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Abstract

Massive stars are known to end their lives with core-collapse supernovae (CCSNe) and form neutron
stars (NSs) or black holes (BHs). It is governed by nonlinear equations, and numerical simulations
are necessary to obtain the theoretical understanding. CCSN simulations have been performed ex-
tensively around the world, and the successful explosion have been reproduced. However, there are
still conflicts with the observations, and many uncertainties are remaining. This is attributed to the
various approximations or the simplifications employed in the simulations, and the accurate theoretical
understanding can be only obtained by the first-principle simulations.

This thesis puts emphasis on neutrino, which plays a crucial role in CCSNe. Actually, more than
99% of the energy released by the gravitational collapse will be converted into neutrinos, and about
1% of the neutrino energy is transferred to the surrounding matter. Hence the neutrinos completely
govern CCSN dynamics. In addition, neutrinos are important observational signal from CCSNe. It is
emitted from much more inside than the electromagnetic signals, and it provides important information
of the CCSN core. Its detection may provide astrophysics tests for physics, such as the nuclear
matter equation of state. Significant progress have been made in neutrino detection techniques, and
the construction of more advanced detectors are planned. Accurate numerical simulation should be
performed in preparation for future observations.

Treating neutrinos is numerically di�cult. At the center, the matter is optically thick and the
neutrino distribution is in thermal equilibrium and isotropic. On the other hand, at larger radii,
neutrinos flows freely. The most nontrivial part is the intermediate semi-transparent region, and
whole momentum space distribution should be treated for the neutrino transport. However, most of
previous studies have used approximate neutrino transport. Previous studies have reported deviation
of the results due to the use of approximate neutrino transport, hence the rigorous method is crucial.

This thesis focuses on the Boltzmann neutrino transport, which directly solves the neutrino dis-
tribution function in phase space. There are actually few examples of previous studies on the multi-
dimensional Boltzmann neutrino transport simulation. However, these studies are limited to New-
tonian gravity, while the general relativistic e↵ect is important in CCSNe due to its strong gravity.
Previous study showed that general relativity can dramatically change CCSN dynamics even for NS
forming case, and let alone in BH formation. For that reason, I first develope general relativistic (GR)
Boltzmann neutrino radiation hydrodynamics code.

With the GR version of the code, three kinds of simulations are performed. First, I perform 2D
CCSN simulation and investigated the early postbounce phase of CCSNe. By directly comparing the
results with the simulation performed with the Newtonian gravity, GR e↵ect on CCSN dynamics is
discussed. It is confirmed that the central density and the temperature are clearly higher in GR, due
to the stronger gravity. However, the neutrino luminosities and the shock wave evolution do not show
large di↵erence because the high temperature matter are confined at the center.

Second and third parts focus on the late time evolution of the protoneutron star (PNS), which is
the remnant of CCSNe. The second part consider how the convection can a↵ect the PNS evolution.
The late time evolution of PNS is usually considered in 1D, and this study aims to discuss how multi-
dimensionality a↵ect the result. By setting the PNS evolved in 1D as a initial model, I perform 2D
PNS convection simulation. It is found that the negative lepton gradient causes the convection, which
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raises the temperature at the neutrino sphere. As a result, the neutrino luminosity and the mean
energy are clearly higher than 1D. The third part consider how the fallback accretion onto PNS a↵ects
the neutrino emission. The fallback accretion is usually ignored in the PNS evolution, and this study
quantify how it a↵ects the neutrino emission and detectability. By setting a cold, deleptonized PNS at
the center and parametrically changing the fallback accretion rates, I investigate the neutrino emission
due to fallback. The neutrino mean energy due to fallback is found to be clearly higher than the
late-time thermal emission from PNS. It is also found that the event rates can be high enough for the
galactic events with the realistic amount of the accretion rates.

Fourth part of this thesis consider the quantum aspect of neutrinos in CCSNe, the neutrino os-
cillation. Especially, I focus on the collective neutrino oscillation, which is induced by the neutrino
self-interaction. Its occurrence is nonlinear and also depend on the neutrino momentum space distribu-
tion, and its behavior is still not well understood. I perform post-process analysis of two modes of the
collective neutrino oscillation, namely fast flavor instability (FFI) and the collisional flavor instability
(CFI). I confirm that both FFI and CFI occur in CCSNe, and the condition for their occurrence are
discussed in detail. By comparing the linear growth rates, it is found that FFI would be dominant
over CFI.
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Chapter 1

Introduction

1.1 Outline of This Thesis

This thesis is devoted to the theoretical study of core-collapse supernovae (CCSNe) and relevant
phenomena using numerical simulations. Especially, I put special emphasis on neutrinos, and stick
to the rigorous simulations using the Boltzmann neutrino transport. This chapter briefly reviews the
basics of CCSNe and explain the remaining issues. Chapter 2 explains the neutrino transport, which is
important throughout this thesis. Chapter 3 explains the numerical method of the Boltzmann-radiation
hydrodynamics code. General relativistic version of the code is newly developed by myself, and they
are employed in the simulations performed in chapters 4, 5 and 6. Chapter 4 show the result of CCSN
simulation, and directly compare the results with existing result performed in Newtonian gravity.
Chapters 5 and 6 show the results of the investigation about the late-time evolution of Protoneutron
star (PNS), which is the remnant PNS after the successful CCSN explosion. The former focuses on
the e↵ect of the convection inside PNS, and the latter focuses on the e↵ect of the fallback accretion
onto PNS. Chapter 7 focuses on the collective neutrino flavor conversion inside CCSNe. This thesis
is concluded in chapter 8. Appendices A and B explains the discretization methods of the Boltzmann
and hydrodynamics solvers, respectively and show the explicit formulae used for the finite di↵erence.
The code verification tests of the GR codes are performed in appendices C and D.

1.2 Definitions and Notations

In this thesis, the natural unit is employed unless otherwise stated; the unit is chosen so that the
the gravitational constant G and the speed of light c are set to 1. The signature of the metric is �+++
except for chapter 7, where the opposite sign is used. This is due to di↵erent convention; the former
sign is typically used in astrophysics, and the latter is typically used in the particle physics. There is
no inconsistencies nor confusions due to this di↵erence. The Greek indices (e.g. µ) runs from 0 to 3
and Latin indices (e.g. i) run from 1 to 3.

The spacetime metric is denoted as gµ⌫ , and the variables for the 3+1 decomposition are written
as ↵, �i, �ij , which correspond to the lapse function, shift vector, and the spatial metric, respectively.
The timelike unit vector perpendicular to the constant-time hypersurface n

µ is given as

n
µ = (1/↵,��i

/↵). (1.1)

The symbols g and �↵

µ⌫
represent the determinant of the metric and the Christo↵el symbols, respec-

tively.
The neutrino flavor is referred as follows; electron-type neutrino ⌫e, anti-electron type ⌫̄e, and heavy-

leptonic type neutrinos ⌫x. Note that three-species assumption is used in this study. This assumption
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1.3. STELLAR EVOLUTION, CORE-COLLAPSE SUPERNOVAE, AND FORMATION OF
COMPACT OBJECTS

is valid as long as the muon and tauon fractions are small, and also the neutrino oscillation does not
occur.

1.3 Stellar Evolution, Core-collapse Supernovae, and Forma-
tion of Compact Objects

Here, I briefly review the astrophysical phenomena associated with CCSNe. The story begins
with the stellar formation. In the galaxies, dilute gas named interstellar medium exists, and they are
gradually accumulated by the self gravity. They eventually experience a gravitational collapse, which
forms a protostar. Similarly as an ”ordinary star”, protostar are also bright, but with the di↵erent
mechanism, the released gravitational energy. The protostar gradually shrinks and the temperature
gradually rises. At some point, the temperature gets high enough to trigger the nuclear fusion of
hydrogen, and enters the main-sequence stage.

Main sequence stars are initially composed of light elements, mostly hydrogen or helium. The
nuclear fusion inside the star generates heavier and heavier elements. The fate of the star strongly
depends on its mass; heavier star uses up the fuel faster, which makes its life shorter. My focus is the
massive star 10M� . M . 100M� that will experience CCSNe, and the typical lifetime is ⇠ 107 yrs.
Lighter stars with mass o(1)M� will not end its life dramatically; they use up the fuel slowly and
eventually form white dwarfs (WDs). More massive stars with mass o(102)M� are likely to undergo
pair-instability supernovae, whose explosion mechanism is di↵erent from CCSNe.

Inside the progenitor stars of CCSNe, nuclear fusion continues up to 56Fe, which has the lowest
binding energy of ⇠ 8.8MeV. Since it is the most stable element, heavier elements beyond 56Fe is not
generated by the stellar nucleosynthesis. Thus the iron core is formed at the center and its mass grows
with time. It is supported by the degenerate pressure of electron, and there is a possible maximum
mass, called the Chandrasekhar limit (Chandrasekhar, 1931). If the iron core gets more massive than
this limit, self-gravity causes the gravitational collapse.

The gravitational collapse is halted when the central density reaches the nuclear density because
the repulsive force due to the strong interaction takes place. The inner core suddenly gets sti↵, where
the outer core is still free-falling. The discontinuity of the velocity between them creates a shock
wave that propagates outward. If the shock wave reaches the outer envelope of the stellar surface, the
explosion occurs, regarded as the successful CCSN.

The propagation of the shock wave up to the stellar surface is not an easy journey. There are
several negative e↵ects that stops the shock propagation; such as the ram pressure due to mass ac-
cretion, energy loss by the neutrino cooling and the photodissociation of nuclei. As explained later,
neutrinos emitted from the central protoneutron star (PNS) heats up the matter behind the shock
wave, which eventually helps the explosion. This is the delayed-explosion scenario by the neutrino
heating mechanism.

CCSNe is accompanied by the formation of compact objects at the center, which is either neutron
stars (NSs) or black hole (BH). In a typical CCSN with successful explosion, NS is likely to be formed.
In the NS formation case, the hot NS named the protoneutron star (PNS) is formed at first, and
gradually cools down by the neutrino emission and form the cold NS. In the failed case, on the other
hand, the endless mass accretion makes the BH at the center. Simulation in Burrows et al. (2023a)
showed that successful explosion can also accompany BH formation, but it is still a debate whether
such phenomena is common. In the BH formation case, the accretion disk formed around the BH can
be a site of the long gamma ray burst (LGRB).
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1.4. OBSERVATIONAL SIGNALS OF CCSNE

1.4 Observational Signals of CCSNe

CCSNe can be observed in various ways, which is very important for validating the theoretical
predictions and probing the high energy physics. Following sections review three kinds of observational
signals, namely electromagnetic, neutrino, and the gravitational wave (GW).

1.4.1 Electromagnetic Signal

Electromagnetic signal is naturally the most ancient but still yet very important observable of
CCSNe. The advantage of the electromagnetic observation is that it can detect much distant events
than neutrinos than GWs. It is also advantageous that there are many optical telescopes in the world,
in contrast to the neutrino or GW detectors. CCSNe (and other types) are extensively searched by
the electromagnetic observations and found in a rate of o(10) per month (Latest Supernovae, 2024).

There are many channels of possible electromagnetic signals from CCSNe, and this review do
not cover all of them. There are two important observational implications to CCSN theory; the
explosion energy, and the 56Ni mass. First, the explosion energy is very important quantity to probe
CCSN engine. There are several methods to estimate the explosion energy such as the fitting formula
(Goldberg et al., 2019). Observation suggest that the typical explosion energy is o(1051) erg (but also
see Martinez et al. (2022), where the median is somewhat lower). Second, the synthesized mass of 56Ni
is also important. 56Ni has a half time of ⇠ 6 days, and the electromagnetic emission from the decay
can be observed, where the synthesized mass mass can be rather accurately estimated among various
elements. In the field of CCSN simulations, reproducing these two observables is a very important
objective. Remaining issues related to these observations is discussed in section 1.5.2.

1.4.2 Neutrino Signal

More than 99% of the released gravitational energy is converted into neutrinos and if the distance
of CCSNe is close enough, they are observable. So far, there is only one example of the direct neutrino
detection from a CCSN event, which is SN1987A. It occurred in ⇠ 50 kpc away, and resided in the
Large Magellanic Cloud (LMC). Kamiokande-II detector detected 12 ⌫̄e (Hirata et al., 1987) and
Irvine–Michigan–Brookhaven (IMB) detector detected 8 ⌫̄e’s (Bionta et al., 1987). This observation
supports the theoretical model that most (& 99%) of the released gravitational wave is emitted in the
form of neutrinos.

After the successful observation from SN1987A, significant progress has been made in the last
decades in neutrino detection techniques. Various types of neutrino detectors such as water Cherenkov
(Ikeda et al., 2007; Hyper-Kamiokande Proto-Collaboration et al., 2018; Abbasi et al., 2011), liquid
argon (Abi et al., 2021), liquid scintillators (Asakura et al., 2016; An et al., 2016), and dark-matter
detectors (Lang et al., 2016) are currently operating or planned, o↵ering the means to distinguish
neutrino flavors (Horiuchi & Kneller, 2018).

Currently, largest water-Cherenkov detector Super-Kamiokande (Super-K) is operating, and its
successor Hyper-Kamiokande (Hyper-K), which will have a volume more than 10 times larger, began
construction. There are also detectors under construction such as Jiangmen Underground Neutrino
Observatory (JUNO) (An et al., 2016) and Deep Underground Neutrino Experiment (DUNE) (Abed
Abud et al., 2023). Di↵erent neutrino detectors have di↵erent preferred energy range; ice-Cherenkov
detector IceCube (Aartsen et al., 2017) is useful for detecting higher energy neutrinos, and liquid-
scintillator KamLAND (Abe et al., 2023) is useful for lower energy neutrinos.

There are several emission mechanism from CCSNe, which are individually explained below.
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1.4. OBSERVATIONAL SIGNALS OF CCSNE

Pre-supernova Neutrinos

If the CCSN distance is close enough, pre-supernova neutrino would be detected prior to the
explosion, called ”pre-supernova neutrinos”. It was first proposed in Odrzywolek et al. (2004), and
many theoretical studies have been performed (Kato et al., 2015; Yoshida et al., 2016; Patton et al.,
2017; Kato et al., 2017, 2020). The pioneering paper (Odrzywolek et al., 2004) only considered the
electron-positron pair annihilation, but later studies pointed out that other reactions such as the
plasmon decay or the nuclear weak processes may be also important. Since it will be detectable before
any other kinds of observational signals, if available, it will be very useful for preparing the optical
telescopes for the imminent event.

Burst Neutrino

As explained earlier, the shock wave generated at the interface between the inner and the outer
cores propagate outward. At that time, shock wave position is completely optically thick and most of
the neutrinos are trapped inside the core. However, when the shock wave propagates outward and the
goes out of the neutrino sphere, large amount of neutrinos are emitted from the shock-heated material.
This is the neutronization burst, and the luminosity of the electron-type neutrinos exceed 1053 erg s�1.
The luminosity is clearly higher than other phases.

PNS Cooling

After the explosion, hot PNS is formed at the center, which slowly gets cooled down by neutrino
emission. The duration strongly depends on the EOS, but it is estimated to continue for ⇠ 100 s
(Nakazato & Suzuki, 2019). Although the luminosity is much lowered than the burst signal, thanks
to its long duration, detection prospects is not low. Furthermore, this phase will be less chaotic than
the signals from the early postbounce where the turbulence dominates, and will be useful for purely
extracting the NS properties.

The PNS cooling phase can be further categorized into three phases (Roberts, 2012; Nakazato &
Suzuki, 2019). The first phase in t . 10 s is named the mantle contraction phase, where PNS rapidly
shrinks and loses a lot of energy by neutrino emission. This is characterized as the rapid decline of
the neutrino luminosity as shown in the simulations (Nakazato & Suzuki, 2019). The preceding phase
10 . t . 60 s is named as the shallow decay phase, where the PNS morphology does not change rapidly,
and gradually cools down by the neutrino emission. This characterized as the rather moderate decline
of the luminosity (Nakazato & Suzuki, 2019). The neutrino sphere gradually gets inward, and if the
entire PNS gets semi-transparent to neutrinos, it enters the next stage. The later phase in t & 60 s is
called the volume cooling phase, when and the entire volume of the PNS gets cooled down. This is
characterized as the final rapid decline of the luminosity (Nakazato & Suzuki, 2019).

Primarily due to its long duration, it is di�cult to track its entire lifetime in multi-dimension with
sophisticated numerical schemes. As a result, there are a lot of uncertainties in the PNS evolution
phase. Further details of the current understandings are explained in the first parts of chapters 5 and
6.

Di↵use Supernova Neutrino Background

I finally introduce the di↵use supernova neutrino background (DSNB), which is systematically
di↵erent from previous three examples. In the history of the universe, uncountable number of CCSNe
have occurred, and most of the emitted neutrinos still roam around in the universe, and called DSNB.
The advantage of DSNB is that we do not wait for next nearby CCSN, unlike previous three examples.
So far, there is no direct detection of DSNB, and the observational upper limit on the DSNB flux
is provided by the non-detection. By combining the data for Kamiokande and Super-K the upper
limit is 2.7 cm�2 sec�1 for ⌫̄e’s with energy 17.3MeV (Abe et al., 2021). Longer duration observation
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with current SK-Gd (Gadolinium-loaded version of Super-K) and Hyper-K will provide upper limit or
direct detection of DSNB. The theoretical modeling of DSNB is also ongoing (see Ashida et al. (2023)
and references therein). The theoretical modelling depends on various uncertain parameters such as
the stellar initial mass function (IMF), total amount of emitted neutrinos for a given progenitor, and
EOS. Current observational constraint only excludes the most optimistic model, and future DSNB
observation will be useful to probe the aforementioned uncertainties.

1.4.3 Gravitational Wave

Although actual observation is not yet realized, GWs can also be a observable of CCSNe (see
Abdikamalov et al. (2022) for a review). There are currently operating detectors such as Laser In-
terferometer Gravitational-Wave Observatory (LIGO) (Abbott et al., 2009) , Virgo (Accadia et al.,
2012) , Kamioka Gravitational Wave Detector (KAGRA) (Akutsu et al., 2021), and there are also
future-planned detectors such as the space bourne GW detectors; Laser Interferometer Space Antenna
(LISA) and the Deci-hertz Interferometer Gravitational wave Observatory (DECIGO) (Seto et al.,
2001). There are two kinds of GW emission mechanism from CCSNe; from fluid motion and from
neutrinos.

GW from Fluid Motion

In the similar way as other astrophysical phenomena such as the compact binary mergers, violent
fluid motion can emit GWs. At early postbounce phase t . 100ms, prompt convection will be a main
emitter of GW. Later at t & 100ms, the GW emitter will be bifurcate into two; (1) fluid motion
inside the PNS, and (2) the turbulent fluid motion behind the shock wave. (1) PNS oscillation or
the convection inside it will naturally emit GW. The GW from PNS has a unique characteristics; the
frequency increase with time, as demonstrated by numerical simulations Murphy et al. (2009); Müller
et al. (2013); Kuroda et al. (2016). This is because the PNS contracts with time and the characteristic
length is shortened. (2) The turbulent fluid motion behind the shock wave, namely the neutrino-driven
convection and the standing accretion shock instability (SASI), can also emit GW. For this case, since
the characteristic length is longer than PNS, the GW frequency tend to be lower. This appears as
rather low GW signals compared to GWs from PNS, as s demonstrated (Murphy et al., 2009; Müller
et al., 2013; Kuroda et al., 2016).

GW from Neutrinos

It is interesting that neutrino emission can be also a source for GW emission. The unique charac-
teristic is the so-called memory e↵ect (Christodoulou, 1991). There are several theoretical studies of
GW memory due to CCSN and PNS cooling (Mukhopadhyay et al., 2021; Fu & Yamada, 2022). As
the name suggests, the deformation of the metric due to GW memory does not go back to zero after
the passage of the GW. Frequency of the GW memory is typically lower than GWs due to matter
motion, and in principle, there is a mode with infinitesimally small frequency. Current GW detectors
such as LIGO, Virgo, KAGRA are optimized for the detection of compact binary mergers (with GW
frequency ⇠ kHz), do not have good sensitivity in the low-frequency range. GW detectors with longer
arm lengths are more suitable for the lower frequency GWs, such as the space-bourne detectors LISA
and DECIGO.
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1.5 Numerical Simulations of Core-collapse Supernovae

1.5.1 Brief History

Theoretical study of CCSNe has been mostly relied on numerical simulations due to its complicat-
edness. The first kind of CCSN simulation was performed in Colgate & White (1966), and the neutrino
heating mechanism was recognized in Bethe & Wilson (1985). From the late 20th century to 2000s,
spherically symmetric simulations have been extensively performed. The most sophisticated CCSN
simulations using the Boltzmann radiation-hydrodynamics simulations in general relativity has been
performed in 1D (Liebendörfer et al., 2001; Sumiyoshi et al., 2005), but explosion was not obtained.
From late 2000s, multi-dimensional CCSN simulations become feasible thanks to the development of
the computers. 2D and 3D CCSN simulations have been performed and the successful explosions are
obtained by various simulations (Burrows & Vartanyan, 2021, and references therein). It was real-
ized that the multi-dimensional e↵ects, such as the convection and SASI are crucial for the successful
shock revival. In 2020s, long-term 3D simulations has become feasible albeit there are still various
approximations such as the neutrino transport.

1.5.2 Remaining Issues I. Reproducing Current Observations

Successful CCSN explosions are commonly reproduced by multi-dimensional simulations. The
remaining task is to quantitatively reproduce the observational signals. Neutrinos and GWs would
be very useful to probe CCSN core and the explosion mechanisms, but currently they are almost
unavailable because the neutrino event number from the SN1987A is too few, and there is no GW
observation from CCSNe. Currently available observational constraint comes from the explosion energy
and the amount of produced 56Ni. The simulations have been struggling with reproducing these values
inferred from the observations; the theoretical estimate were a few orders of magnitude smaller than
observed. Recently, some groups reported results that ”reproduce” the observational values, and some
people think that this issue is resolved. However, their results are still skeptical, as discussed in
following paragraphs.

The group in the Max Planck Institute for Astrophysics recently reported a long-term CCSN
simulation ⇠ 7 s in Bollig et al. (2021). They reported that they reproduced the observational value of
the explosion energy ⇠ 1051 erg (see top panel of Fig.2 in Bollig et al. (2021)) and the 56Ni mass (see
Fig. 7 in Bollig et al. (2021)). However, they simplified the numerical method at ⇠ 2 s, which seemingly
caused artificial jump of these quantities, as shown in the figures. Therefore, the values are thought
to be overestimated due to this artificial treatment. Furthermore, they employed a Ray-by-Ray+
approximation, which is known to sometimes artificially enhance the explosion.

The group in the Princeton university reported a series of CCSN simulations (Burrows & Vartanyan,
2021) and they claim that the explosion energy and the ejecta mass is well reproduced (see Fig. 6
in Burrows & Vartanyan (2021)). However, their numerical code FORNAX (Skinner et al., 2016) is
known to be susceptive to explosion because the neutrino mean energy and the luminosity tends to
be overestimated (as indicated by the comparison with other codes (see Fig. 4 in O’Connor et al.
(2018))). It is worth mentioning that the deviation from other codes is not because they are correct
and others are wrong; all of them are still approximate.

1.5.3 Remaining Issues II. Uncertainties of the Simulations

Although many CCSN simulations have been performed extensively, the simulation results still has
lots of large uncertainties. It is not rare that the results by di↵erent research groups conflict each
other. This confusion is attributed to the various approximations employed in the simulations. For
example, current ”state-of-the-art” CCSN simulations mostly employ approximate neutrino transport,
and the results with the Boltzmann neutrino transport is only in Newtonian (Iwakami et al. (2020)
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and references therein). Note that the result of the general relativistic simulation is presented in this
thesis for the first time.

There are uncertainties due to our lack of knowledge about physics. One of the largest uncertainties
on CCSN simulation is the nuclear matter equation of state (EOS). There are many approaches to
constrain the EOS; laboratory experiments such as the neutron skin thickness (Abrahamyan et al.,
2012; Horowitz et al., 2012; Adhikari et al., 2021), pulsar observation (Raaijmakers et al., 2021) and
NS merger (Bauswein et al., 2017; Radice et al., 2018; Shibata et al., 2019). EOSs with extremal
parameters have been excluded by the observations, but many di↵erent kinds EOSs are still possible.
See Furusawa & Nagakura (2023) and Lattimer (2023) for the recent constraints and the comparison
between di↵erent EOS models. In the first place, the experimental/observational constraints, which
should be the reference, sometimes conflict each other. Naturally, EOS has large impact on the
CCSN dynamics; for example, Harada et al. (2020) found out that the choice of the EOS determines
the success or failure of the explosion. Another kind of physics that have large uncertainties is the
collective neutrino oscillation. It is a unique phenomena that occurs in a dense neutrino media such as
CCSNe, hence experiments are impossible to understand it. Further details of the collective neutrino
oscillation is provided in chapter 7.
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Chapter 2

Neutrino Transport

As mentioned earlier, neutrinos inside CCSNe has nontrivial momentum space distribution and its
treatment is crucial for the neutrino transport. There are two branches of the most rigorous method1.
One is the Boltzmann neutrino transport, which directly solves the Boltzmann equation with respect
to the phase space distribution function. This thesis is devoted to this Boltzmann neutrino transport
using the SN method, which uses the finite di↵erence. Note that there is an attempt to solve it with
the spectral method (Peres et al., 2014). The basic idea is shown in section 2.1, and the details are
shown in the following chapters. Second example of the rigorous transport method is the Monte Carlo
(MC) neutrino transport. It tracks a finite number of particles as the representation of whole neutrino
distribution. Comparison of SN Boltzmann transport and MC transport has been performed in Richers
et al. (2017).

Above two methods are computationally expensive, and approximate methods have been widely
used in CCSN simulations and other astrophysical phenomena. Various approximations have been
invented including the two-moment transport, (also called M1 method) (Thorne, 1981; Shibata et al.,
2011; Cardall et al., 2013), the flux-limited di↵usion (FLD) approximation (Arnett, 1977), the isotropic
di↵usion source approximation (IDSA) method (Liebendörfer et al., 2009). Comparison of the ap-
proximate neutrino transport have been performed in several studies (Janka, 1992) (MC and FLD),
(Cabezón, Rubén M. et al., 2018) (IDSA and M1), (Just et al., 2018) (RbR+) and it has been shown
that approximations can qualitatively change CCSN dynamics. In this thesis, the idea of two-moment
neutrino transport is reviewed in section 2.2.

2.1 Boltzmann Neutrino Transport

Boltzmann Equation

Here, we will derive the Boltzmann equation using the di↵erential form, following Lindquist (1966);
Ehlers (1971); Sarbach & Zannias (2013, 2014a,b).

