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Chapter 1 General introduction

Quantum Chemistry predicts molecular properties and chemical reactions by
describing electronic states based on the Schrodinger equation developed in 1926. Recent
advances of computers and software facilitate the use of quantum chemical calculations not
only by theoretical chemists but also by experimental chemists. Particularly, the DFT has
become the most familiar methods due to its good balance between computational costs
and accuracy.

Relativistic effects are essential when simulating chemical properties of compounds
including higher row elements in the periodic table. The Schrodinger equation, which is in
the nonrelativistic framework, describes relativistic effects by pseudopotential or effective
core potential methods, where inner-shell electrons are represented by potential with
parameters. Relativistic treatment of all electrons is possible by using the Dirac equation,
which satisfies the requirements of the special relativity proposed in 1928,' as a
fundamental equation. The 4c theory, which solves the Dirac equation directly, gives highly
accurate results, while it requires complicated calculations due to explicitly treatments of
both positive and negative-energy states. The 2c theory extracts or decouples the positive-
energy state from the 4c Hamiltonian and uses the positive-energy states as an electronic
Hamiltonian. The 2c Hamiltonian is proved to be equivalent to the 4c Hamiltonian under
the no-pair approximation that assumes particles and antiparticles do not interact. The
IOTC Hamiltonian, which is one of exact two-component Hamiltonians, was proposed for
one-electron Hamiltonian in 2002, followed by the extension to many-electron systems in
2008.? Furthermore, the LUT scheme, which is an accurate and efficient method based on
the IOTC Hamiltonian, was developed in 2012.4°

In the 2¢ theory, the pictures of wave functions change along the transformation of



Hamiltonian from 4c to 2c. Without consideration of the operators with respect to the 2c
wave functions, the corresponding expectation values involve the error, namely, PCE. From
a viewpoint of the transformation of the one-electron Dirac Hamiltonian, the error due to
neglecting the PCC of the two-electron operator can also be called PCE. Most quantum
chemical programs widely used today, cannot perform the PCC methods for expectation
values. However, in 2017, it was pointed out that the PCE of electron density, which is the
fundamental variable of DFT, cannot be ignored.®

Against these backgrounds, this thesis attempts to extend the availability and
applicability of PCC methods based on the IOTC Hamiltonian by developing novel theories
and publishing to de facto standard quantum chemical program. Besides, the relativistic
quantum chemistry is applied to the analysis of transition metal catalysts containing higher-
row elements. This thesis consists of nine chapters including this chapter as the general
introduction. The remainder of this thesis is as follows.

Chapter 2 summarizes the theoretical background of the 2¢ theory: Dirac equation,
PCC of operators, IOTC Hamiltonian, and LUT scheme.

Chapters 3 and 4 explain the acceleration methods for TEIs, which is a bottleneck of
IOTC Hamiltonian. IOTC Hamiltonian for two-electron term requires evaluation and
unitary transformation of several types of TEIs. The computational costs for evaluation and
unitary transformation of TEIs are proportional to fourth and fifth power of system size,
respectively.

Chapter 3 describes the efficient algorithm for evaluation of TEIs based on the matrix
decomposition. TEIs can be regarded as a matrix by labeling them with pairs of orbitals
belonging to two electrons (distribution). Utilizing the symmetric characteristics of
nonrelativistic ERIs, the efficient algorithm based on the CD was proposed in 2003. On the
other hand, TEIs for spin-free [OTC Hamiltonian are categorized into three types; two are

symmetric and one is asymmetric. In this chapter, CD is applied to two types of symmetric
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TEIs and LUD of asymmetric TEIs is formulated and implemented. The proposed method
can reduce the number of calculation while controlling the accuracy by introducing
threshold to truncate decomposition.

Chapter 4 proposes a more efficient algorithm for the LUT scheme, which is assisted
by database of relativistic TEIs. LUT for TEI calculates only one-center integrals with
relativistic Hamiltonian and treats multi-center integrals as in the nonrelativistic method.
Focusing on the fact that the values of atomic-center TEIs depend only on the elemental
species and basis function, independent of the molecular structures, this chapter constructs
the database of atomic center TEIs. In practical calculations, the proposed algorithm reads
the integral values from the database avoiding the explicit evaluation and unitary
transformation of TEIs. Numerical assessments show that the proposed algorithm enables
the constant computational costs for TEIs regardless of the system size. Furthermore,
calculations of transition metal complexes by using the proposed algorithm can be
performed at similar computational costs to nonrelativistic cases.

Chapter 5 explains the RS-DFT based on the IOTC Hamiltonian. RS-DFT separates
the two-electron operator into long- and short-range terms. LC-DFT, which is one of the
RS DFT, calculates exchange energy as long-range HFx integrals and short-range exchange
functional. This chapter formulates and implements the IOTC transformation with and
without LUT scheme for separated two-electron operators. Application of this method to
the potential energy curve of Rn dimer indicates the importance of consideration of
relativistic effects and long-range correction simultaneously.

Chapter 6 examines the PCE in the FON states based on the 2¢c DFT. By adding HFx
into exchange energy, the HOMO of noble gas atoms, Ne to Rn, is approximately constant
with respect to changes in the occupation number, which satisfies the physical requirement.
The PCE is small in valence orbital. On the other hand, 1s orbital is not constant with

respect to the occupation number and requires large ratio of HFx. The PCE is not negligible
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in higher row elements such as Rn. Furthermore, PCC influences on the delocalization error,
which is represented by the total energy deviation from the behavior of the exact energy.

Chapter 7 explains the implementation of the PCC methods into the public version of
GAMESS program, which is a program package developed by researchers around the world
and distributed free of charge. The IOTC and LUT-IOTC Hamiltonians for one-electron
operator have been implemented so far into GAMESS. This chapter describes the
implementation of the PCC methods for two-electron and density operators based on the
IOTC Hamiltonian with and without the LUT scheme. The LUT-IOTC Hamiltonian for
one- and two-electron operators is also utilized for electron correlation methods such as
MP2, CCSD, and CCSD(T), as well as the linear-scaling DC method.

Chapter 8 elucidates that the relativistic effects play a key role in C-H activation using
cationic iridium catalysts. Experiments reported that the cationic Ir(I)-diphosphine catalysts
causes the deuterium substitution of N-phenylbenzamide, whereas Rh(I)-diphosphine
catalysts are scarcely effective. In this chapter, energy diagrams by relativistic calculations
show large difference in reaction energies between Ir and Rh, while nonrelativistic results
show the same tendency in Ir and Rh. This is due to the considerably stabilized product
rationalized by stronger interaction in Ir—H and Ir—C bonds by relativistic self-consistent d-
orbital expansion of Ir, followed by the relatively low reaction barrier.

Chapter 9 refers to general conclusion and perspectives on the field of this study.
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Chapter 2 Theoretical backgrounds

This chapter explains several methods to incorporate relativistic effects into quantum
chemistry. The pseudopotentials' are used based on the nonrelativistic Schrddinger
equation,? while it cannot describe all electrons explicitly. The Dirac equation® satisfies the
relativistic requirements, thus exact solutions for all electron calculations are obtained. The
direct solution of the Dirac equation is termed the 4c theory. The 4c theory treats both
positive- and negative-energy states, which are related to electronic and positronic states.
The 2c¢ theory transforms the Dirac Hamiltonian and only treats positive-energy states,
namely, electronic states, which are important for chemistry. With these backgrounds, this
chapter briefly describes the theoretical backgrounds: Dirac Hamiltonian, the PCC of

expectation values, and IOTC Hamiltonian.

2.1 Dirac Hamiltonian

Special relativity* demands that the laws of physics have the same expressions in all
the inertial frames of reference. Space and time must be treated equivalently in coordinate
transformation, termed the Lorentz invariance. The Schrodinger equation, the fundamental
equation of quantum mechanics, does not satisfy the Lorentz invariance since it is a second-
order derivative for space and a first-order derivative for time. Equation based on the
quantum electrodynamics fully satisfies the Lorentz invariance although the effects of
electrodynamics are negligibly small in the electronic states in molecules.

In the quantum chemistry, the fundamental equation is the Dirac equation, which
satisfies the Lorentz invariance only for electron motion. The Dirac equation is a first-order

derivative for both time and space as follows:

H>Y, = E¥,, 2.1.1)



where ¥4, E, and H is wavefunction, energy, and one-particle operator termed the Dirac

Hamiltonian, respectively. The explicit formula of Dirac Hamiltonian is a 4x4 matrix as

follows:

V .
HP = P 2.12)
co-p V-21,

with external potential ¥V, the speed of light ¢, momentum operator p, Pauli matrix ¢. and
the nxn identity matrix 1,. The Dirac Hamiltonian inherently includes spin. The solution of
Dirac Hamiltonian consists of positive- and negative-energy states as the large and small
components.

Basically, the Dirac equation is solved by the 4c theory. As a 4c Hamiltonian, the one-
electron Dirac Hamiltonian is combined with a two-electron operator such as the Coulomb

interaction® representing instantaneous electron-electron repulsion,

G; -1, (2.1.3)

l.j
the Gaunt® operator including internal magnetic interaction,

Go=-%%y,, (2.1.4)

J

and the Breit operator’ adding retardant interaction to the Gaunt operator,

Gf:—l ai'a/+w 1,. (2.1.5)
- | Ty

Here, r;; is the distance between two electrons, and a; represents the following matrix,

(02 0',]
@ = (=x,,2), (2.1.6)

o, 0,

where 02 is a 2X2 zero matrix. Due to the dimension of the Dirac Hamiltonian, the

wavefunction ¥4 have four components 1, y2, w3, and 4 as



l//l l//a

w, = V2=V, (2.1.7)

l//3 l//a
v, Vg

where y’ and v’ are large and small spinors, which mainly correspond to electronic and
positronic states, respectively, with a and £ spin states. Although the 4c theory satisfies the
chemical accuracy, it suffers from several problems, such as large computational costs and

variational collapse due to the existence of negative-energy states.

2.2 2c theory and PCC
An alternative approach to solve the Dirac equation is the 2¢ theory that eliminates
small components or decouples the positive- and negative-energy states in the 4c

Hamiltonian. The 2¢c Hamiltonians for one-electron system, such as the Foldy—Woutheysen
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Hamiltonian,” Douglas—Kroll-Hess Hamiltonian, regular approximation, and
normalized elimination of the small component method,'® have been widely studied. The
accuracy and computational costs of 2¢ Hamiltonians depend on the degree of elimination
or separation of the negative-energy state. X2C!"2! and IOTC??* Hamiltonians, which
exactly decouple positive- and negative-energy states by unitary transformation in one-
electron system, are proved to be equivalent to the 4c Dirac Hamiltonian under no-pair
approximation® that does not consider the explicit positron—electron coupling. Some of
these one-electron Hamiltonians are available for many-electron system by considering the
unitary transformation of the two-electron operator simultaneously.?* 2

When considering the expectation values in 2¢ theory, PCC of operators along the

transformation of the Hamiltonian must be considered. The PCC based on the unitary

transformation®’ is explained here. The 4c Dirac Hamiltonian is separated into positive-

and negative-energy states, h, and A, , by block-diagonalization as follows:



) h 0
U’HfUz( ’ ij. (2.2.1)
02 h2

As mentioned above, X2C and IOTC Hamiltonians completely separate h, and h, , thus
the right- and left-hand sides of Eq. (2.2.1) are equivalent. &, is used as the electronic

Hamiltonian. The 2c¢ electronic wavefunction ¥," is determined as the solution of Eq.

b 0% =F # . (2.2.2)
0, h )L O 0
Multiplying U from the left of both sides of Eq. (2.2.2), the following equation is obtained:

HfU(Yj;] = EU(TQJ (2.2.3)
0 0

(2.2.2):

Here, Eq. (2.2.3) is none other than Eq. (2.1.1). Therefore, the following relation between

4¢ and 2¢ wavefunctions is established:
ijr
%:U( (; ] (2.2.4)

The expectation values of arbitrary 4c operators X are represented as

(X)=(#|X|¥,), (2.2.5)
where
X:(X” X”J. (2.2.6)
X21 X22

According to Egs. (2.2.4) and (2.2.5), the expectation values of 4c and 2c pictures are

related by the following equation:
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(7, x|#) = (v ojUxU

%+
0

U'xXu U'XU .

=<502+ O‘I: T }11 I: T ]12 sz> (2.2.7)
[uxu], [uxu] )l o

=% [[uxu] |#)

Here, the pictures of operators are changed from 4c picture X to 2¢ picture [U'XU]11. The
PCEs are occasionally not negligible in chemical and physical properties, thus PCC by the
formula in the last line of Eq (2.2.7) is necessary. However, calculations that ignore the PC
are practically performed by using X1, instead of [U'XU]1. PCE for the expectation value

of X is defined as follows:

(#

[o'xu ] [#) (%

X, |#). (2.2.8)

2.3 I0TC Hamiltonian

As mentioned in Subsection 2.2, the 2c theory requires the comprehensive
transformations that cover other operators as well as the one-electron Dirac Hamiltonian.
This thesis uses IOTC Hamiltonian, one of the most accurate 2¢ Hamiltonian. This
subsection explains the IOTC transformation of one-electron Dirac Hamiltonian, the
extension of IOTC Hamiltonian to the two-electron operator, and treatment of density

operator.

