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Abstract

This dissertation addresses speaker diarization, the task of partitioning a multi-talker audio

recording into speaker-wise segments. Speaker diarization has long been studied as a family of

speaker identification problems, where multiple speakers in input audio should be separately iden-

tified without the speaker enrollment process. Therefore, most systems have used a speaker iden-

tification model as a central module in their pipeline structure. Traditional speaker diarization

systems, as represented by x-vector clustering, divide the problem into at least three subprob-

lems: speech activity detection, speaker embedding extraction from the speaker identification

model, and clustering. These three subproblems are independently solved using different ob-

jectives: speech/non-speech classification accuracy, speaker identification accuracy, and cluster

purity, respectively. These objectives are not directly connected to the minimization of diarization

errors. In addition, the traditional systems need additional components to deal with overlapping

speech. Recent studies have explored objectives that directly minimize diarization errors with

“fully-supervised” models. The fully-supervised models use speaker labels in multi-talker audio

as training data, minimizing diarization errors. However, such recent models still use a pipeline

structure of multiple independently optimized modules. In Chapter 1, we review the history of

speaker diarization research and introduce typical solutions and their limitations. The limitations

suggest our main research objective: “end-to-end optimization”.

Chapter 2 proposes a new formulation of the speaker diarization problem that no longer divides

the problem into subproblems. In the new formulation, speaker diarization is a “multi-sequence”

estimation composed of multi-speaker speech activity detectors, whereas the traditional systems



define the problem as a “single-sequence” speaker index estimation. The proposed formulation en-

ables us to build an end-to-end optimization model that generates full speaker labels that include

speech activity detection, speaker identification, and overlapping speech detection simultaneously.

The proposed formulation with the end-to-end optimization is referred to as EEND: end-to-end

neural diarization. To optimize the EEND model with the multi-sequence estimation target, we

propose a permutation-free objective. We also propose a mixture simulation algorithm to produce

sufficient training data to optimize the EEND model. We utilize bidirectional long short-term

memory (BLSTM) for the neural network architecture to transform the input audio sequence into

the estimation target. Our experiments with simulated data show that the proposed permutation-

free objective is an essential component to realize the EEND model training. Moreover, instead of

BLSTM, we employ the self-attention mechanism. The self-attentive EEND (SA-EEND) model

demonstrates significant performance improvement over the BLSTM-based model and traditional

x-vector clustering on the experiments with the CALLHOME two-speaker dataset. We visual-

ize the behavior of the self-attention mechanism in SA-EEND. The visualization indicates that

the multi-head self-attention mechanism captures global speaker characteristics distributed to the

whole sequence, and the captured speaker information is encoded into frame-level embeddings

according to the speaker’s presence per frame.

Though the EEND models have shown superior performance compared to the traditional sys-

tems, they still have some limitations. The models generally require large-scale training data that

fits the target domain. The EEND model cannot deal with additional prior knowledge other than

training data to help diarization performance. The root cause of the limitations is the conditional

independence between speaker labels, which blocks the utilization of given speaker labels as con-

text information. Chapters 3 and 4 provide our conditioning approaches to inducing speaker labels

as context information for the EEND models.

Chapter 3 introduces a new conditioning method that utilize partial dependency in the speaker

labels. The proposed method, dubbed “speaker-wise chain rule”, decomposes the target speaker

label into speaker-wise sequences and forms a chain of speaker-wise estimators. By generating

a speaker label sequence iteratively with conditioning input of previously estimated sequences,

the proposed model can utilize the existence of other speakers as prior knowledge for improved

diarization performance. Besides the performance improvement, the speaker-wise chain network

can handle a variable number of speakers, by learning when to stop the chain. Experimental re-



sults on CALLHOME with two speakers showed that the speaker-wise chain rule outperformed

the baseline EEND model. Furthermore, the experiments with the variable number of speakers

demonstrated better speaker counting accuracy than the x-vector clustering system. This chapter

also experimented with another conditioning method based on SAD and overlapping speech detec-

tion subtasks. We extended the speaker-wise chain rule to accept pre-conditioning input from the

different tasks. The experiments showed that the subtask-first model improves the performance of

the speaker-wise chain rule.

Chapter 4 presents another conditioning scheme that utilizes “self-conditioning via interme-

diate predictions.” In the proposed self-conditioning model, the speaker labels produced in the

middle of the neural network are fed back to the higher-layer network. The proposed method

achieves iterative refinement of speaker labels through multiple intermediate predictions layer

by layer. Experiments show that EEND models are improved with the proposed methods while

keeping the amount of training data the same. To compare with the state-of-the-art method, we

implemented self-conditioning on the encoder-decoder-based attractor (EDA) model. However,

we found the bottleneck of EDA when used with self-conditioning. Therefore, we proposed the

non-autoregressive attractor as a variant of EDA, which replaces the autoregressive computation

part in EDA with the non-autoregressive attention-based module. Experiments showed that the

proposed method improves both performance and training efficiency compared with the original

EDA. The obtained DER is comparable with existing state-of-the-art WavLM models, which use

self-supervised pretraining with large-scale training data and far more parameters.

We summarize the contributions of the dissertation in Chapter 5. The introduction of EEND

has revolutionized speaker diarization research, marking a significant shift in research focus. Many

papers are now engaged in extending the EEND models. We explore the future direction by

presenting recent studies built on the EEND concept.

Thesis Committee

Tetsunori Kobayashi Professor, Faculty of Science and Engineering, Waseda University

Tetsuji Ogawa Professor, Faculty of Science and Engineering, Waseda University

Daisuke Kawahara Professor, Faculty of Science and Engineering, Waseda University

Shinji Watanabe Associate Professor, Carnegie Melon University





Acknowledgments

I would like to express my gratitude to all those who supported me during my research work.

First, I am extremely grateful to my advisor, Prof. Tetsunori Kobayashi, at Waseda University.

He always guided me on how to pursue a Ph.D. while working in industry. In collaborative re-

search with LINE Corporation, he and I discussed automatic speech recognition a lot. From the

discussion, I learned his immense experience in speech technology, which was valuable in forming

the main story of the dissertation.

I am also grateful to my co-advisor, Prof. Tetsuji Ogawa, at Waseda University. He gave me a

lot of technical advice in writing conference and journal papers. He also gave me the opportunity

to discuss various research topics with his students. Without his support, I could not have built my

comfortable research environment at Waseda.

I would like to express my gratitude to Prof. Shinji Watanabe at Carnegie Mellon University.

He encouraged me to pursue the Ph.D. and introduced me to Prof. Kobayashi. In our joint research

while at Johns Hopkins University and Hitachi, he and I developed EEND, which is obviously the

core of the dissertation. During my visit to Hopkins, I learned quite a lot about academic research

and how to collaborate with other researchers.

I would like to thank my colleagues for their help while I was at Hitachi, Ltd. I learned

fundamental skills to be a professional industry researcher from Prof. Yoshinori Kitahara (cur-

rently Emeritus Professor at Tokyo University of Agriculture and Technology). Discussions with

Dr. Naoyuki Kanda (currently at Microsoft) were always fun and fruitful. His professionalism

always guided our work in the right direction. Dr. Shota Horiguchi supported me in enhancing our

EEND work. The dissertation is based on his continual contributions.

I would like to thank my colleagues for their support while I was at LINE Corporation (cur-

rently LY Corporation). Dr. Masahito Togami (currently at Amazon Web Services) and Mr. Yusuke

Kida (currently at LINE WORKS) kindly accepted and supported my journey to the Ph.D. course

while working at LINE. Mr. Tatsuya Komatsu introduced his idea of self-conditioning for auto-

matic speech recognition, resulting in our latest work.

I would like to express my gratitude to the last Prof. Naohisa Komatsu at Waseda University.

He invited me to the research field on speech communication. During my undergraduate and



master’s courses at Waseda, I enjoyed exploring biometrics, including speaker recognition, with

his advice. The fun experience in Komatsu Laboratory brought me on the journey to becoming a

speech researcher.

Finally, I would like to thank my wife, Nozomi, and my daughters, Miho and Mayu, for

accompanying me everywhere.



Contents

1 Introduction 19

1.1 Background of speaker diarization . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Evolution of speaker diarization research . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Review of speaker diarization methods . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Evaluation protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.2 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.3 Traditional systems: Speaker embedding clustering . . . . . . . . . . . . 24

1.3.4 Recent systems: Fully-supervised models . . . . . . . . . . . . . . . . . 30

1.3.5 Comparison on optimization targets of existing diarization systems . . . 34

1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.5 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Formulation of speaker diarization with end-to-end optimization 41

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Traditional system: Single-sequence embedding generation model . . . . . . . . 42

2.3 EEND: Multi-sequence end-to-end model . . . . . . . . . . . . . . . . . . . . . 45

2.4 Neural network architecture for EEND . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 BLSTM-based neural network with Deep Clustering loss . . . . . . . . . 48

2.4.2 Self-attention-based neural network . . . . . . . . . . . . . . . . . . . . 49

2.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9



2.5.2 Model configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.3 Performance metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6.1 Effect of loss functions and training data size . . . . . . . . . . . . . . . 55

2.6.2 Evaluation on simulated mixtures . . . . . . . . . . . . . . . . . . . . . 55

2.6.3 Evaluation on real test sets . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.4 Effect of domain adaptation . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6.5 Visualization of self-attention . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.6 Effect of varying number of heads in self-attention blocks . . . . . . . . 59

2.6.7 Effect of varying number of encoder blocks . . . . . . . . . . . . . . . . 60

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Speaker-wise conditioning for end-to-end speaker diarization 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Speaker-wise sequence decomposition . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Network architecture for speaker-wise neural network . . . . . . . . . . . . . . . 65

3.4 Preconditioning with subtask predictions . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.2 Model configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.1 Experiments on fixed two-speaker models . . . . . . . . . . . . . . . . . 71

3.6.2 Experiments on a variable number of speakers . . . . . . . . . . . . . . 71

3.6.3 Analysis on speaker counting . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.4 Experiments with preconditioning for fixed two-speaker models . . . . . 73

3.6.5 Experiments with preconditioning for variable number of speakers . . . . 74

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Self-conditioning via intermediate predictions 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



4.2 Self-conditioning via intermediate predictions . . . . . . . . . . . . . . . . . . . 79

4.2.1 Intermediate prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Self-conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Non-autoregressive Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.1 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.2 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.3 Model hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Performance improvement with intermediate prediction and self-conditioning 85

4.5.2 Training efficiency improvement with non-autoregressive attractor . . . . 86

4.5.3 Effect of Layer-normalization with non-autoregressive attractor . . . . . 87

4.5.4 Layer-by-layer progressive refinement . . . . . . . . . . . . . . . . . . . 88

4.5.5 Comparison with other existing models . . . . . . . . . . . . . . . . . . 89

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Conclusions 93

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Speaker aggregation module . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Local temporal dynamics and linguistic clues . . . . . . . . . . . . . . . 96

5.2.3 Consistent diarization for long-form recording . . . . . . . . . . . . . . 97

5.2.4 Integration of speaker diarization, separation, and ASR . . . . . . . . . . 98

Bibliography 99

Publications 111



List of Figures

1-1 Diarization errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1-2 Schematic diagram of traditional speaker diarization pipeline. . . . . . . . . . . . 25

1-3 Typical DNN-based speech activity detection module. . . . . . . . . . . . . . . . 25

1-4 Speaker embedding training and extraction. . . . . . . . . . . . . . . . . . . . . 26

1-5 Agglomerative hierarchical clustering. . . . . . . . . . . . . . . . . . . . . . . . 28

1-6 Differences in supervision signals among clustering, UIS-RNN, SSGD, and EEND.

Green arrows indicate the supervision signals when used in the training phase. . . 32

1-7 Overview of TS-VAD model architecture. . . . . . . . . . . . . . . . . . . . . . 33

1-8 Overview of EEND-VC model architecture. . . . . . . . . . . . . . . . . . . . . 34

2-1 Difference in speaker label target between traditional and EEND systems. . . . . 44

2-2 EEND model trained with permutation-free loss. . . . . . . . . . . . . . . . . . 47

2-3 Attention weight matrices at the second encoder block. The input was the CALL-

HOME test set (recording id: iagk). The model was trained with the real training

set, followed by domain adaptation. The top two rows show the reference speech

activity of two speakers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-1 System diagrams of the conventional EEND method and the proposed SW-EEND

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3-2 Overview of the subtask-first speaker-wise chain rule. . . . . . . . . . . . . . . . 68

12



4-1 Overview of proposed method with four-layer self-attention-based EEND model.

Shared decoder Dec accepts outputs from each layer Enc(l)(l = 1, 2, 3). The inter-
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1
Introduction

1.1 Background of speaker diarization

Speech processing plays a crucial role in modern information systems that support our daily lives.

It is essential for natural interaction between humans and computer systems. Automatic speech

recognition (ASR) enables voice-enabled systems to understand the user’s voice content. Speaker

identification offers security measures to verify the user who attempts to control the systems.

Speech synthesis enables more intuitive interfaces than text-based responses.

Besides human-to-computer interaction, speech processing offers essential tools for under-

standing human-to-human spoken communication. ASR offers automated subtitle generation

to broadcast news and movies containing spoken communication. Call center systems analyze

customer-operator interactions by transcribing calls and classifying sentiments and emotions from

the voice using various speech processing technologies to continually improve operational effi-
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CHAPTER 1. INTRODUCTION

ciency and track customer satisfaction or frustration. Speech translation supports effective commu-

nication between humans who speak different languages, lowering language barriers. In general,

speech processing of human-to-human communication is relatively hard due to the spontaneous

spoken style and multi-talker situation compared to human-to-computer interaction.

Speaker diarization emerges as a particularly important technology for understanding human-

to-human communication. Speaker diarization is defined as the task of partitioning a multi-talker

audio recording into homogeneous speech segments according to speaker identity; in other words,

speaker diarization answers the question of “who spoke when.” Here is a short list of the applica-

tions that use speaker diarization:

1. Meeting note: Speaker diarization helps in accurately transcribing the spoken content by

identifying who said it. The speaker’s information attributed to a transcribed sentence is

vital for future reference of the meeting note.

2. Legal enforcement: Some legal statements require correct attribution to the right speaker.

Court recordings should be analyzed with speaker diarization to ensure their correctness.

3. Healthcare insights and productivity improvement: Doctor-patient interactions require

speaker diarization, providing insights into communication patterns. Not only healthcare

applications but analyzing communication patterns of business meetings is also needed to

improve productivity.

4. Customer service: In call centers, distinguishing the customer and the operator is essential

for analyzing interaction. The analyzed calls are used for operator training purposes and

quantifying customer satisfaction.

In summary, speaker diarization provides speaker labels in the audio recording, which helps un-

derstand human-to-human communication by showing the rich transcription along with speaker

attribution or analyzing the speaker transition patterns to obtain insights.

Speaker diarization is also used as a preprocessing step for other speech processing tasks. In

many applications, speaker diarization is combined with ASR. Since the ASR system is typically

tuned with single-speaker audio segments, it fails when just feeding multi-speaker audio into the

20



CHAPTER 1. INTRODUCTION

system. Therefore, speaker diarization is used as a preprocessor for ASR, providing single-speaker

speech segments. Numerous domains require speaker diarization as a preprocessor, for example,

telephone conversations, broadcast news, interviews, meeting conversations, and web videos.

1.2 Evolution of speaker diarization research

In this section, we provide a brief overview of the evolution of speaker diarization research to

explain the background leading to our proposed method: end-to-end neural diarization (EEND).

Speaker diarization can be considered as speaker verification between different speech seg-

ments in an audio stream. The history of speaker diarization research has primarily been aligned

with the one of speaker verification. In the 2000s, feature representations for speaker verifica-

tion were based on the Gaussian mixture model and universal background model (GMM/UBM;

Reynolds et al. (2000)). In the 2010s, feature transformation methods, like i-vector (Dehak et al.

