Last. In Figure 3-7, I also compare
the performance of each semi-supervised training in the WRR, where the results were averaged on
the clean and other sets for LS. Note that the seed models (S*) from Table 3.7 were used for the
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Table 3.7: WERs for models trained on fully labeled data. A*, B*, and C* indicate the oracle
results for each semi-supervised setting, indicated by “supervised data / unsupervised data.”

WER [%] (#)
LibriSpeech TED-LIUM3

Setting Model test-clean test-other Test

S1 CTC 8.4 23.1 26.7
LS-100 S2 SC-CTC 7.5 21.3 24.2

S3 HC-CTC 7.4 20.4 23.8

A1 CTC 4.6 13.5 –
LS-100 / LS-360 A2 SC-CTC 3.9 12.0 –

A3 HC-CTC 4.0 11.6 –

B1 CTC 3.5 8.8 –
LS-100 / LS-860 B2 SC-CTC 3.1 7.8 –

B3 HC-CTC 3.2 7.7 –

C1 CTC – – 7.5
LS-100 / TED3 C2 SC-CTC – – 6.8

C3 HC-CTC – – 7.1

initialization in each method. Looking at the results on the LS-360 setting (X*) in Table 3.8, both
InterMPL and InterMPL-Last led to distinct improvements over MPL (X1 vs. X2, X3, X4), indi-
cating the effectiveness of using the well-trained seed models and applying intermediate CTC loss
during semi-supervised training. Comparing SC-CTC and HC-CTC-based InterMPL, HC-CTC
resulted in better performance by benefiting from using the pseudo-labels at different granular-
ity (X2 vs. X3). InterMPL-Last was better suited for SC-CTC-based training than InterMPL (X2
vs. X4), as it was hypothesized that higher-quality labels are more appropriate for intermediate
supervision. Overall, HC-CTC-based InterMPL and InterMPL-Last similarly achieved the best
performance, while InterMPL-Last gave higher WRRs in Figure 3-7(a). In the LS-860 setting
with more unlabeled data (Y*) in Table 3.8, the general trend was consistent with what was ob-
served in the LS-360 setting. In terms of the WRR in Figure 3-7, InterMPL-Last had the most
significant gain, which was even higher than those of MPL. Both InterMPL and InterMPL-Last
were scalable to larger amounts of unlabeled data.
Out-of-domain setting Table 3.9 lists results on the out-of-domain TED3 setting. Both In-
terMPL and InterMPL-Last outperformed MPL (Z1 vs. Z2, Z3, Z4), demonstrating stable train-
ing on unlabeled data under the domain-mismatched condition. In contrast to the in-domain re-
sults, SC-CTC and HC-CTC-based InterMPL resulted in a similar performance (Z2 vs. Z3), and
InterMPL-Last achieved lower WERs than InterMPL (Z4 vs. Z2, Z3). HC-CTC was less sig-
nificant in the out-of-domain semi-supervised scenario, including the oracle results in Table 3.7,
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Table 3.8: WERs on in-domain LS-100/LS-360 and LS-100/LS-860 settings.

WER [%] (#)
Setting Method Init. test-clean test-other

LS-100 / LS-360

X1 MPL S1 (CTC) 6.3 15.4

X2 InterMPL S2 (SC-CTC) 5.7 14.5
X3 InterMPL S3 (HC-CTC) 5.5 14.1
X4 InterMPL-Last S2 (SC-CTC) 5.4 14.1

LS-100 / LS-860

Y1 MPL S1 (CTC) 6.0 11.9

Y2 InterMPL S2 (SC-CTC) 5.4 11.0
Y3 InterMPL S3 (HC-CTC) 5.3 10.7
Y4 InterMPL-Last S2 (SC-CTC) 5.1 10.7

Table 3.9: WER on out-of-domain LS-100/TED3 setting.

Method Init. Test WER [%] (#)

Z1 MPL S1 (CTC) 13.4

Z2 InterMPL S2 (SC-CTC) 12.8
Z3 InterMPL S3 (HC-CTC) 12.6
Z4 InterMPL-Last S2 (SC-CTC) 12.1

which indicates its inferior generalization capability. Subword vocabularies were constructed from
the small LS-100 text set, and the large vocabulary size used in HC-CTC (i.e., 4096) was not gen-
eralized well to the TED3 domain.

In all of the settings, InterMPL consistently delivered substantial improvements compared
to the seed models (S* in Table 3.7), demonstrating that the models incorporating intermediate
losses, i.e., SC-CTC and HC-CTC, experienced significant gains by learning from unsupervised
data through the proposed semi-supervised training strategies.

Ablation Study on Intermediate Loss

Table 3.10 shows an ablation study validating the effectiveness of InterMPL. I initialized a model
using parameters of SC-CTC (S2) or HC-CTC (S3) and performed standard MPL without using
intermediate loss. Compared to the InterMPL results (X2, X3), it was observed that removing
intermediate loss led to worsening WERs with degraded WRRs. Interestingly, MPL based on SC-
CTC initialization resulted in a similar performance as that of standard MPL (X1). This indicates
the importance of applying intermediate loss during semi-supervised training. I also performed
InterMPL-Last initialized from CTC (S1), which gave better results than those of MPL (X1).
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Figure 3-7: Visualization of WRR in each semi-supervised setting. This figure is reproduced from
my conference paper (Higuchi et al., 2023c).

These results suggest the importance of applying intermediate loss to both the seed model and
semi-supervised training.

3.5 Summary

This chapter presented hierarchical modeling methods, aiming at improving the representation
learning capabilities of end-to-end ASR models.

First, I proposed HC-CTC, which hierarchically increased the abstraction level in linguistic
outputs to effectively learn representations for predicting sparse word-level units. The proposed
model was trained using auxiliary CTC losses applied to intermediate layers, where the vocabu-
lary size of each target subword sequence gradually increased as the layers progressed closer to
the word-level output. In this hierarchical process, each level of sequence prediction was explic-
itly conditioned on the sequences predicted at the lower levels, thereby encouraging the model
to exploit a hierarchy of linguistic structures to extract word-level representations. The experi-
mental results demonstrated that HC-CTC outperforms the standard CTC-based model and other
conventional models trained with the intermediate CTC techniques.

Subsequently, I made an architectural improvement to the HC-CTC-based model by inte-
grating a refinement mechanism into each stage of intermediate prediction. Specifically, the
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Table 3.10: Ablation study on LS-100/LS-360 setting.

WER [%] (#) WRR [%] (")
Method test-clean test-other test-clean test-other

InterMPL (X2) 5.7 14.5 51.9 73.3
w/o inter. loss 6.4 15.5 30.9 62.6

InterMPL (X3) 5.5 14.1 55.3 72.0
w/o inter. loss 5.8 14.8 45.8 63.8

InterMPL-Last (X4) 5.4 14.1 59.2 77.0
w/ init. from S1 5.9 14.4 46.4 74.1

Transformer-based encoder layers were augmented with recursive operations, which involved re-
peatedly using shared model layers to refine intermediate representations. This enabled the model
to make more accurate sequence predictions at the lower levels, thereby improving its overall
performance, especially in predicting sparser outputs at the final layer. The experimental results
showed that the proposed enhancement further improves HC-CTC, yielding effective results across
various conditions, including varying data quantities, speaking styles, and languages.

Lastly, I developed an efficient semi-supervised learning method for improving the end-to-end
ASR models trained with intermediate CTC losses. The proposed approach, InterMPL, extended
the functionality of MPL by enabling it to utilize multiple pseudo-labels obtained from intermedi-
ate predictions. In the context of HC-CTC, the pseudo-labels were generated at varying levels of
granularity, which helped the model learn linguistic information from unlabeled audio-only data.
The experimental results in different semi-supervised settings consistently showed that InterMPL
outperforms standard MPL. InterMPL proved to be effective for both SC-CTC and HC-CTC-based
models, underscoring the significance of incorporating intermediate losses with pseudo-labels in
the semi-supervised training process.
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4
End-to-End Speech Recognition Guided by

Masked Language Modeling

4.1 Introduction

Masked language modeling has proven to be highly effective in extracting and comprehending
linguistic information from text sequences, training a language model on the token in-filling
task (Williams and Zipser, 1989; Fedus et al., 2018; Devlin et al., 2019). This method involves
first masking some of the tokens in a text sequence, and then predicting the masked tokens based
on the surrounding context. For example, given a masked sequence

“Dogs [MASK] and [MASK] meow,”

a model is trained to predict “barks” and “cats” at the masked positions indicated by the special
mask token [MASK]. This task is different from the standard approach of language modeling,
which focuses on capturing unidirectional left-to-right dependencies in text through an autore-
gressive structure (Radford et al., 2018) (cf. Eq. (2.10)). Unlike left-to-right language modeling,
masked language modeling facilitates the acquisition of contextualized representations that inte-
grate both left and right contexts, enabling a model to capture bidirectional token dependencies at
the sentence level.

This chapter presents methods for incorporating the masked language modeling mechanism
into end-to-end ASR models, with the primary goal of augmenting the models’ capability to ef-
fectively utilize long-range linguistic contexts. End-to-end ASR models are designed to directly
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transform acoustic signals, which naturally exhibit local dependencies, into linguistic tokens that
often depend on broader contexts. By employing masked language modeling, it is expected to
provide end-to-end ASR models with guides to understanding token dependencies, thereby facili-
tating the extraction of linguistic information for producing accurate textual outputs.

Section 4.2 proposes Mask-CTC, an end-to-end ASR framework that trains an AED-based
model with joint CTC and conditional masked language model (CMLM) (Ghazvininejad et al.,
2019) objectives. The inference process in Mask-CTC is designed by combining the strengths of
both CTC and CMLM-based modeling. Initially, CTC decoding is performed to rapidly produce
an ASR hypothesis, during which tokens of low confidence are selectively masked based on their
posterior probabilities. Then, the CMLM-based decoder further refines the hypothesis by repre-
dicting the masked tokens, utilizing both the audio information and the linguistic context derived
from the other unmasked tokens. Such a decoding algorithm enables the model to execute non-
autoregressive sequence generation, resulting in faster inference speed compared to conventional
autoregressive models. Additionally, the CMLM decoder allows for correcting errors caused by
the conditional independence assumption in CTC, thus producing more accurate predictions by
accounting for token dependencies.

Section 4.3 delves into advanced strategies for leveraging the contextualized representations
derived from the CMLM. The proposed Mask-Conformer model enhances the Conformer architec-
ture by applying the CMLM decoder to multiple encoder layers. The token-level representations,
embedded by the decoder, are fed back to subsequent encoder layers through the cross-attention
mechanism. This conditioning by the decoder enables the encoder to explicitly incorporate lin-
guistic information during its speech encoding process. Mask-CTC inference refines a hypothesis
using the CMLM decoder, while preserving the initial interpretation of speech information (from
the encoder output). In contrast, Mask-Conformer allows for the reinterpretation of speech infor-
mation based on explicit linguistic information acquired by the CMLM. This leads to the effective
utilization of language model information for improving ASR performance.

Section 4.4 explores the application of Mask-CTC as a pre-training method for streaming end-
to-end ASR models. Achieving high accuracy with low latency has always been a challenge in
streaming end-to-end ASR systems. By attending to more future contexts, a streaming ASR model
achieves higher accuracy but this comes at the cost of increased latency, adversely affecting the
streaming performance. With the CMLM decoder that captures token dependencies from both
past and future contexts, Mask-CTC is capable of learning feature representations that anticipate
long-term contexts, which can be particularly beneficial for streaming ASR models. To this end, I
propose a pre-training method that first trains an end-to-end ASR model based on Mask-CTC and
then utilizes its parameters to initialize a streaming model. This implicitly transfers the advanta-
geous capabilities of Mask-CTC into the training process for streaming ASR, thereby achieving
high recognition accuracy while maintaining low latency.

Chapter 3 proposed the hierarchical model to implicitly assimilate linguistic information through
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a hierarchy of subword units. This chapter, in contrast, shifts focus to integrating explicit language
modeling, aiming for a more direct approach to learning text sequences.

4.2 Mask-CTC: Non-Autoregressive End-to-End ASR with CTC and
Mask-Predict

This section proposes Mask-CTC, a novel end-to-end ASR model that permits non-autoregressive
sequence generation. Many of the previous studies on end-to-end ASR have concentrated on de-
veloping an autoregressive model (i.e., AED described in Section 2.2.3), which estimates the like-
lihood of sequence generation based on a left-to-right probabilistic chain rule. The autoregressive
model often achieves the best performance among other end-to-end ASR approaches (Chiu et al.,
2018). However, its application is constrained by slower inference speed, requiring incremental
calculations within the model to produce each token of the output sequence. This limitation is a
significant drawback for the practical deployment of ASR systems in real-world scenarios, partic-
ularly for on-device applications where efficiency and speed are crucial. Unlike the autoregressive
model, a non-autoregressive model generates an output sequence within a constant number of the
inference steps (Graves et al., 2006; Gu et al., 2018). Non-autoregressive models are actively
studied in the field of neural machine translation, which have demonstrated performance on par
with autoregressive models while achieving faster inference speed. Innovative approaches being
explored include iterative refinement decoding (Lee et al., 2018), insertion-based sequence gen-
eration (Stern et al., 2019; Gu et al., 2019), masked language modeling (Ghazvininejad et al.,
2019, 2020; Saharia et al., 2020), and generative flow techniques (Ma et al., 2019). Mask-CTC
achieves non-autoregressive ASR, drawing inspiration from the principles of masked language
modeling (Ghazvininejad et al., 2019) for enabling parallel prediction of tokens.

4.2.1 Related Work on Non-Autoregressive End-to-End ASR

CTC (Graves et al., 2006) forms a fundamental basis for realizing non-autoregressive end-to-end
ASR. CTC makes a strong conditional independence assumption between token frame predic-
tions, which facilitates fast inference speed but can constrain recognition accuracy. Inspired by
CMLM (Ghazvininejad et al., 2019), Audio-CMLM (Chen et al., 2021b) effectively introduces
masked language modeling to learn the conditional distribution of output tokens over a partially
observed sequence. Imputer (Chan et al., 2020) combines CTC with masked language modeling
to improve the frame-level token predictions, eliminating the need for the length prediction mech-
anism employed in previous approaches (Gu et al., 2018). Align-Refine (Chi et al., 2021a) and
Align-Denoise (Chen et al., 2021c) incorporate iterative refinement (Lee et al., 2018) to directly
optimize and refine CTC-based predictions.

Recent efforts have focused on improving the performance of the standard CTC-based model.
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Notably, intermediate CTC (Lee and Watanabe, 2021) and self-conditioned CTC (Nozaki and Ko-
matsu, 2021) introduce auxiliary CTC losses to the model’s intermediate layers (Tjandra et al.,
2020), facilitating the learning of intermediate representations for enhancing CTC-based training
and inference. Convolution-based neural network architectures have been shown to improve the
CTC-based and the other end-to-end ASR models in general (Ng et al., 2021; Majumdar et al.,
2021). When a large amount of speech data is available for pre-training, powerful speech repre-
sentations learned by wav2vec 2.0 (Baevski et al., 2020) can significantly boost the performance
of the CTC-based model (Ng et al., 2021).

An alternative approach to non-autoregressive ASR utilizes insertion-based modeling, which
allows for generating tokens in a flexible arbitrary order without the left-to-right constraint in the
autoregressive formulation. Demonstrating notable success in neural machine translation, Inser-
tion Transformer (Stern et al., 2019) and Kontextuell Encoder Representations Made by Inser-
tion Transformations (KERMIT) (Chan et al., 2019) have been effectively adapted for end-to-end
ASR (Fujita et al., 2020).

The proposed Mask-CTC shares similarities to the models that integrate CTC with masked
language modeling, especially the approach based on Imputer (Chan et al., 2020). However, Im-
puter operates by processing sequences at the input frame level, frequently dealing with hundreds
of units, using self-attention layers (Vaswani et al., 2017). Given that these self-attention layers
require computational costs proportional to the square of the sequence length, the sequence pro-
cessing in Imputer tends to be computationally intensive. On the other hand, Mask-CTC deals
with the output sequence at the token level, which is significantly shorter than the input length,
thereby resulting in a more computationally efficient approach.

4.2.2 Mask-CTC

Joint CTC and CMLM Training

Mask-CTC adopts non-autoregressive modeling based on CMLM (Ghazvininejad et al., 2019;
Chen et al., 2021b), where the model is trained to predict masked tokens in a target output se-
quence (Devlin et al., 2019). Taking advantage of Transformer’s parallel computation (see Sec-
tion 2.3.2 for details), CMLM can predict any arbitrary subset of tokens in an output sequence,
attending to the entire sequence including tokens in the past and the future positions.

Given a target token sequence W , let W̃ = (w̃l 2 V [{[MASK]}|l = 1, · · · , L) be a partially
masked sequence, with each token w̃l defined as

w̃l =

8
<

:
[MASK] (l 2 U),

wl 2W (otherwise),
(4.1)

where U represents a set of token positions that are replaced with the mask token. During training,
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to obtain W̃ , the ground truth tokens are randomly replaced by the mask token, where the number
of tokens to be masked is sampled from a uniform distribution between 1 to L (Ghazvininejad
et al., 2019). CMLM predicts a set of target tokens W = {wl 2 W |l 2 U}, conditioning on the
input sequence O and the masked sequence W̃ as

p(W|W̃ ,O) =
Y

wl2W

p(wl|W̃ ,O), (4.2)

which represents a posterior probability distribution of masked tokens.

The token emission probability in Eq. (4.2) is computed using the Transformer-based AED
architecture (see Section 2.3.2) as

H = TransformerEncoder(O) 2 RT 0
⇥Dmodel

, (4.3)

Q = (q1, · · · ,qL) = TransformerDecoder(W̃ ,H) 2 RL⇥Dmodel
, (4.4)

p(wl|W̃ ,O) = Softmax
⇣

LinearDmodel!|V|(ql)
⌘
2 [0, 1]|V|, (4.5)

where LinearDmodel!|V|(·) represents a linear layer for converting a Dmodel-dimensional vector into
a |V|-dimensional vector. Using the full-context attention mask (see Figure 2-8), the Transformer
decoder in Eq. (4.4) takes query as the masked sequence W̃ and takes the key and value from the
encoder output H . This enables the model to consider the bidirectional context within the output
sequence for accurately predicting masked tokens. The objective function of the CMLM is defined
by the negative log-likelihood of Eq. (4.2) as

Lcmlm , � log p(W|W̃ ,O). (4.6)

I observed that training end-to-end ASR solely with the CMLM loss in Eq. (4.6) leads to poor
performance, having issues such as the skipping and repetition of output tokens. To address this, a
joint training approach combining CMLM with CTC (similar to the joint CTC and AED training
described in Section 2.2.3) is proposed to facilitate the extraction of a robust alignment between the
encoder output and the target sequence. With the shared encoder network, the objective function
of the proposed joint training is defined as a linear interpolation of Lctc (from Eq. (2.20)) and
Lcmlm (from Eq. (4.6)) as

Lmask-ctc = �mask-ctcLctc + (1� �mask-ctc)Lcmlm, (4.7)

where �mask-ctc (0  �mask-ctc  1) is a tunable weight to control the balance between the two
losses.
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Figure 4-1: Overview of Mask-CTC decoding, correcting inaccurate hypothesis “ceel” to accu-
rately predict “ceil.” The output sequence begins with the results of greedy decoding from CTC,
and tokens with low confidence are substituted with [MASK], based on a threshold applied to their
posterior probabilities. Then, the conditional masked language model (CMLM) decoder predicts
the masked tokens by explicitly taking into account the context provided by the observed tokens.

Mask-Predict Decoding Based on CTC Predictions

Generally, in non-autoregressive modeling, the length of the output sequence must be predicted in
advance to initiate the decoding process. In neural machine translation, the output length has been
predicted explicitly from the fertility model (Gu et al., 2018) or a special length token [LENGTH]
in the encoder (Ghazvininejad et al., 2019). In ASR, however, the task of predicting the output
length is particularly challenging due to the distinct characteristics of the input acoustic signals and
the output linguistic symbols. For example, the lengths of input utterances can vary significantly,
influenced by factors such as speaking rate and the duration of silences. Audio-CMLM (Chen
et al., 2021b) has predicted the position of the end-of-sentence token to determine the output
length, but it has been argued that this strategy is only effective for short output sequences.

To overcome the challenge of initializing the output sequence, the proposed inference algo-
rithm for Mask-CTC considers using predictions made by CTC, as illustrated in Figure 4-1. First,
using the encoder output, the frame-level output sequence Â is obtained by performing best path
decoding of CTC (from Eq. (2.19)), and the token-level sequence Ŵ is derived by applying the
collapsing function to Â, i.e., Ŵ = Bctc(Â). Subsequently, the emission probability of each token
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ŵl 2 Ŵ is approximated based on the frame-level probabilities calculated in Eq. (2.18) as

p(wl = ŵl|O) ⇡ max
t2Tl

p(at = ŵl|O), (4.8)

where Tl represents a set of frame indices that correspond to the l-th token ŵl after applying
the collapsing function. Then, the masked sequence W̃ is obtained by replacing low-confidence
tokens in Ŵ with the mask token as

w̃l =

8
<

:
[MASK] (p(wl = ŵl|O) < P thres),

ŵl (otherwise),
(4.9)

where P thres is a threshold probability for determining whether to mask each output token. Finally,
the masked tokens are predicted by the CMLM decoder for refinement, which utilizes the context
from the unmasked high-confidence tokens and the conditioning from the encoder output.

The above mask prediction process in the CMLM decoder can be iteratively performed, allow-
ing for the gradual prediction of masked tokens. Given the masked sequence W̃ from Eq. (4.9),
the CMLM decoder updates a token at a masked position l as

w̃l  arg max
w2V

p(wl = w|W̃ ,O). (4.10)

The update process is repeated for a fixed number of K iterations. In each iteration, tokens with
the highest probabilities, specifically the top bL/Kc, are selected for prediction.