2.3.1 One-electron operator
IOTC transformation of the Dirac Hamiltonian is performed by a two-step unitary

transformation,
u=U0U,. (2.3.1)

The first step is the free-particle Foldy—Wouthuysen transformation,

11



y Kl aKB 239
0= , (23.2)
aKB K1,

where a, K, and B are represented as

+1

a:l,Ka/eé;,B:ba-p,b:l e, =lvay . (233
e
p

b
c ep+1

with the speed of light ¢ and momentum operator p. Uy is defined to block-diagonalize
Dirac Hamiltonian for free particle i.e., the electron is free from the external potential V' (V

=0). When V is not equal to 0, the Dirac Hamiltonian is transformed as

H =U/H]U,
(K1, aKB\( V ce-p \( K1, aKB (2.3.4)
\akB -K1, )\co-p V-2c1, \aKB -K1,)

by using Up = U,'. The unitary transformation U is defined to block-diagonalize H; as

follows:
_ h, 0
H°=U'HU =" 7| (2.3.5)
0, h
The explicit formula of U, is
(L+yy') " (L+¥¥') " Y'plop
U = : (2.3.6)
~(L,+YY") Vo pp 'Y ~(1,+yy) "
2 pp 2t

Y is the operator that is determined by solving non-linear equation
e,Y+Ye,=a’(pKbVK - p"' Ko - pVa - pbK )
+a’(p Ko pVo - pp ' KY —YKVK)

(2.3.7)
+a* (pKbVbKpY —YKbo - pVo - pbK)
+a’Y (Kbe - pVo - pKp™' — KVKbp Y,
numerically. One-electron Hamiltonian A, is represented by
h =Q'GQ, (2.3.8)

with

12



-1/2
Q=(1,+Y'7) ", (2.3.9)
and
G =p’bl, +KVK +a’Kbe - pVa - pbK
+0((KVpr —Kbo - pVo - pp’lK) Y
+a¥ " (KbpVK —Kp™'a- pVa - pbK ) (2.3.10)

l—ep

2
+Y*[ P p'Ke-pVo- pr‘1+a2prVpr]Y.

The 2c theory can consider the spin-free and spin-dependent terms, separately.

Introducing the Dirac relation for two arbitrary vector operators 4 and B,
(6-A)(c-B)=A-B+ic-(AxB), (2.3.11)
the Pauli matrices & are separated:
o-pVo-p=pV-p+ic-(pVxp), (2.3.12)

where 1 represents the imaginary part. The first and second terms of the right-hand side of
Eq. (2.3.12) represent the spin-free and spin-dependent terms, respectively. The remainder

of this thesis deals with the spin-free term that does not involve o.

2.3.2 Two-electron operator
This subsection describes the IOTC Hamiltonian for many-electron systems. Along
the IOTC transformation for one-electron Hamiltonian, the picture of wavefunction is
transformed into the 2c¢ picture. Calculating two-electron term using electron-electron
interactions such as Eqgs. (2.1.3)—(2.1.5) generates the PCE because two-electron term is
expressed as expectation values of the two-electron interaction operator. PCC is
accomplished by considering the IOTC transformation of both one-electron Dirac
Hamiltonian and electron-electron interaction operator simultaneously.
Many-electron unitary transformation is approximated by a direct product of one-

electron unitary transformation U(7) as

13



U(i,j,)=U(H)®U(j)®:-. (2.3.14)

The one- and two-electron Hamiltonians are block-diagonalized into positive- and

negative-energy states:

H; 0,
0, H,

U+(i’j,...){lZHf(i)+zG4(i’j)}U(i’j"“)z[

, (2.3.15)
i>j
where G4 represents the 4c two-electron interaction, such as the Coulomb, Gaunt, and Breit

operators, and H, and H, are the positive- and negative-energy states, respectively.

Positive-energy state is used as electronic Hamiltonian as follows:

H; = i)+ 8" (i.)), (2.3.16)

i>j
where g, is the two-particle electronic state. The electron-positron coupling terms, which

are also obtained as a result of the unitary transformation, are nonzero, but are assumed to
be negligible.?’

In this thesis, the Coulomb interaction is adopted as a two-electron operator. The

explicit formula for the spin-free part of g," is given by

& (.7)=8"(i./)+&" (i.7)+&" (i.]) (23.17)
with
g (i, j)=MM, ElzJMjM,., (2.3.18)
i
g’ (i,j)zP(i,j){diMj {pt élz -pl.Jde,.J, (2.3.19)
and
g (i,j)=dd, {pi (pj%lz ~ij-pinidj, (2.3.20)
i
where
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M=K(1,+bpY)£2 (2.3.21)
and
d=K(abl,-p'Y)Q. (2.3.22)

P(i, j) is an operator that satisfies
P(i, )OG, j) = O, j)+O(j,1) (2.3.23)

for an arbitrary two-electron operator, O(i, j). g3", g%, and g° denote the Coulomb-like,

Darwin-like, and specific spin-free interaction terms, respectively. The Coulomb-like term
mainly corresponds to the electron repulsion, whereas the other two terms are higher-order
relativistic terms.

In practical calculations, a matrix transformation method that adopts the resolution of

identity using the eigenvectors of p?,

12> Jk){k|, (2.3.24)

is applied*® because a direct evaluation of two-electron integrals for g3"

sf2 sf3 »
, & ,and g;° 1s

difficult. Commonly, {k} are represented by the linear combination of PBFs for AOs {y}.

sfl

The explicit formulae of matrix representations of the TEIs for g5, g3”, and g5° are

sfl

(rox|8" 2 2,)

= z <Z/l|Mi ka><lv

ke Ky

M |k, ) (ko 1/ 7,1,

kckd > <kc

Mz|lﬁ><kd‘Mj‘Zg>’

(2.3.25)

(zu|&% 220,)

= Z <Zﬂ|df ka><)(v

ka kbkckd

Mj‘kb><kakb ‘pil/rijlz P

kckd > <ku

di|7(/1><kd ‘Mj‘)(g>a

(2.3.26)

and

15



sf3

(2.2 |8 | 2020)

= Z <Z,U|di ka><lv

ktl kb k(‘ kd

d k) kK |p[ P11, Py ] p,

kckd ><kc

di|Z/1><kd ‘dj‘lg>,

(2.3.27)
where u, v, A, and o are the indices of AOs and a, b, ¢, and d are those of PBFs, respectively.

For the calculation of the two-electron terms of the IOTC Hamiltonian, the evaluation of

primitive  integrals  (k,k, ‘1 /71,

kckd> > <kakb ‘pil / rzjlz P

kk,) . and

< ka kb

P, [ pl/r1,- P,]' pi‘kck ,)» and transformation of primitive integrals by matrix

elements < 2.|\M,

k,) and < Z.|d.|k, ) , which are represented as M., and dja, respectively,

are required. The transformation is a time-consuming step in the calculation of the IOTC

Hamiltonian.

2.3.3 Density operator
This subsection describes the PCC of electron density.*!*?> DFT,* which is widely used
by users of computational chemistry, adopts an electron density p as a fundamental variable.

According to the KS procedure,** the total energy of DFT is expressed as

EC =3 h(@)o)+[[drdrg(ii)p(n)p(r,)+ Exc[p].  @328)

with the i-th KS orbital ¢; and one-electron Hamiltonian 4. The first term denotes the kinetic
energy and interaction between electron density and external potential. The second term is
the Coulomb interaction of electron density. Introducing ¢; into Eq. (2.3.28), the second
term is evaluated by the expectation value of the two-electron operator,

Z<¢i¢j ‘ g(i, J )‘(oi(0j> , which is calculated by the same procedure in the wave-function

i>j
theory. The third term represents the exchange-correlation term, which is a functional of p.

p is represented as the expectation value of the density operator J as follows:
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=25 (Mﬁ %)
(2.3.29)
Z wZ (£) 2, (r).
The expansion of ¢; by a set of AOs {y.} and MO coefficient c,; as
= Culls (2.3.30)
)7
and density matrix P, which is represented as
P, ZCM c, s (2.3.31)

are introduced in Eq. (2.3.29). In nonrelativistic calculations, p is calculated by the product
of AOs as the second line of Eq. (2.3.29). When extending DFT to the 2¢ theory, PCC of
density operator is necessary besides the unitary transformation of one- and two-electron
operators provided in the previous subsections.

PCC of density operator is performed by the IOTC transformation as follows:

UlUIS1,U,U, :(i (‘5’2_ j (2.3.32)
2

The electronic state 6"

5 (r—r)=(1+Y'Y) " [KS(r' ~r) LK +a*Kbe- pS(r' —r) 1,6+ pbK
+a (K5 (x'~r)1,bKp - Kbo - pS(r'~r)l,0- pp 'K )
+a¥ " (KpbS(r'~=r)1,K - p"' K- p5(r'~r)1,6- pbK)
+Y'(p Ko pS(r'~r)1,0- pKp™ + 0> pKbS (v —r)1,bKp) Y](14 YY)
=M'5(r'-r)1,M +d'c- p5(r'-r)l,0- pd
(2.3.33)

is used as the density operator. The spin-free term of density operator is given by
& (r'-r)=M'§(r'-r)1,M+d"p5(r'-r)1,- pd, (2.3.34)

eliminating the spin-dependent term from Eq. (2.3.33). The electron density at the spin-free

level is represented as
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pr(r)=>.Pr, RZH ‘M'ré'(r'—r)le|;(‘,>+<;(ﬂ ‘aﬁpé’(r'—r)l2 'Pd|ZV>]-
i

(2.3.35)
Transforming integrals included in Eq. (2.3.35) from coordinate to momentum space, the

first and second terms are respectively represented as
(z,|M'5(r'=r)1,M|z,)
Z (2K M) S (=)L) K MK E" | 2,) - @23.36)

ZC‘MDM -Cer,
kK'k"k

and
(7,|d"ps(r'-x)1,-pd|z,)
= > (2| k) (k|| k) (K| ps (' =r)1, - p| k") (k"|d
kk'k"k"

_ t gt
- Z Cykdkk’Ak'k”dk”k'"Ck’"v'

kk'k"k"

km> <km

7)) (2337

The matrix representation is given by
p"(r)=PC"(M'DM +d'4d)C . (2.3.38)
The character of delta function leads to D and 4 respectively expressed as follows:
= (ko' =)L, k")
=§ank cue (€, (1) 8 (' 1)1, &, (r')) (2.3.39)
- ;;C;k'cﬂk"ga (r)&s(r)

and
A =(K'| pS (¥ =1)1, - p k">
= X Bt (6 ()| -V ()1 (9, )[4, ()
=—zzcak,cﬁk[[g; E)8(r 1LY, ¢, ()] (7.8, (1)|8(F - r)L]9,¢, (1)
=X ¥t (V4 )}{vrmr)}-
(2.3.40)
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By using the following unitary-transformed basis function
7,/ (r) =2 |k) (k] M ) (K| ,)
=3[ T () )61 )
and
£ ()= SRR k)
_ ;(g%vrgﬁ (r)j(k|d|k’><k" )
Egs. (2.3.36) and (2.3.37) are rewritten as
(2, |M'6(r'—r) M| z,) =72, (r) 2/ (r)
and
(x| ps(x' =), pd|x,) =2, (r) 2 (r),
respectively. The formation of electron density is also rewritten as
P O=38 2 ()5 ()4 (02" ()]
This formula leads to the gradient of electron density as follows:

Vo ()= 8| [V O {2 )+ ()} {9 )]

[ e O+ O 0]

The kinetic energy density 7 is derived in the same manner:

r(r)——Z‘,(col |pS(r,—r)1,- plo,)

) ; Az, () p3(r' =11, pl 2, (1))
=3 22 (0 () -9) S (=)0 2 (1)
=3 2 (B V(L V| ()

Eq. (2.3.47) is rewritten as

19
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(2.3.42)

(2.3.43)

(2.3.44)

(2.3.45)

(2.3.46)

(2.3.47)



7(r)=— <V;(ﬂ( )

(r'—=r)1,|Vy, (1)) (2.3.48)
by replacing the integrals as

<;(ﬂ ‘V& r' —r

(r))

- J.dr;( r'\Vs(r —r) V., (r') 2349
= [;(# (r')o(r'—r)1,-Vy, (r') » —J.dr'V;(# (r'Vé(r'—r)1,-Vy, (r')

- _<V;(# (r’)‘ S(r'-r)1, |V;(V (r’)>.

The spin-free term of PCC kinetic energy density is given by
T4 = Z [Vﬂ(y )-Vx, (r)+Vy, (r)-Vyk (r)] (2.3.50)

The exchange-correlation integral is represented as

el drf;_xw 2.(r)

(r'-r)1

2| Ay (r')>

0

oe

+—0(Va, ()] 5 (' =r)1, 1, (1))

ZVP (2.3.51)
Exc ' ' '

+avp-(z,,(r) (r'=1)1,|Vy, (1))

+25 (9, () olw - r )1 |92, ()|

with exchange-correlation energy density exc. This is calculated by the summation of

weight wy at the grid point g as

=S| 2B, (ol )
+Zé_x;.<vlﬂ(r') 5(r'=r, )1z, (r')) 03.52)
_,_Z;_X;.(Zﬂ(r') 5(r'-r,)1,|Vz, (')
ﬁ;jc (Vi ()]6(r -1, )1, |V, (r'))}

PCC exchange-correlation integral is given by
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(2.3.53)

2.4 LUT scheme

Although the IOTC Hamiltonian realizes high accuracy close to 4c Hamiltonian, the
unitary transformation is a time-consuming step; the computational costs for one-electron,
two-electron, and density operators scale as O(n*), O(n°), and O(n’) with respect to the
number of PBFs n. Efficient techniques to accelerate the unitary transformation have been
proposed based on the locality of relativistic effects.’*® Nakai group has developed the
LUT scheme based on the IOTC Hamiltonian.***? The concept of the LUT is similar to
that of the diagonal local approximation method for the one-electron system proposed by
Peng and Reiher.**** These efficient schemes have extended to calculations of molecular
properties, such as molecular gradient*’>° and NMR shielding constant.’!>?> This
subsection briefly describes the LUT scheme.