(2011)) and probabilistic linear discriminant analysis (PLDA; Garcia-Romero and Espy-Wilson

(2011)), successfully suppressed intra-speaker variability to attain speaker verification accuracy

under various environments. Then, deep neural networks have been exploited to replace tradi-

tional feature representations with discriminatively optimized speaker embeddings, such as d-

vector (Variani et al. (2014)) and x-vector (Snyder et al. (2018)). The improvement in accuracy

through the x-vector had a significant impact on the research community, and since then, the en-

hancement in speaker diarization accuracy has been equated with that in the speaker embedding

models.

Clustering has been a key technique to transform the speaker verification task into the speaker

diarization task. Similar feature representations in different speech segments are marked as the

same speaker using clustering. Agglomerative hierarchical clustering (Chen et al. (1998)) and

Spectral clustering (Ning et al. (2006)) have long been used for speaker diarization. In contrast to

speaker embeddings, clustering did not undergo significant evolution. Since clustering performs

unsupervised optimization, the traditional systems based on clustering cannot be optimized with

ground-truth speaker diarization information.
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EEND’s innovation

Our work (EEND; Fujita et al. (2019a)) arrived at the optimization of diarization itself without

following the historical path of speaker verification. We connected the problems of source separa-

tion and speaker diarization. We found that mask estimation in source separation (Yu et al. (2017);

Hershey et al. (2016)) is equivalent to the speaker diarization task, except for considering the fre-

quency axis. Consequently, speaker diarization transcended the conventional “speaker verification

per segment” framework and was redefined as a “multi-speaker speech activity labeling”.

Furthermore, following our work, the evaluation metrics of speaker diarization have shifted

from the speaker assignment error rates “only in non-overlapping speech segments” to the error

rates across all segments, including “non-speech and overlapping speech”. This shift has signifi-

cantly changed the research focus from unrealistic non-overlapping scenarios to realistic overlap-

ping scenarios.

1.3 Review of speaker diarization methods

Comprehensive reviews of speaker diarization methods are presented in Tranter and Reynolds

(2006), Anguera et al. (2012), and Park et al. (2022). They all mentioned that, in the 2000s, the

Rich Transcription evaluations (NIST RT; National Institute of Standard and Technology (NIST)

(2009)) fostered diarization researchers to use standard evaluation protocols and databases to com-

pare different approaches meaningfully. In this section, we introduce the evaluation protocols and

databases that our experiments follow. Then, we introduce the traditional and recent systems to

provide the prerequisites for the proposed methods in this dissertation.

1.3.1 Evaluation protocols

Speaker diarization systems are required to output a hypothesis of speaker activity. The speaker

activity is represented as a sequence of speech segments, including start and end times with speaker

labels. The speaker labels only distinguish different speakers in an audio recording, so they do not

need to identify the real names. The hypothesis is compared with a ground-truth reference to

obtain a diarization error rate (DER). Diarization errors are categorized into miss, false alarm, and
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Figure 1-1: Diarization errors.

confusion errors, as shown in Fig. 1-1. Miss errors are speech time in the reference, not in the

hypothesis. False alarm errors are speech time in the hypothesis, not in the reference. Confusion

errors are speech time when the speaker labels do not match. In addition, overlap errors are also

accumulated where the number of speakers in the hypothesis differs from that in the reference.

Miss errors are added if the number of speakers in the reference is larger. False alarm errors are

added if the number of speakers in the hypothesis is larger. DER is calculated as a ratio of the sum

of the three errors to the total speech time. The collar tolerance, generally 250 msec, is set around

the reference target boundary to ignore the errors caused by inconsistency in human annotations.

NIST defined the diarization output format named RTTM (Rich Transcription Time Marked) and

provided a tool ‘md-eval.pl’ to calculate DERs.

Other metrics have also been used in the literature. Word-level diarization error rate (WDER)

is a practical metric when combined with ASR (Park and Georgiou (2018)). Jaccard error rate

(JER) is a recently introduced metric to evaluate per-speaker error rates (Ryant et al. (2019)).

However, we always use DERs throughout this dissertation to compare our experimental results
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consistently with other literature.

It is important to note that DERs reported in the earlier studies than our EEND paper may

not fully represent the diarization performance. This is because these studies often used oracle

speech/non-speech labels, which led to the exclusion of misses or false alarm errors in their eval-

uations. Overlapping speech segments were typically excluded from their evaluations, further

impacting the comprehensiveness of the reported DERs. Contrary to the earlier studies, we evalu-

ate all the errors, including overlapping speech segments, because the EEND includes both speech

activity detection and overlapping speech detection functionality.

1.3.2 Databases

Prior to the NIST RT, speaker diarization was evaluated through the NIST Speaker Recognition

Evaluation (NIST SRE; Doddington et al. (2000)). The NIST SRE provided the evaluation set

of telephone conversations (hereinafter called CALLHOME). Our experiments primarily use this

evaluation dataset because we can consistently compare our methods with a bunch of highly influ-

enced papers.

Besides telephone conversations, NIST RT focused on broadcast news and meeting conversa-

tions. Meeting datasets such as ICSI (Janin et al. (2003); Çetin and Shriberg (2006)) and AMI (Re-

nals et al. (2008)) have also fostered speaker diarization research. Since the late 2010s, researchers

have started to tackle various audio domains, such as web videos, dinner parties, and conversa-

tions in restaurants. VoxConverse (Chung et al. (2020)), CHiME-6 (Watanabe et al. (2020)), and

DIHARD Challenges (Sell et al. (2018); Ryant et al. (2019, 2021)) are popular challenge tasks tar-

geting such various domains. Recent tasks are considering more challenging and rich inputs, such

as far-field audio (M2MeT; Yu et al. (2022)), and audio-visual input (MISP; Wang et al. (2023)).

1.3.3 Traditional systems: Speaker embedding clustering

A traditional system of speaker diarization is a pipeline of multiple modules. Fig. 1-2 depicts

the pipeline referred to as speaker embedding clustering. The main modules are speech activity

detection, speaker embedding extraction, and clustering.
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Figure 1-2: Schematic diagram of traditional speaker diarization pipeline.
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Figure 1-3: Typical DNN-based speech activity detection module.

Speech activity detection

Speech activity detection (SAD) determines speech/non-speech boundaries and selects speech seg-

ments for further processing. A simple approach to SAD is to measure signal power and threshold,

though it degrades performance in noisy environments. Recent systems typically use a deep neural

network (DNN) to determine frame-level speech activity. Fig 1-3 shows a typical SAD module

based on a DNN. In the module, audio is transformed into a sequence of features, such as Mel-

frequence cepstral coefficients (MFCCs). Then, the time-delay-neural network (TDNN; Peddinti

et al. (2015)) receives the sequence of features. For seeing long-term context, the statistics pooling

layers (Ghahremani et al. (2016)) are also employed. The network is trained with a cross-entropy

objective to estimate a binary label, indicating the frame-level speech activity. The non-speech

segments are filtered out of the pipeline, and the speech segments go to the next speaker embed-

ding extraction module.
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Figure 1-4: Speaker embedding training and extraction.

Speaker embedding extraction

Speech segments are transformed into speaker embeddings representing speaker identity for each

time step. The speaker embedding extractor is fundamentally a speaker identification model. X-

vectors (Snyder et al. (2018)) and d-vectors (Wan et al. (2018)) are popular speaker identifica-

tion models used in speaker diarization. Fig. 1-4a shows a structure of the speaker identification

model. A single-speaker speech segment is fed into the feature extractor (filterbank) and TDNN.

The statistics pooling layer reduces the time axis, and a linear layer and a rectified linear unit

(ReLU) produce an embedding called an x-vector. In the training phase, the x-vector is trans-

formed into speaker ID. This model is trained with a cross-entropy objective using a large col-

lection of single-speaker speech segments with thousands of speakers. In the speaker diarization

pipeline, the trained speaker identification model is utilized to extract speaker embeddings with

sliding windows, as shown in Fig. 1-4b.
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Clustering with similarity score

The clustering module makes clusters of speaker embeddings according to their similarity. Even

though cosine similarity can be used as the simplest similarity metric, traditional speaker diariza-

tion systems often use a similarity metric in a dedicated subspace. Gaussian probabilistic linear

discriminant analysis (G-PLDA; Prince and Elder (2007)) is a popular tool to score the similarity

of two speaker embeddings in the subspace where the embeddings from the same speaker give a

positive score and the ones from the different speakers give a negative score. With a modification

by Garcia-Romero and Espy-Wilson (2011), it assumes a generative model of speaker embedding

as:

e = µ+ Fh+ n ∈ RD, (1.1)

where e is a D-dimensional speaker embedding, µ is a global mean of speaker embeddings,

F ∈ RD×d is a matrix composed of bases of the d-dimensional subspace, h is a latent vector in

the subspace sampled from the standard normal distribution, and n is a Gaussian noise with zero

mean and diagonal covariance Σ. Maximum-likelihood estimates of the parameter set {µ,F ,Σ}

are obtained from a large-scale dataset using the expectation-maximization algorithm. Given two

speaker embeddings, e1, e2, the similarity score (hereinafter called PLDA score) is calculated as

the log-likelihood ratio of the same speaker hypothesisHs to the different speaker hypothesisHd:

score(e1, e2) = log
p(e1, e2 | Hs)

p(e1, e2 | Hd)
. (1.2)

Thanks to the properties of Gaussian distributions, the PLDA score is rewritten as:

score(e1, e2) = logN

e1
e2

 ;

µ
µ

 ,

FF⊤ +Σ FF⊤

FF⊤ FF⊤

 (1.3)

− logN

e1
e2

 ;

µ
µ

 ,

FF⊤ +Σ 0

0 FF⊤

 . (1.4)

A popular clustering algorithm used in speaker diarization is agglomerative hierarchical clus-

tering (AHC) (Meignier (2010); Sell and Garcia-Romero (2014); Garcia-Romero et al. (2017);
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Figure 1-5: Agglomerative hierarchical clustering.

Maciejewski et al. (2018)). AHC initializes clusters with one speaker embedding for each. The

AHC process iteratively merges a pair of clusters with the highest PLDA score until the PLDA

score meets a stopping threshold. The PLDA score of a pair of clusters is an average of the PLDA

score between elements of each cluster. Resulting clusters form a dendrogram, as shown in Fig. 1-

5. The stopping threshold controls the number of speakers (clusters). According to Eq. 1.2, the

threshold should be 0. However, it is determined by sweeping the candidate thresholds using the

development data in practice. If the number of speakers is given in advance, AHC stops when the

number of clusters meets the condition.

There are many alternative clustering methods to AHC, such as Gaussian mixture models

(Meignier (2010); Shum et al. (2013)), mean shift clustering (Senoussaoui et al. (2014)), k-means

clustering (Dimitriadis and Fousek (2017); Wang et al. (2018)), Links (Mansfield et al. (2018);

Wang et al. (2018)), and spectral clustering (Wang et al. (2018)).

Resegmentation

The speaker assignment obtained from clustering generally ignores temporal characteristics, i.e.,

a speaker transition model. Landini et al. (2022b) proposed a postprocessing method to refine

the clustering-based speaker assignment. Their Bayesian hidden Markov model (VB-HMM) gen-

erates a sequence of speaker embeddings considering constraints on speaker transition patterns.

The VB-HMM is a factorized generative model of T -length D-dimensional speaker embeddings

E ∈ RD×T and T -length speaker index sequence y ∈ ZT
>0 . They introduce speaker-specific
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latent variable H ∈ Rd×S , which is compatible with PLDA described in the previous subsection.

p(E,y,H) =
T∏
t=1

p(E:,t|yt,H)︸ ︷︷ ︸
embedding emission

p(yt|yt−1)︸ ︷︷ ︸
transition

S∏
s=1

p(H:,s)︸ ︷︷ ︸
speaker-wise latent

. (1.5)

Here, they use an ergodic HMM with a one-to-one correspondence between the HMM states

and the speakers to model transition probability p(yt|yt−1) and embedding emission probability

p(E:,t|yt,H). The emission probability follows a Gaussian distribution N (FH:,s, I), where

F ∈ RD×d is pre-trained with PLDA. H:,s follows a standard normal distribution. Variational

Bayes (VB) inference gives the maximum posterior p(y|E) by iteratively updating the speaker

label y and the speaker-specific latent H , initialized with the speaker label from the clustering

result.

Difficulties in developing the pipeline

The speaker embedding clustering pipeline has shown effectiveness on various datasets (e.g., Sell

et al. (2018); Diez et al. (2018); Sun et al. (2018)). However, the traditional method faced troubles

in the development phase.

Firstly, we should train three independent models to be optimized with different criteria:

speech v.s. non-speech classification accuracy for the SAD model, speaker ID accuracy for the

speaker embedding extractor, and same/different speaker classification accuracy for the PLDA

scorer. None of these criteria directly minimizes diarization errors. In general, the speaker embed-

ding extractor critically affects performance. However, Sell and Garcia-Romero (2014) has shown

the importance of domain adaptation through calibration of the PLDA scorer. Moreover, the SAD

model becomes critical when environmental noise is challenging. There are many best practices

to develop the three modules.

Secondly, they have trouble handling overlapping speech. The clustering and resegmentation

modules perform the hard assignment of a frame to only one speaker. Overlapping speech can be

detected using a speech separation model and can heuristically assign the second speaker based

on closeness in time (Landini et al. (2021)). However, the pipeline becomes more complicated.
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1.3.4 Recent systems: Fully-supervised models

Since 2019, “fully-supervised” models have been investigated, alleviating the difficulties in opti-

mizing traditional pipeline systems. The key functionality is to use “multi-talker labels in conver-

sations” as training data, whereas the traditional models are generally trained using a collection

of “single-speaker labels in segments”. Removing the clustering module, which is an unsuper-

vised process that prohibits direct optimization with speaker diarization labels, is a core idea of

the fully-supervised models.

UIS-RNN (Zhang et al. (2019))

The unbounded interleaved-state recurrent neural network (UIS-RNN; Zhang et al. (2019)) is the

first fully-supervised model for speaker diarization. An RNN generates a speaker embedding

sequence for each speaker. The authors formulated a generative model of speaker embeddings and

speaker indices. T -length D-dimensional speaker embeddings E ∈ RT×D and T -length speaker

indices y ∈ ZT
>0 are generated in an online manner:

p(E,y) = p(E:,1,y1)
T∏
t=2

p(E:,t|E:,1:t−1,y:,:t)︸ ︷︷ ︸
speaker embedding

p(yt|δt,y1:t−1)︸ ︷︷ ︸
speaker assignment

p(δt|δ1:t−1)︸ ︷︷ ︸
speaker change

, (1.6)

where δt = 1(yt ̸= yt−1) ∈ {0, 1} is a speaker change indicator at time t. The first term

p(E:,t|E:,1:t−1,y:,:t) is the autoregressive speaker embedding generation model, following Gaus-

sian distribution: N (µt, σ
2I), where µt is a running mean of the RNN’s output for the speaker

index yt until time t. The second term p(yt|δt,y1:t−1) is the speaker assignment model, following

the Chinese restaurant process, a Bayesian nonparametric model that assigns the probability of yt

proportional to the number of speaker turns. The third term is the speaker change prior set to be

constant. This joint model is trained using speaker embedding sequences and reference speaker

indices in multi-talker audio.
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SSGD (von Neumann et al. (2019), Fang et al. (2021))

The use of speech separation to solve the diarization problem was investigated by von Neumann

et al. (2019). They use a neural speech separation model that continually tracks the speakers in a

block-online manner. Speech separation models have usually been trained with fully overlapped

speech. Instead, the authors use simulated conversations containing silence, single-speaker, and

overlapped segments in an audio stream. To track the separated speakers between blocks, the au-

thors use a guidance vector extracted from the previous block to condition the separation network

in the next block.

Fang et al. (2021) studied the complementary nature of speech separation and speaker di-

arization. They proposed a method called speech separation guided diarization (SSGD). SSGD

prepares the traditional diarization pipeline and a conventional speech separation model trained

with fully overlapped speech. Then, SSGD uses the traditional diarization pipeline to generate

adaptation data for the speech separation model. The speech separation model is fine-tuned us-

ing the adaptation data, improving the separation performance on conversational data. Finally,

separated speech is fed into the conventional SAD to obtain the speech activity of each speaker.