With the proposed non-autoregressive decoding in Mask-CTC, the model is designed to oper-
ate without the need to predict the output length. Furthermore, the refinement of a CTC hypothesis
through mask prediction is expected to correct errors caused by the conditional independence as-
sumption.

4.2.3 Experimental Setting

To evaluate the effectiveness of Mask-CTC, I conducted speech recognition experiments using
ESPnet (Watanabe et al., 2018) for comparing different end-to-end ASR models. The recognition
performance was evaluated based on the CER or WER without using an external language model
for decoding. Additionally, the inference speed was measured using the RTF.

Data

The experiments were carried out using three different tasks: the Wall Street Journal (WSJ)
and TED-LIUM2 datasets were used for English ASR, and the VoxForge dataset was used for
Italian ASR. For the network inputs, I extracted 80 mel-scale filterbank coefficients with three-
dimensional pitch features using Kaldi (Povey et al., 2011). To avoid overfitting, the speech inputs
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were augmented using speed perturbation (Ko et al., 2015) or SpecAugment (Park et al., 2019),
depending on the tasks and models. For the tokenization of target transcriptions, characters (Latin
alphabets) were used for WSJ and VoxForge. For TED-LIUM2, I used SentencePiece (Kudo,
2018) to construct a subword vocabulary, where the vocabulary size was set to 500.

Evaluated Models

I evaluated and compared different end-to-end ASR models, each of which could either be autore-
gressive or non-autoregressive. AR indicates an autoregressive model trained by the joint CTC
and AED objective, as defined in Eq. (2.43). CTC indicates a non-autoregressive model trained
by the CTC objective, as defined in Eq. (2.20). Mask-CTC is the proposed non-autoregressive
model trained by the joint CTC and CMLM objective, as defined in Eq. (4.7).

Model Architecture

The above models were constructed using either the Transformer or Conformer-based architecture.
For Transformer, the number of heads Nhead, the dimension of a self-attention layer Dmodel,
and the dimension of a feed-forward layer D↵ were set to 4, 256, and 2048, respectively. For
Conformer, I used the same configuration for the self-attention layer as in Transformer. The only
difference was that D↵ was adjusted to 1024 to prevent an increase in the number of parameters.
The kernel size of the convolution module was tuned from values of 7, 15, and 31, depending
on the task. The encoder network consisted of two Conv2D down-sampling layers followed by
N enc = 12 Transformer or Conformer encoder layers. For AR and Mask-CTC, the decoder
network consisted of Ndec = 6 Transformer decoder layers.

Training and Decoding Configurations

The hyper-parameters for model training, including the number of training epochs and mini-batch
size, were tuned based on the recipes provided by ESPnet (as specified in Appendix A). All the
codes and recipes used in the experiments have been made publicly available to ensure repro-
ducibility.1 For training the AR model, the loss weight �ctc-aed in Eq. (2.43) was set to 0.3. For
training the Mask-CTC model, the loss weight �mask-ctc in Eq. (4.7) was set to 0.3. After training,
a final model was obtained for evaluation by averaging model parameters over 10 to 50 check-
points with the best validation performance. For decoding the AR model, the joint CTC and AED
decoding algorithm was performed (see Section 2.2.3 for details), using the weight ⇠ set to 0.3 and
a beam size of 10. For decoding the CTC model, the best path decoding algorithm was performed
(see Section 2.2.1 for details). For decoding the Mask-CTC model, the threshold probability P thres

1https://github.com/espnet/espnet
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Table 4.1: WER and RTF on WSJ task. K denotes the number of inference steps required to
generate each output token. RTF was measured on dev93 using CPU. For each Mask-CTC model,
RTF was calculated for K = 10. †Transformer-based architecture trained without SpecAugment.

WER [%] (#)
ID Model Params [M] dev93 eval92 RTF (#) Speedup (")

Autoregressive K = L (avg. 99.9) K = L (avg. 100.3)

A1 Transformer-AR 27.2 13.5 10.8 0.456±0.005 1.00⇥
A2 + beam search 27.2 12.8 10.6 5.067±0.012 0.09⇥
A3 Conformer-AR 30.4 11.4 8.8 0.474±0.009 0.96⇥
A4 + beam search 30.4 11.1 8.5 5.094±0.031 0.09⇥

K K

Non-autoregressive 0 1 5 10 0 1 5 10

B1 Transformer-CTC 17.7 19.4 – � � 15.5 � � � 0.021±0.000 21.71⇥
B2 Transformer-Mask-CTC 27.2 15.5 15.2 14.9 14.9 12.5 12.2 12.0 12.0 0.063±0.001 7.24⇥
C1 Conformer-CTC 20.9 13.0 � � � 10.8 � � � 0.033±0.000 13.81⇥
C2 Conformer-Mask-CTC 30.4 11.9 11.8 11.7 11.7 9.4 9.2 9.2 9.1 0.063±0.000 7.24⇥

-- Imputer† (Chan et al., 2020) – – 12.7 (K = 8) – –

was tuned from values of 0.9, 0.99, and 0.999. RTF was measured using utterances in the WSJ
dev93 set using Intel(R) Xeon(R) Gold 6148 CPU, 2.40GHz.

4.2.4 Results

Main Results

Table 4.1 lists the WSJ results evaluated on the WER and RTF. Here, K represents the number
of inference steps required to produce an output sequence, and when K = 0 for Mask-CTC, the
evaluation was based on the CTC predictions derived from best path decoding. By comparing the
results for non-autoregressive models, the greedy CTC predictions of Mask-CTC outperformed the
standard CTC-based model (e.g., B1 vs. B2), owing to the synergistic effect of joint training with
the CMLM objective. By applying the proposed iterative refinement algorithm to CTC predic-
tions, Mask-CTC consistently improved its performance. The performance of CTC significantly
improved by using Conformer (B1 vs. C1), and similarly, Mask-CTC greatly benefited from using
the better architecture (C2). Compared to the autoregressive models, Mask-CTC yielded results
more closely aligned with those of AR than with CTC (A3 vs. C1 vs. C2). Regarding inference
speed measured in the RTF, Mask-CTC achieved speeds up to 7.24 times faster compared to AR
(A3 vs. C2), while maintaining a satisfactory level of recognition performance. Mask-CTC ex-
hibited superior performance compared to previous results from a non-autoregressive end-to-end
ASR model (Chan et al., 2020) that also combines CTC with masked language modeling.
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Table 4.2: Decoding example for utterance 443c040i in WSJ eval92. The output sequence was
first initialized by the CTC predictions, and low-confidence tokens were replaced with mask to-
kens (“-”) based on their output probabilities. The masked tokens were then iteratively predicted
conditioning on the other unmasked tokens. Red indicates characters with errors and blue indi-
cates ones recovered by Mask-CTC decoding.

CTC they favor un anounced checks by roving rather than in house anspectors · · · in sefood processing

k = 0 they favor un--noun--d ch--ks by roving rather than -n-house -nspectors · · · in --food processing
k = 1 they favor un--noun--d ch--ks by roving rather than -n-house -nspectors · · · in --food processing
k = 2 they favor unannoun--d ch--ks by roving rather than -n-house inspectors · · · in --food processing
k = 3 they favor unannounc-d ch-cks by roving rather than in house inspectors · · · in --food processing
Mask-CTC they favor unannounced checks by roving rather than in house inspectors · · · in sifood processing

Refeference they favor unannounced checks by roving rather than in house inspectors · · · in seafood processing

Table 4.3: WERs on VoxForge Italian and TED-LIUM2 tasks. K denotes the number of inference
steps required to generate each output token. Results with beam search are reported in parentheses.

Test WER [%] (#)
Model K VoxForge TED-LIUM2

Transformer-AR L 35.5 9.5
+ beam search 35.7 8.9

Conformer-AR L 29.8 8.4
+ beam search 29.8 7.9

Transformer-CTC 0 56.1 16.6
Transformer-Mask-CTC 10 38.3 10.9
Conformer-CTC 0 31.8 9.5
Conformer-Mask-CTC 10 29.2 8.6

Example Decoding Process of Mask-CTC

Table 4.2 shows an example decoding process of Mask-CTC recognizing a sample in the WSJ
evaluation set. Here, it can be observed that the CTC predictions included errors mainly coming
from substitution errors due to incomplete word spelling. By applying Mask-CTC decoding, the
spelling errors were successfully recovered by considering contextual dependencies between char-
acters at the word level. However, as can be seen in the error for “sifood,” Mask-CTC was not
capable of recovering errors derived from character-level insertion or deletion errors because the
length allocated to each word was fixed by the CTC predictions. Such errors can be resolved by
introducing an additional mechanism that allows the model to delete and insert tokens during the
mask prediction process (Higuchi et al., 2021b).
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Table 4.4: BLEU scores of speech translation models on Fisher-CallHome Spanish.

BLEU (")
Fisher CallHome

Model dev dev2 test devtest evltest

AR 47.01 47.89 47.19 18.11 17.95
CTC 45.57 46.97 45.97 15.99 15.91

Mask-CTC
+ CTC greedy 45.93 46.82 46.17 15.73 15.60
+ original decoding 44.80 45.40 44.39 14.14 14.14
+ mask-predict 47.43 48.14 46.96 16.52 16.42
+ restricted mask-predict 49.94 49.42 48.66 16.96 16.79

Results on Other Corpora

Table 4.3 shows the results on VoxForge and TED-LIUM2. Consistent with the findings in the
WSJ task, Mask-CTC outperformed the standard CTC-based model, indicating its effectiveness
across different languages and varying amounts of data. Remarkably, with Conformer, Mask-
CTC achieved results on par with AR in the VoxForge task, which suggests that masked language
modeling is especially effective for capturing linguistic information in limited resource settings.

4.2.5 Application to End-to-End Speech Translation

To see a potential application to other speech tasks, I applied the Mask-CTC framework to the
end-to-end speech translation task, following the ESPnet-ST toolkit (Inaguma et al., 2020). For
non-autoregressive models, including CTC and Mask-CTC, sequence-level knowledge distilla-
tion (Kim and Rush, 2016) was used during training. Table 4.4 shows the results on the Fisher-
CallHome Spanish corpus (see Appendix A.10 for corpus details). Unlike ASR, input-output
alignments are not monotonic in this task, and the confidence filtering based on the output prob-
abilities did not work well. Next, I performed the original mask-predict decoding algorithm pro-
posed in neural machine translation (Ghazvininejad et al., 2019) by starting from all mask tokens,
which resulted in some gains over CTC. Finally, I initialized an output sequence with the filtered
CTC output as in the ASR task and then performed the mask-predict decoding. Here, the number
of masked tokens at each iteration is truncated by the number of initial masked tokens (restricted
mask-predict) to keep information from the CTC predictions for the later iterations. This way,
the results were further improved from the CTC greedy results by a large margin. Moreover,
interestingly, Mask-CTC outperformed the autoregressive model on this corpus.
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Figure 4-2: Overview of proposed Mask-Conformer model and its network components.

4.3 Mask-Conformer: Augmenting Conformer with CMLM Decoder

This section introduces Mask-Conformer, a novel end-to-end ASR model designed to effectively
utilize linguistic information derived from the CMLM. In contrast to Mask-CTC, which focuses
on refining output sequences at the token level, Mask-Conformer aims to enhance the frame-level
speech encoding process within an end-to-end ASR model. This is achieved by explicitly condi-
tioning the encoder on the outputs of the CMLM decoder, which enables the model to reinterpret
speech inputs based on contextualized linguistic representations.

4.3.1 Mask-Conformer

Figure 4-2 illustrates the proposed Mask-Conformer, which introduces a CMLM decoder to the
Conformer encoder architecture (see Section 2.3.3 for details). Mask-Conformer is composed of
Nblock sub-blocks sandwiched between the subsampling and ASR decoder (i.e., the transducer
decoder) layers. Figure 4-3 shows the detailed structure of the sub-blocks. Each sub-block is
constructed of N layer Conformer encoder layers, with an additional CMLM decoder and cross-
attention module. The CMLM decoder solves the token in-filling task (Devlin et al., 2019) while
conditioned on the encoder outputs. Token-level linguistic information captured by the CMLM
decoder is explicitly fed to the next block via the cross-attention module (Figure 4-3(a)). The
cross-attention module can be enabled or disabled (Figure 4-3(b)) based on what information is
available during training and inference. The following delves into the CMLM decoder and cross-
attention modules implemented in the Mask-Conformer model.
CMLM Decoder Given a partially masked output sequence W̃ (as defined by Eq. (4.1)) and
the output of the i-th Conformer encoder layer H(i), the CMLM decoder computes a posterior
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(a) Block with cross-attention.
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Self-Attention

Convolution

CMLM decoder

W̃

N layer⇥

H((n�1)N layer)

H(nN layer) Y (n)
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(b) Block without cross-attention.

Figure 4-3: Mask-Conformer block. Mask-Conformer builds its sub-block by augmenting a Con-
former encoder layer with an additional CMLM decoder and cross-attention module. The CMLM
decoder is trained to capture token-level linguistic information explicitly, which is used to con-
dition the encoder layers via cross-attention. The cross-attention module can be enabled (a) or
disabled (b) based on what information is available during training and inference.

probability distribution of mask tokens similarly to Eq. (4.2) as

p(W|W̃ ,H(i)) =
Y

wl2W

p(wl|W̃ ,H(i)), (4.11)

where i 2 {nN layer|n = 1, · · · , Nblock} is the layer index at which the CMLM decoder is applied,
i.e., every N layer layers of Conformer encoder (see Figure 4-3). The token emission probability in
Eq. (4.11) is computed similarly to Eq. (4.5) as

Y (n) = (y(n)
1 , · · · ,y(n)

L ) = TransformerDecoder(W̃ ,H(i)) 2 RL⇥Dmodel
, (4.12)

p(wl|W̃ ,H(i)) = Softmax
⇣

LinearDmodel!|V|(y
(n)
l )
⌘
2 [0, 1]|V|, (4.13)

where n 2 {1, · · · , Nblock}. Note that the parameters of the Transformer decoder are shared
among the Mask-Conformer blocks. However, an alternate structure could use different decoder
modules per block.
Conformer with Cross-Attention With the cross-attention (CA) mechanism, the Conformer’s
embedding process of O in Eq. (2.61) is redefined as

H 0 = ConformerEncoderWithCA(O, W̃ ) 2 RT 0
⇥Dmodel

, (4.14)

where W̃ is a masked output sequence used as an input to the CMLM decoder (i.e., Eq. (4.12)).
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Algorithm 2 Inference algorithm of Mask-Conformer

Input: Input sequence O; Beam size B; Threshold probability P thres

1: H = ConformerEncoder(O) . Forward w/o cross-attention
2: Ŵ = DecodeTransducer(H,B) . First-pass decoding
3: for all ŵl 2 Ŵ do . Mask low-confidence tokens

4: ŵl =

(
[MASK], if p(wl = ŵl|Ŵ ,H)  P thres

ŵl, otherwise
5: end for
6: H 0 = ConformerEncoderWithCA(O, Ŵ ) . Forward w/ cross-attention
7: ˆ̂W = DecodeTransducer(H 0, B) . Second-pass decoding
8: return ˆ̂W

The modified encoder layer operates similarly to Eqs. (2.62) to (2.65), with an additional cross-
attention module inserted between Eqs. (2.63) and (2.64) as

¯̄H(i)  

8
<

:

¯̄H(i) (n  N layer),
¯̄H(i) + MHA(i)(LayerNorm( ¯̄H(i)), Y (n), Y (n)) (n > N layer),

(4.15)

where i 2 {1, · · · , Nblock ⇥ N layer}, n = b(i � 1)/N layerc, and the left arrow symbol ( )
represents the reassignment of ¯̄H(i). Similarly to the cross-attention mechanism in Eq. (2.58),
MHA(·) in Eq. (4.15) takes queries from the encoder’s hidden states, along with keys and values
from the output of the CMLM decoder. This enables the model to infuse linguistic information
from the CMLM decoder into speech information processed in the encoder. Note that when n 
N layer, the block behaves the same as the standard Conformer encoder, since Y (0) is not available.

Inference

Algorithm 2 explains the inference algorithm of Mask-Conformer, designed to explicitly utilize
token-level contextualized information learned in the CMLM decoder. As the decoder input (i.e.,
a masked token sequence Ŵ ) is not initially available, a two-pass inference strategy is employed
based on confidence-based masking, which is similar to Mask-CTC (see Section 4.2.2) and prior
studies in Ghazvininejad et al. (2019); Baskar et al. (2022). The algorithm begins by computing
encoder outputs H without the cross-attention module (i.e., Figure 4-3(b)), where the forward
process is the same as the standard Conformer in Eq. (2.61) (line 1). With the encoder outputs H
and a beam size of B, a hypothesis Ŵ is obtained via transducer decoding (see Section 2.2.2 for
details) (line 2). Each token in Ŵ is then scored using the CMLM decoder with Eq. (4.13), where
a token is substituted with [MASK] if its output probability is less than or equal to a predetermined
threshold P thres (line 4). Using the masked sequence, the algorithm computes encoder outputs H 0
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with cross-attention as in Eq. (4.14) (i.e., Figure 4-3(a)), infusing decoder information explicitly
into the encoder (line 5). Finally, with the updated encoder outputs H 0, a second-pass result ˆ̂W is
obtained from transducer decoding with a beam size of B (line 6). With this two-pass decoding
strategy, it is expected that ˆ̂W will be refined from Ŵ with the aid of the linguistic information
extracted by the CMLM decoder.

Training

Given ground-truth and masked sequences W and W̃ , the loss for the CMLM decoder is defined
by the negative log-likelihood of Eq. (4.11) as

Lcmlm(W|W̃ ,H(i)) = � log p(W|W̃ ,H(i)), (4.16)

which is computed based on the i-th encoder output H(i). To obtain W̃ during training, Pmask% of
the tokens in the ground truth sequence W are replaced with [MASK], where the masked positions
are randomly sampled from a Bernoulli distribution as in Devlin et al. (2019). Additionally,
P rep% of the tokens are replaced with random tokens in V to simulate the possibility of unmasked
incorrect tokens during the two-pass decoding process. Note that the positions selected for the
randomly masked and replaced tokens do not overlap.

Multi-tasking the transducer objective from Eq. (2.30) and the CMLM decoder objective
from Eq. (4.16), Mask-Conformer computes its loss by combining losses with and without cross-
attention (Figures 4-3(a) and 4-3(b)). The loss with cross-attention is defined using the encoder
outputs derived from Eq. (4.14) as

Lca = Ltra(W |H 0) +
NblockX

n=1

Lcmlm(W|W̃ ,H 0(nN layer)), (4.17)

where H 0(nN layer) represents the outputs from the (nN layer)-th encoder layer. Similarly, the loss
without cross-attention is defined as

Lnoca = Ltra(W |H) +
NblockX

n=1

Lcmlm(W|W̃ ,H(nN layer)), (4.18)

where the encoder outputs are obtained from the standard forward computation of Conformer
(with Eq. (2.61)). Combining Lca from Eq. (4.17) and Lnoca from Eq.(4.18), the overall Mask-
Conformer loss is defined as

Lmask-cfm = Lca + Lnoca. (4.19)

Note that the losses are weighted equally among the CMLM losses in Eqs. (4.17) and (4.18) as
well as between Lca and Lnoca in Eq. (4.19).
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4.3.2 Experimental Setting

Data

The experiments were carried out using English ASR tasks, including single-domain LibriSpeech
and multi-domain SpeechStew. See Appendix A for corpus details. For all data preparation, I
adhered to the prior work on LibriSpeech (Gulati et al., 2020) and SpeechStew (Chan et al., 2021).

Models and Architectures

The baseline end-to-end ASR model is a well-tuned Conformer model from Gulati et al. (2020);
Chan et al. (2021), which achieves state-of-the-art performance with standard transducer training
as described in Section 2.2.2. The models were constructed using the medium (M) or large (L)
Conformer-transducer architectures, as specified in Gulati et al. (2020). All the models employed
a single LSTM layer with Dlstm = 640 units for the transducer decoder. The proposed Mask-
Conformer uses a CMLM decoder with a stack of Ndec = 6 Transformer decoder layers (Vaswani
et al., 2017), with hyper-parameters (e.g., number of heads) matching those of the self-attention
modules in the Conformer encoder. Each Mask-Conformer block consisted of N layer = 4 encoder
layers. All the models were implemented based on the Lingvo (Shen et al., 2019) and Tensor-
Flow (Abadi et al., 2016) toolkits.

Training Configuration

I followed the previous work in Gulati et al. (2020); Chan et al. (2021) for the training configura-
tions. The models were trained up to 150k steps using the Adam optimizer (Kingma and Ba, 2015)
with (�1,�2, ✏) = (0.9, 0.98, 10�9). The Noam learning rate scheduling (Vaswani et al., 2017)
was used with warmup steps of 10k, where the learning rate constant was tuned from {2.5, 5.0}.
The batch size was set to 2048 for LibriSpeech and 8192 for SpeechStew. For regularization, I
applied residual dropout (Srivastava et al., 2014) with a probability of 0.1, variational noise (Jim
et al., 1996) with a standard deviation of 0.075, and L2 regularization with a weight of 10�6. I
augmented speech data using SpecAugment (Park et al., 2020a), where the number of frequency
and time masks were 2 and 10, and the size of frequency and time masks were 27 and 0.05T . For
Mask-Conformer training, both the token masking and replacing ratios, Pmask and P rep, were set
to 15%.

Decoding Configuration

Exponential-moving-averaged model weights aggregated with decay rate 0.9999 were used for
final evaluation (Zhang et al., 2020b). With the transducer decoder, beam search decoding was
performed with a beam size of B = 8. The threshold probability for Mask-Conformer’s second-
pass decoding was set to P thres = 0.9.
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Table 4.5: WER on single-domain LibriSpeech task.