LUT introduces two approximations. First, total transformation is approximated as

direct summation of the transformations for subsystems:
U~[U'eU’oU ®- -], (2.4.1)

where 4, B, C, ... represent the subsystems that do not intersect each other. Individual atoms
are usually adopted as subsystems. This approximation is based on the locality of
relativistic interactions that the relativistic effect is dominant in each atom rather than
bonding regions. Second, the locality of the unitary transformation is introduced. When the

distance between an electron and a subsystem is long, the relativistic effects of the kinetic
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energy, nucleus—electron, and electron—electron interactions become small. Consequently,

the operators behave as they do in the nonrelativistic case. Thus, the electronic components

of the Hamiltonian, H, , are presented as

Hy =3 " (i)+ 28" (i.)), (2.4.2)

i>j

where h,"" and g."" are the approximated electronic components of the 2¢ one- and two-

electron operators, respectively. Here, the matrix elements of &, with {y,} are expressed

as
(lravieZve|z)  (4=8)
(R 22 =1 (T v, v+ S V28 (4% B.R,, <7)
C#A4,B
(22| T+ 2V 22) (4%B.R,, >7),
C

(2.4.3)
where V is the nucleus—electron attraction, and 7 is the kinetic energy. Superscripts Nonrel.
and + denote the nonrelativistic and relativistic operators, respectively. Note that 7*
depends on the positions of nuclei because T' is constructed by the operator that includes
the nuclear-electron attraction potential. The relativistic effects are dominant for 7" in the
atomic domains and for V' in the atomic domains and interatomic interactions with the

nearest-neighbor atoms. 7is the cutoff threshold for the distance, R45, between atoms 4 and

B. The matrix representation of g,"" is written as

<Z:,1)(VA g (h])‘){f;{ﬂ (one-center)

LUT

& xix,) =

(2.2, (2.4.4)

<Z:,1)(VB U”,-,-‘Zf}(f> (multicenter).
Only the one-center TEIs are treated by relativistic transformation. The effects of

relativistic transformations in multi-center TEIs are ignored.

The concept of LUT is also applied to the density operator.>? Unitary transformation

22



of the density operator is performed when two AOs in the integral in Eqs. (2.3.36) and
(2.3.37) belong to the same atom. Otherwise, nonrelativistic density operator is adopted.

The electron density based on the LUT scheme is as follows:

pLUT (r) _ Z(% ‘5LUT (r'—r)‘ (/7,»>

Z;C;cw (e (v =n)z’)  (4=B) (o435
S (e (e -n)| ) (4#B),
where
(228" (r=0")| 2%} = 22 (1) 2 (v). (2.4.6)

The time-consuming step of the LUT scheme is reduced to the unitary transformation
in subsystems, i.e. the individual atoms. Therefore, the computational costs of LUT for one-

and two-electron and density operators are of the scale O(n).
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Chapter 3 Acceleration of TEIs utilizing matrix

decomposition”

3.1 Introduction

The relativistic treatment of two-electron interactions is computationally expensive
because it requires evaluations of several types of TEIs and their relativistic transformations,
such as Eqgs. (2.3.25)—(2.3.27). As mentioned in the Chapter 2, the computational costs of
the two-electron term of the IOTC Hamiltonian, for example, are of scale O(N°), where N
represents the number of PBFs owing to the unitary transformation of the TEIs. To perform
transformation efficiently, several methods have been proposed that focus on the locality
of the relativistic effect'” including the LUT scheme. The LUT scheme achieves linear-
scaling computational time with respect to the molecular size within chemical accuracy.

This chapter focuses on the acceleration technique for evaluation of TEIs. In the
framework of nonrelativistic calculations, CD was utilized for the efficient evaluation of
ERIs, taking advantage of the symmetric characteristics of the ERI matrix.'®"!* Here, ERIs,
which are one of the TElIs, represent Coulomb interaction by the inverse of the distance
between two electrons. TEIs other than ERIs also arise in the relativistic calculations due
to the relativistic treatment of two-electron operators. Practically, TEIs are approximated
as an incomplete CD integral matrix. A related idea was adopted for density fitting, also
called the resolution-of-identity approximation, which describes the TEIs as an inner
projection in terms of an auxiliary basis.!*!> The CD approach is more general because it
does not require an auxiliary basis. Furthermore, errors caused by the approximation can

be controlled by the CD threshold. So far, the CD scheme has been applied to various

* Reproduced from the article by Chinami Takashima and Hiromi Nakai, Chem. Phys. Lett. 828,
140714 (2023).
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wavefunction theories such as the Hartree—Fock,'>!> MP2,'>!¢ CC,!7 complete active

18,19

space-self-consistent field methods, and multiconfiguration second-order perturbation

theory.?’ The CD method has also been utilized in property calculations such as that of

23-25 24,26

molecular gradient,!®?!?? polarizability, optical rotation, and chemical shift with
the use of gauge-including atomic orbitals.>’ 2’ Highly efficient techniques for the CD of
ERIs have been developed realizing drastically reduction of the computational costs
compared to earlier algorithms. 3!

This chapter examined the application of CD for evaluating TEIs using the IOTC
Hamiltonian. Furthermore, extension to the lower-upper decomposition (LUD) was
investigated to accommodate the asymmetric TEI matrices. The remainder of this chapter
is organized as follows: Section 3.2 summarizes the algorithm and implementation of the

proposed method. Section 3.3 presents the results of numerical assessments. Finally,

concluding remarks are presented in Section 3.4.

3.2 Algorithm and implementation
3.2.1 Symmetry of TEIs in the two-electron IOTC Hamiltonian

Generally, two kinds of notation for TEIs are used. One is the Dirac notation:

(x| o) = [ [ dvdr,z, (60 (x,) 26 Dz () 24 () (3.2.1)

and the other is the Mulliken notation:

(x| oz ) = [ [drr (v (r,) gz, (6) 2. (v, ) (3.2.2)

This chapter uses the Mulliken notation. The matrix representations of TEIs for two-
electron IOTC Hamiltonian provided in Egs. (2.3.25)—(2.3.27) are rewritten in Mulliken

notation as follows:

(2.2 | 22.)"

= Z (Z,, |Mi

kakpk ky

(3.2.3)

ka)(lv Mi|kb)(kukb ‘I/V;/IZ‘kckd)(kc

M/‘Zi)(kd‘Mj‘Zo)’
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(zuz|202,)"
- Z (Z# |di ka)(Zv |di|kb)(kakb ‘pil/r;'j12 "D

Kok Jeyg

MJ‘Zﬂ)(kd ‘Mj‘la)’

kckd ) (kc

(3.2.4)

and

(22 |202.)"

= Z (Zﬂ di ka)(lv

kakykckq

d|k,) (ke |p[p1/ 51, p, ] pilk, ) (k.

dj‘ll)(kd ‘dj‘;(a)’

(3.2.5)

where superscripts sfl, sf2, and sf3 represent the TEIs of the Coulomb-like g5", Darwin-

like g%, and specific spin-free interaction terms g5° , respectively. The angular

momentum of the PBFs in (k k, ‘ pl/r1,-p,

kckd) and (kakb ‘pz I:p/l/r;/12 .pj].pi‘kckd)
increased or decreased by one and two from the original value, respectively, because

p; =—iV, . Note that the symmetry of three TEIs is difference, namely, ( XX\ XaXs )sf2 is

asymmetric for two electrons 7 and j, that is

(zuzt | 220.) = (20 | 2020, ) (3.2.6)

sf3 . . ..
X.X,) aresymmetric for i and}, i.e.,

2.,) and (7,7,

while (7,7,

(zuzt | 2:20.) = (20 | 2020, ) - (3.2.7)

3.2.2 Matrix decomposition of TEIs
This section explains the methodology of CD and LUD of the primitive integrals in
Egs. (3.2.3)—(3.2.7). Consider the matrix representation of TEI V as
Vo = (koo | . Ik K )

= [ ardrk; (x Y (r,) g )k, (1), (r,) (3.2.8)
= (ab | cd).
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The two indices, ab and cd in Eq. (3.2.8), are called the overlap distribution. Throughout
this chapter, the overlap distribution is represented by capital letters /, J, K, ....
When V is a symmetric matrix, it can be decomposed by the Cholesky procedure into
a product of the lower triangular matrix L and its transpose as follows:
V=LL". (3.2.9)
Note that ¥ must be factorized by a pivoting procedure with truncation because V is not a
positive-definite but a positive-semidefinite matrix and occasionally has a negative definite
part due to the round off errors on computers.'> The formulas of the diagonal and off-

diagonal elements of L are given by

K=1

I 1/2
Ly, =[VH—2L§KJ (3.2.10)

and

K=l

J-1
L, :(VU —ZL[KLJK}/LJJ (I=J+1LJ+2,,M), (3.2.11)

respectively, where M is the number of rows in L.

Figure 3.1(a) shows the algorithm used to obtain the elements of L. In the first step, all
diagonal elements of the primitive integrals are calculated, followed by the selection of the
largest diagonal element V) in the J-th iteration as the pivot. Using Vy, the diagonal

element L is calculated as follows:
L,<\V,. (3.2.12)

Next, the partial column of ¥ is obtained, followed by the calculation of the corresponding

partial column of L using Eq. (3.2.11). Then, stored diagonal elements are updated as
Vo< V=L, (I=J+1,J+2,...M). (3.2.13)

If the largest element among the updated diagonal terms is smaller than the threshold J, the
procedure is terminated. The subsequent elements of V are discarded. The number of

iteration steps at the end of the procedure R becomes the rank of the truncated L, which
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corresponds to the number of columns. The matrix elements of V are approximated by the

matrix elements of L as follows:

R
Vab,cd ~ zLab,KLcd,K . (3.2.14)
K

As the absolute value of the error with the approximation in Eq. (3.2.14) becomes less than

¢ in all elements of V from the Cauchy—Schwarz inequality,'? & determines the accuracy of

the decomposition. CD is applicable to both (kakb‘l/rylz‘kckd) and

kckd) :

(k& |p.[ P/ 71, p, ) P,

For the asymmetric matrix (kakb‘ pl/r1, - p,

k.k,), LUD, which is a more general

case of CD, is applied. The LUD is the factorization of a square matrix into the product of
a lower triangular matrix L and an upper triangular matrix U. In this study, the diagonal
elements of L were set to one. Subsequently, the off-diagonal elements of L and U are

evaluated as

J-1
L, = (VU =Y LUy, ] /UJJ (>J) (3.2.15)
K=l
and
I-1
Uy =V, =Y LUy,  (I<J). (3.2.16)
K=1

Figure 3.1(b) shows the algorithm used to obtain elements of L and U. As shown in Eq.
(3.2.15), the calculation of the off-diagonal elements of L requires a division by the
diagonal elements of U. A pivoting procedure was necessary to prevent division by zero.
Although partial pivoting that permutates either rows or columns is generally sufficient,
this study adopts full pivoting to introduce truncation by a threshold, as in the case of CD.
The first step is the calculation of all diagonal elements of V, followed by selecting the
largest diagonal element in V) in the J-th iteration as the pivot and calculating the partial
column and row of V. Using V., the corresponding diagonal elements of U are obtained by

Uy <V, (3.2.17)
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The corresponding columns and rows of L and U are computed using the elements
calculated in V and Ujy using Egs. (3.2.15) and (3.2.16). Then, stored diagonal elements

are updated as follows:
Vy<Vy—L, (I=J+LJ+2,...M). (3.2.18)

The procedure is continued until the largest element in the updated diagonal elements
becomes smaller than the threshold d. The number of iterations at the end of the procedure,
R, becomes the rank of the truncated L and U, which corresponds to the number of columns

or rows. The matrix element of V is approximated by elements of L and U as follows:

R
Vired ® 2 Lis xUs ca - (3.2.18)
K

Since the Cauchy—Schwarz inequality does not hold good, the relationship between ¢ and

the error in approximated TEls is unclear, different from the case of CD.