EEND (Our work; Fujita et al. (2019a,b))

Whereas UIS-RNN and SSGD still use module pipelines, end-to-end neural diarization (EEND;

Fujita et al. (2019a)) uses a single module. A neural network receives audio features and outputs

multi-speaker speech activity directly. The proposed method solves the speaker diarization prob-

lem with a joint multi-sequence classification model, while the earlier systems were composed of

single-sequence generation models.

Fig 1-6 compares differences in supervision signals among speaker embedding clustering,

UIS-RNN, SSGD, and EEND models. Speaker embedding clustering uses three independent su-

pervision signals, and speaker labels are not used. UIS-RNN uses speaker labels as supervision

signals, while it requires independent optimization of three modules. SSGD is a pipeline of two in-

dependent modules, and separated (clean) speech is required to train the speech separation model.

EEND is solely optimized with speaker labels.
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Figure 1-6: Differences in supervision signals among clustering, UIS-RNN, SSGD, and EEND.
Green arrows indicate the supervision signals when used in the training phase.
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Figure 1-7: Overview of TS-VAD model architecture.

TS-VAD (Medennikov et al. (2020a,b))

Target-speaker voice activity detection (TS-VAD) integrates EEND and the “target-speaker” con-

cepts. Target-speaker ASR (Žmolı́ková et al. (2017); Kanda et al. (2019)) and Speaker Beam (Del-

croix et al. (2018)) introduce “anchor” speaker embeddings that help improve ASR and speech

separation, respectively. TS-VAD prepares the anchor speaker embeddings using a traditional

pipeline-based diarization system. The anchor speaker embedding is an averaged i-vector (Dehak

et al. (2011)) per speaker calculated according to the initial diarization results. The anchor speaker

embedding is fed together with audio features into the neural network, and the network outputs

multi-speaker speech activity directly, similar to EEND. The neural network comprises a speaker

detection network, which accepts anchor speaker embedding with audio features, and a combin-

ing network, which uses multiple inputs from the speaker detection network to produce the final

diarization output. The TS-VAD architecture is depicted in Fig. 1-7. TS-VAD proved effective

in various challenging tasks including CHiME-6 (Watanabe et al. (2020)) and M2MeT (Yu et al.

(2022))).

EEND-VC (Kinoshita et al. (2021a,b))

EEND-vector clustering (EEND-VC) is a hybrid method of EEND and speaker embedding clus-

tering. Fig. 1-8 shows the EEND-VC architecture. EEND-VC alleviates a main limitation of the

EEND model: it’s hard to accept audio containing many speakers. Assuming a short chunk has

a limited number of speakers, EEND-VC solves the speaker assignment among chunks by us-

ing clustering. The EEND-VC’s network generates both frame-wise speaker labels and speaker

embeddings for an audio chunk. Speaker embeddings for each speaker are averaged in a chunk

according to the estimated speaker labels. Then, the speaker embeddings in multiple chunks are

clustered using a constrained clustering algorithm. EEND-VC is particularly effective when there
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Figure 1-8: Overview of EEND-VC model architecture.

are more than three speakers.

1.3.5 Comparison on optimization targets of existing diarization systems

Each of the aforementioned speaker diarization systems optimizes for different targets. This sec-

tion uses probabilistic model formulations to elucidate the optimization targets and compare their

characteristics.

Speaker embedding clustering Given an input audio sequence X ∈ RT ′
, the traditional system

optimizes for the speaker index sequence y ∈ ZT
≥0 using three independent models:

ŷ = argmax
y

p(y|X) ≈ argmax
y

p(Ê|y, ŝ)p(y|ŝ), (1.7)

Ê = argmax
E

p(E|X, ŝ), (1.8)

ŝ = argmax
s

p(s|X). (1.9)

A SAD model p(s|X) determines speech activity ŝ ∈ {0, 1}T ′
. p(E|X, ŝ) is a speaker

embedding model for speech segments specified by the SAD output ŝ. Clustering of the

speaker embeddings Ê determines y that maximizes p(Ê|y, ŝ). The optimization target y

is the speaker index sequence, so it does not consider overlapping speech.

VB-HMM and UIS-RNN These methods introduce an explicit temporal dependency to the se-
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quence generation model p(Ê|y, ŝ) (Eq. 1.7):

p(Ê|y, ŝ) ≈
T∏
t=1

p(Êt|Ê1:t−1,y1:t)p(yt|y1:t−1). (1.10)

As with speaker embedding clustering, we need three independently optimized models for

UIS-RNN. The sequence generation model is initialized with the clustering output for VB-

HMM, requiring an additional optimization target. Although more accurate than clustering,

these methods still do not consider overlapping speech.

SSGD This method uses a source separation model before determining diarization result Y ∈

{0, 1}S×T , which is a joint speech activity of S speakers:

argmax
Y

p(Y |X) ≈ argmax
Y

S∏
s=1

p(Ys,:|M ′
s,:) (1.11)

M ′ = argmax
M

p(M |X). (1.12)

The source separation model p(M |X) produces separated audio M ′ ∈ RS×T ′
for S speak-

ers. p(Ys,:|M ′
s,:) is the SAD model (Eq. 1.9) and is applied independently for each speaker’s

audio stream in M ′. Two independent models should be optimized. Thanks to the source

separation model, it can handle overlapping speech. However, estimating the separated

speech M ′ is generally more challenging than estimating the speaker labels Y .

EEND Our proposed method optimizes directly for p(Y |X). This is a single and holistic model

optimization using speaker labels. Like SSGD, due to the output label Y , EEND can han-

dle overlapping speech. We further elaborate on our formulation of EEND in detail and

superiority over other existing methods with experimental results in Chapter 2.

TS-VAD This method estimates EEND’s speaker labels Y from the output of speaker embedding

clustering:

argmax
Y

p(Y |X) ≈ argmax
Y

p(Y |Ê, ŷ), (1.13)
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where ŷ maximizes p(Ê|y, ŝ)p(y|ŝ) (Eq. 1.7). Four models (three models for speaker

embedding clustering and another model for speaker label estimation) should be optimized.

TS-VAD can consider overlapping speech like EEND, and the pretrained speaker embed-

ding model contributes to improved accuracy.

EEND-VC This method utilizes a joint model that produces provisional speaker labels Ŷ (local)

and speaker embeddings Ê(local) with block-wise processing of local audio segments. Then,

clustering of Ê(local) with constraint on Ŷ (local) determines global speaker labels Y .

argmax
Y

p(Y |X) ≈ argmax
Y

p(Ê(local)|Y , Ŷ (local)) (1.14)

Ŷ (local), Ê(local) = argmax
Y ,E

B∏
b=1

p(Y:,T (b),E:,S(b)|XT ′(b)), (1.15)

where B is the number of blocked segments. For the b-th block, T (b) and T ′(b) denote

the corresponding frame indices and audio time indices, respectively. S(b) denotes the cu-

mulative speaker indices for the b-th block, which distinguishes speaker indices in different

blocks. This method employs a single model that simultaneously optimizes speaker diariza-

tion and speaker identification. In local temporal segments, it is equivalent to EEND, which

handles overlapping speech. At the same time, its global characteristic is similar to speaker

embedding clustering, contributing to improved accuracy in long audio with many speakers.

In summary, most existing methods adopt modular architecture utilizing multiple optimiza-

tion targets, as listed in Table 1.1. In contrast, EEND is based on a single module with overall

optimization of the speaker labels.

1.4 Research objectives

The main research objective of this dissertation is to formulate the speaker diarization problem as a

simple end-to-end optimization problem. We tackle the issue of independent optimization of tradi-

tional speaker diarization pipeline systems. Our proposed method, EEND, simultaneously solves

all the speaker diarization problems: speech activity detection, speaker label assignment, and over-
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Table 1.1: Optimization targets and overlap handling capability of existing systems.

Method Optimization targets Overlap

Speaker embedding clustering 3 (SAD, spk. emb., clustering) no
VB-HMM 4 (SAD, spk. emb., clustering, seq. generation) no
UIS-RNN 3 (SAD, spk. emb., seq. generation) no

SSGD 2 (speech separation, SAD) yes
EEND 1 (speaker label) yes

TS-VAD 4 (SAD, spk. emb., clustering, speaker label) yes
EEND-VC 2 (speaker label, clustering) yes

lapping speech detection. The simplicity of EEND fosters general machine learning researchers

and engineers to tackle the complicated speaker diarization problem more easily. Moreover, the

model with a single-neural network makes it easier to transfer knowledge from other research out-

comes. We demonstrate that 1) permutation-free training (Hershey et al. (2016); Du et al. (2016)),

developed for speech separation, is an essential component to solve the speaker diarization prob-

lem, and 2) the self-attention mechanism (Lin et al. (2017); Vaswani et al. (2017)), developed for

natural language processing, is beneficial to aggregate global speaker characteristics contributing

to speaker diarization.

The second objective is to build a better conditioning strategy specific to the speaker diariza-

tion models on top of the EEND framework. We propose a conditioning scheme based on latent

variables in the EEND model, enabling us to import several findings from traditional speaker di-

arization systems. For instance, speaker-wise latent variables in the resegmentation module are

imported to EEND, resulting in performance improvement and enabling speaker counting. It also

chains a traditional pipeline of SAD and clustering. We refer to the strategy as “speaker-wise

chain rule”. Furthermore, we import the idea of an iterable diarization approach (Shum et al.

(2013)) into the EEND model. Intermediate predictions are the latent variables that iteratively

refine the speaker label. The proposed idea is closely related to self-conditioning (Nozaki and Ko-

matsu (2021)), originally developed for ASR. Through the introduction of self-conditioning into

the EEND models, we demonstrate the superior performance of a fully non-autoregressive model

that incorporates iterative refinement.

This dissertation uses a simple yet practical experimental setup: single-channel, language-
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agnostic, and offline processing. Whereas multi-channel inputs with a microphone array hold

spatial information that helps diarization, our evaluation does not assume the availability of mi-

crophone arrays. Linguistic cues are not explicitly used since our main test dataset contains multi-

lingual audio that requires a language-agnostic system. We leave online processing as future work,

although it is preferred in real-time applications. Though speaker diarization can be jointly mod-

eled and evaluated with ASR or speech source separation, as shown in several studies, we focus

on general speaker diarization problems and do not focus on such joint optimization problems.

1.5 Dissertation organization

This dissertation comprises five chapters. Chapter 1 (this chapter) reviewed existing diarization

systems and highlighted our research objective: a simple end-to-end optimization.

Chapter 2 proposes EEND, a new formulation of speaker diarization that enables end-to-end

optimization. The new formulation and experiments highlight differences between the traditional

and proposed EEND systems. The experimental results of EEND are strong compared to tradi-

tional systems. However, it has two main problems: 1) the number of speakers should be fixed,

and 2) the conditional independence assumption in the EEND architecture causes performance

degradation.

Chapter 3 addresses the problem of the fixed number of speakers. We propose a new condi-

tioning scheme “speaker-wise chain rule”, which performs speaker-wise iterative estimation. The

experiments show that the proposed method can accurately detect the number of speakers com-

pared to the clustering-based method. The experiments also show that the iterative estimation

conditioned on partially estimated speaker labels performs better than the original EEND model,

indicating the importance of relaxing the conditional independence assumption.

Chapter 4 further investigates how to mitigate the performance degradation due to the condi-

tional independence assumption in EEND models. We propose “self-conditioning”, where inter-

mediate speaker label predictions are utilized to refine the output speaker label layer by layer. The

proposed method performs conditional inference on intermediate speaker labels, which relaxes

the conditional independence assumption. The experimental results show that self-conditioning

boosts the performance of EEND models. We also explore efficient architectures for EEND with
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self-conditioning and propose a non-autoregressive attractor model. The proposed model not only

achieved better performance but also requires fewer parameters compared to existing models.

Chapter 5 summarizes the dissertation with the future directions by showing some recent work

utilizing the concept of EEND.
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2
Formulation of speaker diarization with

end-to-end optimization

2.1 Introduction

This chapter introduces a new formulation of the speaker diarization problem that no longer di-

vides the problem into subproblems. Firstly, we develop the formulation of the traditional system.

Then, we propose the formulation of a novel end-to-end optimal system. The discrepancy between

the two formulations reveals the superiority of the proposed end-to-end optimal system. Finally,

experiments demonstrate the effectiveness of the proposed method.
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2.2 Traditional system: Single-sequence embedding generation model

Traditional systems assume that speaker diarization is done by partitioning audio segments so that

each time frame belongs to only one speaker or non-speech. Therefore, the estimation target is a

single sequence of speaker indices, written in a vector form as y ∈ ZT
≥0, where T is the number of

output frames and Z≥0 is a set of non-negative integers. yt = c means that time t is assigned to c-

th speaker. yt = 0 means non-speech at time t. An input audio stream is assumed to be a sequence

of feature vectors X ∈ RD′×T ′
, where D′ is a feature vector (e.g., filterbank) dimension, and T ′

is the number of input frames. Using probabilistic modeling, we write the objective of speaker

diarization as follows:

ŷ = argmax
y

p(y|X). (2.1)

Here, we write p(y|X) to describe a probability mass function of a multivariate random variable

y given X .

The model comprises three independent models: speech activity detection, speaker embedding

extraction, and clustering (speaker assignment). To do that, we first introduce a variable s =

min(y,1) ∈ {0, 1}T ′
corresponding to speech activity detection, where min is element-wise

minimum, and 1 is the all-one vector. Then, the marginal probability over s is approximated with

the most probable value of s:

ŷ = argmax
y

∑
s

p(y|X, s)p(s|X) (2.2)

≈ argmax
y

p(y|X, ŝ)p(ŝ|X), (2.3)

≈ argmax
y

p(y|X, ŝ), (2.4)

where ŝ = argmaxs p(s|X) is the output of speech activity detector. p(y|X, ŝ) means speaker

embedding extraction and clustering considering given speech activity ŝ. In a similar way, we

introduce another variable E ∈ RD×T corresponding to a sequence of T -length D-dimensional
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speaker embeddings, and marginalizing it out:

argmax
y

p(y|X, ŝ) ≈ argmax
y

p(y|X, Ê, ŝ), (2.5)

where Ê = argmaxE p(E|X, ŝ) is the speaker embedding extracted from X with the guide of

speech activity label ŝ. Then we rewrite the discriminative model of y as a generative model of

speaker embeddings Ê given speaker indices y, using the Bayes rule:

argmax
y

p(y|X, Ê, ŝ) = argmax
y

p(Ê|y, ŝ)p(y|ŝ). (2.6)

Here, the traditional systems omit X because clustering is performed solely on speaker embed-

dings Ê. This approximation heavily relies on the quality of frame-level speaker embeddings, i.e.,

the speaker identification model. p(y|ŝ) means that we deterministically assign “non-speech” la-

bels according to the speech activity label. p(Ê|y, ŝ) corresponds to the clustering process. Given

two speaker embeddings, a scorer, such as a PLDA scorer, can estimate a log-likelihood ratio of

the same speaker hypothesis over the different speaker hypothesis. p(Ê|y, ŝ) is maximized by

finding y so that the total log-likelihood ratio over all pairs of speaker embeddings is maximized.

Finally, we obtain three independent models: (1) p(ŝ|X) as a speech activity detector, (2)

p(Ê|X, ŝ) as a speaker embedding extractor, and (3) p(Ê|y, ŝ) as a scorer for clustering.

From the formulation, we can see many drawbacks in the traditional system, as follows.

1. These approximations cause performance degradation because we cannot recover the SAD

error in the later pipeline. ŝ in the later pipeline is only used to ignore the non-speech

frames; the decision is deterministic.

2. Speaker embedding and clustering, i.e., the PLDA scorer, are independently optimized.

Note that Garcia-Romero et al. (2017) is an exception, which proposed a joint model of the

speaker embedding and PLDA scorer. However, most traditional systems utilize a speaker

embedding model trained with speaker identification criteria and then train a scoring model

using fixed speaker embeddings.