WER [%] (#)
Params [M] Dev Test

ID Model Training Inference clean other clean other

M0 Conformer-M 30.7 30.7 2.1 5.0 2.2 5.1
+ larger decoder (1! 4) 40.5 40.5 2.0 5.0 2.2 5.1

M1 Mask-Conformer-M 43.8 30.7 1.9 4.8 2.1 4.8
M2 + two-pass decoding 43.8 43.8 1.9 4.7 2.1 4.7

L0 Conformer-L 118.8 118.8 1.8 4.2 2.0 4.3
+ larger encoder (17! 23) 156.6 156.6 1.9 4.2 2.0 4.4

L1 Mask-Conformer-L 158.6 118.8 1.9 4.1 2.0 4.2
L2 + two-pass decoding 158.6 158.6 1.8 4.0 1.9 4.1

4.3.3 Results

Main Results on Single-Domain LibriSpeech

Table 4.5 compares the WER of the baseline Conformer with the proposed Mask-Conformer on
LibriSpeech. The suffixes M and L refer to model sizes Medium and Large. With the introduction
of the CMLM decoder, Mask-Conformer performed better (M0 vs. M1,M2). Note that during first-
pass decoding, the number of parameters used in Mask-Conformer was the same as that of the
baseline. The second-pass mask-predict algorithm further improved the performance (M1 vs. M2),
improving an already strong baseline even further by explicitly exploiting the token-level linguistic
information captured by the CMLM decoder. The above findings remain consistent across the
larger models (L*), with Mask-Conformer achieving distinct improvements over Conformer.

Results on Multi-Domain SpeechStew

Table 4.6 lists results on the multi-domain SpeechStew task. Mask-Conformer resulted in superior
performance compared to Conformer on Common Voice, LibriSpeech, Switchboard and WSJ.
I attribute this to the fact that multiple domains exhibit differing error patterns or that length
differences in their utterances require different masking strategies. Moreover, I find that two-
pass rescoring demonstrated a small but consistent improvement across AMI, Common Voice
and TED-LIUM3. This suggests that conditioning with the mask-predict decoder is particularly
advantageous for domain-specific tasks, where the decoder can be more useful within an adapter or
domain-conditioned setting. I also compare Mask-Conformer to large foundation models (Zhang
et al., 2022c; Chen et al., 2022b) pre-trained on a vast amount of unlabeled data and in the case
of Chen et al. (2022b) additional text. Notice that these models perform exceptionally well on
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Table 4.6: WER on multi-domain SpeechStew task, evaluated across various test sets, includ-
ing AMI, Common Voice (CV), LibriSpeech (LS), Switchboard/Fisher (SWBD), TED-LIUM3
(TED3), and Wall Street Journal (WSJ). In addition to the baseline Conformer-L model, results
of pre-existing foundation models pre-trained with unlabeled data are listed. The numbers of the
previous models were obtained from the published papers. †Evaluated with punctuation removal
following Likhomanenko et al. (2020).

WER [%] (#)
AMI CV† LS SWBD TED3 WSJ

Model Params [B] IHM SDM1 Test clean other SWBD CH Test eval92

Conformer-L (Chan et al., 2021) 0.1 9.0 21.7 9.7 2.0 4.0 4.7 8.3 5.3 1.3
MAESTRO (Chen et al., 2022b) 0.6 8.5 21.9 8.1 1.5 2.8 4.3 8.0 4.9 –
ConformerXXL (Zhang et al., 2022c) 1.0 8.6 17.7 7.8 1.9 3.5 4.8 10.6 5.9 1.3

Mask-Conformer-L 0.1 9.1 21.8 9.6 1.9 3.8 4.5 8.7 5.6 1.2
+ two-pass decoding 9.0 21.6 9.4 1.9 3.8 4.5 8.7 5.5 1.2

specific tasks (e.g., LibriSpeech and TED-LIUM3) whose domains match the ones of unlabeled
data used for pre-training. Interestingly, the performance of Mask-Conformer outperformed the
much larger Conformer-XXL model on CallHome, Fisher, WSJ, and TED-LIUM3 indicating the
proposed architecture led to improving the model’s generalization capability without an increase
in parameters and training data.

Comparison to Prior Work

Table 4.7 presents WERs on LibriSpeech, comparing the baseline and Mask-Conformer models
with the previously proposed competitive models. It should be noted that I refer to the published
papers for the prior results, and the comparison is not necessarily in an equivalent setting (e.g.,
deep learning library and computational environment). Overall, Mask-Conformer exhibited highly
competitive performance, pushing the limits of the previous state-of-the-art results.

4.3.4 Analysis

Does the gain come from more parameters?

For a fairer comparison in terms of the model capacity, in Table 4.5, I list WERs of the baseline
models that were trained with an increased depth in either the decoder or encoder network.
Decoder I first augmented the number of LSTM layers (1 ! 4) in the transducer decoder of
Conformer-M (M0), thereby attaining an equivalent model size to that of Mask-Conformer-M (M2).
The deeper decoder yielded minimal improvements in ASR performance, which aligns with the
observations from previous works (Tripathi et al., 2020; Ghodsi et al., 2020; Botros et al., 2021;
Shrivastava et al., 2021). In contrast, Mask-Conformer has successfully enhanced ASR perfor-
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Table 4.7: WER on LibriSpeech task, comparing Mask-Conformer with previous models. The
numbers of the previous models are obtained from the published papers.

WER [%] (#)
Dev Test

Model Params [M] clean other clean other

Previous Models
ContextNet (M) (Han et al., 2020) 31.4 – – 2.4 5.4
Conformer (M) (Gulati et al., 2020) 30.7 – – 2.3 5.0
Citrinet (Majumdar et al., 2021) 36.5 – – 3.1 7.8
E-Branchformer (M) (Kim et al., 2023) 41.1 2.3 5.7 2.5 5.6

Ours
Conformer-M (M0) 30.7 2.1 5.0 2.2 5.1
Mask-Conformer-M (M2) 43.8 1.9 4.7 2.1 4.7

Previous Models
Transformer (Zhang et al., 2020a) 139.0 – – 2.4 5.6
ContextNet (L) (Han et al., 2020) 112.7 2.0 4.6 2.1 4.6
Conformer (L) (Gulati et al., 2020) 118.8 1.9 4.4 2.1 4.3
Conformer CTC/Att. (Peng et al., 2022) 116.2 2.2 5.6 2.5 5.5
Citrinet (Majumdar et al., 2021) 142.0 – – 2.5 6.2
Branchformer (Peng et al., 2022) 116.2 2.2 5.5 2.4 5.5
E-Branchformer (L) (Kim et al., 2023) 148.9 – – 2.1 4.6

Ours
Conformer-L (L0) 118.8 1.8 4.2 2.0 4.3
Mask-Conformer-L (L2) 158.6 1.8 4.0 1.9 4.1

mance through the effective design and integration of the decoder network.
Encoder I then increased the number of Conformer encoder layers (17 ! 23) in Conformer-
L (L0), which resulted in the same model size as that of Mask-Conformer-L (L2). It appeared
that there was little performance gain from increasing the encoder size. This can be attributed
to the over-parameterization of the encoder in relation to the amount of data available in Lib-
riSpeech (Zhang et al., 2020b). On the other hand, Mask-Conformer strategically allocates param-
eters to the decoder network, enabling it to effectively capture token-level linguistic information
for facilitating the training process of the encoder network.

How effective is second-pass mask-predict decoding?

Figure 4-4 shows WERs of Mask-Conformer (M2, L2), averaged on the dev-clean and -other sets,
depending on the threshold probability P thres used to filter low-confidence tokens (Algorithm 2
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Figure 4-4: Influence of threshold probability P thres on WERs during two-pass decoding. The
bar plots show the percentage of tokens that were replaced with [MASK] in each output sequence.
This figure is reproduced from my conference paper (Higuchi et al., 2023d).

line 4). Filtering too many tokens can leave too much uncertainty for the model to recover from,
filtering too few can prevent any error correction. In this section, I explore the optimal threshold,
all else being held constant. When P thres = 0.0, no masks were applied to the first-pass result,
and, during the second pass, the model had full access to the entire output sequence. While with
P thres = 1.0, all tokens were masked. As the threshold P thres is increased from 0.0, there was a
gradual increase in the number of masked tokens, which correspondingly led to improving WERs.
Mask-Conformer achieved its best performance with P thres = 0.9 by effectively applying partial
masks and repredicting them based on explicit contextual information. Though the reduction in
WER may appear modest, the observed gain from two-pass decoding is promising, particularly
considering the competitiveness and saturation of the LibriSpeech task.

Random masking/replacing ratios during training.

Table 4.8 investigates WERs of Mask-Conformer (M2) trained with different combinations of ran-
dom masking and replacing ratios, Pmask and P rep. Merely applying random masks still per-
formed better than the baseline Conformer-M (M0). Furthermore, the inclusion of random replace-
ment further improved the performance, anticipating the possibility of unmasked incorrect tokens
during two-pass decoding. Increasing the ratios led to a slight degradation, suggesting that a sim-
ilar masking ratio should be used during training and inference.
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Table 4.8: WER of Mask-Conformer-M (M2 from Table 4.5) trained with different combinations
of random masking and replacing ratios, Pmask and P rep.

WER [%] (#)
Pmask P rep dev-clean dev-other

15% 0% 2.0 4.8
15% 15% 1.9 4.7
30% 0% 1.9 4.8
30% 30% 2.0 4.8

Table 4.9: WER on LibriSpeech task for comparing models trained with different types of inter-
mediate decoders.

WER [%] (#)
Dev Test

Intermediate Decoder Type clean other clean other

None (M0) 2.1 5.0 2.2 5.1

CTC 2.1 5.1 2.2 5.2
Transducer 2.0 5.0 2.1 4.9
Attention 2.0 4.7 2.2 4.8
CMLM 1.9 4.8 2.1 4.8

Comparison Across Different Decoder Types

Mask-Conformer was effective without two-pass decoding (e.g., M1) (Section 4.3.3). Thus, I
trained the model exclusively using Eq. (4.18), with the option to substitute the CMLM decoder
loss Lcmlm with other loss functions. Such training resembles the intermediate regularization
technique that applies auxiliary losses to intermediate encoder layers, which has been explored
using auxiliary CTC (Sanabria and Metze, 2018; Tjandra et al., 2020; Lee and Watanabe, 2021;
Lee et al., 2022) or attention losses (Zhang et al., 2022b; Komatsu and Fujita, 2023), as also
introduced in Chapter 3. Table 4.9 lists WERs on LibriSpeech, comparing Conformer-M (M0)
trained with different types of intermediate decoder losses. In my experimental setup, CTC had
a limited impact on enhancing the model performance, likely due to the absence of the decoder
network. The other losses effectively improved the baseline, indicating the importance of decoder
capacity. While the attention decoder is also a viable option, Mask-Conformer benefits from
the efficient non-autoregressive sequence processing, particularly during inference, thanks to the
CMLM decoder.
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4.3.5 Limitations

Mask-Conformer’s novelty is in its structure of providing both forward and backward propagation
training signals at multiple points in the encoder. This is accomplished through incremental de-
coding signal through the CMLM decoder, and an ability to inject hypotheses at multiple layers
of the encoder network. The latter provides the capability to perform recognition and hypothesis
correction in a single model.

However, I acknowledge three limitations to the current formulation of the Mask-Conformer.
1) The two-pass recognition requires a second pass that is as computationally intensive as the
first pass. 2) While the Mask-Conformer requires very few additional parameters to accomplish
this capability, its structure introduces more hyper-parameters (see Section 4.3.4). These include
the position, number, and size of CMLM decoders as well as the masking threshold. While I
have analyzed many of these, they likely interact in non-obvious ways. 3) The presentation of
the model’s current hypotheses as the correction signal may be exacerbating exposure bias for the
model. This is similar to the risk of previous self-training techniques. While this is addressed to
some degree by masking the hypotheses prior to injection, further mitigation may be necessary to
improve the second-pass inference performance.

4.4 Mask-CTC-Based Encoder Pre-Training for Streaming End-to-
End ASR

This section aims to employ Mask-CTC for pre-training end-to-end streaming ASR models. By
jointly optimizing CTC and CMLM objectives, Mask-CTC trains a model to extract acoustic fea-
ture representations that adeptly capture long-term output dependencies by anticipating both past
and future contexts. This has been proven effective in ASR tasks, as demonstrated in earlier sec-
tions. Additionally, the context-rich representations harnessed by Mask-CTC have been validated
in several follow-up studies focusing on spoken language understanding tasks (Li and Doddi-
patla, 2023; Meeus et al., 2023), which require the comprehension of more abstract linguistic
context. This section focuses on streaming tasks, and I propose to pre-train end-to-end streaming
ASR models using the Mask-CTC framework, expecting that the context-aware representations
are advantageous in reducing latency requirements, particularly by effectively anticipating future
contexts.

4.4.1 Streaming End-to-End ASR Models

In this section, I introduce two types of streaming ASR approaches that are central to this study:
Streaming Transformer-transducer (Transformer-T) (Chen et al., 2021d) and contextual block
streaming AED (CBS-AED) (Tsunoo et al., 2021).
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Streaming Transformer-Transducer (Transformer-T)

The transducer-based end-to-end ASR model (as described in Section 2.2.2) operates in a frame-
synchronous manner and can easily be adapted for an online streaming model. To this end, var-
ious architectures have been developed to enable effective streaming processing in the encoder
network (Zhang et al., 2016; Rao et al., 2017; Dong et al., 2019). In this study, I focus on the
Transformer-based encoder (Chen et al., 2021d), which has been successfully adopted for stream-
ing ASR models. To enable streaming feature extraction in the Transformer encoder, a chunk-wise
attention mask is applied during the computation of self-attention (in Eq. (2.46)). The chunk-wise
attention mask segments the input sequence into fixed-width chunks (sub-sequences) with a spe-
cific chunk size. Here, frames located within the same chunk can attend to one another. However,
if two frames are located in separate chunks, the frame on the left cannot attend to the frame on
the right, regardless of the offset. Therefore, the extent of the look-ahead range is controlled by
the pre-defined chunk size. Refer to the original work of Chen et al. (2021d) for detailed informa-
tion on the design of the chunk-wise attention mask. Hereafter, this architecture is referred to as
Transformer-transducer (Transformer-T).

Contextual Block Streaming AED (CBS-AED)

Contextual block streaming AED (CBS-AED) (Tsunoo et al., 2021) introduces streaming proper-
ties to the AED-based end-to-end ASR model (as described in Section 2.2.3). The AED model,
operating in a label-synchronous fashion, is not inherently suited for streaming applications. To
address this, CBS-AED employs a block processing technique, which involves dividing the input
sequence into small blocks of frames. In this way, streaming processing can be realized by shifting
these blocks sequentially across the entire input sequence.

During the processing of each block, the speech input is first divided into segments containing
past, central, and future frames with the numbers of N l, N c, and N r. These segments are then
fed together into the encoder network, where the central frames are utilized for output generation,
while the past and future frames provide local contexts. To accommodate the consideration of
longer-term contexts from past blocks, the context inheritance mechanism (Tsunoo et al., 2019) is
employed by introducing an additional contextual embedding vector to the encoder input. The en-
coder computes hidden states for this vector, which are subsequently inherited to the computation
of the next block. Consequently, this facilitates the inheritance of a global context that contributes
to enhancing the feature extraction process for streaming inputs. To enable streaming decoding
using the decoder network of AED, the block boundary detection (BBD) algorithm (Tsunoo et al.,
2021) is implemented. The role of the BBD algorithm is to determine the length of a hypothesis
that the current block can support. If a hypothesis exceeds the length that the encoder output can
accommodate, it is likely to become unreliable. In such situations, the decoder network often en-
counters two predominant errors, including prematurely predicting the end-of-sentence token or
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Figure 4-5: Illustration of Mask-CTC-based pre-training for streaming end-to-end ASR model
(e.g., Transformer-transducer). In Stage 1, the encoder network is trained within the Mask-CTC
framework. In Stage 2, the Transformer-transducer model is initialized using the pre-trained en-
coder and subsequently fine-tuned to align with a streaming objective.

generating repetitive tokens. The BBD algorithm utilizes such observations as stopping criteria
for detecting the block boundary on the fly and performs beam search decoding synchronously
with the encoded blocks. For more detailed information on CBS-AED, refer to the original work
of Tsunoo et al. (2021).

4.4.2 Mask-CTC-Based Pre-Training Method

A simple and general pre-training method based on Mask-CTC is proposed to achieve high-
accuracy and low-latency streaming ASR. Specifically, this study aims to demonstrate the effec-
tiveness of Mask-CTC-based pre-training regardless of model architectures and discusses whether
such pre-training can extract features suitable for anticipation as intended, focusing on the align-
ment of the output tokens.

As different end-to-end streaming ASR models, I focus on Transformer-T and CBS-AED,
as introduced in the previous section, covering both the transducer and AED-based model archi-
tectures. For both models, the adoption of Transformer has realized high recognition accuracy
in their non-streaming baselines. However, when applied to streaming scenarios, the look-ahead
ranges of self-attention layers are limited from global to local. This leads to an inevitable per-
formance drop by degrading the Transformer’s capability to capture long-range contexts, which
limits applications where low latency is a top priority for recognition.

To remedy such an effect, it is necessary to develop a feature representation for the input se-
quence that not only accounts for long-term contextual dependencies but also anticipates future
information effectively, which corresponds to the properties of Mask-CTC as described in Sec-
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tion 4.2. To introduce the desirable properties of the Mask-CTC model into the streaming ASR, I
propose a simple two-step training method as follows, which is also described in Figure 4-5:

• Stage 1 (Mask-CTC training): The Mask-CTC model is trained to obtain an encoder
network that can extract long-term dependencies and anticipate future information.

• Stage 2 (Streaming ASR training): The pre-trained Mask-CTC model is exploited to ini-
tialize the streaming ASR models. For Transformer-T, the encoder network with the chunk-
wise attention mask is initialized with the Mask-CTC encoder. For CBS-AED, both the
Mask-CTC encoder and CTC networks are used to initialize the corresponding components.

With this two-step training method, I expect to inherit the characteristics of Mask-CTC to a stream-
ing ASR model to capture long-term contextual information and reduce the latency dependency.

4.4.3 Experimental Setting

Speech recognition experiments were conducted to examine the effectiveness of the Mask-CTC-
based pre-training method using ESPnet2 (Watanabe et al., 2018; Boyer et al., 2021). I also in-
vestigated the essential effect of the proposed pre-training method by studying the output token
alignments of the streaming ASR models.

Data

The models were trained and evaluated using the WSJ and TED-LIUM2 (TED2) datasets (see
Appendix A for corpus details). For the output tokens, I used SentencePiece (Kudo, 2018) to
construct a 80 subword vocabulary for WSJ and a 500 subword vocabulary for TED2, respectively.
For robust model training, I applied SpecAugment (Park et al., 2019) to the input data.

Model Settings

For the Transformer-T model, the encoder network was implemented with N enc = 12 Transformer
encoder layers and a single LSTM layer for the prediction network. For streaming feature extrac-
tion, a chunk-wise attention mask was implemented and applied to the encoder layers. The latency
value was calculated as the product of the maximum look-ahead range (i.e., chunk size� 1) and a
frame rate of 40ms.

For WSJ experiments, the CBS-AED model consisted of N enc = 6 Conformer encoder layers
and Ndec = 6 Transformer decoder layers. The input block settings followed N l = 8, N c = 4,
and N r varying from 0 to 6. The latency for CBS-AED was calculated as the product of the
maximum look-ahead range in the block (i.e., N c + N r � 1) and a frame rate of 40ms. For
TED2 experiments, the CBS-AED model consisted of N enc = 12 Conformer encoder layers and
Ndec = 6 Transformer decoder layers. The configuration of the input blocks remained identical
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Table 4.10: WER on WSJ task.

WER [%] (#)
Model Latency [ms] Initialization eval92 dev93

Baseline

Transformer-T

120
Random

19.5 23.3
160 16.8 20.9
200 15.1 18.9

1 Random 14.7 17.3

CBS-AED

200
Random

14.4 18.1
280 13.2 16.2
360 12.9 16.1

1240 Random 11.2 14.2

Enhanced

Transformer-T
120

Mask-CTC
16.6 20.8

160 15.0 19.0
200 14.8 18.5

CBS-AED
200

Mask-CTC
13.5 17.2

280 12.9 16.0
360 12.2 16.1

to those used in the WSJ task except that N r was fixed at 6. For the pre-trained Mask-CTC model,
the encoder network was constructed with the identical setting as the target streaming model. The
CMLM decoder was built with Ndec = 6 Transformer decoder layers.

All the models were trained by 150 epochs, and the final models were obtained by averaging
the snapshots of the 10 epochs of the minimal validation loss for Transformer-T and the best
validation accuracy for CBS-AED. Beam search decoding was conducted with a beam size of 10

for all the models.

4.4.4 Results

Main Results

For both the Transformer-T and CBS-AED systems, the performance of the following models was
compared.

• Baseline (Chen et al., 2021d; Tsunoo et al., 2021): Existing streaming ASR models, includ-
ing Transformer-T and CBS-AED. The parameters for all the network components were
randomly initialized.
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Table 4.11: WER on TED-LIUM2 task.

Model Latency [ms] Initialization WER [%] (#)

Baseline

CBS-AED
280 Random 11.3

1240 Random 9.8

Enhanced

CBS-AED 280 Mask-CTC 11.1

• Enhanced: Streaming ASR models with the proposed Mask-CTC-based pre-training. Net-
work components of the streaming ASR were initialized with pre-trained Mask-CTC mod-
ules. For Transformer-T, the encoder module was initialized with the Mask-CTC encoder.
For CBS-AED, both encoder and CTC modules were initialized with the corresponding
Mask-CTC modules.

The experimental results of Transformer-T and CBS-AED are summarized in Table 4.10 and
Table 4.11. Non-streaming Transformer-T and CBS-AED with 1240ms latency were used as lower
bounds in these experiments.

