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Chapter 1 General introduction 

Quantum Chemistry predicts molecular properties and chemical reactions by 

describing electronic states based on the Schrödinger equation developed in 1926. Recent 

advances of computers and software facilitate the use of quantum chemical calculations not 

only by theoretical chemists but also by experimental chemists. Particularly, the DFT has 

become the most familiar methods due to its good balance between computational costs 

and accuracy. 

Relativistic effects are essential when simulating chemical properties of compounds 

including higher row elements in the periodic table. The Schrödinger equation, which is in 

the nonrelativistic framework, describes relativistic effects by pseudopotential or effective 

core potential methods, where inner-shell electrons are represented by potential with 

parameters. Relativistic treatment of all electrons is possible by using the Dirac equation, 

which satisfies the requirements of the special relativity proposed in 1928,1 as a 

fundamental equation. The 4c theory, which solves the Dirac equation directly, gives highly 

accurate results, while it requires complicated calculations due to explicitly treatments of 

both positive and negative-energy states. The 2c theory extracts or decouples the positive-

energy state from the 4c Hamiltonian and uses the positive-energy states as an electronic 

Hamiltonian. The 2c Hamiltonian is proved to be equivalent to the 4c Hamiltonian under 

the no-pair approximation that assumes particles and antiparticles do not interact. The 

IOTC Hamiltonian, which is one of exact two-component Hamiltonians, was proposed for 

one-electron Hamiltonian in 2002,2 followed by the extension to many-electron systems in 

2008.3 Furthermore, the LUT scheme, which is an accurate and efficient method based on 

the IOTC Hamiltonian, was developed in 2012.4,5 

In the 2c theory, the pictures of wave functions change along the transformation of 
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Hamiltonian from 4c to 2c. Without consideration of the operators with respect to the 2c 

wave functions, the corresponding expectation values involve the error, namely, PCE. From 

a viewpoint of the transformation of the one-electron Dirac Hamiltonian, the error due to 

neglecting the PCC of the two-electron operator can also be called PCE. Most quantum 

chemical programs widely used today, cannot perform the PCC methods for expectation 

values. However, in 2017, it was pointed out that the PCE of electron density, which is the 

fundamental variable of DFT, cannot be ignored.6 

Against these backgrounds, this thesis attempts to extend the availability and 

applicability of PCC methods based on the IOTC Hamiltonian by developing novel theories 

and publishing to de facto standard quantum chemical program. Besides, the relativistic 

quantum chemistry is applied to the analysis of transition metal catalysts containing higher-

row elements. This thesis consists of nine chapters including this chapter as the general 

introduction. The remainder of this thesis is as follows. 

Chapter 2 summarizes the theoretical background of the 2c theory: Dirac equation, 

PCC of operators, IOTC Hamiltonian, and LUT scheme. 

Chapters 3 and 4 explain the acceleration methods for TEIs, which is a bottleneck of 

IOTC Hamiltonian. IOTC Hamiltonian for two-electron term requires evaluation and 

unitary transformation of several types of TEIs. The computational costs for evaluation and 

unitary transformation of TEIs are proportional to fourth and fifth power of system size, 

respectively. 

Chapter 3 describes the efficient algorithm for evaluation of TEIs based on the matrix 

decomposition. TEIs can be regarded as a matrix by labeling them with pairs of orbitals 

belonging to two electrons (distribution). Utilizing the symmetric characteristics of 

nonrelativistic ERIs, the efficient algorithm based on the CD was proposed in 2003. On the 

other hand, TEIs for spin-free IOTC Hamiltonian are categorized into three types; two are 

symmetric and one is asymmetric. In this chapter, CD is applied to two types of symmetric 
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TEIs and LUD of asymmetric TEIs is formulated and implemented. The proposed method 

can reduce the number of calculation while controlling the accuracy by introducing 

threshold to truncate decomposition.  

Chapter 4 proposes a more efficient algorithm for the LUT scheme, which is assisted 

by database of relativistic TEIs. LUT for TEI calculates only one-center integrals with 

relativistic Hamiltonian and treats multi-center integrals as in the nonrelativistic method. 

Focusing on the fact that the values of atomic-center TEIs depend only on the elemental 

species and basis function, independent of the molecular structures, this chapter constructs 

the database of atomic center TEIs. In practical calculations, the proposed algorithm reads 

the integral values from the database avoiding the explicit evaluation and unitary 

transformation of TEIs. Numerical assessments show that the proposed algorithm enables 

the constant computational costs for TEIs regardless of the system size. Furthermore, 

calculations of transition metal complexes by using the proposed algorithm can be 

performed at similar computational costs to nonrelativistic cases. 

Chapter 5 explains the RS-DFT based on the IOTC Hamiltonian. RS-DFT separates 

the two-electron operator into long- and short-range terms. LC-DFT, which is one of the 

RS DFT, calculates exchange energy as long-range HFx integrals and short-range exchange 

functional. This chapter formulates and implements the IOTC transformation with and 

without LUT scheme for separated two-electron operators. Application of this method to 

the potential energy curve of Rn dimer indicates the importance of consideration of 

relativistic effects and long-range correction simultaneously. 

Chapter 6 examines the PCE in the FON states based on the 2c DFT. By adding HFx 

into exchange energy, the HOMO of noble gas atoms, Ne to Rn, is approximately constant 

with respect to changes in the occupation number, which satisfies the physical requirement. 

The PCE is small in valence orbital. On the other hand, 1s orbital is not constant with 

respect to the occupation number and requires large ratio of HFx. The PCE is not negligible 
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in higher row elements such as Rn. Furthermore, PCC influences on the delocalization error, 

which is represented by the total energy deviation from the behavior of the exact energy. 

Chapter 7 explains the implementation of the PCC methods into the public version of 

GAMESS program, which is a program package developed by researchers around the world 

and distributed free of charge. The IOTC and LUT-IOTC Hamiltonians for one-electron 

operator have been implemented so far into GAMESS. This chapter describes the 

implementation of the PCC methods for two-electron and density operators based on the 

IOTC Hamiltonian with and without the LUT scheme. The LUT-IOTC Hamiltonian for 

one- and two-electron operators is also utilized for electron correlation methods such as 

MP2, CCSD, and CCSD(T), as well as the linear-scaling DC method. 

Chapter 8 elucidates that the relativistic effects play a key role in C-H activation using 

cationic iridium catalysts. Experiments reported that the cationic Ir(I)-diphosphine catalysts 

causes the deuterium substitution of N-phenylbenzamide, whereas Rh(I)-diphosphine 

catalysts are scarcely effective. In this chapter, energy diagrams by relativistic calculations 

show large difference in reaction energies between Ir and Rh, while nonrelativistic results 

show the same tendency in Ir and Rh. This is due to the considerably stabilized product 

rationalized by stronger interaction in Ir–H and Ir–C bonds by relativistic self-consistent d-

orbital expansion of Ir, followed by the relatively low reaction barrier. 

Chapter 9 refers to general conclusion and perspectives on the field of this study. 
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Chapter 2  Theoretical backgrounds 

This chapter explains several methods to incorporate relativistic effects into quantum 

chemistry. The pseudopotentials1 are used based on the nonrelativistic Schrödinger 

equation,2 while it cannot describe all electrons explicitly. The Dirac equation3 satisfies the 

relativistic requirements, thus exact solutions for all electron calculations are obtained. The 

direct solution of the Dirac equation is termed the 4c theory. The 4c theory treats both 

positive- and negative-energy states, which are related to electronic and positronic states. 

The 2c theory transforms the Dirac Hamiltonian and only treats positive-energy states, 

namely, electronic states, which are important for chemistry. With these backgrounds, this 

chapter briefly describes the theoretical backgrounds: Dirac Hamiltonian, the PCC of 

expectation values, and IOTC Hamiltonian. 

2.1 Dirac Hamiltonian 

Special relativity4 demands that the laws of physics have the same expressions in all 

the inertial frames of reference. Space and time must be treated equivalently in coordinate 

transformation, termed the Lorentz invariance. The Schrödinger equation, the fundamental 

equation of quantum mechanics, does not satisfy the Lorentz invariance since it is a second-

order derivative for space and a first-order derivative for time. Equation based on the 

quantum electrodynamics fully satisfies the Lorentz invariance although the effects of 

electrodynamics are negligibly small in the electronic states in molecules.  

In the quantum chemistry, the fundamental equation is the Dirac equation, which 

satisfies the Lorentz invariance only for electron motion. The Dirac equation is a first-order 

derivative for both time and space as follows: 

D
4 4 4E =Η , (2.1.1)
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where Ψ4, E, and D
4Η  is wavefunction, energy, and one-particle operator termed the Dirac 

Hamiltonian, respectively. The explicit formula of Dirac Hamiltonian is a 4×4 matrix as 

follows: 

 D
4 2

22
c

c c
 

=  
 − 1
V σ p

Η
σ p V

, (2.1.2) 

with external potential V, the speed of light c, momentum operator p, Pauli matrix σ. and 

the n×n identity matrix 1n. The Dirac Hamiltonian inherently includes spin. The solution of 

Dirac Hamiltonian consists of positive- and negative-energy states as the large and small 

components. 

Basically, the Dirac equation is solved by the 4c theory. As a 4c Hamiltonian, the one-

electron Dirac Hamiltonian is combined with a two-electron operator such as the Coulomb 

interaction5 representing instantaneous electron-electron repulsion, 

 C
4

1
ij

ijr
= 1G , (2.1.3) 

the Gaunt6 operator including internal magnetic interaction,  

 G
4

i j
ij

ijr


= − 1
α α

G , (2.1.4) 

and the Breit operator7 adding retardant interaction to the Gaunt operator, 

 
( )( )B

42

1 i ij j ij
ij i j

ij ij

r r
r r

   
= −  + 

  

1
α α

G α α . (2.1.5) 

Here, rij is the distance between two electrons, and αl represents the following matrix, 

 2

2

( , , )l
l

l

l x y z
 

= = 
 

0
0
σ

α
σ

, (2.1.6) 

where 02 is a 2×2 zero matrix. Due to the dimension of the Dirac Hamiltonian, the 

wavefunction Ψ4 have four components ψ1, ψ2, ψ3, and ψ4 as 
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1

2
4

3

4

L

L

S

S









 

 


 

 

  
  
  = =
  
    

   

, (2.1.7) 

where ψL and ψS are large and small spinors, which mainly correspond to electronic and 

positronic states, respectively, with α and β spin states. Although the 4c theory satisfies the 

chemical accuracy, it suffers from several problems, such as large computational costs and 

variational collapse due to the existence of negative-energy states.  

2.2 2c theory and PCC 

An alternative approach to solve the Dirac equation is the 2c theory that eliminates 

small components or decouples the positive- and negative-energy states in the 4c 

Hamiltonian. The 2c Hamiltonians for one-electron system, such as the Foldy–Woutheysen 

Hamiltonian,8 Douglas–Kroll–Hess Hamiltonian,9–13 regular approximation,14,15 and 

normalized elimination of the small component method,16 have been widely studied. The 

accuracy and computational costs of 2c Hamiltonians depend on the degree of elimination 

or separation of the negative-energy state. X2C17–21 and IOTC22 Hamiltonians, which 

exactly decouple positive- and negative-energy states by unitary transformation in one-

electron system, are proved to be equivalent to the 4c Dirac Hamiltonian under no-pair 

approximation23 that does not consider the explicit positron–electron coupling. Some of 

these one-electron Hamiltonians are available for many-electron system by considering the 

unitary transformation of the two-electron operator simultaneously.24–28  

When considering the expectation values in 2c theory, PCC of operators along the 

transformation of the Hamiltonian must be considered. The PCC based on the unitary 

transformation29 is explained here. The 4c Dirac Hamiltonian is separated into positive- 

and negative-energy states, +
2h and 2

−h , by block-diagonalization as follows:
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+
† D 2 2

4
2 2

−

 
  

 

0
0
h

U Η U
h

. (2.2.1) 

As mentioned above, X2C and IOTC Hamiltonians completely separate +
2h and 2

−h , thus 

the right- and left-hand sides of Eq. (2.2.1) are equivalent. +
2h is used as the electronic

Hamiltonian. The 2c electronic wavefunction +
2 is determined as the solution of Eq. 

(2.2.2): 

+
2 2 2 2

2 2 0 0
E

 + +

−

    
=    

    

0
0
h

h
. (2.2.2) 

Multiplying U from the left of both sides of Eq. (2.2.2), the following equation is obtained: 

D 2 2
4 0 0

E
 + +   

=   
   

Η U U . (2.2.3) 

Here, Eq. (2.2.3) is none other than Eq. (2.1.1). Therefore, the following relation between 

4c and 2c wavefunctions is established: 

2
4 0




+ 
=  

 
U . (2.2.4) 

The expectation values of arbitrary 4c operators X are represented as 

4 4X  = X , (2.2.5) 

where 

11 12

21 22

 
=  

 

X X
X

X X
. (2.2.6) 

According to Eqs. (2.2.4) and (2.2.5), the expectation values of 4c and 2c pictures are 

related by the following equation: 
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† 2
4 4 2

† †

11 12 2
2 † †

21 22

†
2 211

0
0

0
0

.


  




 

+

+

+

+

+ +

=

        =
        

 =  

X U XU

U XU U XU

U XU U XU

U XU

(2.2.7) 

Here, the pictures of operators are changed from 4c picture X to 2c picture [U†XU]11. The 

PCEs are occasionally not negligible in chemical and physical properties, thus PCC by the 

formula in the last line of Eq (2.2.7) is necessary. However, calculations that ignore the PC 

are practically performed by using X11 instead of [U†XU]11. PCE for the expectation value 

of X is defined as follows:  

†
2 2 2 11 211

   + + + +  − U XU X . (2.2.8) 

2.3 IOTC Hamiltonian 

As mentioned in Subsection 2.2, the 2c theory requires the comprehensive 

transformations that cover other operators as well as the one-electron Dirac Hamiltonian. 

This thesis uses IOTC Hamiltonian, one of the most accurate 2c Hamiltonian. This 

subsection explains the IOTC transformation of one-electron Dirac Hamiltonian, the 

extension of IOTC Hamiltonian to the two-electron operator, and treatment of density 

operator.  

2.3.1 One-electron operator 

IOTC transformation of the Dirac Hamiltonian is performed by a two-step unitary 

transformation, 

0 1=U U U . (2.3.1) 

The first step is the free-particle Foldy–Wouthuysen transformation, 
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2
0

2

K K
K K





 
=  

− 

1
1
B

U
B

, (2.3.2) 

where α, K, and B are represented as 

2 211 1, , , , 1
2 1
p

p
p p

e
K b b e p

c e e
 

+
= = =  = = +

+
B σ p , (2.3.3)

with the speed of light c and momentum operator p. U0 is defined to block-diagonalize 

Dirac Hamiltonian for free particle i.e., the electron is free from the external potential V (V 

= 0). When V is not equal to 0, the Dirac Hamiltonian is transformed as 

† D
1 0 4 0

2 2
2

2 2 2

,
2

K K c K K
K K c c K K

 

 

=

   
=    

−  − −   

1 1
1 1 1

H U Η U
B V σ p B

B σ p V B
 (2.3.4) 

by using U0 = U0
†. The unitary transformation U1 is defined to block-diagonalize H1 as 

follows: 

IOTC † 2 2
1 1 1

2 2

+

−

 
= =  

 

0
0
h

H U H U
h

. (2.3.5) 

The explicit formula of U1 is 

( ) ( )

( ) ( )

1/2 1/2† † † 1
2 2

1 1/2 1/2† 1 †
2 2

p

p

− −
−

− −
−

 + + 
 =
  − +  − +
 

1 1

1 1

YY YY Y σ p
U

YY σ p Y YY
. (2.3.6) 

Y is the operator that is determined by solving non-linear equation 

( )

( )

( )

( )

3 1

2 1 1

4

3 1 ,

p pe e pKb K p K bK

p K p K K K

pKb bKp Kb bK

Kb Kp K Kbp









−

− −

−

+ = −  

+   −

+ −  

+   −

Y Y V σ pVσ p

σ pVσ p Y Y V

V Y Y σ pVσ p

Y σ pVσ p V Y

(2.3.7) 

numerically. One-electron Hamiltonian 2
+h is represented by 

†
2
+ =h Ω GΩ , (2.3.8) 

with 
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( )
1/2†

2

−

= +1Ω Y Y , (2.3.9) 

and 

( )

( )

2 2
2

1

† 1

2
† 1 1 2 .

1 p

p b K K Kb bK

K bKp Kb p K

Kbp K Kp bK

p p K Kp pKb bKp
e









−

−

− −

= + +  

+ −  

+ −  

 
+ +   +  − 

1G V σ pVσ p

V σ pVσ p Y

Y V σ pVσ p

Y σ pVσ p V Y

(2.3.10) 

The 2c theory can consider the spin-free and spin-dependent terms, separately. 

Introducing the Dirac relation for two arbitrary vector operators A and B,  

( )( ) ( )i  =  +  σ A σ B A B σ A B , (2.3.11)

the Pauli matrices σ are separated:

( )i  =  +  σ pVσ p pV p σ pV p , (2.3.12)

where i represents the imaginary part. The first and second terms of the right-hand side of 

Eq. (2.3.12) represent the spin-free and spin-dependent terms, respectively. The remainder 

of this thesis deals with the spin-free term that does not involve σ. 

2.3.2 Two-electron operator 

This subsection describes the IOTC Hamiltonian for many-electron systems. Along 

the IOTC transformation for one-electron Hamiltonian, the picture of wavefunction is 

transformed into the 2c picture. Calculating two-electron term using electron-electron 

interactions such as Eqs. (2.1.3)–(2.1.5) generates the PCE because two-electron term is 

expressed as expectation values of the two-electron interaction operator. PCC is 

accomplished by considering the IOTC transformation of both one-electron Dirac 

Hamiltonian and electron-electron interaction operator simultaneously.  

Many-electron unitary transformation is approximated by a direct product of one-

electron unitary transformation U(i) as 
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 ( ) ( ) ( ), ,i j i j  U U U . (2.3.14) 

The one- and two-electron Hamiltonians are block-diagonalized into positive- and 

negative-energy states:  

 ( ) ( ) ( ) ( )† D 2 2
4 4

2 2

, , , , ,
i i j

i j i i j i j
+

−


   
+    

   
 

0
0
H

U H G U
H

, (2.3.15) 

where G4 represents the 4c two-electron interaction, such as the Coulomb, Gaunt, and Breit 

operators, and 2
+H   and 2

−H   are the positive- and negative-energy states, respectively. 

Positive-energy state is used as electronic Hamiltonian as follows: 

 ( ) ( )+
2 2 2 ,

i i j
i i j+ ++



 + H h g , (2.3.16) 

where 2
++g  is the two-particle electronic state. The electron-positron coupling terms, which 

are also obtained as a result of the unitary transformation, are nonzero, but are assumed to 

be negligible.27  

In this thesis, the Coulomb interaction is adopted as a two-electron operator. The 

explicit formula for the spin-free part of 2
++g  is given by 

 ( ) ( ) ( ) ( )sf sf1 sf2 sf3
2 2 2 2, , , ,i j i j i j i j= + +g g g g  (2.3.17) 

with 

 ( )sf1
2 2

1, i j j i
ij

i j
r

 
=  

  

1g M M M M , (2.3.18) 

 ( ) ( )sf2
2 2

1, , i j i i j i
ij

i j P i j
r

  
=   

    

1g d M p p M d , (2.3.19) 

and 

 ( )sf3
2 2

1, i j i j j i i j
ij

i j
r

  
=     

   

1g d d p p p p d d , (2.3.20) 

where  
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 ( )2K bp= +1M Y   (2.3.21) 

and  

 ( )1
2K b p −= −1d Y  . (2.3.22) 

P(i, j) is an operator that satisfies  

 ( , ) ( , ) ( , ) ( , )P i j O i j O i j O j i= +  (2.3.23) 

for an arbitrary two-electron operator, O(i, j). sf1
2g , sf2

2g , and sf3
2g  denote the Coulomb-like, 

Darwin-like, and specific spin-free interaction terms, respectively. The Coulomb-like term 

mainly corresponds to the electron repulsion, whereas the other two terms are higher-order 

relativistic terms. 

In practical calculations, a matrix transformation method that adopts the resolution of 

identity using the eigenvectors of p2,  

 1
k

k k  , (2.3.24) 

is applied30 because a direct evaluation of two-electron integrals for sf1
2g , sf2

2g , and sf3
2g  is 

difficult. Commonly, {k} are represented by the linear combination of PBFs for AOs {χ}. 

The explicit formulae of matrix representations of the TEIs for sf1
2g , sf2

2g , and sf3
2g  are 

sf1
2

21/ ,
a b c d

i a j b a b ij c d c i d j
k k k k

k k k k r k k k k

   

   

   

   =  1

g

M M M M

  (2.3.25) 
sf2
2

21/ ,
a b c d

i a j b a b i ij i c d c i d j
k k k k

k k k k r k k k k

   

   

   

   =  1

g

d M p p d M

  (2.3.26) 

and 
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sf3
2

21/ ,
a b c d

i a j b a b i j ij j i c d c i d j
k k k k

k k k k r k k k k

   

   

   

    =    1

g

d d p p p p d d

(2.3.27) 

where μ, ν, λ, and σ are the indices of AOs and a, b, c, and d are those of PBFs, respectively. 

For the calculation of the two-electron terms of the IOTC Hamiltonian, the evaluation of 

primitive integrals 21/a b ij c dk k r k k1  , 21/a b i ij i c dk k r k k1p p  , and 

21/a b i j ij j i c dk k r k k   1p p p p , and transformation of primitive integrals by matrix

elements i ak M  and i ak d , which are represented as Mμa and dμa, respectively, 

are required. The transformation is a time-consuming step in the calculation of the IOTC 

Hamiltonian.  

2.3.3 Density operator 

This subsection describes the PCC of electron density.31,32 DFT,33 which is widely used 

by users of computational chemistry, adopts an electron density ρ as a fundamental variable. 

According to the KS procedure,34 the total energy of DFT is expressed as 

( ) ( ) ( ) ( )  KS
XC,i i i j i j

i
E h i d d g i j E    = + +  r r r r , (2.3.28) 

with the i-th KS orbital φi and one-electron Hamiltonian h. The first term denotes the kinetic 

energy and interaction between electron density and external potential. The second term is 

the Coulomb interaction of electron density. Introducing φi into Eq. (2.3.28), the second 

term is evaluated by the expectation value of the two-electron operator, 

( ),i j i j
i j

g i j   


 , which is calculated by the same procedure in the wave-function 

theory. The third term represents the exchange-correlation term, which is a functional of ρ. 

ρ is represented as the expectation value of the density operator δ as follows: 
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( )

( ) ( )* .

P

P

  


  


   

 

=

=





r

r r
(2.3.29) 

The expansion of φi by a set of AOs {χμ} and MO coefficient cμi as 

i ic 


 =  , (2.3.30) 

and density matrix P, which is represented as 

*
i i

i
P c c  =  , (2.3.31) 

are introduced in Eq. (2.3.29). In nonrelativistic calculations, ρ is calculated by the product 

of AOs as the second line of Eq. (2.3.29). When extending DFT to the 2c theory, PCC of 

density operator is necessary besides the unitary transformation of one- and two-electron 

operators provided in the previous subsections.  

PCC of density operator is performed by the IOTC transformation as follows: 

† † 2
1 0 4 0 1

2

0
0


+

−

 
=  

 
1U U U U




. (2.3.32) 

The electronic state δ+

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )

( ) ( )

1/2† 2
2 2

1
2 2

† 1
2 2

1/2† 1 1 2 †
2 2

† †
2 2

1

1

[

]

K K Kb bK

K bKp Kb p K

Kpb K p K bK

p K Kp pKb bKp

  

  

  

  

 

−
+

−

−

−
− −

  − = + − +  − 

 + − −  − 

 + − −  − 

 +  −  + − +

 = − +  − 

r r r r 1 r r 1

r r 1 r r 1

r r 1 r r 1

r r 1 r r 1

r r 1 r r 1

Y Y σ p σ p

σ p σ p

Y σ p σ p

Y σ p σ p Y Y Y

M M d σ p σ pd



(2.3.33) 

is used as the density operator. The spin-free term of density operator is given by 

( ) ( ) ( )sf † †
2 2   − = − + − r r r r 1 r r 1M M d p pd , (2.3.34) 

eliminating the spin-dependent term from Eq. (2.3.33). The electron density at the spin-free 

level is represented as 
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 ( ) ( ) ( )sf † †
2 2P    



        = − + −  r r r 1 r r 1M M d p pd . 

  (2.3.35) 

Transforming integrals included in Eq. (2.3.35) from coordinate to momentum space, the 

first and second terms are respectively represented as 

 

( )

( )

†
2

†
2

† †

k k k k

k kk k k k k k
k k k k

k k k k k k k k

C M D M C

 

 

 

  

  
  

     

  

 −

      = −

=





r r 1

r r 1

M M

M M  (2.3.36) 

and 

 

( )

( )

†
2

†
2

† † .
k k k k

k kk k k k k k
k k k k

k k k k k k k k

C d d C

 

 

 

  

  



  

     

  

 − 

      = − 

=





r r 1

r r 1

d p pd

d p p d  (2.3.37) 

The matrix representation is given by  

 ( ) ( )sf † = +† †r PC M DM d Δd C . (2.3.38) 

The character of delta function leads to D and Δ respectively expressed as follows: 

 

( )

( ) ( ) ( )

( ) ( )

2

2

k k

k k

k k

D k k

c c

c c

   
 

   
 



  

 

 



 



 

  = −

  = −

=





r r 1

r r r 1 r

r r

 (2.3.39) 

and  

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )  ( ) 

2

2

2 2

.

k k

k k

k k

k k

Δ k k

c c i i

c c

c c

   
 

     
 

   
 



  

     

 

 



   



    
−



 

  = − 

  = −  −  − 

       = − −  −  −    

=  







r r

r r r

r r

r r 1

r r r 1 r

r r r 1 r r r r 1 r

r r

p p

  (2.3.40) 



19 

By using the following unitary-transformed basis function 

( )

( )

k k

k
k k

k k k k

c k k k

 

  


 

 





  =

 
 =  

 



 

r

r

M

M
(2.3.41) 

and 

( )

( ) ,

k k

k
k k

k k k k

c k k k

 

  


 

 





  = 

 
 =  

 



  r

r

r

d

d
(2.3.42) 

Eqs. (2.3.36) and (2.3.37) are rewritten as 

( ) ( ) ( )†
2         − =r r 1 r rM M (2.3.43) 

and 

( ) ( ) ( )†
2         −  =r r 1 r rd p pd ,  (2.3.44) 

respectively. The formation of electron density is also rewritten as 

( ) ( ) ( ) ( ) ( )sf P    


        = +
 r r r r r . (2.3.45)

This formula leads to the gradient of electron density as follows: 

( ) ( )  ( )  ( )  ( ) 

( )  ( )  ( )  ( ) 

sf

.

P

P

    


    


    

   

     =  + 
  

    +  + 
  





r r r

r r

r r r r r

r r r r
(2.3.46) 

The kinetic energy density τ is derived in the same manner: 

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2

2

1( )
2
1
2
1
2

1 .
2

i i i
i

P

P i i

P

  


  


  


   

  

  

  

= − 

  = − 

  = −  −  − 

  = −  − 









r r r 1

r r r 1 r

r r r 1 r

r r r 1 r

p p

p p
(2.3.47) 

Eq. (2.3.47) is rewritten as 
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 ( ) ( ) ( )2
1( )
2       =  − r r r r 1 r  (2.3.48) 

by replacing the integrals as  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2 2

2

d

d

.

 

 

   

 

  

  

     

  



−

   − 

   =  − 

       = −  −   −  

  = −  − 





r r r 1 r

r r r r 1 r

r r r 1 r r r r r 1 r

r r r 1 r

 (2.3.49) 

The spin-free term of PCC kinetic energy density is given by 

 ( ) ( ) ( ) ( )SF
1
2

P    


    +     =   +  
  r r r r . (2.3.50) 

The exchange-correlation integral is represented as  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

XC XC
2

XC
2

XC
2

XC
2

d

,

v  

 

 

 


  




  




  




  




  = −




  +   −




  +  − 



 
  +   −   

 r r r r 1 r

r r r 1 r

r r r 1 r

r r r 1 r

 (2.3.51) 

with exchange-correlation energy density εXC. This is calculated by the summation of 

weight wg at the grid point g as 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

XC XC
g 2

g

XC
2

XC
2

XC
2 .

g

g

g

g

v w  

 

 

 


  




  




  




  




  = −




  +   −




  +  − 



 
  +   −   

 r r r 1 r

r r r 1 r

r r r 1 r

r r r 1 r

 (2.3.52) 

PCC exchange-correlation integral is given by  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

XC XC
g g g g g

g

XC
g g g g

XC
g g g g

XC
g g g g .

v w    

   

   

   


   




   




   




   



     = +  

     +   + 
 

     +   + 
 

     +    +     

 r r r r

r r r r

r r r r

r r r r

(2.3.53) 

2.4 LUT scheme 

Although the IOTC Hamiltonian realizes high accuracy close to 4c Hamiltonian, the 

unitary transformation is a time-consuming step; the computational costs for one-electron, 

two-electron, and density operators scale as O(n3), O(n5), and O(n3) with respect to the 

number of PBFs n. Efficient techniques to accelerate the unitary transformation have been 

proposed based on the locality of relativistic effects.35–46 Nakai group has developed the 

LUT scheme based on the IOTC Hamiltonian.40–42 The concept of the LUT is similar to 

that of the diagonal local approximation method for the one-electron system proposed by 

Peng and Reiher.43,44 These efficient schemes have extended to calculations of molecular 

properties, such as molecular gradient47–50 and NMR shielding constant.51,52 This 

subsection briefly describes the LUT scheme. 

LUT introduces two approximations. First, total transformation is approximated as 

direct summation of the transformations for subsystems: 

A B C     U U U U , (2.4.1)

where A, B, C, … represent the subsystems that do not intersect each other. Individual atoms 

are usually adopted as subsystems. This approximation is based on the locality of 

relativistic interactions that the relativistic effect is dominant in each atom rather than 

bonding regions. Second, the locality of the unitary transformation is introduced. When the 

distance between an electron and a subsystem is long, the relativistic effects of the kinetic 
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energy, nucleus–electron, and electron–electron interactions become small. Consequently, 

the operators behave as they do in the nonrelativistic case. Thus, the electronic components 

of the Hamiltonian, 2
+H , are presented as 

 ( ) ( )+ LUT LUT
2 2 2 ,

i i j
i i j



 + H h g , (2.4.2) 

where LUT
2h  and LUT

2g  are the approximated electronic components of the 2c one- and two-

electron operators, respectively. Here, the matrix elements of LUT
2h  with {χμ} are expressed 

as  

 

( )

( )

( )

+ Nonrel.

LUT NR + + NR
2

,

NR NR

,

, ,

A B
A C

C A

A B A B
A B C AB

C A B

A B
C AB

C

A B

A B R

A B R

 

   

 

 

    

  

+






+ + =




= + + +  

 +  








T V V

h T V V V

T V

 

  (2.4.3) 

where V is the nucleus–electron attraction, and T is the kinetic energy. Superscripts Nonrel. 

and + denote the nonrelativistic and relativistic operators, respectively. Note that T+ 

depends on the positions of nuclei because T+ is constructed by the operator that includes 

the nuclear-electron attraction potential. The relativistic effects are dominant for T+ in the 

atomic domains and for V+ in the atomic domains and interatomic interactions with the 

nearest-neighbor atoms.  is the cutoff threshold for the distance, RAB, between atoms A and 

B. The matrix representation of LUT
2g  is written as 

 
( )2LUT

2

, (one-center)

1/ (multicenter).