3. It cannot be optimized using the target y, because clustering is an unsupervised process.
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Figure 2-1: Difference in speaker label target between traditional and EEND systems.

Though the PLDA scorer can be optimized to guide the clustering process, it cannot use

sequential (local) input or output characteristics because the scorer only considers a pair of

speaker embeddings without time information. Note that UIS-RNN (Zhang et al. (2019))

replaces the clustering part with a supervised embedding generation model trained with

pairs of E and y. However, their RNN model should be optimized independently from the

speaker embedding extractor.

4. With the definition of target y as a single sequence of speaker indices, we cannot handle

overlapping speech without considering another model. In Landini et al. (2021), overlap-

ping speech is detected using another speech separation model and heuristically assigns the

second speaker based on closeness in time. However, the pipeline becomes more compli-

cated to deal with overlapping speech.

44



CHAPTER 2. FORMULATION OF SPEAKER DIARIZATION WITH END-TO-END
OPTIMIZATION

2.3 EEND: Multi-sequence end-to-end model

This section provides a novel formulation of speaker diarization that no longer divides the problem

into subproblems. First, we introduce a new speaker label target Y ∈ {0, 1}S×T instead of

y ∈ ZT
≥0. S is the number of speakers in audio, and the row s of Y corresponds to the speech

activity sequence of s-th speaker. The new target comprises multiple (S) sequences. This target

can describe the overlapping speech by putting multiple ones in the same column, e.g., Y1,t =

Y2,t = 1. Fig 2-1 depicts the difference in speaker label target between the traditional system y

and the EEND system Y . We write the objective of speaker diarization with the new target Y :

Ŷ = argmax
Y

p(Y |X). (2.7)

End-to-end optimization uses a neural network to learn function f that maps input audio X

to the speaker label posterior, f : X 7→ p(Y |X). However, computing the joint posteriors of

all frames and speakers is difficult. Therefore, we instead estimate the frame-wise and speaker-

wise posterior p(Ys,t|X), which is conditioned on all input frames but independent of outputs

from other frames and speakers, yielding parallel computation of all the posteriors. This can be

interpreted as an approximation of p(Y |X) in the objective Eq. 2.7:

p(Y |X) =
T∏
t=1

S∏
s=1

p(Ys,t|X,Y<s,:,Ys,<t) (2.8)

≈
T∏
t=1

S∏
s=1

p(Ys,t|X), (2.9)

where Y<s,: is a submatrix of Y containing rows [0, s − 1], Ys,<t is a subvector of row s of Y

containing columns [0, t − 1], and these conditions are omitted. Consequently, we train a neural

network function f to estimate the speaker label posterior Ẑ ∈ [0, 1]S×T as:

Ẑ = f(X), (2.10)

where the element Ẑs,t is a posterior of s-th speaker activity at time t: p(Ys,t|X) 1. With the

1The actual output is p(Ys,t = 1|X) ∈ [0, 1] as the target is a binary variable
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network, the inference is achieved by Ŷs,t = 1[Ẑs,t > 0.5], where 1 is the indicator function that

returns 1 if the condition in the argument is true and returns 0 otherwise.

Another difficulty of the optimization is that the model must consider speaker label permuta-

tions: changing the order of speaker indices within a correct speaker label Y is also regarded as

correct. Formally, with any permutation matrix P ∈ {0, 1}S×S , PY is equivalent to Y . The

label permutations obstruct the training of the neural network when we use a standard binary

cross-entropy loss function.

To solve the label permutation problem, we employ a permutation-free training scheme that

considers all the permutations of the reference speaker label. The permutation-free training scheme

has been used in research on source separation (Hershey et al. (2016); Yu et al. (2017); Kolbæk

et al. (2017)). Here, we apply a permutation-free loss function to the speaker label.

LPF(Y , Ẑ) = min
P∈P(S)

BCE(PY , Ẑ), (2.11)

BCE(Ψ,Ω) =
1

ST

S∑
s=1

T∑
t=1

−Ψs,t logΩs,t − (1−Ψs,t) log(1−Ωs,t), (2.12)

where BCE computes element-wise binary cross-entropy between target label elements and esti-

mated posteriors, and P(S) is the set of S × S permutation matrices. Fig. 2-2 depicts the training

of EEND with permutation-free loss in a two-speaker case. As shown in the figure, the training

process evaluates both permutations and selects the one that minimizes binary cross-entropy. The

network is learned to select the order of speakers in a self-organizing manner, which is theoretically

better than any rule-based order, such as “first-observed speaker as the first,” or “most-speaking

speaker as the first.”

2.4 Neural network architecture for EEND

We investigate two different architectures for the EEND model. Firstly, the BLSTM model is used

to demonstrate the effectiveness of the permutation-free loss on the simulated dataset. Secondly,

the self-attention-based model is used to demonstrate the importance of the “speaker aggregation

layer” and superior performance compared to the BLSTM model and traditional speaker embed-
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Figure 2-2: EEND model trained with permutation-free loss.
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ding clustering models.

2.4.1 BLSTM-based neural network with Deep Clustering loss

Bidirectional long short-term memory (BLSTM; Graves and Schmidhuber (2005)) is a popular

network architecture to process a sequence of features. The input audio X is transformed as

follows:

X(0) = SubSample(X) ∈ RD′×T (2.13)

H(l) = BLSTM(l)(H(l−1)) ∈ R2D×T (1 ≤ l ≤ L) (2.14)

Ẑ = σ ◦ Linear(o)(H(L)). (2.15)

Here, SubSample reduces the number of frames from T ′ to T because a frameshift of audio fea-

tures is generally smaller than that of the output speaker label. BLSTM(1) is the first BLSTM

layer which accepts a sequence of D′-dimensional vectors and produces a sequence of concate-

nated vector of D-dimenstional forward and backward LSTM outputs. For l > 1, BLSTM(l)

accepts (2D × T ) matrix as the previous layer output. Linear(o) is a linear layer to project 2D-

dimensional vectors into S-dimensional vectors. σ is the element-wise sigmoid function. L is the

number of BLSTM layers.

Besides the main branch to produce Ẑ, we add another branch to generate frame-wise speaker

embeddings in the lower layers, which works as a regularizer. The M -th BLSTM layer output

H(M) obtained from Eq. 2.14 is transformed into normalized V -dimensional embedding:

V = Normalize ◦ Tanh ◦ Linear(v)(H(M)) ∈ RV×T , (2.16)

where Linear(v) is a linear layer to convert dimension from 2D to V , Tanh is the element-wise hy-

perbolic tangent function, and Normalize is the L2 normalization function. The Deep Clustering

(DC) loss function (Hershey et al. (2016)) is applied to V so that the embedding vectors are par-

titioned into speaker-dependent clusters and overlapping and non-speech clusters. For example,

four clusters (non-speech, speaker 1, speaker 2, and overlapping) are involved in a two-speaker
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audio. The DC loss function is expressed as follows:

LDC = ∥V ⊤V − Y ′⊤Y ′∥2F , (2.17)

where Y ′ ∈ R2S×T is a matrix in which each column represents a one-hot vector converted from

Y:,t to represent the cluster index in the power set of speakers. ∥ · ∥F is the Frobenius norm. The

loss function encourages the two embeddings at different time indices to be close together if they

are in the same cluster and encourages them to be far apart otherwise. We mix the two objectives

with a mixing parameter α:

LPF+DC = (1− α)LPF + αLDC. (2.18)

2.4.2 Self-attention-based neural network

Using BLSTM, each output frame is conditioned solely on its previous hidden state, subsequent

hidden state, and current input frame. In contrast, by utilizing a self-attention mechanism (Lin

et al. (2017)), each frame-level output is conditioned on all the input frames by computing the

pairwise similarity between all pairs of input frames. Self-attention can aggregate global informa-

tion from all frames based on similarity, which fits the speaker diarization task since it requires

global speaker characteristics distributed to the whole audio input and requires the frame-level

assignment based on the characteristics.

Here, we use a self-attention-based neural network using Transformer encoders (Vaswani et al.

(2017)) instead of BLSTM. The input features are transformed as follows:

E(0) = Linear(i) ◦ Subsample(X) ∈ RD×T (2.19)

E(l) = Enc(l)(E(l−1)) ∈ RD×T (1 ≤ p ≤ L), (2.20)

Ẑ = σ ◦ Linear(o) ◦ LayerNorm(E(L)) (2.21)

Here, Linear(i) projects input vectors into D-dimensional vectors. Enc(l) is the l-th Transformer

encoder block. We use L encoder blocks followed by layer normalization (Lei Ba et al. (2016)),

a linear layer, and sigmoid activations to obtain the posteriors. Note that the configuration of the
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Table 2.1: Statistics of EEND training and test sets.

Num. of mixtures Avg. duration (s) Overlap ratio (%)

Training
SimBeta2 Simulated (β = 2) 100,000 87.6 34.4
Real SWBD+SRE 26,172 304.7 3.7
SimLarge Simu. (β = 2, 3, 5, 7) 400,000 126.4 23.4
Comb Real+SimLarge 426,172 137.3 20.5

Test
1 Simulated (β = 2) 500 87.3 34.4
2 Simulated (β = 3) 500 103.8 27.2
3 Simulated (β = 5) 500 137.1 19.5
4 CALLHOME 148 72.1 13.0
5 CSJ 54 766.3 20.1

encoder block is almost the same as the one in the Speech-Transformer introduced in Dong et al.

(2018), but without positional encoding.

2.5 Experimental setup

2.5.1 Data

We verified the effectiveness of EEND for various overlap situations. We included four sets of

training data and five sets of test data. These sets are categorized into simulated and real datasets.

The statistics of the training and test sets are listed in Table 2.1. The overlap ratio is the ratio of

the audio time of overlapping segments over the total speech segments.

The training data for speaker embedding clustering differs from the EEND training data. The

clustering-based methods use single-speaker segments for training the speaker embedding models.

Instead, EEND uses mixed audio from multiple speakers as training data.

Simulated datasets

We developed a mixture simulation method. Algorithm 1 describes the simulation method. Unlike

the well-known mixture simulation algorithm for speech separation study (Hershey et al. (2016)),

we prepared conversation-style mixtures: each mixture has multiple utterances per speaker with
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Algorithm 1: Conversation-style mixture simulation algorithm.

Input: S,N , I,R // Speakers, noises, RIRs and SNRs
U = {Us}s∈S // Utterances of speaker s
Nspk // #speakers per mixture
Numax, Numin // Max. and min. #utterances per speaker
β // Average silence interval

Output: y // Mixture

1 Sample a set of Nspk speakers S ′ from S
2 X ← ∅ forall s ∈ S ′ do
3 xs ← ∅ Sample i from I Sample Nu from {Numin, . . . , Numax}
4 for u = 1 to Nu do
5 Sample δ ∼ 1

β exp
(
− δ

β

)
// Silence interval

6 xs ← xs ⊕ 0(δ) ⊕ Us [u] ∗ i // Append silence and utterance

7 X .add (xs)

8 Lmax = maxx∈X |x|
9 y←

∑
x∈X

(
x⊕ 0(Lmax−|x|)) // Mix-down

10 Sample n from N Sample r fromR Determine a mixing scale p from r,y, and n
11 n′ ← repeat n until the length of y is reached
12 y← y + p · n′

randomly sampled silence between the utterances. A hyperparameter β controls the average si-

lence interval. Large β generates large silence intervals, resulting in less overlap.

The audio sources were telephone speech, comprised of the Switchboard-2 (Phase I, II, III),

Switchboard Cellular (Part 1, Part2), and NIST Speaker Recognition Evaluation datasets (2004,

2005, 2006, 2008). All audio sources sampled at 8 kHz. We split the dataset, which had 6,381

speakers, into 5,743 training speakers and 638 test speakers. The split is identical to that of the

Kaldi recipe: CALLHOME diarization v2 (Povey et al. (2011)), enabling a fair comparison with

the clustering-based methods in the recipe. Since there are no speech activity annotations in the

datasets, we used a speech activity detector based on TDNN and statistics pooling2. A set of 37

background noises was from the MUSAN corpus (Snyder et al. (2015)). The set of 10,000 room

impulse responses (RIRs) was from the Simulated Room Impulse Response Database used in Ko

et al. (2017). The candidate SNR values were 10, 15, and 20 dB. These noises and RIRs were also

used for training the x-vector and SAD models in the x-vector clustering-based method.

2The SAD model: http://kaldi-asr.org/models/m4
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We generated two-speaker mixtures for each speaker with 10-20 utterances (Nspk = 2, Numin =

10, Numax = 20). For the simulated training set, we generated 100,000 mixtures with β = 2 (Sim-

Beta2). We also prepared four sets of 100,000 mixtures with different values of β (2, 3, 5, and 7),

and combined them to form 400,000 mixtures (SimLarge). For the simulated test set, we generated

500 mixtures with β = 2, 3, and 5. The resulting overlap ratios of the simulated mixtures were

from 19.5 to 34.4%.

Real datasets

We prepared telephone speech recordings as the real training set (Real). The real training set

comprised 26,172 two-speaker recordings, which were extracted from Switchboard-2 (Phase I, II,

III), Switchboard Cellular (Part 1, Part 2), and NIST Speaker Recognition Evaluation datasets. The

overlap ratio of the training data was 3.7%, which is significantly less than that of the simulated

mixtures.

We evaluated the proposed method on real telephone conversations in the CALLHOME dataset

(NIST (2000)). We split the two-speaker audio from the CALLHOME dataset into 155 adaptation

data and 158 test data. The overlap ratio of the real test set was 13.0%.

In addition, we prepared another test set from the dialogue part of the Corpus of Sponta-

neous Japanese (CSJ; Maekawa (2003)). The original corpus contains 58 two-speaker dialogues,

recorded using headset microphones in soundproof rooms. To make the test test, we excluded four

dialogues that contain speakers in the official ASR evaluation sets. The overlap ratio of the CSJ

test set was 20.1%, which is larger than the CALLHOME test set.

Combined datasets

To generalize a model to various environments, we conducted experiments using both the sim-

ulated training set (SimLarge) and the real training set (Real). We refer to the dataset as the

combined training set (Comb).
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2.5.2 Model configuration

Clustering-based systems

The proposed method was compared against two traditional clustering-based methods: the i-vector

and x-vector systems, which were developed using the Kaldi CALLHOME diarization v1 and

v2 recipes (Sell et al. (2018)). These recipes used AHC and PLDA. We set the fixed number

of speakers to two. Unlike the original recipes that utilize oracle speech/non-speech labels, we

employed the SAD model, configured as detailed in Sec. 2.5.1.

BLSTM-based EEND system

The BLSTM-EEND system, as detailed in Sec. 2.4.1, was set up with specific configurations. We

used 23-dimensional log-Mel-filterbanks as input features, with a frame length of 25 ms and a

frame shift of 10 ms. Features from the previous and subsequent seven frames were concatenated

with each feature. To manage long audio sequences in our neural networks, we subsampled these

concatenated features by a factor of ten, resulting in a (23 × 15)-dimensional input feature being

fed into the network every 100 ms.

We used a five-layer BLSTM, each layer having 256 hidden units. The output from the second

layer of the BLSTM was transformed into a 256-dimensional embedding. This embedding was

used to compute the Deep Clustering loss. The mixing parameter α was set at 0.5. For optimiza-

tion, we utilized the Adam (Kingma and Ba (2015)) optimizer with a learning rate of 10−3 and a

batch size of 10. The training iterated over 20 epochs.

The neural network output is the probability of speech activity per speaker. To make a deci-

sion on speech activity for each frame, we set a threshold at 0.5. Additionally, to avoid creating

excessively short segments, we applied 11-frame median filtering.