The results on WSJ show that for both Transformer-T and CBS-AED, the enhanced models
outperformed the baseline models by achieving lower WERs under all latency settings, suggest-
ing the accuracy enhancements introduced by the Mask-CTC-based pre-training method. For the
WSJ task, 40ms and 80ms latency reductions were reached for Transformer-T and CBS-AED, re-
spectively, while achieving better or equal recognition accuracy than the baseline models. For in-
stance, the enhanced Transformer-T with 120ms latency achieved lower WERs (16.6% for eval92
and 20.8% for dev93) than the WERs of the baseline with 160ms latency (16.8% for eval92 and
20.9% for dev93). Such results demonstrated that the proposed method contributed to the con-
struction of streaming ASR models with low latency and high accuracy. For the TED2 task, the
enhanced CBS-AED model also achieved 0.2 percentage point of WER reduction compared to
the baseline model, which proves the general effectiveness of the proposed method regardless of
the dataset. The results for systems with different architectures, such as the transducer and AED,
also demonstrated that the Mask-CTC-based pre-training was effective regardless of the model
architecture.

Analysis of Output Token Alignments

It has been argued that streaming models tend to shift the token boundaries to the future side to
obtain more contextual information (Inaguma and Kawahara, 2021), which results in a delay of the
posterior probability spikes for the output tokens compared to non-streaming models. In contrast,
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Figure 4-6: Output token alignments of non-streaming and streaming Transformer-T models. The
background color in each figure represents the ground-truth alignment. The solid lines in the top,
middle, and bottom figures illustrate alignments derived from different models: a non-streaming
model, a streaming model pre-trained by Mask-CTC, and a baseline streaming model, respectively.
This figure is reproduced from my conference paper (Zhao et al., 2023).

if the encoder network learns the feature representations that anticipate future information, the
output tokens can be confirmed earlier and the token boundary shifting issue should be remedied
in some instances. To investigate this further, I measured the delay of the spike occurrences in
streaming models by comparing them to the alignments obtained from a non-streaming model.
The delay is expected to be reduced with the Mask-CTC-based pre-training method.

I conducted measurements on the dev93 validation set of WSJ. Specifically, I evaluated the
baseline and enhanced models with 200ms latency settings for Transformer-T and compared their
alignments with a non-streaming Transformer-T model. The alignments were obtained from the
output of the joint network. For CBS-AED, the latency was also set to 200ms, and I compared the
output token boundaries between the baseline and enhanced models. The ASR alignments were
obtained from the CTC predictions of CBS-AED in the same manner as Inaguma and Kawahara
(2021) and the reference alignments were obtained using the Montreal Forced Aligner (McAuliffe
et al., 2017). Figure 4-6 illustrates one example of output token alignments given by Transformer-
T. Here, the color in the background represents the reference alignment to the speech input. The
non-streaming ASR model (top) managed to predict accurate token alignments. However, the
baseline streaming ASR model (bottom) showed a significant delay in the alignments, indicat-
ing token boundary shifting due to the lack of contexts. Meanwhile, the enhanced streaming
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ASR model (middle), with a Mask-CTC-based pre-trained encoder network, largely improved the
alignments of streaming ASR. I calculated the average output delay reduction across the dev93
validation set for both Transformer-T and CBS-AED. For Transformer-T, the spike output de-
lay was reduced by 44ms, and for CBS-AED, 46ms. Such results help the understanding of the
knowledge learned from the Mask-CTC-based pre-training method and the reason for the latency
reduction capability.

4.5 Summary

This chapter proposed methods for integrating the masked language modeling mechanism into
end-to-end ASR models, to enhance their ability to utilize long-range linguistic contexts effec-
tively.

First, I introduced Mask-CTC, a non-autoregressive end-to-end ASR model that was trained
using the joint CTC and CMLM objective. During inference, the initial sequence was generated
through greedy CTC decoding, and low-confidence tokens were subsequently replaced with the
mask token by thresholding their posterior probabilities. This masked output sequence was then
fed into the CMLM decoder, where the masked tokens were iteratively predicted by taking into
account both the input speech features and the context provided by other unmasked tokens. The
experimental results across different ASR tasks demonstrated that Mask-CTC significantly sur-
passes the performance of the standard CTC-based model, highlighting its effective incorporation
of linguistic context into the ASR process. Furthermore, Mask-CTC yielded results competitive
with the AED model, while requiring much less inference time. Mask-CTC also showed potential
when applied to speech translation tasks.

Subsequently, I further explored the effective use of contextualized linguistic representations in
end-to-end ASR. The proposed Mask-Conformer employed the CMLM decoder to enrich speech
encoding with linguistic information. Specifically, this involved enhancing the Conformer en-
coder with the cross-attention mechanism, allowing it to incorporate the outputs of the CMLM
decoder into the encoder states. The experimental results on single- and multi-domain ASR tasks
demonstrated that Mask-Conformer outperforms strong Conformer-transducer baselines by fully
utilizing the decoder information. Moreover, comprehensive analyses validated the effectiveness
of the proposed architectural design.

Lastly, I proposed to adopt Mask-CTC for the pre-training of streaming end-to-end ASR mod-
els. In Mask-CTC, the CMLM decoder served to enhance the encoder network by supplying
contextual linguistic information, thereby improving the performance of CTC. Such capability to
integrate long-term linguistic context, including information from future contexts, was expected
to aid the training of streaming ASR, enabling it to effectively anticipate and incorporate future
information. By initializing an encoder network of a streaming end-to-end ASR model with a
pre-trained Mask-CTC encoder, the inherent capabilities of Mask-CTC were implicitly leveraged
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to optimize the streaming objective. The experimental results showed the effectiveness of the pro-
posed pre-training method on various streaming models, including Transformer-T and CBS-AED.
Additionally, the analysis of output spike timings in the streaming models revealed that the pre-
training led to more precise estimations of input-output alignments, which contributed to reduced
latency.
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5
End-to-End Speech Recognition Guided by

Pre-Trained Masked Language Model

5.1 Introduction

In the field of NLP, pre-training of language models (Devlin et al., 2019; Radford et al., 2018)
have ascended to a predominant paradigm. This approach involves training language models on a
large quantity of text-only data using well-designed self-supervised objectives (Devlin et al., 2019;
Brown et al., 2020), which leads to the acquisition of versatile linguistic knowledge. Such pre-
trained models provide sophisticated representations that enhance the performance of a diverse
range of downstream NLP tasks (Wang et al., 2018; Gao et al., 2021), while also mitigating the
need for extensive supervised training data. In light of their remarkable success in NLP, pre-trained
language models have been actively adopted for various end-to-end speech processing tasks (Shin
et al., 2019; Huang et al., 2021; Chuang et al., 2020; Chung et al., 2021b; Hayashi et al., 2019;
Kenter et al., 2020; Bang et al., 2022). Particularly in end-to-end ASR, the integration of linguistic
knowledge, including semantic and morphosyntax information (Tenney et al., 2019), is crucial for
generating accurate textual output, holding great promise in enhancing the model’s performance.

Several attempts have been made to indirectly employ pre-trained language models to im-
prove end-to-end ASR models, such as through knowledge distillation (Futami et al., 2020; Bai
et al., 2021; Kubo et al., 2022; Lu and Chen, 2022) and N -best hypothesis rescoring (Shin et al.,
2019; Salazar et al., 2020; Chiu and Chen, 2021; Futami et al., 2021; Udagawa et al., 2022). Al-
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though these approaches are straightforward and do not interfere with the original end-to-end ASR
structures, they can only benefit from the powerful linguistic knowledge either during training or
inference. More recently, there have been efforts to integrate pre-trained language models directly
into end-to-end ASR models, accomplished by fine-tuning the language models in conjunction
with a speech processing network (Huang et al., 2021; Yi et al., 2021; Zheng et al., 2021; Deng
et al., 2021; Yu et al., 2022). This enables explicit adaptation of language models to ASR, while
allowing models to exploit the linguistic knowledge during both training and inference. How-
ever, these approaches require summarizing the speech input into a sequence of appropriate output
length before it can be fed into the language models. Moreover, to effectively optimize the unified
model, the fine-tuning process entails precise calibration and scheduling of hyper-parameters.

In this chapter, I provide an alternative view of incorporating pre-trained language models into
end-to-end ASR, with a particular emphasis on masked language models such as BERT (Devlin
et al., 2019). To achieve this, I propose two models, BERT-CTC and BECTRA, specifically de-
signed to overcome the challenges associated with the integration. BERT-CTC facilitates the com-
bination of audio and linguistic features, based on the formulation of CTC (Graves et al., 2006).
More precisely, BERT embeddings are used to explicitly condition CTC on context-aware linguis-
tic information, thereby mitigating the conditional independence in outputs (refer to Eq. (2.15)).
BERT-CTC exploits the capabilities of BERT without requiring fine-tuning, while enabling end-
to-end training and inference using BERT knowledge and retaining the advantages of the efficient
CTC framework. BERT-CTC-Transducer (BECTRA) is an extension of BERT-CTC developed to
address the discrepancy between text formats and styles employed in end-to-end ASR and BERT.
BECTRA expands BERT-CTC to the transducer-based model (Graves, 2012) and trains the de-
coder (i.e., prediction and joint networks) using a vocabulary tailored to the target ASR task. This
distinct decoder allows for more accurate text generation by alleviating a crucial limitation in
BERT-CTC, wherein the model training is constrained on a word-level and domain-mismatched
vocabulary used in BERT.

While Chapter 4 also focused on masked language modeling to obtain contextual linguistic
information, its effectiveness may be limited due to the small training text data, which was derived
solely from the transcriptions of an ASR corpus. This chapter delves into the utilization of contex-
tualized representations extracted by pre-trained masked language models, which are trained on
a vast amount of text data, and examines the potential of using versatile linguistic knowledge for
enhancing end-to-end ASR models.

5.2 Proposed Integration of Pre-Trained Masked Language Models
into End-to-End ASR

I propose a novel approach to end-to-end ASR that utilizes a pre-trained masked language model in
its formulation, focusing on BERT (Devlin et al., 2019) as a case in point. The proposed approach
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Figure 5-1: Proposed end-to-end ASR models integrating pre-trained masked language model
(i.e., BERT). The models can be described in relation to the CTC and transducer-based models
illustrated in Figure 2-3. BERT-CTC conditions CTC on contextualized linguistic representations
that are obtained from BERT. BECTRA is an extension of BERT-CTC that incorporates prediction
and joint networks, benefiting from both the transducer framework and the use of BERT.

is designed to address the following key points:

• How to make end-to-end ASR conditioned on BERT information?

• How to bridge the gap between text processed in end-to-end ASR and BERT?

The former is solved via BERT-CTC, which adapts BERT representations to explicitly condi-
tion CTC on linguistic contexts (Section 5.2.1). The latter is tackled by BERT-CTC-Transducer
(BECTRA) by extending BERT-CTC to the transducer framework. While the BERT-CTC for-
mulation is restricted to the vocabulary used in BERT, BECTRA overcomes this limitation by
enabling the handling of different text formats and styles (Section 5.2.2).

To provide a precise explanation of the proposed formulation, I define output sequences that
are tokenized using two varying vocabularies: W a = (wa

l 2 Va|l = 1, · · · , La) and W b =

(wb
l 2 Vb|l = 1, · · · , Lb), where Va is a vocabulary constructed from ASR training text, and Vb

is a vocabulary of BERT, with the superscripts a and b indicating ASR and BERT, respectively.
Typically, Vb consists of almost word-level tokens with a large subword vocabulary size, while Va

comprises smaller subword units (i.e., |Vb|� |Va|). Moreover, Vb may contain written symbols,
including punctuation and casing, whereas they are often disregarded in Va.
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5.2.1 BERT-CTC

Overview: Figure 5-1(a) illustrates the overall model architecture of BERT-CTC, which can be
compared with the CTC and transducer-based models shown in Figure 2-3. BERT-CTC utilizes
powerful contextualized representations from BERT to make CTC’s training and inference explic-
itly conditioned on linguistic information (Figure 2-3(a) vs. Figure 5-1(a)). BERT-CTC can be
similar to the transducer in that it fuses audio and token representations to estimate the distribu-
tion over alignments (Figure 2-3(b) vs. Figure 5-1(a)). However, by employing a concatenation
network that attends to the full contexts of the input and output sequences, BERT-CTC permits
learning inner and inter-dependencies within and between the sequences, facilitating the integra-
tion of information from the different modalities (Fujita et al., 2020).

BERT-CTC formulates end-to-end ASR by introducing a partially masked (, partially ob-
served) sequence W̃ b = (w̃b

l 2 Vb|l = 1, · · · , Lb), which is obtained by replacing some tokens
in an output sequence W b with a special mask token [MASK]. This masked sequence is similar
to the one introduced in Chapter 4 (i.e., Eq. (4.1)). Note that [MASK] is included in the BERT
vocabulary Vb. This masked sequence is obtained by applying masks to a ground-truth sequence
during training or a hypothesized sequence during inference.

Taking account of all possible masked sequences, the posterior probability distribution of ASR
p(W b|O) (from Eq. (2.1)) is factorized as

p(W b|O) =
X

W̃ b2M(W b)

p(W b, W̃ b|O) (5.1)

=
X

W̃ b2M(W b)

p(W b|W̃ b, O)p(W̃ b|O), (5.2)

where M(W b) covers W b with all possible masking patterns. In Eq. (5.2), p(W̃ b|O) is inter-
preted as a distribution of sequences that consist of unmasked (observed) tokens, which are read-
ily recognizable from the speech input alone. The other masked tokens, in contrast, are difficult
to determine (e.g., homophones) and require context from observed tokens, which is modeled by
p(W b|W̃ b, O). I provide a more intuitive explanation of this interpretation in the inference section
(Section 5.2.1).

Similarly to Eq. (2.13), p(W b|W̃ b, O) in Eq. (5.2) is further factorized by introducing align-
ment sequences of CTC as

p(W b|W̃ b, O) =
X

Ab2Bctc�1(W b)

p(W b, Ab|W̃ b, O) (5.3)

⇡
X

Ab2Bctc�1(W b)

p(Ab|W b,⇢
⇢W̃ b, O)p(W b|W̃ b,��O), (5.4)
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where Ab = (abt 2 Vb [ {<b>}|t = 1, · · · , T ) is an alignment sequence corresponding to W b

with the BERT vocabulary. Eq. (5.4) makes two conditional independence assumptions. The first
is that given W b and O, W̃ b is not required to determine Ab. This is reasonable because W b

already contains observed tokens in W̃ b and is helpful in avoiding the combination of all possible
masked sequences and alignments (i.e., the Cartesian product of M ⇥ Bctc�1). The second is
that given W̃ b, O is not required to determine W b because p(W b|W̃ b) can be considered as a
strong prior distribution modeled by a pre-trained masked language model (e.g., BERT), which
can be achieved without the observation from O. I empirically show that this assumption holds in
Section 5.6.4.

The posterior probability distribution of p(Ab|W b, O) in Eq. (5.4) is factorized using a prob-
abilistic chain rule as

p(Ab|W b, O) ⇡
TY

t=1

p(abt |⇠⇠⇠⇠⇠⇠
ab1, · · · , abt�1,W

b, O), (5.5)

which makes the conditional independence assumption similar to CTC in Eq. (2.15). However,
Eq. (5.5) is conditioned on an output sequence W b, which enables the explicit use of linguistic in-
formation to estimate the distribution over alignments. This is somewhat similar to the transducer
formulation in Eq. (2.24), but is different in that BERT-CTC allows for attending to the entire
output sequence (wb

1 , · · · , wb
Lb).

Substituting Eq. (5.5) into Eq. (5.4), BERT-CTC models the product of p(abt |W b, O) and
p(W b|W̃ b) as

Eq. (5.4) ,
X

Ab2Bctc�1(W b)

TY

t=1

p(abt |BERT(W̃ b), O), (5.6)

where BERT(·) returns the final hidden states of BERT or any pre-trained masked language model,
representing the distribution of target sequences.1 By substituting Eq. (5.6) into Eq. (5.4), the
posterior distribution modeled by BERT-CTC is defined as

pbert-ctc(W b|O) ,
X

W̃ b2M(W b)

X

Ab2Bctc�1(W b)

TY

t=1

p(abt |BERT(W̃ b), O)p(W̃ b|O). (5.7)

The BERT-CTC model can be realized with a single differentiable model, enabling the whole
network to be trained end-to-end while being conditioned on BERT knowledge. As illustrated in
Figure 5-1(a), the model consists of an encoder network, pre-trained BERT, and a concatenation
network. These networks are used to compute the token emission probability at each time frame

1As the proposed formulation assumes p(W b|W̃ b) to be a strong prior distribution of a masked language model,
BERT is used as a feature extractor for an output sequence without fine-tuning, which has been reported to still be
effective for several NLP tasks (Peters et al., 2019; Zhu et al., 2020; Stappen et al., 2020). In Section 5.6.4, I provide
empirical evidence that fine-tuning is not necessary for the proposed approach.
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Algorithm 3 Decoding algorithm of BERT-CTC
function DECODEBERTCTC(H , K)
1. Initialize a masked sequence W̃ 0b by filling mask tokens at all positions
for k = 1 to K do
2. Forward BERT(W̃ 0b) and update E with Eq. (5.9)
3. Forward ConcatNetwork((H,E)) and compute token emission probs. with Eq. (5.11)
4. Generate a hypothesis Ŵ b via best path decoding
5. Compute Nmask = b|Ŵ b| · K�k

K c
6. Update W̃ 0b by masking Nmask tokens in Ŵ b with the lowest prob. scores from Step 3

return Ŵ b, E

in Eq. (5.6) as follows:

H = ConformerEncoder(O) 2 RT 0
⇥Dmodel

, (5.8)

E = LinearDbert!Dmodel(BERT(W̃ b)) 2 RLb
⇥Dmodel

, (5.9)

(g1, · · · ,gT 0 ,gT 0+1, · · · ,gT 0+Lb) = ConcatNetwork((H,E)) 2 R(T 0+Lb)⇥Dmodel
, (5.10)

p(abt |BERT(W̃ b), O) = Softmax(LinearDmodel!|Vb|+1(gt)) 2 [0, 1]|V
b
|+1. (5.11)

Eq. (5.8) represents the Conformer encoder from Eq. (2.61). In Eq. (5.9), LinearDbert!Dmodel(·)
is a linear layer for converting the Dbert-dimensional BERT outputs to a sequence of Dmodel-
dimensional vectors E. In Eq. (5.10), ConcatNetwork(·) is the concatenation network that pro-
cesses the concatenated sequence (H,E) using a stack of Transformer encoder blocks (see Sec-
tion 2.3.2 for details). The self-attention mechanism enables the model to capture dependencies
within and between the audio and token sequences, H and E, which I analyze in Section 5.6.3. In
Eq. (5.11), LinearDmodel!|Vb|+1(·) transforms the contextualized representation gt to a logit.

Inference

The most probable token sequence is estimated by solving Eq. (2.1) with Eq. (5.2) as

Ŵ b = arg max
W b

X

W̃ b2M(W b)

p(W b|W̃ b, O)p(W̃ b|O), (5.12)

⇡ arg max
W b

p(W b|W̃ 0b, O), (5.13)

where W̃ 0b = arg max
W̃ b

p(W̃ b|O). (5.14)

Eq. (5.13) is derived by applying the Viterbi approximation to Eq. (5.12) in order to handle the
intractable summation over all possible masked sequences.
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The inference formulation with Eqs. (5.13) and (5.14) can be viewed as the process of human
speech recognition, which involves “top-down” and “bottom-up” processing (McClelland and El-
man, 1986; Norris, 1994), similar to the concept introduced in Chapter 1. Determining W̃ 0b in
Eq. (5.14) is analogous to bottom-up processing, where the model analyzes the individual low-
level sounds that make up words. However, certain words, particularly those with homophones,
are difficult to identify solely from their sounds, requiring higher-level linguistic information for
accurate recognition. This is solved via top-down processing in Eq. (5.13), where the condition-
ing from W̃ 0b enables the model to leverage linguistic knowledge, context, and anticipation for
identifying words from low-level sounds.

To solve Eqs. (5.13) and (5.14), I design a fill-mask-style decoding algorithm based on mask-
predict (Ghazvininejad et al., 2019) and CTC inference, which is also inspired by the inference
process of Mask-CTC presented in Chapter 4. Algorithm 3, consisting of Steps 1 to 6, describes
the proposed algorithm. At the beginning of decoding, a masked sequence W̃ 0b is initialized
by replacing all token positions with the mask token [MASK] (Step 1).2 The algorithm then
proceeds to generate a hypothesis by gradually filling in the masked tokens over K iterations.
At each iteration k 2 {1, · · · ,K}, the current masked sequence W̃ 0b is fed into BERT to obtain
contextual embeddings E, as defined by Eq. (5.9) (Step 2). The encoder output H from Eq. (5.8)
and E are concatenated and input into the concatenation network, which computes the framewise
probability distribution p(abt |BERT(W̃ 0b), O) as in Eq. (5.11) (Step 3). Using the probabilities
computed at each frame, a hypothesis Ŵ b is generated through best path decoding, in the same
manner as described in Section 2.2.1 (Step 4). The number of tokens that will be masked Nmask is
determined by a linear decay function as Nmask = b|Ŵ b| · K�k

K c (Step 5), e.g., if K is set to five,
Nmask decreases by 20% at each iteration. The masked sequence W̃ 0b is updated by replacing
Nmask tokens in the hypothesis Ŵ b with the mask token [MASK] (Step 6). Here, tokens are
selected for masking according to their confidence scores, which are measured by calculating
the output probability of each token. Using the framewise probabilities from Step 3, the output
probability for a token ŵb

l 2 Ŵ b is derived similarly to Eq. (4.8) as

p(wb
l = ŵb

l |BERT(W̃ 0b), O) ⇡ max
t2Tl

p(abt = ŵb
l |BERT(W̃ 0b), O), (5.15)

where Tl is a set of frame indices that correspond to the l-th token ŵb
l after applying the collapsing

function. With Eq. (5.15), Nmask tokens with the lowest probability scores are masked.
In the first iteration (i.e., k = 1), the model generates a hypothesis solely based on the speech

input, without any linguistic cues from the output tokens, which are all masked. This can be
aligned with the concept of bottom-up processing as formulated by Eq. (5.14). As the iterations
proceed (i.e., 1 < k  K), the output tokens become gradually observable, providing additional

2The algorithm is a non-autoregressive process, and it requires predicting the target length beforehand (Gu et al.,
2018), which is obtained from intermediate predictions from the encoder network (see Section 5.4.4 for details).
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linguistic information for generating a more precise hypothesis. This can be interpreted as top-
down processing as formulated by Eq. (5.13).