3.2.3 IOTC transformation of L and U and construction of the Fock matrix
The transformations of L and U by M and d, corresponding to Egs. (3.2.3)—(3.2.5), are
performed analogously as the transformation of AO to MO of the Cholesky matrices.!? The

general expressions of elements in the transformed matrices are

L =Y X, X,Lpx (X=M.d) (3.2.19)
PR
for symmetric terms, and
L = ngmdvbw (3.2.20)
and
U = ZZ}):MWMV,]UQ},,K (3.2.21)

for an asymmetric term. The two-electron term of Fock matrix G is constructed from the

transformed matrices L™ and U™ in a self-consistent field (SCF) calculation. For
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simplicity, superscript “trans” is omitted hereafter. The matrix element of G for the

restricted Hartree—Fock method is expressed as

=22 G2 ko) (s | 20 20) ] (3.2.22)

i Ao

with MO coefficients C, where the first and second terms are Coulomb and exchange terms,

ZAZU )Sf2 > and

respectively. As the TEls are given by the sum of ( XX | XX s )Sﬂ, ( XXy

XaXo )SB in the two-electron IOTC method, G can be divided into three terms:

(2,2
_ sfl sf2 sf3
G,=G"+G2+G". (3.2.23)

G, and G, were constructed using L as follows: The Coulomb term G\ (x = 1, 3) is

given by

G;f"/‘CNzZZ Ai GJZLAVKLAGK

i Ao

= 22%2 Lo (3.2.24)

_2ZL/IVKZ lo‘K

and the exchange term G:°* (x =1, 3) by

v

62" =TT Db |G,

i Ao

_ '
Z u, KLA,K‘

(3.2.25)

Here, L’ is MO transformed L given by
ZZ Lok - (3.2.26)

Similarly, G2 was constructed using L and U. The Coulomb term G and exchange term

Hv

G»" are given by
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G;%C~2ZZ Ai m|:z uv, K Kla'+leO'K K,uv:|

i Ao
R
_2213/10[2 v K K/10+ZL/10 KW} (3.2.25)
K=1
2Z|: ,UVKZ})ﬂO'UK),O'—FUKﬂVZ})ﬂ.O'LﬂO'K}
K=l

and

R
G;%E ZZ |:Z no K KAV ;LAV,KUK,/JU:|CM

X (3.2.26)
=L Uk, +L Uy, |
K=1
with Eq. (3.2.26) and MO transformed U,
Uy, = ZZCUI.UW : (3.2.27)
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(a) Cholesky decomposition

@

| Calculate all the diagonal elements of V

(b) LU decomposition

@

!

Calculate all the diagonal elements of V

Select largest diagonal element,
v, from v, (I=J,J+1, ...) as pivot

!

Select largest diagonal element,
v, from v, (I=J,J+1,...) as pivot

Calculate diagonal element of L
LJJ <« VI/JJ

Calculate diagonal element of U
UJJ <« VJJ

v

Calculate partial column of V,
V, I=J+1,J+2,..)

Calculate partial column and raw of V,
V,and V, I=J+1,J+2,...)

¥

Calculate partial column of L

J-1
L, e(VH —ZL,KLJK)/LJJ (I=J+1LJ+2..)
K=1

Calculate partial column of L and raw of U

J-1
LI./ <« [V// - ZLIKUKJ j/U.u
K=1

U, <V, =Y LUy, (I=J+LJ+2..)

Update stored diagonal elements
Vo<Vy=L, (I=J+1,J+2,..)

Update stored diagonal elements
Vp<Vy—Ly, (I=J+1,J+2,..)

Figure 3.1. Algorithms of (a) CD and (b) LUD of TElIs.



3.3 Numerical assessments
3.3.1 Computational details

This section assesses the performance of the present methods, which were
implemented to the modified version of GAMESS program.*? The threshold for the integral
screenings and the cutoffs in the reference calculations, namely the conventional two-
electron IOTC Hamiltonian, was set to 1.0x107'2. Numerical tests were performed for noble
gas atoms, Ne, Ar, Kr, Xe, and Rn; hydrogen halides, HX (X = F, Cl, Br, I, and At); and
hydrogen bromide chains, (HBr), (n = 2—4). The intramolecular distances of H-X were
fixed at 0.970, 1.350, 1.500, 1.710, and 1.729 A for H-F, H-Cl, H-Br, H-1, and H-At,
respectively. The intermolecular distances in (HBr), were 2.53 A. The H-Br-H and Br-H—
Br bond angles were 120° and 180°, respectively. As basis sets, Sapporo-DZP-20123%3 for
H to Ar and Sapporo-DKH3-DZP-2012% for Br to Rn were adopted in an uncontracted
manner. In addition, the uncontracted Sapporo-XZP-2012 (X = D, T, or Q) basis sets with
and without diffuse functions®** for boron, including the s, p, d, f. and g functions, were
used to examine the accuracy of the approximated integral values. For example, the sizes

of the Sapporo-XZP-2012 basis sets for boron are summarized in Table 3.1.

Table 3.1. Sizes of the Sapporo-XZP-2012 (X =D, T, or Q) basis sets without/with diffuse
functions for the boron element. The abbreviations, primitive functions, total number of

primitive basis functions (PBFs) are listed.

abbreviation functions # of PBFs
Sapporo-DZP-2012 DZzZPp (9s5p2d) 36
Sapporo-DZP-2012 + diffuse =~ DZP+d (10s6p3d) 46
Sapporo-TZP-2012 TZP (10s6p3d2f) 66
Sapporo-TZP-2012 + diffuse =~ TZP+d (11s7p4d3f) 86
Sapporo-QZP-2012 QZpP (12s8p4d3f2g) 120
Sapporo-QZP-2012 + diffuse =~ QZP+d (13s9p5d4f3g) 155
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3.3.2 Accuracy
The maximal absolute error (MaxAE) emax of approximated primitive TEIs was defined

as

max

ng" kckd) (X = 133)

R
Z Lab,KLcd,K - (kakb
K

(3.3.1)

max
sfx

max g

k.k,) (x=2).

R
zLah,KUK,cd - (kakb
K

The calculations were performed with 6 = 1074, 107>, 107, 1077, 1078, and 107°. Figure 3.2
shows emax in logarithms of (a) Coulomb-like, (b) specific spin-free interaction, and (c)
Darwin-like terms in the calculations of the B atom by six types of basis sets. MaxAE &max
depends mainly on ¢ and slightly on the type of basis function in the Coulomb-like and
specific spin-free interaction terms and is close to the ¢ value. The results confirmed that
the errors in the approximated primitive integrals in symmetric terms for electrons i and j
are well controlled below a threshold value, not only for the s, p, and d functions but also
for high angular momentum, such as the f and g functions. The MaxAES &max in the Darwin-
like term shown in Figure 3.2(c) change with the type of basis function. Although the values
of emax fluctuate around ten times larger than J, the approximation errors by LUD TEI
matrix in the asymmetric term are still controllable by ¢. Figures 3.3 and 3.4 show the
results of BH and BH3. As shown in Figures 3.3 and 3.4 , the errors of primitive integrals
in molecules can be also controlled by o.

Table 3.2 shows the total energy deviations (in hartree) obtained by the present method
with § = 1074, 1075, 107, 1077, 1078, and 10 and the conventional two-electron IOTC
Hamiltonian for noble gas atoms and HX and (HBr), molecules. Total energies obtained by
using the conventional two-electron IOTC Hamiltonian are shown in parentheses. As ¢
becomes smaller, the absolute values of energy deviations tend to decrease: within 1
phartree at 6 < 107 for Ne, Ae, Xe, HF, HCI, and HI, and 6 < 10”7 for Kr, Rn, (HBr), (n =

1-4), and HAt. Although heavier-element systems appear to require a smaller threshold for
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accuracy, the total energies converge to those of the conventional two-electron IOTC
Hamiltonian, even for the fifth- and sixth-row elements, where relativistic effects are
essential. The energies of the molecules converged to those obtained using the conventional

two-electron IOTC Hamiltonian, as in the case of atoms.
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Table 3.2. Deviations in total energy (in hartree) obtained by the present method with

various thresholds and the conventional two-electron IOTC Hamiltonian of noble gas

atoms and HX molecules. The total energies obtained by the conventional method are
shown in parentheses.
0 Ne Ar Kr Xe Rn
104 —0.00000039 0.00008967 0.00005084 0.00044503 0.00124063
103 0.00000115 —0.00000142 —0.00002169 0.00003563 0.00008069
1076 —0.00000001 —0.00000080 0.00000128 —0.00000096 —0.00000702
1077 0.00000002 0.00000018 0.00000008 0.00000041 —0.00000080
1078 0.00000001 0.00000000 0.00000000 0.00000002 —0.00000001
107° 0.00000000 0.00000000 0.00000000 0.00000001 0.00000000
(—128.62675909) (~528.63333826) (—2788.73419359) (~7445.50196731) (~23573.33393888)
0 HF HCI HBr HI HAt
107 0.00000094 —0.00011900 0.00005708 0.00024925 0.00110454
103 0.00000257 —0.00000983 —0.00002045 0.00003160 0.00008063
1076 0.00000016 —0.00000027 0.00000110 —0.00000083 —0.00000669
1077 0.00000000 0.00000008 0.00000008 0.00000028 0.00000014
1078 0.00000000 0.00000000 0.00000000 0.00000002 0.00000006
107° 0.00000000 0.00000000 0.00000000 0.00000000 0.00000004
(—100.10822894)  (-461.51776971) (~2605.51611690) (~7115.13559819) (—22883.68495904)
0 (HBI‘)2 (HBI‘)3 (HBI‘)4
107 0.00011314 0.00017337 0.00023010
1073 —0.00004381 —0.00006181 —0.00008607
107¢ 0.00000212 0.00000307 0.00000406
1077 0.00000022 0.00000029 0.00000039
1078 0.00000006 0.00000001 0.00000002
107° 0.00000005 0.00000000 0.00000000

(—5211.03068965)

(~7816.54595192)

(—10422.06140162)
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3.3.3 Efficiency

Figure 3.5 provides the ratios (in %) of the number of nonzero elements in L™ and
U™ obtained by the present method with the threshold 6 of 10~° and 10™* with respect to
those of nonzero IOTC-transformed TEIs of noble gas atoms and HX molecules. The ratios
of the Coulomb-like term (Figures 3.5(a) and (b)), specific spin-free interaction term
(Figures 3.5(c) and (d)), and Darwin-like term (Figures 3.5(e) and (f)) decreased rapidly
when a higher-row element was included. The results of two threshold ¢ indicate the same
tendency although smaller ¢ obviously gives larger ratios. The ratios of the Coulomb-like
term are from ~74% (~75%) for Ne (HF) to ~15% (~12%) for Rn (HAt) at the threshold ¢
of 107°. The ratios of the specific spin-free interaction term, which are ~90% (~145%) for
He (HF) and ~15% (~33%) for Rn (HAL) at the threshold & of 107 are larger than those of
the Coulomb-like term. As shown in Table 3.3, the number of nonzero IOTC-transformed
TEISs of the specific spin-free interaction term is smaller than that of the Coulomb-like term,
whereas the numbers of primitive TEIs of both terms shown in Table 3.4 are similar. The
integral values of the specific spin-free interaction term become small because of the
transformation matrix d shown in Eq. (3.2.4), some of which were removed. Consequently,
the ratios of the Coulomb-like and specific spin-free interaction terms indicate difference
tendencies. Some of the ratios the specific spin-free interaction term exceeded 100%,
because values that are close to zero are obtained as elements in matrix L along the
decomposition and the TEI matrix is commonly sparse due to zero integrals derived from
symmetry and cutting the small integrals off with the threshold of 10~!2. Similar trends can
be seen in the other terms. The ratios of the Darwin-like term in the range ~76% (~77%)
for Ne (HF) to ~32% (~27%) for Rn (HAL) at the threshold § of 107 are larger than those
of the Coulomb-like term and smaller than those of the specific spin-free interaction term
except for Kr, Xe, and Rn. The Darwin-like term is transformed by matrix d only for either

electrons i or j whereas the specific spin-free interaction term is transformed for both
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electrons i and j. Thus, the integral values and number of TEIs of the Darwin-like term are
not as small as those of the specific spin-free interaction term. Comparing the results of
noble gas atoms (Figures 3.5(a), (¢), and (e)) with those of HX (Figures 3.5(b), (d), and (¥)),
the ratios of HX are larger than those of same row noble gas atoms in specific spin-free
interaction terms and indicate values comparable to those of the same row noble gas atoms
in Coulomb- and Darwin-like terms.

Figure 3.6 shows the system-size dependence of the number of nonzero I0TC-
transformed TEIs obtained by the conventional two-electron IOTC Hamiltonian and L™
and U™ obtained by the present method with a threshold & of 10™* and 107 in the
calculations for (HBr), (n = 1-4). The theoretical value of the number of TEIs N*', which
is of the scale O(n*), is also shown. Figures 3.6(a)—(c) show the results for the Coulomb-
like, specific spin-free interaction, and Darwin-like terms, respectively. The conventional
values were reduced from N owing to the sparsity of the TEI matrix. The order of scaling
obtained by 6 of 10™* and 10~ are close in the three terms. Although the order of scaling of
the present method is close to that of the conventional two-electron IOTC Hamiltonian, the
prefactor is small in the present calculation. Comparing the three terms, the scaling of the
specific spin-free interaction term was smaller than that of the other terms. The interatomic
two-electron interactions decrease as # increases. This is presumed to be more apparent in
the specific spin-free interaction term than in the other two terms, because the integral
values of the specific spin-free interaction term are particularly small owing to the

transformation matrix d.
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Figure 3.5. Ratios (in %) of the number of nonzero elements in L™" (and U"™") obtained
by the present method with the threshold § of 10~ and 10~ with respect to the number of
nonzero [OTC-transformed TEIs obtained by the conventional two-electron I0TC
Hamiltonian. (a) and (b) are the Coulomb-like term, (c) and (d) are the specific spin-free
interaction term, and (e) and (f) are the Darwin-like term. (a), (c), and (e) correspond to the

results of noble gas atoms, and (b), (d), and (f) correspond to those of HX.
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Table 3.3. Numbers of nonzero elements in IOTC-transformed matrix of decomposition L™" and
U™ in Coulomb-like, specific spin-free interaction, and Darwin-like terms of rare gas atoms and
HX molecules at = 1074, 107, 107°, 1077, 1078, and 10™°. The values of Darwin-like term are the
sum of the number of elements in both L™" and U"™", Numbers of nonzero IOTC-transformed TEIs
of three terms in conventional two-electron IOTC method (Conv.) are also provided. The ratios
(in %) of the number of the matrix elements with respect to those of the TEIs obtained by

conventional method are shown in parentheses.