Tangent Bundle

First of all, the phase space can be considered as the momentum space embedded in the every
position of the coordinate space. Hence it is useful to start from the tangent bundle, following Sarbach
& Zannias (2013, 2014a,b). Suppose we have a n-dimensional manifold (M, g), and the tangential
space associated with it: TxM . The tangent bundle TM of the manifold M is defined as

TM ⌘ {(x, p) : x 2M, p 2 TxM} . (2.1)

1
By the word ”rigorous”, I mean that it converges to the correct result as the mesh number is increased.
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The detailed characteristics of TM is discussed in the references cited above.
Tangent vector on TM , i.e., v 2 T(x,p)TM can be expanded as

v = X
µ
@

@xµ

����
x,p

+ P
µ
@

@pµ

����
x,p

, (2.2)

where
X

µ ⌘ dx
µ

(x,p)
(v), P

µ ⌘ dp
µ

(x,p)
(v). (2.3)

Decomposition of the Tangent Bundle

We want to decompose TM into two subspaces. By using the map ⇡ : TM !M , we can define a
projection map ⇡⇤(x,p) : T(x,p)(TM)! TxM through the push-forward of ⇡ defined as

⇡⇤(x,p)(v)[h] ⌘ v[h � ⇡], (2.4)

where h is a function h : M ! R. The projection map ⇡⇤ acts on a general vector on T(x,p)(TM) as

⇡⇤

✓
X

µ
@

@xµ
+ P

µ
@

@pµ

◆
= X

µ
@

@xµ
. (2.5)

It only leaves the term with the basis @

@xµ . With ⇡⇤, we can define the vertical subspace as

Vx,p ⌘ ker⇡⇤. (2.6)

Frankly speaking, the vertical subspace corresponds to the ”space without @

@xµ component”.
As a next step, complementary one, horizontal subspace is defined. Unlike the vertical subspace, it

is inappropriate to define the horizontal subspace as the ”vector space without @

@pµ component”. First,
let us define a ”connection” map K(x,p) : T(x,p)TM ! TxM as the push-forward of the projection
map. We first consider a curve �(�) = (x(�), p(�)) in TM , parametrized by � (see Fig. 1 in Sarbach
& Zannias (2014b)). At � = 0, it is specified as �(0) = (x, p) and �̇(0) = v, where the dot represent
the derivative with respect to �. The connection map is defined as

K(x,p)(v) ⌘ rẋ(0)p =
�
ṗ
µ(0) + �⌫

↵�
ẋ
↵(0)p�

� @

@xµ
, (2.7)

where r is the Levi-Civita connection, and

ẋ
µ(0) ⌘ d

d�
x
µ(�)

����
�=0

, ṗ
µ(0) ⌘ d

d�
p
µ(�)

����
�=0

, (2.8)

and the expansion of v is

v = ẋ
µ(0)

@

@xµ

����
(x,p)

+ ṗ
µ(0)

@

@pµ

����
(x,p)

. (2.9)

By using the connection map K, the horizontal subspace is defined as

Hx,p ⌘ kerK(x,p). (2.10)

In this horizontal subspace, following vector forms a basis

eµ ⌘
@

@xµ

����
(x,p)

� �↵

µ�
p
�

@

@p↵

����
x,p

. (2.11)
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The tangent bundle is decomposed into two subspaces defined above;

T(x,p)TM = H(x,p) � V(x,p). (2.12)

Naturally, any vector belong to T(x,p)TM can be decomposed into two components that belong to each

subspace. Given that the basis vectors can be written as eµ in the horizontal subspace and @

@pµ |(x,p)
in the vertical subspace, the vector v 2 T(x,p)TM can be written as

v = X
µ
eµ|(x,p) + P

µ
@

@pµ

����
(x,p)

, (2.13)

The dual basis belong to T
⇤
(x,p)

TM can be written as
n
dx

µ

(x,p)
, ✓

µ

(x,p)

o
, where ✓µ is defined as

✓
µ

(x,p)
⌘ dp

µ

(x,p)
+ �µ

↵�
(x)p�dx↵

(x,p)
. (2.14)

Hence the covectors Xµ, Pµ can be written as

X
µ = dx

µ

(x,p)
(v), P

µ = ✓
µ

(x,p)
(v). (2.15)

For later purposes, it is useful to define following maps

I
H

(x,p)
⌘ ⇡⇤(x,p)|Hx,p : H(x,p) ! TxM, (2.16)

I
V

(x,p)
⌘ K(x,p)|Vx,p : V(x,p) ! TxM, (2.17)

which is the restriction of the push-forward (⇡⇤) onto the horizontal subspace and the connection map
(K) onto the vertical subspace. These maps have following characteristics;

I
H

(x,p)
(Xµ

eµ|(x,p)) = X
µ

@

@xµ

����
x

, (2.18)

I
V

(x,p)

 
P

µ
@

@pµ

����
(x,p)

!
= P

µ
@

@pµ

����
x

. (2.19)

Let us define a natural metric. For given v1 and v2 in T(x,p)(TM),

ĝ(x,p)(v1, v2) ⌘ g(⇡(x,p)(v1),⇡(x,p)(v2)) + g(K(x,p)(v1),K(x,p)(v2)), (2.20)

where g represents the Lorentzian metric on M . Above metric have following characteristics;

ĝ(x,p)(eµ|(x,p), e⌫ |(x,p)) = g

✓
@

@xµ
|x,

@

@x⌫
|x
◆

= gµ⌫ , (2.21)

ĝ(x,p)

✓
@

@pµ
|(x,p),

@

@p⌫
|(x,p)

◆
= g

✓
@

@xµ
|x,

@

@x⌫
|x
◆

= gµ⌫ , (2.22)

ĝ(x,p)

✓
eµ|(x,p),

@

@p⌫
|(x,p)

◆
= 0. (2.23)

In terms of the dual basis, the metric can be written as

ĝ(x,p) = gµ⌫dx
µ

(x,p)
⌦ dx

⌫

(x,p)
+ gµ⌫✓

µ

(x,p)
⌦ ✓⌫

(x,p)
. (2.24)

16



2.1. BOLTZMANN NEUTRINO TRANSPORT

Kinetic Theory

So far, we have defined the subspaces of the tangent bundle and defined useful maps. In the
following, we define the quantity that can be interpreted as ”invariant volume element”, and consider
how it can be used for introducing the neutrino distribution function. Let us first define a volume form
⌘TM as

⌘TM ⌘ �g dx0 ^ · · · ^ dx
n ^ dp

0 ^ · · · ^ dp
n
. (2.25)

The Liuville vector field is defined as

L(x,p) ⌘
⇣
I
H

(x,p)

⌘�1

(p). (2.26)

As shown in Sarbach & Zannias (2014b), the Liuville vector field satisfies the geodesic equation

rLL = 0, (2.27)

which makes it very useful to describe a particle motion. The Liuville vector can be explicitly written
as

L(x,p) = p
µ
eµ|(x,p) = p

µ
@

@xµ

����
(x,p)

� �µ

↵�
p
↵
p
�
@

@pµ

����
(x,p)

. (2.28)

For our purpose, we can restrict the particle motion onto the mass shell defined as

�m ⌘
�
(x, p) 2 TM : g(p, p) = �m2

 
, (2.29)

and also
Px ⌘

�
p 2 TxM : g(p, p) = �m2

 
. (2.30)

The induced metric on the mass shell can be defined as the pull-back of ĝ with respect to the map
◆ : Px ! TM as

ĥ ⌘ ◆⇤ĝ. (2.31)

By calculating ◆⇤✓ and using equation 2.24, ĥ can be written as

ĥ = gµ⌫dx
µ
dx

⌫ +

✓
gij �

2

p0
g0(ipj) +

1

p
2

0

g00pipj

◆
✓
i ⌦ ✓j . (2.32)

The volume form on the mass shell can be calculated as

⌦ ⌘ ◆⇤(iN⌘TM ). (2.33)

After rather lengthy calculation (e.g. determinant of the induced metric), it is given as

⌦ = (�1)n g

p0
dx

0 ^ dx
1 ^ · · · ^ dx

n ^ dp
1 ^ dp

n
. (2.34)

The signature (�1)n comes from the interchange of dp
0 with dx

i’s (see equation 2.25). Since the
signature is not important for following discussion, it is simply dropped.

Let us now discuss the number of particles and the distribution function. First, define a hypersurface
⌃ ⇢ �m as

⌃ ⌘ {(x, p) : x 2 S, p 2 Px} , (2.35)

where S is the spacelike hypersurface in M . The number of particles intersecting the hypersurface
⌃ is denoted as N [⌃] and its ensemble average is denoted as N̄ [⌃]. The volume element for the
hypersurface is defined as

! ⌘ L⌦ =

✓
p
µ
@

@xµ
� �µ

↵�
p
↵
p
�
@

@pµ

◆
g

p0
dx

0 ^ dx
1 ^ · · · ^ dx

n ^ dp
1 ^ · · · ^ dp

n
. (2.36)
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It is useful because it is invariant with respect to the phase flow, i.e. d! = 0. It is argued in Ehlers
(1971) that there exists a invariant distribution function f such that

Z

⌃

f! = N̄ [⌃] . (2.37)

Since d! = 0, following relationship holds

d(f!) = df ^ ! = df ^ (L⌦s) = L(f)⌦s. (2.38)

Let us consider a phase tube T and its spacelike slices ⌃1, ⌃2, and the domain D, between ⌃1 and
⌃2 (see Fig. 7 in Ehlers (1971)). The average number of collision can be related to the distribution
function as

N [@D] =

Z

@D

f! =

Z

D

d(f!) =

Z

D

L(f)⌦. (2.39)

Hence the Boltzmann equation is derived;

L(f) = p
µ
@f

@xµ
� ��

µ⌫
p
µ
p
⌫
@f

@p�
=


df

dt

�

collision

. (2.40)

where the right hand side describe the change of distribution due to neutrino-matter interactions. The
distribution function is the function of spacetime (four degrees of freedom) and the momentum space
(three degrees of freedom), which makes the Boltzmann equation the seven-dimensional problem.

There are several previous studies of CCSNe based on the Boltzmann neutrino transport. In
1D, GR Boltzmann radiation hydrodynamics simulations have been performed in Liebendörfer et al.
(2001); Sumiyoshi et al. (2005). In multi-dimension, only Newtonian simulations have been performed
(Iwakami et al., 2020, and references therein).

2.2 Two-moment Neutrino Transport

In this section, the two-moment transport method is briefly reviewed, which is widely used in CCSN
simulations. Instead of directly treating the neutrino distribution function in the phase space, angular
moments are treated. As explained in the following, two-moment method only tracks the zeroth and
first angular moments. It greatly drops most of the information in the momentum space, which helps
to reduce the computational cost.

The moments equations was first formulated in Thorne (1981), and the truncated moment formal-
ism and the equations in the conservative form are provided in Shibata et al. (2011). First, unprojected
moments are defined as

M
↵1↵2···↵k

(⌫)
(x�) ⌘

Z
f(x�

, p
0↵)�(⌫ � ⌫0)
⌫0k�2

p
0↵1p

0↵2 · · · p0↵kdV
0
p
, (2.41)

where f is the distribution function, ⌫ is the neutrino energy, and above integral is taken over momen-
tum space with the measure dV

0
p
. Following Thorne (1981), the collection of superscripts ↵1↵2 · · ·↵k

is represented as Ak hereafter. pµ is the four-momentum, rewritten as

p
↵ = ⌫(u↵ + l

↵), (2.42)

where u
↵ is the fluid velocity and l

↵ is the unit vector orthogonal to u
↵. The moments can be also

written as

M
Ak

(⌫)
= ⌫

3

Z
f(⌫,⌦p, x

µ)(u↵1 + l
↵1) · · · (u↵k + l

↵k)d⌦p, (2.43)
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where the integral is taken over the momentum space solid angle d⌦p. Following projection operator
is defined for later convenience

h↵� ⌘ g↵� + u↵u� . (2.44)

Let us derive the moment equations. From equation 2.41,
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M

Ak�

(⌫)

=

Z
p
0↵1p

0↵2 · · · p0↵kp
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p
. (2.45)

The first term describes the angle-moment of the collision terms, and hereafter rewritten as S
Ak

(⌫)
.

Above equation becomes
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which results in an unprojected moment equation
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Notice that the moment equation with respect to M
Ak� is determined by M

Ak�� , the moment one
rank higher. This is an important properties of the moment formalism; all moments are related with
the higher moments, which continues up to infinitely higher ranks. The truncated moment formalism
truncate this endless relationship, and impose the closure relation for a certain rank moment.

Equation 2.47 is the unprojected, general form. For numerical simulations, however, projected
quantities are more useful. Following quantities are defined:
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The equations with respect to above projected quantities can be obtained by projecting equation 2.47
in the same way.
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2.3. NEUTRINO-MATTER INTERACTIONS

Following energy-integrated version is often used instead to save the computational cost;
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Above equations can be solved in a similar way as the hydrodynamics equations. Further details, such
as the evaluation of the characteristic speed, are written in Shibata et al. (2011).

The di↵erence from the hydrodynamics equations is that the closure relation is required to truncate
the moment equations. In the two-moment method, natural choice is to interpolate between two limits;
isotropic distribution in the optically thick regime and the free-streaming distribution in the optically
thin regime:

P
ij

(⌫)
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3�� 1

2
(P ij

(⌫)
)thin +

3(1� �)
2

(P ij

(⌫)
)thick. (2.54)

Determination of � is highly nontrivial and important, at the same time. One candidate is the Lever-
more closure (Levermore, 1984):

� =
3 + 4F̄ 2

5 + 2
p
4� 3F̄ 2

, (2.55)

where F̄ is the flux factor. See Murchikova et al. (2017) for the comparison between di↵erent closures.
In appendix C, the results with Boltzmann transport and the closure relation is compared.

Two-moment neutrino transport simulation is widely used in the research groups worldwide. Since
the computational cost is orders of magnitude cheaper than the Boltzmann transport, systematic study
using long term (second scale) 3D simulations have been performed (Burrows et al., 2023b).

2.3 Neutrino-matter Interactions

The interaction of neutrinos with surrounding matter is crucial for CCSN dynamics and the obser-
vational signals. There are various neutrino-matter interactions that should be taken into account for
understanding CCSN theory.

2.3.1 Minimum Set

There is a so-called ”standard set” (Bruenn, 1985), which is commonly referenced. Here, I only
show what kinds of reactions are included, and the derivations of the reaction rates are provided in
the original paper.

For the emission and absorption reactions, following reactions are included: electron capture on
proton

e
� + p ! ⌫e + n, (2.56)

positron capture on neutron
e
+ + n ! ⌫̄e + p, (2.57)

electron capture on nuclei
e
� +A ! ⌫e +A

0
. (2.58)

Following scattering process are considered. Scattering by nucleon

⌫ +N  ! ⌫ +N, (2.59)

scattering by nucleus
⌫ +A ! ⌫ +A, (2.60)
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2.3. NEUTRINO-MATTER INTERACTIONS

scattering by electron
⌫ + e ! ⌫ + e. (2.61)

Note that in the standard set, scattering processes are assumed to be elastic scattering i.e. the neutrino
and the target particle does not lose nor gain any energy/momentum.

Neutrinos can also experience pair creation/annihilation by electron pair

e
� + e

+  ! ⌫ + ⌫̄. (2.62)

Although it was not included in Bruenn (1985), neutrino/antineutrino pair reaction by the Nu-
cleon Bremsstrahlung is thought to be also important and commonly implemented in modern CCSN
simulations;

N +N  ! N +N + ⌫ + ⌫̄.. (2.63)

2.3.2 Extensions

The above set is roughly recognized as the ”minimum set” for CCSN simulation. However, many
approximations are used to derive the reactions, and there are many possible extensions which may
a↵ect the result dramatically. I briefly review two examples; neutrino scattering by nucleon, and muon
interactions.

Neutrino Scattering by Nucleon

Among various kinds of neutrino-matter interactions, neutrino-nucleon scattering has a large room
for improvement. As explained earlier, the scattering process is usually treated as elastic scattering.
However the ”recoil” of the nucleon should be taken into account, and it can lead to additional
channel of energy exchange between neutrinos and the matter. In addition, weak magnetism e↵ect,
which originates from the fact that nucleon is not a single particle but it comprises of three quarks,
may also play a role. It makes the reaction rates di↵erent between ⌫e and ⌫̄e. Approximate formulae
for inclusion of these e↵ects have been proposed in Horowitz (2002) and have been applied to CCSN
simulation in Burrows et al. (2006). However, their method still employ crude approximations, and
further improvements are needed.

Muon Interactions

The existence of muons is usually ignored in CCSN simulations. This assumption stems on the fact
that the mass of the muon is 105.66MeV, which is much higher than the typical matter temperature
realized in CCSNe. However, this is not well justified because the temperature can reach ⇠ 30MeV,
which creates a non-negligible amount of electrons beyond ⇠ 100MeV, which will be converted into
muons. It is pointed out in Bollig et al. (2017) that the muons can make the EOS softer, and may
facilitate CCSN explosion. Furthermore, the charged-lepton interactions related to muons can also
a↵ect µ-type neutrinos (Sugiura et al., 2022).
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Chapter 3

Boltzmann Radiation
Hydrodynamics Code

This thesis focus on the numerical simulation performed with the Boltzmann radiation-hydrodynamics
code. This chapter gives the basic equations and the numerical method; section 3.1 for the Boltzmann
neutrino transport, and section 3.3 for the hydrodynamics solver.

3.1 Boltzmann Equation

In this thesis, spherical polar coordinate system is used both for the configuration space and
momentum space. Fig. 3.1 shows the schematic picture of the coordinate system employed. With this
choice, directional cosines in momentum space l(i) are expressed as

l(1) = cos✓⌫ , l(2) = sin✓⌫cos�⌫ , l(3) = sin✓⌫sin�⌫ . (3.1)

As derived in section 2.1, the Boltzmann equation can be written as

p
µ
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µ⌫
p
µ
p
⌫
@f

@pi
= �pµuµSrad, (3.2)

where the right-hand side represent the collision terms. In the numerical computations, however, it
is more useful to rewrite the equation into the conservative form, which is provided in Shibata et al.
(2014);
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where the neutrino energy is ✏ = �pµeµ(0), tetrad basis is specified by e
↵

(µ)
. In this study, neutrinos are

assumed to be massless with their minuscule masses being neglected. The factors !0, !(✓⌫)
, and !(�⌫)
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3.1. BOLTZMANN EQUATION
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Figure 3.1: Schematic picture of the phase space coordinates employed in this thesis.
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A natural choice of the tetrad basis may be given by the Gram-Schmidt normalization as
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3.2. NEUTRINO-MATTER INTERACTIONS

Above expression can be applied to arbitrary spacetime metric. The choice of metric is described in
each simulation.

In this thesis, SN method is used to solve equation 3.3, which requires to discretize the equations
for each coordinate variables. The discretization should be performed with care, otherwise it can lead
to numerical instability. For example, the above equation is written in the conservative form, and the
derivative of the prefactors (e.g.

p
�g in the spatial advection terms) appears irrespective of the value

of the distribution function. This is to be cancelled with the derivative of the prefactors of the other
advection terms, such as the angular advection. Unfortunately, in finite di↵erence, such cancellation
may not be satisfied because the Leibniz rule is not exact in the finite di↵erence. This may cause
the unphysical appearance of neutrinos. I have chosen the discretization method that minimizes such
e↵ect, which is explained in appendix A. The code verification tests of the GR version are performed
in appendix C.

Note that special case is also taken to take into account the e↵ect of fluid velocity. Many CCSN
simulations only take into account finite order of ”v/c” (e.g. Hubeny & Burrows (2007)), assuming
that the fluid velocity is not so large compared to the speed of light. On the other hand, our code
treats the fluid velocity e↵ect up to infinite order, in principle. The advection term is calculated in
the laboratory frame, and the collision terms are calculated in the fluid-rest frame, and the conversion
between two frames are performed with Lorentz transformation. The conversion itself is also taken
with care so that the neutrino number is conserved. See Nagakura et al. (2014) for details.

3.2 Neutrino-matter interactions

In this thesis, the neutrino-matter interactions employ the the standard set (Bruenn, 1985) with
a few modifications. As mentioned earlier, the standard set includes following seven neutrino-matter
interactions; the electron capture on proton (ecp), positron capture on neutron (aecp), electron capture
on nuclei (eca), scattering by nucleon (nsc), scattering by nucleus (csc), scattering by electron (esc)
neutrino pair creation/annihilation by electron pair (pap). In addition to this, the neutrino pair
creation/annihilation by nucleon-nucleon Bremsstrahlung (nbr) is incorporated based on Friman &
Maxwell (1979). Furthermore, the treatment of electron capture on heavy-nuclei is updated based on
Juodagalvis et al. (2010); Langanke & Mart́ınez-Pinedo (2000); Langanke et al. (2003).

The collision integral, which is necessary to calculate the collision terms is estimated as follows. As
for the emission/absorption reactions,
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emis�abs

= �Rabs(✏,⌦)f(✏,⌦) +Remis(✏,⌦)(1� f(✏,⌦)), (3.5)

where the emission and absorption rates are related each other as

Remis(✏,⌦) = Rabs(✏,⌦)e
��(✏�µ)

, (3.6)

to ensure the detailed balance, and � is the inverse temperature, µ is the neutrino chemical potential.
As for the scattering reactions, it is given as
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As for the pair creation/annihilation processes, it is given as
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where f̄ denotes the anti-neutrino distribution function. The reaction rates are related as
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3.3 Hydrodynamics

In this thesis, the hydrodynamics equations formulated in Shibata (2015) are used. Necessary
equations for the hydrodynamics is following three kinds of equations. First equation is the baryon
number conservation

(⇢0u
⌫);u = 0. (3.10)

Second equation is the conservation of the energy-momentum tensor

T
µ⌫

;⌫
= �Gµ

, (3.11)

where G
µ denote the feedback from neutrinos. Third equation is the conservation of lepton-number

N
⌫

;⌫
= ��, (3.12)

where � denote the lepton number change due to charged-current interactions. The symbols ⇢, P , uµ,
h, represent the density, the pressure, the four velocity, and the specific enthalpy, respectively.

For later convenience, following auxillary variables are defined;

v
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The feedback of neutrinos, in equation 3.11 can be written as

G
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i
Srad idVp, (3.15)

where the summation over i is taken for all flavors. The feedback in equation 3.12 is give as

� ⌘
Z

(Srad ⌫e � Srad ⌫̄e)dVp. (3.16)

In the same way as the Boltzmann equation, conservative forms are more useful for the numerical
simulations. The above equations 3.11, 3.12 is rewritten as follows (Shibata, 2015);

@t⇢⇤ + @j(⇢⇤v
j) = 0, (3.17)

@t(⇢⇤Ye) + @j(⇢⇤v
j
Ye) = ��, (3.18)

The energy-momentum conservation equation are separated into two; spatial part and the timelike
part. By projecting the equation 3.11 onto the spacelike hypersurface and the timelike normal vector
respectively, following equations can be obtained
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The numerical fluxes are evaluated with Harten Lax–van Leer (HLL) scheme (Harten et al., 1983).
In the similar way as the Boltzmann solver, a special care should be taken to discretize the equations.

The discretization method is provided in appendix B. The code verification tests are performed in
appendix D. In addition to above hydrodynamics equations, the equation of state (EOS) should be
employed to determine the pressure. The choice of the EOS is described in each simulation.
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Chapter 4

Simulation of Early Postbounce
Phase of CCSN

In this chapter, we will present the simulation of early postbounce phase of CCSN performed with
the GR Boltzmann radiation hydrodynamics code in 2D. The results are compared with the results
performed in Newtonian gravity.

Let me first briefly review the treatment of gravity in the previous studies. In 1D simulations such
as Liebendörfer et al. (2001); Sumiyoshi et al. (2005), GR simulations have been extensively performed.
Performing GR simulation in 1D is not actually di�cult because the metric equations reduce to the
ordinary di↵erential equations (ODEs). However, in multidimensional simulations, many recent studies
employ the Newtonian gravity or e↵ective GR potential (O’Connor & Couch, 2018; Iwakami et al.,
2020; Bollig et al., 2021; Nakamura et al., 2022; Burrows et al., 2023a, and references therein), with
several full GR simulations (Shibagaki et al., 2023, and references therein).

E↵ect of GR on CCSN dynamics is studied in several studies (Kuroda et al., 2012; O’Connor &
Couch, 2018). It was pointed out that GR makes the central PNS to get more compact and hotter than
Newtonian case, and this leads to higher neutrino luminosity and facilitate the explosion. Currently,
simulations with GR e↵ects all employ approximate neutrino transport and the simulation with the
Boltzmann neutrino transport is limited to Newtonian. In this chapter, we investigate GR e↵ect on
CCSN dynamics using the newly developed GR Boltzmann radiation hydrodynamics code.

4.1 Setup

4.1.1 Numerical Setup

The simulation is performed with the code described in chapter 3. The spacetime metric is specified
in section 4.1.2. The mesh configuration is same as the existing Newtonian simulation, whose result
is compared. The radial mesh covers the range r 2 [0, 5000] km with 384 grid points, where the
mesh width is varied so that the resolution around the steep density gradient (e.g. PNS surface) is
appropriately captured. The zenith angle ✓ mesh covers the range ✓ 2 [0,⇡] with 128 grid points.
In the momentum space, the zenith angle ✓⌫ covers the range ✓⌫ 2 [0,⇡] with 10 grid points, and
the azimuth angle �⌫ covers the range �⌫ 2 [0, 2⇡] with 6 grid points. The boundary conditions are
imposed as follows: the reflective condition at the center r = 0 and on the poles ✓ = 0, ⇡, and the
free-streaming condition at the outer boundary located at r = 50 km, and the periodic condition for
�⌫ = 0, 2⇡. Furusawa-Togashi EOS (Furusawa et al., 2017), which is based on the variational method,
is used for the nuclear matter.
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4.1. SETUP

4.1.2 Spacetime Metric

In principle, self-consistent derivation of the spacetime metric is to solve numerical relativity equa-
tions. However, it is technically di�cult to implement. In this simulation, the spacetime metric is
assumed to be spherically symmetric, which is actually a valid assumption because the gravitational
source can be approximated to spherical symmetry. When we assume spherical symmetry, it is useful
to impose the so-called ”radial gauge polar-slicing condition” to the metric. It assumes the metric only
with diagonal components and the values for two components are assumed g✓✓ = r

2, g�� = r
2sin✓. By

introducing two functions �(t, r) and m(t, r), spacetime metric is assumed to be as follows
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The equations for calculating �(t, r) and m(t, r) are provided below.
The equation with respect to m(t, r) can be obtained from the Hamiltonian constraint equation.

In the above choice of metric, the Ricci tensor becomes
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and the nonvanishing component of the extrinsic curvature is the rr-component;
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Hence the Hamiltonian constraint equation becomes
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where the ideal fluid is assumed and the energy-momentum tensor is given as T
µ⌫ = ⇢u

µ
u
µ + Pg

µ⌫ .
Above equation leads to an ODE with respect to m(t, r)
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The equation with respect to �(t, r) can be obtained from the relation that @tK✓✓ = 0.
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which leads to an ODE with respect to �(t, r)
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Naturally, if we impose the fluid velocity to be zero, and the neutrinos are absent, above equations
coincide the metric equations of the TOV equations. If the background hydrodynamic variables are
provided, spacetime metric can be obtained by solving equations 4.5 and 4.7 with the Runge-Kutta
method. In this simulation, angle-averaged hydrodynamical variables are used to calculate the metric.
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Figure 4.1: Radial profiles of the angle-averaged density for 2Dinitial (red) and t = 50ms (blue).
The solid and dashed lines correspond to GR and Newtonian, respectively.

4.1.3 Initial Model and Collapse Simulation

The procedure explained below is the same as the Newtonian counterpart. The initial progenitor
mass is chosen as the 11.2M� in Woosley et al. (2002). The collapse phase is followed in 1D, considering
that multidimensional e↵ect is small. About ⇠ 1ms after the bounce 1, negative entropy gradient
appears right behind the shock wave. Since it is a signature that the state starts to become convectively
unstable, 2D simulation is started from this point. Hereafter, this snapshot is called 2Dinitial. In
order to induce the convection, the radial velocity is randomly perturbed by 0.1% in the radial region
of 30 < r < 50km.