Training

The BERT-CTC model is trained by minimizing the negative log-likelihood of Eq. (5.2), defined
as

� log
X

W̃ b2M(W b)

p(W b|W̃ b, O)p(W̃ b|O), (5.16)

which is further expanded using Eqs. (5.4) and (5.5) as

Eq. (5.16) = � log
X

W̃ b2M(W b)

X

Ab2Bctc�1(W b)

p(Ab|W b, O)p(W b|W̃ b)p(W̃ b|O) (5.17)

⇡ � logEW̃ b⇠M0(W b)

"
X

Ab2Bctc�1(W b)

p(Ab|W b, O)p(W b|W̃ b)

#
. (5.18)

To obtain Eq. (5.18), the intractable marginalization over W̃ b is approximated as expectation with
respect to the sampling distribution M0(W b), which is calculated on the probability distribution
of p(W̃ b|O). The upper bound of Eq. (5.18) can be derived by applying Jensen’s inequality as

Eq. (5.18)  �EW̃ b⇠M0(W b)

"
log

X

Ab2Bctc�1(W b)

p(Ab|W b, O)p(W b|W̃ b)

#
. (5.19)

Substituting Eqs. (5.5) and (5.6) into Eq. (5.19), the loss for BERT-CTC training is defined as

Lbert-ctc , �EW̃ b⇠M0(W b)

"
log

X

Ab2Bctc�1(W b)

TY

t=1

p(abt |BERT(W̃ b), O)

#
. (5.20)

In comparison to the CTC objective defined in Eq. (2.20), each token prediction in Eq. (5.20)
is explicitly conditioned on the contextualized embeddings from BERT. This allows an explicit
consideration of the contextual dependencies among token predictions while retaining the efficient
optimization strategy as in CTC.

For the sampling process of W̃ b in Eq. (5.20), random sampling from a uniform distribution
is used to approximate the probability distribution of M0(W b), for the sake of simplicity. The
sampling strategy is similar to the one employed in Ghazvininejad et al. (2019), where a random
number Nmask is sampled from a uniform distribution ranging between one and the target sequence
length Lb, i.e., Nmask ⇠ Uniform(1, Lb). Subsequently, Nmask tokens are randomly selected from
a ground-truth sequence, which are then replaced with [MASK].
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5.2.2 BERT-CTC-Transducer (BECTRA)

BERT-CTC progressively conditions CTC on contextual linguistic information by gradually pre-
dicting tokens and updating BERT embeddings correspondingly. This BERT-based refinement re-
quires the model to work with the BERT’s text format, which has the vocabulary Vb that can be too
large for ASR training, and could lead to a mismatch against the target ASR domain. BERT-CTC-
Transducer (BECTRA) is designed to extend BERT-CTC for handling such mismatches while still
utilizing BERT knowledge to enhance ASR performance.

Overview: Figure 5-1(b) illustrates the overall model architecture of BECTRA, which can be
compared with the conventional transducer-based models shown in Figure 2-3(b). BECTRA for-
mulates end-to-end ASR based on BERT-CTC, using the output of the concatenation network for
calculating the transducer loss (Figure 5-1(a) vs. Figure 5-1(b)). Here, the joint and prediction net-
works are trained with an ASR-specific vocabulary Va, which allows for more suitable end-to-end
ASR training without being limited by the BERT vocabulary Vb. Hence, unlike targeting W b in
Eq. (5.1), BECTRA utilizes W a tokenized by Va as its target sequence.

Similarly to Eq. (5.2), BECTRA formulates end-to-end ASR by marginalizing the posterior
distribution of p(W a|O) over all possible masked sequences as

p(W a|O) =
X

W̃ b2M(W b)

p(W a|W̃ b, O)p(W̃ b|O). (5.21)

In Eq. (5.21), W̃ b is obtained by masking an output sequence with the BERT unit W b ( 6= W a).
Similarly to Eq. (2.22), the posterior distribution of p(W a|W̃ b, O) in Eq. (5.21) is further factor-
ized by considering all possible alignment sequences of the transducer as

p(W a|W̃ b, O) =
X

Za2Btra�1(W a)

p(W a, Za|W̃ b, O) (5.22)

⇡
X

Za2Btra�1(W a)

p(Za|W a,⇢
⇢W̃ b, O)p(W a|W̃ b,��O), (5.23)

where Za = (zau 2 Va [ {<b>}|u = 1, · · · , T + La) is an alignment sequence corresponding
to W a with the ASR vocabulary Va, as defined by the transducer (refer to Eq. (2.22)). Eq. (5.23)
makes the same approximations employed in Eq. (5.4). The posterior probability p(Za|W a, O) in
Eq. (5.23) is further factorized by a probabilistic chain rule without a conditional independence
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assumption (cf. Eq. (5.5)) as

p(Za|W a, O) =
X

Za2Btra�1(W a)

T+LaY

u=1

p(zau|za1, · · · , zau�1,W
a, O), (5.24)

⇡
X

Za2Btra�1(W a)

T+LaY

u=1

p(zau| wa
0, · · · , wa

lu�1| {z }
=Btra(za1,··· ,z

a
u�1)

,W a, O), (5.25)

where wa
0 = <sos>, and lu is the number of non-blank tokens predicted up to an alignment index

of u. Eq. (5.25) assumes (za1, · · · , zau�1) ⇡ (wa
0, · · · , wa

lu�1), using the same approximation as the
transducer in Eq. (2.24). Similarly to the BERT-CTC formulation in Eq. (5.6), BECTRA models
Eq. (5.23) using Eq. (5.25) as

Eq. (5.23) ,
X

Za2Btra�1(W a)

T+LaY

u=1

p(zau|wa
0, · · · , wa

lu�1,BERT(W̃ b), O), (5.26)

where BERT is employed to model p(W a|W̃ b). This is a reasonable approximation because
both W b and W a represent the same target sentence. Thus, W a can be derived easily by first
converting W b into a word sequence and then tokenizing it using Va. By substituting Eq. (5.26)
into Eq. (5.21), the posterior distribution modeled by BECTRA is defined as

pbectra(W a|O) ,
X

W̃ b2M(W b)

X

Za2Btra�1(W a)

T+LaY

u=1

p(zau|W a
<lu ,BERT(W̃ b), O)p(W̃ b|O), (5.27)

where W a
<lu

= (wa
0, · · · , wa

lu�1).

As shown in Figure 5-1(a), the BECTRA model is based on the architecture of BERT-CTC,
with the additional prediction and joint networks from the transducer model (see Figure 2-3(b)).
The token emission probability in Eq. (5.26) is computed as

slu = Prediction(wa
0, · · · , wa

lu�1) 2 RDpred
, (5.28)

rt,lu = Joint(gt, slu) 2 RDjoint
, (5.29)

p(zau|W a
<lu ,BERT(W̃ b), O) = Softmax

⇣
LinearDjoint!|Va|+1(rt,lu)

⌘
2 [0, 1]|V

a
|+1. (5.30)

In Eq. (5.29), gt is obtained from the output of the concatenation network in Eq. (5.10). In
Eq. (5.30), LinearDjoint!|Va|+1(·) transforms the output of the joint network rt,lu to a logit. This
network architecture is almost identical to the transducer presented in Eqs. (2.26) to (2.29), but it
differs in that the joint network takes the output of the concatenation network as its input. This
enables the integration of BERT knowledge into the transducer-based model. By adopting the
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Algorithm 4 Decoding algorithm of BECTRA
function DECODEBECTRA(H , K, B)

1. Perform DECODEBERTCTC(H , K) and obtain the final BERT output E
2. Generate a hypothesis Ŵ a via beam search decoding with a beam size of B,

using output probabilities computed by Eq. (5.30)
return Ŵ a

prediction network, BECTRA can explicitly capture the causal dependencies between output to-
kens, leading to better sequence modeling. This is another key advantage of BECTRA compared
to BERT-CTC, beyond the use of ASR-specific vocabulary, which is discussed in Section 5.6.5.

Inference

Algorithm 4 shows the inference algorithm of BECTRA, which includes Steps 1 and 2. The al-
gorithm is implemented with BERT-CTC decoding (see Section 5.2.1) followed by beam search
decoding of the transducer (see Section 2.2.2). BERT-CTC decoding provides the model with a
fully contextualized BERT output E, which is obtained from the final hypothesis estimated by
the iterative refinement (Step 1). To find the optimal sequence with the highest sequence-level
generation probability, beam search decoding is performed using the token emission probabili-
ties computed from Eq. (5.30) (Step 2). With this combined inference algorithm, BECTRA can
leverage the BERT’s ability to capture the bi-directional context in an output sequence, providing
the benefit of non-autoregressive decoding. Furthermore, transducer-based decoding enables the
model to refine a sequence in an autoregressive manner, utilizing a more appropriate output unit
for performing ASR.

Training

The transducer loss of BECTRA is defined by substituting Eq. (5.26) into Eq. (5.21) and following
the same derivation process as Eq. (5.20), resulting in

L0bectra , �EW̃ b⇠M(W b)

"
log

X

Za2Btra�1(W a)

T+LaY

u=1

p(zau|wa
0, · · · , wa

lu�1,BERT(W̃ b), O)

#
,

(5.31)
where the summation over Za can be efficiently computed using the same approach as in trans-
ducer training (see Section 2.2.2). The sampling strategy for W̃ b is described in BERT-CTC
training (see Section 5.2.1). The objective function of BECTRA is defined by combining Lbert-ctc

from Eq. (5.20) and L0bectra from Eq. (5.31) as

Lbectra = (1� �bectra)Lbert-ctc + �bectraL0bectra, (5.32)
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Table 5.1: Comparisons between end-to-end ASR formulations for modeling distribution over
alignments.

Model Formulation

CTC
X

A2Bctc�1(W )

TY

t=1

p(at|O)

Transducer
X

Z2Btra�1(W )

T+LY

u=1

p(zu|w0, · · · , wlu�1, O)

BERT-CTC
X

A2Bctc�1(W )

TY

t=1

p(at|BERT(W̃ ), O)

BECTRA
X

Z2Btra�1(W )

T+LY

u=1

p(zu|w0, · · · , wlu�1,BERT(W̃ ), O)

where �bectra (0  �bectra  1) is a tunable parameter.

5.2.3 Overall Comparison of End-to-End ASR Formulations

As summarized in Table 5.1, the key difference between the end-to-end ASR formulations dis-
cussed thus far lies in how the distribution over alignments is computed. CTC estimates the distri-
bution based solely on the speech input O, assuming that the output tokens are independent of one
another. The transducer conditions each token prediction explicitly on the preceding non-blank
tokens (w0, · · · , wlu�1), introducing the prediction and joint networks. BERT-CTC achieves sim-
ilar conditioning using BERT’s contextualized embeddings BERT(W̃ ) through the concatenation
network. BECTRA is conditioned on both (w0, · · · , wlu�1) and BERT(W̃ ), enabling a model to
benefit from the information provided by both sources.

5.3 Relationship to Previous Work

In this section, I further clarify the position of this work in relation to other relevant topics in
end-to-end ASR, focusing on masked language model modeling and external language model
integration.

5.3.1 End-to-End ASR and Masked Language Modeling

CMLM (Ghazvininejad et al., 2019), one of the successful approaches in non-autoregressive neu-
ral machine translation, has been introduced to solve end-to-end ASR, including the Mask-CTC
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approach presented in Chapter 4. CMLM utilizes an encoder-decoder structure, wherein its de-
coder is trained with the masked language model objective (Devlin et al., 2019) while being condi-
tioned on the encoder outputs through the cross-attention mechanism. Audio-CMLM (Chen et al.,
2021b) employs CMLM to enable non-autoregressive end-to-end ASR by conditioning the de-
coder on audio information to learn the fill-mask process. By combining CMLM-based modeling
with CTC, Imputer (Chan et al., 2020) and Mask-CTC extend the mask-predict algorithm to re-
fine either a frame-level or token-level sequence predicted in the CTC framework. Several studies
have trained CMLM as an error-correction model for predictions generated by an end-to-end ASR
system (Futami et al., 2022; Fan et al., 2022).

The proposed approach of incorporating masked language modeling with the CTC and trans-
ducer frameworks is relevant to the above studies. However, it differs in that this work aims to
leverage the pre-existing knowledge acquired by pre-trained masked language models to enhance
end-to-end ASR performance.

5.3.2 Language Model Integration for End-to-End ASR

The proposed approach also shares similarities with the language model integration approaches,
which are outlined in Section 1.2.2. Particularly, it is similar to the cold fusion method by combin-
ing an end-to-end ASR model and a pre-trained masked language model using the self-attention
mechanism to selectively merge audio and linguistic representations. However, this work focuses
on exploring how the versatile linguistic knowledge acquired from pre-trained language models
(i.e., BERT) can be utilized to improve end-to-end ASR. Additionally, I demonstrate that the
conventional fusion technique is complementary to the proposed approach, allowing for the incor-
poration of a domain-specific RNN-LM to further enhance performance.

5.4 Experimental Setting

I used the ESPnet toolkit (Watanabe et al., 2018, 2021) for conducting the experiments. All the
codes and recipes used in the experiments are made publicly available.3

5.4.1 Data

The experiments were carried out using various corpora, as summarized in Table 5.2, which com-
prised different quantities of data, languages, and speech and text styles. See Appendix A for more
detailed information on each corpus. For LS, the 100-hour subset (LS-100) was also used in addi-
tion to the full set (LS-960), which was mainly employed for conducting additional investigations
and analyses. For LL, I used the 10-hour training set (LL-10) for evaluating the proposed models

3https://github.com/YosukeHiguchi/espnet/tree/bectra
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Table 5.2: Dataset descriptions

Dataset Hours Language Speech Style Text Style

LibriSpeech (LS) 100 English Read Normalized
960 English Read Normalized

Libri-Light (LL-10) 10 English Read Normalized

TED-LIUM2 (TED2) 207 English Spontaneous Normalized

AISHELL-1 (AS1) 150 Mandarin Read Normalized

CoVoST2 (CV2) 407 English Read Punct./Casing

in a low-resource setting. Notice that all corpora except CV2 only provide normalized transcrip-
tions, in which punctuation is removed and casing is standardized to upper or lower case. This
potentially limits the capabilities of BERT, which is often trained on written-form text with punc-
tuation and casing preserved. In contrast, CV2 provides unnormalized transcriptions with a decent
amount of ASR training data, which makes it an ideal resource for evaluating the effectiveness of
the proposed approach.

I used SentencePiece (Kudo, 2018) to construct subword vocabularies from ASR transcriptions
in order to obtain the ASR vocabulary Va. The vocabulary sizes were set to 300, 5k, 100, 500, and
500 for LS-100, LS-960, LL-10, TED2, and CV2, respectively. For AS1, I used character-level
tokenization with 4231 Chinese characters. It should be noted that before extracting subwords or
characters, the ASR transcriptions were normalized regardless of the corpus.

5.4.2 Model and Network Architecture

I evaluated end-to-end ASR models illustrated in Figures 2-3 and 5-1. CTC and Transducer
are the baseline models trained based on Lctc and Ltra, as defined by Eqs. (2.20) and (2.30),
respectively. BERT-CTC and BECTRA are the proposed models trained based on Lbert-ctc and
Lbectra, as defined by Eqs. (5.20) and (5.32), respectively.

The Conformer encoder in Eq. (5.8) consisted of two Conv2D layers followed by a stack
of N enc = 12 encoder blocks. The Conv2D layers had 256 channels, a kernel size of 3 ⇥ 3,
and a stride size of 2, which resulted in down-sampling the input length by a factor of 4 (i.e.,
T 0 = T/4). For the self-attention module in Eq. (2.63), the number of heads Nhead, dimension
of a self-attention layer Dmodel, and dimension of a feed-forward network D↵ , were set to 4, 256,
and 1024, respectively. For the convolution module in Eq. (2.64), I used a kernel size of 31.

For the transducer-based models, including Transducer and BECTRA, the prediction network
was an LSTM layer with Dpred = 256 hidden units. The joint network consisted of a single linear
layer with Djoint = 256 hidden units, followed by a hyperbolic tangent activation function.
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Regarding the BERT-based models, including BERT-CTC and BECTRA, the concatenation
network was the Transformer encoder (Vaswani et al., 2017) with N enc = 6 blocks, where Nhead,
Dmodel, and D↵ were configured to 4, 256, and 2048, respectively. I applied two Conv2D layers
to the encoder output before passing it through the concatenation network, using the same con-
figuration as that of the down-sampling layer in the Conformer encoder. Unless stated otherwise,
I used a BERTBASE (uncased) model trained for each language, which were downloaded from
the HuggingFace Transformers library4 (Wolf et al., 2020): English5 (with |Vb| = 30522) and
Mandarin6 (with |Vb| = 21128).

5.4.3 Training Configuration

For each dataset, I mostly adhered to the configurations provided by the ESPnet2 recipe (as spec-
ified in Appendix A). The models were trained for 100 epochs on LS-100, LL-10, and AS1; 70

epochs on TED2 and LS-960; and 50 epochs on CV2. I used the Adam optimizer (Kingma and Ba,
2015) for weight updates with the beta coefficients (�1,�2), epsilon parameter ✏, and weight decay
rate of (0.9, 0.999), 10�8, and 10�6, respectively. I used Noam learning rate scheduling (Vaswani
et al., 2017), where the number of warmup steps was set to 15k, and a peak learning rate was
tuned from {1.0, 2.0} ⇥ 10�3. The batch size was set to 256, except for LL-10, which was set to
32. Speech data was augmented using speed perturbation (Ko et al., 2015) with a factor of 3 and
SpecAugment (Park et al., 2019, 2020a). For the hyper-parameters in SpecAugment, the number
of frequency and time masks were set to 2 and 5, and the size of frequency and time masks were
set to 27 and 0.05T . For BECTRA, �bectra in Eq. (5.32) was set to 0.5.

For all of the models, the intermediate CTC regularization technique (Tjandra et al., 2020; Lee
and Watanabe, 2021) was applied to the Conformer encoder, which has been demonstrated to en-
hance ASR performance, as also introduced in Section 3.2.1. An additional CTC loss was applied
to the output of the 6-th encoder block H(i=6), which was calculated using a target sequence W a

tokenized by the ASR vocabulary Va. This is especially effective for training end-to-end ASR
models with the large BERT vocabulary Vb, facilitating the prediction of sparse word-level tokens
in a hierarchical multi-tasking manner (Fernández et al., 2007; Sanabria and Metze, 2018; Krishna
et al., 2018), as also demonstrated in Chapter 3.

5.4.4 Decoding Configuration

A final model was obtained for evaluation by averaging model parameters over 10 checkpoints
with the best validation performance. For the number of iterations in BERT-CTC decoding (in
Algorithm 3), K was to 20 for BERT-CTC and 10 for BECTRA. The beam search decoding was

4https://github.com/huggingface/transformers
5https://huggingface.co/bert-base-uncased
6https://huggingface.co/bert-base-chinese
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Figure 5-2: WER or CER of BERT-CTC evaluated on development sets, using varying numbers
of decoding iterations K. When K = 1, the model relies solely on audio information to predict
output tokens. When K > 1, the model incorporates linguistic information from BERT to refine
its outputs.

performed with a beam size of 10 for Transducer and 5 for BECTRA.
During the initialization process of a masked sequence in BERT-CTC decoding (Algorithm 3

Step 1), the output length was determined based on intermediate predictions. More specifically,
the best path decoding was performed using the intermediate encoder states, where the auxiliary
CTC loss was applied (i.e., H(i=6)). This allowed the models to generate a sequence tokenized
based on the ASR vocabulary Va, which was then retokenized using the BERT vocabulary Vb to
estimate the initial length.

5.5 Results

5.5.1 Effectiveness of BERT-CTC

I first investigated the effectiveness of BERT-CTC, which is designed to enhance ASR perfor-
mance by integrating audio information with linguistic knowledge from BERT. Figure 5-2 depicts
the relationship between the number of decoding iterations (K in Algorithm 3) and the BERT-
CTC results, as evaluated by the WER for LS-100 and TED2, and the CER for AS-1. Note that
WERs for LS-100 were obtained by averaging scores on the dev-clean and dev-other sets. During
decoding with K = 1, the model relied on the speech input only, and the model did not have
access to any linguistic cues, as all output tokens were masked (i.e., bottom-up processing mod-
eled by Eq. (5.14)). By increasing the number of iterations with K > 1, the model successfully
utilized the knowledge from BERT to refine the output tokens (i.e., top-down processing modeled
by Eq. (5.13)), leading to more effective performance across all tasks.
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Table 5.3: WER of CTC and Transducer baselines compared to proposed BERT-CTC, evaluated
on LibriSpeech-100h task. CTC and Transducer were trained using either the ASR vocabulary Va

or the BERT vocabulary Vb.