For domain adaptation, we retrained the neural network using the CALLHOME adaptation set,

employing the Adam optimizer with a learning rate of 10−6 for five epochs. In postprocessing, we

modified the threshold to 0.6, optimizing the Diarization Error Rate (DER) for the adaptation set.
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Self-attention-based EEND system

The self-attention-based EEND model (SA-EEND) utilized the same input features as the BLSTM-

EEND system. However, due to the higher memory consumption of the SA-EEND system, the

sequence length during training was limited to 500, equivalent to 50 seconds of audio time. Con-

sequently, input audio recordings were divided into non-overlapping 50-second segments. In the

inference stage, we processed the full sequence for each recording.

The model was composed of two encoder blocks, each with 256 attention units and four heads.

The position-wise feed-forward layer within these blocks contained 1024 units. For optimization,

the Adam optimizer was employed along with a learning rate scheduler as described in Vaswani

et al. (2017). The learning rate scheduler included 25,000 warm-up steps, and the batch size was

set to 64. The training was conducted over 100 epochs.

After 100 epochs, an averaged model was created by averaging the parameters of the models

from the last ten epochs. As with the BLSTM-EEND system, 11-frame median filtering was

applied.

For domain adaptation, this averaged model was further trained using the CALLHOME adap-

tation set. The training used the Adam optimizer with a learning rate of 10−5 for an additional 100

epochs. Then, an averaged model was again obtained by averaging the model parameters from the

final ten epochs.

2.5.3 Performance metric

We evaluated the systems with DER (NIST (2009)). Note that DERs reported in numerous pre-

vious studies may not fully represent the performance of diarization systems. This is because

these studies often used oracle speech/non-speech labels, which led to the exclusion of misses or

false alarm errors in their evaluations. Moreover, overlapping speech segments were typically not

considered in their evaluations, further impacting the comprehensiveness of the reported DERs.

Instead, we evaluated all the errors, including overlapping speech segments, because the pro-

posed method includes both speech activity detection and overlapping speech detection function-

ality. As is typically done, we used a collar tolerance of 250 ms at the start and end of each

segment.
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Table 2.2: Effect of loss functions evaluated on simulated speech generated with β = 2. We
trained BLSTM-based models using 10,000 mixtures generated with β = 2.

Permutation-free loss DC loss DER (%)

- - 41.74
✓ - 25.14
✓ ✓ 23.79

Table 2.3: Effect of training data size evaluated on simulated speech generated with β = 2. We
trained BLSTM-based models using simulated mixtures with β = 2.

Number of training mixtures DER(%)

10,000 23.79
20,000 14.66

100,000 12.28

2.6 Results

2.6.1 Effect of loss functions and training data size

We first evaluated the effect of the proposed loss functions. Without the permutation-free loss, we

used a standard binary cross-entropy loss with the fixed permutation by sorting the speaker names

in a lexical order. With permutation-free and DC losses, we set the mixing parameter α = 0.5.

Table 2.2 shows the results. The results demonstrate that the permutation-free loss is essential for

training the EEND network, and DC loss helps improve performance.

The comparison with different training data sizes is shown in Table 2.3. Clearly, performance

was improved with increasing training data size.

2.6.2 Evaluation on simulated mixtures

DERs on various test sets are shown in Table 2.4. The performances of clustering-based systems

were weak in scenarios with high overlap in simulated mixtures. The results were anticipated as

these systems do not account for speaker overlaps, leading to increased misses in high-overlap

scenarios.

In contrast, the BLSTM-EEND system, trained on the SimBeta2 dataset, demonstrated a sig-
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Table 2.4: DERs (%) on various test sets. For EEND systems, the CALLHOME (CH) results
were obtained with domain adaptation.

Simulated Real
β = 2 β = 3 β = 5 CH CSJ

Clustering-based
i-vector 33.74 30.93 25.96 12.10 27.99
x-vector 28.77 24.46 19.78 11.53 22.96

BLSTM-EEND
trained with SimBeta2 12.28 14.36 19.69 26.03 39.33
trained with Real 36.23 37.78 40.34 23.07 25.37

SA-EEND
trained with SimBeta2 7.91 8.51 9.51 13.66 22.31
trained with Real 32.72 33.84 36.78 10.76 20.50
trained with SimLarge 6.81 6.60 6.40 14.03 21.84
trained with Comb 6.92 6.54 6.38 11.99 22.26

nificant DER reduction on simulated mixtures compared to the clustering-based systems. The

system was particularly effective in conditions with the highest overlap (β = 2), reflecting the

system’s ability to handle overlapping speech similar to those in the training data.

The SA-EEND system, also trained on the simulated dataset, outperformed the BLSTM-

EEND system across all test sets, achieving significantly lower DERs. Like the BLSTM-EEND

system, it showed optimal performance in the highest overlap condition (β = 2). Notably, the SA-

EEND system exhibited less performance degradation in low overlap conditions compared to the

BLSTM-EEND system. The results suggest that the inclusion of self-attention blocks enhanced

its robustness to varying degrees of overlap.

Further, training the SA-EEND model with various overlap conditions (SimLarge) resulted in

improvements across all test sets over training with a single overlap condition (SimBeta2). The

results indicate that training with diverse overlap scenarios can help reduce the risk of overfitting

to a specific overlap ratio.

2.6.3 Evaluation on real test sets

Despite its strong performance on simulated mixtures, the BLSTM-EEND system showed less ef-

fective results on real test sets when compared to the clustering-based systems. Even after switch-
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Table 2.5: DERs (%) on the CALLHOME with and without domain adaptation.

w/o adaptation with adaptatation

x-vector clustering 11.53 N/A

BLSTM-EEND
trained with SimBeta2 43.84 26.03
trained with Real 31.01 23.07

SA-EEND
trained with SimBeta2 17.42 13.66
trained with SimLarge 16.31 14.03
trained with Real 12.66 10.76
trained with Comb 14.50 11.99

ing its training data from simulated to real, the DERs of the BLSTM-EEND system remained

higher than those of the clustering-based systems.

Conversely, the SA-EEND system trained with the SimBeta2 dataset exhibited notable im-

provements on real test sets of CALLHOME and CSJ. These improvements highlight the general-

ization capability of the self-attention blocks in the system. For the CSJ test set, the SA-EEND sys-

tem outperformed the x-vector clustering-based method even without domain adaptation. Training

the SA-EEND model with a variety of overlap ratio conditions (SimLarge) further enhanced its

generalization to real test sets.

The SA-EEND system trained with real data (Real) demonstrated superior performance on real

test sets compared to the SimLarge model. However, its performance on simulated test sets was not

as strong, due to the limited diversity and lower overlap ratios in the real training set. In contrast,

the SA-EEND system trained with a combined dataset (Comb), incorporating various overlap

ratios, demonstrated excellent generalization abilities. The results suggest that exposing the model

to a wide range of overlap conditions during training can significantly enhance its adaptability to

different test scenarios.

2.6.4 Effect of domain adaptation

The EEND models trained with simulated datasets displayed overfitting to the specific overlap

ratio presented in the training set. Domain adaptation was expected to mitigate such overfitting.
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Table 2.6: Detailed DERs (%) evaluated on the CALLHOME. DER is composed of Miss (MI),
False alarm (FA), and Confusion (CF) errors. The SAD errors are composed of Miss (MI) and
False alarm (FA) errors.

DER breakdown SAD errors
Method DER MI FA CF MI FA

Clustering
i-vector 12.10 7.74 0.54 3.82 1.4 0.5
x-vector 11.53 7.74 0.54 3.25 1.4 0.5

SA-EEND
no-adapt 12.66 7.42 3.93 1.31 3.3 0.6
adapted 10.76 6.68 2.40 1.68 2.3 0.5

Indeed, as shown in Table 2.5, domain adaptation significantly decreased the DERs on the CALL-

HOME dataset, leading to even better results than those achieved by the x-vector-based system.

A more detailed analysis of DERs on the CALLHOME test set is presented in Table 2.6.

The clustering-based systems exhibited fewer SAD errors, benefiting from a robust SAD model

trained on diverse, noise-augmented data. However, these systems faced challenges with misses

and confusion errors, primarily due to their inability to handle speaker overlaps.

In contrast, the proposed EEND models resulted in significantly fewer confusion and miss er-

rors than the clustering-based systems. Furthermore, the application of domain adaptation led to

a reduction in all types of errors except for confusion errors. These results indicate that while do-

main adaptation improves overall diarization performance, there may still be room for enhancing

its effectiveness in reducing confusion errors.

2.6.5 Visualization of self-attention

The analysis of the self-attention mechanism in the EEND model provides insights into how it

processes audio data. Fig. 2-3 shows the attention weight matrix at the second encoder block.

Heads 1 and 2 display vertical lines at different positions within the matrix. These vertical

lines correlate with the activity of each speaker, indicating that these heads are transforming the

input features into a weighted mean of frames corresponding to the same speaker. This suggests

that heads 1 and 2 are capturing global speaker characteristics, essential features for speaker di-
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Figure 2-3: Attention weight matrices at the second encoder block. The input was the CALL-
HOME test set (recording id: iagk). The model was trained with the real training set, followed by
domain adaptation. The top two rows show the reference speech activity of two speakers.

Table 2.7: DERs (%) with different number of heads. The models are trained with SimBeta2.

Simulated Real
Num. heads β = 2 β = 3 β = 5 CH CSJ

2 12.60 13.42 16.12 16.49 26.05
4 7.91 8.51 9.51 13.66 22.31
8 6.84 7.06 7.85 13.44 23.58

16 7.19 7.52 7.88 13.28 24.35

arization, by calculating similarities between distant frames. Conversely, heads 3 and 4 present

diagonal matrices, indicating their operation as local linear transforms. These heads likely per-

form speech/non-speech detectors, focusing on more immediate frame-to-frame changes rather

than global patterns. The coexistence of these different types of attention heads within the EEND

system enhances its overall effectiveness.

2.6.6 Effect of varying number of heads in self-attention blocks

The investigation presented in Sec. 2.6.5 revealed that different heads in the self-attention mech-

anism were representing different speakers. To further explore the significance of having multiple

heads in the model, we conducted experiments with models having varying numbers of heads.

The results are displayed in Table 2.7. It showed performance improvement with an increase in

the number of heads. This trend indicates that the SA-EEND models were effectively trained to

distinguish between speakers by leveraging the global speaker characteristics identified by the dif-
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Table 2.8: DERs (%) for different numbers of encoder blocks and warm-up steps with/without
residual connections. The models were trained with SimBeta2

Enc. Warm. Res. Simulated Real
blocks steps con. β = 2 β = 3 β = 5 CH CSJ

2 25k N 7.91 8.51 9.51 13.66 22.31
2 25k Y 7.36 7.59 7.78 12.50 23.38
4 25k Y 5.66 5.39 5.01 10.16 20.39
4 50k Y 5.01 4.64 4.10 10.25 21.50
4 100k Y 4.56 4.50 3.85 9.54 20.48

x-vector clustering 28.77 24.46 19.78 11.53 22.96

ferent heads. It implies that the minimum required number of heads in the model should be at least

equal to the number of speakers present in the audio. Furthermore, the results suggest that having

additional heads beyond this minimum threshold can further enhance the model’s performance.

2.6.7 Effect of varying number of encoder blocks

In this subsection, the focus was on exploring additional encoder blocks with residual connections

into the EEND system. The impact of varying the number of encoder blocks on DER is detailed in

Table 2.8. The results reveal that as the number of encoder blocks increased, there was a significant

improvement in the performance.

Specifically, the enhanced EEND system achieved a DER of 9.54% on the CALLHOME

dataset, outperforming the x-vector clustering-based system, which recorded a DER of 11.53%.

On the CSJ dataset, the EEND system’s performance was also superior, a DER of 20.39%, com-

pared to the 22.96% DER of the x-vector clustering-based system.

Moreover, the EEND system demonstrated superior performance on the simulated test set,

with DERs ranging from 4.56% to 3.85%. In contrast, the x-vector clustering-based system

showed significantly higher DERs, between 19.78% and 28.77%.

These results highlight the effectiveness of deeper model configurations in the EEND system,

particularly when employing more encoder blocks with residual connections. The improvement in

DERs across various datasets, especially in comparison to the x-vector clustering-based system,

demonstrates the potential of EEND models in enhancing accuracy.
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2.7 Conclusion

This chapter introduced a novel approach to speaker diarization known as end-to-end neural di-

arization (EEND). The key innovation of EEND lies in its end-to-end modeling, which allows

the neural network to directly produce speaker label probabilities for multi-speaker audio inputs.

A notable aspect of this method is the use of a permutation-free objective function, specifically

designed to minimize diarization errors.

The EEND models were tested on both simulated speech mixtures and real conversational

datasets. The results showed that EEND consistently outperformed the state-of-the-art x-vector

clustering-based methods, and showed its capability to handle overlapping speech.

We explored the neural network architecture optimal for EEND. The results demonstrate the

pivotal role of self-attention-based neural networks in achieving high performance. This architec-

ture was found to be particularly effective due to its ability to capture both global speaker charac-

teristics and local speech activity dynamics. This dual capability is a crucial factor in addressing

the speaker diarization problem.

Further experiments with the neural network architecture revealed a correlation between the

number of encoder blocks and the performance of the EEND model. It was observed that increas-

ing the number of encoder blocks in the model led to better performance. This suggests that more

complex network structures can more effectively enhance the overall performance in real test data.

We found that the proposed method has two limitations. First, the number of speakers S should

be fixed in advance since the neural network output is S × T matrix. The next chapter addresses

the problem of the fixed number of speakers. Second, the conditional independence assumption

introduced in Eq. 2.9 may cause a performance bottleneck. Chapter 4 proposes a method to relax

the conditional independence assumption in EEND models.
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3
Speaker-wise conditioning for end-to-end

speaker diarization

3.1 Introduction

In this chapter, we introduce a conditioning method called “speaker-wise chain rule”. By generat-

ing a speaker label sequence iteratively with conditioning input of previously estimated sequences,

the proposed model can utilize the existence of other speakers as prior knowledge for improved

diarization performance. The proposed speaker-wise chain rule handles the variable number of

speakers because it can iteratively produce a new speaker label sequence.
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(b) Proposed SW-EEND method

Figure 3-1: System diagrams of the conventional EEND method and the proposed SW-EEND
method.

3.2 Speaker-wise sequence decomposition

In the EEND model, the neural network output comprises multiple sequences of the fixed num-

ber of speakers, as shown in Fig. 3-1a. Instead, the proposed neural network produces a single

sequence of one speaker, as shown in Fig. 3-1b. The network is used iteratively to produce a

different sequence of the new speaker, considering the condition of previously estimated speakers.

According to given multi-speaker audio, the model can handle a variable number of speakers by

stopping the iteration when no speech activity is found from the output sequence.

This new model architecture is formulated as a speaker-wise sequence decomposition of the

conventional EEND model. Recall Eq. 2.8 and we do not omit the condition Y<s,: to approximate
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the objective:

p(Y |X) =
T∏
t=1

S∏
s=1

p(Ys,t|X,Y<s,:,Ys,<t) (3.1)

≈
S∏

s=1

p(Ys,:|X,Y<s,:). (3.2)

The proposed speaker-wise neural network fsw estimates the posterior p(Ys,t|X,Y<s,:):

Ẑs,: = fsw(X, Ŷ<s,:) ∈ [0, 1]T (3.3)

With this model, each speaker’s speech activity is sequentially decoded using previously estimated

speech activities as conditions. This model is similar to the chain-rule-based autoregressive mod-

els such as sequence-to-sequence ASR models. Whereas the autoregressive models consider the

conditions on the time axis, our “speaker-wise chain rule” considers the conditions on the speaker

axis. We still use the independence assumption on the time axis of the current speaker, i.e., Ys,<t,

the proposed model can see the whole sequence of previous speakers, which relaxes the indepen-

dence on the time axis to some extent.

To generate a variable number of speakers, Eq. 3.3 is iteratively applied to the next speaker

until no speech activity is found, i.e., Ŷs,: equals to the all-zero vector.