4.2 Results

Figs. 4.1 4.2 compares the density and the temperature between GR and Newtonian gravity. As can
be clearly seen, the density and the temperature at the center is higher in GR than in Newtonian gravity.
This result is consistent with previous studies that PNS gets more compact and the temperature gets
higher in GR.

Let us see the CCSN dynamics. Fig. 4.3 shows the time evolution of the shock radius. The time
evolution shows fluctuation, but the shock wave gradually propagate outward. GR and Newtonian
results do not show large di↵erence, but the evolution of the average value indicate that the the shock
wave is slightly smaller in GR.

Figures 4.5 and 4.6 show the neutrino luminosity and the mean energies. In the same way as
the shock wave evolution, the explosion morphology is stochastic and there are temporal variations
between GR and Newtonian gravity. Apart from the temporal variations, there is no systematic

1
Bounce is defined at the time when the maximum central density is reached
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Figure 4.2: Radial profiles of the angle-averaged temperature for 2Dinitial (red) and t = 50ms (blue).
The solid and dashed lines correspond to GR and Newtonian, respectively.

di↵erence between GR and Newtonian. This makes the neutrino heating rate almost the same, and
the stronger gravity in GR makes the shock propagation slower.

At a first glance, this result is in disagreement with previous simulations, where the compact PNS
would make the luminosity higher and aid the explosion. However, it is not necessarily an inconsistency
as discussed below. The reason for the non-di↵erence of the neutrino luminosity can be understood
as follows. Let me first define the neutrino sphere. It is the position where the optical depth becomes
⌧ = 2/3, which can be roughly regarded as the position where the neutrinos are emitted. For the
estimation of the optical depth, both emission/absorption reactions and scattering reactions are taken
into account. Following Rybicki & Lightman (1986), e↵ective optical thickness is calculated as

⌧ ⌘
p
⌧a(⌧a + ⌧s), (4.8)

where ⌧a and ⌧s represent the optical depth only by taking into account the emission/absorption
reactions, and the scattering reactions, respectively. Fig. 4.7 shows the time evolution of the
temperature at the neutrino sphere for di↵erent neutrino energies. The di↵erence between GR and
Newtonian case is small, and the largest di↵erence is seen for the low-energy neutrinos but at most ⇠
5%. This small di↵erence can be understood by looking at the correspondence between the temperature
and the density, as shown in Fig. 4.8. The central high-density region indeed show higher temperature
for GR case, but the temperature near the neutrino sphere (density of 1010 . ✏ . 1012g cm�3) show
very little di↵erence between GR and Newtonian.

This situation may be changed if the high temperature matter is dredged up by the PNS convection.
Unfortunately, the duration of the current simulation is not enough so that strong PNS convection has
not yet started. By continuing the simulation, GR e↵ect may play positive role for the explosion.
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Figure 4.3: Time evolution of the shock radius for general relativity (red) and in Newtonian gravity
(blue). The solid line shows the average shock radius and the reddish and bluish regions shows the
range between the minimum and maximum shock radius.

4.3 Summary of Chapter 4

In this chapter, 2D CCSN simulation results with general relativistic Boltzmann radiation hydro-
dynamics code is presented. The density and the temperature is clearly higher in GR than Newtonian
case, which is because the stronger gravity in GR makes the central PNS to get more compact. This
feature is consistent with the previous studies. However, the neutrino luminosity and the mean neu-
trino energy does not show large di↵erence between GR and Newtonian, because the temperature at
the neutrino sphere has little di↵erence. Stronger gravity in GR only has negative e↵ect on the shock
propagation, and the shock radius tend to be smaller than newtonian case.

If the PNS convection occurs after & 100ms, high temperature matter at the center will be likely
to be dredged up and it is expected that neutrino luminosity would get higher. The simulated time
⇠ 70ms is way too short to judge the explodability, and we will continue the simulation further.

31



4.3. SUMMARY OF CHAPTER 4

0

1

2

3

4

5

6

7

8

9

10

11

12

0 50 100 150 200 250 300

GR
Newtonian

E
nt
ro
py

p
er

b
ar
yo

n
(k

B
)

Radius (km)

2Dinitial
t =10ms

30ms
50ms
70ms

Figure 4.4: Radial profile of the entropy per baryon for di↵erent snapshots.

0

5

10

15

20

0 10 20 30 40 50 60 70

L
u
m
in
os
it
y
(1
05

2
er
g
s�

1
)

Time (ms)

⌫e (GR)
⌫̄e (GR)
⌫x (GR)

⌫e (Newtonian)
⌫̄e (Newtonian)
⌫x (Newtonian)

Figure 4.5: Time evolution of the energy luminosity for ⌫e (blue), ⌫̄e (red) and ⌫x (green). The solid
and dashed lines show the GR result, and the Newtonian gravity, respectively.

32



4.3. SUMMARY OF CHAPTER 4

0

5

10

15

20

0 10 20 30 40 50 60 70

M
ea
n
en
er
gy

(M
eV

)

Time (ms)

⌫e (GR)
⌫̄e (GR)
⌫x (GR)

⌫e (Newtonian)
⌫̄e (Newtonian)
⌫x (Newtonian)

Figure 4.6: Time evolution of the mean neutrino energy for ⌫e (blue), ⌫̄e (red) and ⌫x (green). The
solid and dashed lines show the GR result, and the Newtonian gravity, respectively.

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70

GR

Newtonian

T
em

p
er
at
u
re

at
th
e
n
eu
tr
in
o
sp
h
er
e
(M

eV
)

Time (ms)

2.28 MeV
5.03 MeV
11.1 MeV
24.5 MeV

Figure 4.7: Time evolution of the temperature at the neutrino sphere for di↵erent neutrino energies.

33



4.3. SUMMARY OF CHAPTER 4

0

5

10

15

20

1⇥ 10101⇥ 10111⇥ 10121⇥ 10131⇥ 1014

T
em

p
er
at
u
re

(M
eV

)

Density (g cm�3)

2Dinitial (GR)
2Dinitial (Newtonian)

t =50ms (GR)
t =50ms (Newtonian)

Figure 4.8: Same as figure 4.2, but the horizontal axis is the density.

34



Chapter 5

Late-time Evolution of
Protoneutron Star I. E↵ect of
Convection

For a long time, postbounce explosion phase of CCSNe has been extensively investigated to un-
derstand the explosion mechanism. Recently, the subsequent phase, i.e., the protoneutron star (PNS)
cooling, is also getting attention. For galactic CCSNe, a large amount of neutrinos will be observed for
⇠ 100 seconds by the current and future detectors (Li et al., 2021). Unlike the explosion phase, PNS
cooling is less chaotic, and may also be useful for tightly constraining the nuclear EOS (Pons et al.,
2001a,b; Roberts et al., 2012; Nakazato & Suzuki, 2020; Nagakura & Vartanyan, 2022; Nakazato et al.,
2022). The di�culty of simulating the PNS cooling phase is that it lasts for a long time (⇠ 10 ⇠ 100 s).
This makes it almost impossible to perform multi-dimensional simulation with sophisticated neutrino
transport for the entire phase.

In fact, the long-term (& 10 s) PNS cooling calculations have been performed only in 1D (Roberts &
Reddy, 2017; Nakazato & Suzuki, 2019) However, the multi-dimensional e↵ect may also play important
role for the PNS evolution. The most prominent multi-dimensional feature is the convection, which is
actually crucial in the explosion phase. In the previous 1D simulations, it was either simply ignored
(Nakazato et al., 2013; Nakazato & Suzuki, 2019), or the mixing-length treatment was employed to
model the matter mixing (Roberts et al., 2012). It has been pointed out that luminosity and the energy
is enhanced by the convection (Keil et al., 1996; Roberts et al., 2012; Pascal et al., 2022). In addition,
there are also other multidimensional features such as rotation, NS kick, and asymmetric accretion,
whose e↵ects may systematically change the result.

Behavior of the PNS convection has been investigated only in the early phase (⇠several seconds)
(Dessart et al., 2006; Nagakura et al., 2020, 2021). For example, Keil et al. (1996) studied the PNS
convection up to ⇠ 1s after core bounce in 2D under axisymmetry with the radial, gray (energy
independent) neutrino transport taken into account. The initial condition is constructed by extracting
a central portion (1.1M�) of the supernova core at 25ms post bounce in their 2D simulation for a
15M� progenitor. They showed that a lepton-driven convection occurs inside PNS, and the convective
zone is extended inward with time as the positive entropy gradient gets weaker. They also found
that the neutrino luminosity and the mean energy are both enhanced by the convection. Mezzacappa
et al. (1998), employing the 1D multi-group flux-limited di↵usion (MGFLD) transport coupled with
2D hydrodynamics, reported that the PNS convection is suppressed by the neutrino transport in their
simulations up to ⇠ 100ms after bounce. This may be an artifact of the angle-averaged 1D neutrino
transport, though, in which the lateral transfer will be overestimated. In fact, the simulations with
the 2D neutrino transport performed by Buras et al. (2006) and Dessart et al. (2006) observed a
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convection, which enhances the neutrino luminosities. Note that these studies are all limited to the
very early phase up to a few 100ms after bounce, since their main focus is the explosion mechanism.
To our knowledge, the paper by Nagakura et al. (2020) is the only one that is devoted to the study
of the PNS convection in 3D. It is based on their 3D supernova simulations, which obtained shock
revival. They demonstrated that the convection enhances the luminosity of ⌫x, but not of ⌫e and ⌫̄e.
There are even longer simulations in 2D (Burrows & Vartanyan, 2021) and 3D (Bollig et al., 2021) up
to several seconds post bounce with the two-moment approximation employed for neutrino transfer.
Unfortunately, the PNS convection was not discussed there. Hence there has been no detailed multi-
dimensional numerical investigation on the PNS convection after ⇠ 1 s. That is what we want to do
in this chapter.

Although there are aforementioned studies, all of them employed approximate neutrino transport.
Since the PNS convection is induced by the deleptonization of the PNS, the treatment of the neutrinos
around the semi-transparent regime is crucial. In this study, we perform GR Boltzmann radiation
hydrodynamics simulation of PNS convection and discuss its e↵ect on the PNS evolution.

5.1 Setup

5.1.1 Numerical Setup

As same as in the previous simulation in chapter 4, the general relativistic Boltzmann radiation-
hydrodynamics code is used for the simulations. The radial mesh covers the range r 2 [0 : 50]km with
384 grid points. The mesh configurations for ✓ and the momentum space variables are completely same
as the simulation in chapter 4. In order to see the resolution dependence, simulations with di↵erent
resolutions are also performed; we also run a simulation with a higher spatial resolution: Nr = 512
, N✓ = 192 (referred to as model HR-S) and another with a higher angular resolution in momentum
space: N✓⌫ = 14, N�⌫ = 10 (model HR-M).

5.1.2 Initial Model

As the initial model, PNS model is chosen to be the 2.3s after bounce calculated in Nakazato &
Suzuki (2019). In their paper, the collapse of a 15M� progenitor (Woosley & Weaver, 1995) was
followed with the Lagrangian radiation hydrodynamics code by Sumiyoshi et al. (2005) up to 300ms.
Since this is in 1D, the shock revival does not occur. In order to mimic the successful explosion case,
the central PNS is extracted to avoid further matter accretion. The resulting PNS is tracked for
⇠ 2 s by another code for the quasi-static PNS cooling developed by the same authors. This cooling
computation was done under the assumption of spherical symmetry, and Togashi EOS (Togashi et al.,
2017) was employed.

The initial model was constructed based on the FLD neutrino transport, which is di↵erent from
this simulation. The numerical method is also di↵erent; the initial model was based on the Lagrangian
hydrodynamics code where current simulation is based on Eulerian. In order to minimize the ef-
fect of this discontinuity, 1D relaxation simulation is first performed with the Boltzmann radiation
hydrodynamics code. If the state reaches the quasi-steady state, it is mapped to 2D.

When the result is mapped to 2D, following perturbation is added to the four-velocity in order to
invoke convection.

�ur = V cos

✓
m⇡

r � rmin

rmax � rmin

◆
cos(n✓),

�u✓ = V rsin

✓
m⇡

r � rmin

rmax � rmin

◆
sin(n✓), (5.1)
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where V ⌘ 1 ⇥ 10�4 ⇥ c, rmin ⌘ 3km, rmax ⌘ 13km, m ⌘ 10 and n ⌘ 10. In this study, we employ
the Furusawa-Togashi EOS (Furusawa et al., 2017). Although it is slightly inconsistent with the PNS
model constructed with Togashi EOS, the only di↵erence is the treatment of nuclei, and it is minor.
The implemented neutrino-matter interactions are same as the previous simulation in chapter 4.

5.2 Results

5.2.1 Overview

First, result for the 1D relaxation calculation is shown below. Figure-5.1 compares the radial profiles
of some hydrodynamical variables at 50ms with those at the initial time. Note that the computational
range in this calculation is extended from the original one because the original calculation in Nakazato &
Suzuki (2019) did not cover low density region below ⇠ 1011 g cm�3. Therefore, the matter background
is extended smoothly, in the region 17 . r < 50 km. Since the density is low there, it does not
dramatically change the result.

The density and the temperature distributions are almost the same as the original ones with the
deviations being at most several %. As for the electron fraction, the dip gets a bit shallower from
the initial data at r ⇠ 15 km. Further out a continuous rise of Ye is observed toward the outer
boundary. This is because the absorption of ⌫e is dominant over that of ⌫̄e while the emissions of these
neutrinos are much smaller in this optically thin region. As explained above, the initial Ye distribution
at r & 17 km is set by the extrapolation and the large discrepancy found there is just as expected.
Since the density in this region is low and the region with negative lepton gradients inside are little
a↵ected by the initial transients, we think it is rather unlikely that the convection of our interest is
severely modified by the presence of the extended layer. The overall agreement between the data
before and after the relaxation with no anomalous behavior is an indirect indication that our code is
working properly and can treat PNS correctly in general relativity. In the similar manner as chapter
4, the initial profile is called 2Dinitial hereafter. From the snapshot at 50ms, which we refer to as
2Dinitial hereafter, we start the 2D calculation. For comparison we continue the 1D calculation
also. Fig. 5.1 compares the background profiles between the original 1D data and the profile after the
relaxation calculations.

Fig. 5.2 shows the hydrodynamic profiles for some snapshots. The temperature distribution and
the Ye distributions are extended to larger radii in 2D. The dredge up of matter by the convection
dredge up matter to the larger radii. The noteworthy di↵erence is the entropy profile. Negative entropy
gradient exists in the 1D model, where it disappears in 2D.

Figure 5.2 compares the angle-averaged radial profiles of the temperature, the electron fraction,
and the entropy per baryon between 2Dinitial and some snapshots from the 2D simulation at later
times. For all quantities, the radial distributions get smoothed out with time due to the matter mixing
driven by the convection. The most notable di↵erence appears in the entropy per baryon: the peak
and dip feature is gone and the gradient is positive at all radii in the 2D case.

In order to see the vigor of convection, we show the time evolution of the kinetic energy in figure 5.3.
The perturbation given in equation 5.1 instigates violent convective motions in several milliseconds.
The tangential kinetic energy accounts for the large portion of the total kinetic energy. The kinetic
energy decreases until 30ms and settles gradually down to a fluctuation around a constant value
thereafter. The initial violent turbulence is an artifact produced by the transition from 1D to 2D.
After ⇠ 100ms, however, the transient is subsided and the convection has reached a (quasi) steady
state, in which the angle-averaged matter profiles change much more slowly on the secular time scale.
Regarding this state as representative of the PNS convection around this time of the cooling phase,
we analyze it further in the following.

Fig. 5.3 shows the time evolution of the kinetic energy. The initial rise of the kinetic energy is the
artifact due to suddenly switching from 1D to 2D. On the other hand, the persistent convection seen
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in the later phase can ne thought to represent the PNS convection occurring in reality.
Fig. 5.4 shows the meridian map of the kinetic energy density for di↵erent snapshot times. We

first look at where the PNS convection occurs. Figure 5.4 is the meridian maps of the kinetic energy
for some time snapshots. The velocity field inside the PNS is superimposed. Note that the PNS is
defined as the region where the density is higher than 1011 g cm�3. The kinetic energy and velocity
distributions are non-spherical from the center up to r ⇠ 17 km, with the lateral motions dominant over
the radial ones (see also figure 5.3). This seems to be consistent with the convection that Nagakura
et al. (2020) investigated. It indicates that convection commonly occurs in the wide range of PNS. As
we saw in the figure 5.2, the entropy gradient is positive for all region and the Ye gradient is negative
up to ⇠ 17 km. As can be seen in figure 5.4, the kinetic energy and the velocity are large for inside
(. 17 km), and small for outer convectively stable region. This is in contrast to other earlier works,
though, in which either almost no convection was found (Lattimer & Mazurek, 1981; Mezzacappa &
Bruenn, 1993) or it was observed in a rather limited region (Dessart et al., 2006; Nagakura & Johns,
2021a). This discrepancy may be attributed to the di↵erences in the treatment of neutrino transfer
as well as to the di↵erence in the phase we focus to. As we saw in figure 5.2, the entropy gradient
is positive in the entire region while the Ye-gradient remains negative in the convective region at this
rather late time of t ⇠ 2s. Although our simulation is not fully self-consistent as the initial matter
profile is taken from the 1D PNS cooling calculation (Nakazato & Suzuki, 2019), in which convection
was ignored, the entropy and Ye distributions are self-adjusted and sustained once the (quasi) steady
state is established, and hence the results obtained in this study will have some generality.

In order to see the convectively unstable region more quantitatively, we evaluate the relativistic
Brunt-Väisälä frequency

N
2 =

@↵

@r

↵

⇢h�rr

✓
1

c2
s

@P

@r
� @⇢(1 + ✏)

@r

◆
, (5.2)

where N
2
< 0 indicates the linear convective instability. We adopted this formula from Müller et al.

(2013), in which the conformal flatness is assumed, by simply replacing the conformal factor with �rr.
It is conventional (Gossan et al., 2020) to define the following quantity:

fBV = sign(N2)
p
|N2|. (5.3)

Figure 5.5 shows the meridian maps of fBV for some time snapshots. The leftmost panel presents the
result for the initial time. We can see clear boundaries between the (linearly) unstable region with
bluish colors and the stable regions with reddish colors. It is found that the inner region r < 9 km
is linearly stable although it has negative Ye-gradients (see figure 5.2). The convection occurs in this
linearly unstable region initially indeed. As it grows with time and becomes nonlinear, the convective
region is extended inward by overshooting and the inner stable region is extinct eventually. At the
same time, the value of fBV gets smaller inside the convective region as can be observed in other
panels to the right. This happens because the convection mixes the matter up until its profiles become
marginally stable, since the neutrino emissions still work in the opposite way to produce unstable
Ye-profiles. As a result, the convection is sustained even if the Brunt-Väisälä frequency is marginally
positive.
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Figure 5.1: Radial profiles of the density (top), the temperature (middle), and the electron fraction
(bottom) are shown with red lines. The original data (provided by another code) is shown with blue
lines.
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5.2.2 Neutrino Emission Characteristics
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Figure 5.6: Time evolution of the energy luminosity (left) and mean neutrino energy (right). The solid
lines correspond to 2D, and the broken line correspond to 1D. Blue, red, and green lines denote ⌫e, ⌫̄e,
and ⌫x, respectively.

Next, we discuss the properties of neutrino emissions from the PNS. Figure 5.6 shows the time
evolution of the luminosity and mean energy of neutrinos. Similarly to the kinetic energy, we found a
sudden increase of the ⌫e luminosity right after the start of the simulation, which is followed by a gradual
decline as the initial transient subsides, and is settled to a roughly constant value in⇠ 70ms. The rise of
the ⌫̄e luminosity is turned to a decline very quickly, followed by a gradual increase to a constant value
over several tens milliseconds. It is interesting that the time variations are anti-correlated with those
of ⌫e. The ⌫x luminosity, on the other hand, increases monotonically and approaches an asymptotic
value a bit more quickly than other neutrinos without producing a pronounced peak. These di↵erent
behaviors reflect the di↵erence in their decoupling with matter. This early time evolution is an artifact,
though, caused by the switch from 1D to 2D. We hence focus on the asymptotic phase after the (quasi)
steady convection is established. The luminosity and the mean energy in 2D are both higher than those
in 1D (compare the solid lines with the dashed lines). Such an enhancement was also observed in the
previous studies on the earlier phase (Keil et al., 1996; Buras et al., 2006; Dessart et al., 2006; Roberts
et al., 2012; Pascal et al., 2022).

Fig. 5.6 shows the time evolution of the energy luminosity and the average neutrino energy.
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Figure 5.7: Temperature profiles near the neutrino sphere of the neutrinos with the energy of 12.8
MeV. The black and magenta lines denote the result for 1D and 2D, respectively. We pick up the
snapshot t = 150ms. The vertical lines denote the positions of the neutrino sphere for each flavor; ⌫e
(blue), ⌫̄e (red), and ⌫x (green), and the chain lines denote 1D, and the broken lines for 2D. Note that
angle-averaged quantities are shown for the 2D result.

Similarly as the time evolution of the kinetic energy, the initial rise is due to the sudden mapping from
1D to 2D. The time evolution can be compared with the result in 1D, which is shows with dashed
lines. The luminosity and the mean energy are clearly larger in 2D than in 1D.

The enhancement of the mean energy in 2D can be understood from the angle-averaged radial
profiles of temperature near the neutrino sphere shown in figure 5.7. The neutrino sphere is estimated
in the same way as chapter 4. The vertical lines indicate the positions of the neutrino sphere for
individual neutrino species at the energy of 12.8MeV. The dash-dotted and dashed lines indicate the
positions of the neutrino sphere for 1D and 2D, respectively. Since we focus on the neutrino emission,
the absorption reactions are only taken into account to calculate the mean free path here. It is evident
that the temperature is higher in 2D than in 1D. This is due to the dredge-up by convection of the
hotter matter located originally deeper inside. If the location of the neutrino sphere were unchanged,
the mean energy would be even higher. As should be also apparent in figure 5.7, the neutrino spheres
are all shifted outwards to lower temperatures. This is due to the density rise at r & 15 km (see
figure 5.8) associated with the expansion of PNS, which is in turn driven by the convection. For all
flavors, the temperatures at the neutrino spheres are higher, which naturally leads to their greater
mean energies as well as luminosities as observed in figure 6.7. In addition, the smaller neutrino sphere
in 1D means that it is located deeper in the gravitational well, and the neutrinos emitted from it
experience a greater gravitational redshift. This e↵ect further lowers the luminosity and the mean
energy for all flavors of neutrinos in 1D.
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5.2.3 Anisotropy of PNS and Neutrino Emission

In this subsection, we discuss the asymmetry caused by the convection and its e↵ect on the neutrino
emission. Since we assume axisymmetry in this study, the results are inevitably a↵ected by the artifacts
unique to 2D. Nevertheless, the results will be useful as the reference for the 3D study in the future.

Figures 5.9 and 5.10 show the angle-dependence of density, temperature, and electron fraction
at di↵erent times. The density variation is rather small except for the outer low-density layer at
r & 20 km, which we do not consider. The temperature distribution shows remarkable variations at
r . 13 km due to the convection, whereas it is almost symmetric at larger radii. The temperature
profiles are especially bumpy at the north (✓ = 0) and the south (✓ = ⇡) poles, suggesting that the
convective motion is more violent there. The Ye profile is also highly asymmetric in a more extended
region, in which the maximum deviation from the average, �Ye & 0.05, occurs around r = 10 km.
In addition, Ye tends to be lower on the poles than on the equator. This again indicates that the
convection is stronger near the poles than around the equator.

In order to see the convective pattern more clearly, we plot the time-averaged electron fraction and
velocity in figure 5.11. One can see three large vortices: one near the north pole, another centered
at an intermediate latitude in the northern hemisphere and the other covering most of the southern
hemisphere. Note that we do not impose the equatorial symmetry. They are extended radially from
⇠ 7 km to ⇠ 16 km. Near the both poles matter is moving downwards, causing lower values of Ye to
prevail at r . 15 km. At the same time, the central region with higher values (& 0.15) of Ye becomes
a bit oblate. This is why we observed Ye tends to be lower near the poles in figures 5.9 and 5.10. The
converging flows observed at the poles are mostly due to the artifact well-known in the axisymmetric
simulation. However, a similar Ye anisotropy was observed by Keil et al. (1996) (Fig. 3), in their 2D
simulation, in which the poles were avoided by choosing a 45�-wedge region centered at the equator
as their computational zone. They found that the zone at 15 . r . 20 km is divided into two, large
vortices with lepton-rich matter rising and deleptonized matter sinking. We hence think that such
configurations are rather generic and expect that the downdraft of low-Ye matter and the updraft of
high-Ye matter will occur also in 3D at several points. Moreover, if the PNS is rotating rapidly, there
may occur converging flows at the poles indeed. We have to wait for 3D studies, however.

Bearing this possible caveat in mind, we discuss the directional dependence of the neutrino emission
caused by the asymmetric matter distribution derived above. Figure 5.12 shows a comparison of the
luminosities at several angles in space. Both ⌫e and ⌫̄e show large angular variations, where the
maximum value becomes twice as large as the minimum value. The temporal changes at di↵erent
angles for ⌫̄e are inversely correlated with that of ⌫e. The ⌫e luminosities near the south pole (✓ = 5⇡/6,
⇡) tends to be lower than other angles. This is because the low-Ye environment there (figures 5.9, 5.10)
is preferable for the absorption of ⌫e and emission of ⌫̄e. Although ⌫e luminosities near the north pole
(✓ = 0, ⇡/6) are higher than those near the south pole at early times, they become similar later as
the transient subsides and the convection becomes quasi-steady. It is important that there is ⇠ 30%
of anisotropy existent even if these pole regions are excluded. The ⌫x luminosity, on the other hand,
shows much smaller angular variations (. 10%) compared to those of ⌫e and ⌫̄e . 10% in the late
phase. This is because the ⌫x emission is barely a↵ected by the anisotropy of Ye and the temperature
variations are smaller.
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Figure 5.9: Comparison of the density (top), and the electron fraction (middle), and the temperature
(bottom) for di↵erent angles at a time snapshot 70ms. The red, magenta, purple, blue, and green lines
correspond to ✓ = 0, ⇡/4, ⇡/2, 3⇡/4, and ⇡, respectively.
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Figure 5.10: Same as figure 5.9, but for the time snapshot 150ms.

48



5.2. RESULTS

0 5 10 15 20
x (km)

�20

�15

�10

�5

0

5

10

15

20

z
(k
m
)

0

0.05

0.1

0.15

0.2

el
ec
tr
on

fr
ac
ti
on

Figure 5.11: Time-averaged electron fraction and the velocity field on the meridian slice. The average
is taken for the time period of t 2 [20, 40]ms.

49



5.2. RESULTS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160

en
er
gy

lu
m
in
os
it
y
(⇥

10
5
2
er
g/

s)

time (ms)

✓ = 0
⇡/6
⇡/3
⇡/2

2⇡/3
5⇡/6

⇡

⌫e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160

en
er
gy

lu
m
in
os
it
y
(⇥

10
5
2
er
g/

s)

time (ms)

⌫̄e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160

en
er
gy

lu
m
in
os
it
y
(⇥

10
5
2
er
g/

s)

time (ms)

⌫x
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5.2.4 Resolution Dependence

Here we investigate the numerical resolution in our 2D simulation. As mentioned earlier, we run
the additional simulations either with a higher spatial resolution (model HR-S) or with a higher angular
resolution in momentum space (model HR-M). Since we are interested in the (quasi) steady convection,
we start these runs from the normal-resolution result at 110ms.