WER [%] (#)
Output Vocab. Dev Test

Model Va Vb clean other clean other

CTC X 6.9 20.1 7.0 20.2
X 11.2 21.4 11.4 22.0

Transducer X 5.9 17.7 6.0 17.6
X 9.7 21.5 9.8 22.3

BERT-CTC X 7.0 16.4 7.1 16.5

5.5.2 Difficulty of Training ASR with BERT Vocabulary

Table 5.3 compares WERs obtained by training CTC and Transducer models on LS-100, using
either the ASR or BERT vocabulary (Va vs. Vb). It is apparent that CTC and Transducer produced
notably higher WERs when trained with the BERT vocabulary, indicating that employing word-
level BERT units was not an optimal choice for ASR training (Soltau et al., 2017). Moreover,
I also mention that the BERT vocabulary is not precisely aligned with the intended domain of
the LibriSpeech task (e.g., Wikipedia vs. audiobook). As a result, there was a potential domain
mismatch between the ASR training text and BERT vocabulary.

In contrast, despite using the same BERT vocabulary, the proposed BERT-CTC model sig-
nificantly outperformed both the conventional CTC and Transducer models. The gain from CTC
demonstrates the effectiveness of leveraging BERT’s contextualized linguistic embeddings to ex-
plicitly consider output dependencies (refer to Table 5.1). BERT-CTC improved over Transducer
by modeling output dependencies using BERT, allowing the model to consider the bi-directional
context in the target sequence (refer to Table 5.1). BERT-CTC addressed the domain mismatch
issue through the effective use of powerful representations obtained from BERT. However, the
effectiveness of BERT-CTC diminishes when compared to CTC and Transducer models trained
on the ASR vocabulary, thereby reducing the advantage gained from using BERT.

5.5.3 Main Results

Table 5.4 lists results on the major ASR tasks, including LS-100, LS-960, TED2, and AS1, eval-
uated in terms of the WER or CER. Here, the proposed models, BERT-CTC and BECTRA, are
compared with Transducer trained on the ASR vocabulary, which was the best-performing base-
line from Table 5.3. As discussed in Section 5.5.2, BERT-CTC underperformed compared to
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Table 5.4: WER or CER of proposed BERT-CTC and BECTRA compared to Transducer baseline,
evaluated on major ASR tasks.

WER [%] (#) CER [%] (#)
LibriSpeech-100h LibriSpeech-960h TED-LIUM2 AISHELL-1

Output Vocab. Dev Test Dev Test
Dev Test Dev Test

Model Va Vb clean other clean other clean other clean other

Transducer X 5.9 17.7 6.0 17.6 2.5 6.8 2.8 6.8 7.8 7.4 4.9 5.3
BERT-CTC X 7.0 16.4 7.1 16.5 3.1 7.1 3.2 7.1 8.3 7.6 3.9 4.0
BECTRA X 5.1 15.4 5.4 15.5 2.6 6.7 2.9 6.7 7.3 6.9 3.7 3.9

Table 5.5: WER comparison on low-resource Libri-Light-10h task.

WER [%] (#)
Output Vocab. Dev Test

Model Va Vb clean other clean other

CTC X 36.2 46.9 36.8 47.7
Transducer X 34.9 45.9 35.6 46.8
BERT-CTC X 27.2 39.2 28.3 40.4
CTC X 24.8 43.2 25.8 44.4
Transducer X 21.7 38.8 22.3 39.7
BECTRA X 19.9 36.1 20.3 37.2

Transducer in several tasks, which is attributed to the vocabulary discrepancy. Overall, BECTRA
achieved the highest performance compared to all other models, taking the advantages of both
BERT-CTC and Transducer. BECTRA effectively utilized BERT knowledge by adopting BERT-
CTC-based feature extraction and incorporated the transducer framework to enable more suitable
and flexible token generation using the ASR vocabulary. In Section 5.6.2, I present the specific
errors that BECTRA succeeded in recovering, as compared to BERT-CTC.

Another notable observation was that with more training data in LS-960, the performance gap
between Transducer and BECTRA narrowed, and the impact of BERT became less pronounced.
This finding led me to explore two further directions for investigation, which I discuss in the
following two subsections.

5.5.4 Results on Low-Resource Setting

The proposed models, BERT-CTC and BECTRA, were less effective in the LS-960 task, likely
because the dataset already contained a sufficient amount of text data. Consequently, the ASR
models were capable of acquiring rich linguistic information specific to the LibriSpeech domain,
without relying on BERT knowledge. This can be consistent with the recent findings from other
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Table 5.6: WER on CoVoST2 task comparing with and without considering punctuation or casing.
CTC and Transducer were trained on the ASR vocabulary. †Trained using a “cased” model.

Text Style WER [%] (#)
Model Masked LM Punct. Casing Dev Test

CTC – – – 18.7 23.2
Transducer – – – 15.2 18.8

BERTBASE 7 7 14.4 17.6
BERTBASE X 7 14.0 17.2
BERT†

BASE X X 14.0 17.1
RoBERTa†BASE X X 14.1 17.1

BECTRA BERTLARGE X 7 13.4 16.4
BERT†

LARGE X X 13.8 16.7

DistilBERTBASE X 7 14.3 17.6
DistilBERT†

BASE X X 14.9 17.9
ALBERTBASE X 7 14.6 17.7

studies on LibriSpeech (Zhang et al., 2020b), which has indicated that a language model (used for
shallow fusion) provides limited gains in conjunction with a well-trained ASR model.

I, thus, examined the other end of the spectrum, evaluating the proposed models on LL-10,
an extremely low-resource condition with only 10 hours of training data. Table 5.5 lists WERs
obtained by training the models using either the ASR or BERT vocabulary (Va vs. Vb). The
overall trend was in line with what was observed in the previous results in Tables 5.3 and 5.4,
highlighting the ability of the BERT-based approaches to compensate for the limited availability
of training text data.

5.5.5 Results on Preserving Punctuation and Casing

The experimental setups used to obtain results in Table 5.4 could potentially limit the full capa-
bilities of BERT since the training text data was normalized for ASR training (see Section 5.4.1).
Pre-trained language models are typically trained on written-style text, preserving punctuation
and casing as a standard practice. Therefore, the prior experimental condition may have caused a
discrepancy regarding the text format used as input into BERT.

To verify the above consideration, I conducted experiments on CV2 while explicitly control-
ling the preservation of punctuation and casing. Table 5.6 presents the results of BECTRA in
comparison to CTC and Transducer trained on the ASR vocabulary. Note that punctuation and
casing only affect the BERT-CTC processing (i.e., Algorithm 4 Step 1) with the BERT vocabulary
Vb, and the WER is calculated using the normalized text, which is obtained from a hypothesis tok-
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enized by the ASR vocabulary Va. For training with casing preserved, I used the “cased” model7.
Looking at the BECTRA results based on BERTBASE, BECTRA outperformed the baseline mod-
els even without considering punctuation and casing, which is consistent with the outcome in Ta-
ble 5.4. The addition of punctuation provided further improvement, whereas the impact of adding
casing was less significant. This suggests the importance of matching the input text format used
for BERT with that used for input during pre-training.

5.5.6 Application of BERT Variants

In Table 5.6, I compare the BECTRA results obtained from using various pre-trained masked
language models other than BERTBASE. RoBERTaBASE

8 is an extension of BERT that is constructed
with an improved pre-training procedure (Liu et al., 2019). However, there was little improvement
over the results using vanilla BERTBASE. BECTRA greatly benefited from increasing the capacity
of the pre-trained language model, with BERTLARGE

9 achieving the best overall performance.
BECTRA incurs a high computational cost, especially during inference, primarily due to the

multiple forward passes in BERT (i.e., K = 10 times) with the O(N2) computational and mem-
ory complexities in self-attention layers. To mitigate this drawback, I explored lightweight vari-
ants, including DistilBERTBASE

10 and ALBERTBASE
11. DistilBERT distills BERT’s knowledge

into a more compact model (Sanh et al., 2019), while ALBERT reduces the model size by sharing
common parameters across layers (Lan et al., 2020). Both lightweight models achieved superior
results compared to the baseline models, with only minor performance degradation compared to
BERTBASE.

In alignment with the observation in Section 5.5.5, the BERT variants gave more importance
to considering punctuation than casing.

5.5.7 Combination with Shallow Fusion

I examined the feasibility of utilizing an in-domain language model during BECTRA inference.
BECTRA can adopt the commonly used shallow fusion technique, as its inference process relies
on the standard transducer framework (Algorithm 4 Step 2). I used the external text data provided
by LibriSpeech to train an RNN-LM, which consisted of 4 LSTM layers with 2048 units. The lan-
guage model weight and beam size for shallow fusion were configured to 0.5 and 20, respectively.

Table 5.7 compares the WER between the Transducer and BECTRA models, which were
trained on LS-100 and decoded with or without the RNN-LM. Through the incorporation of lin-
guistic knowledge from RNN-LM via shallow fusion, Transducer significantly improved the per-

7https://huggingface.co/bert-base-cased
8https://huggingface.co/roberta-base
9https://huggingface.co/bert-large-{cased,uncased}

10https://huggingface.co/distilbert-base-{cased,uncased}
11https://huggingface.co/albert-base-v2
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Table 5.7: WER on LibriSpeech-100h task comparing with and without performing shallow fu-
sion during inference.

WER [%] (#)
w/o Shallow Fusion w/ Shallow Fusion

Dev Test Dev Test

Model clean other clean other clean other clean other

Transducer 5.9 17.7 6.0 17.6 5.1 15.0 5.1 15.1
BECTRA 5.1 15.4 5.4 15.5 4.5 14.2 4.9 14.2

Table 5.8: WER and classification accuracy on SLURP intent classification task.

Model WER [%] (#) Acc. [%] (")

ESPnet-SLU (Arora et al., 2022) – 86.3
ASR + BERT (Arora et al., 2022) – 85.7

BERT-CTC (K = 1) 19.1 87.0
BERT-CTC (K = 20) 18.2 87.8

formance, resulting in lower WERs compared to BECTRA, which by default employs BERT in
its formulation. Similarly, the performance of BECTRA was further improved by utilizing shal-
low fusion. This indicates that BECTRA effectively integrated general knowledge from BERT and
domain-specific knowledge from the RNN-LM, thereby enhancing its ability to consider linguistic
information.

5.5.8 Application to Spoken Language Understanding

Besides end-to-end ASR, I explored the potential application of BERT-CTC to end-to-end spoken
language understanding (SLU), focusing on an intent classification task as a case in point. To
this end, an additional cross-entropy loss for intent classification was computed from gT 0+1, the
(T 0 + 1)-th output of the concatenation network that corresponds to the classification symbol
[CLS] of BERT (Devlin et al., 2019). This modified BERT-CTC was trained by simply adding
the SLU loss to the ASR loss Lbert-ctc without applying any weighting factors. During inference,
BERT-CTC decoding was first performed to obtain a refined ASR hypothesis, and an intent label
was then predicted in the final iteration.

Table 5.8 lists the results of the SLURP intent classification task (see Appendix A.11 for
details), evaluated in accuracy. I refer to the ESPnet-SLU (Arora et al., 2022) result as a baseline,
which has performed SLU along with ASR by prepending an intent label to the corresponding
output sequence. I also refer to the ESPnet-SLU result obtained by stacking BERT on top of an
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Figure 5-3: Comparison of WER versus RTF trade-offs for models evaluated on the averaged
LibriSpeech development sets. The values in parentheses indicate the number of iterations and a
beam size (K,B). This figure is reproduced from my conference paper (Higuchi et al., 2023b).

ASR model, which has been found to be less effective. BERT-CTC outperformed the baselines
by effectively incorporating acoustic and linguistic information. By decoding in a single iteration
(K = 1), BERT-CTC predicted an intent label only from speech, and the accuracy was already
higher than those of baselines. I observed a slight but clear gain by increasing K, which improved
both ASR and SLU performance thanks to the incorporation of BERT’s knowledge.

5.6 Analysis

5.6.1 Trade-off Between WER and Inference Speed

Figure 5-3 depicts the trade-offs between the WER and RTF, comparing the proposed BERT-CTC
and BECTRA to Transducer on LS-100. RTF was measured using a single V100 GPU with a
batch size of 1. Upon analyzing the results obtained through greedy decoding with K  1 and
B = 1, Transducer exhibited the most favorable performance with the lowest values for both
WER and RTF. Increasing the number of iterations (K > 1) in BERT-CTC resulted in a larger
performance gain as compared to increasing the beam size (B > 1) in Transducer. BECTRA
achieved substantial improvement through beam search decoding when K = 1; however, the
extent of improvement diminished with an increase in the number of iterations at K > 1. The
results suggest that BERT-CTC decoding effectively refined the output sequence, which reduced
the search space during beam search decoding. As a consequence, a smaller beam size (B = 3 or
5) was sufficient without compromising inference speed. Overall, BECTRA with K = 10 and B 2
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Table 5.9: Example inference process of BECTRA (Algorithm 4), decoding an utterance from
CoVoST2 test set. During BERT-CTC inference (Algorithm 4 Step 1), the highlighted tokens
were replaced with the mask token and subsequently re-predicted in the following iteration. The
transducer decoding with beam search further refined the BERT-CTC result (Algorithm 4 Step 2).
The corrected tokens are colored in blue, while the incorrect ones are in red. Punctuation is only
considered during BERT-CTC decoding.

R
efi

ne
 �
��
��

BERT-CTC (k = 1) car ’ s business in mc cly was in sawmill mills , tutine , lumber , and land .
BERT-CTC (k = 5) carr ’ s business in mclean was in sawmill mills , tu , lumber and land .
BERT-CTC (k = 10) carr ’ s business in mclean was in sawmills , carpenter , lumber and land .
BECTRA (B = 5) carr &apos s business in mcclenny was in sawmills turpentine lumber and land

Reference carr &apos s business in mcclenny was in sawmills turpentine lumber and land

{1, 3, 5} achieved a desirable balance between WER and RTF, taking advantage of both BERT-
CTC’s fast non-autoregressive decoding and Transducer’s accurate autoregressive decoding.

5.6.2 Example Decoding Process of BECTRA

Table 5.9 provides an example of the BECTRA inference process, which was obtained by decod-
ing an utterance in the CoVoST2 test set. I used the model trained with BERTBASE from Table 5.6,
which only preserved punctuation during BERT-CTC decoding. During the first iteration of BERT-
CTC inference (k = 1), the model produced erroneous predictions that are phonetically similar
to the actual tokens (e.g., “car” vs. “carr” and “mc cly” vs. “mcclenny”). The model was solely
conditioned on acoustic information during the first iteration, which led to difficulties in accurately
determining the target tokens. As the iteration progressed (k 2 {5, 10}), the model was able to
correct some of the errors by considering the output dependencies extracted from BERT. However,
the model still struggled with recognizing rare words such as the place name “mcclenny.” In ad-
dition, the model mistakenly identified the technical term “turpentine” as “carpenter,” despite the
two words sounding dissimilar. This error is likely due to the contextual information being influ-
enced by the BERT knowledge. The transducer decoding in BECTRA effectively recovered these
errors by accurately predicting the rare words. The autoregressive token generation facilitated a
more flexible estimation of tokens using a vocabulary suited for ASR in the CoVoST2 domain.

5.6.3 Attention Visualization

Figure 5-4 presents example attention weight matrices that were obtained from the second self-
attention layer of the concatenation network in BERT-CTC. Two major attention patterns were
identified: weights aligning audio and token sequences by capturing their inter-dependencies (Fig-
ure 5-4 left) and weights attending to the inner-dependencies within each sequence (Figure 5-4
right). These attention weights support the effectiveness of the proposed architectural design for
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Figure 5-4: Visualization of self-attention weights learned in concatenation network. White lines
indicate the boundaries of audio and token sequences, H and E, which are concatenated and
processed by self-attention in Eq. (5.10). These figures are reproduced from my conference pa-
per (Higuchi et al., 2022d).

BERT-CTC, indicating audio and linguistic information are dynamically merged by considering
their inter and inner-dependencies.

5.6.4 Conditional Independence of Acoustic Observation

I empirically validated the conditional independence assumption made in Eq. (5.4), where the
output sequence W b depends solely on its masked sequence W̃ b without acoustic information
O. To this end, I incorporated trainable cross-attention layers into the BERT module, which is
similar to the technique proposed in Adapter-BERT Networks (Guo et al., 2020). These additional
layers enable each BERT layer to attend to the audio encoder output H , thereby allowing BERT-
CTC to achieve p(W b|W̃ b, O). After training the modified BERT-CTC on LS-100, I observed
inferior WERs compared to the original BERT-CTC presented in Table 5.4, with 7.2%/17.9% and
7.3%/18.0% on the development and test sets, respectively.

The finding above suggests that BERT is capable of capturing sophisticated linguistic infor-
mation without relying on audio input conditioning. Furthermore, this implies that the proposed
formulation does not require any adaptation or fine-tuning of BERT.

5.6.5 BECTRA with BERT Vocabulary

To further examine the advantages of BECTRA compared to BERT-CTC, I utilized the BERT
vocabulary to train the transducer decoder of BECTRA. Under the same experimental conditions
using LS-100, BECTRA with the BERT vocabulary achieved 7.1%/16.6% on the LibriSpeech
test sets, while BERT-CTC resulted in slightly worse scores of 7.3%/16.9%. This improvement
over BERT-CTC can be attributed to the transducer-based formulation in BECTRA, which does
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not rely on the conditional independence assumption between outputs (Eq. (5.5) vs. Eq. (5.25)).
Nevertheless, using the ASR vocabulary appeared to be the superior choice.

Note that, different from the results reported in Table 5.4, the above results were obtained by
reducing the number of training epochs (100 ! 50). Training a transducer-based model with a
large vocabulary size leads to a substantial increase in memory consumption (Lee et al., 2022),
resulting in a significant extension of the training time. Therefore, employing the ASR vocabulary
is the optimal approach for constructing the BECTRA model, as it also facilitates faster training
and inference.

5.7 Summary

In this chapter, I introduced a novel approach to formulating end-to-end ASR, utilizing pre-trained
masked language models to facilitate the extraction of linguistic information. The proposed mod-
els, BERT-CTC and BECTRA, were specifically designed to effectively integrate pre-trained lan-
guage models (e.g., BERT) into end-to-end ASR models. BERT-CTC adapted BERT for CTC
by addressing the constraint of the conditional independence assumption between output tokens.
This enabled explicit conditioning of BERT’s contextualized embeddings in the ASR process,
seamlessly merging audio and linguistic information through an iterative refinement algorithm.
BECTRA extended BERT-CTC to the transducer framework and trained the prediction and joint
networks using a vocabulary suitable for ASR training. This aimed to bridge the gap between the
text processed in end-to-end ASR and BERT, as these models have distinct vocabularies with vary-
ing text formats and styles, such as the presence of punctuation. Experimental results on various
ASR tasks demonstrated that the proposed models improve over both the CTC and transducer-
based baselines, owing to the incorporation of BERT knowledge. I also showed that BERT-CTC
provides semantic representations beneficial for solving SLU tasks. The comprehensive analysis
and investigation of various aspects verified the effectiveness of the proposed formulations and
architectural designs.
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6
End-to-End Speech Recognition Guided by
Instruction-Tuned Large Language Model

6.1 Introduction

Driven by the remarkable achievements in self-supervised pre-training (Devlin et al., 2019; Rad-
ford et al., 2018), the scale of recent language models has witnessed an exponential surge. This
growth is primarily fueled by the vast amount of data sourced from the internet, coupled with a
continual increase in the size of DNN-based models, which now have billions or even trillions of
parameters. These large language models (LLMs) have shown remarkable adaptability in acquir-
ing various capabilities with minimal or even no task-specific training data (Radford et al., 2019;
Brown et al., 2020; Scao et al., 2022; Chowdhery et al., 2022; Wei et al., 2022b). This has high-
lighted the potential of LLMs to solve different downstream tasks in a few-shot or even zero-shot
manner, enabling highly flexible and efficient information processing that has been beneficial to
end users (OpenAI, 2023).

Such inherent few-/zero-shot learning capabilities of LLMs can be improved by strategically
using the prompting mechanism to control their behavior. In-context learning (Brown et al., 2020)
allows LLMs to learn tasks without requiring parameter updates, which is achieved by adding a
few input-output examples prior to a target input. This technique directs LLMs toward desired
outputs by conditioning the model’s text generation process on a specific domain or context. To
further enhance the controllability of LLMs, instruction fine-tuning (Wei et al., 2022a; Chung
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et al., 2022; Ouyang et al., 2022) is adopted to make the model follow instructions more closely
and generate responses that align with the desired outcome. This involves fine-tuning the model
on a mixture of highly diverse tasks that are phrased as natural language instructions, and it has
been shown to substantially boost zero-shot performance on unseen tasks.

This chapter explores the application of the LLM’s zero-shot learning capability to address
speech-processing tasks, specifically focusing on end-to-end ASR. I aim to align the target speech
processing task with a related NLP task and leverage the linguistic information embedded within
the LLM to improve the target speech task; I relate the end-to-end ASR task to (zero-shot) gram-
matical error correction (Nie et al., 2022; Wu et al., 2023; Fang et al., 2023). Recent efforts
have demonstrated the effectiveness of using instruction-tuned LLMs for ASR error correction as
post-processing (Ma et al., 2023a,b), wherein the model is instructed to select the most probable
hypothesis from an ASR N-best list, similar to a rescoring approach. My approach, in contrast,
attempts to directly integrate the LLM’s ability to correct grammatical errors into an end-to-end
ASR formulation.

Chapter 5 similarly proposed to enhance end-to-end ASR by utilizing BERT, a large-scale
language model pre-trained through the masked language model objective. This chapter shifts the
focus to a more recent language model with an order of magnitude larger in size (7B� 100M),
which is pre-trained using the standard left-to-right language model objective, as referencing in
Eq. (2.10).