0
107 10°° 10°¢ 1077 1078 107

Conv.

Coulomb-like term

Ne 15789 17664 20028 20961 23559 26058 35017
(45.1) (50.4) (57.2) (59.9) (67.3) (74.4)

Ar 96322 112075 121264 131881 153416 160612 129360
(22.8) (26.5) (28.7) (31.2) (36.3) (38.0)

677040 757184 851248 951252 1050799 1124672
Kr (12.0)  (134) (1500  (168)  (186)  (19.9) 064346

1229052 1462917 1630273 1789384 1989041 2187131

Xe (8.3) ©8)  (1.0) (1200  (134) (147 14868055
4455411 5196566 5815672 6245963 6900661 7535490

Rn (4.8) (5.5) (6.2) 6.7) (7.4) 8.0y 370998

Lp 138423 170618 200126 227838 269664 302672 104952

(34.2) (42.1) (49.4) (56.3) (66.6) (74.7)

576077 707286 808627 922766 1091963 1209056
HCI (19.0) (23.3) (26.7) (30.4) (36.0) (39.9) 3030641

3279725 3780121 4392629 5037458 5731761 6264012
HBr Tma) sy sy ara) oy Ly 28008

5496114 6665404 7654041 8837628 9932460 11135588
il 89 (108  (124) (144 e asn PP

17809902 21085681 24309949 26919672 30182603 33708228
HAL (6.3) (7.5) (8.6) ©6) (107  (12.0) 281424214
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Table 3.3. Continued.

10 10°° 10° 107 10°° 107 Conv.
Specific spin-free interaction term
24780 27185 28269 29921 30824 31423
Ne 34008
(729 (7199)  (83.1)  (880)  (90.6)  (92.4)
A 158270 170817 184451 195164 202012 211398 104743
40.1)  (433)  (467)  (494)  (512)  (53.6)
1191961 1260724 1345312 1406927 1485381 1540737
Kr 239) (253) (2700  (282)  (298)  (30.9) 188308
2173670 2392659 2541174 2697593 2819918 2900945
Xe (17.8)  (19.6)  (208)  (2.1)  (@3.1) (238 12207402
8084872 8819089 9264146 9761345 10172415 10500933
Rn (117 (128)  (134)  (141) (147 (152 = 04P78
230958 259380 285291 305836 320749 328351
HE 021y (1146)  (1261)  (1352)  (141.8)  (145.1) 226262
885688 1021331 1116418 1234809 1290837 1341390
HCL - gse)  02.1)  (116) (1235  (129.1)  (134.1) 1000017
4530312 4983957 5331683 5696420 5982670 6164088
HBr — “ssgy  (614)  (656)  (700) (37 (75.9) 8123034
7127766 7960831 8642605 9182323 9525013 9751475
HI 418) (467 (507 (539)  (559) (572 17049341
20212311 24624117 26471206 27880083 28895522 29978978
HAU " o4sy @74 (295 (310) (322) (334  O8174T4
Darwin-like term
40190 44232 47123 50171 51830 52609
Ne 69345
(580)  (638)  (680)  (723)  (147)  (75.9)
o 28250 288646 313684 335771 349636 365477 36522
(30.9) (345 (375  (40.)  (418)  (43.7)
2608623 3036120 3442301 3726979 4045384 4309909
Kr 240) (2790  (Gl6)  (342)  (372) (396 10884910
6737919 7536157 8649549 9535564 10536315 11447007
Xe 243)  @11)  (l2)  (344)  (380) (412 27738065
27151303 31320272 34762452 38727309 43208337 47707058
Rn (18.1)  (209)  (23.1)  (258)  (288) (318 10207029
353780 406021 463471 503314 542358 579813
HE 46.9)  (538) (614  (667)  (719)  (76.9) 754394
1423292 1652834 1875082 2088286 2232160 2398667
HCL 614y 364) (413) (460)  (492) (528 138638
8500090 9870869 11121681 12147470 13104040 14063359
HBr o477y @83) (19)  (349)  (37.6)  (40.4) 4837789
15333118 17519908 19524900 21662651 23685269 25456335
HI 225)  (257)  (287)  (31.8)  (348)  (37.4) 08059524
52640165 59660186 65840035 72645848 80464979 88052790
HAU 706y 182)  (20)  (222)  (246)  (269) 27132645
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Table 3.4. Numbers of nonzero elements in primitive decomposed matrix L and U in Coulomb-like,
specific spin-free interaction, and Darwin-like terms of rare gas atoms and HX molecules at 5 = 104,
1073, 10°°, 1077, 10°%, and 107°. The values of Darwin-like term are the sum of the number of
elements in both L and U. Numbers of nonzero primitive TEIs of three terms in conventional two-
electron IOTC method (Conv.) are also provided. The ratios (in %) of the number of the matrix
elements with respect to those of the TEIs obtained by conventional method are shown in

parentheses.

10°* 107 1076 107 107 107 Conv.

Coulomb-like term

Ne 14022 15477 17234 17912 19741 21407 34680
(40.4) (44.6) (49.7) (51.6) (56.9) (61.7)

Ar 90598 104339 112175 121122 138916 144697 418878
(21.6) (24.9) (26.8) (28.9) (33.2) (34.5)

646428 720903 807882 899537 989857 1056569
Kr (119)  (132)  (148)  (165)  (182)  (19.4)  ~448734

1174736 ~ 1396377 1554455 1703829 1890327 2074072

xe 85) (1000  (112)  (123)  (13.6) (149 13899333
4230703 4941149 5530667 5938758 6558264 7161183

Rn (5.7) 6.7) (7.5) 8.1) (8.9) ©.7) 13647760

L 125587 151546 174226 194567 223627 245390 109608

(40.6) (48.9) (56.3) (62.8) (72.2) (79.2)

545083 661631 749636 846817 987747 1083064
Acl 29.7)  (36.1)  (40.9)  (462)  (53.9)  (59.1) 1832317

3181618 3650278 4219850 4814514 5449548 5934420
HBr " 036y @7.1)  (G13)  (357)  (404) (440 12487230

5501984 6624477 7565527 8690995 9732789 10873892
H (19.6)  (23.6)  (269)  (309)  (346) (387 20120982

18585711 21848698 25032846 27592610 30875068 34405513
HAL Tse)  as4) euh i) @eo) @oo) SO
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Table 3.4 Continued.

10 10°° 10° 107 10°° 107 Conv.
Specific spin-free interaction term
N 20779 22506 23304 24687 25788 26334 74650
(59.9)  (649)  (672)  (71.2) (144  (75.9)
A, 144347 155319 167543 177440 185396 197717 410457
(344)  (37.0)  (39.9)  (423)  (442) @471
1140123 1208835 1295478 1365872 1458265 1541523
Kr 205) (L7 (233) (245 (62 (@17 = 637
2111208 2338327 2496507 2693034 2883970 3022709
Xe (147 (163)  (174)  (188)  (20.1) (L1 1437
o 7983054 8748192 9224909 9822326 10328096 10767893 oo .
(103)  (112) (119  (12.6)  (133)  (13.8)
Lp 204931 230442 256210 280307 302731 318562 17263
646)  (72.6)  (80.8)  (884)  (954)  (100.4)
880177 1030137 1135311 1292937 1396708 1518381
HCL - a6y (532)  (87)  (668)  (7122)  (78.5) 1935035
5567285 6193826 6762927 7442512 8185274 8867267
HBr  asay 394y @31) @74 (521) (565 12706915
0856670 11145142 12390845 13577159 14924269 16047803
HI 28.6)  (323)  (359)  (394)  (433)  (465) 482380
34974628 38864910 42123521 45899740 49000454 52386973
HAU " 7018y (42)  (262)  (286) (305 (326 160750582
Darwin-like term
34960 38327 41063 44321 46252 47092
Ne 63694
(509)  (558)  (59.8)  (64.5)  (673)  (68.6)
208344 255091 280124 304197 321583 340813
Ar 836322
273) (305 (335  (364)  (385)  (408)
1721370 1933289 2126163 2279635 2446159 2571905
Kr (156)  (175)  (192)  (206)  (2.1)  (23.3) 11060802
3383617 3672909 4045407 4330998 4691392 5026489
Xe (119) (129  (142)  (152) (165  (17.7) 23434054
12103686 13443174 14498819 15701935 17026505 18348701
Rn (7.9) (8.8) ©4)  (102) L1 (120 123430713
319323 369017 430838 477383 523144 564011
HE GL1)  (39.0)  (689)  (764)  (83.7)  (903) 624919
1381376 1620737 1873213 2143575 2335799 2553272
HCL 7360y @33)  (500)  (572)  (624) (682 P77
8428881 9706642 11040375 12241185 13403026 14525587
HBr 04y  (338) (385  (427)  (467) (506 28693772
15520288 17605797 19661621 21941334 24254823 26276514
HI 255)  (289)  (322)  (36.0)  (39.8)  (43.1) 00068887
53038788 59519882 65472756 72136351 80151936 87879663
HAC """ 08)  (222) 45 (7.0) (299 (328 207637211
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3.4 Conclusion

This chapter demonstrated matrix decomposition techniques for TEIs using the spin-
free two-electron IOTC Hamiltonian. CD was used for the symmetric TEI matrices. The
LUD, which is a general CD method, was applied to the asymmetric TEI matrix.

The performance of the proposed method was numerically assessed for atoms and
molecules, including heavy elements. The validity of the matrix decomposition techniques
of TEI was confirmed for relativistic method. The proposed methods can significantly
reduce the storage requirements of TEIs without loss of accuracy. Examination of the
approximated primitive TEIs showed that the errors of the symmetric TEI matrix were less
than the decomposition threshold, and the errors of the asymmetric TEI matrix could be
controlled by the decomposition threshold despite error fluctuations. The total energy
deviations tended to decrease with smaller decomposition thresholds. Total energies of both
atoms and molecules were obtained with an error of less than 1 phartree when the
decomposition threshold is 1077. This indicated that the decomposition threshold
determined the accuracy of the proposed method. The efficiency assessments showed that
the number of nonzero elements in the decomposed matrix became considerably smaller
than that of nonzero IOTC-transformed TEIs obtained by the conventional two-electron
IOTC Hamiltonian especially in the fifth and sixth row elements. The advantage of matrix
decomposition increases importantly when calculating heavy elements where relativistic
effects are inevitable. The computational costs of the present methods have small prefactors
for the system-size dependence in (HBr), calculations. The efficiencies were different
among three terms. The characters of the three primitive TEIs are different because the
angular momenta of PBFs in the Darwin-like and specific spin-free interaction terms
increase or decrease compared to those of Coulomb-like term due to the momentum
operator. Transformation matrices M and d also have different characters. Therefore, it

implies that the differences due to the angular momenta and the character of the IOTC
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transformation matrices influence the efficiencies of each term in the proposed method.
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Chapter 4 Database of TEIs in 2c¢ relativistic

calculations’

4.1 Introduction

In this chapter, the author modifies the LUT scheme for two-electron operators based
on the IOTC Hamiltonian to realize more efficient calculations. The scheme utilizes a
database containing atomic (one-center) unitary transformed TElIs calculated in advance.
The novel algorithm for the unitary transformation of TEIs in terms of elements is
implemented. This chapter is organized as follows. Section 4.2 summarizes the algorithm
and implementation of the proposed scheme. In Sec. 4.3, numerical assessments are

presented. Finally, concluding remarks are provided in Sec. 4.4.

4.2 Algorithm and implementation

This section describes the algorithm for constructing and utilizing the database of
relativistically transformed one-center TEls. In Eq. (2.4.4), the one-center transformation
of TEIs is a time-consuming process for small- and medium-sized molecules. The reason
is that the computational cost per atom scales as O(Np°) with respect to the number of PBFs
per atom (or element), Np, because the resolution of identity approximation is used.! Thus,
the total computational cost scales as O(Na*Np’), where Na is the number of atoms. Note
that the total computational cost without the LUT technique scales as O(Na>*Np°).

Here, the author should recall that the one-center transformed TEIs depend only on the
atom species, i.e., the element, when the same basis set is used for the same element. Thus,

one can reuse the same one-center transformed TEIs for different atoms of the same element,

T Reproduced from the article by Chinami Takashima, Junji Seino, and Hiromi Nakai, Chem. Phys.
Lett. 777, 138691 (2021).
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for example, by saving to and reading from a database disk. Consequently, the
computational cost can be reduced to O(Ne*Np’), where NE is the number of elements. This
discussion is based on the assumption that Np is the same for each atom and each element.
Furthermore, if one assumes that the number of atoms of each element, naF, is constant, Na
becomes na"*Ng. Therefore, the acceleration ratio is estimated to be naF.

Based on these considerations, the author developed a new algorithm in order to use a
database. The algorithm was implemented by modifying the GAMESS program.? Figure
4.1 shows the conventional and proposed database-assisted algorithms for the two-electron
LUT-IOTC Hamiltonian assuming a disk-based SCF procedure. The proposed algorithm
for the direct SCF procedure can be extended straightforwardly. As shown in Figure 4.1,
four steps are involved: Step I for the construction of the database of one-center
transformed TEIs, Step II for the calculations and transformations of the TEIs, and Steps
I and IV for the construction and diagonalization of the Fock matrix, respectively.