Figure 5.13 shows the time evolutions of the kinetic energy for the three runs. Since the convection
is stochastic, the time variations are a bit di↵erent from model to model but they show the same trend.
It is apparent that model HR-S has larger values of kinetic energy than the other two by ⇠ 20% for
most of the time. The enhancement of turbulence due to higher spatial resolution is already reported
in the context of CCSN simulation (Nagakura et al., 2019). Model HR-M also tends to have higher
values than the normal-resolution model but the di↵erence is much smaller and it may be a temporary
trend. The period of the oscillation ⇠ 1ms, is the same for di↵erent resolution models.

Figure 5.14 shows the resolution dependence of the neutrino luminosity. The ⌫e luminosity for
model HR-S is slightly higher than that for the normal resolution whereas the ⌫̄e luminosity shows
opposite behavior. The ⌫x luminosity gets greater for the higher spatial resolution but the di↵erence
is even smaller. The luminosities in model HR-M are almost the same as those in the normal-resolution
model. Figure 5.15 shows the comparison of the (angle-averaged) mean neutrino energy among the
three runs. For all flavors, the resolution dependence is very minor. We can say that although the
turbulence induced by the convection is under-resolved spatially by a few tens percent in our 2D
simulation, the enhancement in the neutrino luminosities and mean energies is much less a↵ected by
the resolution.
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Figure 5.14: Time evolution of the energy luminosity for three di↵erent flavors; ⌫e (top), ⌫̄e (middle),
and ⌫x (bottom). Di↵erent colors denote the di↵erent resolution; normal resolution (purple), HR-S
(blue), and HR-M (red).
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5.3 Summary of Chapter 5

We investigated the PNS convection in 2D under axisymmetry, using our newly developed general
relativistic Boltzmann neutrino radiation-hydrodynamics code. This is meant to be a pilot study for
more comprehensive explorations of the PNS cooling in multi-dimensions. To our knowledge, it has
not been conducted yet in the literature for a couple of reasons. In fact, most of the previous works
on the PNS were done either in 1D (Roberts et al., 2012; Roberts, 2012; Nakazato & Suzuki, 2019;
Nakazato & Suzuki, 2020; Li et al., 2021; Nakazato et al., 2022; Pascal et al., 2022) or in the early phase
(. 1 s) of core-collapse supernova explosion (Mezzacappa et al., 1998; Dessart et al., 2006; Buras et al.,
2006; Nagakura et al., 2020) (but also see recent advancements (Bollig et al., 2021; Burrows et al.,
2023b)). For the purpose of this study, we extracted from a conventional 1D PNS-cooling calculation
in spherical symmetry by Nakazato & Suzuki (2019) a snapshot of PNS at 2.3 s post bounce, mapped it
onto a 2D grid and ran our code, adding some perturbations initially, to see the subsequent convective
activity.

The Brunt-Väisälä frequency calculated at each grid point shows that this model has indeed a
radially extended zone inside the PNS, that is linearly unstable against convection. We observed that
the PNS convection is actually instigated in that region. The convective motion is particularly violent
in the first ⇠ 100ms, extending itself inward by overshooting and rendering the entropy gradient
positive there. We also saw a rapid rise of the neutrino luminosities and mean energies. These are all
transients, though, which are induced by the switch from 1D to 2D and the subsequent growth of the
convective motions. They subside gradually in ⇠ 100ms. Then the convection enters a quasi-steady
phase sustained up to the end of the simulation at ⇠ 160ms by the negative radial gradient of Ye,
which remains thanks to the lasting neutrino emissions from the PNS surface. The PNS, on the other
hand, is settled to a new expanded configuration, emitting neutrinos at higher luminosities and mean
energies. The density, temperature and Ye as well as the neutrino luminosities and spectra change
much more slowly on the secular time scale thereafter. The sustained convection with the extension of
the convective zone inward is consistent with Keil et al. (1996) but is at odds with Mezzacappa et al.
(1998). The latter is due probably to their approximation in the neutrino transport as well as to the
di↵erence in the phase focused. The higher neutrino luminosities and mean energies in 2D than in 1D
were also observed by other earlier works done for the core-collapse supernova simulations (Dessart
et al., 2006).

Supposing that the self-sustained state above is representative of the PNS around this time in its
cooling, we investigated it further. Note that the di↵erence between the original matter profile obtained
in the 1D PNS cooling calculation, and the self-sustained state in our 2D simulation indicates clearly
that the multi-dimensional PNS calculation should be done from much earlier on, possibly from right
after a successful launch of the shock wave from the supernova core.

We analyzed angular variations in the matter distributions that are produced by the convective
motions. We found that the temperature and Ye showed larger deviations from spherical symmetry
than the density. In particular, Ye tends to be lower near the poles and higher around the equator.
This asymmetry in the Ye distribution in turn gives rise to anisotropic emissions of ⌫e and ⌫̄e. The
time-averaged convective pattern revealed that this Ye distribution is generated by the subduction of
low-Ye matter and the dredge-up of high-Ye matter by the convective motion. In our 2D simulation
with axisymmetry imposed, the former occurs predominantly in the polar region and is most likely to
be exaggerated. On the other hand, the downdraft of low-Ye matter and the updraft of high-Ye matter
were also observed in other’s simulations (Keil et al., 1996) that avoided the polar artifact. Hence we
think it is a rather generic feature and expect that a similar asymmetry will occur also in 3D.

As repeatedly mentioned, convection in 2D under axisymmetry is di↵erent from that in 3D qual-
itatively (Lentz et al., 2015) and the converging flows in the polar regions are most likely due to the
2D artifact. As argued above, however, the convective pattern with low-Ye matter sinking and high-Ye

matter rising will be rather generic and likely to occur also in 3D. In the rapidly rotating PNS, the
converging flows may be realized indeed.
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Chapter 6

Late-time Evolution of
Protoneutron Star II. E↵ect of
Fallback Accretion

This chapter focus on the fallback accretion (FBA) onto PNS and its e↵ect on the neutrino emission.
Fallback accretion is normally ignored in the late-time evolution of PNS. However, even after the
successful explosion, a certain amount of FBA matter is expected. In following paragraphs, FBA in
CCSNe is reviewed.

Even after the shock wave begins its runaway expansion, a certain amount of post-shock matter is
bound by the gravity of the PNS, and it eventually returns back to the PNS. Such FBA in CCSNe
has been studied in the literature from the early 1970s. The importance of FBA was first pointed
out by Colgate (1971). They suggested that FBA is necessary to explain the consistent amount of
nucleosynthetic yields. From the observational point of view, some previous studies suggested that
FBA has an influence on both electromagnetic- (Dexter & Kasen, 2013) and neutrino emission (Fryer,
2009) in the late phase. We also note that FBA potentially accounts for some peculiar energetic
(Moriya et al., 2018, 2019) and weak CCSN explosions (Moriya et al., 2010). If FBA leads to an
oversupply of mass onto the PNS, it may trigger a black hole formation (Zhang et al., 2008; Chan
et al., 2018). If the core is rapidly rotating, gamma-ray burst would occur following the collapsar
scenario (MacFadyen & Woosley, 1999; MacFadyen et al., 2001; Perna et al., 2014). FBA can also
a↵ect the PNS spin (Barrère et al., 2022; Ronchi et al., 2022; Coleman & Burrows, 2022) and its
spin-kick alignment indicated by some pulsar observations (Johnston et al., 2005, 2007; Ng & Romani,
2007; Janka et al., 2022).

FBA in CCSNe can be categorized into several phases (Chevalier, 1989). In the early post shock
revival phase, it would be chaotic due to the turbulent accretion flows originated from multi-D fluid
instabilities in the post-shock region. It should also be mentioned that asymmetric shock revival can
lead to large FBA from the angular region where the shock expansion is weaker (Nagakura & Johns,
2021a; Bollig et al., 2021). In the very later phase, which is referred to as the uniform expansion phase
& 103 s, the accretion rate simply scales as Ṁ / t

�5/3 (Chevalier, 1989). This scaling is verified by
various numerical studies (Zhang et al., 2008; Dexter & Kasen, 2013; Janka et al., 2022). Note that the
accretion rate on this free-expansion phase may be significantly enhanced by the arrival of the reverse
shock onto PNS. It has also been suggested that strong FBA can be formed by the deceleration of the
shock at the CO/He-core or He/H interfaces (Janka et al., 2022) (see also Fig. 2 of Zhang et al. (2008),
in which the enhancement of FBA is clearly visible).

Most previous studies have a priori assumed that FBA has no influence on the neutrino signal. One
thing we do notice here is, however, that large amounts of FBA have been observed rather commonly
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in recent multi-dimensional (multi-D) CCSN simulations (see, e.g., Burrows & Vartanyan, 2021; Bollig
et al., 2021; Nagakura & Johns, 2021a). More interestingly, they may last a very long time (� 10s)
(see, e.g., Fig.2 in Janka et al., 2022) due to the shock deceleration or reverse shock that occurs after
the shock wave passes the CO/He-core interface (Fryxell et al., 1991) and He/H interface (Chevalier,
1989). This suggests that the neutrino emission from FBA potentially overwhelms those radiated from
PNS.

The impact of FBA in the late time neutrino emission was investigated by the pioneering work of
Fryer (2009). This study showed that FBA has a large influence on the neutrino luminosity and their
average energy. It should be noted, however, that there are potential systematic uncertainties in their
models; for instances, the inner boundary of the computational domain in the simulations is located
much outside the neutrino sphere (which will be shown later and see also Table 2 in Fryer (2009)), and
the neutrino transport was handled with a gray flux-limited di↵usion approximation (Herant et al.,
1994). These simplifications prevented them from studying detailed features of neutrinos from FBA,
and they may discard some important properties inherent in FBA.

Although the FBA is a priori multi-D, the accretion energy converts to thermal energy in the
vicinity of PNS, and eventually spreads all over the PNS surface. This suggests that the asymmetry
of neutrino emission becomes milder than that of FBA, and numerical simulations also support this
assumption (Vartanyan et al., 2019). Whether large asymmetries of neutrino emission can be created
by non-radial FBA is an interesting question which we defer to future work. We also note that the
spherically symmetric conditions artificially suppress the PNS convection. One may wonder if this
may cause to underestimate the di↵usion component of the neutrino luminosity. According to recent
multi-D simulations, however, the PNS convection subsides by ⇠ 5s after bounce (Nagakura & Johns,
2021a), suggesting that it does not a↵ect FBA neutrinos in the late phase (t & 10s).

In this study, we pay attention to the phase of & 10 s after core bounce. In this phase, the PNS
temperature at the surface becomes less than ⇠ 3 MeV (Roberts, 2012; Nakazato et al., 2013), and
the neutrino emission gradually subsides in the Kelvin-Helmholtz timescale. This suggests that the
neutrino emission can be dominated by FBA, inferred from the previous works (Fryer, 2009; Nagakura
et al., 2020; Nagakura & Johns, 2021a; Bollig et al., 2021).

It should also be noted that we develop a general discussion of FBA neutrino emission without
specifying any late phases in this study, since our approach can be applied to di↵erent situations.
Nevertheless, the increase of FBA by a reverse shock created at the CO/He-core or He/H interfaces is
an intriguing phase, since a large FBA may happen at a very late phase of CCSNe (& 103 s) (Zhang
et al., 2008).

6.1 Setup

6.1.1 Numerical Setup

We perform GR Boltzmann radiation-hydrodynamics simulation in 1D, employing the code de-
scribed in chapter 3. We employ 512 radial grid points covering the range r 2 [0 : 100] km. We
note that the resolution is high around the PNS surface (where the minimum mesh width is ⇠ 30m).
Such a high spatial resolution is mandatory in studying FBA, since the scale heights of matter- and
neutrino-radiation field around the PNS are very small. The mesh configurations for ✓⌫ and the energy
are completely same as the previous 2D simulations in chapters 4 and 5. Since the spherical symmetry
is assumed, the dependence on �⌫ can be dropped unlike previous 2D simulations.

We employ the Furusawa-Togashi EOS (Furusawa et al., 2017) with some extension. It should
be mentioned that, in the case with low mass accretion rate, the thermodynamical quantities can
be outside of the range covered by the EOS table. To deal with this issue, we extended the EOS
table in a pragmatic way; it is smoothly connected to the gamma-law EOS as the pressure given as
P = (� � 1)⇢✏, where ⇢ and ✏ denote the density and the specific internal energy, respectively. The
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gamma law index � is obtained from the edge of the EOS table. We found that � is almost 4/3 for
various input parameters. We note, however, that our prescription is rather pragmatic, and it does
not have the ability to capture the realistic matter evolution; in particular for shock dynamics. For
this reason, we stop the calculation if the shock wave reaches the position where thermodynamical
quantities are out of the range of the Furusawa-Togashi EOS. On the other hand, these prescriptions
do not compromise the present result, since neutrino emission occurs in high density regions, which
are always covered by the Furusawa-Togashi EOS.

6.1.2 PNS Model and the Fallback Matter

The accurate determination of the neutrino emission from FBA requires resolving the PNS surface
where the accretion energy is converted to thermal energy. We also note that the neutrino opacity
hinges on the energy, and the low energy neutrinos can escape from the very high density region
(> 1014g/cm3), exhibiting that the PNS structure needs to be determined to quantify the neutrino
energy spectrum. Hence, we construct the PNS structure by assuming steady state, before running
FBA simulations.

We assume an isotropic temperature of T = 2MeV and the electron fraction of Ye = 0.05 inside the
PNS as a reference model, which represents the matter state of the PNS in the cooling phase. For the
sake of completeness, the temperature dependence in the neutrino signal is also checked in this study
(section 6.2.5). Given T and Ye, we prepare two di↵erent PNS structures by solving TOV equations, by
varying the central baryon mass density. The first one has the central density of ⇢c = 8.5⇥1014 g·cm�3,
leading to the total mass MPNS = 1.41M�. For the second one, we set ⇢c = 1.2⇥ 1015 g · cm�3, that
leads to MPNS = 1.98M�. The spacetime metric obtained from solving the TOV equations is used for
the radiation-hydrodynamic simulations, and kept fixed in time.

Below, we describe our FBA model. One thing to note here is that the self-consistent treatment of
FBA requires successful CCSN explosion models. It should be noted, however, that detailed features
of FBA such as the mass accretion rate, the thermodynamical states, and their time evolution strongly
depend on the progenitor, the timing of the shock revival, and the ejecta morphology. In this study, we
are not interested in such details of the neutrino signal, but rather in generic features that can be applied
to any types of FBA. To this end, we treat FBA in a simple manner capturing the essential features.
In our models, we assume a mass inflow from the outer boundary of the computational domain. The
accretion rate is one of the control parameters, and we study four cases: Ṁ = 10�2

, 5⇥10�3
, 2⇥10�3

,

and 10�3
M� · s�1.

The choice of mass accretion rate is motivated by previous studies of FBA by (Chan et al., 2018;
Moriya et al., 2019; Janka et al., 2022);. According to their results, strong FBA (10�3

M�/s) can occur
in the late phase (> 10s) for some progenitors. In this study, we increase the mass accretion rate to see
its dependence on the neutrino luminosity. We note that it is necessary to check this dependence by
decreasing the mass accretion rate for the sake of completeness, but these simulations are currently not
available due to some technical problems associated to EOS tables. Addressing this issue is postponed
to a future work. The matter temperature is set as T = 0.5MeV. We note that this setup (cold FBA)
leads to a conservative estimation of the neutrino signal by FBA. Ye is set to be 0.5. We run each
model until the system reaches a quasi-steady state.

For computational reasons, the temperature inside 8 km is fixed in time. It is well inside the PNS;
in fact the matter density is ⇢ > 1.5⇥1014g/cm3 and its temperature is also low (⇠ 2MeV), indicating
that the boundary condition does not a↵ect the neutrino emission. This is to avoid over-cooling of
PNS. If the evolution is fully solved, the PNS temperature will get persistently lowered due to the
neutrino emission. This is undesirable because the EOS table employed in this study has a lower limit.
Furthermore, low temperature makes the system numerically di�cult to treat.
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6.2 Results

6.2.1 Matter distributions

We first focus on the matter distributions of FBA after the system has settled to a quasi-steady
state. The time it took to reach the steady state varies for di↵erent models, in the range of 50 . t .
120ms. It took longer for lower accretion rate models.
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Figure 6.1: Radial profiles of the density for the 1.98M� model (top) and the 1.41M� (bottom). The
di↵erent colors indicate di↵erent accretion rates.

Figures 6.1, 6.2, and 6.3 show the density, temperature, and four-velocity of the fluid. In these
figures, color distinguishes models with di↵erent mass accretion rates Ṁ and PNS masses MPNS: four
models (Ṁ = 1⇥ 10�2 to 1⇥ 10�3

M� · s�1) for MPNS = 1.98M�, and three models (Ṁ = 1⇥ 10�2

to 2⇥ 10�3
M� · s�1) for MPNS = 1.41M�.

As can be seen in these figures, an accretion shock wave is formed due to FBA. We note that
similar phenomena are observed in recent multi-D CCSN simulations (see, e.g., Fig. 9 in Nagakura &
Johns (2021a)). According to these CCSN models, FBA tends to be cold or lower entropy (otherwise
the thermal pressure hampers accretion), and the downflow onto the PNS becomes supersonic. At the
surface of the PNS, the fluid needs to be subsonic, implying that a shock wave is inevitably formed.
As displayed in these figures, the shock position is larger for the lower accretion rate and the lower
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Figure 6.2: Same as figure 6.1, but for the temperature.
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Figure 6.3: Same as figure 6.1, but for the four-velocity.
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PNS mass. This is attributed to the lower ram pressure in the preshock region.
Another notable feature displayed in Fig. 6.2 is that sharp peak profiles in the temperature dis-

tribution emerge in the vicinity of the PNS. To see the profile clearly, we magnify the corresponding
region (10km  r  13km), which is displayed in the same panel. The sharp increase of temperature
is due to the hard wall of the PNS surface, in which the matter density changes by four orders of
magnitude over a width . 1 km. We stress that this is not the artifact caused by the inner boundary
at 8 km. The temperature distribution at 8 < r . 11 km remains rather flat distribution (see the
magnified figures), and it suggests that flat temperature distribution is a reasonable assumption. In
this region, the kinetic energy of FBA can be e�ciently converted into thermal energy, and therefore
the temperature of FBA also increases rapidly with decreasing radius. We also note that the thermal
energy of matter is proportional to Ṁv↵

2, where v↵ denotes the free-fall velocity where the kinetic
energy is dissipated. Since the dissipation region is less sensitive to the PNS mass, v↵ is proportional
to M

0.5

PNS
. This is the rationale behind the higher peak temperature for the higher mass accretion rate

and the higher PNS mass (see Fig. 6.2).
It is worth mentioning that a smaller PNS radius means that a larger gravitational energy is con-

verted into thermal energy. Since our focus is the late phase, the PNS radius is thought to have shrunk
to a small radius due to cooling (in our setting, ⇠ 11 km). This situation is actually advantageous for
creating a high temperature peak and leads to a larger amount of neutrino emission. If di↵erent EOS
with smaller NS radius is employed, the peak temperature would be higher.

Contrary to the trend which we have discussed so far, the temperature decreases rapidly with
decreasing radius at . 11.5km and . 12km for MPNS = 1.98M� and 1.41M�, respectively (see
the magnified figure of Fig. 6.2). This exhibits that neutrino cooling gives feedback on the matter
distribution. On the other hand, the temperature profile is very complicated in the transition layer
between the cold PNS envelope and the inner edge of FBA. As we shall show below, weak processes are
responsible for the complex radial profile in the temperature distribution. It is also interesting to note
that the matter profile in the region 10km . r . 11km does not depend on the mass accretion rate.
Although we postpone the detailed investigation to future work, this may be due to a self-regulation
mechanism around the PNS surface. Since the matter pressure needs to be connected smoothly across
the layer, the fluid element at the PNS surface undergoes shrinking. This implies that the gravitational
energy is converted into thermal energy, which also accounts for the increase of neutrino luminosity,
in particular for heavy-leptonic neutrinos (⌫x).
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6.2.2 Neutrino distributions

Before going into details, let us first provide the information on species-dependent neutrino spheres.
As a reference, we show them in the case of Ṁ = 10�3

M� · s�1 and the PNS mass 1.98M�. The
neutrino spheres for the energy of 23.4MeV, roughly corresponding to the average energy of neutrinos,
are 11.2 km 10.7 km, 3.66 km for ⌫e, ⌫̄e, and ⌫x, respectively. The density at each neutrino sphere is
2.55⇥ 1012 g · cm�3, 1.88⇥ 1014 g · cm�3 and 1.11⇥ 1015 g · cm�3, respectively. This exhibits that the
neutrino sphere is located at higher matter density than in the early post-bounce phase (a few hundreds
of milliseconds after core bounce); for instance, the neutrino sphere of ⌫e is located at ⇠ 1011g/cm3

in the early post-bounce phase. This di↵erence can be understood as follows. The density gradient
becomes so steep in the late phase, indicating that the scale height in this region becomes small. Since
the neutrino optical depth is determined not only by the local reaction rate but also by the scale height,
the optical depth tends to be smaller in the late phase for the region with the same matter density. It
is also worthy to note that these neutrino spheres are located much deeper than the inner boundary
adopted in the simulations of Fryer (2009).

To delve into the neutrino feedback on matter, we portray the radial profiles of the energy flux
(F⌫) of each species of neutrinos in the case of the PNS mass 1.98M� and the accretion rate Ṁ =
10�3

M� · s�1 (see Fig 6.4.). In the figure, neutrino fluxes are multiplied by a factor r
2. We note

that F⌫r
2 is approximately constant in space, if there are no neutrino emission and absorption1. This

indicates that the information on neutrino cooling (or heating) is imprinted in the radial profile of
F⌫r

2. As shown in the top panel of Fig 6.4, neutrino fluxes for ⌫e and ⌫̄e increase with radius in the
region 11km  r  11.5km, indicating that these neutrinos are substantially produced there. The
fact that ⌫x is approximately constant in space indicates that ⌫x is not produced in this region. It
is also worthy to note that ⌫e absorption dominates over emission in the narrow region at ⇠ 10.9km
(see blue line). A similar profile is also observed for ⌫̄e at smaller radius (see the red line). It is
also informative to see the temperature profile as a function of the matter density, which is displayed
in the bottom panel of Fig 6.4. For ⌫e (⌫̄e), strong neutrino production occurs at very high density
5 ⇥ 1013g/cm3 . ⇢ . 2 ⇥ 1014g/cm3 (1014g/cm3 . ⇢ . 2 ⇥ 1014g/cm3). When these neutrinos
propagate outwards in the lower density environment, neutrino absorption becomes dominant in the
region 1013g/cm3 . ⇢ . 5⇥1013g/cm3 (5⇥1013g/cm3 . ⇢ . 1014g/cm3), but neutrino emission again
dominates over absorption until ⇢ ⇠ 109g/cm3. These non-monotonic profiles of ⌫e and ⌫̄e fluxes are
clearly associated with the matter temperature profile, which shall be discussed later. Our result also
suggests that there is a substantial amount of di↵usion component for both ⌫e and ⌫̄e in their energy
fluxes, which are missing components in the simulations of Fryer (2009). We also find that ⌫x profile
is much simpler than others; ⌫x is mainly produced at 5⇥ 1013g/cm3 . ⇢ . 2⇥ 1014g/cm3 and then
they freely escape from the system. This suggests that ⌫x production mainly occurs in such a high
density region. It is, hence, mandatory to cover the high density region in numerical simulations to
quantify the neutrino signal from FBA.

To see what weak process accounts for the neutrino emission and absorption, we display the radial
profile of inverse mean free path of each weak process in Figs. 6.5 and 6.6, for the accretion rate of
Ṁ = 10�3

M� · s�1 and the PNS mass 1.98M� model. These figures show the inverse mean free path
as a function of the radius and the matter density, respectively. Except for the high density region (⇠
5⇥1013g/cm3 for ⌫e and ⇠ 2⇥1014g/cm3 for ⌫̄e), electron-capture on free proton and positron-capture
on free neutron dominate the ⌫e and ⌫̄e emission, respectively. We also find that nucleon–nucleon
bremsstrahlung becomes dominant in the high density regions, leading to a non-monotonic radial
profile of neutrino opacity. This is responsible for the non-monotonic profile for both neutrino fluxes
in ⌫e and ⌫̄. This leads to the complex radial profile of matter temperature. Indeed, the inverse mean
free path peaks at 11 . r . 12 km for ⌫e and 10 . r . 11 km for ⌫̄e, and these spatial positions are

1
Strictly speaking, F⌫r2 is not constant in curved spacetime. However, the deviation due to general relativistic (GR)

e↵ects is minor and not important for the argument; hence we multiply by a factor r2 without any GR corrections just

for simplicity.
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Figure 6.4: Energy flux times the square of radius for the PNS mass 1.98M� and the accretion rate
Ṁ = 10�3

M� · s�1. The horizontal axis are the radius and density, for top and bottom panels,
respectively.
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Figure 6.5: Radial profile of the inverse mean free path for ⌫e (top), ⌫̄e (middle) and ⌫x (bottom)
with the energy of 23.4MeV, for the model with the accretion rate Ṁ = 10�3

M� · s�1 and the PNS
mass 1.98M�. The abbreviation of the neutrino reactions are as follows: the electron-capture on nu-
cleon (ecp), the positron capture (aecp), the electron–positron process (pap) and the nucleon–nucleon
bremsstrahlung (nbr).
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Figure 6.6: Same as figure 6.5, but the horizontal axis is the density.
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Figure 6.7: Energy luminosity versus the accretion rate. Di↵erent colors show the di↵erent flavors,
and the solid lines correspond to the 1.98M� model and the broken lines for the 1.41M� model.

roughly the same as those at the temperature dips. This exhibits that temperature dips are caused
by the neutrino cooling by ⌫e and ⌫̄e. For ⌫x, on the other hand, the neutrino opacity is dominated
by nucleon–nucleon bremsstrahlung at the emission region (5 ⇥ 1013g/cm3 . ⇢ . 2 ⇥ 1014g/cm3).
Although the electron-positron pair production becomes dominant at ⇢ . 1012g/cm3, the emissivity
is very small. In fact, the radial profile of F⌫r

2 for ⌫x is almost constant in space over the low density
region (see Fig 6.4).

6.2.3 Neutrino Luminosity and Mean Energy

Figure 6.7 summarizes the energy luminosity for all simulated models. As shown in the figure,
larger accretion rates and larger PNS masses leads to higher luminosities. The energy luminosity
for ⌫e and ⌫̄e are of the order of o(1051) erg · s�1, and ⌫x luminosities are below 1051 erg · s�1. One
thing we do notice here is that neutrino luminosities obtained in our simulations are systematically
higher than those reported in Fryer (2009). This is again due to the fact that the simulations of Fryer
(2009) did not cover the high density region, which results in underestimating neutrino luminosities.
Our result suggests that it is mandatory to include the high density region in theoretical models to
quantify the neutrino signal from FBA and to extract physical information from the neutrino signal in
real observation (see Sec. 6.2.4 for more details). Luminosities for ⌫x hardly depend on the accretion
rates. This is because ⌫x are mainly emitted from the inner PNS, as we saw in the radial profiles of
the flux. The luminosities of ⌫e and ⌫̄e are also not proportional to the accretion rates and shifted to
higher values, due to the same reason.