3.3 Network architecture for speaker-wise neural network

Since the proposed speaker-wise neural network generates the output for a variable number of

times, the encoder-decoder type of the neural network is a suitable choice. For the encoder part,

we use the same transformer encoders as Eq.2.20 in the conventional EEND model to obtain E(L)

after L encoder blocks. For the decoder part, the neural network output Ẑs,: for s-th iteration is
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computed as follows:

G(s) =

 E(L)

Linear(sw1)(Ŷs−1,:)

 ∈ R2D×T (3.4)

R(s),K(s) = LSTM(G(s),R(s−1),K(s−1)) ∈ RD×T ,RD×T (3.5)

Ẑs,: = σ(Linear(sw2)(R(s)) ∈ [0, 1]T , (3.6)

where LSTM is a uni-directional LSTM that maps 2D-dimensional input vector to D-dimensional

vector while keeping D-dimensional hidden state and memory cell for each time index. Note that

the LSTM performs its recurrent behavior solely on the speaker axis and does not consider a

sequence in the time axis. Finally, a linear projection with a sigmoid activation σ produces a

T -dimensional vector as a neural network output.

The neural network accepts Ŷs−1,:, a speech activity vector of the previous speaker index es-

timated at the previous decoder iteration (for the first iteration, we use the zero vector). However,

the estimation error at the previous iteration hurts the performance at the next iteration. To re-

duce the error, we use the teacher-forcing (Williams and Zipser (1989)) technique, which boosts

the performance by exploiting ground-truth labels. During training, Eq. 3.3 is replaced with as

follows:

Ẑ(TF)
s,: = f (sw)(X,Y<s,:), (3.7)

Here, Y<s,: is a set of ground-truth speech activity of speaker index from 1 to s − 1. However,

a problem arises with training loss computation in Eq. 2.7. As described in Sec. 2.3, the order

of speakers is determined during training. One cannot determine a speaker index s − 1 before

computing the permutation-free loss, which requires estimates of all speakers. To alleviate this

problem, we examine two kinds of loss computation strategies, as follows.

Speaker-wise greedy loss

In each decoding iteration, the system selects the most suitable speaker index by aiming to reduce

the binary cross-entropy loss among all speaker indices. Following this selection, the speech
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Algorithm 2: Two-stage permutation-free loss
Input: X , Y
Output: LPF2

1 // First stage

2 Ẑ1,: = f (sw)(X,0), // Eq. 3.3

3 Ŷ1,: = [1(Ẑ1,t > 0.5) | t = 1, . . . , T ] // Threshold
4 for s = 2 to S do
5 Ẑs,: = f (sw)(X, Ŷ<s,:), // Eq. 3.3

6 Ŷs,: = [1(Ẑs,t > 0.5) | t = 1, . . . , T ] // Threshold

7 P ∗ = argminP∈P(S) BCE(PY , Ẑ) // Optimal order (Eq. 2.11)

8 Ẑ
(TF)
1,: = Ẑ1,:

9 // Second stage
10 for s = 2 to S do
11 Ẑ

(TF)
s,: = f (sw)(X, [P ∗Y ]<s,:) // Eq. 3.7

12 // Loss with the optimal order

13 LPF2 = BCE(Ẑ(TF),P ∗Y )
14 // Last output with no speech activity

15 Ẑ(last) = f (sw)(X, [P ∗Y ;0])

16 LPF2 += BCE(Ẑ(last),0)

activity of the selected speaker is used as input for the next decoding iteration.

Two-stage permutation-free loss

The computation of the two-stage permutation-free loss follows the steps outlined in Algorithm 2.

In the first stage, the outputs of the neural network are calculated without using teacher-forcing,

as defined in Eq. 3.3. Following this, the optimal speaker order is identified based on Eq. 2.11.

The second stage then involves recalculating the neural network outputs, this time implementing

teacher-forcing and utilizing the optimally determined speaker order. The final loss is derived by

comparing these second-stage outputs with the ordered labels that were determined in the first

stage. Note that this two-stage process is time-efficient, because backward computation is only

necessary during the second stage.
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Figure 3-2: Overview of the subtask-first speaker-wise chain rule.

3.4 Preconditioning with subtask predictions

The speaker-wise chain rule can infuse any type of context information through the LSTM. In

addition to previous speakers, we propose to precondition the network using speech activity de-

tection and overlap detection subtasks. Fig. 3-2 depicts the overview of the proposed subtask-first

system with the speaker-wise chain rule.

We introduce speech activity detection target u ∈ [0, 1]T :

ut = max(Y:,t) (1 ≤ t ≤ T ). (3.8)

Similarly, we introduce overlap speech detection target v ∈ [0, 1]T :

vt = 1(

S∑
s=1

Ys,t > 1) (1 ≤ t ≤ T ). (3.9)

Then, we augment these latent variables and approximate the objective function with the most
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probable values:

argmax
Y

p(Y |X) =
∑
u

∑
v

p(Y |X,v,u)p(v|X,u)p(u|X) (3.10)

≈ argmax
Y

p(Y |X, v̂, û) (3.11)

≈ argmax
Y

S∏
s=1

p(Ys,:|X,Y<s,:, v̂, û), (3.12)

where û = argmaxu p(u|X), and v̂ = argmaxv p(v|X, û). To compute p(u|X) and p(v|X, û),

we reuse the same function with Eqs. 3.4-3.6. p(u|X) is computed by replacing the conditional

input Ŷs−1,: with the zero vector, and p(v|X, û) is computed using the conditional input û. At

the first speaker iteration, p(Ys,:|X,Y<s,:, v̂, û) is computed using the conditional input v̂.

3.5 Experimental setup

3.5.1 Data

We prepared simulated training and test sets for both two-speaker and variable-speaker audio

mixtures. We also prepared real adaptation/test sets from CALLHOME (NIST (2000)). The

statistics of the datasets are listed in Table 3.1. For the simulated dataset with a variable number of

speakers (Simulated-vspk), the overlap ratio is adjusted to be similar among the different numbers

of speakers. The simulation method was the same as in Chapter 2. For the CALLHOME-2spk,

we use the same test set as Chapter 2. For the CALLHOME-vspk sets, we used the same test set

of the Kaldi CALLHOME diarization v2 recipe (Povey et al. (2011)).

3.5.2 Model configuration

x-vector clustering-based (x-vector+AHC) model

We used the same clustering-based system as Chapter 2. The system uses AHC with the prob-

abilistic linear discriminant analysis (PLDA) scoring scheme. The number of clusters was fixed

to be two for the two-speaker experiments, while it was estimated using a PLDA score for the

variable-speaker experiments.
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Table 3.1: Statistics of training/adaptation/test sets.

# speaker # mixture Avg. duration Overlap ratio

Training sets
Simulated-2spk 2 100,000 87.6 34.4
Simulated-vspk 1-4 100,000 128.1 30.0

Adaptation sets
CALLHOME-2spk 2 155 74.0 14.0
CALLHOME-vspk 2-7 249 125.8 17.0

Test sets
Simulated-vspk 1-4 2,500 128.1 30.0
CALLHOME-2spk 2 148 72.1 13.0
CALLHOME-vspk 2-6 250 123.2 16.7

Self-attention-based EEND (SA-EEND) and the proposed speaker-wise chain rule (SW-EEND)

We built self-attention-based EEND (SA-EEND) models and the proposed speaker-wise chain

rule (SW-EEND) models, mostly based on the configuration described in Chapter 2. The con-

figurations have small differences between the two-speaker and variable-speaker experiments, as

follows.

For the two-speaker experiments, we used four encoder blocks with 256 attention units con-

taining four heads. For the variable-speaker experiments, we used four encoder blocks with 384

attention units containing six heads. We used a subsampling ratio of 20 for variable-speaker ex-

periments, which is twice larger than that of two-speaker experiments (10). Note that conventional

EEND does not handle a variable number of speakers. We trained a fixed four-speaker model with

zero-padded labels for three or fewer speakers in the training data.

In preparing the SA-EEND models and the proposed SW-EEND models, we adhered to the

configuration in Chapter 2, with minor adjustments to suit the specific requirements of two-speaker

and variable-speaker experiments.

For experiments involving two speakers, we used four encoder blocks, each equipped with

256 attention units and containing four heads. In contrast, for the variable-speaker experiments,

we scaled up the configuration to have four encoder blocks with 384 attention units and six heads.

Additionally, the subsampling ratio for the variable-speaker experiments was set to 20, which is
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Table 3.2: DERs on two-speaker CALLHOME.

Model Training DER

x-vector+AHC - 11.53
SA-EEND PF 9.70

Proposed SW-EEND PF 9.95
Proposed SW-EEND Greedy+TF 9.01
Proposed SW-EEND PF2+TF 8.86

double the ratio used in the two-speaker experiments (10).

Note that the conventional EEND approach does not accommodate a variable number of speak-

ers. To address this limitation, we trained the EEND model for four speakers. In cases where the

training data included three or fewer speakers, we implemented zero-padding for the labels to

adapt to this fixed four-speaker model configuration.

3.6 Results

3.6.1 Experiments on fixed two-speaker models

Table 3.2 shows the DERs on the two-speaker CALLHOME. The proposed SW-EEND without

teacher-forcing (TF) was slightly worse than conventional SA-EEND. With teacher-forcing, DER

was significantly reduced and outperformed the conventional SA-EEND. For the loss compu-

tation strategy, two-stage permutation-free loss (PF2+TF) was slightly better than speaker-wise

greedy loss (Greedy+TF). These results indicate that the conditional inference on partially esti-

mated speaker labels helps improve the diarization performance.

3.6.2 Experiments on a variable number of speakers

Table 3.3 shows the DERs on the variable-speaker simulated test set. For SW-EEND without

teacher-forcing, we observed no significant improvement from the conventional SA-EEND. With

teacher-forcing, again, significant improvement was observed, particularly on a large number of

speakers. The proposed two-stage permutation-free loss was significantly better than the speaker-

wise greedy loss. The results indicate that the permutation-free loss is particularly important when
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Table 3.3: DERs on variable-speaker simulated test set.

Num. of speakers
Model Training 1 2 3 4

SA-EEND PF 1.16 6.40 11.59 21.75
Proposed SW-EEND PF 0.96 6.32 11.75 22.52
Proposed SW-EEND Greedy+TF 0.85 5.25 10.56 18.28
Proposed SW-EEND PF2+TF 0.76 4.31 8.31 12.50

Table 3.4: DERs on variable-speaker CALLHOME. Note that Greedy+TF adaptation model† was
evaluated at 20th epoch, because the adaptation was not stable after the epoch.

Model Training DER

x-vector+AHC - 19.01
SA-EEND PF 20.47

Proposed SW-EEND PF 17.42
Proposed SW-EEND Greedy+TF 18.07†
Proposed SW-EEND PF2+TF 15.75

the number of speakers is large.

DERs on the variable-speaker CALLHOME are shown in Table 3.4. Even without teacher-

forcing, the SW-EEND outperformed the conventional SA-EEND and x-vector+AHC methods.

SW-EEND with teacher-forcing with the two-stage permutation-free loss significantly boosted

performance.

3.6.3 Analysis on speaker counting

In the variable-speaker CALLHOME experiments, our analysis focused on the accuracy of speaker

counting. The results of this analysis are presented in Table 3.5. It was observed that the proposed

method demonstrated superior accuracy in counting speakers compared to the x-vector+AHC

method. This improvement indicates the effectiveness of the proposed approach in identifying

the number of speakers in a conversation. However, while the proposed method showed better

performance in speaker counting, it still faced challenges in scenarios involving more than four

speakers.
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Table 3.5: Speaker counting results on variable-speaker CALLHOME. SW-EEND models were
trained with PF2+TF.

(a) x-vector+AHC (Acc: 54.6%)

Estimated
2 3 4 5 6

R
ef

er
en

ce

2 84 62 2 0 0
3 18 51 5 0 0
4 2 12 6 0 0
5 0 4 1 0 0
6 0 1 2 0 0

(b) SW-EEND (Acc: 74.8%)

Estimated
2 3 4 5 6

2 130 17 1 0 0
3 17 54 3 0 0
4 4 13 3 0 0
5 0 3 2 0 0
6 0 2 1 0 0

3.6.4 Experiments with preconditioning for fixed two-speaker models

We verified the effectiveness of the preconditioning with SAD and overlapping speech detection

(OD) on two-speaker mixtures as shown in Table 3.6.

First, we observed the performance of the models using SAD as the subtask. SAD-first SW-

EEND achieved a 6.2% relative improvement over SW-EEND. The proposed SAD-first model

achieved comparable SAD-level performance with clustering-based methods that have the SAD

module trained separately. The results indicate that the subtask-first conditioning leverages the

subsequent diarization task. Next, we discuss the performance of models using OD as the subtask.

The OD-first SW-EEND outperformed SW-EEND, and showed slightly worse performance than

SAD-first SW-EEND. FA errors in DER breakdown were significantly reduced compared with

the SAD-first model. The results suggest that the overlap information helps prevent the over-

generation of overlapping segments in the diarization results.

Furthermore, when both SAD and OD subtasks are used for preconditioning, we observed the

best performance among the evaluated methods. SAD-OD-first SW-EEND showed 3.18% and

6.16% relative DER improvements over SAD-first and OD-first approaches, respectively. Similar

to SAD-first SW-EEND, we observed a significant reduction in SAD errors. FA errors in DER

breakdown were significantly reduced compared with SAD-first SW-EEND owing to the condi-

tioning on OD. The results demonstrate that conditioning on the subtasks contributes to significant

performance improvement for EEND models.
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Table 3.6: Detailed DERs (%) evaluated on CALLHOME-2spk. DER is composed of Misses
(MI), False alarms (FA), and Confusion errors (CF). The SD errors are composed of Misses (MI)
and False alarms (FA) errors.

DER breakdown SAD
Method DER MI FA CF MI FA

Clustering-based
i-vector 12.10 7.74 0.54 3.82 1.4 0.5
x-vector 11.53 7.74 0.54 3.25 1.4 0.5

EEND-based
SA-EEND 10.32 5.66 3.25 1.40 3.0 0.5
SW-EEND 9.39 4.96 2.73 1.70 2.2 0.4

Subtask-first SW-EEND
SAD-first 8.81 4.11 2.96 1.74 1.4 0.8
OD-first 9.09 5.25 1.86 1.98 2.3 0.4
SAD-OD-first 8.53 4.22 2.33 1.98 1.6 0.7

Table 3.7: DERs (%) on CALLHOME-vspk.

Method DER

Clustering-based
x-vector 19.01

EEND-based
SW-EEND 15.57
SAD-first SW-EEND 15.36
OD-first SW-EEND 16.37
SAD-OD-first SW-EEND 15.32

3.6.5 Experiments with preconditioning for variable number of speakers

We also experimented with the variable number of speakers for CALLHOME test set. For this

particular experiment, we randomly disabled the SAD subtask losses at the frame level with a ratio

of 0.7 and multiplied the losses by 0.1, because our preliminary experiments showed overfitting

to the SAD subtask. Furthermore, we used the outputs of the SAD subtask network to determine

non-speech frames regardless of the diarization outputs.

Table 3.7 shows the DERs. The SAD-first SW-EEND achieved 15.36%, which corresponds to

19.2% and 1.35% relative DER improvements over the conventional x-vector clustering method

74



CHAPTER 3. SPEAKER-WISE CONDITIONING FOR END-TO-END SPEAKER
DIARIZATION

Table 3.8: Detailed DERs (%) associated with each number of speaker on CALLHOME-vspk.

Num. of speakers
Model 2 3 4 5 6

SW-EEND 9.0 14.4 19.1 34.6 39.5
SAD-OD-first SW-EEND 8.0 13.5 23.1 30.0 35.2

and SW-EEND without preconditioning. SAD-OD-first SW-EEND reached 15.32% DER, which

is the best performance among the evaluated methods. The results indicate that the proposed SAD-

first approach is also effective in a variable-speaker setting. However, OD-first models did not

outperform the conventional SW-EEND, although they outperformed the conventional x-vector

clustering method. The results suggest that we need a careful training strategy, such as scheduled

learning, since OD is more difficult than SAD.