The conventional algorithm starts at Step II, because Step I is unique to the proposed
algorithm. In Step II of the conventional algorithm, the multi-center nonrelativistic TEIs
are calculated and stored in a disk file. Then, the one-center relativistic TEIs are calculated
and stored on the disk in each atomic loop, where the one-center TEIs without operators d
and M in Egs. (2.3.18)—(2.3.20) of Chapter 2 are evaluated; subsequently, Egs. (2.3.18)—
(2.3.20) are transformed by introducing operators d and M. In Step III, the skeleton Fock
matrix elements are constructed by multiplying the nonrelativistic TEIs with the density
matrix elements and are added to the core matrix, which is obtained from the one-electron
relativistic integrals. Furthermore, another set of skeleton Fock matrix elements is obtained
by using the one-center relativistic TEIs and the density matrix elements, and these
elements are added to the aforementioned Fock matrix in each atomic loop. In Step IV, the
Fock matrix 1s diagonalized.

In the proposed database-assisted algorithm, one-center relativistic TEIs are calculated
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and stored to a database disk, as shown in Step 1. Thus, the atomic loop for the calculations
and transformations of one-center relativistic TEIs is not needed in Step II. Consequently,
only the multi-center nonrelativistic TEIs are evaluated. The difference from the
conventional algorithm in Step III is the addition of the contributions of the one-center
relativistic TEIs to the Fock matrix. First, the one-center relativistic TEIs are read from the
database disk in an element loop. Then, the TEIs are assigned to the corresponding indices
of the atomic orbitals of a molecule, and their contributions are added to the Fock matrix
in an atomic loop. Note that the element loop should be changed if different basis sets are
used for the same element. No modification of Step IV is needed. The proposed database-
assisted method gives the molecular energies that are equivalent to those given by the
conventional method. Furthermore, the present method is simply available not only for the
HF method but also for DFT, which applies to one-center relativistic TEIs for the Coulomb
and the HF exchange terms. Although the present method can be extended
straightforwardly to the nonrelativistic calculation, the high efficiency is not expected

because the computational costs for multi-center TEIs are dominant.
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Conventional algorithm

Proposed database-assisted algorithm

Step I Loop for element
Calc. components of one-center relativistic TEIs
Transformation of TEIs
Store to database disk file
End loop \L
Step Il Calc. multicenter non-relativistic TEIs Calc. multicenter non-relativistic TEIs
Store in disk ﬁie Store in disk file
r— Loop for atom
Calc. components of one-center relativistic TEIs
Transformation of TEIs
Store to disk file
— End loop
Step Il 5 gpart sCF —> Start SCF
— Loop for disk I/O — Loop for disk I/O
Read multicenter non-relativistic TEIs from disk file Read multicenter non-relativistic TEIs from disk file
Calc. corresponding Fock matrix element Calc. corresponding Fock matrix element
Add to the core matrix Add to the core matrix
— End loop — End loop
— Loop for atom — Loop for element
Loop for disk I/O r— Loop for disk I/O
Read one-center relativistic TEIs from disk file Read one-center relativistic TEIs from database
Calc. corresponding Fock matrix element Loop for atom
R Assign to indices of atomic orbitals
Add to Fock matrix
End loop Calc. corresponding Fock matrix element
— Endloop Add to Fock matrix
End loop
— End loop
— End loop
Step IV . . . . . .
Diagonalize Fock matrix Diagonalize Fock matrix

— End SCF

— End SCF

Figure 4.1. Comparison between the conventional and proposed database-assisted
algorithms for the two-electron LUT-IOTC Hamiltonian. Step I: construction of a database
of unitary transformed TElIs, Step II: calculation and transformation of TEIs, Step III:

construction of Fock matrix, and Step IV: diagonalization of Fock matrix
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4.3 Numerical assessments
4.3.1 Computational details

This section details the performance of the proposed algorithm. The spin-free LUT-
IOTC Hamiltonian for one- and two-electron term’, which is denoted as 1e2eLUT-IOTC
in this chapter, are applied. The cutoff distance for the one-electron LUT was set to 3.5 A.
The implementations and computations reported in this chapter were based on the modified
version of the GAMESS program. All calculations were performed on a single core of a
Quad Core Intel® Xeon® Gold 5122 central processing unit (CPU) at 3.60 GHz.

Numerical tests were performed for one-dimensional hydrogen halide chains (HX), (X
=Cland At,n=1,2, ..., 50), three-dimensional gold clusters Au,(n=1, 2, ..., 20), Ir(ppy)s,
cycloheptatrienyl trimetal sandwich complex Pt3(C7H7)2(HCN)s, and PtClo(NHs),. The
author choses the systems in the following reasons. (HX), and Au, are suitable to examine
the size dependence of computational cost. (HX), are quasi-one-dimensional models,
which consist of heavy and light atoms alternately. This system is the simplest and
illustrates the effectiveness of LUT. Au, are three-dimensional models of heavy element
aggregation, which are more complicated. Ir(ppy)s, PtClo(NH3)2, and PtCI>o(NH3): are test
molecules for actual three-dimensional calculations with various combinations of heavy
and light atoms. Ir(ppy)s provides the effect in one heavy atom and several light atoms.
Pt3(C7H7)2(HCN)3 gives the effect in three heavy and several light atoms. PtClo(NH3)2
consists of one heavy atom and several light atoms with the smaller size than Ir(ppy)s. Their
geometries are illustrated in Figure 4.2. The structures, except for (HX), and Au,, were
optimized by using the Hartree-Fock method, Stuttgart-Dresden pseudo potential* for Pt
and Ir, and 6-31G(d,p) basis sets>¢ for the other atoms. The restricted Hartree—Fock method
was adopted for the single-point energy calculations. Two categories of basis sets were used,
namely, segmented and general contractions, for the all-electron Gaussian-type functions
for elements of the first to sixth periods. The basis sets adopted for segmented contraction
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were the Sapporo(-DKH3)-XZP-2012 (X = D or T) basis set with/without diffuse
functions’™ and the Jorge-XZP-DKH (X = D or T) basis set.!® The basis sets for general
contraction were the ANO-DK3 basis set!! and the Dyall double- (dz) or triple-zeta (tz)

basis set.!?

To evaluate the multi-center TEIs, the default option in the GAMESS program
was adopted, which includes a combination of the rotated axis code, ERIC precursor

transfer equation code, and Rys quadrature.

(HX)o
X=CI: 1.350 A
X - X =Cl:2.150 A
\7\4— 7294 . X=At:3.1484
® J . N \ ° 2 3/ 9 ¢ 9
4 S - | 1200 4 -
& o o 9 o
Auyg Ir(ppy); Pty(C;H;),(HCN); PtCl,(NH;),
2
2.88372 A/ o 24 13:' @ 3
> 6’5‘4 N 5
2990 Q@ P
4 J &
g J}‘ Y ’ﬁ Y
4

Figure 4.2. Geometries of (HX)1o (X = Cl and At), Aujo, Ir(ppy)s, Ptz3(C7H7)2(HCN)s3, and

PtCIx(NH3),.
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4.3.2 Constructed database

This subsection describes the constructed database. Table 4.1 summarizes the required

disk space in megabytes (MB) for the one-center relativistic TEIs obtained using Eq. (2.4.4)

in Chapter 2 and several contracted basis sets. The value represents the sum of the disk

space for all the elements shown in the element column. The disk space depends on the

number of contracted basis functions. Thus, the disk space values for general contraction

are smaller than those for segmented contraction. The maxima are 3209.26 MB for Jorge-

TZP-DKH (segmented contraction) and 152.41 MB for Dyall dz (general contraction).

Therefore, most current computer resources can easily store the database.

Table 4.1. Required disk space (in MB) of one-center relativistic TEIs for five segmented

and three general-contracted basis sets.

Basis set Element Disk space [MB]
Segmented contraction
Sapporo(-DKH3)-DZP-2012 H-Rn 1051.99
Sapporo(-DKH3)-DZP-2012+diffuse H-Rn 2990.12
Sapporo(-DKH3)-TZP-2012 H-Ba, Hf-Rn 1759.80
Jorge-DZP-DKH H-Lr 920.71
Jorge-TZP-DKH H-Lr 3209.26
General contraction
ANO-DK3 H-Rn 53.77
Dyall dz K-Lr 152.41
Dyall tz K-Xe, Ba-Rn 56.17
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4.3.3 Efficiency

This subsection describes the system-size dependence of the CPU time required for the
transformation of the TEIs in the 1e2eLUT-IOTC calculations. Figure 4.3 illustrates the
results for (a) (HCl), (n=1, 2, ..., 50) and (b) (HAt), (n=1, 2, ..., 30). Here, the Sapporo(-
DKH3)-DZP-2012 basis set was employed. The results for the 1e2eLUT-IOTC
Hamiltonian based on the conventional and proposed database-assisted algorithms are
shown. For comparison, the results for 1e2elOTC without the LUT are also plotted. Here,
n is shown on the horizontal axis. The vertical axis represents the CPU time in seconds. For
(HCl),, the CPU time required for the 1e2eIOTC Hamiltonian scales as n*’. The scaling
is close to the theoretical scaling, which is O(NA>*Np®), because n is proportional to the
product of the number of atoms (Na) and the number of primitive functions (Np). For the
conventional 1e2eLUT-IOTC Hamiltonian, the CPU time scales as n*°°, which is almost
the same as the theoretical scaling, O(Na*Np®). Here, n is proportional to Na and constant
with respect to Np. The proposed 1e2eLUT-IOTC Hamiltonian scales as 0.00, which is also
the same as the theoretical scaling, O(Ne*Np°), because Ng and Np are constant with respect
to n. In large molecules, 1e2eLUT-IOTC requires significantly less CPU time than

1e2elOTC when both algorithms are used. Here, the acceleration ratio, racc, are defined as

rAcc = tConv /tProp > (431)

where fcony and fprop are the CPU times required for the conventional and proposed
1e2eLUT-IOTC Hamiltonians, respectively. The ratios are plotted in Figure 4.3. Here, tprop
includes the time required to construct the database in Step I. Thus, racc corresponds to n,
i.e., naL, as defined in Sec. 4.2. In the actual calculations, the CPU time required for the
transformation of the TEIs using the proposed algorithm becomes zero because Step I is
not needed.

The results for (HAt), are similar to those for (HCl),, although the prefactor is larger.
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Note that the calculations of (HAt), and larger using 1e2elOTC were difficult in the current
computing environment.

Figure 4.4 presents the system-size dependence of the acceleration ratio, racc, [Eq.
(4.3.1)] for the total CPU time required for the HF calculations of one-dimensional (HAt),
and three-dimensional Au,. Note that 7acc does not correspond to na" because tcony and prop
include the computational times required for all steps. For small and medium-sized
molecules, the acceleration ratio is large and decreases monotonically because the
transformations of the TEIs are dominant. By contrast, for large molecules, the calculation
of the TEIs or SCF is dominant because the transformation of the TEIs exhibits linear
scaling. The slope of racc for (HAt), is different from that for Au, because the number of
nonzero multi-center TEIs for (HAt), increases slowly owing to screening by the Schwarz
inequality.

Figure 4.5 shows the memory size in MB required to save the one-center TEIs using
the conventional and proposed 1e2eLUT-IOTC Hamiltonians for Au,. For the conventional
algorithm, the scaling is O(n'%°) because the one-center TEISs for each atom are stored. Thus,
the memory size required for large systems containing hundreds of heavy atoms becomes
very large. For the proposed database-assisted algorithm, the scaling is O(n%%) because the
TEIs for an atom are stored once for each basis set. The required memory size is
approximately 10 MB. Thus, even for large molecules, the in-core method, which stores
the TEIs in memory, can be adopted to reduce the number of times the disk is loaded during

the SCF procedure.
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Figure 4.3. System-size dependence of the CPU time (in s) for transformation of TEIs in
(a) (HCI), and (b) (HAt), calculated using the 1e2eIOTC and 1e2eLUT-IOTC Hamiltonians
based on the conventional and proposed database-assisted algorithms. Acceleration ratio

race 18 also plotted.
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Figure 4.5. Memory size (in MB) required to save one-center TEIs in the 1e2eLUT-IOTC

Hamiltonian using the conventional and proposed database-assisted algorithms for Au,,.
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4.3.4 Application to metal complexes

This subsection details the computational time required for Ir(ppy); and
Pt3(C7H7)2(HCN)3; molecules. Table 4.2 summarizes the CPU time (in seconds) of the four
steps in the HF calculations: the one-electron integral (OEI) and the initial guess calculated
using the extended Hiickel method in a minimal basis sets used in a default option of
GAMESS, TEI, and SCF procedure. The total CPU time is also shown. The OEI and TEI
include the calculations and transformations of the integrals. The nonrelativistic
Hamiltonian and the conventional and proposed 1e2eLUT-IOTC Hamiltonians were used.
The wall-clock time is shown in parentheses, and the bottom row shows the number of SCF
cycles. For all the methods, the times required for the TEI and SCF procedures are the
bottlenecks in the entire calculation. In the nonrelativistic Hamiltonian, the times required
for the OEI and TEI are less than those in the conventional 1e2eLUT-IOTC Hamiltonian
for both molecules because the transformations are also performed in 1e2eLUT-IOTC. The
time required for the SCF calculation for Ir(ppy)s is more than that in 1e2eLUT-IOTC
because the nonrelativistic Hamiltonian requires more SCF cycles. The proposed 1e2eLUT-
IOTC Hamiltonian differs from the conventional one only in the TEI step. The CPU times
required for the TEI for Ir(ppy); and Pt3(C7H7)2(HCN); are reduced from 1492.73 and
2095.54 s for the conventional 1e2eLUT-IOTC Hamiltonian to 1175.37 and 1160.93 s for
the proposed one, respectively. The acceleration ratio, racc, for the entire calculation is 1.09
for Ir(ppy)3 and 1.25 for Pt3(C7H7)2(HCN)s. These results are quantitatively consistent with
the theoretical estimates in Sec. 4.2 because the na* values for heavy elements are one and

three Ir(ppy)s and Pt3(C7H7)2(HCN)3, respectively.
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4.3.5 Basis set dependence of computational cost