In Fig. 6.8, we provide mean energies of the emitted neutrinos. The mean energy of ⌫e is ✏ ⇠ 13MeV
for the highest accretion case (Ṁ = 10�2

M� ·s�1), and it is still ✏ & 10MeV for other cases with lower
mass accretion rate. The mean energy of ⌫̄e is always higher than that of ⌫e, and reaches a maximum
of ✏ ⇠ 17MeV. We also find that, similar to the luminosity, larger accretion rates and PNS masses
lead to higher neutrino mean energies. This is due to the higher matter temperature in the neutrino
emission region (see Fig. 6.2).

It is worthy to note that ⌫x has the lowest mean energy among three flavors, which is ✏ ⇠ 10MeV.
This tendency is clearly di↵erent from the canonical hierarchy of neutrino mean energy in CCSNe. In
general, the mean energy of ⌫x is the highest among all flavors of neutrinos in early post-bounce phase,
and then the mean energy of all flavors becomes almost identical in the late phase. This exhibits
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Figure 6.8: Same as 6.7, but for the mean energy of emitted neutrinos.

that FBA leads to a qualitatively di↵erent neutrino emission from PNS cooling, and that the neutrino
detection rate should depend on the neutrino oscillation model. The low luminosity and low mean
energy of ⌫x are attributed to the temperature distribution in the ⌫x emission region. As shown in
Fig. 6.4, most of the ⌫x are produced in the region of 5⇥ 1013g/cm3 . ⇢ . 2⇥ 1014g/cm3. This region
corresponds to the transition layer between the PNS surface and the inner edge of FBA. Although
the matter temperature sharply increases with radius, it is still very low (. 4MeV). As a result, both
the luminosity and the mean energy of ⌫x become much lower than those associated to ⌫e and ⌫̄e.
We note that the radius of the emission region for ⌫x is smaller than for other flavors. This causes a
lower neutrino luminosity, although this e↵ect is minor since the di↵erence of emission region among
all flavors of neutrinos is only . 1km.

We remind the readers that our current focus is the late phase (t & 10 s), where the typical mean
energy of the di↵usive neutrino component from PNS is ✏ . 10MeV (Suwa et al., 2019). This is much
smaller than neutrinos from FBA. As discussed in Sec. 6.2.4, higher luminosities and mean energies
of neutrinos are more favorable for neutrino detection. Our results support the claim in Fryer (2009)
that FBA can substantially increase the neutrino event rate, which is quantified in the next section.

6.2.4 Detectability of FBA Neutrinos

We evaluate the detectability of the FBA neutrinos by two representative terrestrial neutrino detec-
tors, Super-Kamiokande (Hereafter Super-K) and Deep Underground Neutrino Experiment (DUNE).
In this estimation, we employ the neutrino cross section data taken from the SNOwGLoBES (Schol-
berg et al., 2021). We ignore any smearing e↵ects caused by the detector response and various noises
just for simplicity.

Super-K is a water-Cherenkov detector using pure water (Fukuda et al., 2003) with gadolinium
compound loaded recently (Abe et al., 2022). The main detection channel of Super-K is the inverse-
beta interaction

⌫̄e + p! e
+ + n. (6.1)

We assume the fiducial volume of 32.5 kton for the estimation of the event rate. Its update version,
Hyper-Kamiokande is also under construction (Hyper-Kamiokande Proto-Collaboration et al., 2018).
Its fiducial volume will be 220 kton, and the detection rate can be easily scaled from the result of
Super-K. We assume pure water for the evaluation of the event rates. It should be mentioned that
the gadolinium-loading in SK plays an important role to decouple the FBA neutrino signal from the
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background (Li et al., 2022; Simpson et al., 2019). Unlike the strong neutrino burst in the early post-
bounce phase, the luminosity is lower and the timescale is longer for FBA neutrinos, indicating that
the reduction of the background is very important to identify the signal.

DUNE is a future-planned neutrino detector. It will use liquid argon as the neutrino detector
medium. The main detection channel of DUNE is the neutrino-argon charged-current interaction

⌫e +
40Ar! e

� + 40K⇤
. (6.2)

We assume a full volume of 40 kton for the estimation of the event rate. For the estimation of the
neutrino flux arriving on the earth, we take into account the neutrino oscillation e↵ect in the same
way as Dighe & Smirnov (2000); Nagakura & Johns (2021a). Neutrino flavors are assumed to convert
adiabatically by the Mikheyev–Smirnov–Wolfenstein (MSW) e↵ect. Although it is a simple oscillation
model, this provides an essential feature of how detectability of FBA neutrinos depends on flavor
conversions.

Following Nagakura & Johns (2021a), the neutrino fluxes arriving on earth Fe, F̄e, Fx, F̄x (cor-
responds to ⌫e, ⌫̄e, ⌫x, ⌫̄x, respectively) are calculated from the values of the fluxes without neutrino
oscillation (F 0

e
, F̄ 0

e
, F 0

x
, F̄ 0

x
) as:

Fe = pF
0

e
+ (1� p)F 0

x
, (6.3)

F̄e = p̄F̄
0

e
+ (1� p̄)F̄ 0

x
, (6.4)

Fx =
1

2
(1� p)F 0

e
+

1

2
(1 + p)F 0

x
, (6.5)

F̄x =
1

2
(1� p̄)F̄ 0

e
+

1

2
(1 + p̄)F̄ 0

x
, (6.6)

(6.7)

where p, p̄ are survival probabilities. In the normal-mass hierarchy case, they are defined as

p = sin2✓13, (6.8)

p̄ = cos2✓12cos
2
✓13. (6.9)

On the other hand, in the inverted-mass hierarchy case, they are defined as

p = sin2✓12cos
2
✓13, (6.10)

p̄ = sin2✓13. (6.11)

The values of the neutrino mixing angles ✓12, ✓13 are assumed to be sin2✓12 = 2.97 ⇥ 10�1 and
sin2✓13 = 2.15⇥ 10�2, adopted from Capozzi et al. (2017). We assume F

0

x
= F̄

0

x
in this study.

Figure 6.9 shows the neutrino event rates per unit time, in which we integrate over energy, while
the energy-dependent feature is discussed later. The distance is assumed to be 10 kpc. The event
rate is inversely proportional to the square of distance, so the reader can easily estimate the event
rate for desired distance. As shown in Fig. 6.9, the event rate clearly depends on the mass hierarchy,
where the di↵erence is more than double. In the case with the normal(inverted)-mass hierarchy, p
(p̄) becomes small, indicating that neutrinos (anti-neutrinos) undergo large flavor conversions. As
shown in Sec. 6.2.3, both the energy luminosities and the average energies of ⌫e and ⌫̄e are higher
than those of ⌫x at the source, indicating that the large flavor conversion results in reducing the ⌫e
and ⌫̄e number flux. As a result, the number of event rate at Super-K and DUNE becomes lower in
the case of inverted-mass hierarchy and normal one, respectively. Hence, simultaneous observation of
FBA neutrinos with Super-K and DUNE will provide a strong constraint on neutrino mass hierarchy.

The estimated event rate is found to be o(10) s�1 for the accretion rate of Ṁ ⇠ 10�3
M� ·s�1. This

result also suggests that if we detect a large number of neutrinos in the very late phase, the detection
will be an evidence for the occurrence of FBA neutrinos. It is also worthy to note that similar accretion

68



6.2. RESULTS

20

40

60

80

100

120

140

160

180

200

0 0.002 0.004 0.006 0.008 0.01

Super-K

thermal (3MeV), 1.41M�

thermal (3MeV), 1.98M�

ev
en
t
ra
te

(s
�
1
)

accretion rate (M� s�1)

normal, 1.98M�
inverted, 1.98M�
normal, 1.41M�
inverted, 1.41M�

0

20

40

60

80

100

120

140

0 0.002 0.004 0.006 0.008 0.01

DUNE

ev
en
t
ra
te

(s
�
1
)

accretion rate (M� s�1)

Figure 6.9: The event rate of neutrinos for the Super-K (top) and DUNE (bottom), assuming the
distance of 10 kpc. The horizontal lines denote the event rates assuming thermal emission.
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rates were found in previous studies Chan et al. (2018); Moriya et al. (2019); Janka et al. (2022) in
the late phase.

We also find that the dependence of the event rate on the mass accretion rate hinges on the neutrino
oscillation model. In the case of normal (inverted) mass hierarchy, the detection rate at Super-K
(DUNE) becomes remarkably higher for higher mass accretion rates, whereas it is less sensitive to the
accretion rate in the case of inverted (normal) one. This trend can also be understood through the
species-dependent feature of neutrino emission at the CCSN source. As shown in Figs. 6.7 and 6.8,
both the luminosity and the average energy of ⌫x weakly depend on the mass accretion rate, and
therefore the large flavor conversion makes the detection count at each detector less sensitive to the
mass accretion rate. Nevertheless, the number of event count at each detector is remarkably higher
than that emitted from the PNS. As a reference, we show the case for the neutrino signal without
FBA but only with isothermal PNS of T = 3MeV in Fig. 6.9 (see below for the details). This figure
illustrates that the detection rate of neutrinos from FBA is remarkably higher than in the case with
thermal neutrinos from the PNS. It is also worthy to note that flavor dependent features would be
resolved by using other reaction channels or joint analysis with other detectors (see, e.g. Beacom et al.,
2002; Dasgupta & Beacom, 2011; Nagakura & Johns, 2021b), that would provide a key information to
distinguish the neutrinos powered by FBA from those radiated only from the inner region of the PNS.
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Ṁ = 1⇥ 10�2 (M�/s)
5⇥ 10�3 (M�/s)
2⇥ 10�3 (M�/s)
1⇥ 10�3 (M�/s)
thermal, 3 MeV
thermal, 2 MeV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70

M = 1.98M�, Super-K
inverted hierarchy

ev
en
t
ra
te

p
er

1
M
eV

en
er
gy

b
in

(s
�
1
)

neutrino energy (MeV)

Figure 6.10: The event rate per 1MeV energy bin for MPNS = 1.98M� model, assuming the distance
of 10 kpc. The top and bottom panel corresponds to normal and inverted mass hierarchy, respectively.
The left panels are for Super-K and right panels are for DUNE. The gray plots corresponds to the
numerical results, and the purple and blue plots corresponds to thermal values.

In order to see the energy spectrum of the detection, event rate per 1MeV energy bin is shown
in Figs. 6.10 and 6.11. As references, event rates for the the purely thermal emission (Fermi-Dirac
distribution with zero chemical potential) with a PNS temperature of 2 and 3MeV are shown. The
emission radius is assumed to be 11 km, and the gravitational redshift is taken into account for
this estimation. For all simulated models, the event rates are orders of magnitude larger than the
background event rates (see the latest experimental data of Super-K in Harada et al. (2023b). These
figures illustrate that a large neutrino emission can be expected in the case of higher mass accretion
rate. Another notable feature found in these figures is the high energy tail in each spectrum. Even
in the case with the low mass accretion rate (Ṁ = 10�3

M� · s�1), neutrinos with & 30MeV may be
observed. It should be noted that these high energy neutrinos cannot be detected in the late phase
(t� 10s) by thermal emission of PNS, unless the source is extremely close (Nakazato et al., 2022). If
we detect them in real observations in the late phase, these neutrinos would be generated by FBA. We
note that Figs. 6.10 and 6.11 show the energy event rate per second, indicating that the actual event
count may be a factor of > 10 larger than this value (since we are currently considering in the phase
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Figure 6.11: Same as figure 6.10, but for PNS mass 1.41M� model.

of > 10s after core bounce).
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6.2.5 PNS Temperature Dependence

It is interesting to see how the neutrino signal from FBA depends on the PNS temperature. The
increase of the PNS temperature would lead to higher neutrino emission inside the PNS, which po-
tentially alters the neutrino signal. In this test, we employ the same numerical setup as that used in
our model with the PNS mass of 1.98M� and the accretion rate of Ṁ = 10�3

M� · s�1 except for the
PNS temperature. We consider two cases: 3MeV and 4MeV. We note that T = 4MeV is too hot for
PNS in the late phase which we consider in this study (> 10s after core bounce), but the result is still
informative.

In Fig. 6.12, we show the energy spectrum of the neutrino event rate at Super-K and DUNE in
the case of normal- and inverted mass hierarchy, respectively. We note that each oscillation model
corresponds to the case having the lower number of event rate than the other mass hierarchy. As shown
in these figures, even in these pessimistic cases, the PNS temperature does not a↵ect the neutrino event
rate. This result supports the claim that neutrinos from FBA overwhelm the thermal neutrinos from
the PNS, unless they are extremely hot (T � 4MeV).
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Figure 6.12: The event rate per 1MeV energy bin for di↵erent PNS temperatures; 2MeV (blue), 3MeV
(purple) and 4MeV (red), assuming the distance of 10 kpc. Top panel is for Super-K and bottom panel
for DUNE. Mass hierarchy is inverted (top) and normal (bottom). PNS mass is MPNS = 1.98M� and
the accretion rate is Ṁ = 10�3

M� · s�1.
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6.3 Summary of Chapter 6

In this chapter we investigated neutrino emission from fallback mass accretion (FBA) onto PNS
in the late phase of CCSN (> 10s) by using general relativistic neutrino radiation-hydrodynamic
simulations with full Boltzmann neutrino transport. In our numerical simulations, we covered the very
high density region (> 1014g/cm3) where we set a quasi-steady PNS structure as initial conditions.
We changed the mass accretion rate in a parametric manner, and ran each simulation until the system
settled to a quasi-steady state.

We found that a higher accretion rate and a higher PNS mass leads to a higher temperature in
the transition layer from the PNS surface to the inner edge of FBA, where most of the neutrinos
are radiated. As a result, both luminosities and mean energies of neutrinos tend to be higher with
increasing mass accretion rates. On the other hand, the sensitivity of neutrino emission to the mass
accretion rate hinge on neutrino species. Although ⌫e and ⌫̄e emission strongly vary with the mass
accretion rate, ⌫x is less sensitive. This is due to the fact that ⌫x is produced in the highest density
region (⇢ & 5⇥ 1013g/cm3), indicating that the impact of FBA on the temperature distribution tends
to be weak. Nevertheless, both the luminosity and the mean energy of ⌫x are remarkably higher than
those estimated by standard PNS cooling models.

The present study supports the claim by Fryer (2009) that FBA can substantially change the
neutrino emission in the late phase of CCSN. On the other hand, we also find that most of the neutrinos
by FBA are produced in the high density region which the simulations of Fryer (2009) did not cover.
As a result, the neutrino luminosities in his estimation are underestimated by a factor of & 5, and
this systematic error has a non-negligible e↵ect to extract physical information from neutrino signal
in real observations. We also find that the dominant weak processes for neutrino emission depends
on species: electron-capture by free proton, positron-capture by free neutron, and nucleon–nucleon
bremsstrahlung for ⌫e, ⌫̄e, and ⌫x, respectively. Although the electron-positron pair can be a dominant
emission process for ⌫x in the low density region, the emissivity is too low to change the neutrino flux.

Based on the numerical results, we estimate the expected event rate for Super-K and DUNE with
the adiabatic MSW oscillation model. One thing we need to stress is that neutrino emission from
FBA has a rich flavor-dependent structure, indicating that the neutrino observation should depend
on the neutrino oscillation model. Indeed, the di↵erence of event rate between normal- and inverted
mass hierarchy at each detector becomes more than double. In short, the detection rate tends to be
smaller if the flavor conversion is strong. This is attributed to the fact that ⌫x luminosity and mean
energy are systematically lower than those of other species. Nevertheless, the event rate is the order
of o(100) s�1 for the optical case with the highest accretion rate in both detectors, and still o(10) s�1

for the least optimal setting, which is much larger than the canonical PNS cooling model. We also
provide energy-dependent features in the neutrino signal. We find that the peak energy of neutrino
detection is remarkably higher than the thermal emission of PNS with  3MeV. Our result suggests
that high energy neutrinos (& 30MeV) may be observed in the late phase, which will be evidence that
neutrinos are emitted by FBA.

As a final remark, we point out a couple of limitations in our study. First, we assumed spherical
symmetry. In the multi-D case, the accretion shock wave may be unstable to non-radial perturbations
(Blondin et al., 2003; Yamasaki & Yamada, 2005, 2006, 2007; Foglizzo et al., 2007), and FBA is usually
accompanied by turbulence (Vartanyan et al., 2022), which potentially leads to temporal variations
in the neutrino signal. On the other hand, it would be hard to resolve the temporal variation by the
current- and even future-planned neutrino detectors, unless the CCSN source is very close (see, e.g.,
Nagakura et al., 2021). This is because the neutrino luminosity is very low in the late phase, and
the temporal variation would be smeared out by noise. It should be mentioned, however, that the
thermodynamical properties in the post-shock flow may be influenced by the shock instability, which
may change the neutrino signal. We postpone this detailed study to future work. Second, the number
of models simulated in this study is limited due to the computational cost. It should be stressed that
high spatial resolution is required to resolve both matter and neutrino distributions around the surface
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of the PNS, implying that the time step is severely limited by the Courant condition. To prepare for
future observations, however, we need a systematic study by covering wider ranges of PNS masses
and mass accretion rates than those studied in this study . The EOS dependence is also worthy of
investigation.

Numerical simulations are not suitable to carry out such a systematic study, and therefore we are
planning to take a semi-analytic approach to address this issue. If we cover full parameter space,
we may be able to infer the EOS parameters or accretion rates from the future neutrino detection.
An analysis pipeline based on a Bayesian approach has been already developed for thermal neutrino
detection (Harada et al., 2023a). The results with similar approach will be reported elsewhere.
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Chapter 7

Collective Neutrino Oscillation
inside CCSN

In the theoretical modelling of CCSNe, neutrino oscillation is usually neglected because it was
expected that the dense matter is likely to suppress it (details are explained later). However, inside
CCSN core, neutrino number density is typically larger than the electron number density, which makes
the neutrino oscillation due to neutrino self-interaction to take place without hindered by the matter
potential. This is called ”collective neutrino oscillation”, and recently getting great attention. In this
chapter, the occurrence of collective neutrino oscillation inside CCSN is discussed. Section 7.1 reviews
the basics of the neutrino oscillation. Section 7.2 explains the method of the linear stability analysis
(LSA) used for this study. Section 7.3 shows the results of the LSA performed for 2D CCSN simulation.

7.1 Introduction to Neutrino Oscillation

Before going into the collective neutrino oscillation, let us first review the basics of neutrino oscil-
lation in this section. Neutrino oscillation occurs due to the fact that the neutrino mass eigenstates
and the flavor eigenstates are di↵erent. Derivations presented below follows Sasaki (2019); Morinaga
(2021).

7.1.1 Vacuum Neutrino Oscillation

General Expression

We start with the vacuum neutrino oscillation. Since it is the simplest, it is instructive to understand
the basics of the neutrino oscillation. The starting point is the Schrödinger equation

i
d

dt
| (t)i = Ĥ | (t)i , (7.1)

where | (t)i, Ĥ denote the quantum state at time t and the Hamiltonian, respectively. In order to
discuss neutrino oscillation, it is useful to introduce Liuville-von Neumann equation with respect to
the density operator ⇢̂(t) ⌘ | (t)i h (t)|;

i
d

dt
⇢̂(t) =

h
Ĥ, ⇢̂(t)

i
, (7.2)

The vacuum Hamiltonian for free neutrino can be written as

Ĥ0 =

Z
d
3
p

(2⇡)3

q
p2 +m

2

i
â
†
i
(p)âi(p), (7.3)
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where â
†
i
(p) and âi(p) are the creation and annihilation operators. The subscript i denote the mass

eigenstate. They satisfies the anti-commutation relationship

n
âi(q), â

†
i
(p)

o
= (2⇡)3�3(p� q)�ij . (7.4)

Since the neutrinos can be considered as the ultrarelativistic particles, the square-root part inside the
Hamiltonian can be decomposed, leading to following representation;

Ĥ0 ⇠
Z

d
3
p

(2⇡)3
pâ

†
i
(p)âi(p) +

Z
d
3
p

(2⇡)3
m

2

i

2p
â
†
i
(p)âi(p). (7.5)

The first term does not have e↵ect on the neutrino oscillation, and dropped in the following discussions.
The operators for the flavor eigenstates â↵(p), â†↵(p) are introduced, where the relationship with

the mass eigenstates is given by following equations;

âi(p) = U
⇤
↵i
â↵(p), (7.6)

â
†
i
(p) = U↵iâ

†
↵
(p). (7.7)

The vacuum Hamiltonian can be written with respect to the

Ĥ0 = ⌦̂ ⌘
Z

d
3
p

(2⇡)3
â↵(p)⌦↵� â

†
�
(p), (7.8)

where

⌦↵� ⌘ U↵i

m
2

i

2p
U

⇤
�i
. (7.9)

Note that if the same indices appear in the same term, the sum is taken. For the discussion of
the neutrino oscillation, one-body neutrino density matrix ⇢↵�(t, p) is introduced, which is defined as
follows;

hâ†
�
(q)â↵(p)i = tr

h
â
†
�
(q)â↵(p)⇢̂(t)

i
= (2⇡)3�3(p� q)⇢↵�(t, p) (7.10)

Note that the diagonal component of ⇢↵� can be considered to be related to the neutrino number
density n⌫↵ as

n⌫↵(t) =

Z
d
3
p

(2⇡)3
⇢↵↵(t, p) (7.11)

By using the Liouville-von Neumann equation, the time evolution of the one-body density matrix can
be given as follows

i
d

dt
hâ†

�
(q)â↵(p)i = ⌦↵k(p)hâ†�(q)âk(p)i � hâ

†
k
(q)â↵(p)i⌦k�(p). (7.12)

Hence

i
d

dt
⇢↵�(t, p) = [⌦(p), ⇢(t, p)]

↵�
. (7.13)

Two-flavor Example

As mentioned earlier, two-flavor framework is used; µ-type and ⌧ -type neutrinos are treated as ⌫x.
By explicitly writing down the conversion matrix by introducing the mixing angle ✓12, the mass and
flavor eigenstates are related as

✓
⌫e

⌫x

◆✓
cos✓12 sin✓12
�sin✓12 cos✓12

◆✓
⌫1

⌫2

◆
(7.14)
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By using above relationship, the vacuum Hamiltonian can be explicitly written down as

⌦ =
m

2

1
+m

2

2

4E

✓
1 0
0 1

◆
+

�m
2

4E

✓
�cos2✓12 sin2✓12
sin2✓12 cos2✓12

◆
, (7.15)

where �m
2 ⌘ m

2

2
�m

2

1
. The second term has o↵-diagonal components, and it leads to the neutrino

oscillation. From the Liuville-con Neumann equation, the time dependence of the density matrix is
given as

⇢(t, E) = e
�i⌦(E)t

⇢(0, E)ei⌦(E)t
. (7.16)

As a result, the neutrino density matrix ”oscillate”, because it can be written as the trigonometric
function with respect to time. Above simple example would give the basic idea of neutrino oscillation.

7.1.2 Matter E↵ect

In a presence of surrounding matter, neutrino scatterings by the charged leptons change the ef-
fective mass of neutrinos, and can change the behavior of the neutrino oscillation. This is called the
Mikheyev–Smirnov–Wolfenstein (MSW) e↵ect. This e↵ect can be taken into account by adding a addi-
tional ”matter potential” to the Scrödinger equation. If the existence of muon and tauon are ignored,
the matter potential can be written with the number density of electron as (Sasaki, 2019; Morinaga,
2021);

Hmat =
p
2GFne

0

@
1 0 0
0 0 0
0 0 0

1

A . (7.17)

Since the neutrino oscillation is associated with the o↵-diagonal components, large matter potential
has negative impact on the occurrence of neutrino oscillation. However, if the value of the matter
potential coincides with the vacuum term, the diagonal component vanishes and the neutrino oscillation
is facilitated. This is called the MSW resonance, and induces the neutrino oscillation as well.

7.2 Collective Neutrino Oscillation and the Linear Stability
Analysis

As repeatedly mentioned, the focus of this study is the collective neutrino oscillation, induced
by neutrino self-interaction. Especially, the linear stability analysis (LSA) is performed for CCSN
simulation result, which is to analyze whether the given state is unstable to flavor conversion. It also
provides the linear growth rate, which gives us the idea how fast the flavor conversion evolves. The
advantage is that it is easy to implement, and computationally cheap. The drawback is that it does
not provide the asymptotic state after the flavor conversion, which requires to follow the nonlinear
evolution by directly solving the quantum kinetic equation (QKE), as performed by several studies
(Johns & Xiong, 2022; Padilla-Gay et al., 2022; Zaizen & Nagakura, 2022; Hansen et al., 2022; Kato
et al., 2023).

7.2.1 Linearizing the QKE

The starting point is the QKE
iv

µ
@µ⇢ = [H, ⇢] + iC, (7.18)

where H and C denote the Hamiltonian and the collision terms, respectively. The components of the
density matrix is defined as

⇢ ⌘
✓
f⌫e Sex

Sxe f⌫x

◆
. (7.19)
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The interacting Hamiltonian can be expressed as the sum of vacuum, matter, and neutrino self-
interaction terms as follows;

Hvac =
M

2

2E
, (7.20)

Hmat =
p
2GF vµdiag(j

µ

e
(x), jµ

x
(x)), (7.21)

H⌫ =
p
2GF v

µ

Z
dP

0
⇢(x, P 0)v0

µ
, (7.22)

where M2, jµ
↵
(x) and GF are the neutrino mass-squared matrix, the lepton number four-currents, and

the Fermi constant, respectively. The integral over momentum space is expressed as

Z
dP ⌘

Z 1

�1

E
2
dE

2⇡2

Z
d⌦p

4⇡
, (7.23)

where E and ⌦p are the energy and solid angle in momentum space, respectively. Following the
common practice, the negative energy corresponds to antineutrinos.

By assuming the relaxation approximation (Johns, 2023), the collision terms can be expressed as

C(x, P ) =
1

2
{diag(�⌫e(x, P ),�⌫x(x, P )), ⇢eq � ⇢}, (7.24)

where �⌫↵(x, P ) and ⇢eq stand for the collision rates and the density matrix for the equilibrium state,
respectively.

By assuming that the o↵-diagonal components of the density matrix are initially smaller than the
diagonal components, as Sex ⌧ f , the QKE can be linearized. O↵-diagonal component becomes

v
µ(i@µ � ⇤0eµ + ⇤0xµ)Sex +

1

2E

X

z=e,x

(M2

ez
Szx � SezM

2

zx
)

+ (f⌫e � f⌫x)
p
2GF

Z
dP

0
v
µ
v
0
µ
Sex(x, P

0) + i�exSex = 0, (7.25)

where ⇤0↵ is defined as

⇤µ

0↵
⌘
p
2GF [j

µ

↵
(x) +

Z
dPf⌫↵(x, P )vµ]. (7.26)

and
�ex(E) ⌘ [�e(E) + �x(E)] /2. (7.27)

For the stability analysis, plane-wave ansatz is assumed for the o↵-diagonal component as

Sex(x, P ) = S̃ex(x, k)e
ik

µ
xµ , (7.28)

where k ⌘ (!,~k) is the four-wave vector. Furthermore, the vacuum and the matter Hamiltonian are
ignored in this study because they can be considered to be small in the regime where the collective
flavor instability takes place.