6.2 Methodology

Figure 6-1 illustrates the overview of the proposed model, which is built upon the hybrid CTC
and AED architecture (as described in Section 2.2.3), integrating an autoregressive decoder-only
LLM (e.g., GPT-3 (Brown et al., 2020) and LLaMA (Touvron et al., 2023a)) at the input of the
decoder network. The LLM is utilized to extract linguistic information that contributes to solving
an ASR task. To achieve this, I capitalize on the LLM’s potential as a zero-shot grammatical
error correction model (Wu et al., 2023; Fang et al., 2023; Ma et al., 2023b). The proposed model
mainly involves the following processes. First, a hypothesis is obtained from the encoder output
via CTC decoding. Subsequently, I feed this hypothesis to the LLM for a subject to correction,
accompanied by an explicit instruction (or prompt) to precisely guide the LLM’s interpretation
of the hypothesis. The decoder network then takes as input the LLM output and performs text
generation, which is trained using an ASR corpus with a specific domain of interest.

In the following sections, I present a brief explanation of an instruction-tuned LLM with an
emphasis on its instruction-based controllability. I then delve into the proposed integration of the
LLM and end-to-end ASR, providing a detailed formulation that substantiates the effectiveness of
the proposed model design.
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Llama2

Correct the given statement.

Instruction User Input

Bread is made from flower. [s] Bread is made from flour.

Response

Decoder

O

Ŵ

W

CTC Decoding

Encoder

Cross-attention

: Parameter Freezing

Figure 6-1: Overview of proposed integration of instruction-tuned LLM, i.e., Llama2(-Chat), and
end-to-end ASR. A hybrid CTC and AED-based model is constructed, with Llama2 serving as
the front end for the decoder. Given a hypothesis obtained from the encoder output, Llama2 is
prompted to perform grammatical error correction. The decoder then generates a sequence using
linguistic information derived from Llama2. This figure is reproduced from my preprint (Higuchi
et al., 2023a).

6.2.1 Instruction-Tuned Large Language Model

Recent advances in LLMs have centered around the development of decoder-only models, which
train deep stacks of self-attention layers (Vaswani et al., 2017) for autoregressive text generation.
With access to extensive amounts of internet-derived text data and exponentially increasing pa-
rameter sizes, LLMs have shown their capacity to learn a range of NLP tasks without the need for
explicit supervision. This has highlighted the LLM’s potential for performing zero-shot task trans-
fer without relying on gradient updates or fine-tuning (Radford et al., 2019). The latest LLMs have
the capability to be “prompted” for executing specific tasks. This involves providing instructions
or contexts that influence the subsequent output generated by the model, thereby enabling users
to obtain desired information. Additionally, advancements in instruction fine-tuning have further
enhanced the model’s ability to produce responses that align with human expectations (Wei et al.,
2022a; Ouyang et al., 2022).

I focus on Llama2-Chat, an instruction-fine-tuned version of Llama2 (Touvron et al., 2023b),
as the LLM used in the proposed model. I hereafter refer to this chat model as “Llama2” for
brevity. Given a series of input toke sequences, Llama2 outputs a Dllama-dimensional hidden
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vector el at a token position l as

el = Llama2( W inst

| {z }
Instruction

, W user

| {z }
User Input

, W<l|{z}
Response

) 2 RDllama
, (6.1)

where W inst 2 VLinst is an Linst-length instruction sequence, W user 2 VLuser is an Luser-length
user input sequence, W 2 VL is an L-length output token sequence with W<l = (w0, · · · , wl�1)

and w0 = <sos>, and V is the vocabulary of Llama2. Using the Llama2 output el from Eq. (6.1),
the likelihood of a target sequence is computed as

p(W |W inst,W user) =
LY

l=1

p(wl|W<l,W
inst,W user), (6.2)

p(wl|W<l,W
inst,W user) = Softmax

⇣
LinearDllama!|V|(el)

⌘
2 [0, 1], (6.3)

where LinearDllama!|V|(·) transforms the feature vector to a logit.
In the context of ASR, the formulation presented in Eq. (6.2) is similar to the Transformer-

based language models commonly used for shallow fusion or rescoring (Irie et al., 2019; Karita
et al., 2019). However, Llama2 distinguishes itself through its vast scale (over billions of pa-
rameters), having superior versatility in extracting linguistic information, which can be explicitly
controlled through the auxiliary inputs (i.e, W inst and W user) tailored to specific tasks. My pri-
mary focus is to explore the capability of such LLMs to effectively bridge the gap between speech
and NLP tasks.

6.2.2 Proposed Integration of Large Language Models and End-to-End ASR

The proposed approach factorizes the posterior distribution of ASR p(W |O) (from Eq. (2.1)) as

p(W |O) =
X

W̃2H(W )

p(W |W̃ ,O)p(W̃ |O), (6.4)

where W̃ 2 VL0 represents an L0-length ASR hypothesis, and H(W ) is a set of all possible
hypotheses compatible with W . In other words, H(W ) comprises token sequences that are prone
to being misrecognized from input speech O. On the right side of Eq. (6.4), p(W |W̃ ,O) is further
factorized by applying a probabilistic chain rule as

p(W |W̃ ,O) =
L+1Y

l=1

p(wl|W̃ ,W<l, O), (6.5)

where wL+1 = <eos>. The posterior distribution p(W |W̃ ,O) in Eq. (6.5) is modeled using the
AED architecture, as described in Section 2.2.3. The emission probability at each token position
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in Eq. (6.5) is computed as follows:

H = ConformerEncoder(O) 2 RT 0
⇥Dmodel

, (6.6)

el = Llama2(W inst, W̃ ,W<l) 2 RDllama
, (6.7)

ql = TransformerDecoderl(e1, · · · , eL+1, H) 2 RDmodel
, (6.8)

p(wl|W̃ ,W<l, O) = Softmax
⇣

LinearDmodel!|V|+1(ql)
⌘
2 [0, 1]. (6.9)

Eq. (6.6) is the Conformer encoder from Eq. (2.61). In Eq. (6.7), the Llama2 output el is gen-
erated using the same process as described in Eq. (6.1), where an ASR hypothesis W̃ is fed into
Llama2 as the user input, accompanied by an instruction W inst for guiding the model toward the
grammatical error correction task (see the Llama2 input depicted in Figure 6-1 for example). In
Eq. (6.8), TransformerDecoderl(·) represents the l-the output of the Transformer decoder from
Eq. (2.55), where Q(0) is derived from the Llama2 outputs (e1, · · · , eL+1) by applying a linear
layer that projects Dllama to Dmodel, instead of using Eq. (2.56). eL+1 represents the Llama2 out-
put corresponding to the final token wL, as the input is right-shifted due to the insertion of <sos>.
In Eq. (6.9), LinearDmodel!|V|+1(·) transforms the output vector ql to a logit.

Training

The proposed model is constructed through the following two-stage process:

1. Train a hybrid CTC and AED-based end-to-end ASR model (see Section 2.2.3 for details);

2. Train the proposed model (Figure 6-1) by training a new decoder network from scratch using
Llama2, along with the pre-trained encoder and CTC networks from Step 1.

In Step 2, the parameters of the decoder network are only updated.
The objective function of the proposed model is defined by the negative log-likelihood of

Eq. (6.4) expanded with Eq. (6.5),

L = � log
X

W̃2H(W )

L+1Y

l=1

p(wl|W̃ ,W<l, O)p(W̃ |O), (6.10)

 �EW̃⇠H(W )

"
log

L+1Y

l=1

p(wl|W̃ ,W<l, O)

#
. (6.11)

In Eq. (6.11), the intractable marginalization over hypotheses is approximated under expectation
with respect to the sampling distribution H(W ). The sampling process is implemented by running
the encoder network in “training mode” (with dropout enabled) and performing the best path
decoding algorithm of CTC (Graves et al., 2006), which is a similar strategy utilized in uncertainty
estimation (Gal and Ghahramani, 2016; Vyas et al., 2019).
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Inference

Substituting Eq. (6.4) into Eq. (2.1), the most probable sequence Ŵ is estimated as

Ŵ = arg max
W

X

W̃2H(W )

p(W |W̃ ,O)p(W̃ |O), (6.12)

⇡ arg max
W

p(W |W̃ 0, O), (6.13)

where W̃ 0 = arg max
W̃

p(W̃ |O). (6.14)

To handle the intractable marginalization in Eq. (6.12), the Viterbi approximation is applied with
respect to the posterior distribution p(W̃ |O), as shown in Eqs. (6.13) and (6.14). The search
process in Eq. (6.14) is implemented by calculating the encoder output (Eq. (6.6)) and performing
the best path decoding algorithm of CTC (refer to Section 2.2.1). Subsequently, in Eq. (6.13), the
joint CTC and AED decoding algorithm (Watanabe et al., 2017) is performed to obtain the final
output (see Section 2.2.3 for details). Notice that this inference formulation incorporates top-down
and bottom-up processing, similar to the BERT-CTC decoding algorithm presented in 5.2.1, also
reflecting the concept introduced in Chapter 1.

6.3 Additional Related Work on Two-Pass End-to-End ASR

In this section, I further clarify the position of my research to another relevant topic in end-to-end
ASR, focusing on the two-pass approaches.

In the context of two-pass decoding in ASR, it is common practice to employ a second-pass
model to refine outputs produced by a first-pass model. For example, language models are often
used to rescore and rerank multiple hypotheses generated during the first-pass ASR decoding pro-
cess (Sundermeyer et al., 2015; Chan et al., 2016; Kannan et al., 2018; Salazar et al., 2020). Recent
advances in deep learning have enabled an ASR model to train both the first-pass and second-pass
models in an end-to-end fashion, introducing an additional decoder that refines a first-pass se-
quence with deliberation (Xia et al., 2017). The two-pass end-to-end ASR framework (Sainath
et al., 2019) involves training a transducer-based model in conjunction with an attention decoder,
which is specifically optimized to rescore hypotheses generated during transducer decoding. Ad-
ditionally, acoustic embeddings from the encoder can be helpful in facilitating the training of the
rescoring decoder (Hu et al., 2020; Wang et al., 2022).

The proposed formulation in Eq. (6.5) shares similarities with the conventional two-pass-based
strategy employed in end-to-end ASR. However, it differs in that the decoder network does not
specifically deliberate on hypotheses to generate an output sequence. Instead, it leverages linguis-
tic information derived from the LLM, which is prompted to improve the hypotheses.
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6.4 Experiments

6.4.1 Experimental Setting

I used the ESPnet toolkit (Watanabe et al., 2018) for conducting the experiments.

Data

The experiments were carried out using various corpora spanning different domains, including
LibriSpeech (LS), TED-LIUM2 (TED2), and CoVoST2 (CV2). See Appendix A for the detailed
statistics of each corpora. In addition to the 960-hour training set (LS-960) in LS, I used the train-
clean-100 subset (LS-100) for a lower-resource scenario. Note that transcriptions provided by the
above corpora, except for CV2, were normalized by default for ASR training, where punctuation
was removed, and casing was standardized to lowercase. I specifically used CV2 for training
models with punctuation and casing preserved, as this can be crucial for the LLM to accurately
capture linguistic information, a point emphasized in Chapter 5. During evaluation using CV2,
I removed punctuations to exclusively assess ASR performance. All the text tokenization was
performed using the vocabulary of Llama2, where |V| = 32k.

Model and Network Architecture

The baseline model was the joint CTC and AED-based model (described in Section 2.2.3), which
corresponds to the model trained in Step 1 of Section 6.2.2. The proposed model was trained as
described in Step 2 of Section 6.2.2, using the loss defined in Eq. (6.11). The encoder network
consisted of two Conv2D layers followed by a stack of N enc = 12 Conformer encoder blocks.
The number of heads Nhead, the dimension of a self-attention layer Dmodel, the dimension of a
feed-forward network D↵ , and the kernel size were set to (4, 256, 1024, 31) for LS-100, TED2,
and CV2; and (8, 512, 2048, 31) for LS-960. The decoder network was a stack of Ndec = 6

Transformer decoder blocks, where (Nhead, Dmodel, D↵ ) were set to (4, 256, 2048) for LS-100,
TED2, and CV2; and (8, 512, 2048) for LS-960. For the proposed model, I used the Llama2-Chat
model with 7 billion parameters, which was accessed through the HuggingFace library (Wolf et al.,
2020)1.

Training and Decoding Configurations

I mostly followed configurations provided by the ESPnet2 recipe for each dataset (as specified in
Appendix A). The baseline model was trained up to 50 epochs, and subsequently, the proposed
model was trained up to 50 epochs for LS-100, and 25 epochs for the other datasets. The Adam
optimizer (Kingma and Ba, 2015) with Noam learning rate scheduling (Vaswani et al., 2017) was

1https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

125

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf


CHAPTER 6. END-TO-END SPEECH RECOGNITION GUIDED BY
INSTRUCTION-TUNED LARGE LANGUAGE MODEL

used for weight updates, where the number of warmup steps was set to 15k, and a peak learning
rate was tuned from {0.0015, 0.002}. I followed the default recipes for regularization hyper-
parameters (e.g., dropout rate and label-smoothing weight). I augmented speech data using speed
perturbation (Ko et al., 2015) and adaptive SpecAugment (Park et al., 2020a). I set the weight of
�ctc-aed = 0.3 to the CTC loss during baseline model training (refer to Eq. (2.43)). After training,
a final model was obtained for evaluation by averaging model parameters over 10 checkpoints with
the best validation performance. For the joint CTC and AED decoding performed in Eq. (6.13), I
used a beam size of B = 20 unless otherwise specified and the weight for the CTC probability of
⇠ = 0.3 (refer to Eq. (2.44)).

Prompt

I empirically designed a prompting instruction to guide Llama2 in performing grammatical error
correction, where I set W inst to “You will be provided with a statement in quotes. Correct the
wrong words and provide your revised version.” As specified in the instruction, a user input
(i.e., a hypothesis) was enclosed within double quotation marks. I followed the prompt format
described in Touvron et al. (2023b)2 for inputting sequences into Llama2, which resulted in a
prompt sequence as follows

<s>[INST] <<SYS>>

You will be provided with a statement in quotes. Correct the wrong words

and provide your revised version.

<</SYS>>

"${ASR HYPOTHESIS}" [/INST]

6.4.2 Main Results

Table 6.1 lists results on all the tasks, which are evaluated using the WER. For tasks other than
LS-960, the proposed model with Llama2 applied to the front end of the decoder consistently
outperformed the standard CTC-attention-based model, requiring only the retraining of the de-
coder network with minimal parameters (e.g., 19 million on LS-100). These improvements over
the baseline indicate the successful utilization of linguistic knowledge obtained from the LLM
to enhance ASR performance, which I further analyze in Section 6.4.3. In CV2, the proposed
model demonstrated a notably higher level of gain compared to those observed in other tasks. I at-
tribute this to the use of unnormalized written-style text, which enabled Llama2 to extract precise
linguistic information.

The proposed model showed limited improvements on LS-960. I observed the model’s ten-
dency to degrade in recognizing “uncommon” words (e.g., names of characters in a book), which

2https://huggingface.co/blog/llama2#how-to-prompt-llama-2
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Table 6.1: WERs on various ASR tasks, comparing proposed Llama2-based model to hybrid
CTC/attention baseline model.

WER [%] (#)
LibriSpeech-100h LibriSpeech-960h TED-LIUM2 CoVoST2

Dev Test Dev Test
Dev Test Dev Test

Model #Beam clean other clean other clean other clean other

CTC/Attention 1 9.9 20.6 10.7 21.1 3.2 6.5 3.4 6.7 11.6 8.8 18.9 21.8
+ Llama2 front-end 1 6.7 17.5 7.3 17.9 2.6 6.9 2.8 7.0 9.5 7.8 15.6 18.1

CTC/Attention 20 7.2 17.5 7.5 18.0 2.3 5.7 2.6 5.7 9.4 7.8 16.2 18.4
+ Llama2 front-end 20 6.2 16.5 6.7 16.9 2.6 6.8 2.8 7.0 7.6 7.2 15.0 16.9

Table 6.2: Ablation studies on LibriSpeech-100h task analyzing influence of LLM and prompt
designs.

Dev WER [%] (#)
#Beam = 1 #Beam = 20

Method clean other clean other

CTC/Attention 9.9 20.6 7.2 17.5
+ Llama2 front-end 6.7 17.5 6.2 16.5
A1: Without Llama2 9.3 20.7 7.1 17.8
A2: No prompt 9.3 19.7 6.5 16.7
A3: Mismatched prompt 6.8 17.8 6.5 16.8

can be considered as long-tail words rarely seen during the pre-training process of Llama2. This
could potentially explain why beam search decoding failed to deliver any performance gains, as
Llama2 might be excessively confident in its predictions for common and generic words within
its vocabulary. This observation somewhat aligns with the findings presented in BERT-CTC (see
Section 5.6.2), highlighting a potential limitation inherent in the use of pre-trained language mod-
els. However, with the instruction-tuned LLM, such an issue could be addressed by biasing the
model through prompting.

6.4.3 Ablation Study

To validate the effectiveness of the proposed model, I conducted several ablation studies to assess
the significance of both the integration of Llama2 and prompt design. Table 6.2 presents the results
of the ablation studies, evaluated by WER using the LS-100 development sets.
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Table 6.3: WER on LibriSpeech-100h task, comparing proposed approach with other major LLM
integration methods.

WER [%] (#)
Dev Test

Integration Method clean other clean other

CTC/Attention 7.2 17.5 7.5 18.0
+ Shallow fusion 6.4 17.1 7.0 17.5
+ Rescoring 6.1 15.6 6.4 16.1
+ Error correction 13.8 22.8 13.4 23.3

+ Front-end 6.2 16.5 6.7 16.9

Importance of Llama2

I ablated Llama2 from the proposed model during the training process (A1); in Step 2 of Sec-
tion 6.2.2, I trained the decoder from scratch, in the same way as in Step 1, without using Llama2
as its front end. This modified training resulted in improvements on the “clean” set compared to
the baseline model. However, there was a slight decline in performance on the “other” set, indicat-
ing a decrease in generalizability. With the incorporation of Llama2, the proposed model achieved
significantly better results with superior generalization ability.

Influence of prompt

First, I removed the prompt (i.e., the instruction W inst and hypothesis Ŵ ) from the Llama2 input
(A2). While this modification resulted in a slight improvement compared to the baseline perfor-
mance, it had a negative impact on the proposed model. I then modify the prompt to focus on
a speech translation task instead of grammatical error correction (A3), by setting W inst to “You
will be provided with a statement in quotes, and your task is to translate it into Japanese.” This
greatly improved over the baseline, with a marginal performance degradation relative to the pro-
posed model using the proper prompt. The findings from A2 and A3 suggest that, in the proposed
model, a prompt is an essential factor in maximizing the zero-shot learning capability of the LLM
to extract helpful linguistic information. Designing a prompt that aligns with the target task can
further enhance the model performance.

6.4.4 Comparison and Combination with Previous Methods

Table 6.3 shows WERs on LS-100, comparing the proposed model and other approaches for us-
ing an LLM in end-to-end ASR. I performed shallow fusion (Hu et al., 2023) by incorporating
the Llama2 probability (from Eq. (6.2)) into the joint CTC and AED decoding process, with the
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Table 6.4: WER of proposed model combined with LLM rescoring.

Test WER [%] (#)
LS-100 LS-960

TED2 CV2
Model clean other clean other

CTC/Attention 7.5 18.0 2.6 5.7 7.8 18.4
+ Llama2 rescoring 6.4 16.1 2.3 5.1 7.3 15.8
+ Llama2 front-end 6.7 16.9 2.8 7.0 7.2 16.9
++ Llama2 rescoring 5.8 15.1 2.4 6.0 6.8 14.5

language model weight set at 0.5. I also conducted rescoring (Udagawa et al., 2022) by using the
Llama2 probability to rerank top-10 hypotheses obtained from the joint decoding process, where
the scores derived from both the joint decoding and rescoring procedures were combined with a
weight of 0.5 applied to the Llama2 score. Moreover, I assessed the inherent ability of Llama2 for
grammatical error correction (Wu et al., 2023; Fang et al., 2023), directly evaluating the response
generated by the prompt with the instruction to improve an ASR hypothesis (see Section 6.4.1).
These methods were applied to the inference process of the baseline model. Looking at the results,
both shallow fusion and rescoring resulted in notable performance improvements, with rescoring
yielding larger gains than the proposed approach. Grammatical error correction appeared to be
challenging due to the absence of explicit access to ASR probabilities. This led to the LLM pro-
ducing hallucinations, resulting in the output of words not present in the input speech.

As the above-mentioned approaches are specifically designed for use during inference, they
can complement the proposed model, which integrates the LLM directly into the decoder network.
To validate this, I focus on combining the proposed model with the most promising rescoring
method. Table 6.4 lists the results on all the tasks, demonstrating that the Llama2-based rescoring
further enhanced the performance of the proposed model. The issue in LS-960 was mitigated to
some extent, indicating the potential of the proposed model to retain uncommon words during its
beam search process.

6.5 Summary

This chapter presented a novel integration of an instruction-tuned LLM and end-to-end ASR. I ex-
plored using the zero-shot capability of LLMs to extract linguistic information that can contribute
to improving ASR performance. Specifically, an LLM was directed to correct grammatical errors
in an ASR hypothesis, and the embedded linguistic knowledge was used to guide the text gener-
ation process in an end-to-end ASR model. The proposed model was built on the joint CTC and
AED model, where an instruction-tuned LLM (i.e., Llama2) was employed as a front-end of the
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decoder network. An ASR hypothesis, subject to correction, was obtained from the encoder via
CTC decoding, which was then fed into the LLM along with an instruction. The decoder network
subsequently took as input the LLM embeddings to perform sequence generation, incorporating
acoustic information from the encoder output. Experimental results and analyses demonstrated
that the proposed integration yields promising performance improvements. Additionally, the per-
formance could be further enhanced through the combination with LLM-based rescoring.
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7
Conclusions

In this dissertation, I proposed approaches for advancing end-to-end ASR by incorporating top-
down linguistic cues into the direct speech-to-text conversion process. This chapter summarizes
this dissertation by reviewing the key content presented in each chapter and highlighting the major
contribution of my doctoral research. I also mention the limitations and possible future directions
for further studies.