A A A A

A B C D
ij

i j

r

   

   

   

   
   

   

++


= 



g
g  (2.4.4) 

Only the one-center TEIs are treated by relativistic transformation. The effects of 

relativistic transformations in multi-center TEIs are ignored. 

The concept of LUT is also applied to the density operator.32 Unitary transformation 
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of the density operator is performed when two AOs in the integral in Eqs. (2.3.36) and 

(2.3.37) belong to the same atom. Otherwise, nonrelativistic density operator is adopted. 

The electron density based on the LUT scheme is as follows: 

( ) ( )

( ) ( )

( ) ( )

LUT LUT

+

Nonrel. ,

i i
i

A B
i i

i

A B
i i

i

c c A B

c c A B

   


   


  

 

  





= −

  − =


= 
 − 









r r r

r r

r r



 (2.4.5) 

where 

( ) ( ) ( )Nonrel.A B A B
       − =r r r r . (2.4.6) 

The time-consuming step of the LUT scheme is reduced to the unitary transformation 

in subsystems, i.e. the individual atoms. Therefore, the computational costs of LUT for one- 

and two-electron and density operators are of the scale O(n). 
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Chapter 3  Acceleration of TEIs utilizing matrix 

decomposition* 

3.1 Introduction 

The relativistic treatment of two-electron interactions is computationally expensive 

because it requires evaluations of several types of TEIs and their relativistic transformations, 

such as Eqs. (2.3.25)–(2.3.27). As mentioned in the Chapter 2, the computational costs of 

the two-electron term of the IOTC Hamiltonian, for example, are of scale O(N5), where N 

represents the number of PBFs owing to the unitary transformation of the TEIs. To perform 

transformation efficiently, several methods have been proposed that focus on the locality 

of the relativistic effect1–9 including the LUT scheme. The LUT scheme achieves linear-

scaling computational time with respect to the molecular size within chemical accuracy.  

This chapter focuses on the acceleration technique for evaluation of TEIs. In the 

framework of nonrelativistic calculations, CD was utilized for the efficient evaluation of 

ERIs, taking advantage of the symmetric characteristics of the ERI matrix.10–13 Here, ERIs, 

which are one of the TEIs, represent Coulomb interaction by the inverse of the distance 

between two electrons. TEIs other than ERIs also arise in the relativistic calculations due 

to the relativistic treatment of two-electron operators. Practically, TEIs are approximated 

as an incomplete CD integral matrix. A related idea was adopted for density fitting, also 

called the resolution-of-identity approximation, which describes the TEIs as an inner 

projection in terms of an auxiliary basis.14,15 The CD approach is more general because it 

does not require an auxiliary basis. Furthermore, errors caused by the approximation can 

be controlled by the CD threshold. So far, the CD scheme has been applied to various 

* Reproduced from the article by Chinami Takashima and Hiromi Nakai, Chem. Phys. Lett. 828,
140714 (2023).
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wavefunction theories such as the Hartree–Fock,12,13 MP2,12,16 CC,17 complete active 

space-self-consistent field methods,18,19 and multiconfiguration second-order perturbation 

theory.20 The CD method has also been utilized in property calculations such as that of 

molecular gradient,18,21,22 polarizability,23–25 optical rotation,24,26 and chemical shift with 

the use of gauge-including atomic orbitals.27–29 Highly efficient techniques for the CD of 

ERIs have been developed realizing drastically reduction of the computational costs 

compared to earlier algorithms.30,31 

This chapter examined the application of CD for evaluating TEIs using the IOTC 

Hamiltonian. Furthermore, extension to the lower-upper decomposition (LUD) was 

investigated to accommodate the asymmetric TEI matrices. The remainder of this chapter 

is organized as follows: Section 3.2 summarizes the algorithm and implementation of the 

proposed method. Section 3.3 presents the results of numerical assessments. Finally, 

concluding remarks are presented in Section 3.4. 

 

3.2 Algorithm and implementation 

3.2.1 Symmetry of TEIs in the two-electron IOTC Hamiltonian 

Generally, two kinds of notation for TEIs are used. One is the Dirac notation: 

 ( ) ( ) ( ) ( )* * ( , )i j i j i jd d g i j              =   r r r r r r , (3.2.1) 

and the other is the Mulliken notation:  

 ( ) ( ) ( ) ( ) ( )* * ( , )i j i j i jd d g i j              =   r r r r r r . (3.2.2) 

This chapter uses the Mulliken notation. The matrix representations of TEIs for two-

electron IOTC Hamiltonian provided in Eqs. (2.3.25)–(2.3.27) are rewritten in Mulliken 

notation as follows: 

( )

( )( )( )( )( )

sf1

21/ ,
a b c d

i a i b a b ij c d c j d j
k k k k

k k k k r k k k k
   

   

   

   =  1M M M M
 (3.2.3) 
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( )

( )( )( )( )( )

sf2

21/ ,
a b c d

i a i b a b i ij i c d c j d j
k k k k

k k k k r k k k k
   

   

   

   =  1d d p p M M

(3.2.4) 

and 

( )

( )( )( )( )( )

sf3

21/ ,
a b c d

i a i b a b i j ij j i c d c j d j
k k k k

k k k k r k k k k

   

   

   

    =    1d d p p p p d d

(3.2.5) 

where superscripts sf1, sf2, and sf3 represent the TEIs of the Coulomb-like sf1
2g , Darwin-

like sf2
2g  , and specific spin-free interaction terms sf3

2g , respectively. The angular

momentum of the PBFs in ( )21/a b i ij i c dk k r k k1p p  and ( )21/a b i j ij j i c dk k r k k   1p p p p

increased or decreased by one and two from the original value, respectively, because 

i
jj r= − p . Note that the symmetry of three TEIs is difference, namely, ( )

sf2
        is 

asymmetric for two electrons i and j, that is 

( ) ( )               , (3.2.6) 

while ( )
sf1

       and ( )
sf3

        are symmetric for i and j, i.e., 

( ) ( )              = . (3.2.7) 

3.2.2 Matrix decomposition of TEIs 

This section explains the methodology of CD and LUD of the primitive integrals in 

Eqs. (3.2.3)–(3.2.7). Consider the matrix representation of TEI V as  

( )

( ) ( ) ( ) ( )

( )

,

* *

( , )

( , )

| .

ab cd a b c d

i j a i c j b i d j

V k k g i j k k

d d k k g i j k k

ab cd

=

=

=

  r r r r r r (3.2.8) 
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The two indices, ab and cd in Eq. (3.2.8), are called the overlap distribution. Throughout 

this chapter, the overlap distribution is represented by capital letters I, J, K, …. 

When V is a symmetric matrix, it can be decomposed by the Cholesky procedure into 

a product of the lower triangular matrix L and its transpose as follows: 

T=V LL . (3.2.9)

Note that V must be factorized by a pivoting procedure with truncation because V is not a 

positive-definite but a positive-semidefinite matrix and occasionally has a negative definite 

part due to the round off errors on computers.12 The formulas of the diagonal and off-

diagonal elements of L are given by

1/21
2

1

J

JJ JJ JK
K

L V L
−

=

 
= − 

 
 (3.2.10) 

and 

( )
1

1
/ 1, 2, ,

J

IJ IJ IK JK JJ
K

L V L L L I J J M
−

=

 
= − = + + 

 
 , (3.2.11) 

respectively, where M is the number of rows in L. 

Figure 3.1(a) shows the algorithm used to obtain the elements of L. In the first step, all 

diagonal elements of the primitive integrals are calculated, followed by the selection of the 

largest diagonal element VJJ in the J-th iteration as the pivot. Using VJJ, the diagonal 

element L is calculated as follows: 

JJ JJL V . (3.2.12) 

Next, the partial column of V is obtained, followed by the calculation of the corresponding 

partial column of L using Eq. (3.2.11). Then, stored diagonal elements are updated as  

( )2 1, 2, ,II II IJV V L I J J M − = + + . (3.2.13) 

If the largest element among the updated diagonal terms is smaller than the threshold δ, the 

procedure is terminated. The subsequent elements of V are discarded. The number of 

iteration steps at the end of the procedure R becomes the rank of the truncated L, which 
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corresponds to the number of columns. The matrix elements of V are approximated by the 

matrix elements of L as follows: 

 , , ,

R

ab cd ab K cd K
K

V L L  . (3.2.14) 

As the absolute value of the error with the approximation in Eq. (3.2.14) becomes less than 

δ in all elements of V from the Cauchy–Schwarz inequality,12 δ determines the accuracy of 

the decomposition. CD is applicable to both ( )21/a b ij c dk k r k k1   and 

( )21/a b i j ij j i c dk k r k k   1p p p p . 

For the asymmetric matrix ( )21/a b i ij i c dk k r k k1p p  , LUD, which is a more general 

case of CD, is applied. The LUD is the factorization of a square matrix into the product of 

a lower triangular matrix L and an upper triangular matrix U. In this study, the diagonal 

elements of L were set to one. Subsequently, the off-diagonal elements of L and U are 

evaluated as 

 
1

1
( )

J

IJ IJ IJ KJ JJ
K

L V L U U I J
−

=

 
= −  

 
   (3.2.15) 

and 

 
1

1
( )

I

IJ IJ IK KJ
K

U V L U I J
−

=

= −  . (3.2.16) 

Figure 3.1(b) shows the algorithm used to obtain elements of L and U. As shown in Eq. 

(3.2.15), the calculation of the off-diagonal elements of L requires a division by the 

diagonal elements of U. A pivoting procedure was necessary to prevent division by zero. 

Although partial pivoting that permutates either rows or columns is generally sufficient, 

this study adopts full pivoting to introduce truncation by a threshold, as in the case of CD. 

The first step is the calculation of all diagonal elements of V, followed by selecting the 

largest diagonal element in VJJ in the J-th iteration as the pivot and calculating the partial 

column and row of V. Using VJJ, the corresponding diagonal elements of U are obtained by  

 JJ JJU V . (3.2.17) 
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The corresponding columns and rows of L and U are computed using the elements 

calculated in V and UJJ using Eqs. (3.2.15) and (3.2.16). Then, stored diagonal elements 

are updated as follows: 

( )2 1, 2, ,II II IJV V L I J J M − = + + . (3.2.18) 

The procedure is continued until the largest element in the updated diagonal elements 

becomes smaller than the threshold δ. The number of iterations at the end of the procedure, 

R, becomes the rank of the truncated L and U, which corresponds to the number of columns 

or rows. The matrix element of V is approximated by elements of L and U as follows: 

, , ,

R

ab cd ab K K cd
K

V L U  . (3.2.18) 

Since the Cauchy–Schwarz inequality does not hold good, the relationship between δ and 

the error in approximated TEIs is unclear, different from the case of CD. 

3.2.3 IOTC transformation of L and U and construction of the Fock matrix 

The transformations of L and U by M and d, corresponding to Eqs. (3.2.3)–(3.2.5), are 

performed analogously as the transformation of AO to MO of the Cholesky matrices.12 The 

general expressions of elements in the transformed matrices are  

trans
, , ( , )K a b ab K

a b
L X X L X M d  = = (3.2.19)

for symmetric terms, and 

trans
, ,K a b ab K

a b
L d d L  =  (3.2.20) 

and 

trans
, ,K a b ab K

a b
U M M U  =  (3.2.21) 

for an asymmetric term. The two-electron term of Fock matrix G is constructed from the 

transformed matrices Ltrans and Utrans in a self-consistent field (SCF) calculation. For 
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simplicity, superscript “trans” is omitted hereafter. The matrix element of G for the 

restricted Hartree–Fock method is expressed as 

( ) ( )* 2 | |i i
i

G C C          


        = −  , (3.2.22)

with MO coefficients C, where the first and second terms are Coulomb and exchange terms, 

respectively. As the TEIs are given by the sum of ( )
sf1

       , ( )
sf2

       , and 

( )
sf3

        in the two-electron IOTC method, G can be divided into three terms: 

sf1 sf2 sf3
vG G G G   = + + . (3.2.23) 

sf1G and sf3G were constructed using L as follows: The Coulomb term sf ,CxG (x = 1, 3) is 

given by 

sf ,C *
, ,

1

, ,
1

, ,
1

2

2

2

R
x

i i K K
i K

R

K K
K

R

K K
K

G C C L L

P L L

L P L

    


  


  


=

=

=



=

=

 

 

 

(3.2.24) 

and the exchange term sf ,ExG (x = 1, 3) by 

sf ,E *
, ,

1

, ,
1

.

R
x

i K K i
i K

R

K K
K

G C L L C

L L

    



 

=

=

 
 −  

 

 = −

 


(3.2.25) 

Here, L’ is MO transformed L given by 

, ,K i K
i

L C L  


 =  . (3.2.26) 

Similarly, sf2G was constructed using L and U. The Coulomb term sf2,CG and exchange term 

sf2,EG are given by 
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sf2,C *
, , , ,

1 1

, , , ,
1 1

, , , ,
1

2

2

2

R R

i i K K K K
i K K

R R

K K K K
K K

R

K K K K
K

G C C L U L U

P L U L U

L P U U P L

      


    


     
 

= =

= =

=

 
 + 

 

 
= + 

 

 
= + 

 

  

  

  

(3.2.25)

and 

sf2,E *
, , , ,

1 1

, , , ,
1

R R
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with Eq. (3.2.26) and MO transformed U, 

, ,K i K
i

U C U  


 =  . (3.2.27) 
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Figure 3.1. Algorithms of (a) CD and (b) LUD of TEIs. 
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3.3 Numerical assessments 

3.3.1 Computational details 

This section assesses the performance of the present methods, which were 

implemented to the modified version of GAMESS program.32 The threshold for the integral 

screenings and the cutoffs in the reference calculations, namely the conventional two-

electron IOTC Hamiltonian, was set to 1.0×10−12. Numerical tests were performed for noble 

gas atoms, Ne, Ar, Kr, Xe, and Rn; hydrogen halides, HX (X = F, Cl, Br, I, and At); and 

hydrogen bromide chains, (HBr)n (n = 2–4). The intramolecular distances of H–X were 

fixed at 0.970, 1.350, 1.500, 1.710, and 1.729 Å for H–F, H–Cl, H–Br, H–I, and H–At, 

respectively. The intermolecular distances in (HBr)n were 2.53 Å. The H–Br–H and Br–H–

Br bond angles were 120° and 180°, respectively. As basis sets, Sapporo-DZP-201233,34 for 

H to Ar and Sapporo-DKH3-DZP-201235 for Br to Rn were adopted in an uncontracted 

manner. In addition, the uncontracted Sapporo-XZP-2012 (X = D, T, or Q) basis sets with 

and without diffuse functions33–35 for boron, including the s, p, d, f, and g functions, were 

used to examine the accuracy of the approximated integral values. For example, the sizes 

of the Sapporo-XZP-2012 basis sets for boron are summarized in Table 3.1.  

Table 3.1. Sizes of the Sapporo-XZP-2012 (X = D, T, or Q) basis sets without/with diffuse 

functions for the boron element. The abbreviations, primitive functions, total number of 

primitive basis functions (PBFs) are listed. 

abbreviation functions # of PBFs 
Sapporo-DZP-2012 DZP (9s5p2d) 36 
Sapporo-DZP-2012 + diffuse DZP+d (10s6p3d) 46 
Sapporo-TZP-2012 TZP (10s6p3d2f) 66 
Sapporo-TZP-2012 + diffuse TZP+d (11s7p4d3f) 86 
Sapporo-QZP-2012 QZP (12s8p4d3f2g) 120 
Sapporo-QZP-2012 + diffuse QZP+d (13s9p5d4f3g) 155 
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3.3.2 Accuracy 

The maximal absolute error (MaxAE) εmax of approximated primitive TEIs was defined 

as 

( )

( )

sf
, , 2

max
sf

, , 2

max ( 1,3)

max ( 2).

R
x

ab K cd K a b c d
K

R
x

ab K K cd a b c d
K

L L k k k k x

L U k k k k x



− =


= 

 − =







g

g
(3.3.1) 

The calculations were performed with δ = 10−4, 10−5, 10−6, 10−7, 10−8, and 10−9. Figure 3.2 

shows εmax in logarithms of (a) Coulomb-like, (b) specific spin-free interaction, and (c) 

Darwin-like terms in the calculations of the B atom by six types of basis sets. MaxAE εmax 

depends mainly on δ and slightly on the type of basis function in the Coulomb-like and 

specific spin-free interaction terms and is close to the δ value. The results confirmed that 

the errors in the approximated primitive integrals in symmetric terms for electrons i and j 

are well controlled below a threshold value, not only for the s, p, and d functions but also 

for high angular momentum, such as the f and g functions. The MaxAEs εmax in the Darwin-

like term shown in Figure 3.2(c) change with the type of basis function. Although the values 

of εmax fluctuate around ten times larger than δ, the approximation errors by LUD TEI 

matrix in the asymmetric term are still controllable by δ. Figures 3.3 and 3.4 show the 

results of BH and BH3. As shown in Figures 3.3 and 3.4 , the errors of primitive integrals 

in molecules can be also controlled by δ. 

Table 3.2 shows the total energy deviations (in hartree) obtained by the present method 

with δ = 10−4, 10−5, 10−6, 10−7, 10−8, and 10−9 and the conventional two-electron IOTC 

Hamiltonian for noble gas atoms and HX and (HBr)n molecules. Total energies obtained by 

using the conventional two-electron IOTC Hamiltonian are shown in parentheses. As δ 

becomes smaller, the absolute values of energy deviations tend to decrease: within 1 

μhartree at δ ≤ 10−6 for Ne, Ae, Xe, HF, HCl, and HI, and δ ≤ 10−7 for Kr, Rn, (HBr)n (n = 

1-4), and HAt. Although heavier-element systems appear to require a smaller threshold for
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accuracy, the total energies converge to those of the conventional two-electron IOTC 

Hamiltonian, even for the fifth- and sixth-row elements, where relativistic effects are 

essential. The energies of the molecules converged to those obtained using the conventional 

two-electron IOTC Hamiltonian, as in the case of atoms.  
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Table 3.2. Deviations in total energy (in hartree) obtained by the present method with 

various thresholds and the conventional two-electron IOTC Hamiltonian of noble gas 

atoms and HX molecules. The total energies obtained by the conventional method are 

shown in parentheses. 

δ Ne Ar Kr Xe Rn 
10−4 −0.00000039 0.00008967 0.00005084 0.00044503 0.00124063 
10−5 0.00000115 −0.00000142 −0.00002169 0.00003563 0.00008069 
10−6 −0.00000001 −0.00000080 0.00000128 −0.00000096 −0.00000702
10−7 0.00000002 0.00000018 0.00000008 0.00000041 −0.00000080
10−8 0.00000001 0.00000000 0.00000000 0.00000002 −0.00000001
10−9 0.00000000 0.00000000 0.00000000 0.00000001 0.00000000

(−128.62675909) (−528.63333826) (−2788.73419359) (−7445.50196731) (−23573.33393888) 

δ HF HCl HBr HI HAt 

10−4 0.00000094 −0.00011900 0.00005708 0.00024925 0.00110454 
10−5 0.00000257 −0.00000983 −0.00002045 0.00003160 0.00008063 
10−6 0.00000016 −0.00000027 0.00000110 −0.00000083 −0.00000669
10−7 0.00000000 0.00000008 0.00000008 0.00000028 0.00000014
10−8 0.00000000 0.00000000 0.00000000 0.00000002 0.00000006
10−9 0.00000000 0.00000000 0.00000000 0.00000000 0.00000004

(−100.10822894) (−461.51776971) (−2605.51611690) (−7115.13559819) (−22883.68495904) 

δ (HBr)2 (HBr)3 (HBr)4 
10−4 0.00011314 0.00017337 0.00023010 
10−5 −0.00004381 −0.00006181 −0.00008607
10−6 0.00000212 0.00000307 0.00000406
10−7 0.00000022 0.00000029 0.00000039
10−8 0.00000006 0.00000001 0.00000002
10−9 0.00000005 0.00000000 0.00000000

(−5211.03068965) (−7816.54595192) (−10422.06140162) 
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3.3.3 Efficiency 

Figure 3.5 provides the ratios (in %) of the number of nonzero elements in Ltrans and 

Utrans obtained by the present method with the threshold δ of 10−9 and 10−4 with respect to 

those of nonzero IOTC-transformed TEIs of noble gas atoms and HX molecules. The ratios 

of the Coulomb-like term (Figures 3.5(a) and (b)), specific spin-free interaction term 

(Figures 3.5(c) and (d)), and Darwin-like term (Figures 3.5(e) and (f)) decreased rapidly 

when a higher-row element was included. The results of two threshold δ indicate the same 

tendency although smaller δ obviously gives larger ratios. The ratios of the Coulomb-like 

term are from ~74% (~75%) for Ne (HF) to ~15% (~12%) for Rn (HAt) at the threshold δ 

of 10−9. The ratios of the specific spin-free interaction term, which are ~90% (~145%) for 

He (HF) and ~15% (~33%) for Rn (HAt) at the threshold δ of 10−9 are larger than those of 

the Coulomb-like term. As shown in Table 3.3, the number of nonzero IOTC-transformed 

TEIs of the specific spin-free interaction term is smaller than that of the Coulomb-like term, 

whereas the numbers of primitive TEIs of both terms shown in Table 3.4 are similar. The 

integral values of the specific spin-free interaction term become small because of the 

transformation matrix d shown in Eq. (3.2.4), some of which were removed. Consequently, 

the ratios of the Coulomb-like and specific spin-free interaction terms indicate difference 

tendencies. Some of the ratios the specific spin-free interaction term exceeded 100%, 

because values that are close to zero are obtained as elements in matrix L along the 

decomposition and the TEI matrix is commonly sparse due to zero integrals derived from 

symmetry and cutting the small integrals off with the threshold of 10−12. Similar trends can 

be seen in the other terms. The ratios of the Darwin-like term in the range ~76% (~77%) 

for Ne (HF) to ~32% (~27%) for Rn (HAt) at the threshold δ of 10−9 are larger than those 

of the Coulomb-like term and smaller than those of the specific spin-free interaction term 

except for Kr, Xe, and Rn. The Darwin-like term is transformed by matrix d only for either 

electrons i or j whereas the specific spin-free interaction term is transformed for both 
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electrons i and j. Thus, the integral values and number of TEIs of the Darwin-like term are 

not as small as those of the specific spin-free interaction term. Comparing the results of 

noble gas atoms (Figures 3.5(a), (c), and (e)) with those of HX (Figures 3.5(b), (d), and (f)), 

the ratios of HX are larger than those of same row noble gas atoms in specific spin-free 

interaction terms and indicate values comparable to those of the same row noble gas atoms 

in Coulomb- and Darwin-like terms. 

Figure 3.6 shows the system-size dependence of the number of nonzero IOTC-

transformed TEIs obtained by the conventional two-electron IOTC Hamiltonian and Ltrans 

and Utrans obtained by the present method with a threshold δ of 10−4 and 10−9 in the 

calculations for (HBr)n (n = 1‒4). The theoretical value of the number of TEIs Ntot, which 

is of the scale O(n4), is also shown. Figures 3.6(a)‒(c) show the results for the Coulomb-

like, specific spin-free interaction, and Darwin-like terms, respectively. The conventional 

values were reduced from Ntot owing to the sparsity of the TEI matrix. The order of scaling 

obtained by δ of 10−4 and 10−9 are close in the three terms. Although the order of scaling of 

the present method is close to that of the conventional two-electron IOTC Hamiltonian, the 

prefactor is small in the present calculation. Comparing the three terms, the scaling of the 

specific spin-free interaction term was smaller than that of the other terms. The interatomic 

two-electron interactions decrease as n increases. This is presumed to be more apparent in 

the specific spin-free interaction term than in the other two terms, because the integral 

values of the specific spin-free interaction term are particularly small owing to the 

transformation matrix d. 
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Figure 3.5. Ratios (in %) of the number of nonzero elements in Ltrans (and Utrans) obtained 

by the present method with the threshold δ of 10−4 and 10−9 with respect to the number of 

nonzero IOTC-transformed TEIs obtained by the conventional two-electron IOTC 

Hamiltonian. (a) and (b) are the Coulomb-like term, (c) and (d) are the specific spin-free 

interaction term, and (e) and (f) are the Darwin-like term. (a), (c), and (e) correspond to the 

results of noble gas atoms, and (b), (d), and (f) correspond to those of HX.  
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Table 3.3. Numbers of nonzero elements in IOTC-transformed matrix of decomposition Ltrans and 

Utrans in Coulomb-like, specific spin-free interaction, and Darwin-like terms of rare gas atoms and 

HX molecules at δ = 10−4, 10−5, 10−6, 10−7, 10−8, and 10−9. The values of Darwin-like term are the 

sum of the number of elements in both Ltrans and Utrans. Numbers of nonzero IOTC-transformed TEIs 

of three terms in conventional two-electron IOTC method (Conv.) are also provided. The ratios 

(in %) of the number of the matrix elements with respect to those of the TEIs obtained by 

conventional method are shown in parentheses. 

δ Conv. 10−4 10−5 10−6 10−7 10−8 10−9 
Coulomb-like term 

Ne 15789 
(45.1) 

17664 
(50.4) 

20028 
(57.2) 

20961 
(59.9) 

23559 
(67.3) 

26058 
(74.4) 35017 

Ar 96322 
(22.8) 

112075 
(26.5) 

121264 
(28.7) 

131881 
(31.2) 

153416 
(36.3) 

160612 
(38.0) 422360 

Kr 677040 
(12.0) 

757184 
(13.4) 

851248 
(15.0) 

951252 
(16.8) 

1050799 
(18.6) 

1124672 
(19.9) 5664546 

Xe 1229052 
(8.3) 

1462917 
(9.8) 

1630273 
(11.0) 

1789384 
(12.0) 

1989041 
(13.4) 

2187131 
(14.7) 14868055 

Rn 4455411 
(4.8) 

5196566 
(5.5) 

5815672 
(6.2) 

6245963 
(6.7) 

6900661 
(7.4) 

7535490 
(8.0) 93705998 

HF 138423 
(34.2) 

170618 
(42.1) 

200126 
(49.4) 

227838 
(56.3) 

269664 
(66.6) 

302672 
(74.7) 404982 

HCl 576077 
(19.0) 

707286 
(23.3) 

808627 
(26.7) 

922766 
(30.4) 

1091963 
(36.0) 

1209056 
(39.9) 3030641 

HBr 3279725 
(11.3) 

3780121 
(13.1) 

4392629 
(15.2) 

5037458 
(17.4) 

5731761 
(19.8) 

6264012 
(21.7) 28906285 

HI 5496114 
(8.9) 

6665404 
(10.8) 

7654041 
(12.4) 

8837628 
(14.4) 

9932460 
(16.1) 

11135588 
(18.1) 61514129 

HAt 17809902 
(6.3) 

21085681 
(7.5) 

24309949 
(8.6) 

26919672 
(9.6) 

30182603 
(10.7) 

33708228 
(12.0) 281424214 
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Table 3.3. Continued. 

δ Conv. 10−4 10−5 10−6 10−7 10−8 10−9 
Specific spin-free interaction term 

Ne 24780 
(72.9) 

27185 
(79.9) 

28269 
(83.1) 

29921 
(88.0) 

30824 
(90.6) 

31423 
(92.4) 34008 

Ar 158270 
(40.1) 

170817 
(43.3) 

184451 
(46.7) 

195164 
(49.4) 

202012 
(51.2) 

211398 
(53.6) 394743 

Kr 1191961 
(23.9) 

1260724 
(25.3) 

1345312 
(27.0) 

1406927 
(28.2) 

1485381 
(29.8) 

1540737 
(30.9) 4988808 

Xe 2173670 
(17.8) 

2392659 
(19.6) 

2541174 
(20.8) 

2697593 
(22.1) 

2819918 
(23.1) 

2900945 
(23.8) 12207402 

Rn 8084872 
(11.7) 

8819089 
(12.8) 

9264146 
(13.4) 

9761345 
(14.1) 

10172415 
(14.7) 

10500933 
(15.2) 69044978 

HF 230958 
(102.1) 

259380 
(114.6) 

285291 
(126.1) 

305836 
(135.2) 

320749 
(141.8) 

328351 
(145.1) 226262 

HCl 885688 
(88.6) 

1021331 
(102.1) 

1116418 
(111.6) 

1234809 
(123.5) 

1290837 
(129.1) 

1341390 
(134.1) 1000017 

HBr 4530312 
(55.8) 

4983957 
(61.4) 

5331683 
(65.6) 

5696429 
(70.1) 

5982670 
(73.7) 

6164088 
(75.9) 8123034 

HI 7127766 
(41.8) 

7960831 
(46.7) 

8642605 
(50.7) 

9182323 
(53.9) 

9525013 
(55.9) 

9751475 
(57.2) 17049341 

HAt 22212311 
(24.7) 

24624117 
(27.4) 

26471206 
(29.5) 

27880083 
(31.0) 

28895522 
(32.2) 

29978978 
(33.4) 89817474 

Darwin-like term 

Ne 40190 
(58.0) 

44232 
(63.8) 

47123 
(68.0) 

50171 
(72.3) 

51830 
(74.7) 

52609 
(75.9) 69345 

Ar 258250 
(30.9) 

288646 
(34.5) 

313684 
(37.5) 

335771 
(40.1) 

349656 
(41.8) 

365477 
(43.7) 836522 

Kr 2608623 
(24.0) 

3036120 
(27.9) 

3442301 
(31.6) 

3726979 
(34.2) 

4045384 
(37.2) 

4309909 
(39.6) 10884910 

Xe 6737919 
(24.3) 

7536157 
(27.1) 

8649549 
(31.2) 

9535564 
(34.4) 

10536315 
(38.0) 

11447007 
(41.2) 27758065 

Rn 27151393 
(18.1) 

31329272 
(20.9) 

34762452 
(23.1) 

38727309 
(25.8) 

43208337 
(28.8) 

47707058 
(31.8) 150207029 

HF 353780 
(46.9) 

406021 
(53.8) 

463471 
(61.4) 

503314 
(66.7) 

542358 
(71.9) 

579813 
(76.9) 754394 

HCl 1423292 
(31.4) 

1652834 
(36.4) 

1875082 
(41.3) 

2088286 
(46.0) 

2232160 
(49.2) 

2398667 
(52.8) 4538638 

HBr 8590990 
(24.7) 

9870869 
(28.3) 

11121681 
(31.9) 

12147470 
(34.9) 

13104040 
(37.6) 

14063359 
(40.4) 34837789 

HI 15333118 
(22.5) 

17519908 
(25.7) 

19524909 
(28.7) 

21662651 
(31.8) 

23685269 
(34.8) 

25456335 
(37.4) 68059524 

HAt 52640165 
(16.1) 

59660186 
(18.2) 

65840035 
(20.1) 

72645848 
(22.2) 

80464979 
(24.6) 

88052790 
(26.9) 327132645 
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Table 3.4. Numbers of nonzero elements in primitive decomposed matrix L and U in Coulomb-like, 

specific spin-free interaction, and Darwin-like terms of rare gas atoms and HX molecules at δ = 10−4, 

10−5, 10−6, 10−7, 10−8, and 10−9. The values of Darwin-like term are the sum of the number of 

elements in both L and U. Numbers of nonzero primitive TEIs of three terms in conventional two-

electron IOTC method (Conv.) are also provided. The ratios (in %) of the number of the matrix 

elements with respect to those of the TEIs obtained by conventional method are shown in 

parentheses. 