This subsection explains the basis-set dependence of the total CPU time at the HF level for
PtCl2(NHz3),. Table 4.3 summarizes the numbers of PBFs and AOs for Pt and the other
elements, the total CPU time, and the acceleration ratio. The adopted basis sets are the same
as those in Table 4.1. For the Dyall dz and tz basis sets, the ANO-DK3 basis set was used
for light elements such as H, N, and CI. The results for the conventional and proposed
database-assisted 1e2eLUT-IOTC Hamiltonians are shown. As reported in the previous
subsection, the time-consuming steps are the calculations and transformations of the TEIs
and the SCF procedure. The times required for the calculations of the multi-center TEIs
and the SCF procedure depend primarily on the number of AOs in an entire molecule. By
contrast, the time required for the transformations of the one-center TEIs depends on the
number of PBFs in heavy elements. Thus, in segmented contraction, the total time for the
proposed 1e2eLUT-IOTC Hamiltonian is related to the number of AOs for all elements.
However, the difference between the conventional and proposed 1e2eLUT-IOTC
Hamiltonians is related to the number of AOs for Pt. The acceleration ratio, racc, [Eq.
(4.3.1)] is large; the maximum and minimum values are 9.07 for Sapporo(-DKH3)-DZP-
2012 and 1.97 for Jorge-TZP-DKH, respectively. The general contracted basis sets require
a longer total CPU time than the segmented contracted basis sets because the algorithm for
multi-center TEIs was not optimized for general contraction. The other trends are the same

as those of the segmented contracted basis sets.
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Table 4.3. Basis-set dependence of the CPU time (in s) for HF calculations in the 1e2eLUT-
IOTC Hamiltonian for PtCl,(NH3), using the conventional (Conv.) and proposed database-
assisted (Prop.) algorithms. The numbers of PBFs and AOs for Pt and the other elements

and the acceleration ratio, racc, are also tabulated.

# of PBFs # of AOs Total time [s]
Pt  Other Pt  Other Conv. Prop.

FAcc

Segmented contraction
Sapporo(-DKH3)-
DZP-2012
Sapporo(-DKH3)-
DZP-2012+diffuse
Sapporo(-DKH3)-
TZP-2012
Jorge-DZP-DKH 170 192 73 112 54.00 12.05 4.48

Jorge-TZP-DKH 198 332 99 252 219.59 111.24 1.97

General contraction

262 288 76 126 282.25 31.11 9.07

282 352 96 190 51952 114.80 4.53

305 528 115 308 1038.44  316.15 3.28

ANO-DK3 286 206 46 34 412.14 136.53 3.02
Dyall dz 233 206 49 34 226.57 10441 2.17
Dyall tz 292 206 49 34 523.88 189.89 2.76

69



4.4 Conclusion

In this chapter, the author provided an efficient scheme for the LUT method using an
element loop and a one-center relativistic TEI database. The basic idea of the present
scheme was originated from the fact that the relativistic effect in the one-center TEIs, which
is dominant in all the TEIs, depends only on a combination of an element and a basis set.
The author implemented the scheme for the 1e2eIOTC Hamiltonian with a spin-free
formalism.

The previous LUT scheme using an atomic loop reduced the computational scale from
O(NA’*Np°) to O(Na*Np®) theoretically, where Na and Np were the number of atoms and
that of primitive basis functions per atom (or element), respectively. On the contrary, the
present LUT scheme using an element loop achieved the computational scale from
O(Ng*Np’), where N was the number of elements. Namely, the previous and present
schemes correspond to the linear- and zero-scalings with respect to the system size,
respectively. It should be noticed that the data-base assisted algorithm can be accomplished
by using the element-loop scheme.

The efficiency of the present database-assisted algorithm was numerically assessed for
hydrogen halide chains, (HX), (X = Cl and At), Au,, Ir(ppy)s, Pt3(C7H7)2(HCN)3, and
PtCl2(NH3)2. The computational time and required memory size for the proposed algorithm

were confirmed to be smaller than those for the previous algorithm.
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Chapter 5 RS-DFT with IOTC Hamiltonian*

5.1 Introduction

The KS-DFT! is one of the most popular methods for performing quantum chemical
calculations because it ensures optimum balance between accuracy and computational costs.
RS-DFT,? which separates two-electron interactions into long- and short-range parts, is an
extension of the KS-DFT. The RS-DFT utilizes the wave function theory to improve the
KS-DFT from the perspective of a strong-correlation system®* and weak intermolecular
interactions.>® The LC-DFT,”2* which incorporates long-range interactions by introducing
range separation to exchange functionals, is also commonly used. The LC-DFT provides
more adequate descriptions of the vdW interaction,? excitation spectra,’ optical response
properties,”® and orbital energies.?’

For the calculations of heavy element systems, the range-separation method was
extended to the framework of the 4c relativistic theory, which is the fundamental approach
to describe relativistic effects in quantum chemistry.?®! In terms of 2c theory, the one-

3233 and normalized elimination of the small component®*

electron regular approximation
Hamiltonians were extended to the range-separation method by combination with the LC-
DFT.

In this chapter, the range separation method is introduced to the IOTC Hamiltonian in
the framework of the LC-DFT by implementing range-separated terms of two-electron
operators resulting from their IOTC transformation. The LUT scheme is also applied. The

remainder of this chapter is organized as follows. In Section 5.2, the author explains the

theoretical aspects of range separation of TEIs in the two-electron IOTC Hamiltonian and

I Reprinted with permission from the article by Chinami Takashima and Hiromi Nakai,
https://doi.org/10.1021/acs.jctc.3¢01102. Copyright 2024 American Chemical Society.
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LUT scheme. Section 5.3 presents the computational details of this chapter. Section 5.4
presents the numerical assessment of the present method, followed by Section 5.5, which

delineates the conclusion of this chapter.

5.2 Theory and implementation
5.2.1 LC-DFT based on the IOTC Hamiltonian

This subsection explains the derivation of the energy expression of LC-DFT by using

the IOTC Hamiltonian. The derivation is started with the 4c Hamiltonian. The LC method
treats long-range exchange interaction Ey as HFx integrals.” The two-electron operator is

separated into the short-range and long-range terms as

G, =G, +G,", (5.2.1)
where the short-range term G, adopts the complementary error function

1—erf (ur,
G, (i,))= le (5.2.2)

i
and the long-range term G;" employs the error function

f(
G, (i, 7) =Ml4. (5.2.3)

V.
y
Here, u 1s a range-separation parameter that determines the ratio of short- and long-range

terms. Using G.", Ey is calculated as

B =I5 [andew; (1) (2)65 (L2, ()i (). 524

i=1 j=l

Short-range HFx integral E5 used in LC-DFT, such as «B97X series,'®!” LC-wPBE,"

CAM,'? and orbital-specific hybrid functional®* is also calculated with respect to G;*" in

the same manner as in Eq. (5.2.4).
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To adopt a two-electron IOTC Hamiltonian for a range-separated operator, unitary

transformations in Eq. (2.3.14) are performed on G;* and G;". Here, replacing 1/r; in
Eqs. (2.3.18)-(2.3.20) by (1-erf (ur)) /1, and erf (ur,)/r, vields the short- and long-

range parts of g5 , respectively. The explicit expressions for range separation of g3 are as

follows:

& (i) = 8 (1.)) + 85" (i)

sfl,Ir sf2,sr sf3,sr sf3,1r

_g;flsr(l ])+g2 (l ])+g2 (l ])+g;f2h(l ])+g2 (l ])+g2 (l,j),

(5.2.5)
where
1—erf( ur,
g;fl sr( ]):Ml ][ r( ])lz:leMi’ (526)
i
f( ur,
g;fllr( ]) MMj[er Eﬂﬂl;])llejMi’ (5.2.7)
i
1—erf | ur;
&> (i,j) = P(i J)[dM{P,#lz'PlMﬂl]’ (5.2.8)
ij
f
£ 1) Pl »[m[p,wl p,}wd} (529)
i
1—erf( ur,
g (inj)=dd, {n{p,#lz-n}n‘fli (5:2.10)
i
and
erf ( ur;
gi““( )=didj{1’,£1’j (r j)lz'pj]'Pszjdi' (3.2.11)
i

Ey and EY are calculated as using Eqs. (5.2.12) and (5.2.13), respectively.

Ef = ——ZZ”dr dr,p’ (1)@ (1) g™ (12)e, (r) e (r,) (5.2.12)

1111
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B =133 [[dndng; (1)g (r) e (120, ()a(r) G213

i=1 j=1

As described in Chapter 2, LUT scheme for two-electron Hamiltonian only treats one-
center, i.e., atomic-center TEIs by the relativistic operator and the others are calculated as

nonrelativistic TEIs. Similarly, the TEIs of the range-separated two-electron operator

sflr sf,sr

consist of one-center TEIs of g, or g, and multicenter TEIs of nonrelativistic operators

erf(,urlz)/rlz or (l_erf(/”’?z))/rlz -

5.2.2  TElIs of range-separated two-electron operators in IOTC Hamiltonian
This subsection describes the implementation of the range-separated two-electron

1.35

terms in the IOTC Hamiltonian. The evaluation method reported by Seino et al.”> was

extended. Based on the expansion of ¢; by {y.} (Eq. (2.3.30) in Chapter2), the AO-based

TEIs with respect to g5 (x =1, 2, and 3),

sfx,Ir

8>

(2|8 2200 ) = [ [ dndr,z, (6) 20 (1) €57 (1,2) 2, (1) 2, (x,). (5.2.14)

sfx,Ir

are calculated to obtain E)lz . The matrix representations of the TEIs for g;"" are

(28" | 2ax)
=2 (2 1Mk, ) 2, | MLy ) (ke ey enf (pary ) [y W[k )k M) 2, ) (e |M 2, )
(5.2.15)
(zuz, |8 | 2:25)
=2, (2, |k, ) 2 1ML Ky )k e |y et () [y 1y oy )k, )y | M 2, ),
(5.2.16)
and
(2|8 227
= 2 () () (o [yt (aro) i o ] k) ) (s ) 2 )

(5.2.17)
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Consequently, the TEIs that require explicit calculations are those that appear in Egs.

(5.2.15)-(5.2.17):

<kakb |erf(,ur12 )/”12 1, kckd>

(k,k, | pyerf (un,)/n,1, - plk.k,)

<kakb ‘pl I:pz erf(lurlz )/”12 1,- pz] "D kckd> .
The first integral can be evaluated using the same algorithm as that required for the ERIs

in a nonrelativistic framework. Considering p, =—1V,, the second and third TEIs are
written as

<kakb |P1 erf(/”’lz )/”12 1,-p, kckd> = <vr1kakb |erf(,ur12 )/”12 12|vr1 kckd>

(5.2.18)

and

ke, )=V, kY, K lerf (ury)/ry LV, KV, K, )

<kakb ‘pl I:pz erf(:urlz )/”12 1, 'pz:l "D n e
(5.2.19)

When Gaussian-type functions are adopted as {k}, Vn k, is represented by Gaussian-type

functions that have different angular momenta from those of k.. Thus, the TEIs on the right-

hand side of Egs. (5.2.18) and (5.2.19) can be calculated using a similar algorithm as that

used for (k,k, |erf (ur,)/n,1,

k).

Although the author reports the long-range part in the spin-free framework in this

chapter, this method can be extended in a straightforward manner. Short-range HFx
integrals E5 are obtained by the same procedure using operator g5~ (x =1, 2, and 3). In

the case of double-hybrid functionals,*® TEIs in the perturbative second-order correlation
part should be calculated using the operators in Egs. (2.3.18)—(2.3.20). Similar formulae
are applicable to spin-dependent component of long-range and short-range terms
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(summarized in Appendix of this chapter). Spin-dependent calculations require variables
such as the OEls, TEIs, orbital coefficients, and Fock matrices to be treated in complex
numbers. Although the program becomes considerably different from that in the
nonrelativistic case, spin-dependent terms can be implemented using program packages

like RAQET,*” which support complex variables.

5.3 Numerical assessments
5.3.1 Computational details

This subsection explains the calculation conditions of the numerical assessments. The
one-electron spin-free IOTC (two-electron nonrelativistic, denoted as 1eIOTC), one- and
two-electron spin-free IOTC Hamiltonian (1e2elOTC), and the LUT scheme for these
(LUT-IOTC) were adopted. 1e2elOTC indicates that the unitary transformation was

applied to both full-range and range-separated two-electron operators, i.e., 1/r; and

erf ( ur; ) / 1; , respectively. The spin-free (LUT-)IOTC transformation of density operator,

0%t for the IOTC Hamiltonian and 6"V for the LUT-IOTC Hamiltonian was also considered.
The cutoff distance 7 for the one-electron LUT was set to 3.5 A. Nonrelativistic, IOTC, and
LUT-IOTC calculations were performed using the modified version of the GAMESS
program.®® As the 4c DFT, the spin-free Dirac-Coulomb (SFDC) calculations were
performed using the DIRAC program.*® All the CPU times were measured based on a single
core of AMD EPYC™ E7763 (2.45 GHz, 64 cores).