The linearized equation can be simplified in the following form

⇧µ⌫

ex
(k)a⌫(k) = 0, (7.29)

by introducing a matrix ⇧ex and a vector a(k) as follows,

⇧µ⌫

ex
(k) ⌘ ⌘µ⌫ +

p
2GF

Z
dP

(f⌫e � f⌫x)v
µ
v
⌫

v�(k� � ⇤0e� + ⇤0x�) + i�ex

, (7.30)
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a
µ(k) ⌘

p
2GF

Z
dPS̃ex(k, P )vµ. (7.31)

The nontrivial solution exists if and only if the following relation is satisfied:

det⇧ex(k) = 0. (7.32)

By solving the equation 7.32 with respect to !, it is possible to know whether the state is unstable
to flavor conversion or not; if the resultant ! has a negative imaginary part, the Sex(x, P ) will grow
exponentially and otherwise it decays.

In this thesis, we intend to perform systematic study of flavor instabilities for the entire compu-
tational domain and every time step of CCSN simulation. For this purpose, finding the root using
equation 7.32 is still computationally expensive. We will separate flavor instability into two kinds,
namely fast flavor instability (FFI), and the collisional flavor instability (CFI). The former is induced
by the angular crossing in the momentum space, and the latter is induced by the collision terms. The
procedures of LSA for FFI and CFI are discussed in the following subsections.

7.2.2 Fast Flavor Instability

The existence of FFI was first recognized in Sawyer (2005), and many theoretical studies have
been performed (Tamborra & Shalgar, 2021). As proven in Morinaga (2021), the occurrence of FFI is
known to be equivalent with the existence of neutrino flavor lepton number (NFLN) crossing, which is
defined as follows. The di↵erence between the NFLN angular distribution for ⌫↵ and ⌫� is defined as

G↵� ⌘
Z 1

1

E
2
dE

2⇡2
(f⌫↵ � f⌫� ). (7.33)

The NFLN crossing is that G have positive and negative values. Since the three-species assumption
is imposed, the existence of NFLN crossing is equivalent to that of the electron lepton number (ELN)
crossing.

For the LSA, we would like to derive a formula for estimating the linear growth rates. The rigorous
formulae for a general neutrino distribution is impossible, hence we consider a simple example. We
first consider a so-called two-beam model, where two collimated beams of ⌫e and ⌫̄e cross. In this case,
the ELN angular distribution with respect to the velocity v is given as

G(v) = 4⇡(G⌫e�(v � v⌫e) + G⌫̄e�(v � v⌫̄e)), (7.34)

where G⌫e and G⌫̄e are coe�cients and the neutrino flowing direction is v⌫e and v⌫̄e , respectively. In
this case, the growth rate is given as

� = (1� v⌫eµv
µ

⌫̄e
)Re

p
�G⌫eG⌫̄e . (7.35)

The factor v⌫eµv
µ

⌫̄e
makes the growth rate depends on the crossing angle; it is maximized in the head-

on case and becomes zero in the parallel case. The important part is the square-root part, which
determines the order of the growth rate.

Above example naturally suggests that in general case, the growth rate can be roughly estimated
as

� ⌘

s

�
✓Z

�G>0

d⌦

4⇡
�G

◆✓Z

�G<0

d⌦

4⇡
�G

◆
, (7.36)

where

�G =

p
2GF

2⇡2

Z
(f⌫e � f⌫̄e) ⌫

2
d⌫. (7.37)

The performance of the equation 7.36 is verified in Morinaga et al. (2020) and turned out that it is
not bad.
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7.2.3 Collisional Flavor Instability

Collisional flavor instability (CFI) is induced by the collision terms. The analytical formulae for
LSA of CFI was derived in Liu et al. (2023), and the overview is showed below. The matrix ⇧µ⌫ given
in equation 7.30 is recalled by explicitly rewriting the tensor vµv⌫ ;

⇧µ⌫

ex
(k) = ⌘

µ⌫ +
p
2GF

Z 1

�1

E
2
dE

2⇡2

Z
d⌦p

4⇡

f⌫e(E, v)� f⌫x(E, v)

! � vµkµ + i�ex(E)

⇥

0

BB@

1 cos✓⌫ sin✓⌫cos�⌫ sin✓⌫sin�⌫
cos✓⌫ cos2✓⌫ sin✓⌫cos✓⌫cos�⌫ sin✓⌫cos✓⌫sin�⌫

sin✓⌫cos�⌫ sin✓⌫cos✓⌫cos�⌫ sin2✓⌫cos2�⌫ sin2✓⌫cos�⌫cos�⌫
sin✓⌫sin�⌫ sin✓⌫cos✓⌫sin�⌫ sin2✓⌫sin�⌫cos�⌫ sin2✓⌫sin

2
�⌫

1

CCA . (7.38)

In order to simplify the equation and derive the analytical formulae to evaluate the CFI growth rate,
angular distribution is assumed to be isotropic. Under this assumption, the only angular-dependent
part is the tensor vµv⌫ . As shown above, it is a collection of trigonometric functions, and the angular
integration can be performed and only the diagonal components remain.

As a result, equation 7.32 is simplified as

I =
p
2GF

Z 1

�1

E
2dE

2⇡2

f⌫e(E)� f⌫x(E)

! + i�ex(E)
= �1, 3. (7.39)

Note that I = �1 corresponds to the time components and I = 3 corresponds to three spatial compo-
nents that are degenerate. Above equation is further simplified by assuming the energy distribution.
By assuming the monochromatic distribution

f⌫e(E)� f⌫x(E) =
2⇡2

p
2GFE

2
[g�(E � ✏)� ḡ�(E + ✏̄)], (7.40)

where g, ḡ are defined as
g ⌘ n⌫e � n⌫x , ḡ ⌘ n⌫̄e � n⌫̄x . (7.41)

With this assumption, the above equation becomes

g

! + i�
� ḡ

! + i�̄
= �1, 3, (7.42)

The solution for I = �1, called the isotropy-preserving branch, is given as

!
pres

± = �A� i� ±
p
A2 � ↵2 + 2iG↵, (7.43)

and the solution for I = 3, called the isotropy-breaking branch, is given as

!
break

± = �A

3
� i� ±

s✓
A

3

◆2

� ↵2 � 2

3
iG↵. (7.44)

Symbols G, A, �, ↵ are defined as

G ⌘ g+ ḡ

2
, A ⌘ g� ḡ

2
, � ⌘ �+ �̄

2
, ↵ ⌘ �� �̄

2
, (7.45)

where the collision rates �, �̄ are given as

� ⌘ �e + �x

2
, �̄ ⌘ �̄e + �̄x

2
, (7.46)
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and n⌫i and �i are the number densities, and the energy-integrated collision rates, respectively. They
are expressed as follows:

ni =
p
2GF

Z
E

2
dE

2⇡2
f(E), (7.47)

�i ⌘
p
2GF

Z
E

2
dE

2⇡2
�(E)fi(E), (7.48)

with �(E) being the energy-dependent emission/absorption rates.
CFI occurs when the imaginary part of ! is positive. Eqs. 7.43 and 7.44 are obtained under the

assumption that the neutrino distribution is isotropic and monochromatic. In Liu et al. (2023), it was
found that they are reasonable approximations if the average energies of neutrino and anti-neutrino
are plugged in ✏ and ✏̄, respectively, as long as there is no NFLN crossing.

In this study, we define the CFI growth rate as

�CFI ⌘ max
�
Im(!pres

± ), Im(!break

± )
�
. (7.49)

The growth rate can be calculated by using the number densities (Eq. 7.47) and the energy-integrated
collision rates Eq. 7.48), which are provided by the CCSN model.

It is useful to consider the following limits:

max (Im!
pres

± ) =

(
�� + |G↵|

|A| , (A2 � |G↵|),
�� +

p
|G↵|, (A2 ⌧ |G↵|),

(7.50)

for the isotropy-preserving branch and

max (Im!
break

± ) =

8
<

:
�� + |G↵|

|A| , (A2 � |G↵|),

�� +
p

|G↵|p
3

, (A2 ⌧ |G↵|),
(7.51)

for the isotropy-breaking branch.
In the typical CCSN situation, A2 � |G↵| is satisfied because A ⇠ G � ↵ (Liu et al., 2023).

However, if n⌫e and n⌫̄e are very close to each other, A becomes small and the lower case (A2 ⌧ |G↵|)
applies. Then the growth rate is ⇠

p
G↵, which is larger than the ordinary CFI growth rate of

⇠ G|↵|/A. This is called the resonance-like CFI (Lin & Duan, 2023; Liu et al., 2023; Xiong et al.,
2023a). In contrast, we will refer to the CFI in the regime of A2 � |G↵| as the “non-resonance” CFI
hereafter.

7.3 Analysis of FFI and CFI

We perform post-process analysis of CFI and FFI for 2D CCSN simulation performed with the
Boltzmann neutrino transport. The model setup is provided in section 7.3.1. The overall properties
are shown in section 7.3.2, and the origin of CFI and FFI are independently discussed in sections 7.3.3,
7.3.4. Section 7.3.5 shows the comparison between CFI and FFI.

7.3.1 CCSN Model

We give here only basic information on the CCSN model we employ in this study. It is a result of
the 2D CCSN simulation under axisymmetry for the progenitor with the zero-age main sequence mass
of 11.2M� (Woosley et al., 2002). The Boltzmann equations are faithfully solved for three neutrino
species (⌫e, ⌫̄e and ⌫x) by discretizing the entire phase space, i.e., by the SN method. Newtonian
hydrodynamics equations are solved simultaneously with the feedback from/to neutrinos fully taken
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Figure 7.1: Time-radius map of the growth rate of CFI (top) and FFI (bottom) for the angle ✓ = 45�

and 90�. White broken lines, from top to bottom, denote the radius for the density 1010, 1011, 1012

and 1013g cm�3, respectively. Red broken line denote the shock radius.

into account. The radial range of [0 : 5000] km is divided into 384 grid points, and the zenith angle
✓ 2 [0 : ⇡] is divided into 128 grid points. The energy range of [0 : 300]MeV is divided into 20
logarithmically spaced grid points. The zenith angle in momentum space ✓⌫ 2 [0 : ⇡] and the azimuth
angle �⌫ 2 [0 : 2⇡] are divided into 10, and 6 grid points, respectively. The neutrino-matter interactions
are based on the so-called standard set (Bruenn, 1985) with a few modifications; the inelastic scattering
o↵ electrons and the nucleon–nucleon bremsstrahlung (Friman & Maxwell, 1979) are implemented.
Note that the emission/absorption rates in Eq. 7.48 for the CFI growth rates are the same as those
employed in the simulation. The details of the numerical code are described in the series of papers
Nagakura et al. (2014, 2017, 2019). In this simulation, Lattimer-Swesty equation of state (Lattimer
& Swesty, 1991) with the incompressibility parameter K = 220MeV is employed. The simulation was
conducted up to ⇠ 400ms after bounce when we observed a successful explosion with the maximum
shock radius reaching 1000 km in t ⇠ 400ms after bounce. See Harada et al. (2020) for the details of
this simulation.

7.3.2 Overall Properties

Top panels of Fig. 7.1 shows the time-radius maps of CFI growth rate at ✓ = 45� and 90�. CFI is
expected to occur in the region with a bright color. In fact, the black regions in the plots have growth
rates smaller than 10�9 cm�1, and we do not think CFI is important there. It is clear at both angles
(and actually at all angles as shown in Fig. 7.2) that a CFI region appears at t ⇠ 50ms for the first
time and continues to exist later on. This unstable region moves to smaller radii as the PNS contracts.
It roughly corresponds to the region with 1010 . ⇢ . 1012 g cm�3, similar density range as reported
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Figure 7.2: Meridian map of CFI growth rate (left), FFI growth rate (middle), and the dominant
instability (right) at t = 404ms after bounce.

in a 1D study (Liu et al., 2023). In the 2D case, however, the radial extent of the region changes
rather rapidly in time whereas such time variations were absent in the 1D model. This is due to the
turbulence that occurs commonly on the multi-dimensional models.

A closer inspection of the plots reveals another CFI region deeper inside, r ⇠ 20 km, at later times,
t & 200ms, (see the magnified figures). It is very narrow but has greater growth rates than the region
mentioned above and was not found in the 1D model. In fact, this corresponds to the resonance-like
CFI, a feature unique to multi-dimensional models, as we discuss later.

For comparison we present the time-radius maps of the FFI growth rate in the bottom panels of
Fig. 7.1. The reddish region is unstable to FFI this time. Note that the radial range and the color
scale are di↵erent between top and bottom panels. The four dashed lines that show the locations of
⇢ = 1010, 1011, 1012, 1013 g cm�3 will help the correspondence between the plots. There is a wide FFI
region with located at larger radii much outside than the CFI region in general. In the late phase,
t & 400ms however, the two regions are partially overlapped with each other at ✓ = 90�. Note that we
analyze CFI and FFI independently, assuming that the latter is absent in the analysis of the former.

The spatial extents of the CFI and FFI regions in the meridian section are shown in Fig. 7.2
at t = 404ms after bounce. The resonance-like CFI occurs sporadically at r ⇠ 20 km whereas the
non-resonance CFI regions prevail at 30 . r . 40 km. The FFI region is extended at even larger radii,
r & 50 km, but also appears at almost the same positions as the resonance-like CFI. Although the
non-resonance CFI region is mostly separated from the FFI region, there are some overlaps (see the
rightmost panel of Fig. 7.2). It is apparent that it occurs in a convective eddy. The growth rates of
CFI and FFI tend to be higher around the equator than near the poles. This comes from the stronger
⌫̄e emission in the lower latitudes, induced by the large-scale fluid motion. The morphology of fluid
motion is known to be qualitatively di↵erent between 2D and 3D (Couch, 2013), and the degree of
asymmetry may be exaggerated in this study. However, the qualitative trend will be unchanged in 3D.

In the following subsections 7.3.3 and 7.3.4, we look into CFI and FFI individually. The growth
rates of CFI and FFI are compared in subsection 7.3.5.
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Figure 7.3: From top to bottom, radial profiles of (1) the growth rates of CFI and FFI, (2) ratios G/A

and ↵/�, (3) number densities and G, |A|, and (4) collision rates for each species of neutrinos and
�, ↵. Left and right panels are for the angle ✓ = 45� and ✓ = 90�, respectively. The snapshot is at
t = 404ms after bounce.

7.3.3 CFI

The CFI growth rates are shown as solid lines in the top panels of Fig. 7.3, for ✓ = 45� and 90� at
t = 404ms. Both the resonance-like CFI (sharp peaks) and the non-resonance CFI (30 . r . 40 km)
are observed in both plots. The maximum growth rate of ⇠ 10�3 cm�1 is reached by the resonance-like
CFI whereas the non-resonance CFI has a typical growth rate of ⇠ 10�6 cm�1.

In the same plots we present the CFI growth rate when we artificially set the number density ⌫x to
zero. In this case the CFI region is much extended, with the non-resonance CFI region merged with
the resonance-like CFI region. Moreover, the growth rate becomes higher by orders with the maximum
growth rate reaching ⇠ 1 cm�1 for the resonance-like CFI. This experiment clearly demonstrates that
the existence of ⌫x suppress CFI. This is in sharp contrast with FFI, on which ⌫x has no e↵ect as long
as ⌫x and ⌫̄x do not have angular crossing.

In the following we look into the resonance-like CFI and non-resonance CFI’s more closely in turn.
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Figure 7.4: Radial profiles of collision rates for individual neutrino interactions (top) and Ye (bottom).
The angles and the time snapshot is same as Fig. 7.3. The abbreviations of neutrino interactions are
as follows: electron capture (ecp), anti-electron capture (aecp), neutrino pair production (pap) and
the nucleon bremsstrahlung (nbr).

Resonance-like CFI

The resonance-like CFI occurs when the situation A ⇡ 0 is realized (Liu et al., 2023; Liu et al.,
2023). This is vindicated in the panels in the second row of Fig. 7.3, where we plot the radial profiles
of the number densities of all neutrinos as well as G = (n⌫e +n⌫̄e�2n⌫x)/2 and |A| = |n⌫e�n⌫̄e |/2 (see
Eq. 7.45). The very sharp dips in A correspond to the peaks in the growth rate (see the top panels)
indeed. It is also found that G has dips at the same positions, but so as deep as A. By definition,
the situation A ⇡ 0 occurs when the number densities of ⌫e and ⌫̄e become close to each other. On
the other hand, G becomes zero if n⌫e + n⌫̄e = 2n⌫x , which is not completely the case at A = 0. As
a result, G/|A| gets very large at the points, creating the resonance-like CFI as observed in the plots
on the third row of Fig. 7.3. Note that we assume n⌫x = n⌫̄x . If this assumption is not valid due to
muonization, it may prevent A to become zero at the point where n⌫e = n⌫̄e , and might hinder the
resonance-like CFI. We will investigate it in the future.

Here we comment on the possible artifact of the low radial resolution. With a finite number of grid
points, it is impossible to have A = 0 on one of the grid points. As a result, the CFI growth rate is
underestimated in the vicinity of the resonance-like CFI. The insu�cient resolution also explains the
absence of the resonance-like CFI at r ⇠ 10 km for ✓ = 45� in spite of n⌫e ⇠ n⌫̄e . As a matter of fact,
matter is more compressed and the scale height at this angle is shorter than at ✓ = 90�.

The non-detection of the resonance-like CFI in the 1D study (Liu et al., 2023) is not an artifact by
the low resolution, on the other hand. As already mentioned, the abundance of ⌫̄e tends to be under-
estimated in 1D due to the lack of convection. As a result, A = 0, which is equivalent to resonance-like
CFI, is unlikely to be realized. This clearly indicates the importance of multi-dimensionality for CFI.

Non-resonance CFI

We now move on to the non-resonance CFI. The inner edge of the CFI region (r ⇠ 30 km) cor-
responds to the position where n⌫̄e exceeds n⌫x . Then G > |A| holds above this radius. Since
� ⇡ ↵ is satisfied, it leads to the occurrence of the ordinary non-resonance CFI there. At larger radii
(r & 40 km), however, the CFI ceases to exist despite G > |A| is sustained. This is because the ratio
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↵/� gets smaller as shown in the panels on the third row of Fig. 7.3. The two ratios G/A and �/↵
dictate the emergence/extinction of the CFI region: the growth rate becomes positive (and hence the
CFI occurs) only when they are comparable or larger than unity.

The behavior of � and ↵ can be understood from the panels in the fourth row of Fig. 7.3, where
the collision rates (Eq. 7.48) are plotted together with ↵ and �. It is found that �e is dominant over
�̄e and �x at 10 . r . 30 km, which results in � ⇠ ↵ there. At larger radii r & 40 km, on the other
hand, �̄e becomes comparable to �e. As a result, ↵ gets smaller than �.

In order to understand the behavior of �e and �̄e further, we plot the contributions of individual
neutrino-matter interactions in Fig. 7.4. As can be seen, the electron capture on proton (ecp) and the
anti-electron capture on neutron (aecp) dominate other interactions at r & 10 km, which means that
they mainly drive �e and �̄e, respectively.

It is interesting to compare �’s with the Ye distribution shown in the bottom panels of Fig. 7.4.
At 10 . r . 30 km, Ye is low ⇠ 0.1. This corresponds to the region where ⌫e opacity dominates over
⌫̄e, i.e., �e > �̄e. On the other hand, at r & 40 km, Ye is ⇠ 0.5. In this region, ecp and aecp have
similar collision rates, which yields �e ⇠ �̄e. This analyses is in line with the 1D result that CFI was
observed only for rather low-Ye region.
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Figure 7.5: Radial profiles of the FFI growth rate (top) andGin/out, Ḡin/out (middle) and the di↵erences
between Gin/out and Ḡin/out (bottom) at t = 404ms after bounce.

7.3.4 FFI

We turn our attention to the FFI region found in our model. Top panels of Fig. 7.5 shows the
growth rates of FFI for ✓ = 45 and 90�. Di↵erent colors distinguish the types of angular crossing.
Here, we use the terminology of Nagakura & Johns (2021b); type-I crossing means ⌫e is dominant
over ⌫̄e in the outgoing direction (µ⌫ = 1) whereas ⌫̄e is dominant over ⌫e in the incoming direction
(µ⌫ = �1). Type-II crossing means the opposite. Note that it is possible that FFI exists but the type
cannot be categorized into either of them. We call this case type-III hereafter. There are two possible
reasons; (1) the number of crossing is even, or (2) shallow crossing appears for some energy or �⌫ , but
the integration smear it out. Note that we judge the crossing type by the energy-integrated and �⌫-
averaged distribution function. It should be pointed out that the detection scheme proposed previously
for results obtained with the truncated moment method (Nagakura & Johns, 2021b) assumed an odd
number of crossings. The FFI region with even number of crossings may have been overlooked with
such a scheme.

In the middle panels of Fig. 7.5, we exhibit the energy-integrated and �⌫-averaged distribution
functions defined as

Gin ⌘
Z

E
2
dE

Z
d�⌫

2⇡
f⌫e(µ⌫ = �1) (incoming), (7.52)

Gout ⌘
Z

E
2
dE

Z
d�⌫

2⇡
f⌫e(µ⌫ = 1) (outgoing), (7.53)

and Ḡin/out for ⌫̄e. The bottom panels give the di↵erence of Gin/out between ⌫e and ⌫̄e. Since it
is a logarithmic plot, a line is shown only if the value is positive. Note that the colors distinguish
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the signatures. The combination of blue solid line and red dashed line means type-I crossing exists
there, whereas the pair of blue dashed line and red solid line corresponds to type-II crossing. Other
combinations indicate either no crossing or type-III crossing. There are several types and reasons of FFI
in the semi-transparent and optically-thin region. The angular distributions for three representative
radii are shown in Fig. 7.6. Type-I crossing is observed at r & 60 km for both angles (see Fig. 7.5
and the top panel of Fig. 7.6). As already pointed out in Nagakura & Johns (2021b), this is produced
by the back-scattering of ⌫̄e. Since ⌫̄e’s tend to have higher energies than ⌫e’s as they come from
deeper inside, the nucleon scattering occurs more frequently for ⌫̄e than for ⌫e. It produces a larger
population of the former in the inward direction. It is mentioned that type-I crossing produced this
way was observed only for the exploding models in Nagakura & Johns (2021b).

We find a type-II crossing at r ⇠ 40 km only for ✓ = 90� (also see the middle panel of Fig. 7.6). It
actually corresponds to the mushroom-shaped FFI region in Fig. 7.2, which is produced by convective
motions. As may be inferred from the Gin/out distributions in Fig. 7.5 , it is located in the neutrino
decoupling region. Because ⌫̄e decouples from matter deeper inside than ⌫e, its angular distribution in
momentum space is more forward-peaked. As a result, ⌫̄e is more abundant than ⌫e for the outgoing
direction while the opposite is true for the incoming direction. The generation of type-II crossing
by this mechanism was already discussed in previous studies (Nagakura & Johns, 2021b; Harada &
Nagakura, 2022; Akaho et al., 2023). It did not happen in other angles including ✓ = 45�, because ⌫e
is clearly dominant over ⌫̄e there.

Type-III crossings are found at ✓ = 90�. They are actually separated into two regions; (1) the very
narrow strip at the inner boundary of type-II crossing, and (2) the domain between type-I and type-II
crossing regions. The former corresponds to the shallow crossing mentioned earlier. On the other
hand, the latter domain has two crossings instead of one. The typical angular distribution is presented
in the bottom panel of Fig. 7.6. In fact, We find that ⌫̄e is dominant over ⌫e at both µ⌫ = �1, 1 but
opposite for µ⌫ ⇠ 0. Since this domain is sandwiched by the type-II crossing region at smaller radii
and the type-I crossing region at larger radii, both mechanisms operate in this region, creating the two
crossings. As mentioned earlier, the detection of FFI based on moments assuming that the number of
crossings is odd (Nagakura & Johns, 2021b) will fail to find this region. In this respect, the Boltzmann
neutrino transfer is certainly advantageous.

We find very narrow spikes in the FFI growth rate at both ✓ = 45� and 90�. They are located at
the same position as the resonance-like CFI, as we will see later. This is natural because the condition
n⌫̄e/n⌫e ⇠ 1 is favorable not only for the resonance-like CFI but also for the FFI, as already reported
previously (Glas et al., 2020; Delfan Azari et al., 2020). The absence of the inner peak for ✓ = 45� is
due to the low radial resolution, just as for the resonance-like CFI. The type of crossing at this point
is rather meaningless because both ⌫e and ⌫̄e have almost isotropic distributions at these points.

7.3.5 Comparison between CFI and FFI

Finally, we compare the growth rates of CFI and FFI in Fig. 7.7. It is clear that the growth rate
of FFI is higher than CFI by many orders if both of them exist. This is as expected because the
dependence of the growth rate on the neutrino number density n is di↵erent between the two modes;
�FFI / n, and �CFI /

p
n. However, it is worth mentioning that the relation �FFI � �CFI is not the

universal relationship and may be opposite if the angular crossing is shallow or the collision rates are
large.

The above comparison indicates that CFI is subdominant in the linear evolution even the resonance-
like CFI occurs. However, it does not mean that CFI is unimportant. As long as the growth rate
is shorter than the typical time scale of the background evolution, the flavor conversion will reach
the nonlinear phase anyway. The subsequent evolution and possible saturation are currently under
extensive investigations (Padilla-Gay et al., 2022; Johns & Xiong, 2022; Lin & Duan, 2023; Xiong et al.,
2023b,a). For example, the Monte Carlo simulations in Kato et al. (2023) found that the resonance-like
CFI induces the flavor swap rather than the settlement to the flavor equilibrium. It will be eventually
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needed to somehow incorporate these results in the supernova simulations and see their e↵ects on the
fluid dynamics, neutrino signals, and nucleosynthesis in CCSNe.

7.4 Summary of Chapter 7

We conducted the post-process analyses of one of our 2D CCSN simulations performed with the
Boltzmann neutrino radiation hydrodynamics code to search for the regions where the collisional and/or
fast flavor instabilities will possibly happen. We employed the criterion for these flavor instabilities
that were derived in the previous studies (Morinaga et al., 2020; Liu et al., 2023) based on the linear
analysis.

We found that the non-resonance CFI would occur in the region with the density of 1010 . ⇢ .
1012 g cm�3, which is consistent with the previous findings in the 1D study Liu et al. (2023). In the
multi-dimensional model, however, the radial extent of the CFI region changes in time on the dynamical
timescale, which was absent in the 1D model. This is due to the turbulence in the supernova core.
Non-resonance CFI region is likely to be separated from FFI region most of the time, but they can
be overlapped with each other at some angles depending on the asymmetry of fluid motions. The
non-resonance CFI region is characterized as follows; the inner boundary corresponds to the points
where the number density of ⌫̄e becomes equal to that of ⌫x i.e., G = |A|. On the other hand, the
outer boundary corresponds to the positions where ⌫̄e opacity becomes comparable to that of ⌫e. It is
also noted that the outer edge roughly corresponds to Ye ⇡ 0.5.

We found that the resonance-like CFI occurs when the value of A is close to zero, which happens in
turn if the number densities of di↵erent species of neutrinos almost coincide with one another. This is
in contrast with the previous 1D study Liu et al. (2023). As mentioned earlier, abundance of ⌫̄e tend
to be artificially suppressed in 1D, which makes it hard to realize A ⇡ 0. Our result clearly indicate
the importance of multi-dimensional e↵ect for CFI.