δ Conv. 10−4 10−5 10−6 10−7 10−8 10−9 
Coulomb-like term 

Ne 14022 
(40.4) 

15477 
(44.6) 

17234 
(49.7) 

17912 
(51.6) 

19741 
(56.9) 

21407 
(61.7) 34680 

Ar 90598 
(21.6) 

104339 
(24.9) 

112175 
(26.8) 

121122 
(28.9) 

138916 
(33.2) 

144697 
(34.5) 418878 

Kr 646428 
(11.9) 

720903 
(13.2) 

807882 
(14.8) 

899537 
(16.5) 

989857 
(18.2) 

1056569 
(19.4) 5448734 

Xe 1174736 
(8.5) 

1396377 
(10.0) 

1554455 
(11.2) 

1703829 
(12.3) 

1890327 
(13.6) 

2074072 
(14.9) 13899535 

Rn 4230703 
(5.7) 

4941149 
(6.7) 

5530667 
(7.5) 

5938758 
(8.1) 

6558264 
(8.9) 

7161183 
(9.7) 73647760 

HF 125587 
(40.6) 

151546 
(48.9) 

174226 
(56.3) 

194567 
(62.8) 

223627 
(72.2) 

245390 
(79.2) 309698 

HCl 545083 
(29.7) 

661631 
(36.1) 

749636 
(40.9) 

846817 
(46.2) 

987747 
(53.9) 

1083064 
(59.1) 1832317 

HBr 3181618 
(23.6) 

3650278 
(27.1) 

4219850 
(31.3) 

4814514 
(35.7) 

5449548 
(40.4) 

5934420 
(44.0) 13487230 

HI 5501984 
(19.6) 

6624477 
(23.6) 

7565527 
(26.9) 

8690995 
(30.9) 

9732789 
(34.6) 

10873892 
(38.7) 28126582 

HAt 18585711 
(15.6) 

21848698 
(18.4) 

25032846 
(21.1) 

27592610 
(23.2) 

30875068 
(26.0) 

34405513 
(29.0) 118824602 
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Table 3.4 Continued. 

δ Conv. 10−4 10−5 10−6 10−7 10−8 10−9 
Specific spin-free interaction term 

Ne 20779 
(59.9) 

22506 
(64.9) 

23304 
(67.2) 

24687 
(71.2) 

25788 
(74.4) 

26334 
(75.9) 34680 

Ar 144347 
(34.4) 

155319 
(37.0) 

167543 
(39.9) 

177440 
(42.3) 

185396 
(44.2) 

197717 
(47.1) 419457 

Kr 1140123 
(20.5) 

1208835 
(21.7) 

1295478 
(23.3) 

1365872 
(24.5) 

1458265 
(26.2) 

1541523 
(27.7) 5563725 

Xe 2111208 
(14.7) 

2338327 
(16.3) 

2496507 
(17.4) 

2693034 
(18.8) 

2883970 
(20.1) 

3022709 
(21.1) 14332579 

Rn 7983054 
(10.3) 

8748192 
(11.2) 

9224909 
(11.9) 

9822326 
(12.6) 

10328096 
(13.3) 

10767893 
(13.8) 77819134 

HF 204931 
(64.6) 

230442 
(72.6) 

256210 
(80.8) 

280307 
(88.4) 

302731 
(95.4) 

318562 
(100.4) 317263 

HCl 889177 
(46.0) 

1030137 
(53.2) 

1135311 
(58.7) 

1292937 
(66.8) 

1396708 
(72.2) 

1518381 
(78.5) 1935035 

HBr 5567285 
(35.4) 

6193826 
(39.4) 

6762927 
(43.1) 

7442512 
(47.4) 

8185274 
(52.1) 

8867267 
(56.5) 15706915 

HI 9856670 
(28.6) 

11145142 
(32.3) 

12390845 
(35.9) 

13577159 
(39.4) 

14924269 
(43.3) 

16047803 
(46.5) 34482580 

HAt 34974628 
(21.8) 

38864910 
(24.2) 

42123521 
(26.2) 

45899740 
(28.6) 

49000454 
(30.5) 

52386973 
(32.6) 160750582 

Darwin-like term 

Ne 34960 
(50.9) 

38327 
(55.8) 

41063 
(59.8) 

44321 
(64.5) 

46252 
(67.3) 

47092 
(68.6) 68694 

Ar 228344 
(27.3) 

255091 
(30.5) 

280124 
(33.5) 

304197 
(36.4) 

321583 
(38.5) 

340813 
(40.8) 836322 

Kr 1721370 
(15.6) 

1933289 
(17.5) 

2126163 
(19.2) 

2279635 
(20.6) 

2446159 
(22.1) 

2571905 
(23.3) 11060802 

Xe 3383617 
(11.9) 

3672909 
(12.9) 

4045407 
(14.2) 

4330998 
(15.2) 

4691392 
(16.5) 

5026489 
(17.7) 28434054 

Rn 12103686 
(7.9) 

13443174 
(8.8) 

14498819 
(9.4) 

15701935 
(10.2) 

17026505 
(11.1) 

18348701 
(12.0) 153430713 

HF 319323 
(51.1) 

369017 
(59.1) 

430838 
(68.9) 

477383 
(76.4) 

523144 
(83.7) 

564011 
(90.3) 624919 

HCl 1381376 
(36.9) 

1620737 
(43.3) 

1873213 
(50.0) 

2143575 
(57.2) 

2335799 
(62.4) 

2553272 
(68.2) 3745797 

HBr 8428881 
(29.4) 

9706642 
(33.8) 

11040375 
(38.5) 

12241185 
(42.7) 

13403926 
(46.7) 

14525587 
(50.6) 28693772 

HI 15529288 
(25.5) 

17605797 
(28.9) 

19661621 
(32.2) 

21941334 
(36.0) 

24254823 
(39.8) 

26276514 
(43.1) 60968887 

HAt 53038788 
(19.8) 

59519882 
(22.2) 

65472756 
(24.5) 

72136351 
(27.0) 

80151936 
(29.9) 

87879663 
(32.8) 267637211 
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3.4 Conclusion 

This chapter demonstrated matrix decomposition techniques for TEIs using the spin-

free two-electron IOTC Hamiltonian. CD was used for the symmetric TEI matrices. The 

LUD, which is a general CD method, was applied to the asymmetric TEI matrix.  

The performance of the proposed method was numerically assessed for atoms and 

molecules, including heavy elements. The validity of the matrix decomposition techniques 

of TEI was confirmed for relativistic method. The proposed methods can significantly 

reduce the storage requirements of TEIs without loss of accuracy. Examination of the 

approximated primitive TEIs showed that the errors of the symmetric TEI matrix were less 

than the decomposition threshold, and the errors of the asymmetric TEI matrix could be 

controlled by the decomposition threshold despite error fluctuations. The total energy 

deviations tended to decrease with smaller decomposition thresholds. Total energies of both 

atoms and molecules were obtained with an error of less than 1 μhartree when the 

decomposition threshold is 10−7. This indicated that the decomposition threshold 

determined the accuracy of the proposed method. The efficiency assessments showed that 

the number of nonzero elements in the decomposed matrix became considerably smaller 

than that of nonzero IOTC-transformed TEIs obtained by the conventional two-electron 

IOTC Hamiltonian especially in the fifth and sixth row elements. The advantage of matrix 

decomposition increases importantly when calculating heavy elements where relativistic 

effects are inevitable. The computational costs of the present methods have small prefactors 

for the system-size dependence in (HBr)n calculations. The efficiencies were different 

among three terms. The characters of the three primitive TEIs are different because the 

angular momenta of PBFs in the Darwin-like and specific spin-free interaction terms 

increase or decrease compared to those of Coulomb-like term due to the momentum 

operator. Transformation matrices M and d also have different characters. Therefore, it 

implies that the differences due to the angular momenta and the character of the IOTC 



52 

transformation matrices influence the efficiencies of each term in the proposed method. 
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Chapter 4 Database of TEIs in 2c relativistic 

calculations† 

 
4.1 Introduction 

In this chapter, the author modifies the LUT scheme for two-electron operators based 

on the IOTC Hamiltonian to realize more efficient calculations. The scheme utilizes a 

database containing atomic (one-center) unitary transformed TEIs calculated in advance. 

The novel algorithm for the unitary transformation of TEIs in terms of elements is 

implemented. This chapter is organized as follows. Section 4.2 summarizes the algorithm 

and implementation of the proposed scheme. In Sec. 4.3, numerical assessments are 

presented. Finally, concluding remarks are provided in Sec. 4.4. 

 

4.2 Algorithm and implementation 

This section describes the algorithm for constructing and utilizing the database of 

relativistically transformed one-center TEIs. In Eq. (2.4.4), the one-center transformation 

of TEIs is a time-consuming process for small- and medium-sized molecules. The reason 

is that the computational cost per atom scales as O(NP
5) with respect to the number of PBFs 

per atom (or element), NP, because the resolution of identity approximation is used.1 Thus, 

the total computational cost scales as O(NA*NP
5), where NA is the number of atoms. Note 

that the total computational cost without the LUT technique scales as O(NA
5*NP

5).  

Here, the author should recall that the one-center transformed TEIs depend only on the 

atom species, i.e., the element, when the same basis set is used for the same element. Thus, 

one can reuse the same one-center transformed TEIs for different atoms of the same element, 

 
† Reproduced from the article by Chinami Takashima, Junji Seino, and Hiromi Nakai, Chem. Phys. 
Lett. 777, 138691 (2021). 
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for example, by saving to and reading from a database disk. Consequently, the 

computational cost can be reduced to O(NE*NP
5), where NE is the number of elements. This 

discussion is based on the assumption that NP is the same for each atom and each element. 

Furthermore, if one assumes that the number of atoms of each element, nA
E, is constant, NA 

becomes nA
E*NE. Therefore, the acceleration ratio is estimated to be nA

E.  

Based on these considerations, the author developed a new algorithm in order to use a 

database. The algorithm was implemented by modifying the GAMESS program.2 Figure 

4.1 shows the conventional and proposed database-assisted algorithms for the two-electron 

LUT-IOTC Hamiltonian assuming a disk-based SCF procedure. The proposed algorithm 

for the direct SCF procedure can be extended straightforwardly. As shown in Figure 4.1, 

four steps are involved: Step I for the construction of the database of one-center 

transformed TEIs, Step Ⅱ for the calculations and transformations of the TEIs, and Steps 

Ⅲ and IV for the construction and diagonalization of the Fock matrix, respectively.  

The conventional algorithm starts at Step Ⅱ, because Step I is unique to the proposed 

algorithm. In Step Ⅱ of the conventional algorithm, the multi-center nonrelativistic TEIs 

are calculated and stored in a disk file. Then, the one-center relativistic TEIs are calculated 

and stored on the disk in each atomic loop, where the one-center TEIs without operators d 

and M in Eqs. (2.3.18)–(2.3.20) of Chapter 2 are evaluated; subsequently, Eqs. (2.3.18)–

(2.3.20) are transformed by introducing operators d and M. In Step Ⅲ, the skeleton Fock 

matrix elements are constructed by multiplying the nonrelativistic TEIs with the density 

matrix elements and are added to the core matrix, which is obtained from the one-electron 

relativistic integrals. Furthermore, another set of skeleton Fock matrix elements is obtained 

by using the one-center relativistic TEIs and the density matrix elements, and these 

elements are added to the aforementioned Fock matrix in each atomic loop. In Step Ⅳ, the 

Fock matrix is diagonalized.  

In the proposed database-assisted algorithm, one-center relativistic TEIs are calculated 
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and stored to a database disk, as shown in Step Ⅰ. Thus, the atomic loop for the calculations 

and transformations of one-center relativistic TEIs is not needed in Step Ⅱ. Consequently, 

only the multi-center nonrelativistic TEIs are evaluated. The difference from the 

conventional algorithm in Step Ⅲ is the addition of the contributions of the one-center 

relativistic TEIs to the Fock matrix. First, the one-center relativistic TEIs are read from the 

database disk in an element loop. Then, the TEIs are assigned to the corresponding indices 

of the atomic orbitals of a molecule, and their contributions are added to the Fock matrix 

in an atomic loop. Note that the element loop should be changed if different basis sets are 

used for the same element. No modification of Step Ⅳ is needed. The proposed database-

assisted method gives the molecular energies that are equivalent to those given by the 

conventional method. Furthermore, the present method is simply available not only for the 

HF method but also for DFT, which applies to one-center relativistic TEIs for the Coulomb 

and the HF exchange terms. Although the present method can be extended 

straightforwardly to the nonrelativistic calculation, the high efficiency is not expected 

because the computational costs for multi-center TEIs are dominant. 
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Figure 4.1. Comparison between the conventional and proposed database-assisted 

algorithms for the two-electron LUT-IOTC Hamiltonian. Step Ⅰ: construction of a database 

of unitary transformed TEIs, Step Ⅱ: calculation and transformation of TEIs, Step Ⅲ: 

construction of Fock matrix, and Step Ⅳ: diagonalization of Fock matrix 

Conventional algorithm Proposed database-assisted algorithm
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4.3 Numerical assessments 

4.3.1 Computational details 

This section details the performance of the proposed algorithm. The spin-free LUT-

IOTC Hamiltonian for one- and two-electron term3, which is denoted as 1e2eLUT-IOTC 

in this chapter, are applied. The cutoff distance for the one-electron LUT was set to 3.5 Å. 

The implementations and computations reported in this chapter were based on the modified 

version of the GAMESS program. All calculations were performed on a single core of a 

Quad Core Intel® Xeon® Gold 5122 central processing unit (CPU) at 3.60 GHz. 

Numerical tests were performed for one-dimensional hydrogen halide chains (HX)n (X 

= Cl and At, n = 1, 2, …, 50), three-dimensional gold clusters Aun (n = 1, 2, …, 20), Ir(ppy)3, 

cycloheptatrienyl trimetal sandwich complex Pt3(C7H7)2(HCN)3, and PtCl2(NH3)2. The 

author choses the systems in the following reasons. (HX)n and Aun are suitable to examine 

the size dependence of computational cost. (HX)n are quasi-one-dimensional models, 

which consist of heavy and light atoms alternately. This system is the simplest and 

illustrates the effectiveness of LUT. Aun are three-dimensional models of heavy element 

aggregation, which are more complicated. Ir(ppy)3, PtCl2(NH3)2, and PtCl2(NH3)2 are test 

molecules for actual three-dimensional calculations with various combinations of heavy 

and light atoms. Ir(ppy)3 provides the effect in one heavy atom and several light atoms. 

Pt3(C7H7)2(HCN)3 gives the effect in three heavy and several light atoms. PtCl2(NH3)2 

consists of one heavy atom and several light atoms with the smaller size than Ir(ppy)3. Their 

geometries are illustrated in Figure 4.2. The structures, except for (HX)n and Aun, were 

optimized by using the Hartree–Fock method, Stuttgart–Dresden pseudo potential4 for Pt 

and Ir, and 6-31G(d,p) basis sets5,6 for the other atoms. The restricted Hartree–Fock method 

was adopted for the single-point energy calculations. Two categories of basis sets were used, 

namely, segmented and general contractions, for the all-electron Gaussian-type functions 

for elements of the first to sixth periods. The basis sets adopted for segmented contraction 
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were the Sapporo(-DKH3)-XZP-2012 (X = D or T) basis set with/without diffuse 

functions7–9 and the Jorge-XZP-DKH (X = D or T) basis set.10 The basis sets for general 

contraction were the ANO-DK3 basis set11 and the Dyall double- (dz) or triple-zeta (tz) 

basis set.12 To evaluate the multi-center TEIs, the default option in the GAMESS program 

was adopted, which includes a combination of the rotated axis code, ERIC precursor 

transfer equation code, and Rys quadrature. 

Figure 4.2. Geometries of (HX)10 (X = Cl and At), Au10, Ir(ppy)3, Pt3(C7H7)2(HCN)3, and 

PtCl2(NH3)2. 
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4.3.2 Constructed database 

This subsection describes the constructed database. Table 4.1 summarizes the required 

disk space in megabytes (MB) for the one-center relativistic TEIs obtained using Eq. (2.4.4) 

in Chapter 2 and several contracted basis sets. The value represents the sum of the disk 

space for all the elements shown in the element column. The disk space depends on the 

number of contracted basis functions. Thus, the disk space values for general contraction 

are smaller than those for segmented contraction. The maxima are 3209.26 MB for Jorge-

TZP-DKH (segmented contraction) and 152.41 MB for Dyall dz (general contraction). 

Therefore, most current computer resources can easily store the database. 

Table 4.1. Required disk space (in MB) of one-center relativistic TEIs for five segmented 

and three general-contracted basis sets. 

Basis set Element Disk space [MB] 
Segmented contraction 

Sapporo(-DKH3)-DZP-2012 H-Rn 1051.99 
Sapporo(-DKH3)-DZP-2012+diffuse H-Rn 2990.12 
Sapporo(-DKH3)-TZP-2012 H-Ba, Hf-Rn 1759.80 
Jorge-DZP-DKH H-Lr 920.71 
Jorge-TZP-DKH H-Lr 3209.26 

General contraction 
ANO-DK3 H-Rn 53.77 
Dyall dz K-Lr 152.41 
Dyall tz K-Xe, Ba-Rn 56.17 
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4.3.3 Efficiency 

This subsection describes the system-size dependence of the CPU time required for the 

transformation of the TEIs in the 1e2eLUT-IOTC calculations. Figure 4.3 illustrates the 

results for (a) (HCl)n (n = 1, 2, …, 50) and (b) (HAt)n (n = 1, 2, …, 30). Here, the Sapporo(-

DKH3)-DZP-2012 basis set was employed. The results for the 1e2eLUT-IOTC 

Hamiltonian based on the conventional and proposed database-assisted algorithms are 

shown. For comparison, the results for 1e2eIOTC without the LUT are also plotted. Here, 

n is shown on the horizontal axis. The vertical axis represents the CPU time in seconds. For 

(HCl)n, the CPU time required for the 1e2eIOTC Hamiltonian scales as n4.72. The scaling 

is close to the theoretical scaling, which is O(NA
5*NP

5), because n is proportional to the 

product of the number of atoms (NA) and the number of primitive functions (NP). For the 

conventional 1e2eLUT-IOTC Hamiltonian, the CPU time scales as n0.99, which is almost 

the same as the theoretical scaling, O(NA*NP
5). Here, n is proportional to NA and constant 

with respect to NP. The proposed 1e2eLUT-IOTC Hamiltonian scales as 0.00, which is also 

the same as the theoretical scaling, O(NE*NP
5), because NE and NP are constant with respect 

to n. In large molecules, 1e2eLUT-IOTC requires significantly less CPU time than 

1e2eIOTC when both algorithms are used. Here, the acceleration ratio, rAcc, are defined as 

Acc Conv Prop/r t t= , (4.3.1)

where tConv and tProp are the CPU times required for the conventional and proposed 

1e2eLUT-IOTC Hamiltonians, respectively. The ratios are plotted in Figure 4.3. Here, tProp 

includes the time required to construct the database in Step Ⅰ. Thus, rAcc corresponds to n, 

i.e., nA
E, as defined in Sec. 4.2. In the actual calculations, the CPU time required for the

transformation of the TEIs using the proposed algorithm becomes zero because Step Ⅰ is 

not needed.  

The results for (HAt)n are similar to those for (HCl)n, although the prefactor is larger. 
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Note that the calculations of (HAt)2 and larger using 1e2eIOTC were difficult in the current 

computing environment. 

Figure 4.4 presents the system-size dependence of the acceleration ratio, rAcc, [Eq. 

(4.3.1)] for the total CPU time required for the HF calculations of one-dimensional (HAt)n 

and three-dimensional Aun. Note that rAcc does not correspond to nA
E because tConv and tProp 

include the computational times required for all steps. For small and medium-sized 

molecules, the acceleration ratio is large and decreases monotonically because the 

transformations of the TEIs are dominant. By contrast, for large molecules, the calculation 

of the TEIs or SCF is dominant because the transformation of the TEIs exhibits linear 

scaling. The slope of rAcc for (HAt)n is different from that for Aun because the number of 

nonzero multi-center TEIs for (HAt)n increases slowly owing to screening by the Schwarz 

inequality.  

Figure 4.5 shows the memory size in MB required to save the one-center TEIs using 

the conventional and proposed 1e2eLUT-IOTC Hamiltonians for Aun. For the conventional 

algorithm, the scaling is O(n1.00) because the one-center TEIs for each atom are stored. Thus, 

the memory size required for large systems containing hundreds of heavy atoms becomes 

very large. For the proposed database-assisted algorithm, the scaling is O(n0.00) because the 

TEIs for an atom are stored once for each basis set. The required memory size is 

approximately 10 MB. Thus, even for large molecules, the in-core method, which stores 

the TEIs in memory, can be adopted to reduce the number of times the disk is loaded during 

the SCF procedure. 
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Figure 4.3. System-size dependence of the CPU time (in s) for transformation of TEIs in 

(a) (HCl)n and (b) (HAt)n calculated using the 1e2eIOTC and 1e2eLUT-IOTC Hamiltonians

based on the conventional and proposed database-assisted algorithms. Acceleration ratio 

rAcc is also plotted. 
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Figure 4.4. Acceleration ratio rAcc for total CPU time t required for HF calculations of 

(HAt)n and Aun. 

 

Figure 4.5. Memory size (in MB) required to save one-center TEIs in the 1e2eLUT-IOTC 

Hamiltonian using the conventional and proposed database-assisted algorithms for Aun. 
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4.3.4 Application to metal complexes 

This subsection details the computational time required for Ir(ppy)3 and 

Pt3(C7H7)2(HCN)3 molecules. Table 4.2 summarizes the CPU time (in seconds) of the four 

steps in the HF calculations: the one-electron integral (OEI) and the initial guess calculated 

using the extended Hückel method in a minimal basis sets used in a default option of 

GAMESS, TEI, and SCF procedure. The total CPU time is also shown. The OEI and TEI 

include the calculations and transformations of the integrals. The nonrelativistic 

Hamiltonian and the conventional and proposed 1e2eLUT-IOTC Hamiltonians were used. 

The wall-clock time is shown in parentheses, and the bottom row shows the number of SCF 

cycles. For all the methods, the times required for the TEI and SCF procedures are the 

bottlenecks in the entire calculation. In the nonrelativistic Hamiltonian, the times required 

for the OEI and TEI are less than those in the conventional 1e2eLUT-IOTC Hamiltonian 

for both molecules because the transformations are also performed in 1e2eLUT-IOTC. The 

time required for the SCF calculation for Ir(ppy)3 is more than that in 1e2eLUT-IOTC 

because the nonrelativistic Hamiltonian requires more SCF cycles. The proposed 1e2eLUT-

IOTC Hamiltonian differs from the conventional one only in the TEI step. The CPU times 

required for the TEI for Ir(ppy)3 and Pt3(C7H7)2(HCN)3 are reduced from 1492.73 and 

2095.54 s for the conventional 1e2eLUT-IOTC Hamiltonian to 1175.37 and 1160.93 s for 

the proposed one, respectively. The acceleration ratio, rAcc, for the entire calculation is 1.09 

for Ir(ppy)3 and 1.25 for Pt3(C7H7)2(HCN)3. These results are quantitatively consistent with 

the theoretical estimates in Sec. 4.2 because the nA
E values for heavy elements are one and 

three Ir(ppy)3 and Pt3(C7H7)2(HCN)3, respectively. 
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4.3.5 Basis set dependence of computational cost 

This subsection explains the basis-set dependence of the total CPU time at the HF level for 

PtCl2(NH3)2. Table 4.3 summarizes the numbers of PBFs and AOs for Pt and the other 

elements, the total CPU time, and the acceleration ratio. The adopted basis sets are the same 

as those in Table 4.1. For the Dyall dz and tz basis sets, the ANO-DK3 basis set was used 

for light elements such as H, N, and Cl. The results for the conventional and proposed 

database-assisted 1e2eLUT-IOTC Hamiltonians are shown. As reported in the previous 

subsection, the time-consuming steps are the calculations and transformations of the TEIs 

and the SCF procedure. The times required for the calculations of the multi-center TEIs 

and the SCF procedure depend primarily on the number of AOs in an entire molecule. By 

contrast, the time required for the transformations of the one-center TEIs depends on the 

number of PBFs in heavy elements. Thus, in segmented contraction, the total time for the 

proposed 1e2eLUT-IOTC Hamiltonian is related to the number of AOs for all elements. 

However, the difference between the conventional and proposed 1e2eLUT-IOTC 

Hamiltonians is related to the number of AOs for Pt. The acceleration ratio, rAcc, [Eq. 

(4.3.1)] is large; the maximum and minimum values are 9.07 for Sapporo(-DKH3)-DZP-

2012 and 1.97 for Jorge-TZP-DKH, respectively. The general contracted basis sets require 

a longer total CPU time than the segmented contracted basis sets because the algorithm for 

multi-center TEIs was not optimized for general contraction. The other trends are the same 

as those of the segmented contracted basis sets. 
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Table 4.3. Basis-set dependence of the CPU time (in s) for HF calculations in the 1e2eLUT-

IOTC Hamiltonian for PtCl2(NH3)2 using the conventional (Conv.) and proposed database-

assisted (Prop.) algorithms. The numbers of PBFs and AOs for Pt and the other elements 

and the acceleration ratio, rAcc, are also tabulated. 

# of PBFs # of AOs Total time [s] 
rAcc 

Pt Other Pt Other Conv. Prop. 
Segmented contraction 

 Sapporo(-DKH3)-
DZP-2012 262 288 76 126 282.25 31.11 9.07 

 Sapporo(-DKH3)-
DZP-2012+diffuse 282 352 96 190 519.52 114.80 4.53 

 Sapporo(-DKH3)-
TZP-2012 305 528 115 308 1038.44 316.15 3.28 

 Jorge-DZP-DKH 170 192 73 112 54.00 12.05 4.48 
 Jorge-TZP-DKH 198 332 99 252 219.59 111.24 1.97 

General contraction 
 ANO-DK3 286 206 46 34 412.14 136.53 3.02 
 Dyall dz 233 206 49 34 226.57 104.41 2.17 
 Dyall tz 292 206 49 34 523.88 189.89 2.76 
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4.4 Conclusion 

In this chapter, the author provided an efficient scheme for the LUT method using an 

element loop and a one-center relativistic TEI database. The basic idea of the present 

scheme was originated from the fact that the relativistic effect in the one-center TEIs, which 

is dominant in all the TEIs, depends only on a combination of an element and a basis set. 

The author implemented the scheme for the 1e2eIOTC Hamiltonian with a spin-free 

formalism.  

The previous LUT scheme using an atomic loop reduced the computational scale from 

O(NA
5*NP

5) to O(NA*NP
5) theoretically, where NA and NP were the number of atoms and 

that of primitive basis functions per atom (or element), respectively. On the contrary, the 

present LUT scheme using an element loop achieved the computational scale from 

O(NE*NP
5), where NE was the number of elements. Namely, the previous and present 

schemes correspond to the linear- and zero-scalings with respect to the system size, 

respectively. It should be noticed that the data-base assisted algorithm can be accomplished 

by using the element-loop scheme.  

The efficiency of the present database-assisted algorithm was numerically assessed for 

hydrogen halide chains, (HX)n (X = Cl and At), Aun, Ir(ppy)3, Pt3(C7H7)2(HCN)3, and 

PtCl2(NH3)2. The computational time and required memory size for the proposed algorithm 

were confirmed to be smaller than those for the previous algorithm. 
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Chapter 5 RS-DFT with IOTC Hamiltonian‡ 

5.1 Introduction 

The KS-DFT1 is one of the most popular methods for performing quantum chemical 

calculations because it ensures optimum balance between accuracy and computational costs. 

RS-DFT,2 which separates two-electron interactions into long- and short-range parts, is an 

extension of the KS-DFT. The RS-DFT utilizes the wave function theory to improve the 

KS-DFT from the perspective of a strong-correlation system3,4 and weak intermolecular 

interactions.5,6 The LC-DFT,7–24 which incorporates long-range interactions by introducing 

range separation to exchange functionals, is also commonly used. The LC-DFT provides 

more adequate descriptions of the vdW interaction,25 excitation spectra,9 optical response 

properties,26 and orbital energies.27  

For the calculations of heavy element systems, the range-separation method was 

extended to the framework of the 4c relativistic theory, which is the fundamental approach 

to describe relativistic effects in quantum chemistry.28–31 In terms of 2c theory, the one-

electron regular approximation32,33 and normalized elimination of the small component34 

Hamiltonians were extended to the range-separation method by combination with the LC-

DFT. 

In this chapter, the range separation method is introduced to the IOTC Hamiltonian in 

the framework of the LC-DFT by implementing range-separated terms of two-electron 

operators resulting from their IOTC transformation. The LUT scheme is also applied. The 

remainder of this chapter is organized as follows. In Section 5.2, the author explains the 

theoretical aspects of range separation of TEIs in the two-electron IOTC Hamiltonian and 

‡ Reprinted with permission from the article by Chinami Takashima and Hiromi Nakai, 
https://doi.org/10.1021/acs.jctc.3c01102. Copyright 2024 American Chemical Society. 
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LUT scheme. Section 5.3 presents the computational details of this chapter. Section 5.4 

presents the numerical assessment of the present method, followed by Section 5.5, which 

delineates the conclusion of this chapter. 

5.2 Theory and implementation 

5.2.1 LC-DFT based on the IOTC Hamiltonian 

This subsection explains the derivation of the energy expression of LC-DFT by using 

the IOTC Hamiltonian. The derivation is started with the 4c Hamiltonian. The LC method 

treats long-range exchange interaction lr
XE as HFx integrals.7 The two-electron operator is 

separated into the short-range and long-range terms as 

C C,sr C,lr
4 4 4= +G G G , (5.2.1) 

where the short-range term C,sr
4G  adopts the complementary error function 

( )
( )C,sr

4 4

1 erf
, ij

ij

r
i j

r
−

= 1G , (5.2.2) 

and the long-range term C,lr
4G  employs the error function 

( )
( )C,lr

4 4

erf
, ij

ij

r
i j

r


= 1G . (5.2.3) 

Here, μ is a range-separation parameter that determines the ratio of short- and long-range 

terms. Using C,lr
4G , lr

XE is calculated as  

( ) ( ) ( ) ( ) ( )lr C,lr
X 1 2 1 2 4 1 2

1 1

1 1,2
2

N N

i j j i
i j

E d d     

= =

= −  r r r r r rG . (5.2.4) 

Short-range HFx integral sr
XE used in LC-DFT, such as ωB97X series,18,19 LC-ωPBE,13

CAM,10 and orbital-specific hybrid functional24 is also calculated with respect to C,sr
4G  in 

the same manner as in Eq. (5.2.4). 
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To adopt a two-electron IOTC Hamiltonian for a range-separated operator, unitary 

transformations in Eq. (2.3.14) are performed on C,sr
4G  and C,lr

4G . Here, replacing 1 ijr  in 

Eqs. (2.3.18)-(2.3.20) by ( )( )1 erf ij ijr r−   and ( )erf ij ijr r   yields the short- and long-

range parts of sf
2g , respectively. The explicit expressions for range separation of sf

2g  are as 

follows:  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

sf sf,sr sf,lr
2 2 2

sf1,sr sf1,lr sf2,sr sf2,lr sf3,sr sf3,lr
2 2 2 2 2 2

, , ,

, , , , , , ,

i j i j i j

i j i j i j i j i j i j

= +

= + + + +

g g g

g g g + g g g

  (5.2.5) 

where 

 ( )
( )sf1,sr

2 2

1 erf
, ij

i j j i
ij

r
i j

r
 −

=  
  

1g M M M M , (5.2.6) 

 ( )
( )sf1,lr

2 2

erf
, ij

i j j i
ij

r
i j

r
 

=  
  

1g M M M M , (5.2.7) 

 ( ) ( )
( )sf2,sr

2 2

1 erf
, , ij

i j i i j i
ij

r
i j P i j

r
  −

 =  
    

1g d M p p M d , (5.2.8) 

 ( ) ( )
( )sf2,lr

2 2

erf
, , ij

i j i i j i
ij

r
i j P i j

r
  

 =  
    

1g d M p p M d , (5.2.9) 

 ( )
( )sf3,sr

2 2

1 erf
, ij

i j i j j i j i
ij

r
i j

r
  −

  =  
    

1g d d p p p p d d , (5.2.10) 

and 

 ( )
( )sf3,lr

2 2

erf
, ij

i j i j j i j i
ij

r
i j

r
  

  =  
    

1g d d p p p p d d . (5.2.11) 

lr
XE  and sr

XE  are calculated as using Eqs. (5.2.12) and (5.2.13), respectively. 