Table 3.8 shows the detailed DER breakdown of the SAD-OD-first SW-EEND and the con-

ventional SW-EEND without preconditioning in CALLHOME-vspk (Table 3.7) for each number

of speakers. SAD-OD-first SW-EEND is better than the SW-EEND without preconditioning in

most cases except for the four-speaker case. The results indicate that the preconditioning is robust

to the large number of speakers.

Finally, we compared the proposed method with other systems as shown in Table 3.9. In

this comparison, we only evaluated single-speaker regions, i.e., ignored the errors in overlapped

and non-speech segments, as with the traditional evaluation protocol. For this comparison, we

used oracle SAD and OD information as preconditions, and filtered out non-speech frames of the

estimated diarization result using the oracle SAD information. Although our proposed method

could not achieve state-of-the-art performance, it outperformed the system of Zhang et al. (2019).

The results suggest that the proposed preconditioned model can use external subtask information.

3.7 Conclusion

In this chapter, we proposed the speaker-wise chain rule, an end-to-end speaker diarization condi-

tioned on previous speaker labels and speech activity detection subtasks. The experiments demon-

strated that the proposed speaker-wise chain rule outperforms the SA-EEND thanks to the label

75



CHAPTER 3. SPEAKER-WISE CONDITIONING FOR END-TO-END SPEAKER
DIARIZATION

Table 3.9: DERs (%) evaluated on CALLHOME-vspk with oracle SAD information. Overlapping
segments were omitted from the DER computation. The evaluation set for the proposed method
was different from that for other systems. We used a random subset of CALLHOME, whereas
other systems used the whole CALLHOME evaluation set.

Method DER

McCree et al. (2019) 7.1
SAD-OD-first SW-EEND 7.4
Zhang et al. (2019) 7.6

dependency. We also demonstrated the SAD and OD subtasks further improve performance. In

particular, the subtask-first model exhibits robustness in the large number of speakers.

We found that conditioning on previous speaker labels improved performance, indicating that

the estimated speaker labels can infuse label dependency that relaxes the conditional indepen-

dence assumption in the original EEND model. The next chapter focuses on effectively utilizing

estimated speaker labels to mitigate the performance bottleneck caused by the conditional inde-

pendence assumption in EEND models.
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4
Self-conditioning via intermediate predictions

4.1 Introduction

As described in Chapter 2, EEND assumes conditional independence between speaker labels. The

assumption blocks the utilization of given speaker labels as context information. In this chapter,

we focus on relaxing the conditional independence assumption.

We propose a new conditioning scheme that utilizes “intermediate predictions”. The speaker

labels produced in the middle of the neural network are fed back to the higher-layer network.

The proposed method, called “self-conditioning”, achieves iterative refinement of speaker labels

through multiple intermediate predictions.

To achieve state-of-the-art performance, we investigate the use of encoder-decoder-based at-

tractor (EDA; Horiguchi et al. (2020, 2022)) and find the performance bottleneck of EDA in the

autoregressive calculation module when used with the proposed self-conditioning. Therefore, we
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propose a different method to calculate attractors called “non-autoregressive attractors”, which

produces the attractors simultaneously in a non-autoregressive manner.

4.2 Self-conditioning via intermediate predictions

The proposed self-conditioning mechanism is a latent variable model that introduces label depen-

dency into the EEND model. The primary objective, as outlined in Eq. 2.7, is to identify the most

probable speaker labels Y given audio features X:

Ŷ = argmax
Y ∈Y

p(Y |X), (4.1)

where Y is a set of all possible speaker labels. The proposed method introduces a latent variable

Y (L−1) for the intermediate speaker label prediction at the (L−1)-th layer, where L is the number

of encoder layers. The introduced variable is the marginalized out as:

p(Y |X) =
∑

Y (L−1)∈Y

p(Y |X,Y (L−1))p(Y (L−1)|X). (4.2)

Instead of the full marginalization, we approximate it by using the most probable value of the

intermediate prediction Ŷ (L−1):

p(Y |X) ≈ p(Y |X, Ŷ (L−1))p(Ŷ (L−1)|X) (4.3)

This process is extended to introduce another latent variable Y (l−1) for each layer l from L− 1 to

2, leading to a decomposition as follows:

p(Y |X) ≈ p(Y |X, Ŷ (L−1))

(
L−1∏
l=2

p(Ŷ (l)|X, Ŷ (l−1))

)
p(Ŷ (1)|X). (4.4)

The decomposed posteriors, i.e., p(Y |X, Ŷ (L−1)), p(Ŷ (l)|X, Ŷ (l−1)), and p(Ŷ (1)|X), are es-

timated using the intermediate prediction and self-conditioning functions in the proposed neural

network. The neural network architecture, implemented in a four-layer self-attention-based EEND
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Figure 4-1: Overview of proposed method with four-layer self-attention-based EEND model.
Shared decoder Dec accepts outputs from each layer Enc(l)(l = 1, 2, 3). The intermediate pre-
diction Ẑ(l) is optimized with the same permutation-free binary cross entropy objective LPF. The
intermediate prediction is fed back to the subsequent encoder layer through a shared linear projec-
tion matrix W .

model, is illustrated in Fig. 4-1. In the context of the proposed model, we refer to the generalized

function in Eq.2.21 as a “decoder” denoted by Dec. The function maps the encoder layer output

E(L) to the speaker label posterior Ẑ:

Ẑ = Dec(E(L)). (4.5)

4.2.1 Intermediate prediction

The intermediate prediction p(Ŷ (l)|X) is estimated by feeding the intermediate encoder layer

output to the decoder:

Ẑ(l) = Dec(E(l)) (1 ≤ l ≤ L− 1). (4.6)
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Note that the decoder parameter is shared among all the layers. For optimizing the intermediate

predictions, the same training objective as Eq. 2.11 is applied to the intermediates:

Linter = LPF(Y , Ẑ) +
1

L− 1

L−1∑
l=1

LPF(Y , Ẑ(l)). (4.7)

Here, we mix the main and auxiliary losses without tuning the weight in this work. The higher en-

coders are indirectly conditioned on the intermediate speaker labels by optimizing the intermediate

speaker labels.

4.2.2 Self-conditioning

To estimate p(Ŷ (l)|X, Ŷ (l−1)), we need to augment the conditioning input Ŷ (l−1) to the inter-

mediate prediction p(Ŷ (l)|X) described in the previous section. To this end, we use Ẑ(l−1) as the

conditioning input 1:

E(l) = Enc(l)(Condition(E(l−1))), (4.8)

Condition(E(l−1)) = E(l−1) +WẐ(l−1), (4.9)

where W ∈ RD×C is a linear layer that projects the intermediate predictions back to the encoder’s

dimension. In this way, the intermediate speaker label information is encoded in the frame-level

embedding space, and the higher layer encoder can utilize the whole sequence of encoded speaker

label information thanks to the self-attention mechanism in the Transformer encoder. Note that

W is shared among all the intermediate layers.

1We could use Ŷ (l−1). However, our preliminary experiment did not show a significant difference. Therefore we
use Ẑ(l−1) to reduce computation.
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4.3 Non-autoregressive Attractor

Instead of using a linear layer in Eq. 2.21, EDA (Horiguchi et al. (2020)) generates speaker-wise

attractors A = [a1, . . . ,aC ] ∈ RD×C :

A = EDA(E(L)). (4.10)

The function EDA is composed of two unidirectional LSTM layers:

(ht, ct) = LSTM1(ht−1, ct−1,E
(L)
:,t ) (1 ≤ t ≤ T ), (4.11)

(ac,dc) = LSTM2(ac−1,dc−1,0) (1 ≤ c ≤ C), (4.12)

where ht ∈ RD is a hidden state, ct ∈ RD is a cell state of LSTM, E(L)
:,t is a column t of the matrix

E(L). Here, LSTM1() consumes E(L) through T consecutive steps in an autoregressive manner.

Then, LSTM2() produces C attractors sequentially. Then, the decoder estimates the speaker label

by comparing the embedding sequence E(L) with the speaker-wise attractors A:

Ẑ = σ(A⊤E(L)). (4.13)

Though EDA contains an autoregressive submodule (Eq. 4.11), the posteriors Ẑ are generated in

parallel with the given attractors and the encoder outputs.

When applying the self-conditioning to the EDA model, training throughput is down due

to the autoregressive submodule in Eq. 4.11. To mitigate the issue, we propose a fully non-

autoregressive architecture for speaker-wise attractor extraction. A system diagram of the pro-

posed non-autoregressive attractor is shown in Fig. 4-2. Instead of using LSTMs, we employ a

multi-head cross-attention module to extract attractors:

A = MHA(Q,E(L),E(L)), (4.14)

where MHA(Q,K,V ) is a multi-head attention function used in Transformer decoders Vaswani

et al. (2017). Here, query vectors Q ∈ RC×D are prepared as learnable parameters, and keys/val-

82



CHAPTER 4. SELF-CONDITIONING VIA INTERMEDIATE PREDICTIONS

𝑬(")
𝑬("$%) Enc(")

ℒ&'(

	𝒀

+
		𝑸

𝒁*(")

𝑨(")

Enc(")%)
Self-conditioning

×

𝑾′

×

×
𝜎

⊤

MHA vQ

Intermediate prediction
objective

Figure 4-2: Schematic diagram of non-autoregressive attractor with self-conditioning. Multi-
head self-attention MHA processes encoder output E(l) and trainable query matrix Q to produce
intermediate attractor A(l). Intermediate prediction Ẑ(l) is calculated using transpose (⊤), matrix
multiplication (×) and sigmoid (σ) operations. Self-conditioning processes the intermediate at-
tractor and the intermediate prediction with a shared linear matrix W ′ to condition the subsequent
encoder layer.

ues are the encoder output E(L).

To generate intermediate labels with the non-autoregressive attractor, we first extract interme-

diate attractors:

A(l) = MHA(Q,E(l),E(l)) (1 ≤ l ≤ L− 1). (4.15)

Then, we get the intermediate labels using the same function as Eq. 4.13:

Ẑ(l) = σ(A(l)⊤E(l)) (1 ≤ l ≤ L− 1). (4.16)
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Table 4.1: Training, adaptation, and test data statistics.

# mixtures Average duration (s) Overlap ratio (%)

Training 24,179 368.8 8.1
Adaptation 155 74.0 14.0
Test 148 72.1 13.0

Self-conditioning with the non-autoregressive attractor is a bit customized compared with Eq.

4.9. We utilize the intermediate attractors themselves by computing the weighted sum of them

according to the intermediate label posteriors:

Condition(E(l)) = El +W ′A(l)Ẑ(l), (4.17)

where W ′ ∈ RD×D is learnable to control the weights of intermediate predictions. The learnable

parameters for W ′ are shared among L− 1 layers.

4.4 Experimental setup

4.4.1 Test Data

We conducted diarization experiments on the CALLHOME two-speaker dataset (NIST (2000)) as

in Chapter 2.

4.4.2 Training Data

In this chapter, we exploit a similar but different mixture simulation method from the one used

in previous chapters. This method, outlined in Landini et al. (2022a), creates conversation-style

simulated mixtures that reflect the statistical properties of the adaptation data. Additionally, the

algorithm mixes randomly selected noise from the MUSAN corpus (Snyder et al. (2015)).

The statistics for the training, adaptation, and test datasets are shown in Table 4.1. The source

audio samples used for this simulation process remain consistent with those described in Chapter

2. These sources include the Switchboard-2 dataset (Phases I, II, III), Switchboard Cellular (Parts

1 and 2), and the NIST Speaker Recognition Evaluations from 2004, 2005, 2006, and 2008.
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4.4.3 Model hyperparameters

To prepare the SA-EEND and EDA models as our baselines, the configuration in the EDA paper

(Horiguchi et al. (2020)) was closely followed.

The audio features used were 23-dimensional log-Mel-filterbanks. These were extracted using

a window size of 25 msec and a hop size of 10 msec. The final audio features were obtained by

concatenating 15 consecutive frames, resulting in 345-dimensional features. These features were

then subsampled at intervals of 100 msec.

During the training process, the length of the audio input was limited to 50 seconds. The

Transformer encoders were configured with 256 attention units and four attention heads. The

models had either four or eight encoder blocks.

Each model was trained for 100 epochs, with a batch size set to 32. The Adam optimizer was

used alongside the Noam learning rate scheduler. Gradient clipping was also employed with a

norm threshold of 5.0. The number of warmup steps was set to 200,000.

In the adaptation stage, the learning rate was fixed at 10−5, and the models were run for an

additional 100 epochs. After both the training and adaptation stages, the model checkpoints from

the last ten epochs were averaged to create the final model.

4.4.4 Metrics

For evaluating the performance of the diarization models, DERs were calculated with a tolerance

collar of 250 msec. Errors were counted not only in speech segments but also in non-speech and

overlapped segments. Additionally, as part of the performance evaluation, the training throughput

was recorded. This measurement was expressed in terms of the number of batches processed per

second. The hardware used for this experiment was a Tesla V100 32G GPU,

4.5 Results

4.5.1 Performance improvement with intermediate prediction and self-conditioning

Table 4.2 presents the DERs for the four-layer models on the CALLHOME two-speaker test set.

The results clearly show that the implementation of intermediate predictions led to a reduction in
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Table 4.2: Diarization error rates (%) on CALLHOME two-speaker test for the four-layer models,
showing effect of intermediate prediction, self-conditioning, and non-autoregressive attractor.

Method w/o adaptation w/ adaptation

SA-EEND 9.38 8.69
+ Intermediate pred. 9.31 8.34
+ Self-conditioning 8.64 7.80

Non-autoregressive Attractor 9.16 8.96
+ Intermediate pred. 8.37 8.37
+ Self-conditioning 8.28 7.05

DERs across all conditions. This outcome indicates that the technique of indirect conditioning,

achieved by incorporating intermediate predictions at lower layers, significantly enhances the final

speaker diarization performance.

Furthermore, the introduction of self-conditioning into the models resulted in an even greater

reduction in DERs. This improvement was consistent in scenarios both with and without adapta-

tion, suggesting the robustness of self-conditioning in various contexts. Notably, self-conditioning

achieved the best performance in both cases. The results demonstrate that explicitly condition-

ing the higher layers of the model with intermediate predictions is more effective than merely

adding intermediate predictions. The performance improvements were particularly evident during

the adaptation stage. Self-conditioning seems to have facilitated faster convergence with smaller

datasets, a feature highly desirable in domain adaptation scenarios. This capability suggests that

self-conditioning not only improves the model’s accuracy but also enhances its efficiency and

adaptability, making it well-suited for applications where data availability is limited or where

rapid model adaptation is required.

4.5.2 Training efficiency improvement with non-autoregressive attractor

Table 4.3 provides a comparison of attractor-based models in terms of training throughput and

the number of parameters. The proposed non-autoregressive attractor model demonstrated higher

training throughput and required fewer parameters compared to the EDA model. This indicates a

more efficient use of computational resources and a potentially more streamlined model architec-

ture.
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Table 4.3: Training throughput (#batches/sec) and the number of parameters of attractor-based
models. All models contain four-layer Transformer encoders. DERs were obtained with adapta-
tion.

Method Throughput # params DER

EDA 3.30 6.4M 7.74
+ Intermediate pred. 1.20 6.4M 8.11
+ Self-conditioning 1.03 6.5M 9.13

Non-autoregressive Attractor 4.15 5.6M 8.96
+ Intermediate pred. 3.88 5.6M 8.37
+ Self-conditioning 3.79 5.7M 7.05

Integrating the proposed intermediate prediction and self-conditioning into the conventional

EDA model was unsuccessful. One of the primary reasons for this was identified as the LSTM

encoder used in EDA, which significantly reduced the training throughput to about one-third.

In contrast to the EDA model, the proposed non-autoregressive attractor exhibited better train-

ing efficiency. This suggests that the modifications in the model design, specifically the move away

from autoregressive components, contributed to its training efficiency. Even with the addition of

self-conditioning, the proposed method maintained a faster training speed compared to the EDA

model. Moreover, it achieved lower DERs than the numbers with EDA. This aspect highlights the

effectiveness of the self-conditioning in enhancing both accuracy and efficiency.