7.1 Summary of the Dissertation

In Chapter 2, I provided a comprehensive overview of the core principles of end-to-end ASR.
Initially, traditional hybrid ASR systems were explained to better understand the nuances of end-
to-end systems. I then compared the major modeling approaches for end-to-end ASR, including
the CTC, transducer, and AED models, focusing on the distinctions in their probabilistic formu-
lations. Lastly, I reviewed neural network architectures that are commonly used for constructing
end-to-end ASR models.

In Chapter 3, I presented hierarchical modeling methods to enhance the representation learn-
ing capabilities of end-to-end ASR models. Firstly, HC-CTC was proposed as a foundational
approach for progressively increasing the granularity of output linguistic units, aiming to learn
representations adept at predicting sparse word-level units. The HC-CTC model was trained by
multiple CTC losses applied to intermediate encoder layers, where the subword vocabulary size
of each target sequence gradually increased as the layers progressed closer to the word-level out-
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put. During this training process, each level of sequence prediction was explicitly conditioned
on the sequences predicted at the lower levels. This encouraged the model to exploit a hierar-
chy of linguistic units to extract effective linguistic representations. Subsequently, I made an
architectural improvement to HC-CTC by implementing a refinement mechanism for each stage
of intermediate prediction. Specifically, the Transformer-based encoder layers were augmented
with recursive operations, which involved repeatedly using shared model layers to refine inter-
mediate representations. This enhancement allowed the model to make more precise predictions,
especially at the lower levels, thereby improving its overall performance. Lastly, I developed an
efficient semi-supervised learning method for improving the end-to-end ASR models trained with
intermediate CTC losses. The proposed approach, InterMPL, extended the functionality of MPL
by enabling it to utilize multiple pseudo-labels obtained from intermediate predictions. With HC-
CTC, the pseudo-labels were generated at varying levels of granularity, which helped the model
learn linguistic information from unlabeled audio-only data. Through a series of experiments,
the effectiveness of adopting the hierarchical structure for end-to-end ASR was validated, which
proved particularly beneficial for learning linguistic representations that are conducive to making
sparse word-level predictions.

In Chapter 4, I developed approaches for integrating the masked language modeling mecha-
nism into end-to-end ASR models, aiming to effectively incorporate long-range linguistic contexts.
To this end, I first proposed Mask-CTC, a non-autoregressive end-to-end ASR model trained by
the joint CTC and CMLM objective. Mask-CTC realized fast inference by generating the initial
sequence rapidly via greedy CTC decoding and replacing low-confidence tokens with the mask
token. This masked sequence was then fed into the CMLM decoder, where the masked tokens
were predicted in parallel by considering both the input speech and the linguistic context provided
by other unmasked tokens. Subsequently, I further explored the effective use of contextualized lin-
guistic representations for improving end-to-end ASR performance, proposing Mask-Conformer.
Mask-Conformer employed the CMLM decoder to explicitly condition the speech encoding pro-
cess on linguistic information. This was achieved by augmenting the Conformer encoder architec-
ture with the cross-attention mechanism, which enabled the integration of CMLM decoder outputs
into the encoder’s hidden states. Lastly, I proposed to use Mask-CTC for pre-training streaming
end-to-end ASR models. In Mask-CTC, the CMLM decoder served to enhance the encoder net-
work by providing contextual linguistic information, leading to improved performance of CTC.
Such ability to capture long-term linguistic context, including information from future contexts,
was expected to aid the training of streaming ASR, enabling it to effectively anticipate future
information. By initializing an encoder network of a streaming end-to-end ASR model with a
pre-trained Mask-CTC encoder, the inherent capabilities of Mask-CTC were implicitly leveraged
to optimize the streaming objective. The experiments conducted for each approach demonstrated
their effectiveness convincingly. They consistently showed that masked language modeling is
beneficial in supplying contextual linguistic information to end-to-end ASR models, providing
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effective guidance for generating accurate text sequences.
In Chapter 5, I introduced a novel approach to formulating end-to-end ASR, utilizing pre-

trained masked language models to facilitate the extraction of linguistic information. The proposed
models, BERT-CTC and BECTRA, were specifically designed to effectively integrate pre-trained
language models (e.g., BERT) into end-to-end ASR models. BERT-CTC adapted BERT for CTC
by addressing the constraint of the conditional independence assumption between output tokens.
This enabled explicit conditioning of BERT’s contextualized embeddings in the speech-to-text
conversion process, seamlessly merging audio and linguistic information through an iterative re-
finement algorithm. BECTRA extended BERT-CTC to the transducer framework and trained the
prediction and joint networks using a vocabulary suitable for ASR training. This aimed to bridge
the gap between the text processed in end-to-end ASR and BERT, as these models have distinct
vocabularies with varying text formats and styles, such as the presence of punctuation and the dis-
tinction of casing. The experimental results on various ASR tasks demonstrated that the proposed
models improve over both the CTC and transducer-based baselines, thanks to the incorporation
of versatile linguistic knowledge obtained from BERT. I also showed that BERT-CTC provides
semantic representations advantageous for addressing SLU tasks, enabling the integration and uti-
lization of both audio and linguistic information. The comprehensive analysis and investigation of
various aspects verified the effectiveness of the proposed formulations and architectural designs.

In Chapter 6, I presented an advanced method for integrating an instruction-tuned LLM with
end-to-end ASR. I focused on harnessing the zero-shot capability of LLMs to extract linguistic
information that can contribute to improving ASR performance. Specifically, an LLM was di-
rected to correct grammatical errors in an ASR hypothesis through prompting, and the embedded
linguistic knowledge was used to guide the text generation process in an end-to-end ASR model.
The proposed model was built on the joint CTC and AED model, where an instruction-tuned LLM
(i.e., Llama2) was employed as a front-end of the decoder network. An ASR hypothesis, sub-
ject to correction, was obtained from the encoder via CTC decoding, which was then fed into the
LLM along with an instruction. The decoder network subsequently took as input the LLM embed-
dings to perform sequence generation, incorporating acoustic information from the encoder output.
The experimental results and analyses revealed that the proposed integration leads to promising
performance improvements by adeptly orienting the LLM towards the grammatical error correc-
tion task. Additionally, the performance could be further enhanced through the combination with
LLM-based rescoring.

7.2 Summary of Contribution

This dissertation presented a series of studies that offer novel perspectives on the extraction and
management of linguistic information during the process of direct speech-to-text conversion. Just
as in the role of linguistic knowledge in human speech perception, speech and text do not neces-

133



CHAPTER 7. CONCLUSIONS

Table 7.1: Comparison of proposed models in relation to design of latent linguistic sequence.

Model Latent linguistic sequence W̃

Chap. 3 HC-CTC (§3.2) A sequence predicted with a finer granularity of linguistic units.

Chap. 4 Mask-CTC (§4.2) A sequence in which low-confidence tokens are masked.Mask-Conformer (§4.3)

Chap. 5 BERT-CTC (§5.2.1) A sequence in which low-confidence tokens are masked, with contextual
BECTRA (§5.2.2) embeddings derived from a pre-trained masked language model.

Chap. 6 CTC/AED+LLM (§6.2) A hypothesized sequence accompanied by an LLM’s linguistic informa-
tion aimed at correcting grammatical errors.

sarily maintain a sequential or hierarchical relationship in ASR, and I have demonstrated that the
incorporation of top-down linguistic cues contributes to enhancing the overall performance and
functionality of end-to-end ASR models. These linguistic cues were effectively designed through:
i) a structured approach to constructing subword units, reflecting the fine-to-coarse processing in-
herent in ASR; ii) the employment of masked language modeling to capture semantic and contex-
tual linguistic information; and iii) the utilization of pre-trained language models, which provide
rich and versatile linguistic knowledge, with a focus on masked language models and instruction-
tuned LLMs. Each of the proposed approaches was fundamentally grounded in the concept of
bottom-up and top-down processing as outlined in Chapter 1 (specifically referenced in Eq. (1.2)).
All of the approaches modeled bottom-up processing primarily based on the CTC framework, gen-
erating a hypothesized sequence that relied exclusively on the speech input. The key distinction
lies in the design of top-down processing, as summarized in Table 7.1, where varying types of
latent linguistic sequences (W̃ in Eq. (1.2)) were explored to condition end-to-end ASR models
with effective linguistic information. In Chapter 3, HC-CTC predicted a latent sequence using
lower-granularity linguistic units, which were used to effectively guide the subsequent predictions
toward a higher and sparser level. In Chapter 4, Mask-CTC and Mask-Conformer introduced a
latent sequence comprising partially masked tokens, utilizing tokens with high confidence to repre-
dict those with low confidence, thereby facilitating the use of contextual information. Similarly,
in Chapter 5, BERT-CTC and BECTRA employed the masked sequence to derive contextualized
embeddings from pre-trained masked language models, which aided the model in generating ac-
curate sequences. In Chapter 6, an ASR hypothesis is fed into an LLM for grammatical error
correction, and the output embeddings from the LLM were then used to assist the text generation
process within the decoder network of the joint CTC and AED model.

I believe that this dissertation delivers significant insights into the handling of linguistic in-
formation within end-to-end ASR, uncovering opportunities to enhance recognition accuracy and
extend the applicability of end-to-end ASR models in tackling more linguistically challenging
tasks.
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7.3 Limitations and Future Directions

7.3.1 Assessment of Scalability with Increased Data Sizes

The experiments conducted in this dissertation were in a relatively low-resource setting (less than
1000 hours), compared to the continuously growing resources accompanying the increasing scale
of recent ASR datasets (Chen et al., 2021a; Ando and Fujihara, 2021; Zhang et al., 2022a), which
involve over 10k hours of paired speech and text data. Future research should focus on assessing
whether the proposed models demonstrate similar improvements when trained on these extensive
datasets. These datasets at scale contain ample text data that can facilitate the acquisition of essen-
tial linguistic information for achieving end-to-end ASR, without the need for additional training
techniques or complex model architectures (Radford et al., 2023). Nonetheless, ASR datasets are
likely to remain lower in resources compared to text-only datasets constructed for training modern
LLMs. Consequently, I am convinced that there will always be room for improvement through
the effective integration of linguistic cues into both end-to-end ASR and, further, into end-to-end
SLU models.

My research primarily focused on the textual aspect of end-to-end ASR models, emphasizing
the significance of using pre-trained language models, as detailed in Chapters 5 and 6. Addition-
ally, the use of pre-trained acoustic models may offer avenues for further improvements. While
constructing a paired ASR dataset involves substantial annotation costs, obtaining audio-only data
can be achieved more easily and efficiently on a larger scale (Kahn et al., 2020b). This audio-only
data is highly beneficial for learning robust acoustic features through self-supervised pre-training,
which has been shown to boost the performance of end-to-end ASR models (Baevski et al., 2020;
Hsu et al., 2021; Chung et al., 2021a; Chen et al., 2022a). Integrating such a pre-trained acoustic
model into the encoder network can be a promising advancement, enabling the proposed models
to benefit from both audio and text-only data.

7.3.2 Enhancement for Streaming Application

The models proposed in this dissertation have limitations in scenarios involving online streaming,
where output tokens need to be predicted synchronously with sequential speech input. Specifi-
cally, these models were designed to utilize the full context of the output token sequence, aiming
to effectively extract and integrate linguistic information that contributes to improving end-to-end
ASR. It is not particularly problematic for utterance-level ASR tasks. However, in real-time appli-
cations like spoken dialogue systems, which require immediate interaction, the proposed models
face challenges. A viable solution to overcoming this limitation is to develop a two-pass stream-
ing system (Sainath et al., 2019), where a single model performs streaming ASR in the first pass,
followed by offline ASR in the second pass for refining the initial output. The proposed models
adopt similar two-pass decoding strategies that combine bottom-up and top-down modeling, and
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the bottom-up process can be implemented as the streaming first pass, employing advanced tech-
niques such as time-restricted attention masking (Povey et al., 2018; Zhang et al., 2020a; Moritz
et al., 2020; Chen et al., 2021d), and block-wise processing (Tsunoo et al., 2019; Wang et al.,
2021b).
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A
Corpus Details

A.1 Wall Street Journal (WSJ)

WSJ1 (Paul and Baker, 1992) consists of read English texts sourced from Wall Street Journal news
articles. The training set (si284) contains 80 hours of utterances. The official development (dev93)
and evaluation (eval92) sets were used for tuning hyper-parameters and evaluating performance,
respectively. Data preparation for this corpus was done using the recipes provided by the Kaldi2

and ESPnet3 toolkits. See Table A.1 for the detailed statistics.

A.2 VoxForge

VoxForge4 is an open speech dataset created to support the development and testing of ASR sys-
tems. This corpus encompasses multiple languages, of which I utilized solely the 20-hour Italian
subset for my experiments. The construction of the training, development, and evaluation splits
adhered to the data preparation procedures provided by the ESPnet recipe, which resulted in 16,
2, and 2 hours of data, respectively. Data preparation for this corpus was done using the recipes
provided by the Kaldi5 and ESPnet6 toolkits. See Table A.2 for the detailed statistics.

1LDC93S6B, LDC94S13B
2https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj
3https://github.com/espnet/espnet/tree/master/egs/wsj
4https://www.voxforge.org
5https://github.com/kaldi-asr/kaldi/tree/master/egs/voxforge
6https://github.com/espnet/espnet/tree/master/egs/voxforge
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Table A.1: Dataset description of WSJ.

Data Split #hours #utterances

Training WSJ1 si284 80 37k

Development dev93 1.1 503

Evaluation eval92 0.7 333

Table A.2: Dataset description of VoxForge Italian.

Data Split #hours #utterances

Training Train 16 8417

Development Dev 2.0 1082

Evaluation Test 2.0 1055

A.3 Corpus of Spontaneous Japanese (CSJ)

CSJ (Maekawa, 2003) is a Japanese ASR corpus that contains approximately 520 hours of aca-
demic lecture speech. The development set was constructed using the first 4k utterances in the
training set, which follows the data preparation procedures used in the Kaldi and ESPnet recipes.
The official evaluation sets, namely eval1, eval2, and eval3, were used to evaluate performance.
See Table A.3 for the detailed statistics. Data preparation for this corpus was done using the recipe
provided by the ESPnet7 toolkit.

A.4 TED-LIUM

TED-LIUM is an ASR task consisting of English TED Talks8. There have been three releases of
this corpus, each progressively increasing the amount of training data; here, the second and third
versions are described. The second release, or TED-LIUM2 (Rousseau et al., 2014), contains 207
hours of training data. The third release, or TED-LIUM3 (Hernandez et al., 2018), contains 452
hours of training data. Both versions contain the same development and evaluation sets provided
by TED-LIUM2, which were used for tuning hyper-parameters and evaluating performance, re-
spectively. See Table A.4 for the detailed statistics. Data preparation for these corpora was done
using the recipes provided by the Kaldi9 and/or ESPnet10 toolkit.

7https://github.com/espnet/espnet/tree/master/egs2/csj
8https://www.ted.com
9https://github.com/kaldi-asr/kaldi/tree/master/egs/tedlium

10https://github.com/espnet/espnet/tree/master/{egs,egs2}/{tedlium2,tedlium3}
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Table A.3: Dataset description of CSJ.

Data Split #hours #utterances

Training Train 420 403k

Development Dev 6.5 4000

Evaluation
eval1 1.8 1272
eval2 1.9 1292
eval3 1.3 1385

Table A.4: Dataset description of TED-LIUM.

Data Split #hours #utterances

Training Train (v2) 207 93k
Train (v3) 452 268k

Development Dev 1.6 507

Evaluation Test 2.6 1155

A.5 AISHELL-1

AISHELL-1 (Bu et al., 2017) is a multi-domain Mandarin ASR corpus that covers a range of
common applications, such as voice control for smart speakers. The training set consists of 170
hours of utterances. The official development and evaluation sets were used for tuning hyper-
parameters and evaluating performance, respectively. Data preparation for this corpus was done
using the recipe provided by the ESPnet11 toolkit. See Table A.5 for the detailed statistics.

A.6 LibriSpeech

LibriSpeech (Panayotov et al., 2015) consists of utterances derived from read English audiobooks
that are part of the LibriVox project12. The training set contains 960 hours of data, which can
be divided into train-clean-100, train-clean-360, and train-other-500, each varying in size and
data quality (i.e., “clean” and “other”). The official development (dev-clean and dev-other) and
evaluation sets (test-clean and test-other) were used for tuning hyper-parameters and evaluating
performance, respectively. For training external language models, the text-only data with 803M
words was used. Data preparation for this corpus was done using the recipes provided by the

11https://github.com/espnet/espnet/tree/master/egs2/aishell
12https://librivox.org
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Table A.5: Dataset description of AISHELL-1.

Data Split #hours #utterances

Training Train 150 120k

Development Dev 10 14326

Evaluation Test 5 7176

Table A.6: Dataset description of LibriSpeech.

Data Split #hours #utterances

Training

Train 960 281k
train-clean-100 100 28k
train-clean-360 360 104k
train-other-500 500 149k

Train (LM) – 40M

Development dev-clean 5.4 2703
dev-other 5.1 2864

Evaluation test-clean 5.4 2620
test-other 5.3 2939

Kaldi13 and/or ESPnet14 toolkit. See Table A.6 for the detailed statistics.

A.7 Libri-Light

Libri-Light (Kahn et al., 2020b) is another collection of spoken English audio, which is assembled
from open-source audiobooks derived from the LibriVox project. The primary objective of this
corpus is to assess ASR systems under a setting with limited or no supervision. Libri-Light offers
60k hours of large-scale unlabeled speech, along with a small training set (ranging from 10 hours,
1 hour, or 10 minutes) for limited supervision. I mainly used the limited training sets for the
experiments conducted in this dissertation. The development and evaluation sets are identical to
those from LibriSpeech. Data preparation for this corpus was done using the recipe provided by
the ESPnet15 toolkit. See Table A.7 for the detailed statistics.
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Table A.7: Dataset description of Libri-Light. †Include six different versions.

Data Split #hours #utterances

Training
train-10h 10 2763
train-1h 1 286
train-10m† 10min {48, 46, 45, 46, 49, 52}

Table A.8: Dataset description of CoVoST2 (En!X).

Data Split #hours #utterances

Training Train 407 272k

Development Dev 22 13k

Evaluation Test 25 16k

A.8 CoVoST2

CoVoST2 (Wang et al., 2021a) is a corpus designed for speech translation tasks, derived from
the Common Voice project16 (Ardila et al., 2020). Primarily, it was used as an English ASR task
by exclusively extracting source speech-text data from the “En!X” task, resulting in 430 hours
of training data. The unnormalized transcriptions provided by CoVoST2 were used for training
models in a setting that preserved punctuation and casing. Data preparation for this corpus was
done using the recipe provided by the ESPnet17 toolkit. See Table A.8 for the detailed statistics.

A.9 SpeechStew

SpeechStew (Chan et al., 2021) is a multi-domain ASR task that combines public English corpora,
including AMI (Carletta et al., 2005), Common Voice (Ardila et al., 2020), English Broadcast
News18, LibriSpeech (Panayotov et al., 2015), Switchboard/Fisher19 (Godfrey et al., 1992), TED-
LIUM3 (Hernandez et al., 2018), and WSJ. The training set contains approximately 5,140 hours of
data. Each corpus provides official development and evaluation sets, all of which were considered
for tuning hyper-parameters and evaluating overall performance, respectively.

13https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech
14https://github.com/espnet/espnet/tree/master/{egs,egs2}/librispeech
15https://github.com/espnet/espnet/tree/master/egs2/librilight_limited
16https://commonvoice.mozilla.org
17https://github.com/espnet/espnet/tree/master/egs2/covost2
18LDC97S44, LDC97T22, LDC98S71, LDC98T28
19LDC2004T19, LDC2005T19, LDC2004S13, LDC2005S13, LDC97S62
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Table A.9: Dataset description of Fisher-CallHome Spanish.

Data Split #hours #utterances

Training Train 171 139k

Development
Fisher-dev 4.6 3937
Fisher-dev2 4.7 3957
CallHome-devtest 4.5 3956

Evaluation Fisher-test 4.7 3638
CallHome-evltest 1.8 1825

Table A.10: Dataset description of SLURP.

Data Split #hours #utterances

Training Train 83 12k

Development Dev 6.9 2033

Evaluation Test 10.3 2974

A.10 Fisher-CallHome Spanish

The Fisher and CallHome Spanish-English Speech Translation Corpus20 (Post et al., 2013) is a
corpus designed for speech translation tasks, featuring conversational telephone speech with the
corresponding transcriptions in both Spanish and English. The training set consists of 171 hours
of utterances. The official development (Fisher-{dev, dev2} and CallHome-devtest) and evalua-
tion (Fisher-test and CallHome-evltest) sets were used for tuning hyper-parameters and evaluating
performance, respectively. The translation performance was evaluated using the case-sensitive
detokenized BLEU. All punctuation marks, except for apostrophes, were removed from both tran-
scriptions and translations, following the standard practice of this corpus. Data preparation for
this corpus was done using the recipe provided by the ESPnet-ST21 toolkit. See Table A.9 for the
detailed statistics.

A.11 SLURP

SLURP (Bastianelli et al., 2020) is a corpus designed for spoken language understanding tasks,
involving single-turn conversations between a user and a home assistant. These conversations are
annotated with intent and entities, in addition to ASR transcriptions. I mainly focused on the intent

20LDC2014T23
21https://github.com/espnet/espnet/tree/master/egs/fisher_callhome_spanish/st1
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classification task, which comprises 69 distinct classes. In the experiments, I used the 40-hour
training set, augmented with an additional 43 hours of official synthetic data. Data preparation for
this corpus was done using the recipe provided by the ESPnet-SLU22 toolkit. See Table A.10 for
the detailed statistics.

22https://github.com/espnet/espnet/tree/master/egs2/slurp/slu1
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