 ( ) ( ) ( ) ( ) ( )lr sf,lr
X 1 2 1 2 2 1 2

1 1

1 1,2
2

N N

i j j i
i j

E d d     

= =

= −  r r r r r rg  (5.2.12) 
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 ( ) ( ) ( ) ( ) ( )sr sf,sr
X 1 2 1 2 2 1 2

1 1

1 1,2
2

N N

i j j i
i j

E d d     

= =

= −  r r r r r rg  (5.2.13) 

As described in Chapter 2, LUT scheme for two-electron Hamiltonian only treats one-

center, i.e., atomic-center TEIs by the relativistic operator and the others are calculated as 

nonrelativistic TEIs. Similarly, the TEIs of the range-separated two-electron operator 

consist of one-center TEIs of sf,lr
2g  or sf,sr

2g  and multicenter TEIs of nonrelativistic operators 

( )12 12erf r r  or ( )( )12 121 erf r r− . 

 

5.2.2 TEIs of range-separated two-electron operators in IOTC Hamiltonian 

This subsection describes the implementation of the range-separated two-electron 

terms in the IOTC Hamiltonian. The evaluation method reported by Seino et al.35 was 

extended. Based on the expansion of φi by {χμ} (Eq. (2.3.30) in Chapter2), the AO-based 

TEIs with respect to sf ,lr
2

xg  (x =1, 2, and 3), 

( ) ( ) ( ) ( ) ( )sf ,lr sf ,lr
2 1 2 1 2 2 1 21,2x xd d               =   r r r r r rg g , (5.2.14) 

are calculated to obtain lr
XE . The matrix representations of the TEIs for sf ,lr

2
xg  are 

( )

sf1,lr
2

1 2 12 12 2 1 2erf ,
a b c d

a b a b c d c d
k k k k

k k k k r r k k k k

   

   

   

    =  1

g

M M M M
  

  (5.2.15) 

( )

sf2,lr
2

1 2 1 12 12 2 1 1 2erf ,
a b c d

a b a b c d c d
k k k k

k k k k r r k k k k

   

   

   

    =  1

g

d M p p d M

  (5.2.16) 

and 

( )

sf3,lr
2

1 2 1 2 12 12 2 2 1 1 2erf .
a b c d

a b a b c d c d
k k k k

k k k k r r k k k k

   

   

   

    =     1

g

d d p p p p d d
 

   (5.2.17) 
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Consequently, the TEIs that require explicit calculations are those that appear in Eqs. 

(5.2.15)-(5.2.17): 

( )12 12 2erfa b c dk k r r k k 1

( )1 12 12 2 1erfa b c dk k r r k k 1p p

( )1 2 12 12 2 2 1erfa b c dk k r r k k    1p p p p . 

The first integral can be evaluated using the same algorithm as that required for the ERIs 

in a nonrelativistic framework. Considering 
11 ip = − r , the second and third TEIs are

written as 

( ) ( )
1 11 12 12 2 1 12 12 2erf erfa b c d a b c dk k r r k k k k r r k k  =  r r1 1p p

(5.2.18) 

and 

( ) ( )
1 2 1 21 2 12 12 2 2 1 12 12 2erf erfa b c d a b c dk k r r k k k k r r k k   =       r r r r1 1p p p p .  

(5.2.19) 

When Gaussian-type functions are adopted as {k}, 
1 akr  is represented by Gaussian-type 

functions that have different angular momenta from those of ka. Thus, the TEIs on the right-

hand side of Eqs. (5.2.18) and (5.2.19) can be calculated using a similar algorithm as that 

used for ( )12 12 2erfa b c dk k r r k k 1 . 

Although the author reports the long-range part in the spin-free framework in this 

chapter, this method can be extended in a straightforward manner. Short-range HFx 

integrals sr
XE are obtained by the same procedure using operator sf ,sr

2
xg  (x =1, 2, and 3). In 

the case of double-hybrid functionals,36 TEIs in the perturbative second-order correlation 

part should be calculated using the operators in Eqs. (2.3.18)–(2.3.20). Similar formulae 

are applicable to spin-dependent component of long-range and short-range terms 
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(summarized in Appendix of this chapter). Spin-dependent calculations require variables 

such as the OEIs, TEIs, orbital coefficients, and Fock matrices to be treated in complex 

numbers. Although the program becomes considerably different from that in the 

nonrelativistic case, spin-dependent terms can be implemented using program packages 

like RAQET,37 which support complex variables. 

5.3 Numerical assessments 

5.3.1 Computational details 

This subsection explains the calculation conditions of the numerical assessments. The 

one-electron spin-free IOTC (two-electron nonrelativistic, denoted as 1eIOTC), one- and 

two-electron spin-free IOTC Hamiltonian (1e2eIOTC), and the LUT scheme for these 

(LUT-IOTC) were adopted. 1e2eIOTC indicates that the unitary transformation was 

applied to both full-range and range-separated two-electron operators, i.e., 1/rij and 

( )erf ij ijr r , respectively. The spin-free (LUT-)IOTC transformation of density operator,

δsf for the IOTC Hamiltonian and δLUT for the LUT-IOTC Hamiltonian was also considered. 

The cutoff distance τ for the one-electron LUT was set to 3.5 Å. Nonrelativistic, IOTC, and 

LUT-IOTC calculations were performed using the modified version of the GAMESS 

program.38 As the 4c DFT, the spin-free Dirac–Coulomb (SFDC) calculations were 

performed using the DIRAC program.39 All the CPU times were measured based on a single 

core of AMD EPYCTM E7763 (2.45 GHz, 64 cores). 

Numerical experiments were conducted on noble gas atoms, namely, He, Ne, Ar, Kr, 

Xe, and Rn; their dimers (He2, Ne2, Ar2, Kr2, Xe2, and Rn2); hydrogen halides (HX; X= F, 

Cl, Br, I, and At); and bond cleavage reactions involving Pb and Ge complexes that are a 

part of the HEAVYSB1140 benchmark set. In case of hydrogen halides, experimental bond 

lengths41 with values of 0.9168, 1.2746, 1.4144, and 1.6092 Å were utilized for HF, HCl, 
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HBr, and HI molecules, respectively. An HAt bond length of 1.718 Å, as per the optimized 

value reported by Gomes and Visscher,42 was used in the calculations. Additionally, one-

dimensional HX chains, denoted as (HX)n (where X = F or At), were also subjected to 

analysis. For (HF)n, the intramolecular and intermolecular distances were fixed at 0.970 

and 1.530 Å, respectively. Conversely, for (HAt)n, the corresponding distances were 

established as 1.729 and 3.148 Å, respectively. In both cases, the H–X–H and X–H–X bond 

angles were maintained at 120° and 180°, respectively. Potential energy curves were 

computed for noble gas dimers. To account for basis set superposition errors, the 

counterpoise method43 was employed. Moreover, dispersion contributions were factored in 

utilizing the LRD method.44 Equilibrium bond lengths Re and dissociation energies De were 

extracted from a Morse potential fit based on equidistant points with a step length of 0.01 

Å, both backward and forward along the bond distance, encompassing 10 points in total. 

The resulting Morse potential curve enabled the determination of the lowest energy.  

The Becke’s exchange (B88)45 in conjunction with the Lee–Yang–Parr correlation46 

(BLYP), B88 exchange paired with one-parameter progressive correlation47 (BOP), and 

Becke-3–parameter–Lee–Yang–Parr (B3LYP)48 functionals were employed as the 

exchange-correlation functionals. Additionally, LC-BLYP (μ = 0.189,14 0.33,9 and 0.4715), 

LC-BOP7 (μ = 0.47), and CAM-B3LYP10 functionals were utilized as range-separated 

functionals. The basis sets used in this study were Sapporo-DZP-2012+d for the first to 

third row elements49,50 and Sapporo-DKH3-DZP-2012+d for the fourth and fifth row 

elements.50,51 These basis sets were applied in a contracted form for the computations 

concerning (HAt)n and in an uncontracted form for all other calculations. For the analysis 

of bond cleavage reactions, the basis sets used did not include diffuse functions. 

5.3.2 Deviation from 4c Hamiltonian 

This subsection discusses the accuracy of the range separation method in the context 
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of the 1e2eIOTC Hamiltonian, with a focus on deviations from the SFDC values. Table 5.1 

presents the total energy deviations (in hartree) for noble gas atoms, as determined by 

nonrelativistic and IOTC Hamiltonians, using the BLYP, LC-BLYP, B3LYP, and CAM-

B3LYP functionals. The reference SFDC values are provided in parentheses. The energy 

deviation observed in LC-DFT are of the same order as those observed in the corresponding 

functionals without the LC method. The nonrelativistic Hamiltonian yields large errors 

across all functionals and elements. By contrast, the 1eIOTC Hamiltonian considerably 

reduces these errors, although they remain relatively pronounced for heavier elements. The 

results obtained using both 1e2eIOTC Hamiltonians with δsf exhibit strong agreement with 

the reference SFDC values. Notably, errors in the 1eIOTC Hamiltonian are smaller than 

those of the 1eIOTC Hamiltonian with δsf. This discrepancy arises from the error 

cancellation effect stemming from the negative values in 1e2eIOTC Hamiltonians. The 

comprehensive IOTC transformation of both one- and two-electron operators and the 

density operator is essential in LC-DFT calculations. Furthermore, the energy deviations 

from SFDC values exhibit minimal dependence on the choice of basis sets, as illustrated in 

Tables 5.2–5.4. 

Table 5.5 presents the orbital energy deviations for the Rn atom (in hartree), as 

determined by nonrelativistic and IOTC Hamiltonians employing the BLYP and LC-BLYP 

functionals. The reference SFDC values are indicated in parentheses. These deviations 

exhibit a consistent trend with the total energy deviations. The nonrelativistic Hamiltonian 

yields large errors, while the holistic IOTC transformation of one- and two-electron as well 

as density operators effectively reproduces the SFDC results. Errors in individual orbitals 

primarily depend on relativistic treatments and exhibit quasi-independence from the choice 

of the range-separate parameter. A common pattern observed in both nonrelativistic and 

IOTC Hamiltonians is that s and p orbitals tend to exhibit larger errors compared to d and 

f orbitals, suggesting that inner-shell orbitals are more significantly influenced by 
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relativistic effects than their outer-shell counterparts. Additionally, the nonrelativistic 

Hamiltonian overestimates orbital energies of s and p orbitals while underestimating those 

of d and f orbitals, compared to the SFDC energies. This behavior aligns with the shrinkage 

of inner-shell orbitals and expansion of outer-shell orbitals. 
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Table 5.5. Orbital energy deviation (in hartree) of Rn atom obtained by nonrelativistic 

(Nonrel.) and IOTC Hamiltonians from 4c Hamiltonian using BLYP and LC-BLYP (μ = 

0.189, 0.33, and 0.47) functionals. The reference SFDC value are shown in parentheses. 

Nonrel. 1eIOTC 1eIOTC 
w/ δsf 1e2eIOTC 1e2eIOTC 

w/ δsf (SFDC) 

BLYP 
1s 412.3708 9.0938 13.2110 −4.1629 −0.0074 (−3619.4264)
2s 111.6033 1.2138 1.7872 −0.5800 −0.0019 (−658.4915) 
2p 33.6494 0.8523 0.8186 0.0326 −0.0014 (−561.3627) 
3s 28.0375 0.2470 0.3797 −0.1342 −0.0005 (−161.4652) 
3p 9.6960 0.1702 0.1621 0.0078 −0.0004 (−133.8916) 
3d −0.9692 0.0640 0.0586 0.0053 −0.0001 (−105.9791) 
4s 7.2136 0.0552 0.0902 −0.0354 −0.0002 (−38.4741) 
4p 2.2729 0.0340 0.0319 0.0020 −0.0001 (−29.3946) 
4d −0.4289 0.0061 0.0047 0.0014 0.0000 (−19.0154) 
4f −1.0054 −0.0069 −0.0079 0.0011 0.0000 (−7.9255) 
5s 1.4953 0.0097 0.0175 −0.0079 −0.0001 (−7.3784) 
5p 0.3119 0.0044 0.0038 0.0006 0.0000 (−4.7112) 
5d −0.2171 −0.0012 −0.0015 0.0004 0.0000 (−1.6816) 
6s 0.1812 0.0009 0.0021 −0.0012 0.0000 (−0.7935) 
6p −0.0023 0.0001 0.0000 0.0001 0.0000 (−0.2782) 

LC-BLYP (μ = 0.189) 
1s 412.3694 9.0944 13.2109 −4.1622 −0.0074 (−3619.5226)
2s 111.6020 1.2140 1.7872 −0.5798 −0.0019 (−658.5969) 
2p 33.6485 0.8524 0.8186 0.0326 −0.0014 (−561.4687) 
3s 28.0358 0.2471 0.3797 −0.1341 −0.0005 (−161.5724) 
3p 9.6949 0.1702 0.1621 0.0078 −0.0004 (−133.9994) 
3d −0.9701 0.0640 0.0586 0.0053 −0.0001 (−106.0871) 
4s 7.2124 0.0552 0.0902 −0.0353 −0.0002 (−38.5805) 
4p 2.2718 0.0340 0.0319 0.0020 −0.0001 (−29.5013) 
4d −0.4300 0.0061 0.0047 0.0014 0.0000 (−19.1228) 
4f −1.0064 −0.0069 −0.0079 0.0011 0.0000 (−8.0332) 
5s 1.4952 0.0097 0.0175 −0.0079 −0.0001 (−7.4871) 
5p 0.3113 0.0044 0.0038 0.0006 0.0000 (−4.8192) 
5d −0.2181 −0.0012 −0.0015 0.0004 0.0000 (−1.7863) 
6s 0.1801 0.0009 0.0021 −0.0012 0.0000 (−0.9039) 
6p −0.0029 0.0001 0.0000 0.0001 0.0000 (−0.3725) 



91 

Table 5.5. Continued. 

Nonrel. 1eIOTC 1eIOTC 
w/ δsf 1e2eIOTC 1e2eIOTC 

w/ δsf (SFDC) 

LC-BLYP (μ = 0.33) 
1s 412.3679 9.0948 13.2108 −4.1617 −0.0074 (−3619.5890)
2s 111.6004 1.2141 1.7872 −0.5797 −0.0019 (−658.6704) 
2p 33.6472 0.8523 0.8185 0.0326 −0.0014 (−561.5426) 
3s 28.0340 0.2471 0.3797 −0.1340 −0.0005 (−161.6476) 
3p 9.6935 0.1702 0.1621 0.0078 −0.0004 (−134.0748) 
3d −0.9713 0.0640 0.0586 0.0053 −0.0001 (−106.1626) 
4s 7.2110 0.0553 0.0902 −0.0353 −0.0002 (−38.6554) 
4p 2.2704 0.0340 0.0319 0.0020 −0.0001 (−29.5763) 
4d −0.4312 0.0061 0.0047 0.0014 0.0000 (−19.1982) 
4f −1.0078 −0.0069 −0.0079 0.0011 0.0000 (−8.1073) 
5s 1.4945 0.0097 0.0175 −0.0079 −0.0001 (−7.5654) 
5p 0.3099 0.0044 0.0038 0.0006 0.0000 (−4.8964) 
5d −0.2197 −0.0012 −0.0016 0.0004 0.0000 (−1.8506) 
6s 0.1809 0.0009 0.0021 −0.0012 0.0000 (−0.9763) 
6p −0.0034 0.0001 0.0000 0.0001 0.0000 (−0.4114) 

LC-BLYP (μ = 0.47) 
1s 412.3664 9.0952 13.2107 −4.1612 −0.0074 (−3619.6533)
2s 111.5988 1.2142 1.7871 −0.5795 −0.0019 (−658.7416) 
2p 33.6460 0.8523 0.8185 0.0326 −0.0014 (−561.6142) 
3s 28.0323 0.2472 0.3797 −0.1340 −0.0005 (−161.7207) 
3p 9.6922 0.1702 0.1621 0.0078 −0.0004 (−134.1482) 
3d −0.9724 0.0639 0.0585 0.0053 −0.0001 (−106.2359) 
4s 7.2097 0.0553 0.0902 −0.0353 −0.0002 (−38.7289) 
4p 2.2691 0.0340 0.0319 0.0020 −0.0001 (−29.6500) 
4d −0.4324 0.0061 0.0046 0.0014 0.0000 (−19.2717) 
4f −1.0092 −0.0069 −0.0079 0.0011 0.0000 (−8.1773) 
5s 1.4938 0.0097 0.0175 −0.0079 −0.0001 (−7.6437) 
5p 0.3085 0.0044 0.0038 0.0007 0.0000 (−4.9715) 
5d −0.2217 −0.0012 −0.0016 0.0004 0.0000 (−1.9014) 
6s 0.1851 0.0010 0.0021 −0.0012 0.0000 (−1.0283) 
6p −0.0029 0.0001 0.0000 0.0001 0.0000 (−0.4325) 
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5.3.3 Accuracy of LUT 

This subsection provides insight into the accuracy of the LUT scheme within the range 

separation method for the two-electron term. Table 5.6 presents the total energies of HX 

molecules (in hartree) obtained using various approaches: 1e2eLUT-IOTC Hamiltonian 

with δLUT, 1e2eIOTC Hamiltonian with δsf, and the SFDC Hamiltonian. BLYP, LC-BLYP, 

B3LYP, and CAM-B3LYP functionals were employed for calculations. ΔLUT represents the 

energy deviations of LUT-IOTC from IOTC, i.e., the difference between 1e2eLUT-IOTC 

Hamiltonian with δLUT and 1e2eIOTC Hamiltonian with δsf. ΔSFDC represents the energy 

deviations of 1e2eIOTC Hamiltonian with δsf from the SFDC Hamiltonian. Notably, both 

ΔSFDC and ΔLUT exhibit minimal dependence on the range-separation parameter. The 

absolute values of ΔLUT are approximately on the order of 10−5 hartree, which is remarkably 

small, particularly for heavier-element systems. In comparison to ΔSFDC, these deviations 

are one-tenth in HBr, one hundredth in HI, and one-thousandth in HAt. These findings 

affirm that the LUT scheme serves as a reliable approximation to the 4c theory.  

Table 5.7 provides the total energies in (HF)n and (HAt)n molecules (in hartree), which 

were computed using 1e2eLUT-IOTC Hamiltonians with δLUT, as well as 1e2eIOTC 

Hamiltonians with δsf. BLYP and LC-BLYP functionals with μ = 0.33 were employed as 

exchange-correlation functionals. Although ΔLUT increases as n becomes larger, ΔLUT 

remains less than 1 millihartree per unit. Thus, the accuracy of the LUT scheme within LC-

DFT remains acceptable even for large-scale molecules. In terms of differences between 

the two functionals, ΔLUT for LC-BLYP is slightly smaller than that for BLYP, except for 

cases where n = 1. This observation suggests that the effects of LUT in the long-range 

region are comparatively smaller for two-electron interactions than for the electron density. 
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Efficiency of LUT 

This subsection demonstrates the computational costs of the two-electron term based 

on the IOTC and LUT-IOTC Hamiltonians. Figure 5.1 shows the system-size dependence 

of the CPU time for the calculation of TEIs required for the range-separated two-electron 

operators in the context of IOTC, LUT-IOTC, and nonrelativistic Hamiltonians, 

particularly in the calculations of (HF)n and (HAt)n. The results for LUT-IOTC include the 

CPU time required for evaluating multicenter nonrelativistic TEIs as well as primitive TEIs, 

as described in Eqs. (5.2.15)–(5.2.17) for individual atoms. In the calculations of (HF)n, the 

CPU times of IOTC, LUT-IOTC, and nonrelativistic Hamiltonians scale as n2.92, n2.45, and 

n2.74, respectively. Computational costs of IOTC and nonrelativistic Hamiltonians exhibit 

similar scaling tendencies, which are proportional to approximately the cube of the system 

size. The LUT scheme slightly reduces the scaling of computational costs. In the 

calculations of (HAt)n, the CPU times for IOTC, LUT-IOTC, and nonrelativistic 

Hamiltonians scale as n2.17, n1.14, and n2.19, respectively. The computational costs for IOTC 

and nonrelativistic Hamiltonians resemble those observed in (HF)n calculations, displaying 

a similar scaling trend. However, the computational costs for LUT-IOTC exhibit nearly 

linear scaling, in contrast to the (HF)n calculations. This variation arises from the fact that 

in (HAt)n calculations, the CPU time for one-center primitive TEIs plays a significantly 

larger role in the total CPU time for TEIs, leading to increased CPU time proportional to 

the number of atoms. In (HF)n calculations, multicenter nonrelativistic TEIs dominate the 

total CPU time for TEIs, thus aligning the order of computational costs for TEIs closely 

with that of nonrelativistic TEIs. Detailed CPU times for TEIs are provided in Table 5.8.  

Figure 5.2 shows the system-size dependence of the CPU time for unitary 

transformation of TEIs required for range-separated two-electron operators in the context 

of IOTC and LUT-IOTC Hamiltonians, focusing on calculations involving (HF)n and 

(HAt)n. For IOTC Hamiltonian calculations, the CPU times scale as n4.60 for (HF)n and n4.96 
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for (HAt)n. The LUT scheme clearly reduces the computational costs, with scaling behavior 

of n1.00 for (HF)n and n1.02 for (HAt)n. The calculated scaling agrees well with theoretical 

quintic- and linear-scaling for IOTC and LUT-IOTC Hamiltonians, respectively. Detailed 

CPU times for TEIs are provided in Table 5.9. 

As shown in Figures 5.3 and 5.4 and Tables 5.10 and 5.11, the CPU times required for 

full-range two-electron operators, 1/rij and sf
2g , are close to those of range-separated two-

electron operators. The total computational cost for the two-electron term in the LC-DFT 

calculations is approximately twice that for the functional without the LC method. 
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Figure 5.1. System-size dependence of CPU time (in s) for TEIs required for range-

separated two-electron operators using IOTC, LUT-IOTC, and nonrelativistic 

Hamiltonians in calculation of (HF)n and (HAt)n. CPU times were measured by a single 

core of AMD EPYCTM E7763 (2.45 GHz, 64 core). 

Figure 5.2. System-size dependence of CPU time (in s) for unitary transformation of TEIs 

required for range-separated two-electron operators using IOTC and LUT-IOTC 

Hamiltonian in calculation of (HF)n and (HAt)n. CPU times were measured by a single core 

of AMD EPYCTM E7763 (2.45 GHz, 64 core). 
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Table 5.11. CPU time (in s) for the unitary transformation TEIs of the full-range two-

electron operator calculated by LUT-IOTC and IOTC Hamiltonians. The results are 

presented separately by term sf
2

xg (x = 1–3). 

molecule n LUT-IOTC IOTC 
sf1 sf2 sf3 sf1 sf2 sf3 

HF 
1 0.12 0.12 0.11 0.53 0.58 0.52 
2 0.24 0.25 0.24 12.65 12.93 12.79 
3 0.34 0.36 0.34 89.22 81.46 92.02 
4 0.47 0.49 0.46 303.19 286.97 317.21 
5 0.58 0.60 0.57 867.29 883.90 898.09 
6 0.71 0.73 0.70 1898.64 1920.19 1938.61 
7 0.80 0.84 0.80 4018.05 4135.23 4075.00 
8 0.93 0.97 0.93 7227.65 7539.66 7386.39 
9 1.04 1.09 1.03 13244.48 13895.36 13568.41 
10 1.17 1.22 1.16 23354.53 25040.81 25318.40 
15 1.73 1.80 1.71 
20 2.35 2.45 2.35 
25 2.88 3.03 2.86 
30 3.51 3.65 3.49 
35 4.01 4.20 4.01 
40 4.68 4.86 4.63 
45 5.11 5.38 5.09 
50 5.86 6.10 5.84 

HAt 
1 58.43 67.32 66.14 103.01 123.25 120.30 
2 113.19 133.58 124.96 2052.96 2859.13 2529.41 
3 174.35 200.96 195.23 18472.33 29557.57 23447.03 
4 232.68 267.61 258.11 75608.24 105996.79 102044.38 
5 292.88 335.90 324.17 
6 356.77 411.61 398.80 
7 422.62 491.42 469.02 
8 467.07 556.59 517.96 
9 556.98 649.93 623.84 
10 590.22 697.34 653.76 
15 870.85 1053.22 966.21 
20 1207.20 1422.19 1345.41 
25 1525.12 1755.10 1698.63 
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5.3.4 Application to noble gas dimers 

In this subsection, the proposed method is applied to noble gas dimers, which are 

typical examples of vdW interactions. Figure 5.5 shows the potential energy curves for the 

Rn dimer, calculated using the BOP, LC-BOP, and LC-BOP+LRD methods based on 

1e2eLUT-IOTC Hamiltonian with δLUT. BOP calculations yield an unbound potential, 

which is not suitable for representing vdW interactions. The LC method improves the 

potential curve, particularly around the equilibrium point, although it still remains unbound. 

By contrast, the potential obtained with LC-BOP+LRD is strongly bound and exhibits a 

clear equilibrium point. Furthermore, Figure 5.5 includes LC-BOP+LRD calculations 

based on the nonrelativistic Hamiltonian for comparison. When comparing nonrelativistic 

and LUT-IOTC calculations, the bottom of the potential is shifted towards smaller bond 

lengths due to the influence of relativistic effects. Additionally, potential energy curves for 

He2, Ne2, Ar2, Kr2, and Xe2, calculated using the nonrelativistic and LUT-IOTC 

Hamiltonian with LC-BOP+LRD are depicted in Figure 5.6. These curves also exhibit 

strong binding and equilibrium points.  

Table 5.12 presents equilibrium bond lengths Re (in Å) and dissociation energies De (in 

kcal/mol) calculated using the LC-BOP+LRD method based on the nonrelativistic 

Hamiltonian, as well as the 1e2eLUT-IOTC Hamiltonian with δLUT. As reference values, 

experimental results for He2, Ne2, Ar2, Kr2, and Xe2,52 as well as twice the vdW radius of 

Rn2,53 are also tabulated. Using LUT-IOTC, shorter Re values are obtained than those 

obtained through nonrelativistic calculations. The deviations (Δrel) in bond length between 

LUT-IOTC and nonrelativistic calculations become more pronounced in higher-row 

elements. Accounting for relativistic effects through LUT-IOTC brings the calculated bond 

lengths closer to the reference values, reflecting the relativistic shrinkage of the vdW radius. 

De values obtained by nonrelativistic and LUT-IOTC Hamiltonians are similar. Δrel of Xe2 

and Rn2
 in De amount to only −0.005 [kcal/mol]. This suggests that relativistic effects on 
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De were not observed in the present calculations. 

Figure 5.5. Potential energy curves of Rn dimer calculated by 1e2eLUT-IOTC Hamiltonian 

with δLUT. As a functional, BOP and LC-BOP (μ = 0.47) with/without LRD method were 

examined. Nonrelativistic calculation of LC-BOP+LRD is also shown. 
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(a) He2 (b) Ne2

(c) Ar2 (d) Kr2

(e) Xe2

Figure 5.6. Potential energy curves of He2, Ne2, Ar2, Kr2, and Xe2 calculated using the 
1e2eLUT-IOTC Hamiltonian with δLUT and nonrelativistic Hamiltonian. LC-BOP+LRD 
method was used. 
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Table 5.12. Calculated equilibrium bond lengths Re (in Å) and dissociation energies De (in 

kcal/mol) of noble gas dimers by nonrelativistic Hamiltonian (nonrel.) and 1e2eLUT-IOTC 

Hamiltonian with δLUT (LUT-IOTC). LC-BOP (μ = 0.47) with LRD method was used as a 

functional. Δrel represents the deviations of LUT-IOTC from non-relativistic results. As 

references, experimental values of He2, Ne2, Ar2, Kr2, and Xe2
52 and twice of vdW radius 

for Rn2
53 are also shown. 

Re De

Nonrel. LUT-
IOTC Δrel Ref. Nonrel. LUT-

IOTC Δrel Ref. 

He2 2.957 2.956 0.000 2.970 0.031 0.031 0.000 0.022 
Ne2 3.137 3.137 −0.001 3.091 0.095 0.095 0.000 0.084 
Ar2 3.786 3.784 −0.002 3.757 0.364 0.364 0.000 0.285 
Kr2 4.068 4.052 −0.016 4.008 0.483 0.484 0.001 0.400 
Xe2 4.455 4.417 −0.039 4.363 0.678 0.673 −0.005 0.561 
Rn2 4.659 4.533 −0.126 (4.40) 0.784 0.780 −0.005 -
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5.3.5 Application to dissociation energies in heavy-element compounds 

Table 5.13 provides dissociation energies for bond cleavage in two reactions: Ge2H6 

→ 2 GeH3 and Pb2(CH3)2 → 2 PbCH3. These values were calculated using the

nonrelativistic method and the 1e2eLUT-IOTC Hamiltonian with δLUT. The differences in 

dissociation energies between the nonrelativistic and LUT-IOTC calculations are 

approximately 1 kcal/mol for Ge2H6 → 2 GeH3 and range from 7–10 kcal/mol for 

Pb2(CH3)2 → 2 PbCH3. Relativistic effects reduce the dissociation energies in both 

reactions. Because both nonrelativistic and LUT-IOTC calculations were performed on the 

same structures, the covalency in the Pb-Pb and Ge-Ge bonds was weakened, 

corresponding to the relativistic shrinkage of s and p orbitals in the bonding region. Notably, 

relativistic effects are more pronounced in Pb compounds (sixth-row element) compared to 

Ge compounds (fourth-row element). Additionally, when comparing LC functionals to their 

non-LC counterparts, such as LC-BLYP to BLYP, or CAM-B3LYP to B3LYP, the use of 

LC functionals increases the dissociation energy. This is important as long-range 

interactions tend to stabilize binuclear molecules like Ge2H6 and Pb2(CH3)2. This trend 

aligns with the values included in the HEAVYSB11 set, which become closer to the 

reference values when LC functionals are employed.40 Furthermore, as shown in Table 5.14, 

the changes in dissociation energy due to the LUT-IOTC transformation of two-electron or 

density operators are less than 0.3 kcal/mol. This indicates that the treatment of one-

electron operator plays a dominant role in the relativistic effects on reaction energies. 
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Table 5.13. Dissociation energies (in kcal/mol) of Ge and Pb compounds calculated by 

nonrelativistic (nonrel.) and 1e2eLUT-IOTC Hamiltonian with δLUT (LUT-IOTC). 