The overall properties of the appearance of FFI regions we observed in this study are consistent
with those of the previous study in Nagakura & Johns (2021b); (1) in the optically thick region, the
FFI occurs if n⌫e/n⌫̄e ⇠ 1 , (2) in the decoupling region, type-II crossing occurs if ⌫̄e emission is strong,
and (3) in the optically thin region, type-I crossing is produced due to nucleon scattering. However,
we found that multiple angular crossing can be realized in the domain between the regions with type-I
and type-II crossings. Note that this detection was made possible by the exploitation of the results of
Boltzmann neutrino transport, where the full information on the angular distribution in momentum
space is available.

The linear growth rate of CFI is always lower than that of FFI by many orders. This is true of
the resonance-like CFI also but its growth rate is larger than that of the non-resonance counterpart
by orders. It should be pointed out that whether CFI or FFI have larger linear growth rates may
not be so important. As a matter of fact, as long as they are shorter than the typical timescale of
background evolutions and the neutrino crossing time over the background scale height, the flavor
conversions reach the nonlinear stage anyway. The eventual outcomes should then be explored with
di↵erent approaches (Johns & Xiong, 2022; Padilla-Gay et al., 2022; Zaizen & Nagakura, 2022; Hansen
et al., 2022; Kato et al., 2023).

This chapter is wrapped up by noting the limitations of this study and giving some future prospects.
First, as we have just mentioned, this study is based on the linear analysis, which can address only
the trigger of flavor conversions. The subsequent evolution and the asymptotic state should be in-
vestigated, for example, by directly solving the QKE. Second, flavor conversions at a certain spatial
position propagate in space, leading to a qualitative change of global neutrino radiation field in CCSNe
(Nagakura & Vartanyan (2022); Shalgar & Tamborra (2023); Nagakura (2023); Nagakura & Zaizen
(2023)). However, our post-process analysis does not have the ability to incorporate the feedback of
global neutrino advection, which should be kept in mind as a caveat. We are updating our Boltzmann
radiation-hydrodynamics code to incorporate the possible outcomes of FFI and CFI and the results
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will be reported in the future.
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Figure 7.6: Angular distribution of the distribution function of 16.5MeV neutrinos at 74 km (top),
35 km (middle), 55 km (bottom). The angle is ✓ = 90� and the snapshot time is t = 404ms after
bounce.
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at t = 404ms after bounce.
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Chapter 8

Summary and Future Prospects

I performed theoretical investigation of CCSNe using Boltzmann neutrino radiation-hydrodynamics
simulations. First of all, I developed GR version of the code and performed three kinds of simulations
of which results are presented in chapters 4 5, 6. In chapter 4, I performed 2D CCSN simulation
and investigated the GR e↵ect on the postbounce explosion phase of CCSN. It was confirmed that the
central density and the temperature are clearly higher in GR, due to the stronger gravity. However, the
neutrino luminosity did not show large di↵erence, because the high temperature matter was contained
at the center. Second and third parts focus on the late time evolution of the protoneutron star (PNS),
which is the remnant of CCSNe. Chapter 5 considered how the convection can a↵ect the PNS evolution.
It was found that the negative lepton gradient causes the convection and dredge-up of the hot matter
raises the temperature at the neutrino sphere. As a result, the neutrino luminosity and the mean
energy were found to be clearly higher than 1D. Chapter 6 considered how the fallback accretion onto
PNS a↵ects the neutrino emission. It was found that the accreted matter creates a temperature peak
and the neutrino mean energy due to fallback is clearly higher than the thermal emission from PNS.
It was also found that the event rates can be high enough for the galactic events for realistic accretion
rates. Chapter 7 considered the collective neutrino oscillation which is induced by the neutrino self-
interaction in CCSNe. Post-process analyses of the fast flavor instability (FFI) and the collisional
flavor instability (CFI) were performed for 2D CCSN simulation. It was found that both FFI and CFI
occur in CCSNe, and the criteria for their occurrence is discussed. By comparing the linear growth
rates, it was found that FFI would be dominant over CFI.

I conclude this thesis by addressing some future prospects.

1. In the simulation of chapter 4, the computational time was too short to determine the explod-
ability. I will extend the simulation time and investigate the e↵ect of GR on the CCSN dynamics
and the neutrino signals.

2. The studies in chapters 5 and 6 clearly showed the importance of convection and the fallback
accretion, which are not very taken into account in previous studies. I will address this issue
further, by collaborating with other research groups, implement these e↵ect on long term PNS
cooling simulations and predict future observational signals.

3. The post-process analysis in chapter 7 clearly indicates that collective neutrino oscillation can
commonly occur in CCSNe, and the growth rates are faster than the typical timescale of the
weak interaction for some region. I will extend the code to take into account the e↵ect of flavor
conversion to the Boltzmann radiation hydrodynamics simulation.
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Appendix A

Discretization of the Boltzmann
Equation

In this appendix, we describe how the advection terms are evaluated in our finite di↵erence scheme.
As mentioned in the main text, the evaluation of the advection terms in the discretized form is tricky
when they are written in the conservative form. This may be understood if one considers a constant f in
the phase space. Then all advections should be vanishing. This is apparent in the Boltzmann equation
written as in equation 3.2, since all the derivatives of f are zero. This is not so obvious, however, if
the Boltzmann equation is cast into the conservative form, as in equation 3.3. In fact, the advection
terms are not simply vanishing but are cancelled among them in nontrivial ways. Analytically these
cancellations are with no problem; it is di�cult to enforce in the finite-di↵erence, however. If one
treats them carelessly, neutrinos may appear from nowhere. The formulation described in Sumiyoshi
& Yamada (2012) ensures the perfect cancellation of those terms for the flat spacetime. In the general
relativistic case with an arbitrary metric, the formulation for the flat spacetime is not applicable,
though. In this study, we do not stick to the perfect cancellation and evaluate the advection terms
are evaluated in a rather straightforward way as described below. As shown in the advection tests in
sections C.1.2 and C.2.2, however, we found no problem in the general relativistic cases even if the
cancellation is not exactly enforced. We will investigate this issue further and, if necessary, revise the
general relativistic formulation in future works.

Throughout this chapter, variables with the lowercase subscript n (such as rn) are defined at the cell
centers whereas those with the uppercase subscript N (such as rN ) are defined at the cell interfaces.
This is because there are some delicate cancellations among the terms that are a part of di↵erent
advection terms.

A.1 Mesh Configuration

The cell interface variables of the radial mesh is varied depending on the situation; the resolution is
high where the density gradient is steep. The cell-center values of the radial grid points are calculated
from the interface values as follows

ri =


r
3

I�1
+ r

3

I

2

�
. (A.1)

The zenith angle in the configuration space ✓ and the momentum space are constructed in the same
way, as follows. When the zenith angle is treated, µ = cos✓ is the basic variable. µ grid points are
given by the Gaussian quadrature as

µJ = µJ�1 + dµj , (A.2)
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where dµj denote the mesh width. The angle factor sin2✓ and sin✓ appear in some advection terms.
They are directly evaluated as

(1� µ
2)I = (1� µ

2)(I � 1)� 2µidµi, (A.3)

(1� µ
2)

1
2
I
= (1� µ

2)
1
2
I�1
� µi

(1� µ
2

i
)

1
2

dµi. (A.4)

The azimuth angles for the configuration space � and for the momentum space �⌫ are also deter-
mined by the Gaussian quadrature points

�I = �I�1 + d�i, (A.5)

where d�i denote the mesh width. The angle factor for some advection term are evaluated as follows;

(sin�)I = (sin�)I�1 + cos�i. (A.6)

As for the energy grid points, the interface values can be analyzed arbitrarily; it is logarithmically
distributed in the simulations presented in the main text. The cell center values are calculated as

✏i = (✏I✏I�1)
1
2 . (A.7)

A.2 Finite Di↵erence Representation

The spatial advection terms (r, ✓ and �) are finite-di↵erenced as

1p
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�! 1p
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(A.8)

where dxi

n
is the width of the n-th cell, and we defined L

µ ⌘ e
µ

(0)
+
P

3

i=1
lie

µ

i
for notational simplicity.

In the flat or the Schwarzschild case, for example, L1 = cos✓⌫ , L2 = sin✓⌫cos�⌫ , L3 = sin✓⌫sin�⌫ . The
value of LNfN on the N -th cell interface (Li

N
fN ) is evaluated as

L
i

N
fN =

L
i

n
� |Li

n
|

2
[(1� �N )fn + �Nfn+1] +

L
i

n+1
+ |Li

n+1
|

2
[�Nfn + (1� �N )fn+1], (A.9)

where �N is introduced to smoothly switch from the upwind di↵erencing in the free streaming limit
(�N = 1) to the central di↵erencing in the di↵usion limit (�N = 1/2). We use the following expression
of �N based on Mezzacappa & Bruenn (1993):

�N = 1� 1

2

↵pdrN�N

1 + ↵pdrN�N
. (A.10)

where the mean free path on the cell interface is calculated as �N = (�n+1 + �n)/2. The adjustable
parameter ↵p is set to be 100, following Sumiyoshi & Yamada (2012). In the free streaming case
�N = 1, the upwind direction is accounted for by the signature of Li.

The energy advection term is expressed as follows:

� @
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3
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, (A.11)
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with

!(0)NfN =
!(0)N + |!(0)N |

2
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!(0)N � |!(0)N |
2

fn, (A.12)

Here the one-sided di↵erencing is employed and its direction is dictated by the signature of !(0)n: the
forward finite-di↵erencing is adopted for !(0)n > 0, i.e., in the case for redshift whereas the backward
di↵erencing is employed for the blueshift case.

The angular advection terms are finite-di↵erenced just in a similar way, by switching the direction
of one-sided di↵erencing according to the signatures of !(⇤): employing µ⌫ = cos✓⌫ , we write the ✓⌫
advection term as

� @
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The �⌫ advection term is finite-di↵erenced as
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Appendix B

Discretization of the
Hydrodynamics Equations

In this appendix, we describe the formulation of the hydrodynamics equations solver. It is a general
relativistic extension of the Newtonian counterpart employed in the previous papers (Nagakura et al.,
2014, 2017, 2019). In the code, the mesh configuration is same as the Boltzmann solver, as described
in the previous chapter. By following Kawaguchi et al. (2021), we first decompose the variables as
follows:

⇤r
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⌘ 1, ⇤✓

(✓)
⌘ 1

r
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(�)
⌘ 1

r sin ✓
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⌘ 0 (i 6= j), (B.1)
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S̃(i)(j) ⌘ ⇤k

(i)
⇤`

(j)
Sk`. (B.10)

Note that if the spacetime is flat, the parenthesis indices ((r), (✓), and (�)) means the orthonormal
components of the flat spacetime. Therefore, similarly to the philosophy of Baumgarte et al. (2013),
we factor out the trivial coordinate dependence from the coordinate components of the tensors. This
decomposition gives better accuracy of the interface value reconstruction.
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With the variables defined above, we discretized the equations (3.17–3.11) into the following form:
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where µ ⌘ cos ✓; lower (e.g., i) and upper (e.g., I) case subscripts denote the cell center and interface
values, respectively; i, j, and k indicates the grid ID numbers of the radial (r), zenith (µ), and azimuthal
(�) coordinates, respectively; the symbols �r, �✓, and �� means the di↵erence between the interface
values along the indicated coordinates, e.g., �r(fjgI) ⌘ fjgI � fjgI�1 for any functions f and g.
The interface values of the decomposed hydrodynamic variables (rest mass density ⇢0, temperature
T or pressure P , electron fraction Ye, and the spatial components of four-velocity u

(i) ⌘ u
t
v
(i)) are

evaluated by the piecewise parabolic method (PPM, Colella & Woodward, 1984) with minmod flux
limiter; the interface values of the decomposed metric variables (lapse ↵, shift �(i), and spatial metric
�̃(i)(j)) are evaluated by the third order Lagrange interpolation; the coordinate values rI , ✓J , and �K is
exactly evaluated. The numerical flux is evaluated by the Harten-Lax-van Leer (HLL) method (Harten
et al., 1983) and the time evolution is solved by the fourth order Runge-Kutta scheme. By evaluating
the curvature terms such as ↵

p
�P/r and so on in these ways, the steady state of uniform matter in

flat spacetime is guaranteed.
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Appendix C

Code Tests of the Boltzmann Solver

Here, we provide the results of the code tests of the Boltzmann solver. First, energy and angular
advection tests are performed in spherical symmetry in Sec. C.1. Second, the multi-dimensional test
is performed in Sec. C.2.

C.1 Spherically Symmetric Tests

We present the results of advection tests under the assumption of spherical symmetry in the neutrino
distribution function, i.e., it depends only on r, ✏, and ✓⌫ . Although our code is multi-dimensional, we
suppress the angular degrees of freedom in space intentionally and treat the radial advection alone in
space (plus the advections in momentum space) for the tests in C.1. In the following, we separately
discuss the energy advection and the angular advection in momentum space in sections C.1.1 and
C.1.2, respectively.

C.1.1 Energy Advection Tests

In the gravitational field, neutrinos change their energy as they move. In the computation of
neutrino transport it is important to take such e↵ects into account because the neutrino interactions
strongly depend on the neutrino energy.

In order to study the capability of our code to treat those energy changes, we conduct the following
test. We fix the neutrino distribution function to f = 1 on a single energy bin at a certain radius,
which serves as a monochromatic and spherical neutrino source. We set f = 0 elsewhere initially.
Then neutrinos will flow out of this source and fill the space, the evolution of which we will compute
with our new code. As for the initial angular distribution in momentum space, we assume that the
neutrinos move in a single direction with the zenith angle ✓⌫ = 0 (outward) or ⇡ (inward). We can
test redshift in the former and blueshift in the latter. Note, however, that it is di�cult in our code
to set the single-angle distributions given above strictly. We hence set f = 1 either on the first or on
the last angular bin and f = 0 on other bins in the numerical test. In order to focus on the energy
advection, we switch o↵ angular advection in this test. One prominent di↵erence in general relativity
is that the neutrinos can experience gravitational redshift or blueshift. I checked the performance of
the code whether it can treat energy advection. The results are compared with the analytical formula
for the neutrino energy ✏ana as a function of radius:

✏ana(r) =

✓
1� 2GM

c2rsource

◆✓
1� 2GM

c2r

◆�1

✏source, (C.1)

where ✏source and rsource are the energy and radius of the source, respectively.

101



C.1. SPHERICALLY SYMMETRIC TESTS

10 15 20 25 30 35 40 45 50 55

radius r (km)

0

5

10

15

20

25

30
en
er
gy

(M
eV

)

0.01

0.1

1

d
is
tr
ib
u
ti
on

fu
n
ct
io
n

source at r = 15 km, outgoing direction (✓⌫ = 0)

10 15 20 25 30 35 40 45

radius r (km)

0

5

10

15

20

25

30

35

40

en
er
gy

(M
eV

)

0.01

0.1

1

d
is
tr
ib
u
ti
on

fu
n
ct
io
n

source at r = 40 km, incoming direction (✓⌫ = ⇡)

Figure C.1: The neutrino distributions in energy space as a function of radius for the energy advection
tests. The left and right panels show the results for the redshift and blueshift tests, respectively. The
arrows indicate the directions of the neutrino motions, and the white dashed curves show the trajectory
of the massless particles emitted from the source, truncated at the radius where the massless particles
reach at the time of the snapshot t = 2⇥ 10�4 s.

It should be stressed that for mesh-based codes like ours this is a very challenging problem, with
sharp edges existing both in the energy and angular distributions. As will be witnessed later, rather
large numerical di↵usions occur inevitably. We choose this test, though, since this enables us to see
most clearly if the code can reproduce the redshift/blueshift of neutrino energy as it moves in the
gravitational well; the resolution dependence also manifests itself.

Throughout this test, we deploy the radial mesh with Nr = 128 grid points that covers the range
r 2 [0, 100] km. It is finer in the region r 2 [10, 50] km. The number of angular mesh points in
momentum space is N✓⌫ = 20. The energy mesh has logarithmically spaced grid points and covers the
range ✏ 2 [0, 50]MeV. We vary the number of energy mesh points as N✏ = 20, 30, 40, and 60 to study
the resolution dependence of the result.

Figure C.1 shows the energy distributions as a function of radius at a certain time for N✏ = 60.
The white dashed curves depict the analytical solutions. The left panel presents the result of the
gravitational redshift test at the coordinate time t = 2⇥10�4 s. In this calculation, the neutrino source
is located at r = 15 km and emits monochromatic neutrinos with ✏ = 20MeV outward. The energy
distributions obtained numerically trace the analytical curve although they are somewhat broadened
due to numerical di↵usions arising from the finite energy resolution in the simulation. We stress again
that this is actually a very challenging problem for finite di↵erence methods like ours. In fact, the
single energy bin has a finite width and cannot express the monochromatic energy distribution very
well in the first place. The same trend is found for the blueshift test as exhibited in the right panel.
The neutrino source is located at r = 40 km and emits neutrinos with ✏ = 10MeV inward in this
test. The energy of neutrinos increases indeed as they propagate radially inward. It is also observed
that the numerical di↵usion is weaker at large radii as the advection is rather small there. In both
panels, the analytic curves are drawn from the source positions to the points that the massless neutrino
reaches at the given time. It is obvious that the terminal points are well reproduced by the numerical
computations. In order to see the resolution dependence of the numerical di↵usion quantitatively, we
repeat the redshift tests with di↵erent numbers of energy bins. We quantify the numerical di↵usion
by defining the following error function:

E✏(r) ⌘
P

N✏

n=1
f(r, ✏n)(✏n � ✏ana(r))2d✏n

(✏ana(r))2
P

N✏

n=1
f(r, ✏n)d✏n

, (C.2)
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Figure C.2: Radial profiles of the re-scaled error function defined in the text. Di↵erent colors indicate
the numbers of energy mesh points: blue, green, yellow, and red curves are for N✏ = 20, 30, 40, and
60, respectively.

where ✏n and d✏n are the value of energy at the n-th cell center and the width of the same cell,
respectively. In figure C.2, we show the radial profiles of the error function re-scaled by the number of
energy mesh points N✏. It is seen that the re-scaled error functions for the di↵erent energy resolutions
almost coincide with one another except for N✏ = 20. This indicates that the error function is inversely
proportional to N✏, roughly implying the first-order convergence. This is expected, since the energy
advection term is evaluated with a first-order finite di↵erence scheme as described in appendix A.
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C.1.2 Angular Advection Tests

The greatest advantage of directly solving the Boltzmann equation is that we are able to obtain
information not only on energy but also on the angular distribution in momentum space. The direction
of the neutrino momentum is specified by the zenith and azimuth angles, (✓⌫ , �⌫) (see figure 3.1). Note
that the distribution function depends on ✓⌫ alone in the spherical symmetry assumed in this section.
As a neutrino moves non-radially, the zenith angle ✓⌫ , which is measured from the local radial direction,
changes even in the flat space time. This angular advection is shown schematically in Fig. C.3. The
blue curve is one of geodesic curves, along which the free neutrino moves in the Schwarzschild spacetime.
Note that it is no longer a straight line due to gravity. In this example the neutrino moves outward
and the zenith angle approaches ✓⌫ = 0, i.e., the outward radial direction, with the increasing radius
r. Since the geodesic curve is bent inward by gravity, the approach is slower for the Schwarzschild
spacetime than in the flat spacetime. In this subsection, we test the capability of our code to reproduce
this angular advection.

The numerical setting is essentially the same as in the previous test for the energy advection: we
put the monochromatic neutrino source uniformly on a sphere with a certain radius by setting f = 1
on an single energy bin there and f = 0 otherwise. The di↵erence is that we choose ✓⌫ = ⇡/2, which
corresponds to direction of pr = 0, at the source. Note that we actually set f = 1 on a single angular
bin nearest to ✓⌫ = ⇡/2 for numerical convenience. We vary the source radius to investigate the angular
advections both inside and outside the photon sphere, i.e., the circular orbit. The neutrinos emitted
outside the photon sphere with p

r = 0 propagate outward with ✓⌫ decreasing monotonically to zero
whereas those emitted inside the photon sphere go inward with ✓⌫ increasing as they propagate. In
this test, we switch o↵ the energy advection, which should occur simultaneously in reality. This is to
avoid numerical di↵usions both in angle and energy at the same time. The results are compared with
those for the flat spacetime as well as with the reference solution obtained.

The geodesic curves in the Schwarzschild spacetime is calculated as follows. In the Schwarzschild
(exterior) spacetime, the geodesic motion on the equatorial plane satisfies the following equation (see
§25.6 in Misner (1973), for example):

✓
dr

d�

◆2

= r
2

✓
r
2

b2
+

2GM

c2r
� 1

◆
, (C.3)

where r and � are the coordinate variables, and b is the impact parameter. When the trajectory is
on the meridional plane, one may replace the azimuth angle � with the zenith angle ✓. The impact
parameter b can be expressed in terms of the radius r0 and the zenith angle (✓⌫)0 of a reference point
on the geodesic curve as

b =
r0sin(✓⌫)0

1� 2GM/(c2r0)
, (C.4)

For numerical calculations, it is more useful to rewrite the above equation (C.3) as

d
2
u

d�2
=

3GMu
2

c2
� u, (C.5)

where the new variable is introduced as u = 1/r. The second derivative of u changes signature at the
radius r = 3GM/c

2, which corresponds to the radius of the photon sphere. In this work, equation
(C.5) is solved with the fourth-order explicit Runge-Kutta method by dividing it into the following
two equations:

du

d�
= v,

dv

d�
=

3GMu
2

c2
� u. (C.6)

104



C.1. SPHERICALLY SYMMETRIC TESTS

Figure C.3: Schematic picture of the angular advection in momentum space angle ✓⌫ for Schwarzschild
spacetime. The blue curve indicates the trajectory of a massless particle emitted from the source
located outside the photon sphere. The blue arrows are the tangent vectors of the trajectory; the
black arrows are the radial vectors with the dashed lines indicating the radial ray from the coordinate
center. The angle ✓⌫ is the angle between these two vectors.

For the angular advection tests, the zenith angle ✓⌫ in momentum space along the geodesic, which is
given in equation (13) in Shibata et al. (2014):

✓⌫ = tan�1

✓
p(2)

p(1)

◆
= tan�1

 
r

r
1� 2GM

c2r

p
✓

pr

!
, (C.7)

where p(i) is the momentum components for the tetrad basis and given as p(i) = pµe
µ

(i)
.

We employ the same radial mesh with Nr = 128 as in the previous tests. As for the mesh in
momentum space, we vary the number of grid points as N✓⌫ = 20, 30 and 40 to see the resolution
dependence. We set N�⌫ = 2 for numerical convenience although the distribution does not depend on
�⌫ in the present case.

Figure C.4 shows the angular distributions of neutrinos in momentum space as a function of the
radius r for the angular advection tests with N✓⌫ = 40. The white dashed curves depict the reference
geodesic curves, truncated at the radius that the massless particles reach at the time of the snapshot.
The left panel shows the result for the flat spacetime at t = 1 ⇥ 10�4 s, with the source placed at
r = 20 km. As mentioned earlier, there is a nontrivial angular advection even in the flat spacetime,
since we deploy the polar coordinates in space. Neutrinos emitted with pr = 0 always move outward
in the flat spacetime and the zenith angle monotonically converges to ✓⌫ = 0 as they go outward.
The middle panel presents the result at t = 2.5 ⇥ 10�4 s for the Schwarzschild spacetime. Note that
the neutrino source is located outside the the photon sphere, the radius of which is 16 km in the
present test. The neutrinos emitted from this source with pr = 0 move outward. The outward radial
propagation of neutrinos is slower in this case than in the flat case because of the geodesic deflection
and the gravitational time delay. As a result, the radius-angle curve for the Schwarzschild spacetime
is less steep than that for the flat spacetime. The right panel is the result at t = 2 ⇥ 10�4 s with the
neutrino source located at r = 15 km, i.e., inside the photon sphere in the Schwarzschild spacetime.
This time, the trajectory is directed radially inward and, as a result, ✓⌫ approaches ✓⌫ = ⇡, instead
of 0. The distributions are consistent with the reference curves although there are some numerical
di↵usions.

Just as in the energy advection tests in section C.1.1, we quantify the numerical di↵usion as follows:
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Figure C.4: Angular distributions in momentum space as a function of the radius r. The white dashed
curves show the reference geodesic curves, drawn from the source to the radius that the massless
particles reach at the time of the snapshot. The left panel is the result for the flat spacetime at
t = 1⇥10�4 s, with the source placed at r = 20 km. The middle and right panels are the results in the
Schwarzschild spacetime at t = 2.5⇥ 10�4 s and t = 2⇥ 10�4 s with the sources located at r = 20 km
(outside the photon sphere) and r = 15 km (inside the photon sphere), respectively.
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Figure C.5: Radial profiles of the re-scaled error function defined in the text. The left and right panels
are for the flat and Schwarzschild spacetimes, respectively. The blue, green, and red lines correspond
to the di↵erent angular resolutions in momentum space: N✓⌫ = 20, 30, and 40.

we define the error function as

E✓⌫ (r) ⌘
PN✓⌫

n=1
f(r, (✓⌫)n)((✓⌫)n � (✓⌫)ref)2(d✓⌫)n

PN✓⌫
n=1

f(r, (✓⌫)n)d✓⌫
, (C.8)

where (✓⌫)n and (d✓⌫)n are the value of ✓⌫ at the n-th cell center and the width of the same cell,
respectively; (✓⌫)ref is the zenith angle for the reference geodesic curve. We evaluate this function both
for the flat and Schwarzschild spacetimes.

Figure C.5 shows the radial profiles of the re-scaled error function, i.e., the error function multiplied
by the number of angular mesh points N✓⌫ . The left and right panels show the results for the flat and
Schwarzschild spacetimes, respectively. For both cases, the re-scaled errors for the di↵erent numbers
of mesh points are close to each other, implying that our code is of first order in the angular advection.
This is just as expected, since we adopt the first-order finite di↵erence scheme for the angular advection
terms.

It is also checked whether the above result is changed by the existence of the energy advection.
Firstly, we re-do the same test as in section C.1.2 with the energy advection turned on. We deploy
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Figure C.6: Radial profiles of the error function for angular advection. The red curve indicates the
result with both angular and energy advection taken into account, and the blue curve is the one only
with angular advection, same as C.1.2.

the same mesh with Nr = 128, N✏ = 20 and N✓⌫ = 20 and place neutrino steady source at r = 20 km
that emits neutrinos in a single angular bin closest to ✓⌫ = ⇡/2 and a single energy bin at ✏ = 20MeV.
The angular advection error E✓⌫ is calculated for the energy-integrated distribution function, and
compared with the previous result without energy advection (see section C.1.2). Figure C.6 shows
E✓⌫ as a function of radius for both cases. The results are very close to each other, implying that the
inclusion of the energy advection does not a↵ect the angular advection.

C.1.3 Tests with Continuous Distribution

Some readers may be concerned by the numerical di↵usion seen in the previous tests. In fact,
the grid-based code like this is not good at treating such discrete distribution. This is unlikely to be
problematic, because the distribution in simulations are usually much continuous. Here, we consider a
neutrino source that has smooth, extended energy and angular distributions in order to demonstrate
that the numerical di↵usion behavior is reduced for smoother distributions. We set the following
distribution at the source:

f(x) =

⇢
1

1+e(✏�µ)/kT
1+cos2✓⌫

2
(✓⌫  ⇡

2
)

0 (✓⌫ >
⇡

2
)

, (C.9)

where we choose the parameters as µ = 20MeV and kT = 10MeV. We place this steady source at
r = 20 km. We employ the same radial mesh with Nr = 128 as in the previous tests whereas we vary
the number of grid points in the energy mesh that covers the range ✏ 2 [0, 300]MeV as N✏ = 10 and
20; the cell number in the angular mesh is chosen to be either N✓⌫ = 20 or 40.