4.5.3 Effect of Layer-normalization with non-autoregressive attractor

The experiment comparing different Transformer configurations, specifically pre-Layer Normal-

ization (pre-LN) versus post-Layer Normalization (post-LN), provided insightful results, as de-

tailed in Table 4.4. This comparison is grounded in the broader context of understanding Trans-

former architectures, as discussed in Liu et al. (2020).

In Fujita et al. (2023), it was observed that the performance of the non-autoregressive attractor

in four-layer models was inferior to that of the EDA model. This performance gap was primarily

attributed to the use of the pre-LN architecture in conjunction with the non-autoregressive attractor,

whereas the conventional SA-EEND and EDA models employed a post-LN architecture.

The results in Table 4.4 clearly indicate that, within the experimental setup used, the post-LN
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Table 4.4: Diarization error rates (%) on CALLHOME two-speaker test for layer-normalization
effect on four-layer non-autoregressive attractor models.

Method w/o adaptation w/ adaptation

Pre-LN 11.15 11.34
+ Intermediate pred. 9.33 8.23
+ Self-conditioning 8.81 7.77

Post-LN 9.16 8.96
+ Intermediate pred. 8.37 8.37
+ Self-conditioning 8.28 7.05

EDA (Post-LN) 8.66 7.74

configuration outperformed the pre-LN setup. The proposed non-autoregressive attractors demon-

strated a better fit with the post-LN Transformer configuration. Our hypothesis from the obser-

vations is that insufficient normalization of encoder outputs in the pre-LN setup adversely affects

the performance of non-autoregressive attractor computation. This implies that the quality and

effectiveness of layer normalization are critical for the optimal functioning of non-autoregressive

attractors in Transformer-based models.

4.5.4 Layer-by-layer progressive refinement

In Fig. 4-3, the DERs are displayed layer-by-layer, showing the impact of intermediate predic-

tions within the model. The figure clearly illustrates a progressive reduction in diarization errors

as the input passes through each successive layer of the network. This trend demonstrates the

effectiveness of self-conditioning in optimizing speaker label prediction at lower layers, which

subsequently leads to improved overall performance.

An interesting observation from the results is that the performance at layer 7 was marginally

better than at the final layer (layer 8). This phenomenon can be attributed to what is known as

“overthinking” in deep networks. In some cases, as explained in Kaya et al. (2019) and Berrebbi

et al. (2023), deep networks may reach the correct prediction at an intermediate layer but then

diverge slightly from this optimal point in subsequent layers. A common approach to mitigating

the overthinking effect is to implement a confidence-based early exit. However, in this particular

experiment, a simpler strategy of early exit was employed, where the process was terminated at
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Figure 4-3: Diarization error rates with intermediate predictions layer-by-layer. Results were
obtained using non-autoregressive attractor-based model with eight-layer Post-LN Transformer
encoders.

layer 7, taking advantage of the optimal predictions observed at this layer.

4.5.5 Comparison with other existing models

Table 4.5 presents a performance comparison between the proposed method and existing state-

of-the-art models in speaker diarization. The WavLM paper (Chen et al. (2022)) reports the best

results on the CALLHOME diarization task. WavLM Base+ and WavLM Large are models that

benefit from self-supervised learning (SSL) and have been trained on a large dataset comprising

94K hours. These models demonstrate that performance can be significantly enhanced with ex-

tensive training data, a strategy not employed in our models. Despite having far fewer parameters,

the proposed method achieves performance levels comparable to those of the SSL models. This

highlights the efficiency and effectiveness of the proposed method’s architecture.

EEND-VC (Kinoshita et al. (2021b)), EDA & clustering (Horiguchi et al. (2021)), and WavLM

& EEND-VC (Chen et al. (2022)), incorporate a clustering module, which requires independent
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Table 4.5: Diarization error rates (%) on CALLHOME two-speaker test with adaptation for
comparison with existing state-of-the-art models. Proposed models were trained with non-
autoregressive attractors and self-conditioning.

Method # params DER

EEND-only
SA-EEND ♮ 5.4M 8.69
EDA ♮ 6.4M 7.74
Proposed 4-layer 5.7M 7.05
Proposed 8-layer 10.9M 6.80

EEND & clustering
EEND-VC (Kinoshita et al. (2021b)) † 8.1M 7.96
EDA & clustering (Horiguchi et al. (2021)) † 6.4M 7.11
WavLM Base+ & EEND-VC † 94.7M + 8.1M 6.99
WavLM Large & EEND-VC † 316.6M + 8.1M 6.46

♮ indicates that the numbers are our reproduced results.
† indicates that the numbers are from Chen et al. (2022).

fine-tuning of hyperparameters, to achieve performance improvement. In contrast, the proposed

method, which does not rely on a clustering module, outperforms most of these methods. Note that

the DERs reported in the referenced studies (Kinoshita et al. (2021b); Horiguchi et al. (2021); Chen

et al. (2022)) are based on datasets with a variable number of speakers, ranging from two to six.

Their training and adaptation data also include recordings with three or more speakers, whereas

our models were trained with two-speaker data only. These studies have shown better results in

their two-speaker subsets compared to models trained solely on two-speaker data. The training

data preparation methods and the use of SSL models in these referenced studies suggest that

incorporating similar strategies could further enhance the performance of the proposed method.

4.6 Conclusion

In this chapter, we proposed an end-to-end neural speaker diarization model that incorporates

self-conditioning through intermediate predictions. This approach effectively integrates speaker

label dependency into existing non-autoregressive EEND models by using intermediate speaker

label predictions. The effectiveness of the proposed method was validated through experiments
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conducted using the CALLHOME two-speaker dataset. These experiments demonstrated that the

self-conditioning significantly enhances diarization performance. In exploring efficient architec-

tures for EEND with self-conditioning, it was found that the proposed non-autoregressive attractor

model not only achieved better performance but also required fewer parameters compared to ex-

isting EEND models.
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5
Conclusions

This chapter summarizes the contributions of the dissertation. Then, we explore the future direc-

tions by introducing recent studies based on EEND.

5.1 Contributions

This dissertation addressed speaker diarization, which is essential in processing multi-talker audio

to understand human-to-human communication. We first reviewed traditional and recent speaker

diarization systems and revealed that the traditional system is not optimal in two aspects: 1) a

complex pipeline of independently optimized modules and 2) limited capability of handling over-

lapping speech. The review also introduced some recent systems that employ fully-supervised

methods, which utilize speaker labels in conversations. However, most systems, except for EEND,

still have complex pipelines and are not end-to-end optimal.
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We proposed EEND, the first end-to-end optimal system with a single neural network that

deals with full diarization problems, including overlapping speech detection. In Chapter 2, we

developed the new formulations of both traditional and EEND systems based on probabilistic

modeling. The formulations revealed that EEND optimizes to generate a “multi-sequence” target,

whereas traditional systems generate a “single-sequence” target. To optimize the multi-sequence

target, we found that the permutation-free loss function is essential. Through the experiments

of the CALLHOME two-speaker dataset, we demonstrated that EEND significantly outperforms

the traditional x-vector clustering system. To achieve sufficient accuracy on the real dataset, self-

attention architecture in SA-EEND plays a key role. Experiments with attention visualization

show the clear advantage of the SA-EEND.

Chapter 3 addressed the two limitations of EEND: 1) the conditional independence assumption

between speaker labels and 2) the fixed number of speakers. We proposed the “speaker-wise

chain rule,” enabling conditional inference on previous speaker labels. The formulation of the

speaker-wise chain rule is based on the decomposition of the multi-sequence target to speaker-

wise sequences. The speaker-wise chain network produces speaker labels one by one; it can

iteratively generate a variable number of speakers. Experimental results on CALLHOME with

two speakers showed that the speaker-wise chain rule outperformed SA-EEND. Furthermore, the

experiments with the variable number of speakers demonstrated better speaker counting accuracy

than the x-vector clustering system. This chapter also experimented with another conditioning

method based on SAD and overlapping speech detection subtasks. We extended the speaker-wise

chain rule to accept pre-conditioning input from the different tasks. The experiments showed that

the subtask-first model improves the performance of the speaker-wise chain rule.

In Chapter 4, our proposed “self-conditioning” has shown significant performance improve-

ment on the CALLHOME two-speaker dataset. The proposed method utilizes intermediate pre-

dictions at the middle layers of SA-EEND and EDA. Then, it performs conditional inference

on intermediate speaker labels. To compare with the state-of-the-art method, i.e., EDA, we im-

plemented self-conditioning on top of the EDA model. However, we found the bottleneck of

EDA when used with self-conditioning. Therefore, we proposed the non-autoregressive attractor

as a variant of EDA, which replaces the autoregressive computation part in EDA with the non-
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Table 5.1: Comparison of speaker diarization methods with output target and functions to be op-
timized. Traditional clustering outputs a single sequence y by optimizing three functions. EEND
outputs a two-dimensional matrix Y of multiple sequences by optimizing a single function. SW-
EEND introduces the previous speaker labels Y<s,: as conditions. Self-conditioning introduces
the intermediate speaker label Y (M) at the M -th intermediate layer.

Method Output target Functions to be optimized

Clustering y ∈ ZT
≥0 p(E|y, s)︸ ︷︷ ︸

clustering

, p(E|X, s)︸ ︷︷ ︸
speaker embedding

, p(s|X)︸ ︷︷ ︸
SAD

EEND Y ∈ {0, 1}S×T p(Ys,t|X)
SW-EEND Y ∈ {0, 1}S×T p(Ys,t|X,Y<s,:)

Self-conditioning Y ∈ {0, 1}S×T p(Ys,t|X,Y (M))

autoregressive attention-based module. Experiments showed that the proposed method improves

both performance and training efficiency. The obtained DER is comparable with existing state-of-

the-art WavLM models, which use self-supervised pretraining with large-scale training data and

far more parameters.

Table 5.1 summarizes our formulations developed in this dissertation, which compares the tra-

ditional clustering and the proposed EEND methods in terms of the output target and functions to

be optimized. Traditional clustering outputs a single sequence y by optimizing three functions.

EEND outputs a two-dimensional matrix Y of multiple sequences by optimizing a single func-

tion. SW-EEND introduces the previous speaker labels Y<s,: as conditions. Self-conditioning

introduces the intermediate speaker label Y (M) at the M -th intermediate layer.

5.2 Future directions

The introduction of EEND has revolutionized speaker diarization research, marking a significant

shift in research focus. Many papers are now engaged in extending the EEND models. We explore

the future directions by presenting recent studies built on the EEND concept.

5.2.1 Speaker aggregation module

The proposed EEND with self-attention (SA-EEND) has shown the capability of aggregating

global speaker information distributed to the whole sequence into each frame if the same speaker
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is present. This behavior suggests that the EEND learns a scoring metric similar to the traditional

clustering module, such as the PLDA scorer. The speaker aggregation module based on SA-EEND

is an active research area.

Based on SA-EEND, EDA (Horiguchi et al. (2020, 2022)) is proposed as an explicit speaker

aggregation module inside the network. Besides EDA’s ability to handle the variable number of

speakers, it even outperformed SA-EEND for the two-speaker-only case. The results suggest that

the explicit speaker aggregation module is better than the implicit one with SA-EEND. Broughton

and Samarakoon (2023) proposed to use a learned summary vector to produce speaker-wise at-

tractors, which proved effective when there were many speakers. Improving the attractor-based

model architecture is an important research direction.

To assist in aggregating speaker information, Kinoshita et al. (2022) proposed to use auxiliary

speaker identification loss to the EEND model. The encoder output is trained with both speaker

diarization and speaker identification objectives through multi-task learning. Jeoung et al. (2023)

proposed an auxiliary loss to attention heads in SA-EEND. The auxiliary loss encourages the at-

tention weight matrix of each head to be close to the affinity matrix of each speaker. The auxiliary

loss enforces the correspondence between the attention head and a speaker, which is based on

our observation from the attention matrix visualization in Chapter 2. TS-VAD (Medennikov et al.

(2020a,b)) is considered as EEND with an explicit speaker aggregation module as an auxiliary

input. TS-VAD first extracts speaker embedding of each speaker using the traditional clustering-

based pipeline. Then, the EEND network is conditioned on these embeddings.

The aforementioned studies suggest that utilizing some prior speaker-level information helps

improve EEND. However, it generally makes the training and inference processes complicated.

We believe there is room for improvement with a simple yet effective model.

5.2.2 Local temporal dynamics and linguistic clues

Though speaker aggregation is a primary concern in speaker diarization, local temporal features

are also important clues for the task. For example, a sudden change in audio volume or in the

harmonic structure implies a speaker change. Some word sequences may also imply the end or

start of the utterance. Our EEND models have not considered such clues.
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Maiti et al. (2021) proposed to use a time-dilated convolutional neural network and showed

the effectiveness in capturing local features before aggregating them via self-attention. Liu et al.

(2021) proposed a Conformer-based architecture and demonstrated the importance of local fea-

tures by utilizing the convolution module inside the Transformer network.

Khare et al. (2022) proposed to use the time-aligned phones, position-in-word information, and

word boundaries from the ASR model as additional features for diarization. They extended the

EEND model to estimate the additional ASR-based features and jointly trained using multi-task

learning. Kanda et al. (2022) proposed to use end-to-end multi-speaker ASR for diarization. The

end-to-end ASR model transcribes each speaker conditioned on the speaker embedding like TS-

VAD. The proposed method utilizes linguistic clues since the ASR model can consider language

models through training.

Since our EEND model was trained on the multilingual dataset to obtain language-agnostic

performance, it was not easy to integrate with mono-lingual ASR. Methods for adapting to speci-

fied language will be a demanded research direction.

5.2.3 Consistent diarization for long-form recording

In EEND training, the audio length is limited to 50 sec. On the other hand, in the inference phase,

EEND accepts a whole sequence of audio, which requires a lot of memory. The original EEND did

not consider block processing of long-form audio to reduce memory or perform online processing.

Xue et al. (2021) extends the SA-EEND for the block online processing. The proposed method

utilizes a speaker tracing buffer, which summarizes the features and the estimated labels from

the previous blocks, to obtain consistent labels by permutation alignment between the current

block and the tracing buffer. Kinoshita et al. (2021b) integrated EEND and clustering, achieving

consistent diarization with block processing, as the inter-block permutation alignment is solved

using clustering. Online processing is one of the important practical issues to be continually

tackled.
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5.2.4 Integration of speaker diarization, separation, and ASR

Speaker diarization is used as a preprocessing step for other speech processing, as written in

Chapter 1. Joint optimization of speaker diarization and the following speech processing task is

also an active research area. EEND fosters researchers to investigate such joint optimal systems

because the EEND’s single neural network can be easily integrated with other neural network-

based processes.

Maiti et al. (2022) proposed EEND-SS, a speech separation model jointly trained with EEND.

The results show that the joint model outperforms the independent speech separation model in

terms of speech separation metrics and also outperforms the independent EEND model in terms

of DER. Already shown in Sec. 5.2.2, Khare et al. (2022) and Kanda et al. (2022) investigated the

integration of EEND and ASR.

The integrated models generally require a large amount of training data and model parameters.

Efficient training and inference strategy for integrated models is a promising research direction.

The use of self-supervised pretraining models, such as WavLM (Chen et al. (2022)), will encour-

age this line of research.

Finally, the use of multimodal pretraining models for audio and images, such as AV-HuBERT

(Shi et al. (2022)), and large language models like GPT-3 (Brown et al. (2020)), which have

seen significant advancements in recent years, are anticipated as further extensions of EEND.

Audio-visual diarization is believed to be extremely effective for the diarization of video content.

Moreover, if confident linguistic context can be obtained using large language models, it is not

only expected to improve accuracy but also to apply to real-time diarization. If turn-taking can

be detected in real-time, new applications, such as dialogue robots facilitating human-to-human

communication, could be enabled. For such new applications as well, the extension of EEND is

demanded.
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