Ge2H6 → 2 GeH3 Pb2(CH3)2 → 2 PbCH3 
Nonrel. LUT-IOTC Nonrel. LUT-IOTC 

BLYP 65.2 64.4 44.5 37.5 
LC-BLYP (μ = 0.47) 72.7 71.6 60.0 50.5 
B3LYP 66.9 66.1 48.4 40.9 
CAM-B3LYP 69.0 68.1 53.1 44.5 

Table 5.14. Dissociation energies (in kcal/mol) of Ge and Pb compounds calculated by 

nonrelativistic, 1eLUT-IOTC, and 1e2eLUT-IOTC Hamiltonians with and without LUT-

IOTC transformation of density operator δLUT. 

Nonrelativistic 
LUT-IOTC 

1e 1e 
with δLUT 1e2e 1e2e 

with δLUT

Ge2H6 → 2 GeH3 
BLYP 65.2 64.4 64.5 64.4 64.4 
LC-BLYP (μ = 0.47) 72.7 71.6 71.6 71.6 71.6 
B3LYP 66.9 66.1 66.1 66.1 66.1 
CAM-B3LYP 69.0 68.1 68.1 68.1 68.1 

Pb2(CH3)2 → 2 PbCH3 
BLYP 44.5 37.5 37.6 37.4 37.5 
LC-BLYP (μ = 0.47) 60.0 50.6 50.7 50.4 50.5 
B3LYP 48.4 40.9 41.0 40.8 40.9 
CAM-B3LYP 53.1 44.6 44.7 44.4 44.5 
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5.4 Conclusion 

This chapter developed a range separation method for the two-electron term based on 

the spin-free IOTC Hamiltonian and conducted the numerical assessment using the LC-

DFT. Total energies and orbital energies of noble gas atoms demonstrated excellent 

agreement with 4c energies when employing the full IOTC transformation for one-electron 

operator, full-range and range-separated two-electron operators, and density operator. The 

LUT scheme was applied to range-separated terms of TEIs, one-electron integrals, full-

range TEIs, and electron density in molecular calculations. Energy calculations for 

hydrogen halide molecules showed that the errors associated with the LUT scheme were 

sufficiently small compared to the errors introduced by the 2c transformation with the IOTC 

Hamiltonian. The calculations of HF and HAt polymers were also examined using both 

IOTC and LUT-IOTC Hamiltonians. The errors introduced by the LUT scheme were small, 

particularly when the system size increased. The CPU times for the evaluation and unitary 

transformation of TEIs were significantly reduced by the LUT scheme, resulting in linear 

scaling in (HAt)n calculations. The validity of the LUT scheme was confirmed for the range 

separation method. The method was applied to the investigation of spectroscopic constants 

for noble gas dimers. The equilibrium bond distances obtained by the LUT-IOTC 

Hamiltonian were shorter than those obtained by nonrelativistic calculations, particularly 

in heavier-element systems, indicating that vdW interactions are influenced by relativistic 

effects. Calculation of bond cleavage energies revealed the importance of relativistic 

treatment in reaction energies, particularly in heavy-element compounds. 
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Appendix 

A5.1 Spin-dependent term of range-separated two-electron IOTC Hamiltonian 

This section provides the spin-dependent terms of the two-electron IOTC Hamiltonian. 

Using Eqs. (2.3.12) and (2.3.13), the spin-free and spin-dependent terms are separated. The 

explicit expression of the electronic part of the two-electron IOTC Hamiltonian 2
++g is 

divided into spin-free terms sf
2

xg and spin-dependent terms sd
2

xg  (x = 1-3): 

( ) ( ) ( ) ( )

( ) ( ) ( )

sf1 sf2 sf3
2 2 2 2

sd1 sd2 sd3
2 2 2

, , , ,

, , , ,

i j i j i j i j

i j i j i j

++ = + +

+ + +

g g g g

g g g
(A5.1) 

where 

( ) ( )sd1
2 2

1, , i i
i j i i j i

ij

i j P i j
r

  
=    

    

1g d M σ p p M d , (A5.2)

( ) ( )sd2
2 2

1, , i i
i j i j j i j i

ij

i j P i j
r

    
  =             

1g d d σ p p p p d d , (A5.3) 

and 

( )sd3
2 2

1, i j
i j i j j i j i

ij

i j
r

   
 = −            

1g d d σ p σ p p p d d . (A5.4)

(See Eqs. (2.3.18)-(2.3.20) in Subsection 2.3 for spin free terms.) 

Range separation terms are obtained replacing 1 ijr in Eqs. (A5.2)-(A5.4) with 

( )( )1 erf ij ijr r− and ( )erf ij ijr r as in the case of spin-free terms. Short- and long-range 

parts of spin-dependent terms, sd ,sr
2

xg  and sd ,lr
2

xg  (x =1, 2, and 3) are as follows: 

( ) ( )
( )sd1,sr

2 2

1 erf
, , i iji

i j i i j i
ij

r
i j P i j

r
  −

 =   
    

1g d M σ p p M d , 

(A5.5) 
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( ) ( )
( )sd2,sr

2 2

1 erf
, , i ,iji

i j i j j i j i
ij

r
i j P i j

r
    −

    =   
    
    

1g d d σ p p p p d d

(A5.6) 

( )
( )sd3,sr

2 2

1 erf
, ,iji j

i j i j j i j i
ij

r
i j

r
   −

   = −    
   
   

1g d d σ p σ p p p d d

(A5.7) 

( ) ( )
( )sd1,lr

2 2

erf
, , i ,iji

i j i i j i
ij

r
i j P i j

r
  

 =   
    

1g d M σ p p M d

(A5.8) 

( ) ( )
( )sd2,lr

2 2

erf
, , i ,iji

i j i j j i j i
ij

r
i j P i j

r
    

    =   
    
    

1g d d σ p p p p d d

(A5.9) 

and 

( )
( )sd3,lr

2 2

erf
, .iji j

i j i j j i j i
ij

r
i j

r
   

   = −    
   
   

1g d d σ p σ p p p d d

(A5.10) 

Hereafter, the implementation of spin-dependent terms is briefly explained using the 

long-range terms as examples. The matrix representations of spin-dependent terms are 

( )

sd1,lr
2

2i erf ,
a b c d

i
i a j b a b i ij ij i c d c i d j

k k k k
k k k k r r k k k k

   

   

   

    =   1

g

d M σ p p d M

(A5.11) 

( )( )( )

sd2,lr
2

2i erf ,
a b c d

i
i a j b a b i j ij ij j i c d c i d j

k k k k
k k k k r r k k k k

   

   

   

    =    1

g

d d σ p p p p d d

(A5.12) 

and 
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( )( )( )

sd3,lr
2

2erf .
a b c d

i j
i a j b a b i j ij ij j i c d c i d j

k k k k
k k k k r r k k k k

   

   

   

    =     1

g

d d σ p σ p p p d d−

(A5.13) 

The TEIs that require explicit calculations for the spin-dependent terms are those three 

integrals: 

( ) 2i erfi
a b i ij ij i c dk k r r k k 1σ p p

( )( )( )2i erfi
a b i j ij ij j i c dk k r r k k  1σ p p p p

( )( )( )2erfi j
a b i j ij ij j i c dk k r r k k   1σ p σ p p p− . 

Using the following equation, 

( )

( )

( ) ( )

( ) ( )

2

2

i iy z x

x zy

     
   = −      − −    

0

0

A B A B A B
σ A B

A B A BA B
, (A5.14) 

the first one is rewritten as 

( )

( )( )

( )( )

( )( ) ( )( )

( )( ) ( )

2

2 2

2 2

2 2

2 2

i erf

erf

erf

erf erf
i

erf erf

i
a b i ij ij i c d

a b i ij ij i c dy

a b i ij ij i c dy

a b i ij ij i c d a b i ij ij i c dz x

a b i ij ij i c d a b i ij ijx

k k r r k k

k k r r k k

k k r r k k

k k r r k k k k r r k k

k k r r k k k k r r







 

 

 

 
 

 =
 −  
 

 

−

 − 

1

0 1

1 0

1 1

1 1

σ p p

p p

p p

p p p p

p p p p( )
,

i c dz
k k

 
 
 
 
 

(A5.15) 

with 

( )( )

( ) ( )

2

2 2

erf

erf erf ,

a b i ij ij i c dx

a c a c
b ij ij d b ij ij d

k k r r k k

k k k kk r r k k r r k
y z z y



 



   
= −

   

1

1 1

p p

(A5.16) 
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( )( )

( ) ( )

2

2 2

erf

erf erf ,

a b i ij ij i c dy

a c a c
b ij ij d b ij ij d

k k r r k k

k k k kk r r k k r r k
x z z x



 



   
= −

   

1

1 1

p p

(A5.17) 

and 

( )( )

( ) ( )

2

2 2

erf

erf erf .

a b i ij ij i c dz

a c a c
b ij ij d b ij ij d

k k r r k k

k k k kk r r k k r r k
x y y x



 



   
= −

   

1

1 1

p p

(A5.18) 

The second integral is as follows: 

( )( )( )

( )( )( )

( )( )( )

( )( )( ) ( )( )( )

( )

2

2 2

2 2

2 2

2

i erf

erf

erf

erf erf
i

erf

i
a b i j ij ij j i c d

a b i j ij ij j i c d
y

a b i j ij ij j i c d
y

a b i j ij ij j i c d a b i j ij ij j i c d
z x

a b i j ij ij

k k r r k k

k k r r k k

k k r r k k

k k r r k k k k r r k k

k k r r







 



  

 
  

 =
 

−   
 

   

−



1

0 1

1 0

1 1

1

σ p p p p

p p p p

p p p p

p p p p p p p p

p p p( )( ) ( )( )( )2

,
erfj i c d a b i j ij ij j i c d

x z
k k k k r r k k

 
 
 
  −   
 

1p p p p p

(A5.19) 

with 

( )( )( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2

2 2

erf

erf erf

erf erf ,
j j j j

a b i j ij ij j i c d
x

a c a c
b j ij ij j d b j ij ij j d

a c a c
b ij ij d b ij ij d

k k r r k k

k k k kk r r k k r r k
y z z y

k k k kk r r k k r r k
y z z y



 

 

 

   
=  − 

   

   
=   −  

   
r r r r

1

1 1

1 1

p p p p

p p p p

(A5.20) 
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( )( )( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2

2 2

erf

erf erf

erf erf ,
j j j j

a b i j ij ij j i c d
y

a c a c
b j ij ij j d b j ij ij j d

a c a c
b ij ij d b ij ij d

k k r r k k

k k k kk r r k k r r k
x z z x
k k k kk r r k k r r k
x z z x



 

 

 

   
=  − 

   

   
=   −  

   
r r r r

1

1 1

1 1

p p p p

p p p p

(A5.21) 

and 

( )( )( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2

2 2

erf

erf erf

erf erf .
j j j j

a b i j ij ij j i c d
z

a c a c
b j ij ij j d b j ij ij j d

a c a c
b ij ij d b ij ij d

k k r r k k

k k k kk r r k k r r k
x y y x

k k k kk r r k k r r k
x y y x



 

 

 

   
=  − 

   

   
=   −  

   
r r r r

1

1 1

1 1

p p p p

p p p p

(A5.22) 

The third one is as follows: 

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

2

2

2 2

2 2

2

erf

i erf

i erf

i erf

i erf
i

i j
a b i j ij ij j i c d

i j
a b i j ij ij j i c d

j
a b i j ij ij j i c d

y

j
a b i j ij ij j i c d

y

j
a b i j ij ij j i c

z

k k r r k k

k k i r r k k

k k r r k k

k k r r k k

k k r r k k











   

=    

 
   

 =
 

−    
 

  

−

1

1

0 1

1 0

1

σ p σ p p p

σ p σ p p p

p σ p p p

p σ p p p

p σ p p p

−

( )( )( )

( )( )( ) ( )( )( )

2

2 2

i erf
.

i erf i erf

j
d a b i j ij ij j i c d

x

j j
a b i j ij ij j i c d a b i j ij ij j i c d

x z

k k r r k k

k k r r k k k k r r k k



 

 
   

 
    −    
 

1

1 1

p σ p p p

p σ p p p p σ p p p

(A5.23) 

The matrix elements in Eq. (A5.23) are also rewritten as similar procedure as the first and 

second integrals using Eq. (A5.14). Therefore, the Gaussian-type TEIs of operator 

( )erf ij ijr r are explicitly evaluated. 
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Chapter 6 Evaluation of PCE on FON states in 

noble gas atom§ 

6.1 Introduction 

The total energy of DFT is expressed as a functional of electron density1 shown in Eq. 

(2.3.28) in Chapter 2. Because the exact functional form is unknown, approximate 

functionals are generally used. Despite the widespread use of DFT, the approximate 

functionals are limited by inaccurate definitions of chemical phenomena such as reaction 

barriers,2,3 band gap,4 polarizability,5 and charge transfer.6 The causes of these errors have 

been discussed in terms of the SIE, which stems from the exchange term of the approximate 

functional.7 More inclusively, the definition of the delocalization error is proposed.8,9 

The delocalization error occurs in the FON states.8,10 The ground-state energy obtained 

by the exact functional varies piecewise linearly with respect to the FON electrons between 

two consecutive integers. However, the approximate functional deviates from the linearity. 

For example, the total energy change dependent on electron number with FON states 

becomes a concave curve in the HOMO.10 

Several researchers have developed methods for correcting the delocalization error or 

SIE7,11–15; however, this aspect continues to be challenging in DFT.16 Global and range-

separated hybrid functionals, which mix certain ratios of HFx into exchange functional, 

reduce these errors to a certain extent. The LC-DFT,17,18 which calculates exchange energy 

as long-range HFx and short-range exchange functional, indicates linear dependence of 

total energy on change of the occupation number of HOMO.19 For the description of the 

linearity in core orbitals, the importance of short-range HFx is revealed by the LCgau 

§ Reproduced from the article by Chinami Takashima and Hiromi Nakai, DOI: 10.1007/s00214-023-
03089-3



126 

scheme20 and core-valence-Rydberg functional.21,22 

The accurate description of linearity is one measure of evaluating the performance of 

functionals. Orbital-specific hybrid functionals are constructed by imposing the linearity 

condition for orbitals of FON states, which reasonably reproduces the ionization potential 

and excitation energies involving core, valence, and Rydberg orbitals.23–26 The localized 

orbital scaling correction was developed by enforcing the linearity condition for the relation 

between energy and electron number and correctly described phenomena such as 

polarizability, molecular dissociation, and band gap.14,27–30 

In this chapter, the PCE of FON states is examined in the 2c relativistic theory based 

on the IOTC Hamiltonian. The remainder of this chapter is organized as follows. In Section 

6.2, the linearity condition for FON states as the theoretical background is discussed. 

Section 6.3 explains the computational details. The results and discussion are presented in 

Section 6.4 followed by the conclusion in Section 6.5. 

6.2 Linearity condition for FON states 

The energy of the exact DFT with respect to FON electron is expressed as follows: 

( ) ( ) ( ) ( )

( ) ( )( ) ( )

1 1

1 ,

E N n n E N nE N

E N E N n E N

+  = −  +  +

= + −  +
(6.2.1) 

where N is a positive integer, Δn is a fractional number (0 ≤ Δn ≤ 1), and E(N) is the ground-

state energy of an N-electron system.31 The curve of E with respect to Δn becomes straight, 

which is termed the linearity condition for total energies. 

According to Janak’s theorem,32 orbital energy εi, which is the eigen value of φi, is 

adherent to the following expression: 

i
i

E
f




=


, (6.2.2) 

where fi is the occupation number of the i-th orbital. The HOMO energy is equivalent to 
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the negative value of the first ionization potential.33 Differentiating Eq. (6.2.2) by fi in the 

range of 0 to 1 yields the following expression: 

 
2

2
0 1 0 1

0
i i

i

i if f

E
f f



   


= =

 
, (6.2.3) 

indicating that the orbital energy is constant for the change of occupation number of the 

corresponding orbital. This is the linearity condition for orbital energies. 

 

6.3 Computational details 

Noble gas atoms (Ne, Ar, Kr, Xe, and Rn) were numerically analyzed. Sapporo-TZP-

2012+d basis sets for Ne, Ar,34 and Sapporo-DKH3-TZP-2012+d basis sets for Kr, Xe, and 

Rn35 were applied in an uncontracted manner.  

The exchange-correlation functionals used in this study were 100% Becke’s exchange 

(B88)36 with Lee–Yang–Parr (LYP)37 correlation (BLYP), Becke’s half-and-half exchange 

(50% B88 + 50% HFx) with LYP correlation (BHHLYP),38 100% HFx with LYP correlation 

(HFLYP), and LC-BLYP with range-separation parameter 0.47.3 The modified ratio of B88 

and HFx, namely, 40% B88 + 60% HFx, 30% B88 + 70% HFx, 20% B88 + 80% HFx, and 

10% B88 + 90% HFx, were also employed in conjunction with LYP correlation. 

For the 2c calculation, the one-electron spin-free IOTC Hamiltonian39 with two-

electron Coulomb operator (1eIOTC) and one- and two-electron spin-free IOTC 

Hamiltonian40 (1e2eIOTC) were used along with the PCC41,42 (δsf) and -uncorrected density 

operator, which are described in Chapter 2. FON energy was calculated self-consistently 

by varying the occupation numbers of HOMO or 1s orbital. All the calculations were 

performed with the modified version of the GAMESS program.43 
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6.4 Results and discussion 

6.4.1 PCE on delocalization error 

In this subsection, the PCEs on the delocalization error are examined. Figures 6.1–6.4 

show the total energy deviation ΔE, 

( )   ( ) ( )1 1E E N n n E N n E N  = +  − −  +  −  , (6.4.1)

with respect to Δn. According to the linearity condition, ΔE becomes 0 regardless of Δn in 

the exact energy. 

Figure 6.1 provides the HOMO result of Ne, Ar, Kr, Xe, and Rn atoms obtained by the 

BLYP functional. As relativistic treatments, nonrelativistic Hamiltonian, 1eIOTC, 1eIOTC 

with δsf, 1e2eIOTC, and 1e2eIOTC with δsf are compared. The right panels show the 

enlarged view near the minima. All elements and relativistic treatments show the concave 

curves. Comparing elements, the absolute value of ΔE is largest in Ne and smaller in Ar, 

Kr, Xe, and Rn in that order. Lighter elements have a larger delocalization error. In the 

results of Ne and Ar, the relativistic treatments indicate close values to nonrelativistic 

treatments. The relativistic treatments estimate lower ΔE of Kr, Xe, and Rn than the 

nonrelativistic treatment. The differences among 1eIOTC, 1eIOTC with δsf, 1e2eIOTC, and 

1e2eIOTC with δsf are hardly identified. PCEs of two-electron and density operators rarely 

affect the FON states of HOMO, which are over stabilized by one-electron relativistic 

effects.  

Figure 6.2 presents the results for 1s orbital. Contrary to the case of HOMO shown in 

Figure 6.1, the absolute value of ΔE is largest in Rn and becomes relatively small in Xe, 

Kr, Ar, and Ne in that order. Heavier elements are limited from larger delocalization error 

in the FON states of 1s orbital. Comparing nonrelativistic and relativistic treatments, the 

differences are found in Ar, Kr, Xe, and Rn, which are minor in Ar and obvious for other 

elements in the order of magnitude Kr < Xe < Rn. The PCEs of two-electron and density 
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operators are also large. 1eIOTC (1eIOTC with δsf) yield lower ΔE than that of 1e2eIOTC 

(1e2eIOTCwith δsf). In terms of δsf, the ΔE obtained by 1eIOTC (1e2eIOTC) is higher than 

that obtained by 1eIOTC with δsf (1e2eIOTC with δsf). For example, the ΔE of Rn at Δn = 

0.5 is −155.6, −161.6, −137.6, and −143.7 eV for 1eIOTC, 1eIOTC with δsf, 1e2eIOTC, 

and 1e2eIOTC with δsf. The PCE of two-electron and density operator overestimates and 

underestimates delocalization error, respectively. The results of a comparative analysis of 

the difference owing to the picture change of two-electron and density operators show that 

the PCE of two-electron operators (~16 eV in Rn at Δn = 0.5) are larger than those of the 

density operator (~6 eV in Rn at Δn = 0.5).  

Figures 6.3 and 6.4 show the results obtained by the HFLYP functional for HOMO and 

1s orbital, respectively. Contrary to Figures 6.1 and 6.2, all curves are convex. HFx 

destabilizes the FON states. These errors are referred to as a localization error, which is 

derived from the lack of electron correlation in HFx.8 The absolute values of ΔE are smaller 

than those of BLYP. Electron correlation in the exchange term is smaller than the error 

derived from the inexact form of exchange functional. In the results of HOMO shown in 

Figure 6.3, the localization error for the lighter elements increases. The differences between 

nonrelativistic and relativistic treatments, which is slightly observed in Rn, are small. The 

PCE values of two-electron and density operators are also small in all elements. 

Opposite to the HOMO, the localization errors of 1s orbital shown in Figure 6.4 are 

larger in heavier elements. The effects of relativistic treatments are apparent in Ar, Kr, Xe, 

and Rn. The PCE of the two-electron operator, which overestimates the localization error, 

is clear in Xe and Rn. In contrast to the BLYP in Figure 6.2, the differences due to δsf are 

so small as to be invisible. The exchange part of HFLYP is not affected by the PCE of 

density operator because it does not include electron density. Although the correlation part 

is influenced by the PCE of the density operator, the correlation energy is considerably 

smaller than the exchange energy. Therefore, the PCE of the density operator for HFLYP is 
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small. 

Owing to the error cancellation of concave and convex characteristics of BLYP and 

HFLYP functionals, the curvature of ΔE becomes smaller when B88 exchange and HFx are 

mixed as shown in Figure A6.1 in Appendix of this chapter.  



131 

Figure 6.1. Total energy deviation (in eV) from ideal energy of FON states of HOMO in 

(a) Ne, (b) Ar, (c) Kr, (d) Xe, and (e) Rn atoms obtained by BLYP functionals with several

relativistic treatments. Right panels show the enlarged view near the minima. 
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Figure 6.2. Total energy deviation (in eV) from ideal energy of FON states of 1s orbital in 

(a) Ne, (b) Ar, (c) Kr, (d) Xe, and (e) Rn atoms obtained by BLYP functionals with several

relativistic treatments. Right panels show the enlarged view near the minima. 
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Figure 6.3. Total energy deviation (in eV) from ideal energy of FON states of HOMO in 

(a) Ne, (b) Ar, (c) Kr, (d) Xe, and (e) Rn atoms obtained by HFLYP functionals with several

relativistic treatments. Right panels show the enlarged view near the minima. 
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Figure 6.4. Total energy deviation (in eV) from ideal energy of FON states of 1s in (a) Ne, 

(b) Ar, (c) Kr, (d) Xe, and (e) Rn atoms obtained by HFLYP functionals with several

relativistic treatments. Right panels show the enlarged view near the minima. 

(a) Ne

(b) Ar

(c) Kr

(d) Xe

(e) Rn

0

1

2

3

4

5

6

Δn

ΔE
[e

V
]

0 0.2 0.4 0.6 0.8 1.0

0
1
2
3
4
5
6
7
8
9

Δn

ΔE
[e

V
]

0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

14

16

Δn

ΔE
[e

V
]

0 0.2 0.4 0.6 0.8 1.0

Δn

0
2
4
6
8

10
12
14
16
18
20

ΔE
[e

V
]

0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

30

Δn

ΔE
[e

V
]

0 0.2 0.4 0.6 0.8 1.0

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

1eIOTC
1eIOTC with δsf

1e2eIOTC
1e2eIOTC with δsf

Nonrelativistic

Δn

ΔE
[e

V
]

0.3 0.4 0.5 0.6 0.7

6.5

6.7

6.9

7.1

7.3

7.5

7.7

7.9

8.1

1eIOTC
1eIOTC with δsf

1e2eIOTC
1e2eIOTC with δsf

Nonrelativistic

Δn

ΔE
[e

V
]

0.3 0.4 0.5 0.6 0.7

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

1eIOTC
1eIOTC with δsf

1e2eIOTC
1e2eIOTC with δsf

Nonrelativistic

Δn

ΔE
[e

V
]

0.3 0.4 0.5 0.6 0.7

13

14

15

16

17

18

1eIOTC
1eIOTC with δsf

1e2eIOTC
1e2eIOTC with δsf

Nonrelativistic

Δn

ΔE
[e

V
]

0.3 0.4 0.5 0.6 0.7

17
18
19
20
21
22
23
24
25
26

1eIOTC
1eIOTC with δsf

1e2eIOTC
1e2eIOTC with δsf

Nonrelativistic

Δn

ΔE
[e

V
]

0.3 0.4 0.5 0.6 0.7



135 

6.4.2 Orbital energy dependence of FON 

This subsection examines the behaviors of orbital energy with respect to FON. Figures 

6.5–6.8 demonstrate the orbital energies with respect to FON electron Δn. The results of 

the lightest and heaviest elements, Ne and Rn, are presented here. The slopes of the graphs 

of orbital energy with respect to Δn calculated using the least square method are tabulated 

in Tables 1–4. The results of other elements, Ar, Kr, and Xe, are provided in Figures A6.2–

A6.7 and Tables A6.1–A6.5 in the appendix of this chapter. 

Figure 6.5 shows the results for the HOMO of Ne. The corresponding slopes are shown 

in Table 6.1. The orbital energies εHOMO of BLYP monotonically increase as Δn increases. 

Upon adding HFx, the slope of εHOMO versus Δn graph becomes smaller. In the results of 

HFLYP, εHOMO decreases as Δn increases. Moreover, 30%B88+70%HFx+LYP shows the 

smallest absolute value of the slope, indicating the smallest FON dependence of εHOMO. The 

slope of LC-BLYP is similar to that of BHHLYP. Nonrelativistic and relativistic treatments 

exhibit the above tendency and quantitatively similar orbital energies. One-electron 

relativistic effects and the PCE of two-electron and density operators are small in the 

HOMO of the Ne atom. 

Figure 6.6 shows the results for 1s orbital of Ne. The corresponding slopes are shown 

in Table 6.2. The qualitative tendency of the orbital energies ε1s with respect to Δn is similar 

to that of εHOMO: ε1s increases in BLYP and decreases in HFLYP as Δn increases and the 

combinations of B88 and HFx lie between BLYP and HFLYP. Moreover, 

40%B88+60%HFx+LYP indicates the smallest absolute value of the slope, namely the 

smallest FON dependence of ε1s. The magnitude of the slope is larger than that of the 

HOMO, indicating that ΔE of 1s orbital in Fig. 2(a) are larger than that of HOMO in Figure 

6.1(a). The slope of LC-BLYP is larger than that of BHHLYP and closer to BLYP. As 

mentioned in previous studies,20–22 the short-range HFx is important in inner shell orbitals. 

The relativistic effects and PCE are small, as in the results of HOMO. 
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Figure 6.7 shows the results for the HOMO of Rn. The corresponding slopes are shown 

in Table 6.3. The qualitative trends are similar to the results for HOMO of Ne, with the 

exception of the results of LC-BLYP. Among the combination of B88 and HFx, 

10%B88+90%HFx+LYP indicates the smallest FON dependence of εHOMO. εHOMO obtained 

by LC-BLYP, whose graph shows smaller slope than that of 10%B88+90%HFx+LYP, is 

almost independent from Δn. As in the case of Ne, the relativistic effects are small. 

Figure 6.8 shows the results for 1s of Rn. The corresponding slopes are shown in Table 

6.3. The qualitative trends are similar to the results for 1s orbital of Ne. Unlike Figures 6.5–

6.7, the differences caused by the nonrelativistic and relativistic treatments are pronounced 

in the 1s orbital of Rn. The orbital energy changes of relativistic treatments are steeper than 

that of nonrelativistic Hamiltonian: the absolute values of the slopes obtained by relativistic 

treatments are apparently larger than those by nonrelativistic Hamiltonian. The changes of 

ε1s (in eV) along the increase of FON, 0 < Δn < 1 obtained by BLYP are −88176.8 to 

−87267.6 in nonrelativistic Hamiltonian, −99454.4 to −98240.7 in 1eIOTC, −99397.0 to

−98129.5 in 1eIOTC with δsf, −99671.6 to −98601.7 in 1e2eIOTC, and −99613.6 to

−98489.3 in 1e2eIOTC with δsf. The range of ε1s in 1eIOTC is approximately 11000 eV

lower than that of nonrelativistic Hamiltonian. Comparing 1eIOTC with 1e2eIOTC, the 

range of the ε1s of 1e2eIOTC is more than 300 eV lower than that of 1eIOTC. Using δsf 

makes the range of ε1s higher. The PCE of two-electron and density operators on the values 

of ε1s cannot be disregarded while the relativistic effects are dominated by the one-electron 

term. The linearity of orbital energy is also influenced by PCE. The functional that yields 

the smallest slope of ε1s versus Δn graph is 20%B88+80%HFx+LYP for nonrelativistic 

Hamiltonian and 1e2eIOTC and 10%B88+90%HFx+LYP for other relativistic treatments. 
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Figure 6.5. Orbital energy changes of HOMO, εHOMO (in eV) with respect to FON, Δn in 

Ne atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, 

(d) 1e2eIOTC, and (e) 1e2eIOTC with δsf.
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Figure 6.6. Orbital energy changes of 1s orbital, ε1s (in eV) with respect to FON, Δn in Ne 

atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, (d) 

1e2eIOTC, and (e) 1e2eIOTC with δsf. 
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Figure 6.7. Orbital energy changes of HOMO, εHOMO (in eV) with respect to FON, Δn in 

Rn atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, 

(d) 1e2eIOTC, and (e) 1e2eIOTC with δsf.
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Figure 6.8. Orbital energy changes of 1s, ε1s (in eV) with respect to FON, Δn in Rn atom. 

Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, (d) 

1e2eIOTC, and (e) 1e2eIOTC with δsf.  
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Table 6.1. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO 

of Ne atoms in Figure 6.5. 

Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 16.84 16.84 16.84 16.84 16.85 
BHHLYP 5.42 5.42 5.42 5.42 5.42 
40%B88+60%HFx 
+LYP 3.16 3.16 3.16 3.16 3.16 

30%B88+70%HFx
+LYP 0.96 0.96 0.96 0.96 0.96 

20%B88+80%HFx
+LYP −1.25 −1.25 −1.25 −1.25 −1.25

10%B88+90%HFx
+LYP −3.49 −3.50 −3.50 −3.50 −3.50

HFLYP −5.76 −5.76 −5.76 −5.76 −5.76
LC-BLYP 5.01 5.01 5.01 5.01 5.01

Table 6.2. Slopes of orbital energy change with respect to FON electron (in eV) in 1s orbital 

of Ne atoms in Figure 6.6. 

Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 69.07 69.27 69.31 69.15 69.20 
BHHLYP 12.45 12.48 12.51 12.42 12.45 
40%B88+60%HFx 
+LYP 1.11 1.11 1.13 1.07 1.09 

30%B88+70%HFx
+LYP −10.08 −10.12 −10.10 −10.14 −10.13

20%B88+80%HFx
+LYP −21.35 −21.42 −21.41 −21.43 −21.42

10%B88+90%HFx
+LYP −32.70 −32.80 −32.80 −32.80 −32.80

HFLYP −44.13 −44.27 −44.27 −44.25 −44.25
LC-BLYP 54.41 54.60 54.65 54.49 54.54
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Table 6.3. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO 

of Rn atoms in Figure 6.7. 

Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 7.74 7.90 7.88 7.90 7.90 
BHHLYP 3.23 3.34 3.34 3.34 3.34 
40%B88+60%HFx 
+LYP 2.33 2.42 2.42 2.42 2.42 

30%B88+70%HFx
+LYP 1.43 1.49 1.49 1.49 1.49 

20%B88+80%HFx
+LYP 0.53 0.57 0.57 0.57 0.57 

10%B88+90%HFx
+LYP −0.36 −0.35 −0.35 −0.35 −0.35

HFLYP −1.27 −1.27 −1.27 −1.27 −1.27
LC-BLYP −0.03 0.08 0.08 0.08 0.08

Table 6.4. Slopes of orbital energy change with respect to FON electron (in eV) in 1s orbital 

of Rn atoms in Figure 6.8. 

Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 927.94 1232.58 1282.72 1088.76 1139.60 
BHHLYP 379.21 514.70 540.16 444.66 470.32 
40%B88+60%HFx 
+LYP 269.49 371.29 391.70 316.00 336.56 

30%B88+70%HFx
+LYP 159.77 227.91 243.24 187.40 202.82 

20%B88+80%HFx
+LYP 50.06 84.57 94.80 58.86 69.14 

10%B88+90%HFx
+LYP −59.64 −58.71 −53.63 −69.63 −64.52

HFLYP −170.00 −202.12 −202.52 −198.23 −198.63
LC-BLYP 913.39 1217.87 1268.07 1074.04 1124.94
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6.5 Conclusion 

In this chapter, the PCE in the FON states of HOMO and 1s orbitals of noble gas atoms 

in the framework of the spin-free IOTC Hamiltonian was examined. Calculations of the 

delocalization error revealed that the FON electron states were over stabilized by 

relativistic treatments. The PCE of two-electron and density operators were remarkable in 

the core region of heavy elements: the former and the latter overestimated and 

underestimated the delocalization error, respectively. Corresponding to these results of total 

energies, the values of orbital energies and the slope of their changes to FON in core region 

of heavy elements were affected by PCE. The PCE of two-electron and density operators 

should be corrected when considering the linearity condition of total and orbital energies. 
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Appendix 

Figure A6.1. Total energy deviation (in eV) from ideal energy of FON states of HOMO 

(left panels) and 1s orbital (right panels) in (a) Ne, (b) Ar, (c) Kr, (d) Xe, and (e) Rn atoms 

obtained with 1e2eIOTC with δsf. 
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Figure A6.2. Orbital energy changes of HOMO, εHOMO (in eV) with respect to FON, Δn in 

Ar atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, 

(d) 1e2eIOTC, and (e) 1e2eIOTC with δsf.

(a) Nonrelativistic

(e) 1e2eIOTC with δsf

(b) 1eIOTC

(c) 1eIOTC with δsf (d) 1e2eIOTC

-22

-20

-18

-16

-14

-12

-10

Δn

ε H
O

M
O

[e
V

]

0 0.2 0.4 0.6 0.8 1.0 -22

-20

-18

-16

-14

-12

-10

Δn

ε H
O

M
O

[e
V

]

0 0.2 0.4 0.6 0.8 1.0

-22

-20

-18

-16

-14

-12

-10

Δn

ε H
O

M
O

[e
V

]

0 0.2 0.4 0.6 0.8 1.0
-22

-20

-18

-16

-14

-12

-10

Δn

ε H
O

M
O

[e
V

]

0 0.2 0.4 0.6 0.8 1.0

-22

-20

-18

-16

-14

-12

-10

Δn

ε H
O

M
O

[e
V

]

0 0.2 0.4 0.6 0.8 1.0

BLYP

40%B88+60%HFx+LYP
BHHLYP

30%B88+70%HFx+LYP
20%B88+80%HFx+LYP
10%B88+90%HFx+LYP
HFLYP
LC-BLYP



 149 

 

Figure A6.3. orbital energy changes of 1s orbital, ε1s (in eV) with respect to FON, Δn in Ar 

atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, (d) 

1e2eIOTC, and (e) 1e2eIOTC with δsf.  
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Figure A6.4. Orbital energy changes of HOMO, εHOMO (in eV) with respect to FON, Δn in 

Kr atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, 

(d) 1e2eIOTC, and (e) 1e2eIOTC with δsf.
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Figure A6.5. Orbital energy changes of 1s orbital, ε1s (in eV) with respect to FON, Δn in 

Kr atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, 

(d) 1e2eIOTC, and (e) 1e2eIOTC with δsf.
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Figure A6.6. Orbital energy changes of HOMO, εHOMO (in eV) with respect to FON, Δn in 

Xe atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, 

(d) 1e2eIOTC, and (e) 1e2eIOTC with δsf.
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Figure A6.7. Orbital energy changes of 1s orbital, ε1s (in eV) with respect to FON, Δn in 

Xe atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with δsf, 

(d) 1e2eIOTC, and (e) 1e2eIOTC with δsf.
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Table A6.1. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO 

of Ar atoms in Figure A6.2. 

 Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 10.99 10.99 10.99 10.99 10.99 
BHHLYP 4.23 4.23 4.23 4.23 4.23 
40%B88+60%HFx 
+LYP 2.91 2.91 2.91 2.91 2.91 

30%B88+70%HFx 
+LYP 1.58 1.58 1.58 1.58 1.58 

20%B88+80%HFx 
+LYP 0.26 0.26 0.26 0.26 0.26 

10%B88+90%HFx 
+LYP −1.06 −1.06 −1.06 −1.06 −1.06 

HFLYP −2.38 −2.38 −2.38 −2.38 −2.38 
LC-BLYP 1.10 1.11 1.11 1.11 1.11 

 

Table A6.2. Slopes of orbital energy change with respect to FON electron (in eV) in 1s 

orbital of Ar atoms in Figure A6.3. 

 Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 151.75 153.25 153.56 152.43 152.74 
BHHLYP 44.43 44.84 45.01 44.47 44.65 
40%B88+60%HFx 
+LYP 22.98 23.19 23.32 22.90 23.03 

30%B88+70%HFx 
+LYP 1.54 1.54 1.63 1.34 1.44 

20%B88+80%HFx 
+LYP −19.88 −20.09 −20.03 −20.20 −20.13 

10%B88+90%HFx 
+LYP −41.31 −41.74 −41.71 −41.75 −41.72 

HFLYP −62.74 −63.38 −63.38 −63.30 −63.30 
LC-BLYP 137.10 138.58 138.89 137.76 138.07 
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Table A6.3. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO 

of Kratoms in Figure A6.4. 

Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 9.74 9.77 9.77 9.77 9.78 
BHHLYP 3.92 3.94 3.94 3.94 3.94 
40%B88+60%HFx 
+LYP 2.77 2.78 2.78 2.78 2.78 

30%B88+70%HFx
+LYP 1.62 1.63 1.63 1.63 1.63 

20%B88+80%HFx
+LYP 0.48 0.48 0.48 0.48 0.48 

10%B88+90%HFx
+LYP −0.67 −0.67 −0.67 −0.67 −0.67

HFLYP −1.80 −1.81 −1.81 −1.81 −1.81
LC-BLYP 9.74 9.77 9.77 9.77 9.78

Table A6.4. Slopes of orbital energy change with respect to FON electron (in eV) in 1s 

orbital of Kr atoms in Figure A6.5. 

Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 340.78 356.00 358.80 348.40 351.21 
BHHLYP 117.91 123.77 125.19 120.15 121.58 
40%B88+60%HFx 
+LYP 73.36 77.36 78.49 74.54 75.68 

30%B88+70%HFx
+LYP 28.82 30.95 31.81 28.95 29.80 

20%B88+80%HFx
+LYP −15.72 −15.45 −14.88 −16.65 −16.09

10%B88+90%HFx
+LYP −60.25 −61.82 −61.54 −62.23 −61.95

HFLYP −104.60 −108.03 −108.04 −107.63 −107.64
LC-BLYP 340.78 356.00 358.80 348.40 351.21
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Table A6.5. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO 

of Xe atoms in Figure A6.6. 

Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 8.32 8.38 8.38 8.39 8.39 
BHHLYP 3.43 3.47 3.47 3.47 3.47 
40%B88+60%HFx 
+LYP 2.46 2.49 2.49 2.49 2.49 

30%B88+70%HFx
+LYP 1.49 1.51 1.51 1.51 1.51 

20%B88+80%HFx
+LYP 0.52 0.54 0.54 0.54 0.54 

10%B88+90%HFx
+LYP −0.44 −0.44 −0.44 −0.44 −0.44

HFLYP −1.42 −1.42 −1.42 −1.42 −1.42
LC-BLYP 8.32 8.38 8.38 8.39 8.39

Table A6.6. Slopes of orbital energy change with respect to FON electron (in eV) in 1s 

orbital of Xe atoms in Figure A6.7. 

Nonrelativistic 1eIOTC 1e2eIOTC 
with δsf 1e2eIOTC 1e2eIOTC 

with δsf 
BLYP 550.33 609.40 619.62 581.17 591.47 
BHHLYP 211.04 235.47 240.60 221.84 226.99 
40%B88+60%HFx 
+LYP 143.07 160.68 164.82 150.00 154.14 

30%B88+70%HFx
+LYP 75.14 85.93 89.06 78.19 81.30 

20%B88+80%HFx
+LYP 7.21 11.24 13.31 6.42 8.49 

10%B88+90%HFx
+LYP −60.72 −63.45 −62.43 −65.34 −64.31

HFLYP −128.42 −137.81 −137.87 −136.75 −136.81
LC-BLYP 550.33 609.40 619.62 581.17 591.47
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Chapter 7 Implementation of PCC method into 

GAMESS program** 

7.1 Introduction 

The spin-free 2c Hamiltonian is so to speak one-component Hamiltonian, because it 

ignores the spin-dependent term of 2c Hamiltonian. In terms of implementation, the spin-

free 2c Hamiltonian can be handled with only a few corrections for nonrelativistic quantum 

chemical calculations. Therefore, the spin-free 2c relativistic Hamiltonians for one-electron 

operator are available in several quantum chemical program packages, such as GAMESS,1 

ORCA,2 NWChem,3 TURBOMOLE,4 CFOUR,5 MOLCAS,6,7 and so on. Nakai group has 

also implemented the LUT scheme based on the IOTC Hamiltonian into GAMESS 

program.8 The LUT-IOTC Hamiltonian is available with not only SCF calculations but also 

electron correlation methods such as MP2 and CC, DFT, DC9,10 for large-scale calculations, 

and geometry optimization by analytical energy gradient. However, the PCC for two-

electron operator is necessary to pursue the accuracy close to that of the 4c Hamiltonian. 

The density operator also requires the PCC in the case of 2c DFT. In this chapter, the IOTC 

transformation with and without the LUT scheme for two-electron11,12 and density 

operators13 is implemented into the public version of GAMESS program. The remainder of 

this chapter is organized as follows: Sec. 7.2 explains the details of the implementation. 

The numerical assessments are presented in the Sec. 7.3. The conclusion of this chapter is 

provided in the Sec. 7.4. 

** The parts of the contents of this chapter are reproduced from the article by Chinami Takashima, 
Junji Seino, and Hiromi Nakai, J. Comput. Chem. Jpn. 19, 128 (2020). Copyright 2021 Society of 
Computer Chemistry, Japan. DOI: 10.2477/jccj.2021-0002 



158 

7.2 Implementation 

Figure 7.1 shows the algorithm for the energy calculation by PCC method. The 

Coulomb-interaction is adopted as a two-electron operator. The IOTC transformation of the 

two-electron operator requires three kinds of TEIs in Eq. (2.3.25)–(2.3.27). The evaluation 

of TEIs for PBFs, namely, the Coulomb-like 21/a b ij c dk k r k k1  , Darwin-like 

21/a b i ij i c dk k r k k1p p , and specific spin-free interaction terms 

21/a b i j ij j i c dk k r k k   1p p p p , are implemented. The program code for the Coulomb-

like term is similar to that for the nonrelativistic TEIs, which evaluates the TEIs of the 

Coulomb operator. Focusing on the momentum of operator, i= − p , the Darwin-like and 

specific spin-free interaction terms are rewritten as 

1 11 12 2 1 12 21 1a b c d a b c dk k r k k k k r k k =  r r1 1p p  (7.2.1) 

and 

 
1 2 1 21 2 12 2 2 1 12 21 1a b c d a b c dk k r k k k k r k k  =    r r r r1 1p p p p . (7.2.2)

Because the basis sets applied in GAMESS program is Gaussian-type functions, {k} is 

represented by Gaussian-type functions. Therefore, 
1 akr  is also expressed by Gaussian-

type functions that have different angular momenta from those of ka as referred in Chapter 

5. The codes for evaluating the Darwin-like and specific spin-free interaction terms are

similar to that used for 12 21a b c dk k r k k1 . The implementation of these TEIs was based 

on Gauss-Rys quadrature codes. The transformations of these TEIs are implemented by 

modifying the existence codes for (LUT-)IOTC for one-electron operator.  

For the calculation of PCC of density operator, the OEIs appeared in Eq. (2.3.35) were 

additionally required for the calculation of electron density. The direct calculation of Eq. 

(2.3.35) demands the transformation of matrix. According to Eqs. (2.3.43) and (2.3.44), 
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these OEIs are obtained by the product of transformed AOs shown in Eqs. (2.3.41) and 

(2.3.42), namely the inner product of vectors. The practical implementation adopted 

simpler codes using the vector expression instead of the matrix transformation. The 

gradient of electron density and kinetic energy density shown in Eqs. (2.3.46) and (2.3.48) 

are also implemented according to the expression of inner product of vectors. As shown in 

Eq. (2.3.53), the exchange-correlation integral has also different formula from that does not 

consider PCC. The routine for adding the exchange-correlation term in the construction of 

Fock matrix was modified along the Eq. (2.3.53). 

Table 7.1 summarizes the major capabilities of the IOTC Hamiltonian in GAMESS 

program. The (LUT-)IOTC Hamiltonian for one-electron term is denoted as 1e(LUT-)IOTC 

and that for one- and two-electron terms is denoted as 1e2e(LUT-)IOTC. The present 

implementation enables electron correlation methods and the DC method based on the 

1e2e(LUT-)IOTC. Furthermore, the analytical energy gradient is also available for LUT-

IOTC because the nuclear-coordinate derivative of TEIs in the LUT scheme is the same as 

that of nonrelativistic method. 

Figure 7.2 shows the sample input of the energy calculation of PCC-DFT based on the 

LUT-IOTC Hamiltonian. The 1e2eLUT-IOTC Hamiltonian are available by specifying 

“RELWFN=LUTIOTC2” in the $CONTRL name list, which sets the fundamental job 

options. In addition, the PCC of density operator can be performed by adding 

“PCCDFT=.T.” to the $RELWFN name list, which specifies the details of relativistic 

treatments, for example, the speed of light and threshold τ for one-electron LUT scheme. 

Keywords for another options for IOTC Hamiltonians are tabulated in Table 7.1. 
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Figure 7.1. Schematic diagram of the algorithm for the energy calculation by PCC method. 

Items colored in green are the implemented parts in this chapter. 

Table 7.1. Major capabilities of IOTC Hamiltonian in GAMESS. ✔ represents the previous 

work. ★ indicates the options that can be possible by the implementation of this chapter. 

Hamiltonian Keyword Energy Analytical 
gradient 

Correlation 
(MP2, CC) DC 

1eIOTC RELWFN=IOTC ✔ × ✔ ✔ 
1eLUT-IOTC RELWFN=LUT-IOTC ✔ ✔ ✔ ✔ 
1e2eIOTC RELWFN=IOTC2E ★ × ★ ★ 
1e2eLUT-IOTC RELWFN=LUTIOTC2 ★ ★ ★ ★ 
(LUT-)IOTC for δsf PCCDFT=.T. ★ ★ - - 

SC
F

lo
op

Construct Fock matrix

Unitary transformation of TEIs

Calculate OEIs

Calculate TEIs

Unitary transformation of OEIs

Diagonalize Fock matrix
Add XC term to Fock matrix

Calculate XC term at rg

Calculate grid point rg

Calculate  , ∇ ,  …

Transform δ operator

Calculate andk k

( )kk c 


=  r

*

*

DFT?

Post Hartree–Fock

Yes

No

Calculate XC term in grid loop

: newly implemented in this study
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Figure 7.2. Sample input of energy calculation of the PCC-DFT based on the LUT-IOTC 

method. 

$CONTRL SCFTYP=RHF RUNTYP=ENERGY

RELWFN=LUTIOTC2 DFTTYP=BLYP $END

$RELWFN PCCDFT=.T. $END

$BASIS GBASIS=SPKrDZC $END

$DATA

Sample input

C1

H   1.0 -0.46355  8.99463 0.00000

At 85.0 -1.61980 -0.92024 0.00000

...

$END
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7.3 Numerical assessments 

7.3.1 Accuracy 

Table 7.2 shows the deviations in total energy from the 4c results at the 

BLYP14,15/Sapporo(-DKH3)-DZP-201216–18 level for diatomic molecules: CuH, Cu2, AgH, 

Ag2, AuH, and Au2, whose bond distances were set to 1.4658, 2.2192, 1.6179, 2.5303, 

1.5324, and 2.4719, respectively. The nonrelativistic, 1eIOTC, and 1e2eIOTC 

Hamiltonians were adopted. The effects of PCC for density operator by IOTC 

transformation δsf were also examined. Nonrelativistic Hamiltonian gives large deviations 

from 4c results. On the other hand, 1e2eIOTC with δsf showed an error of 0.007 hartree 

even for Au2, which has the largest relativistic effects, and gives good agreement with 4c 

results in all molecules. The effects of PCC for two-electron Coulomb term and density 

operator are essential to obtain accurate results; The difference between 1eIOTC and 

1e2eIOTC are several hartree as well as that between 1e2eIOTC with and without δsf. In 

particular, 1eIOTC with δsf provides larger error than 1eIOTC without δsf, which is due to 

the error cancellation from negative deviation of 1e2eIOTC Hamiltonian. The importance 

of comprehensive transformation of all operators was confirmed. 

Table 7.3 shows the the error caused by the LUT scheme. The errors in all molecules 

are less than 1 millihartree and quite smaller than the deviation from 4c values shown in 

Table 7.2. The validity of the approximation of LUT scheme was confirmed.  
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Table 7.2. Total energy deviation (in hartree) of nonrelativistic and IOTC Hamiltonian from 

4c Hamiltonian in the calculations of dimers of coinage metals, CuH, Cu2, AgH, Ag2, AuH, 

Au2. IOTC transformations for one-electron (1e), two-electron (2e), and density operators 

(δsf) were examined. BLYP functional and uncontracted Sapporo(-DKH3)-DZP-2012 basis 

sets were applied. The reference 4c values are shown in parentheses. 

Nonrel. 1eIOTC 1eIOTC 
 with δsf 1e2eIOTC 1e2eIOTC 

with δsf (4c) 

CuH 14.587504 0.275606 0.490224 −0.215161 −0.000194 (−1655.820950) 
Cu2 29.170984 0.551139 0.980329 −0.430280 −0.000391 (−3310.509041) 
AgH 117.033352 1.490758 2.469700 −0.983365 −0.001923 (−5317.695585) 
Ag2 234.057976 2.981425 4.939251 −1.966657 −0.003834 (−10634.277804)
AuH 1158.437895 9.580662 15.360145 −5.808337 −0.003498 (−19028.891526)
Au2 2316.820851 19.160914 30.719593 −11.616401 −0.007012 (−38056.629824)

Table 7.3. The deviation (in hartree) of total energy obtained by LUT-IOTC Hamiltonian 

from that obtained by IOTC Hamiltonian without LUT scheme. Transformations for one-

electron (1e), two-electron (2e), and density operators (δ) were examined. BLYP functional 

and uncontracted Sapporo(-DKH3)-DZP-2012 basis sets were applied. 

1e 1e and δ 1e and 2e 1e, 2e, and δ 
CuH −0.000002 −0.000002 −0.000007 −0.000007
Cu2 0.000000 0.000000 −0.000014 −0.000014
AgH −0.000002 −0.000002 0.000004 0.000004
Ag2 −0.000006 −0.000006 −0.000007 −0.000008
AuH −0.000014 −0.000014 −0.000017 −0.000017
Au2 0.000024 0.000024 0.000022 0.000022
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7.3.2 Efficiency 

Table 7.3 compares the CPU times of calculations of Ir(ppy)3 using LUT-IOTC 

Hamiltonians at the PBE019/Sapporo(-DKH3)-DZP-2012 level. LUT-IOTC transformation 

for one-electron, two-electron, and density operator was examined. For comparison, the 

CPU times for the nonrelativistic treatment are also given. The total CPU times and the 

components of time-consuming steps, namely, evaluation and transformation of TEIs and 

the first SCF cycle are shown. For measurement of the CPU times, one CPU core of Intel® 

Xeon® Gold 5122/3.60 GHz was used. The numbers of total SCF cycles were 39 and 31 

for the nonrelativistic and LUT-IOTC calculations, respectively. The DFT calculations with 

the fine Lebedev grid (96 radial and 302 angular points) were performed in 15 cycles for 

nonrelativistic Hamiltonian, 14 cycles for 1e2eLUT-IOTC w/ δLUT, and 13 cycles for others. 

In 1eLUT-IOTC Hamiltonian, the CPU times of TEIs and SCF are similar to those in the 

nonrelativistic Hamiltonian. In 1e2eLUT-IOTC with and without δLUT, the CPU times of 

TEIs are approximately 16% larger than the others because of the use of local 

transformation. Using δLUT (i.e. in the calculation by 1eLUT-IOTC with δLUT and 1e2eLUT-

IOTC w/ δLUT), the CPU times of SCF are larger than those in the others. This is because 

the transformation for density operator is performed in all grid points. The 4c calculation 

was difficult in the present computing environment. In consequence, the most accurate 

calculation using 1e2eLUT-IOTC Hamiltonian with δLUT can be accomplished within three 

times of CPU times of nonrelativistic treatment.  

Figure 7.3 provides the system-size dependence of CPU time for calculations of (HF)n 

molecules by the Hartree–Fock, MP2, CCSD, and CCSD(T) methods combined with the 

DC method. The intra and intermolecular distances of HF were fixed at 0.907 and 1.503 Å, 

respectively. The bond angles of H–F–H and F–H–F were set to 120° and 180°, respectively. 

Figure 7.3(a) shows the results obtained by nonrelativistic Hamiltonian. Figure 7.3(b) 

presents the results of the 1e2eIOTC Hamiltonian. For DC calculations, LUT scheme was 
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adopted in Figure 7.3(b). The DC method drastically reduced the CPU time and the order 

of scaling of the CPU time. Combination of DC and LUT provides similar results to those 

of the nonrelativistic calculation. Here, the CPU time for the DC-MP2 is shorter than that 

for DC-Hartree–Fock (DC-HF). DC-CCSD and DC-CCSD(T) show the smaller scales of 

the CPU times comparing with DC-HF. These results are owing to the dual buffer treatment, 

which utilizes the fact that the correlation energies are more localized than Coulomb and 

exchange energies. 
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Table 7.3. CPU time (in s) for calculation of Ir(ppy)3 by nonrelativistic and LUT-IOTC 

Hamiltonians. LUT-IOTC transformation for one-electron (1e), two-electron (2e), and 

density operator (δLUT) was examined. PBE0 functional and Sapporo(-DKH3)-DZP-2012 

basis sets were adopted. The CPU time for Evaluation and transformation of TEIs, the first 

SCF cycle of DFT and total calculations are shown. 

TEIs SCF Total 
Nonrelativistic 1175.17 359.35 12392.61 
1e LUT-IOTC 1177.74 345.89 9994.87 
1e LUT-IOTC with δLUT 1195.72 1933.32 32360.91 
1e2e LUT-IOTC 1368.86 341.39 10025.63 
1e2e LUT-IOTC with δLUT 1392.46 1949.37 34332.76 

Figure 7.3. System-size dependence of CPU time (in s) in the Hartree–Fock (HF), MP2, 

CCSD, and CCSD(T) calculations of (HF)n molecules. (a) nonrelativistic and (b) 

1e2eIOTC Hamiltonians are adopted with and without DC method. In the calculation of 

1e2eIOTC, the DC method is combined with LUT scheme. As basis sets, uncontracted 6-

311G** were applied. 

(a) Nonrelativistic
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7.4 Conclusion 

This chapter presented the implementation of the PCC methods for the two-electron 

Coulomb interaction and density operators in the GAMESS program package, which 

enables accurate and efficient 2c relativistic calculations. The details of implementation 

and capability of the present methods were provided. Numerical assessments confirmed the 

accuracy and efficiency of the implementation In particular, the numerical result for the 

whole PCC of the one-electron, two-electron, and density operators clarified to be essential 

in order to obtain the results close to those of 4c treatment. Furthermore, its computational 

costs are slightly larger than but comparable with those of the nonrelativistic calculations. 

The GAMESS program including LUT-IOTC for two-electron and density operators was 

open to the public in July 2022. 
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Chapter 8 Relativistic effects on C–H activation of 

N-phenylbezamide using Ir complex††

8.1 Introduction 

Relativistic effects have been discussed as essential factors of molecular structures, 

properties, and chemical reactions in heavy element systems.1–7 The scalar relativistic effect 

contracts and stabilizes s and p orbitals, followed by the self-consistent expansion and 

activation of d and f orbitals.8 This effect influences bond lengths, vibrational frequencies, 

orbital energies, and reactivities. Another relativistic effect originates from the spin-

dependent effect, which is due to the hybridization and rotation of electronic spins.9 This 

effect influences magnetic properties, such as the chemical shifts of NMR, the spin-orbit 

splitting of degenerated orbitals, and intersystem crossing in photophysical and 

photochemical processes. For heavy elements, these effects are more significant. 

Relativistic effects in homogeneous catalytic reactions have been examined mainly for 

third-row transition metal complexes, but recently for the first- and second-row ones as 

well.10–18 For example, the contraction of 6s and 6p orbitals, the expansion of 5d orbitals, 

and the spin-orbit splitting of 6p and 5d orbitals shift the energy levels of the HOMO and 

LUMO, which have been reported to rationalize the remarkable activities of homogeneous 

Au, Pt, and Hg catalysts.11–13,16 

In recent years, C–H functionalization using Ir complexes has attracted considerable 

attention because of their high catalytic activities.19–25 For example, the energy barrier in 

the C–H amination of benzamides with Ir catalysts has been reported to be lower than that 

with Rh catalysts.26 Furthermore, the rate constant of an Ir-mediated C–N coupling reaction 

†† Reprinted with permission from the article by Chinami Takashima, Hisaki Kurita, Hideaki Takano, 
Yasuhiro Ikabata, Takanori Shibata, and Hiromi Nakai, J. Phys. Chem. A 126, 7627 (2022). Copyright 
2023 American Chemical Society. 
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was shown to be larger than that of the Rh case.27 Further, various catalytic activities of 

cationic Ir complexes have been reported,28–32 for example, the sp2 C–H alkenylation of 

aryl ketones with alkynes,28 the sp3 C–H alkylation of pyridylamine with alkenes,33 and C–

H conjugate addition to -substituted ,-unsaturated esters.31 

In this chapter, the author elucidates the relativistic catalytic activities of cationic Ir 

complexes in experimental and theoretical aspects. The difference in the catalytic reactivity 

between the Ir and Rh complexes reported in the deuteration of N-phenylbenzamide for C–

H activation is theoretically analyzed using DFT calculations. The scalar relativistic effect 

is estimated based on a direct comparison of reaction energy diagrams, geometric 

parameters, and electronic structures calculated by relativistic calculations with those of 

their nonrelativistic counterparts. The remainder of this chapter is organized as follows. 

The next section describes the experimental backgrounds: the results of deuteration of N-

phenylbenzamide. The computational details, results, and discussion are presented in the 

third section. The last section presents the conclusion of this chapter. 

8.2 Experimental backgrounds 

Scheme 8.1 shows deuteration of N-phenylbenzamide, which is covered by this 

chapter. N-phenylbenzamide was reacted with excess amounts of D2O using cationic Ir(I) 

and Rh(I)-diphosphine catalysts possessing (S)-BINAP derivatives in 1,4-dioxane at 120 °C 

for 24 h under standard reaction conditions. Figure 8.1 illustrates the molecular formulas 

of (S)-BINAP and (S)-SEGPHOS ligands.  

When the Ir–(S)-SEGPHOS or (S)-BINAP catalyst was used, significant D-content 

was observed at the ortho positions of the aromatic rings of N-phenylbenzamide: D1 and 

D2 contents were 57 and 60 %, respectively, with Ir–(S)-SEGPHOS and 73 and 74 %, 

respectively with Ir–(S)-BINAP. The high catalytic activity of the cationic Ir complex for 

C–H activation was ascertained. In contrast, the Rh counterparts were inactive.  
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The conceivable reaction mechanism of deuteration of N-phenylbenzamide is shown 

in Scheme 8.2. The reactions at the ortho position of amino and carbonyl groups are 

described in left and right cycles of Scheme 8.2, respectively. The precursor of these 

reactions is the Ir-diphosphine complex (A). The substrate, N-phenylbenzamide (B), is 

coordinated to A by an oxygen atom as a directing group (C or C’). The C–H bond cleaves 

by the oxidative addition of Ir through a TS (D or D’), which leads to form the Ir-D complex 

(E or E’). Then, the H-D exchange occurs on the Ir to form Ir-D complex (F or F’). The C-

D bond is formed on the ortho position of the substrate (G→H or G’→H’). Finally, the 

deuterated N-phenylbenzamide (I or I’) is obtained by the elimination of the substrate. Note 

that the present quantum chemical calculations treated the C-H bond cleavage, namely, C

→D→E and C’→D’→E’.  

 

 

 

Scheme 8.1. Deuteration of N-phenylbenzamide using Ir- and Rh- catalysts. 

 

 
Figure 8.1. Molecular formulas of (S)-SEGPHOS and (S)-BINAP.  
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Scheme 8.2. Conceivable reaction mechanisms of deuteration of N-phenylbenzamide using 

Ir(I)-diphosphine catalysts. (a) and (b) correspond to the ortho position of amino and 

carbonyl groups, respectively. 
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8.3 Computational details 

Using quantum chemical calculations, the author examined the oxidative addition of 

N-phenylbenzamide to the Ir and Rh complexes (C→D→E and C’→D’→E’ in Scheme

8.2), which might be an elementary step in a series of H–D exchange reactions of N-

phenylbenzamide in D2O. This subsection describes the calculation conditions. Geometry 

optimizations were performed for the reactants, TSs, and products of the oxidative 

additions. In total, 16 patterns of conditions were considered because of the relativistic or 

nonrelativistic setting of the pseudopotential and valence basis set, transition metal 

elements (Ir or Rh), ligands (SEGPHOS or BINAP), and reaction positions (ortho position 

of amino or carbonyl group). Each combination was indicated by the following 

abbreviations: Rel/NR–Ir/Rh–S/B–A/C. For comparison, the geometry optimizations for 

the separated systems, namely, the Ir and Rh complexes and N-phenylbenzamide, were 

performed.  

Harmonic vibrational frequencies were analytically calculated to examine whether the 

optimized structure had an equilibrium geometry or TS. TS structures were confirmed to 

connect the corresponding reactants and products using IRC34–37 calculations. In Gibbs 

energy calculations, the temperature and pressure were set to 120 °C (393.15 K) and 1 atm, 

respectively. Solvation effects (1,4-dioxane, ε = 2.2099) were considered using the 

polarizable continuum model based on solute electron density.38 Further, NBO analysis was 

performed using the NBO 6.0 program39 to recognize the relativistic effect from the 

viewpoint of localized orbitals. 