Neutrino emitter is placed at r = 20 km, and the Figure C.7 shows the angular-integrated energy
distribution (top left panel), and angular distribution for the neutrino energy of ✏ = 5MeV (top right
panel) at r = 40 km. The dashed lines are the distributions at the source position while the solid lines
give the analytic solutions (green) and the numerical results (blue for the lower resolution and red for
the higher resolution). The bottom panels present the absolute values of errors. As can be seen, the
energy spectrum is well reproduced already with 10 energy-grid points, which is actually smaller than
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Figure C.7: The neutrino distributions in energy and momentum angle at 40 km. The top left panel
shows the energy distribution of angular-integrated distribution function, and the top right panel
shows the angular distribution of neutrinos with energy ✏ = 5MeV. The green curves indicates
analytical values, where blue and red curves indicate the numerical results for low and high resolution,
respectively. The distribution at 20 km (source position) are shown with purple dotted curves for
comparison. The bottom panels show the absolute errors for energy and angular distribution.

the standard number employed in our recent CCSN simulations, and the numerical result gets even
closer to the analytic solution with 20 energy-grid points. Such a converging feature is also seen for the
angular distributions. The results of the above test for the smooth distribution suggest that 20 energy
bins employed in our CCSN simulations are large enough whereas 10 angular bins in momentum space
are not su�cient at large radii, where the angular distribution becomes forward-peaked as assumed
in this test. This is actually a well-known problem and is consistent with the previous investigation
by Richers et al. (2017). We note, however, that the number of these mesh points can be increased
by a factor of 2 or more (depending on which number is increased) when the latest Japanese flagship
supercomputer Fugaku is available soon, which is roughly ⇠ 40 times faster than K supercomputer
which we used for the SN simulations so far.

C.2 Multi-dimensional Advection Tests

Our code is multi-dimensional in space. Here we test our code’s capability to deal with the angular
advection in space by calculating again the non-radial streaming of neutrinos in the Schwarzschild
spacetime with this ✓-advection explicitly taken into account.

C.2.1 2D Tests in the Schwarzschild Spacetime

We hence run the code in 2D under axisymmetry in this section. We compute the distribution
function of neutrino on the �-constant meridional plane. The initial condition is as follows: we set
f = 1 for a single cell at r = 30 km and ✓ = ⇡/2 with ✓⌫ = ⇡/2 and �⌫ = ⇡ (i.e., moving in the
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Figure C.8: Neutrino number densities on the meridional plane. The horizontal and vertical axes are
x = rsin✓ and y = rcos✓, respectively.)
The white dashed lines depict the geodesic curves drawn from the source to the position that the
massless particles reach at the time of the snapshot. The left panel shows the result for the flat
spacetime at time t = 1⇥ 10�5 s, and the right panel is for the Schwarzschild spacetime at time

t = 1.3⇥ 10�5 s.

positive z direction) in momentum space. Note that the neutrinos move along a geodesic curve also in
this case that is essentially the same as the one in the previous test. We again switch o↵ the energy
advection in this test. Also, the �⌫ advection is switched o↵, since neutrinos following the geodesic do
not advect in that direction, in the current setting.

The radial mesh is the same as in section C.1, with Nr = 128. In addition to this, we deploy the
✓-mesh that has N✓ = 128 bins, covering the range ✓ 2 [0,⇡]. As for the angular mesh in momentum
space, we adopt N✓⌫ = 10, 20, and 40 to see the resolution dependence; the number of �⌫-mesh points
fixed to N�⌫ = 10.

Figure C.8 shows the neutrino number density, i.e., the distribution function integrated over the
momentum space, on the meridional plane for N✓⌫ = 40. The white dashed curve depicts the geodesic
curve drawn from the source to the point that the massless particles reach at the time of the snapshot.
The left panel is the result for the flat spacetime at the coordinate time t = 1 ⇥ 10�4 s, where the
geodesic is the straight line parallel to the z axis. The right panel is for the Schwarzschild spacetime
at t = 1.3⇥ 10�4 s. It is apparent that the geodesic is deflected by gravity in this case. In both cases,
the numerically obtained distributions are consistent with the analytical curves. On the other hand,
the broadening of the beam is also evident. Just as in the previous tests, this is partly because the the
beam has a finite width from the beginning and partly because there are numerical di↵usions. We now
quantify the numerical di↵usion. This time we look at the neutrino propagation speed, which should
be the speed of light but the di↵usion will a↵ect it. For this purpose we first evaluate the number
densities on the geodesic as a function of ✓ by linearly interpolating the values on the neighboring
radial cells as follows:

Nint(✓) =
(rn � r(✓))Nn�1(✓) + (r(✓)� rn�1)Nn(✓)

rn � rn�1

, (C.10)

where Nn(✓) is the neutrino number density on the n-th radial mesh point for the given ✓, and r(✓) is
the radial coordinate of the geodesic curve at the same angle ✓. We parametrize the geodesic not with
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✓ but with the “light-traveling distance” defined as
Z q

g
�1

00
(g11dr2 + g22d✓

2), (C.11)

where gµ⌫ is the spacetime metric and the integration runs from the source to a point on the geodesic
curve. This quantity has a simple physical interpretation: the light speed times the coordinate time it
takes a massless particle to reach the point.

Figure C.9 shows the number density profile for di↵erent time steps along the geodesic obtained
with equation C.10 and parametrized with the light-traveling distance in equation C.11. The upper
and lower panels show the results for the flat and Schwarzschild spacetimes, respectively. The dashed
lines indicate the exact results. Although the number density is not constant owing to the beam
broadening and there are some superluminal di↵usions, the distribution declines rapidly ahead of the
exact position and we may hence say that the propagation velocity is roughly consistent with the
speed of light. We finally study the resolution dependence, defining the following error function to
quantitatively estimate the numerical di↵usion:

Er✓(✓) ⌘
P

Nr

m=1
Nn(✓)(rn � r(✓))2drn

(r(✓))2
P

Nr

n=1
N(rn, ✓)drn

, (C.12)

where rn and drn are the radial coordinate at the center and the width of the n-th radial cell, respec-
tively, and r(✓) is the radius of the point on the geodesic curve at ✓.

Figure C.10 shows the re-scaled error function, which is defined as the error function in equation
(C.12) multiplied by N✓⌫ ; although the equation (C.12) is a function of ✓, we employ the light-traveling
distance to parametrize the geodesic in this figure. The left and right panels again present the results
for the flat and Schwarzschild spacetimes, respectively. It is recognized that both cases roughly show
the first-order convergence.
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Figure C.9: The profiles of the neutrino number density along the geodesic curve at di↵erent coordi-
nate times. The upper and lower panels show the results for the flat and Schwarzschild spacetimes,
respectively. The colors denote the times: the blue, purple, and red correspond to t = 2 ⇥ 10�5,
4 ⇥ 10�5, and 6 ⇥ 10�5 s, respectively; the dashed lines indicate the exact positions of the front edge
of the geodesic curves at these times.
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Figure C.10: The error function in equation (C.12) re-scaled with the number of angular mesh points
N✓⌫ . The left and right panels show the results for the flat and Schwarzschild spacetimes, respectively.
The blue, green, and red curves correspond to the errors for the N✓⌫ = 10, 20, and 40, respectively.
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C.2.2 Tests in the Kerr Spacetime

We now move on to the advection tests in the Kerr spacetime. They are intended to demonstrate
the applicability of our code to rotating BH spacetimes. We ignore all neutrino reactions again in this
section.

We employ the Kerr-Schild coordinates:

ds
2 = �

✓
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◆
c
2
dt
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(C.13)

where a is the BH spin parameter, and

⌃ = r
2 + a

2cos2✓,

⌅ = (r2 + a
2)⌃+ 2GMa

2
rsin2✓/c2. (C.14)

Note that there is no (apparent) singularity at the event horizon in these coordinates. Throughout
this section, we choose M = 5M� and a = 0.5GM/c

2. The tetrad in equation (3.4) is explicitly given
as follows:
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where the lapse function, shift vector, and inverse of the spatial metric are written as
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respectively. As mentioned in Shibata et al. (2014), there is no coordinate singularity if we use this
tetrad in the Kerr-Schild coordinates.
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For the Kerr spacetime, there is no simple di↵erential equation to describe the geodesic curve unlike
for the Schwarzschild spacetime. We hence solve the geodesic equation

d
2
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dx
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d�

dx
�

d�
, (C.17)

where � is the a�ne parameter. Since we consider the geodesic curves only on the equatorial plane,
we solve the equations only for t, r, and �. We employ the fourth order explicit Runge-Kutta for the
following forms of equations:
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Here p
µ is the 4-momentum.

In the Kerr spacetime, the photon sphere for the prograde orbits with respect to the BH spin is
given as
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whereas for the retrograde orbits it is given as
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For the metric parameters, we employ the same values as the advection tests in section C.2.2; with
M = 5M� and a = 0.5GM/c

2.
Figure C.11 shows some geodesic curves on the equatorial plane. The left panel exhibits four

prograde geodesic curves with p
r = 0 at r = 16, 17, 18 and 19 km. The first two radii are smaller than

that of the photon sphere, which is r = 17.33 km in the present case whereas the last two are larger.
The photon sphere is indicated with the black circle in the figure. The right panel, on the other hand,
presents some retrograde geodesic curves with p

r = 0 at r = 25, 26, 27, and 28 km. The photon sphere
has the radius of r = 26.07 km in this case. It is found in both panels that the geodesic curves are
confined either inside or outside the photon sphere.

As in section C.1.2, we perform the advection test by placing a point source in the Kerr spacetime.
We treat the neutrino propagation only on the equatorial plane (✓ = ⇡/2) as our main concern here is
the dragging of inertial frame. We fix f = 1 for a single angular bin at the position of the point source
and set f = 0 otherwise initially. The energy advection is turned o↵ again in this case. We set the
initial direction of neutrino momentum to �⌫ = 3⇡/2, i.e., the retrograde direction with respect to the
BH spin, to maximize the frame-dragging e↵ect. We further assume pr = 0 to distinguish the geodesic
curves outside the photon sphere from those inside clearly. There appears a bit complication then,
because this does not correspond to ✓⌫ = ⇡/2 for our choice of tetrad in the Kerr spacetime. That
happens because the coordinate basis is not orthogonal. We need to find the value of ✓⌫ by solving
the following equation:

p
r = ✏(e1

(0)
+ e

1

(1)
cos✓⌫ � e

1

(3)
sin✓⌫) = 0. (C.21)

This yields, for example, ✓⌫ = 0.9668 for r = 28 km and ✓⌫ = 0.7695 for r = 22 km.
Throughout this test, the radial mesh is the same as in the previous tests, deploying Nr = 128

grid points. We vary the number of angular mesh points as N✓⌫ = 30, 40, and 60 to see the resolution
dependence.

114



C.2. MULTI-DIMENSIONAL ADVECTION TESTS
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Figure C.11: Some geodesic curves on the equatorial plane in the Kerr spacetime. The mass and spin
of BH are set to M = 5M� and a = 0.5GM/c

2, respectively. Left: prograde geodesic curves with
p
r = 0 at r = 16, 17, 18, 19 km. Right: retrograde geodesic curves with p

r = 0 at r = 25, 26, 27, 28 km.
The photon spheres are indicated as the black circles, the radius of which is 17.33 km and 26.07 km for
the prograde and retrograde orbits, respectively.

Figure C.12 shows the angular distribution in momentum space as a function of the radius r for
N✓⌫ = 60. The white dashed curve is the reference geodesic curve calculated in appendix C.2.2, drawn
from the source to the radius that the massless particles reach at the time of the snapshot. The left
panel shows the result at the coordinate time t = 4 ⇥ 10�4 s with the source located at r = 28 km.
In this case, the source is sitting outside the photon sphere (r = 26 km) and the neutrinos propagate
radially outward. The right panel shows the result at t = 1.5 ⇥ 10�4 s with the source located at
r = 22 km, i.e., inside the photon sphere, and the geodesic goes radially inward. The broadening of
the beam is again apparent, which is inevitable as the mesh size is finite, and in the latter case, in
particular, there are a fraction of neutrinos going radially outward due to the numerical di↵usion.
Nevertheless, most of neutrinos propagate consistently with the geodesic curves in both cases. We
may hence claim that our code can handle the advection also in the rotating spacetime.

We look at the neutrino propagation speed. Since our computation does not take the � advection
into account directly thanks to the axisymmetry, we inspect the radial propagation. The geodesic is
again parametrized by the light-traveling distance defined in the current case as

Z
(g00)

�1[�(g01dr + g03d�)

�
p
(g01dr + g03d�)2 � g00(g11dr2 + g33d�

2 + 2g13drd�) ].

(C.22)

It has the same physical interpretation as in the Schwarzschild spacetime (equation (C.11)). Figure
C.13 shows the profiles of the number density along the geodesic as a function of the light-traveling
distance. Although the the results are consistent with the propagation at the speed of light, the
numerical di↵usion is more remarkable than in the flat or Schwarzschild spacetime. This is due to the
slower radial propagation of neutrinos in the current case, which is in turn caused by the frame-dragging
in the rotating spacetime. Recall that we are considering the retrograde advection here.
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Figure C.12: Angular neutrino distributions along the geodesic curve on the equatorial plane as a
function of the radius r in the Kerr spacetime. The left panel is the result at time t = 4 ⇥ 10�4 s,
with the source located at r = 28 km outside the photon sphere. The right panel is the result at time
t = 1.5 ⇥ 10�4 s, with the source located at r = 22 km inside the photon sphere. The white dashed
curves are the reference geodesic curves, drawn from the source to the radius that the massless particles
reach at the time of the snapshot.

Using the error function given in equation (C.8), we show in figure C.14 the re-scaled error function
for the advection test in the Kerr spacetime. It is apparent that the error scales linearly with the
number of angular mesh points just as in the previous tests in the flat or Schwarzschild spacetime.
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Figure C.13: The profiles of neutrino number density along a geodesic curve in the Kerr metric at
three di↵erent coordinate times: the blue, purple, and red colors correspond to t = 1⇥ 10�4, 2⇥ 10�4
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C.3 Tests Including Collision Terms

We have so far conducted various verification tests in the free-streaming limit alone. This is because
the computation of advection is the most challenging numerically for mesh-based codes like ours. In
the actual astrophysical simulations, collision terms of the Boltzmann equation are also important. In
this section, we perform a test that takes into account interactions of neutrinos with matter.

We fix the background matter distribution and compute with our new code the neutrino distribution
that approaches a steady state. Since the collision terms are the focus of this test, we assume spherical
symmetry again. As a reference, we employ the results obtained with another spherically symmetric,
general relativistic Boltzmann solver (hereafter 1D GR code) developed by Sumiyoshi et al. (2005).
We run these two Boltzmann solvers for the same (fixed) matter distribution until the steady states are
achieved. As for the matter distribution, we pick up a snapshot at 100 ms after bounce in the CCSN
simulation by Sumiyoshi et al. (2005) with the 15M� model of Woosley & Weaver (1995). It allows
us to test the neutrino propagation in a wide range of mean free path. The major neutrino-matter
reactions are the same for both simulations, the rates of which are based on Bruenn (1985). The explicit
expressions of the collision terms are identical to those described in Sumiyoshi & Yamada (2012). The
chemical potential profile is also common because it a↵ects the reaction rates: it is calculated from
Shen equation of state (Shen et al., 1998). In the 1D GR code, the hydrodynamics variables as well
as the spacetime metric are the functions of the enclosed mass as it is a Lagrangian code. However,
the fluid velocity is fixed to zero. They are transformed into the functions of the radius when they are
implemented in the new code.

The numbers of the radial mesh points are the same for the two codes: the radial mesh has Nr = 256
grid points, which covers the range r 2 [0, 104] km. As for the momentum space, we adopt N✓⌫ = 6
and N✏ = 14. The latter mesh covers ✏ 2 [0, 300]MeV. The reader may be worried that the resolution
employed here are relatively lower compared to the advection tests in sections C.1.2 and C.2.2, or
recent core collapse simulations. This is no problem, since our purpose is the regression test, i.e. to
confirm that the collision terms work properly.

Figure C.15 shows the radial profiles of the electron-type neutrino number density for our new code
and the 1D GR code (upper panel), as well as the relative di↵erence with respect to the latter result
(lower panel). The shock wave is located at r = 174 km, at which a small bump can be seen. It is
apparent that they are in a reasonable agreement with the overall relative error of ⇠ 10% (⇠ 14%
at the maximum). It is particularly small ⇠ 1% near the center (r . 10 km), where the neutrino
distribution is close to that of thermal equilibrium.

It should be noted that the above comparison does not tell which code is more accurate. To get
some hints, we compare them with the equilibrium number densities, which are obtained by the energy
integration of the Fermi–Dirac distribution. Figure C.16 shows the relative deviation of the neutrino
number density obtained with each of the two codes from the equilibrium density. As is clear, the
di↵erence is much smaller for the new code in the very optically thick regime. It is thought to come
from the di↵erent way of evaluating the equilibrium distribution for the calculation of the reaction
kernels. The 1D GR code simply calculates the equilibrium distribution by the value of energy at the
center of the cell, whereas the new code derives the equilibrium value as the average over a energy bin,
by dividing it into subgrid. Incidentally, neither result is very accurate at large radii because of the
rather coarse angular resolutions employed.

Finally, we give some results of the comparison with the M1 closure. Although the basics was
explained in section 2.2, the basics is repeated here. In the neutrino transport with the M1 closure,
second angular moment P ij of the distribution function in momentum space is given as the interpolation
of the optically thin and thick limits:

P
ij(✏) =

3�� 1

2
P

ij

thin
(✏) +

3(1� �)
2

P
ij

thick
(✏), (C.23)
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Figure C.15: Radial profiles of the electron-type neutrino number density for the 1D code and the new
code (upper panel) and their relative errors (lower panel). The blue and red curves in the upper panel
represent the results for the 1D GR and new codes, respectively.

where the optically thin and thick limits are given as
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respectively, where E(✏) and F
i(✏) are the energy density and flux, respectively. Note that we only

treat the case where fluid velocity is zero throughout this discussion. The Eddington factor � is given,
for example, as (Levermore, 1984)

� =
3 + 4F̄ 2

5 + 2
p
4� 3F̄ 2

, (C.25)

where the flux factor F̄ may be calculated as (Shibata et al., 2011)

F̄ =

p
�ijF

i(✏)F j(✏)

E(✏)
. (C.26)

In the Boltzmann transport, the second moment can be directly calculated from the distribution
function, and in spherical symmetry, the Eddington factor is � = k

rr, where k
ij(✏) = P

ij(✏)/E(✏) is
the Eddington tensor.
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Figure C.16: Relative deviations of the simulated neutrino number densities from the equilibrium
values. The blue and red curves represent the results for the 1D GR and new codes, respectively.

Figure C.17 shows the radial profiles of the Eddington factors obtained directly by the Boltzmann
solver (solid lines) and approximately with the M1 closure relation (dashed lines). It is observed
that the M1 closure tends to give larger values than the Boltzmann solver; the latter with lower
angular resolutions tends to underestimate the Eddington factor particularly at large radii where the
neutrino angular distribution becomes forward-peaked; the M1 closure fails, on the other hand, in the
semi-transparent region ⇠ 140 km. All these results are quantitatively consistent with those found in
our previous studies in the Minkowski spacetime (Harada et al., 2019). It is worth mentioning that,
however, that this is not a true comparison between the Boltzmann transport and the two-moment
transport with the M1 closure. In this analysis of the M1 closure approximation, the Eddington factor
is calculated from the energy density and the flux obtained by the Boltzmann solver. In actual two-
moment transport, they should be computed on their own and errors may be accumulated with time
and could be larger than suggested in figure C.17. In the mean time, 10 grid points in ✓⌫ is not
su�cient in our Boltzmann solver and should be doubled or more, which has actually come in sight.)
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Figure C.17: Radial profiles of the Eddington factor. The solid curves and dotted curves correspond to
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green, orange and red curves are for N✓⌫ = 6, 10, 40, respectively.
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Appendix D

Code Tests of the Hydrodynamics
Solver

In this chapter, we provide the code tests for the GR hydrodynamics solver. In the extension, two
important points appear matter motion close to the speed of light, and the matter motion under strong
gravitational field.

D.1 Special Relativistic Shock Tube Tests

Since our previous code was for Newtonian hydrodynamics, the matter with relativistic motion
could not be treated properly. Here, we perform the special relativistic shock tube tests. As the initial
state, we employ the first case in Nagakura et al. (2011). The initial left state is (⇢, v, p) = (10, 0, 13.3),
and the right state is (⇢, v, p) = (1, 0, 10�6). Since those values are for the geometrical unit, the input
hydrodynamics quantities should be re-scaled for our code written in cgs unit. If the length conversion
factor is defined as L, the conversion are like: ⇢cgs = ⇢⇥ c

2
/G⇥L

2, pcgs = p⇥ c
4
/G⇥L

2, vcgs = v⇥ c

and t = L/c. We choose the value L = 1⇥106 cm. We employ the gamma-law EOS with the adiabatic
index � = 5/3. Analytical solution can be exactly calculated by (Pons et al., 2000).

Since our code employs the polar coordinates, in principle, we cannot perform this test meant for
the Cartesian coordinates. Similarly to Yamada et al. (1999), we simulate in a very thin shell where the
curvature can be ignored. The initial discontinuity is placed at the radius r = 105 km, and the width
of the computational domain is 10 km, which is four-orders of magnitude smaller than the distance
from the origin. In order to check the resolution dependence, we test three mesh; 100, 200, and 400
grid points. The computational region is equally divided.

Figure D.1 shows the hydrodynamic quantities at the time snapshot t = 1.5⇥10�5 s. The analytical
solution is well reproduced for all resolutions. In addition, raising the resolution improves the result,
which indicates the resolution convergence of our code.
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Figure D.1: Radial distributions of the density (left), the pressure (middle), and the velocity (right).
The red, purple, and the blue lines denote the results for 400 mesh, 200 mesh, and 100 mesh, respec-
tively.
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Figure D.2: Radial profile of density (left) and the pressure (right) for the initial model.

D.2 Stability test of Neutron Star

We check the code’s ability to test matter under a strong gravitational field. By starting from the
stable neutron star model as the initial condition, we check that the initial state is maintained by time
evolution.

We constructed a neutron star model with a central density of 1 ⇥ 1015 g cm�3 and the central
pressure of p = 1.35 ⇥ 1035 g cm�1 s�2. We employ the gamma-law EOS with the adiabatic index of
� = 2. We solve the TOV equations by using the fourth-order explicit Runge-Kutta method. This
results in the neutron star with mass 1.42M� and the radius 13.2 km. The density and the pressure
distributions are shown in figure D.2. In order to check the resolution dependence, we test three mesh
cases; Nr = 128, 256, and 384 grid points. The computational region is r 2 [0 : 15] km, and it is
equally divided. TOV equation is solved to construct the neutron star.

Figure B.3 shows the time evolution of the relative error of density for di↵erent radii. The error for
Nr = 128 increases with time. On the other hand, the error for Nr = 256 and 384 shows the oscillation
around the initial data. The amplitude of the oscillation is smaller for the highest resolution case.
Hence we can conclude that resolution convergence is obtained for this test.
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Figure D.3: Relative error of density for di↵erent spatial positions; 1km (left), 5km (middle), and
10km (right). Red, purple and blue lines denote the results for 384 mesh, 256 mesh, and 128 mesh,
respectively.
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D.3 Stability Test of Black Hole Accretion

In this test, we test code’s ability to treat matter with relativistic speed under a strong gravitational
field. We will perform tests for the matter accreting onto a Kerr BH. Similarly to the previous test
in section D.2, we start from a stable state and check that the initial state is maintained with time
evolution.

We constructed the reference model in the following way. If we assume steady state and limit the
motion only on the equatorial plane (✓ = ⇡/2), the matter equations around a Kerr BH reduce to the
ordinary di↵erential equations with respect to radius (Nagakura & Yamada, 2009):

@r

�
r
2
⇢u

r
�
= 0, (D.1)
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, (D.2)

@r(hut) = 0, (D.3)

@r(hu�) = 0. (D.4)

Note that Boyer–Lindquist coordinates are used for the Kerr metric.
By explicitly expanding the specific enthalpy by the pressure, the equation D.2 can be rewritten

as the equation with a single pressure derivative term as following:

dp

dr
=
⇢hu

r
ur/2� ⇢h(ur)2grr,r + 2ur

hgrrSr/r
3

1 + urur � urhgrrSr/(r2�p)
, (D.5)

where Sr ⌘ r
2
⇢u

r. We solve the equation D.5 using the fourth-order explicit Runge-Kutta method.
The other equations D.1, D.3 and D.4 are used to calculate the four-velocity from the pressure.

In this test, we employ a BH with mass MBH = 5M� with dimensionless spin parameter 0.5. With
these parameters, horizon is located at 13.8 km. We do not solve hydrodynamic equations inside the
horizon, where the metric is singular. We employ the gamma-law EOS with � = 4/3 in this test.

The parameters for the hydrodynamics variables are as follows. We assume that the matter with the
density ⇢ = 1⇥ 107 g cm�3 is constantly injected from the radius r = 300 km with supersonic velocity
u
r = �1.2cs where cs is the speed of sound cs ⌘

p
�p/⇢. As for the specific angular momentum

� = u�/ut, we test three cases; � = 0 (no rotation), GMBH/c
2 (prograde) and GMBH/c

2 (retrograde).
Figure D.3 shows the initial hydrodynamics profiles for three cases. In the hydrodynamics calculation,

0

2

4

6

8

10

12

14

10 100

d
en
si
ty

(1
07
g
cm

�
3
)

radius (km)

� = 0
� = +GMBH/c

2

� = �GMBH/c
2

0

1

2

3

4

5

6

7

8

10 100

p
re
ss
u
re

(1
02

5
g
·c
m

�
1
·s

�
2
)

radius (km)

� = 0
� = +GMBH/c

2

� = �GMBH/c
2

�10

�8

�6

�4

�2

0

10 100

fo
u
r
ve
lo
ci
ty

u
r
(1
01

0
km

·s
�
1
)

radius (km)

� = 0
� = +GMBH/c

2

� = �GMBH/c
2

Figure D.4: Radial profiles of density (left), pressure (middle), and the r-component of the four
velocity (right). The green, red, and blue lines denote the profiles for � = 0, � = GMBH/c

2 and
� = �GMBH/c

2, respectively. The black-shaded region shows the horizon of the central BH.

the outermost meshes are fixed to constantly inject the matter. As same as previous tests, we test
three resolutions; Nr = 128, 256, and 384 grid points. The computational region is r 2 [0 : 300] km,
and the mesh width is varied exponentially so that the resolution gets finer for smaller radius.
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D.3. STABILITY TEST OF BLACK HOLE ACCRETION

Fig. D.3 shows the time evolution of the relative error of density. The error at 20km is the order
of o(10�3), and the error at 50km is the order of o(10�4). All calculations show reasonable agreement.
In addition, the highest resolution case Nr = 384 gives the most accurate result, which indicates the
resolution convergence.
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Figure D.5: Relative error of density for di↵erent specific angular momentum; non-rotating (left),
prograde (middle), and retrograde (right). The spatial position are 20km (top) and 50km (bottom).
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