The above quantum chemical calculations were performed at the DFT level with the 

B97X-D exchange-correlation functional,40 using the Gaussian 09 program package.41 

For the core electrons of Ir ([Kr]4d104f14) and Rh ([Ar]3d10), nonrelativistic and relativistic 

Stuttgart–Dresden (SDD)42,43 pseudopotentials were used. As nonrelativistic and 

relativistic basis sets for the corresponding valence orbitals, (18s7p6d)/[4s2p2d] and 
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(20s9p8d)/[4s2p2d] were adopted, respectively. For the other atoms, such as C, H, N, O, 

and P, the 6-31G(d,p) all-electron basis sets44,45 were used. Additionally, relativistic single-

point calculations were performed with the all-electron basis sets at the optimized 

geometries using the above pseudopotentials. Sapporo-DKH3-DZP-2012 basis sets for Ir 

and Rh and Sapporo-DZP-2012 basis sets for H, C, N, O, and P were adopted. These all-

electron calculations were performed by the GAMESS program.  

8.4 Results and discussion 

8.4.1 Geometry optimization 

Figure 8.2 illustrates the optimized structures for relativistic treatment for the Ir 

complex with SEGPHOS as a ligand for C–H activation at the ortho position of the amino 

group: i.e., Rel–Ir–S–A. In this figure, two P atoms are distinguished by Pa and Pb.  

Here, the geometries of the reaction centers for the Ir and Rh complexes with 

SEGPHOS at the amino-group reaction position calculated at the relativistic and 

nonrelativistic levels, i.e., Rel/NR–Ir/Rh–S–A are the subject. The reaction center consists 

of Ir or Rh, denoted as M, Pa and Pb of SEGPHOS coordinated to M, O of the carbonyl 

group being coordinated to M, and C and H of the C–H bond being activated. Table 8.1 

lists six bond distances (Å) and six bond angles (degrees) of the reaction center, namely 

M–Pa, M–Pb, M–O, M–C, M–H, and C–H distances and Pa–M–Pb, Pa–M–O, Pb–M–C, Pa–

M–H, Pb–M–H, and C–M–H angles. Δ represents the difference between the nonrelativistic 

and relativistic results.  

In the separated systems, the geometric parameters of a free N-phenylbenzamide 

molecule are the same between the relativistic and nonrelativistic data because they 

involved only light elements, such as C, H, N, and O, which were uniquely treated at the 

nonrelativistic level with the 6-31G(d,p) basis sets. The C–H bond distance at the ortho 

position of the amino group was calculated to be 1.08 Å. Two M–P bond distances, i.e., M–
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Pa and M–Pb, were equal because of the symmetry. The M–P bond distances in the Ir 

complex were calculated to be 2.19 and 2.28 Å at the relativistic and nonrelativistic levels. 

The shortening by 0.09 Å for the former was due to the relativistic shrinkage of the d 

orbitals of Ir. In contrast, the shortening of two M–P bond distances in the Rh complex was 

minor: 0.02 Å. Although the Pa–M–Pb bond angles in the Ir and Rh complexes were 

approximately right angles, the relativistic treatment afforded slightly increased values of 

94.6 and 92.8 degrees in the Ir and Rh complexes, respectively.  

In the reactants, N-phenylbenzamide was attached to the metal complex by forming 

an M–O bond. Regardless of the metal species and relativistic treatments, the C–H bond 

lengths of the reactants were not directly activated and were calculated to be 1.09 Å, which 

was not significantly different from that of the free N-phenylbenzamide molecule, i.e., 1.08 

Å. The M–O distances were in the range of 2.16–2.26 Å. For both reaction positions, Δ 

values were −0.09 and −0.02 Å for the Ir and Rh complexes, respectively. This difference 

indicates that the relativistic effect shortened the M–O distance in the Ir complex than in 

the Rh complex. The M–C and M–H distances were calculated to be 2.58–2.71 and 2.61–

2.74 Å, respectively, which were regarded as van der Waals contacts. The shortening of the 

M–C and M–H distances in the relativistic treatment was due to the above-mentioned 

shortening of the M–O bonds rather than the direct relativistic effect. Although the Pa–M–

Pb bond angles slightly decreased from those of the isolated metal complexes, they were 

kept quasi-perpendicular. The Pa–M–O bond angles were calculated to be quasilinear. The 

M–Pa bond distances at the trans position were slightly elongated because the M–O bonds 

were newly formed. The Pa–M–C angles were estimated to be 147.2–152.2 degrees, which 

were remarkably smaller than the linear angles. The Pa–M–H and Pb–M–H angles were 

estimated to be larger than the right angles, 116.9–119.1 and 123.4–129.3 degrees, 

respectively.  

In the products, the C–H bonds were cleaved as the distances were elongated to 2.41–
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2.56 Å, and the M–C and M–H bonds were newly formed in addition to the M–O bond. 

Notably, the relativistic effect directly shortened the M–C and M–H distances in the Ir 

complex more than those in the Rh complex. As shown later, the reduced M–H and M–C 

distances led to the stabilization of the product. For the reactants, the Pa–M–Pb bond angles 

were conserved quasi-perpendicular. The Pa–M–O bond angles were calculated to be 

quasilinear. The newly formed M–C bonds, which were located at the trans-position of 

the M–Pb bond, elongated the M–Pb bond distances by approximately 0.2 Å in comparison 

with those in the isolated complexes and the reactants. The newly formed M–H bonds 

were located at the cis positions of the M–Pa and M–Pb bonds; the Pa–M–H and Pb–M–H 

bond angles were quasi-perpendicular. Consequently, the products had approximately 

square-pyramidal structures.  

In the TSs, the differences in the C–H distances were characteristic. The relativistic 

treatment shortened the C–H distance by 0.24 Å in the Ir complex while such difference 

was estimated to be 0.11 Å in the Rh complex. The C–H distance was the main reaction 

coordinate for the C–H activation. The relatively short C–H distance of 1.45Å in the Ir 

complex indicates that the TS was closer to the reactant than the product. Similar trends 

were observed for the C–M–H bond angles. According to Hammond’s postulate,46 the 

relativistic and nonrelativistic treatments demonstrated the early and late TSs in the Ir 

complex, respectively, while both treatments showed the late TSs in the Rh complex. The 

relativistic results for the Ir complex were rather regarded as mid-TSs.  

As shown in Table 8.1, for Rel/NR–Ir/Rh–S–A, the geometric parameters for the 

other cases, Rel/NR–Ir/Rh–S–C, Rel/NR–Ir/Rh–B–A, and Rel/NR–Ir/Rh–B–C, are 

tabulated in Tables A8.1–A8.3 in Appendix of this chapter. Table 8.2 summarizes the C–H 

distances and the C–M–H angles in all cases. For Rel/NR–Ir/Rh–S–C, relatively large 

differences between the relativistic and nonrelativistic treatments were obtained in the TSs 

of the Ir complexes. Conversely, relatively small differences were observed in the reactants 
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and products of the Ir and Rh complexes and the TS of the Rh complexes. As will be 

discussed in the next section, these differences were caused by the stabilization of the 

products by the relativistic effect in the Ir complexes, which led to the early or mid-TSs 

because of Hammond’s postulate.  

Figure 8.2. Schematic illustrations of optimized structures of separated systems, reactants, 

TSs, and products of the C-H bond cleavage at the ortho position of amino and carbonyl 

groups by the Ir complex with the SEGPHOS ligand, which were calculated at the 

relativistic treatment.  
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Table 8.1. Bond distances (in Å) and bond angles of reactants, TSs, and products of the C-

H activation at the ortho positions of amino group by the Ir and Rh complexes with the 

SEGPHOS ligand. Those of separated systems, namely, free N-phenylbenzamide molecule 

and isolated metal complexes, are also tabulated. M designates the transition metal (Ir or 

Rh). Δ represents the difference between the results obtained by the relativistic (Rel) and 

nonrelativistic (NR) calculations. 

Ir Rh 

Rel NR ∆ Rel NR ∆ 

Separated System 

N-phenylbenzamide
C-H 1.08 1.08 0.00 1.08 1.08 0.00 

Metal Complexes 

M-Pa 2.19 2.28 −0.09 2.20 2.22 −0.02

M-Pb 2.19 2.28 −0.09 2.20 2.22 −0.02

Pa-M-Pb 94.6 91.1 3.5 92.8 91.3 1.6

Reactant 

M-Pa 2.25 2.33 −0.08 2.24 2.26 −0.02

M-Pb 2.22 2.31 −0.09 2.23 2.25 −0.02

M-O 2.16 2.26 −0.09 2.16 2.19 −0.02

M-C 2.63 2.71 −0.08 2.58 2.63 −0.05

M-H 2.71 2.74 −0.03 2.61 2.64 −0.03

C-H 1.09 1.09 0.00 1.09 1.09 0.00 

Pa-M-Pb 92.7 90.6 2.0 92.1 91.1 1.0 

Pa-M-O 174.8 177.1 −2.3 173.6 173.3 0.3 

Pb-M-C 151.1 152.2 −1.1 148.7 147.2 1.6 

Pa-M-H 119.1 117.7 1.3 117.5 116.9 0.6 

Pb-M-H 127.7 129.3 −1.6 124.6 123.4 1.2 

C-M-H 23.4 23 0.4 24.2 23.8 0.4 
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Table 8.1. Continued. 

Ir Rh 

Rel NR ∆ Rel NR ∆ 

Transition State 

M-Pa 2.29 2.37 −0.08 2.29 2.32 −0.03

M-Pb 2.37 2.48 −0.11 2.39 2.44 −0.05

M-O 2.11 2.16 −0.06 2.09 2.10 −0.02

M-C 2.14 2.16 −0.03 2.09 2.09 0.00 

M-H 1.61 1.60 0.01 1.53 1.53 0.00 

C-H 1.45 1.69 −0.24 1.65 1.76 −0.11

Pa-M-Pb 92.4 91.4 1.1 92.1 91.6 0.5

Pa-M-O 171.3 173.0 −1.6 167.6 171.1 −3.6

Pb-M-C 167.2 165.4 1.9 161.3 165.9 −4.6

Pa-M-H 96.7 93.0 3.6 93.5 92.6 0.9

Pb-M-H 126.5 116.5 10.0 112.0 112.4 −0.3

C-M-H 42.8 50.9 −8.1 51.4 55.6 −4.2

Product 

M-Pa 2.30 2.37 −0.07 2.29 2.32 −0.02

M-Pb 2.42 2.51 −0.10 2.42 2.45 −0.03

M-O 2.11 2.17 −0.06 2.10 2.11 −0.02

M-C 2.07 2.13 −0.06 2.04 2.06 −0.02

M-H 1.52 1.55 −0.03 1.49 1.49 −0.01

C-H 2.56 2.54 0.02 2.41 2.41 0.00 

Pa-M-Pb 93.1 92.3 0.8 93.1 92.6 0.6 

Pa-M-O 173.5 176.8 −3.3 173.4 174.4 −1.0

Pb-M-C 170.4 169.4 0.9 169.8 169.6 0.2

Pa-M-H 88.5 88.0 0.5 88.2 87.8 0.4

Pb-M-H 85.4 86.8 −1.4 88.9 89.0 −0.2

C-M-H 89.5 85.8 3.7 84.7 83.9 0.8



 182 

Table 8.2. C-H distances (in Å) and C-M-H angles in all cases, namely reactants, TSs, and 

products of the C-H activation at the ortho positions of amino and carbonyl groups with 

SEGPHOS and BINAP ligands. M designates the transition metal (Ir or Rh).  represents 

the difference between the results obtained by the relativistic (Rel) and nonrelativistic 

(NR) calculations. 

  Amino group  Carbonyl group 
  Ir  Rh  Ir  Rh 
  Rel NR ∆  NR Rel ∆  NR Rel ∆  NR Rel ∆ 
SEGPHOS               

Separated System               
 C-H 1.08 1.08 0.00  1.08 1.08 0.00  1.08 1.08 0.00  1.08 1.08 0.00 

Reactant               
 C-H 1.09 1.09 0.00  1.09 1.09 0.00  1.09 1.09 0.00  1.09 1.09 0.00 
 C-M-H 23.4 23.0 0.4   23.8 23.8 0.4  22.6 24.2 1.5   23.7 24 0.3 

Transition State               
 C-H 1.45 1.69 −0.24  1.76 1.65 −0.11  1.77 1.50 −0.27  1.74 1.76 0.01 
 C-M-H 42.8 50.9 −8.1   55.6 51.4 −4.2   55.6 46.3 −9.3   57 57.9 0.9  

Product               
 C-H 2.56 2.54 0.02  2.41 2.41 0.00  2.58 2.63 0.05  2.49 2.53 0.04 
 C-M-H 89.5 85.8 3.7   83.9 84.7 0.8   87.8 93.2 5.4   87.4 90.1 2.8  
                 
BINAP               

Separated System               
 C-H 1.08 1.08 0.00  1.08 1.08 0.00  1.08 1.08 0.00  1.08 1.08 0.00 

Reactant               
 C-H 1.09 1.09 0.00  1.09 1.09 0.00  1.09 1.09 0.00  1.09 1.09 0.00 
 C-M-H 23.0 23.2 0.2  23.6 23.7 0.2  23.1 23.4 0.3  24.1 24.3 0.2 

Transition State               
 C-H 1.71 1.44 −0.27  1.75 1.66 −0.10  1.78 1.50 −0.28  1.74 1.74 0.00 
 C-M-H 51.5 42.2 −9.3  55.2 51.7 −3.5  56.1 46.4 −9.6  57.0 57.2 0.2 

Product               
 C-H 2.54 2.53 −0.01  2.42 2.42 0.01  2.60 2.64 0.04  2.50 2.51 0.01 
 C-M-H 85.8 88.3 2.5  84.1 85.2 1.0  88.8 93.2 4.4  87.8 89.0 1.3 
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8.4.2 Energy diagram 

Figure 8.3 shows the electronic energy diagrams of the C–H activation, which 

compares the nonrelativistic and relativistic calculations and the Ir and Rh complexes. Four 

diagrams were used to show the ligands and reaction positions, Figures 8.3 (a), (b), (c), and 

(d), correspond to Rel/NR–Ir/Rh–S–A, Rel/NR–Ir/Rh–S–C, Rel/NR–Ir/Rh–B–A, and 

Rel/NR–Ir/Rh–B–C, respectively. The corresponding enthalpy and Gibbs energy diagrams 

under standard conditions are shown in Figures A8.1 and A8.2, respectively. Notably, the 

enthalpy and Gibbs energy diagrams, including the thermal correction, did not significantly 

change from the electronic energy diagrams in these systems. 

The reaction energies for the Ir complexes were calculated to be in the range of −5.2–

−0.1 and 21.3–25.3 kcal/mol by the relativistic and nonrelativistic treatments, respectively,

while those for the Rh complexes were 15.1–17.9 and 23.5–26.3 kcal/mol, respectively. 

This indicates that the reaction of the Ir complexes was exothermic, according to the 

relativistic calculations, while the others were endothermic. The drastic differences were 

mainly due to the stabilization of products: the stabilization energies obtained by including 

the relativistic effect were 25.4–26.2 and 8.2–8.4 kcal/mol for the Ir and Rh complexes, 

respectively. As shown in Table 8.3, the additional calculations to dissociate the H atom 

from individual products for Rel/NR–Ir/Rh–S–A clarified that the relativistic effect 

increased the binding energies of Ir–H and Rh–H by 19.8 and 8.8 kcal/mol, respectively. 

Therefore, we speculated that the binding energies for the relativistic stabilizations of Ir–C 

and Rh–C were ~5 and ~0 kcal/mol, respectively.  

The reaction barriers for the Ir complexes were calculated to be in the range of 7.2–

13.1 and 27.9–30.8 kcal/mol for the relativistic and nonrelativistic treatments, respectively, 

while those for the Rh complexes were 19.6–22.3 and 26.3 – 28.9 kcal/mol, respectively. 

The reaction barriers decreased to 17.0–20.8 and 6.6–6.9 kcal/mol for the Ir and Rh 

complexes, respectively because of the relativistic effect. Notably, the large decreases in 
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the reaction barriers for the Ir and Rh complexes were mainly due to the changes in the TS 

structures, from the late TS to the mid-TS, as shown in the previous section.  

The C–H activation by the cationic Ir catalyst played a key role in the H–D exchange 

reaction of the N-phenylbenzamide experimentally observed. The product of the C–H 

activation further accepted D2O as a ligand of the Ir complex, followed by the H–D 

exchange between the ligands. To produce deuterated N-phenylbenzamide, the reverse 

reaction of the C–H activation should proceed. As shown in Figure 8.3, the reaction barriers 

of the reverse reactions for the Rh complexes were estimated to be 3.9–4.9 and 2.6–3.1 

kcal/mol at the relativistic and nonrelativistic levels, respectively, when neglecting the 

energetic effect of the deuteration. The reverse reactions occurred more easily than the 

positive reactions. Similarly, those of the Ir complexes were estimated to be 4.8–6.8 

kcal/mol at the nonrelativistic level. Conversely, the reaction barriers of the reverse 

reactions for the Ir complexes became slightly larger because of the relativistic treatment: 

12.1–13.8 kcal/mol. Notably, the reaction barriers of the positive and reverse reactions for 

the Ir complexes were comparable at the relativistic level.  

Based on the TS theory given by 

B BΔ Δ Δexp exp expk T k TG S Hk
h RT h R RT

 
     

= − = −     
     

‡ ‡ ‡

,                     (8.1) 

the reaction constants at the standard condition, i.e., the absolute temperature (T) of 298.15 

K, were estimated to be 3.2 × 105, 1.7 × 10−2, and 8.7 × 10−10 s−1 for ΔG‡ of 10, 20, and 30 

kcal/mol, respectively. Here, kB is the Boltzmann constant (1.38 × 10−23 J·K−1), h is the 

Planck constant (6.63 × 10−34 J·s), and R is the gas constant (8.31 J·K−1 mol−1). The 

frequency factor κ was assumed to be 1. The reciprocals of the rate constants, which 

indicate the orders of reaction times, were estimated to be ~3 μs, ~1 min, and ~32 years for 

ΔG‡ of 10, 20, and 30 kcal/mol, respectively. Therefore, the author concludes that the 

comparable reaction barriers obtained for the Ir complexes, which were provided by the 
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mid-TSs, were favorable for accomplishing the overall H–D exchange reactions. 

Figure 8.4 shows the electronic energy diagram obtained by the all-electron 

relativistic calculation. The scalar-relativistic IOTC Hamiltonian with the LUT scheme was 

adopted for the relativistic all-electron calculations. The relativistic treatments were applied 

to the one-electron Dirac Hamiltonian, which is termed LUT-IOTC Hamiltonian. Single-

point energy calculations were performed on the structure shown in Figure 8.2, namely the 

Ir and Rh complexes with the SEGPHOS ligands. The results of the all-electron 

calculations also indicated that the reaction barriers for the Ir complex were considerably 

smaller than those for the Rh complex. 
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Figure 8.3. Energy diagrams of the C-H activation. (a) and (b) correspond to the SEGPHOS 

ligand and (c) and (d) to the BINAP ligand. (a) and (c) correspond to the ortho position of 

the amino group and (b) and (d) to that of the carbonyl group. Black and gray lines represent 

the results of the Ir and Rh complexes, respectively. Dashed and solid lines represent the 

results of the nonrelativistic (NR) and relativistic (Rel) calculations, respectively. 
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Table 8.3. Bond dissociation energies (in kcal/mol) of the Ir/Rh-H bond in product. Ebond 

represents the difference between the results obtained by the relativistic (Rel) and 

nonrelativistic (NR) calculations. 

Rel NR Ebond 

Ir 86.3 66.5 19.8 

Rh 73.3 64.5 8.8 

Figure 8.4. Calculated electronic energy diagrams obtained by the all-electron relativistic 

calculation with LUT-IOTC Hamiltonian.  
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8.4.3 Natural bond orbital analysis 

This section provides a qualitative understanding of the relativistic catalytic activity 

of the cationic Ir complex in the C–H activation reactions. The Ir and Rh catalysts with the 

SEGPHOS ligand for the C–H activation at the ortho position of the amino group, i.e., 

Rel/NR–Ir/Rh–S–A, are used as typical examples; the other cases exhibit similar trends.  

Table 8.4 shows the orbital energies of 11 NBOs in the valence region of the reactants 

and products for the Ir and Rh complexes, which were calculated using nonrelativistic and 

relativistic treatments. The corresponding occupation numbers are shown in parentheses in 

the table. Additionally, Table 8.4 shows the orbital energies and occupation numbers for the 

separated systems, i.e., the free N-phenylbenzamide and the isolated Ir and Rh complexes 

with the SEGPHOS ligand. The orbital characters given in Table 8.4 were assigned from 

the NBO figures shown in Figures A8.3–A8.5 and the NBO population analysis shown in 

Tables A8.4–A8.7 in the Appendix of this chapter. For the four different calculations, i.e., 

Rel/NR–Ir/Rh–S–A, the NBO data with the same orbital character were listed in the same 

column. Since the data were arranged in the order of orbital energy for Rel–Ir–S–A, the 

orbital energies were occasionally reversed in the other cases.  

Figures 8.5 (a), (b), (c), and (d) show the orbital correlation diagrams of Rel–Ir–S–A, 

NR–Ir–S–A, Rel–Rh–S–A, and NR–Rh–S–A, respectively, illustrating the NBO analysis 

in Table 8.4. The vertical axis corresponds to the NBO energy. Both sides show the orbital 

levels of the separated systems, i.e., the metal complex and N-phenylbenzamide. The inset 

shows the orbital levels assigned to the Ir complex and N-phenylbenzamide in the reactant. 

The center corresponds to the product. Although the occupation number of NBOs is a non-

integer, the orbital levels with and without up-and-down arrows are adopted to distinguish 

between the quasi-occupied and quasi-unoccupied orbitals. 

Three NBOs of the free N-phenylbenzamide were one non-bonding orbital of O in the 

carbonyl group (nO), one C–H bonding orbital (σC–H), and one C–H anti-bonding orbital 
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(σ*
C–H). Although these NBOs were partially occupied, nO and σC–H were assigned to quasi-

occupied orbitals and σ*
C–H to quasi-unoccupied orbitals. Notably, the four data points in 

the same column are equivalent for the free N-phenylbenzamide. As shown in Table A8.4, 

the NBO populations of nO are 58.1% and 41.8% for the 2s and 2p orbitals of O, 

respectively. The σC–H and σ*
C–H populations were {19.5%, 44.8%, and 35.6%} and {10.8%, 

24.8%, and 64.3%}, respectively, for the {C2s, C2p, H1s} orbitals, respectively.  

The eight NBOs of the isolated Ir and Rh complexes were two M–P bonding orbitals 

(σM–Pa, σM–Pb), four non-bonding orbitals of metals, such as Ir and Rh (nM), and two M–P 

bonding orbitals (σ*
M–Pa, σ*

M–Pb). Notably, nM consists mainly of d orbitals and partially of 

the s orbitals of the metal. These results are consistent with the fact that the electron 

configurations of the Ir and Rh monocations are [Xe]4f145d76s1 and [Kr]4d75s1, respectively. 

The orbital energies of σM–Pa and σ*
M–Pb obtained by the relativistic treatment were lower 

than those obtained by the nonrelativistic treatment for the Ir and Rh complexes. This 

indicates that the binding between the metal and the SEGPHOS ligand was relatively strong 

when the relativistic effect was included. The origin is the activation of the d orbitals, which 

was caused by the relativistic self-consistent expansion of the d orbitals. The orbital 

energies of nM for the relativistic treatment were slightly higher than those for the 

nonrelativistic treatment. Furthermore, the aforementioned differences for the Ir complex 

were remarkably larger than those for the Rh complex, further showing that the relativistic 

effect becomes more remarkable in heavy elements.  

Although 11 NBOs in the reactants were regarded as a combination of the separated 

systems, i.e., three NBOs of N-phenylbenzamide and eight NBOs of the metal complex, 

there were characteristic changes. The orders of nO and σC–H were opposite in all cases. nO 

was not a purely non-bonding orbital but a lone-pair orbital coordinating to the metal, 

because the carbonyl group of N-phenylbenzamide was coordinated to the metal, of which 

the trans position was Pa. For the three-center-four-electron bond, denoted by A:B:C, the 
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NBO analysis generally separates one two-center bonding orbital and one non-bonding 

orbital, such as A:B and :C. Furthermore, the covalence between A and B is larger than that 

between B and C, although the opposite is true for the ionicity. The three-center-four-

electron bond of Pa:M:O was separated into Pa: and M:O in this NBO analysis. Therefore, 

the M–Pa and M–O bonds were significantly covalent and ionic, respectively. 

In the products, the C–H bond was cleaved, and the M–C and M–H bonds were newly 

formed, as discussed in Section 3.2. Therefore, instead of σC–H and σ*
C–H vanishing, two 

bonding orbitals, σM–C and σM–H, and two anti-bonding orbitals, σ*
M–C and σ*

M–H, appeared. 

Although the trans-position of the M–H bond was vacant, Pb was located at the trans-

position of the M–C bond. The three-center-four-electron bond of Pb:M:C was separated 

into Pb: and M:C by the NBO analysis. As mentioned above, the M–Pb and M–C bonds 

were significantly ionic and covalent, respectively. Furthermore, the binding of M–C and 

M–H was calculated to be stronger for the relativistic treatment than for the nonrelativistic 

treatment because of the self-consistent expansion of d orbitals. The relativistic effect was 

greater for the heavy Ir complex than for the Rh complex.  

The products had three non-bonding metal orbitals (nM), which only involved d 

orbitals. These results are consistent with the fact that the electron configurations of the Ir 

and Rh monocations are [Xe]4f145d6 and [Kr]4d6, respectively. The C–H activation led to 

the oxidation number of the metal from +I to +III. Notably, the newly formed M–C and M–

H bonds were significantly covalent, which played a key role in the catalytic activity of the 

Ir complex.  

The discussion based on the NBO analysis is summarized as follows; The d orbitals 

of Ir were activated by self-consistent expansion, followed by a strong interaction with the 

1s orbital of H and the 2s and 2p orbitals of C, resulting in strong Ir–H and Ir–C covalent 

bonds. The stabilization of the product afforded mid-TS, resulting in the lowering of the 

reaction barriers, as described in Sections 3.2 and 3.3. This was confirmed to be the origin 
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of the relativistic catalytic activity observed for the Ir complexes. 
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Figure 8.5. Orbital correlation diagram for the C-H activation at the ortho position of amino 

group by the metal complex with the SEGPHOS ligand. (a) and (b) correspond to the Ir 

complex, while (c) and (d) to the Rh complex. The orbital levels of (a) and (c) were 

estimated by the NBO analysis at the relativistic treatment, while those of (b) and (d) at the 

nonrelativistic treatment. 
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8.5 Conclusion 

This chapter elucidated that the relativistic effect is essential for the C–H activation of 

N-phenylbenzamide with cationic Ir catalysts. The deuteration experiments reported that

the C–H activation of N-phenylbenzamide occurred using Ir–diphosphine catalysts and did 

not occur for Rh–diphosphine catalysts. DFT calculations suggest that the difference in 

reactivity originates from the relativistic effect. The self-consistent d orbital expansion 

causes the activation of the d orbitals of Ir, stabilizing TS and affording the product of the 

C–H activation. The relativistic effect of the Rh catalysts is similar but small in magnitude. 

Consequently, the origin of the catalytic activity was clarified from the viewpoint of the 

relativistic effect on the geometric parameters and electronic structures. 
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Appendix 

Table A8.1. Bond distances (in Å) and bond angles of reactants, TSs, and products of the 

C-H bond activation at the ortho positions of carbonyl group by the Ir and Rh complexes

with the SEGPHOS ligand. Those of separated systems, namely, free benzamide molecule 

and isolated metal complexes, are also tabulated. M designates the transition metal (Ir or 

Rh). Δ represents the difference between the results obtained by the nonrelativistic (NR) 

and relativistic (Rel) calculations. 

Ir Rh 

NR Rel ∆ NR Rel ∆ 

Separated System 

Benzamide 

C-H 1.08 1.08 0.00 1.08 1.08 0.00 

Metal Complexes 

M-Pa 2.28 2.19 −0.09 2.22 2.20 −0.02

M-Pb 2.28 2.19 −0.09 2.22 2.20 −0.02

Pa-M-Pb 91.1 94.6 3.5 91.3 92.8 1.6

Reactant 

M-Pa 2.30 2.23 −0.06 2.25 2.23 −0.02

M-Pb 2.31 2.21 −0.09 2.25 2.22 −0.02

M-O 2.32 2.19 −0.13 2.23 2.20 −0.04

M-C 2.74 2.60 −0.14 2.63 2.61 −0.02

M-H 2.80 2.61 −0.19 2.66 2.62 −0.04

C-H 1.09 1.09 0 1.09 1.09 0

Pa-M-Pb 91.1 93.2 2.0 91.7 92.6 0.9

Pa-M-O 174.4 172.4 −1.9 173.1 172.5 −0.6

Pb-M-C 154.0 160.4 6.4 158.0 158.9 1.0

Pa-M-H 111.2 105.5 −5.7 107.3 106.0 −1.3

Pb-M-H 157.3 157.9 0.6 159.5 159.2 −0.3

C-M-H 22.6 24.2 1.5 23.7 24 0.3
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Table A8.1. Continued. 

Ir Rh 

NR Rel ∆ NR Rel ∆ 

Transition State 

M-Pa 2.35 2.27 −0.09 2.28 2.27 −0.02

M-Pb 2.56 2.41 −0.15 2.47 2.46 −0.01

M-O 2.21 2.14 −0.07 2.14 2.13 −0.01

M-C 2.08 2.05 −0.02 2.00 1.99 −0.01

M-H 1.62 1.62 0 1.57 1.55 −0.03

C-H 1.77 1.50 −0.27 1.74 1.76 0.01 

Pa-M-Pb 92.1 93.4 1.3 95.3 94.2 −1.1

Pa-M-O 177.9 175.1 −2.8 176.6 176.8 0.3

Pb-M-C 134.1 145.8 11.6 121.1 131.9 10.8

Pa-M-H 89.3 90.2 0.9 89.9 89.1 −0.7

Pb-M-H 169.5 165.5 −4.0 174.8 168.4 −6.4

C-M-H 55.6 46.3 −9.3 57 57.9 0.9

Product 

M-Pa 2.36 2.29 −0.08 2.31 2.28 −0.03

M-Pb 2.50 2.41 −0.09 2.46 2.42 −0.03

M-O 2.20 2.14 −0.06 2.14 2.12 −0.02

M-C 2.12 2.06 −0.06 2.05 2.04 −0.02

M-H 1.56 1.52 −0.03 1.50 1.49 −0.01

C-H 2.58 2.63 0.05 2.49 2.53 0.04 

Pa-M-Pb 91.8 92.9 1.1 92.8 93.8 1.0 

Pa-M-O 172.7 172.7 0.1 171.4 171.1 −0.3

Pb-M-C 168.5 166.8 −1.6 168.1 167.3 −0.9

Pa-M-H 84.5 85.8 1.3 82.5 83.9 1.4

Pb-M-H 95.4 92.4 −3.1 98.4 96.7 −1.7

C-M-H 87.8 93.2 5.4 87.4 90.1 2.8
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Table A8.2. Bond distances (in Å) and bond angles of reactants, TSs, and products of the 

C-H bond activation at the ortho positions of amino group by the Ir and Rh complexes with

the BINAP ligand. Those of separated systems, namely, free benzamide molecule and 

isolated metal complexes, are also tabulated. M designates the transition metal (Ir or Rh). 

Δ represents the difference between the results obtained by the nonrelativistic (NR) and 

relativistic (Rel) calculations. 

Ir Rh 

NR Rel ∆ NR Rel ∆ 

Separated System 

Benzamide 

C-H 1.08 1.08 0.00 1.08 1.08 0.00 

Metal Complexes 

M-Pa 2.28 2.20 −0.08 2.22 2.20 −0.02

M-Pb 2.28 2.19 −0.09 2.22 2.20 −0.02

Pa-M-Pb 89.8 93.1 3.3 90.3 91.6 1.3

Reactant 

M-Pa 2.32 2.25 −0.07 2.26 2.24 −0.02

M-Pb 2.31 2.22 −0.09 2.25 2.23 −0.02

M-O 2.26 2.16 −0.10 2.18 2.16 −0.02

M-C 2.70 2.67 −0.04 2.65 2.63 −0.02

M-H 2.73 2.72 −0.01 2.67 2.65 −0.02

C-H 1.09 1.09 0.00 1.09 1.09 0.00 

Pa-M-Pb 90.1 92.1 2.0 90.7 91.5 0.8 

Pa-M-O 175.9 175.3 −0.7 174.5 175.0 0.4 

Pb-M-C 151.4 151.8 0.4 150.0 150.6 0.5 

Pa-M-H 119.4 118.0 −1.4 118.2 117.6 −0.6

Pb-M-H 128.5 128.6 0.2 126.5 126.8 0.4

C-M-H 23.0 23.2 0.2 23.6 23.7 0.2
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Table A8.2. Continued. 

Ir Rh 

NR Rel ∆ NR Rel ∆ 

Transition State 

M-Pa 2.37 2.28 −0.09 2.32 2.29 −0.03

M-Pb 2.48 2.36 −0.12 2.42 2.38 −0.04

M-O 2.17 2.12 −0.06 2.11 2.09 −0.01

M-C 2.17 2.15 −0.02 2.10 2.09 −0.01

M-H 1.59 1.61 0.02 1.52 1.53 0.00

C-H 1.71 1.44 −0.27 1.75 1.66 −0.10

Pa-M-Pb 89.8 91.2 1.4 90.2 91.1 0.9

Pa-M-O 169.2 167.9 −1.2 167.4 165.8 −1.6

Pb-M-C 163.5 164.5 1.0 161.7 161.2 −0.6

Pa-M-H 93.0 95.4 2.4 92.0 93.0 1.1

Pb-M-H 113.6 124.0 10.4 108.2 111.2 3.0

C-M-H 51.5 42.2 −9.3 55.2 51.7 −3.5

Product 

M-Pa 2.38 2.30 −0.08 2.32 2.30 −0.02

M-Pb 2.50 2.40 −0.10 2.45 2.42 −0.03

M-O 2.17 2.11 −0.06 2.11 2.09 −0.01

M-C 2.13 2.07 −0.06 2.06 2.04 −0.02

M-H 1.55 1.52 −0.03 1.49 1.49 −0.01

C-H 2.54 2.53 −0.01 2.42 2.42 0.01

Pa-M-Pb 91.0 92.1 1.0 91.6 92.2 0.6

Pa-M-O 176.7 170.8 −5.9 173.7 172.7 −1.0

Pb-M-C 170.5 170.4 −0.1 170.3 170.6 0.3

Pa-M-H 88.6 89.0 0.4 87.7 87.9 0.3

Pb-M-H 87.3 86.1 −1.2 89.0 88.7 −0.3

C-M-H 85.8 88.3 2.5 84.1 85.2 1.0



204 

Table A8.3. Bond distances (in Å) and bond angles of reactants, TSs, and products of the 

C-H bond activation at the ortho positions of carbonyl group by the Ir and Rh complexes

with the BINAP ligand. Those of separated systems, namely, free benzamide molecule and 

isolated metal complexes, are also tabulated. M designates the transition metal (Ir or Rh). 

Δ represents the difference between the results obtained by the nonrelativistic (NR) and 

relativistic (Rel) calculations. 

Ir Rh 

NR Rel ∆ NR Rel ∆ 

Separated System 

Benzamide 

C-H 1.08 1.08 0.00 1.08 1.08 0.00 

Metal Complexes 

M-Pa 2.28 2.20 −0.08 2.22 2.20 −0.02

M-Pb 2.28 2.19 −0.09 2.22 2.20 −0.02

Pa-M-Pb 89.8 93.1 3.3 90.3 91.6 1.3

Reactant 

M-Pa 2.31 2.23 −0.08 2.24 2.22 −0.02

M-Pb 2.31 2.21 −0.10 2.25 2.22 −0.02

M-O 2.30 2.19 −0.11 2.22 2.19 −0.03

M-C 2.68 2.66 −0.02 2.62 2.61 −0.01

M-H 2.74 2.70 −0.05 2.60 2.56 −0.04

C-H 1.09 1.09 0.00 1.09 1.09 0.00 

Pa-M-Pb 90.4 92.4 2.0 91.1 91.9 0.9 

Pa-M-O 174.0 171.5 −2.4 173.4 172.6 −0.8

Pb-M-C 159.6 161.4 1.9 157.6 157.8 0.2

Pa-M-H 110.5 106.5 −4.0 107.4 106.0 −1.4

Pb-M-H 156.5 157.0 0.5 159.9 160.2 0.3

C-M-H 23.1 23.4 0.3 24.1 24.3 0.2
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Table A8.3. Continued. 

Ir Rh 

NR Rel ∆ NR Rel ∆ 

Transition State 

M-Pa 2.35 2.27 −0.09 2.29 2.27 −0.02

M-Pb 2.57 2.41 −0.16 2.47 2.45 −0.02

M-O 2.21 2.14 −0.07 2.14 2.12 −0.02

M-C 2.08 2.05 −0.02 2.00 1.99 −0.01

M-H 1.62 1.62 0.00 1.57 1.56 −0.02

C-H 1.78 1.50 −0.28 1.74 1.74 0.00

Pa-M-Pb 91.1 92.4 1.3 94.4 93.2 −1.2

Pa-M-O 178.9 176.8 −2.1 176.6 177.5 0.9

Pb-M-C 134.4 148.1 13.7 121.0 130.6 9.6

Pa-M-H 89.9 91.5 1.6 90.7 90.3 −0.3

Pb-M-H 168.9 162.9 −6.0 174.9 170.3 −4.6

C-M-H 56.1 46.4 −9.6 57.0 57.2 0.2

Product 

M-Pa 2.36 2.29 −0.08 2.31 2.28 −0.03

M-Pb 2.50 2.40 −0.10 2.45 2.42 −0.03

M-O 2.20 2.13 −0.07 2.12 2.11 −0.02

M-C 2.12 2.07 −0.05 2.06 2.05 −0.02

M-H 1.55 1.52 −0.03 1.50 1.49 −0.01

C-H 2.60 2.64 0.04 2.50 2.51 0.01

Pa-M-Pb 91.1 92.4 1.3 92.1 92.6 0.5

Pa-M-O 172.7 175.3 2.6 174.4 174.6 0.2

Pb-M-C 168.8 167.3 −1.4 168.5 168.1 −0.4

Pa-M-H 84.7 87.8 3.1 85.1 86.2 1.1

Pb-M-H 96.4 92.7 −3.7 97.6 96.7 −0.9

C-M-H 88.8 93.2 4.4 87.8 89.0 1.3
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Figure A8.1. Enthalpy diagrams of the C-H bond activation. (a) and (b) correspond to the 

SEGPHOS ligand and (c) and (d) to the BINAP ligand. (a) and (c) correspond to the ortho 

position of the amino group and (b) and (d) to that of the carbonyl group. Black and gray 

lines represent the results of the Ir and Rh complexes, respectively. Dashed and solid lines 

represent the results of the nonrelativistic (NR) and relativistic (Rel) calculations, 

respectively. 

(a) Amino group

Reactant ProductTS

Ir NR
Rh NR

Ir Rel

Rh Rel
16.1

22.6

24.3

−2.1

19.8

26.2
27.3

9.7

(b) Carbonyl group

Reactant ProductTS

Ir NR
Rh NR

Ir Rel

Rh Rel13.6

19.3

21.8

−6.2

16.4

23.2

25.0

4.7

(c) Amino group

Reactant ProductTS

Ir NR
Rh NR

Ir Rel

Rh Rel
15.9

23.2
24.3

−0.7

19.1

26.2
27.3

10.8

(d) Carbonyl group

Reactant ProductTS

Ir NR
Rh NR

Ir Rel

Rh Rel
14.9

20.7

23.2

−5.5

16.9

23.8

25.6

4.8

ΔH
[k

ca
l/m

ol
]

−10

0

10

20

30

SEGPHOS

ΔH
[k

ca
l/m

ol
]

−10

0

10

20

30

SEGPHOS

ΔH
[k

ca
l/m

ol
]

−10

0

10

20

30

BINAP

ΔH
[k

ca
l/m

ol
]

−10

0

10

20

30

BINAP



207 

Figure A8.2. Gibbs energy diagrams of the C-H bond activation. (a) and (b) correspond to 

the SEGPHOS ligand and (c) and (d) to the BINAP ligand. (a) and (c) correspond to the 

ortho position of the amino group and (b) and (d) to that of the carbonyl group. Black and 

gray lines represent the results of the Ir and Rh complexes, respectively. Dashed and solid 

lines represent the results of the nonrelativistic (NR) and relativistic (Rel) calculations, 

respectively. 
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Figure A8.3. Visualization of NBOs in the valence region of the separated system, namely 

N-phenylbenzamide and Ir and Rh complexes with SEGPHOS ligand, which were

calculated by the nonrelativistic (NR) and relativistic (Rel) treatments. 
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Figure A8.4. Visualization of NBOs in the valence region of the reactants of the C-H 

activation at the ortho position of amino group with SEGPHOS ligand, which were 

calculated by the nonrelativistic (NR) and relativistic (Rel) treatments. 
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Figure A8.5. Visualization of NBOs in the valence region of the products of the C-H 

activation at the ortho position of amino group with SEGPHOS ligand, which were 

calculated by the nonrelativistic (NR) and relativistic (Rel) treatments. 
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Table A8.4. NBO population analysis (%) in the valence region of the Ir complexes with 

SEGPHOS ligand in the C-H activation at the ortho position of amino group calculated by 

the relativistic treatments. 
Ir C H 

5d 6s 2s 2p 1s 
Separated System 

N-phenylbenzamide
nO 0.00 0.00 0.00 0.00 0.00 

σC-H 0.00 0.00 19.54 44.81 35.59 
σC-H* 0.00 0.00 10.81 24.78 64.34 

Metal Complex 
σM-Pa 18.84 16.30 - - - 
σM-Pb 18.83 16.30 - - - 
nM 99.62 0.33 - - - 
nM 99.81 0.18 - - - 
nM 99.76 0.00 - - - 
nM 93.03 6.87 - - - 

σ*M-Pb 34.64 29.99 - - - 
σ*M-Pa 34.65 29.98 - - - 

Reactant 
σC-H 0.00 0.00 19.47 45.07 35.40 
nO 0.00 0.00 0.00 0.00 0.00 

σM-Pa 16.48 13.61 0.00 0.00 0.00 
σM-Pb 16.67 16.50 0.00 0.00 0.00 
nM 99.79 0.17 0.00 0.00 0.00 
nM 99.84 0.07 0.00 0.00 0.00 
nM 99.78 0.21 0.00 0.00 0.00 
nM 95.38 4.60 0.00 0.00 0.00 

σ*M-Pb 33.57 33.22 0.00 0.00 0.00 
σ*M-Pa 38.25 31.56 0.00 0.00 0.00 
σ*C-H 0.00 0.00 10.68 24.72 64.54 

Product 
nO 0.00 0.00 0.00 0.00 0.00 

σM-Pa 21.02 12.39 0.00 0.00 0.00 
σM-C 23.92 13.37 17.51 45.19 0.00 
σM-H 42.57 15.48 0.00 0.00 41.83 
nM 99.68 0.24 0.00 0.00 0.00 
nM 99.98 0.00 0.00 0.00 0.00 
nM 99.96 0.01 0.00 0.00 0.00 
nPb 0.00 0.00 0.00 0.00 0.00 

σ*M-Pa 41.79 24.63 0.00 0.00 0.00 
σ*M-C 40.22 22.48 10.41 26.89 0.00 
σ*M-H 30.72 11.17 0.00 0.00 57.98 
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Table A8.4. Continued. 

Pa Pb O 
Rest 

3s 3p 3s 3p 2s 2p 
Separated System 

N-phenylbenzamide
nO - - - - 58.13 41.82 0.05 

σC-H - - - - 0.00 0.00 0.06 
σC-H* - - - - 0.00 0.00 0.07 

Metal Complex 
σM-Pa 18.76 45.77 0.00 0.00 - - 0.31 
σM-Pb 0.00 0.00 18.77 45.78 - - 0.32 
nM 0.00 0.00 0.00 0.00 - - 0.05 
nM 0.00 0.00 0.00 0.00 - - 0.01 
nM 0.00 0.00 0.00 0.00 - - 0.24 
nM 0.00 0.00 0.00 0.00 - - 0.10 

σ*M-Pb 0.00 0.00 10.20 24.89 - - 0.28 
σ*M-Pa 10.21 24.90 0.00 0.00 - - 0.28 

Reactant 
σC-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06 
nO 0.00 0.00 0.00 0.00 21.37 78.58 0.05 

σM-Pa 23.23 46.51 0.00 0.00 0.00 0.00 0.17 
σM-Pb 0.00 0.00 21.17 45.48 0.00 0.00 0.17 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.04 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.09 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

σ*M-Pb 0.00 0.00 10.51 22.60 0.00 0.00 0.11 
σ*M-Pa 10.01 20.05 0.00 0.00 0.00 0.00 0.13 
σ*C-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06 

Product 
nO 0.00 0.00 0.00 0.00 20.21 79.73 0.06 

σM-Pa 20.84 45.54 0.00 0.00 0.00 0.00 0.22 
σM-C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
σM-H 0.00 0.00 0.00 0.00 0.00 0.00 0.11 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.08 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.02 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.03 
nPb 0.00 0.00 15.03 84.90 0.00 0.00 0.07 

σ*M-Pa 10.48 22.90 0.00 0.00 0.00 0.00 0.19 
σ*M-C 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
σ*M-H 0.00 0.00 0.00 0.00 0.00 0.00 0.14 
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Table A8.5. NBO population analysis (%) in the valence region of the Ir complexes with 

SEGPHOS ligand in the C-H activation at the ortho position of amino group calculated by 

the nonrelativistic treatments. 
Ir C H 

5d 6s 2s 2p 1s 
Separated System 

N-phenylbenzamide
nO 0.00 0.00 0.00 0.00 0.00 

σC-H 0.00 0.00 19.54 44.81 35.59 
σC-H* 0.00 0.00 10.81 24.78 64.34 

Metal Complex 
σM-Pa 14.19 13.50 - - - 
σM-Pb 14.22 13.50 - - - 
nM 99.89 0.08 - - - 
nM 99.95 0.04 - - - 
nM 99.83 0.00 - - - 
nM 97.97 2.02 - - - 

σ*M-Pb 36.73 34.90 - - - 
σ*M-Pa 36.72 34.94 - - - 

Reactant 
σC-H 0.00 0.00 19.26 44.94 35.74 
nO 0.00 0.00 0.00 0.00 0.00 

σM-Pa 13.74 11.66 0.00 0.00 0.00 
σM-Pb 12.55 13.46 0.00 0.00 0.00 
nM 99.94 0.02 0.00 0.00 0.00 
nM 99.89 0.06 0.00 0.00 0.00 
nM 99.90 0.09 0.00 0.00 0.00 
nM 97.87 2.12 0.00 0.00 0.00 

σ*M-Pb 35.66 38.24 0.00 0.00 0.00 
σ*M-Pa 40.28 34.19 0.00 0.00 0.00 
σ*C-H 0.00 0.00 10.72 25.02 64.20 

Product 
nO 0.00 0.00 0.00 0.00 0.00 

σM-Pa 18.48 11.49 0.00 0.00 0.00 
σM-C 25.65 12.90 15.88 45.57 0.00 
σM-H 41.92 16.18 0.00 0.00 41.77 
nM 99.88 0.08 0.00 0.00 0.00 
nM 99.98 0.00 0.00 0.00 0.00 
nM 99.99 0.00 0.00 0.00 0.00 
nPb 0.00 0.00 0.00 0.00 0.00 

σ*M-Pa 43.04 26.77 0.00 0.00 0.00 
σ*M-C 40.88 20.57 9.96 28.59 0.00 
σ*M-H 30.15 11.64 0.00 0.00 58.08 
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Table A8.5. Continued. 
Pa Pb O Rest 

3s 3s 3s 3p 2s 2p 
Separated System 

N-phenylbenzamide
nO - - - - 58.13 41.82 0.05 

σC-H - - - - 0.00 0.00 0.06 
σC-H* - - - - 0.00 0.00 0.07 

Metal Complex 
σM-Pa 20.55 51.43 0.00 0.00 - - 0.33 
σM-Pb 0.00 0.00 20.53 51.41 - - 0.34 
nM 0.00 0.00 0.00 0.00 - - 0.03 
nM 0.00 0.00 0.00 0.00 - - 0.01 
nM 0.00 0.00 0.00 0.00 - - 0.17 
nM 0.00 0.00 0.00 0.00 - - 0.01 

σ*M-Pb 0.00 0.00 7.95 19.89 - - 0.53 
σ*M-Pa 7.94 19.87 0.00 0.00 - - 0.53 

Reactant 
σC-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06 
nO 0.00 0.00 0.00 0.00 16.38 83.55 0.07 

σM-Pa 23.41 51.05 0.00 0.00 0.00 0.00 0.14 
σM-Pb 0.00 0.00 22.83 51.04 0.00 0.00 0.13 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.04 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.05 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

σ*M-Pb 0.00 0.00 8.03 17.96 0.00 0.00 0.10 
σ*M-Pa 7.99 17.41 0.00 0.00 0.00 0.00 0.13 
σ*C-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06 

Product 
nO 0.00 0.00 0.00 0.00 16.58 83.35 0.07 

σM-Pa 20.91 48.93 0.00 0.00 0.00 0.00 0.19 
σM-C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
σM-H 0.00 0.00 0.00 0.00 0.00 0.00 0.13 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.04 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.02 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
nPb 0.00 0.00 48.18 51.80 0.00 0.00 0.02 

σ*M-Pa 8.98 21.01 0.00 0.00 0.00 0.00 0.20 
σ*M-C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
σ*M-H 0.00 0.00 0.00 0.00 0.00 0.00 0.13 
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Table A8.6. NBO population analysis (%) in the valence region of the Rh complexes with 

SEGPHOS ligand in the C-H activation at the ortho position of amino group calculated by 

the relativistic treatments. 
Rh C H 

4d 5s 2s 2p 1s 
Separated System 

N-phenylbenzamide
nO 0.00 0.00 0.00 0.00 0.00 

σC-H 0.00 0.00 19.54 44.81 35.59 
σC-H* 0.00 0.00 10.81 24.78 64.34 

Metal Complex 
σM-Pa 14.99 14.10 - - - 
σM-Pb 14.78 14.11 - - - 
nM 99.89 0.11 - - - 
nM 99.95 0.05 - - - 
nM 100.00 0.00 - - - 
nM 97.48 2.52 - - - 

σ*M-Pb 36.37 34.73 - - - 
σ*M-Pa 36.53 34.37 - - - 

Reactant 
σC-H 0.00 0.00 19.35 44.93 35.66 
nO 0.00 0.00 0.00 0.00 0.00 

σM-Pa 14.21 12.13 0.00 0.00 0.00 
σM-Pb 13.19 14.16 0.00 0.00 0.00 
nM 99.93 0.06 0.00 0.00 0.00 
nM 99.96 0.04 0.00 0.00 0.00 
nM 99.89 0.11 0.00 0.00 0.00 
nM 98.13 1.87 0.00 0.00 0.00 

σ*M-Pb 35.02 37.61 0.00 0.00 0.00 
σ*M-Pa 39.72 33.92 0.00 0.00 0.00 
σ*C-H 0.00 0.00 10.74 24.92 64.28 

Product 
nO 0.00 0.00 0.00 0.00 0.00 

σM-Pa 19.29 11.90 0.00 0.00 0.00 
σM-C 25.97 13.24 16.21 44.56 0.00 
σM-H 42.28 16.17 0.00 0.00 41.46 
nM 99.93 0.07 0.00 0.00 0.00 
nM 99.97 0.03 0.00 0.00 0.00 
nM 99.99 0.00 0.00 0.00 0.00 
nPb 0.00 0.00 0.00 0.00 0.00 

σ*M-Pa 42.54 26.24 0.00 0.00 0.00 
σ*M-C 40.24 20.53 10.46 28.76 0.00 
σ*M-H 30.03 11.49 0.00 0.00 58.37 
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Table A8.6. Continued. 
Pa Pb O Rest 

3s 3p 3s 3p 2s 2p 
Separated System 

N-phenylbenzamide
nO - - - - 58.13 41.82 0.05 

σC-H - - - - 0.00 0.00 0.06 
σC-H* - - - - 0.00 0.00 0.07 

Metal Complex 
σM-Pa 20.67 50.06 0.00 0.00 - - 0.18 
σM-Pb 0.00 0.00 20.78 50.15 - - 0.17 
nM 0.00 0.00 0.00 0.00 - - 0.00 
nM 0.00 0.00 0.00 0.00 - - 0.00 
nM 0.00 0.00 0.00 0.00 - - 0.00 
nM 0.00 0.00 0.00 0.00 - - 0.00 

σ*M-Pb 0.00 0.00 8.45 20.38 - - 0.08 
σ*M-Pa 8.48 20.54 0.00 0.00 - - 0.08 

Reactant 
σC-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06 
nO 0.00 0.00 0.00 0.00 19.54 80.40 0.06 

σM-Pa 24.24 49.31 0.00 0.00 0.00 0.00 0.11 
σM-Pb 0.00 0.00 23.20 49.33 0.00 0.00 0.11 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ*M-Pb 0.00 0.00 8.74 18.58 0.00 0.00 0.06 
σ*M-Pa 8.67 17.64 0.00 0.00 0.00 0.00 0.05 
σ*C-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06 

Product 
nO 0.00 0.00 0.00 0.00 18.10 81.83 0.07 

σM-Pa 21.22 47.44 0.00 0.00 0.00 0.00 0.15 
σM-C 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
σM-H 0.00 0.00 0.00 0.00 0.00 0.00 0.09 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
nPb 0.00 0.00 14.09 85.86 0.00 0.00 0.05 

σ*M-Pa 9.62 21.52 0.00 0.00 0.00 0.00 0.08 
σ*M-C 0.00 0.00 0.00 0.00 0.00 0.00 0.02 
σ*M-H 0.00 0.00 0.00 0.00 0.00 0.00 0.11 
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Table A8.7. NBO population analysis (%) in the valence region of the Rh complexes with 

SEGPHOS ligand in the C-H activation at the ortho position of amino group calculated by 

the nonrelativistic treatments. 
Rh C H 

4d 5s 2s 2p 1s 
Separated System 

N-phenylbenzamide
nO 0.00 0.00 0.00 0.00 0.00 

σC-H 0.00 0.00 19.54 44.81 35.59 
σC-H* 0.00 0.00 10.81 24.78 64.34 

Metal Complex 
σM-Pa 13.88 13.16 - - - 
σM-Pb 13.40 13.13 - - - 
nM 99.89 0.08 - - - 
nM 99.96 0.03 - - - 
nM 99.79 0.00 - - - 
nM 98.23 1.75 - - - 

σ*M-Pb 37.03 36.26 - - - 
σ*M-Pa 37.37 35.42 - - - 

Reactant 
σC-H 0.00 0.00 19.23 44.87 35.85 
nO 0.00 0.00 0.00 0.00 0.00 

σM-Pa 13.42 11.57 0.00 0.00 0.00 
σM-Pb 12.15 13.19 0.00 0.00 0.00 
nM 99.92 0.05 0.00 0.00 0.00 
nM 99.91 0.02 0.00 0.00 0.00 
nM 99.90 0.09 0.00 0.00 0.00 
nM 98.52 1.47 0.00 0.00 0.00 

σ*M-Pb 35.79 38.83 0.00 0.00 0.00 
σ*M-Pa 40.26 34.70 0.00 0.00 0.00 
σ*C-H 0.00 0.00 10.76 25.09 64.09 

Product 
nO 0.00 0.00 0.00 0.00 0.00 

σM-Pa 18.55 11.43 0.00 0.00 0.00 
σM-C 13.19 26.41 15.58 44.81 0.00 
σM-H 42.01 16.52 0.00 0.00 41.40 
nM 99.90 0.05 0.00 0.00 0.00 
nM 99.96 0.02 0.00 0.00 0.00 
nM 99.99 0.00 0.00 0.00 0.00 
nPb 0.00 0.00 0.00 0.00 0.00 

σ*M-Pa 43.22 26.64 0.00 0.00 0.00 
σ*M-C 20.12 40.27 10.22 29.39 0.00 
σ*M-H 29.76 11.70 0.00 0.00 58.46 
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Table A8.7. Continued. 
Pa Pb O Rest 

3s 3s 3s 3p 2s 2p 
Separated System 

N-phenylbenzamide
nO - - - - 58.13 41.82 0.05 

σC-H - - - - 0.00 0.00 0.06 
σC-H* - - - - 0.00 0.00 0.07 

Metal Complex 
σM-Pa 21.05 51.72 0.00 0.00 - - 0.19 
σM-Pb 0.00 0.00 21.35 51.93 - - 0.19 
nM 0.00 0.00 0.00 0.00 - - 0.03 
nM 0.00 0.00 0.00 0.00 - - 0.01 
nM 0.00 0.00 0.00 0.00 - - 0.21 
nM 0.00 0.00 0.00 0.00 - - 0.02 

σ*M-Pb 0.00 0.00 7.73 18.80 - - 0.18 
σ*M-Pa 7.82 19.21 0.00 0.00 - - 0.18 

Reactant 
σC-H 0.00 0.00 0.00 0.00 0.00 0.00 0.05 
nO 0.00 0.00 0.00 0.00 18.62 81.32 0.06 

σM-Pa 24.11 50.80 0.00 0.00 0.00 0.00 0.11 
σM-Pb 0.00 0.00 23.59 50.97 0.00 0.00 0.10 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.03 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.07 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

σ*M-Pb 0.00 0.00 8.01 17.31 0.00 0.00 0.06 
σ*M-Pa 8.04 16.93 0.00 0.00 0.00 0.00 0.08 
σ*C-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06 

Product 
nO 0.00 0.00 0.00 0.00 16.88 83.05 0.07 

σM-Pa 21.18 48.67 0.00 0.00 0.00 0.00 0.17 
σM-C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
σM-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.05 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.02 
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
nPb 0.00 0.00 47.60 52.39 0.00 0.00 0.01 

σ*M-Pa 9.09 20.89 0.00 0.00 0.00 0.00 0.16 
σ*M-C 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
σ*M-H 0.00 0.00 0.00 0.00 0.00 0.00 0.09 
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Chapter 9 General conclusion 

In this thesis, the author developed theories and computational programs for 2c 

relativistic quantum chemistry in terms of the PCC of two-electron and density operators. 

The application to the analysis of the C–H activation was also explained. This Chapter 

summarizes the thesis and presents the perspectives of this research field. 

In Chapters 3 and 4, the author addressed the acceleration of computation of TEIs, 

which is the bottleneck of relativistic calculation. CD and LUD for TEI-matrices were 

formulated and implemented in Chapter 3. The proposed algorithm reduced the number of 

calculations within arbitrary accuracy. The reduction of computational costs was 

particularly large in heavy-element systems where relativistic effects are essential, which 

confirmed the utility of this matrix decomposition technique. Chapter 4 proposed the 

efficient algorithm of LUT based on the element-loop scheme. The proposed algorithm 

accelerated the unitary transformation of TEIs; combination with the database of one-center 

TEIs realized the constant computational costs for the unitary transformation regardless of 

the system size. Applications to heavy-element molecules, such as Au clusters and Pt 

complexes, showed the validity of the algorithm assisted by the database. 

Chapters 5 and 6 provided approaches to topics related to DFT. Chapter 5 introduced 

the PCC of two-electron and density operators to the LC-DFT. The formulation and 

implementation were proposed based on the IOTC transformation with and without the 

LUT scheme. The considerations of both PCC for two-electron and density operators and 

LC for exchange functionals were important for the calculations of heavy-element 

properties. Chapter 6 discussed the relationship between PCEs and delocalization error, 

which is defined as the deviation from the exact behavior of DFT energy. The functionals 

with a small ratio of HFx did not satisfy the linearity condition, the constant energy with 
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respect to the FON, and gave large delocalization error. PCC of two-electron and density 

operators had remarkable effects on delocalization error in core orbitals of higher-row 

elements, which revealed the importance of PCC of arbitrary operators. 

Chapter 7 explained the details of the publishment of PCC methods to the GAMESS 

program, which is one of the popular quantum chemical program packages. The author 

made the PCC methods for two-electron and density operators available based on the spin-

free IOTC Hamiltonian with and without the LUT scheme. The PCC methods were 

connected to several functionalities in GAMESS, such as correlation methods and linear-

scaling techniques. Combination of the PCC with the DC method enabled highly accurate 

large-scale relativistic calculations. 

In Chapter 8, the author explored the reactivity of cationic Ir and Rh catalysts in the 

C–H activation of N-phenylbenzamide. Comparing relativistic and nonrelativistic 

calculations clarified the origin of the high catalytic activity of Ir complexes. The 

relativistic effects on orbitals of Ir causes the stabilization of the product of the Ir–H and 

Ir–C bonds leading to the low reaction barrier of TSs. The relativistic effects on Rh catalysts 

indicated the similar tendency, but the magnitude was small. Consequently, the relativistic 

effects brought about the differences in reactivity depending on the metal species. 

The study in this thesis enhances the availability and applicability of relativistic 

quantum chemistry. The PCC methods developed in this thesis realize the accurate 2c 

calculations with the similar computational costs to the nonrelativistic theory. The public 

version of GAMESS program with the PCC methods was released in July 2022, which 

allows any researcher to use such accurate and efficient relativistic methods. The progress 

of this research field, including this thesis and previous work, completed the foundation for 

utilizing the 2c Hamiltonian. Solving the Dirac equation based on the 2c theory will be 

more common instead of the Schrödinger equation. In terms of chemical properties, 

relativistic effects on transition metals were revealed to play an important role in catalytic 
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reactions. The viewpoint of relativistic effects will help to elucidate the reaction 

mechanisms of various types of transition metal catalysts. From the examination of orbital 

energies and the linearity condition, PCC, the subject of this thesis, was clarified to be 

essential particularly in inner-shell orbitals. The proposed methods will be useful to capture 

properties involving core electrons, which requires all electron calculations. Furthermore, 

the linearity condition is one measure of evaluating the performance of exchange 

correlation functional. The relationship between PCE and the linearity condition will be 

useful to the development of relativistic exchange-correlation functional, which remains a 

challenge of the quantum chemistry. Although this thesis provided only the spin-free 

treatment, extension to the spin-dependent framework can be performed straightforwardly 

based on program packages that deal with complex variables. The author believes that the 

research presented in this thesis will help both theoretical and experimental researchers and 

contribute to the further development of relativistic chemistry. 
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