Numerical experiments were conducted on noble gas atoms, namely, He, Ne, Ar, Kr,
Xe, and Rn; their dimers (Hez, Nez, Arz, Kr2, Xez, and Rn2); hydrogen halides (HX; X=F,
Cl, Br, I, and At); and bond cleavage reactions involving Pb and Ge complexes that are a
part of the HEAVYSB11%° benchmark set. In case of hydrogen halides, experimental bond

lengths*' with values of 0.9168, 1.2746, 1.4144, and 1.6092 A were utilized for HF, HCI,
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HBr, and HI molecules, respectively. An HAt bond length of 1.718 A, as per the optimized
value reported by Gomes and Visscher,* was used in the calculations. Additionally, one-
dimensional HX chains, denoted as (HX), (where X = F or At), were also subjected to
analysis. For (HF),, the intramolecular and intermolecular distances were fixed at 0.970
and 1.530 A, respectively. Conversely, for (HAt),, the corresponding distances were
established as 1.729 and 3.148 A, respectively. In both cases, the H-X—H and X—-H—X bond
angles were maintained at 120° and 180°, respectively. Potential energy curves were
computed for noble gas dimers. To account for basis set superposition errors, the
counterpoise method*’ was employed. Moreover, dispersion contributions were factored in
utilizing the LRD method.** Equilibrium bond lengths R. and dissociation energies D. were
extracted from a Morse potential fit based on equidistant points with a step length of 0.01
A, both backward and forward along the bond distance, encompassing 10 points in total.
The resulting Morse potential curve enabled the determination of the lowest energy.

The Becke’s exchange (B88)* in conjunction with the Lee—Yang—Parr correlation*®
(BLYP), B88 exchange paired with one-parameter progressive correlation*’ (BOP), and
Becke-3—parameter-Lee—Yang—Parr (B3LYP)*® functionals were employed as the
exchange-correlation functionals. Additionally, LC-BLYP (= 0.189,'* 0.33,° and 0.47"%),
LC-BOP’ (u = 0.47), and CAM-B3LYP' functionals were utilized as range-separated
functionals. The basis sets used in this study were Sapporo-DZP-2012+d for the first to
third row elements***® and Sapporo-DKH3-DZP-2012+d for the fourth and fifth row
elements.’®>! These basis sets were applied in a contracted form for the computations
concerning (HAt), and in an uncontracted form for all other calculations. For the analysis

of bond cleavage reactions, the basis sets used did not include diffuse functions.

5.3.2 Deviation from 4c¢ Hamiltonian

This subsection discusses the accuracy of the range separation method in the context
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of the 1e2elOTC Hamiltonian, with a focus on deviations from the SFDC values. Table 5.1
presents the total energy deviations (in hartree) for noble gas atoms, as determined by
nonrelativistic and IOTC Hamiltonians, using the BLYP, LC-BLYP, B3LYP, and CAM-
B3LYP functionals. The reference SFDC values are provided in parentheses. The energy
deviation observed in LC-DFT are of the same order as those observed in the corresponding
functionals without the LC method. The nonrelativistic Hamiltonian yields large errors
across all functionals and elements. By contrast, the 1eIOTC Hamiltonian considerably
reduces these errors, although they remain relatively pronounced for heavier elements. The
results obtained using both 1e2eIOTC Hamiltonians with ¢°" exhibit strong agreement with
the reference SFDC values. Notably, errors in the 1elOTC Hamiltonian are smaller than
those of the 1eIOTC Hamiltonian with &°T. This discrepancy arises from the error
cancellation effect stemming from the negative values in 1e2elOTC Hamiltonians. The
comprehensive IOTC transformation of both one- and two-electron operators and the
density operator is essential in LC-DFT calculations. Furthermore, the energy deviations
from SFDC values exhibit minimal dependence on the choice of basis sets, as illustrated in
Tables 5.2-5.4.

Table 5.5 presents the orbital energy deviations for the Rn atom (in hartree), as
determined by nonrelativistic and IOTC Hamiltonians employing the BLYP and LC-BLYP
functionals. The reference SFDC values are indicated in parentheses. These deviations
exhibit a consistent trend with the total energy deviations. The nonrelativistic Hamiltonian
yields large errors, while the holistic IOTC transformation of one- and two-electron as well
as density operators effectively reproduces the SFDC results. Errors in individual orbitals
primarily depend on relativistic treatments and exhibit quasi-independence from the choice
of the range-separate parameter. A common pattern observed in both nonrelativistic and
IOTC Hamiltonians is that s and p orbitals tend to exhibit larger errors compared to d and

f orbitals, suggesting that inner-shell orbitals are more significantly influenced by
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relativistic effects than their outer-shell counterparts. Additionally, the nonrelativistic
Hamiltonian overestimates orbital energies of s and p orbitals while underestimating those
of d and f orbitals, compared to the SFDC energies. This behavior aligns with the shrinkage

of inner-shell orbitals and expansion of outer-shell orbitals.
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Table 5.5. Orbital energy deviation (in hartree) of Rn atom obtained by nonrelativistic

(Nonrel.) and IOTC Hamiltonians from 4c Hamiltonian using BLYP and LC-BLYP (u =

0.189, 0.33, and 0.47) functionals. The reference SFDC value are shown in parentheses.

Nonrel.  1elOTC lfi/ogsfc 1e2eI0TC 1e3ve/1(soszc (SFDC)
BLYP
s 4123708 9.0938 132110  —4.1629 ~0.0074 (~3619.4264)
25 111.6033 1.2138 1.7872  —0.5800 ~0.0019  (—658.4915)
2p  33.6494 0.8523 0.8186 0.0326 —0.0014  (—561.3627)
35 28.0375 0.2470 03797  —0.1342 ~0.0005  (~161.4652)
3p 9.6960 0.1702 0.1621 0.0078 ~0.0004  (—133.8916)
3d  —0.9692 0.0640 0.0586 0.0053 ~0.0001  (—105.9791)
4s 7.2136 0.0552 0.0902  —0.0354 —0.0002  (~38.4741)
4p 2.2729 0.0340 0.0319 0.0020 ~0.0001  (~29.3946)
4d  —0.4289 0.0061 0.0047 0.0014 0.0000  (~19.0154)
4f  -1.0054  —0.0069  —0.0079 0.0011 0.0000 (~7.9255)
Ss 1.4953 0.0097 0.0175  —0.0079 ~0.0001 (~7.3784)
5p 0.3119 0.0044 0.0038 0.0006 0.0000 (—4.7112)
5d  —02171  —0.0012  —0.0015 0.0004 0.0000 (~1.6816)
6s 0.1812 0.0009 0.0021  —0.0012 0.0000 (~0.7935)
6p  —0.0023 0.0001 0.0000 0.0001 0.0000 (—0.2782)
LC-BLYP (1 = 0.189)
s 412.3694 9.0944 132109  —4.1622 ~0.0074 (~3619.5226)
25 111.6020 1.2140 1.7872  —0.5798 ~0.0019  (—658.5969)
2p  33.6485 0.8524 0.8186 0.0326 ~0.0014  (~561.4687)
35 28.0358 0.2471 03797  —0.1341 ~0.0005  (—161.5724)
3p 9.6949 0.1702 0.1621 0.0078 ~0.0004  (—133.9994)
3d  —0.9701 0.0640 0.0586 0.0053 ~0.0001  (—106.0871)
4s 7.2124 0.0552 0.0902  —0.0353 ~0.0002  (~38.5805)
4p 2.2718 0.0340 0.0319 0.0020 ~0.0001  (—29.5013)
4d  —0.4300 0.0061 0.0047 0.0014 0.0000  (~19.1228)
4f  -1.0064  —0.0069  —0.0079 0.0011 0.0000 (-8.0332)
Ss 1.4952 0.0097 0.0175  —0.0079 ~0.0001 (~7.4871)
5p 0.3113 0.0044 0.0038 0.0006 0.0000 (—4.8192)
54 —02181  —0.0012  —0.0015 0.0004 0.0000 (~1.7863)
6s 0.1801 0.0009 0.0021  —0.0012 0.0000 (—0.9039)
6p  —0.0029 0.0001 0.0000 0.0001 0.0000 (-0.3725)
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Table 5.5. Continued.

1elOTC 1e2elOTC

Nonrel. 1eIOTC wi o 1e2el0TC w/ o (SFDC)
LC-BLYP (u = 0.33)
ls  412.3679 9.0948 13.2108 —4.1617 —0.0074 (—3619.5890)
2s  111.6004 1.2141 1.7872 —-0.5797 —0.0019  (—658.6704)
2p 33.6472 0.8523 0.8185 0.0326 —0.0014  (—561.5426)
3s 28.0340 0.2471 0.3797 —0.1340 —0.0005 (—161.6476)
3p 9.6935 0.1702 0.1621 0.0078 —0.0004  (—134.0748)
3d -0.9713 0.0640 0.0586 0.0053 —0.0001  (—106.1626)
4s 7.2110 0.0553 0.0902 —0.0353 —0.0002 (—38.6554)
4p 2.2704 0.0340 0.0319 0.0020 —0.0001 (—29.5763)
4d -0.4312 0.0061 0.0047 0.0014 0.0000 (—19.1982)
4  —1.0078 —-0.0069 —-0.0079 0.0011 0.0000 (-8.1073)
Ss 1.4945 0.0097 0.0175 —0.0079 —0.0001 (—=7.5654)
5p 0.3099 0.0044 0.0038 0.0006 0.0000 (—4.8964)
5d -0.2197 —0.0012 —0.0016 0.0004 0.0000 (—1.8506)
6s 0.1809 0.0009 0.0021 —-0.0012 0.0000 (—-0.9763)
6p —-0.0034 0.0001 0.0000 0.0001 0.0000 (-0.4114)
LC-BLYP (4 = 0.47)
ls  412.3664 9.0952 13.2107 —4.1612 —0.0074 (—3619.6533)
2s  111.5988 1.2142 1.7871 —0.5795 —0.0019  (—658.7416)
2p 33.6460 0.8523 0.8185 0.0326 —0.0014  (-561.6142)
3s 28.0323 0.2472 0.3797 —0.1340 —0.0005  (—161.7207)
3p 9.6922 0.1702 0.1621 0.0078 —0.0004  (—134.1482)
3d -0.9724 0.0639 0.0585 0.0053 —0.0001  (—106.2359)
4s 7.2097 0.0553 0.0902 —0.0353 —0.0002 (—38.7289)
4p 2.2691 0.0340 0.0319 0.0020 —0.0001 (—29.6500)
4d —0.4324 0.0061 0.0046 0.0014 0.0000 (—19.2717)
4  —1.0092 —0.0069 —0.0079 0.0011 0.0000 (—8.1773)
S5s 1.4938 0.0097 0.0175 —0.0079 —0.0001 (—7.6437)
5p 0.3085 0.0044 0.0038 0.0007 0.0000 (—4.9715)
5d -0.2217 —0.0012 —0.0016 0.0004 0.0000 (—1.9014)
6s 0.1851 0.0010 0.0021 —0.0012 0.0000 (—1.0283)
6p —0.0029 0.0001 0.0000 0.0001 0.0000 (—0.4325)
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5.3.3 Accuracy of LUT

This subsection provides insight into the accuracy of the LUT scheme within the range
separation method for the two-electron term. Table 5.6 presents the total energies of HX
molecules (in hartree) obtained using various approaches: 1e2eLUT-IOTC Hamiltonian
with 6"YT, 1e2eIOTC Hamiltonian with *, and the SFDC Hamiltonian. BLYP, LC-BLYP,
B3LYP, and CAM-B3LYP functionals were employed for calculations. A'YT represents the
energy deviations of LUT-IOTC from IOTC, i.e., the difference between 1e2eLUT-IOTC
Hamiltonian with 6T and 1e2eIOTC Hamiltonian with ¢°". ASFPC represents the energy
deviations of 1e2elOTC Hamiltonian with ¢°' from the SFDC Hamiltonian. Notably, both
ASFPC and AMWT exhibit minimal dependence on the range-separation parameter. The

AT are approximately on the order of 10~ hartree, which is remarkably

absolute values of
small, particularly for heavier-element systems. In comparison to ASTPC, these deviations
are one-tenth in HBr, one hundredth in HI, and one-thousandth in HAt. These findings
affirm that the LUT scheme serves as a reliable approximation to the 4c theory.

Table 5.7 provides the total energies in (HF), and (HAt), molecules (in hartree), which
were computed using 1e2eLUT-IOTC Hamiltonians with 6"V, as well as 1e2elOTC
Hamiltonians with ¢, BLYP and LC-BLYP functionals with x = 0.33 were employed as
exchange-correlation functionals. Although A'UT increases as n becomes larger, AMVT
remains less than 1 millihartree per unit. Thus, the accuracy of the LUT scheme within LC-
DFT remains acceptable even for large-scale molecules. In terms of differences between
the two functionals, A'UT for LC-BLYP is slightly smaller than that for BLYP, except for

cases where n = 1. This observation suggests that the effects of LUT in the long-range

region are comparatively smaller for two-electron interactions than for the electron density.
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Efficiency of LUT

This subsection demonstrates the computational costs of the two-electron term based
on the IOTC and LUT-IOTC Hamiltonians. Figure 5.1 shows the system-size dependence
of the CPU time for the calculation of TEIs required for the range-separated two-electron
operators in the context of IOTC, LUT-IOTC, and nonrelativistic Hamiltonians,
particularly in the calculations of (HF), and (HAt),. The results for LUT-IOTC include the
CPU time required for evaluating multicenter nonrelativistic TEIs as well as primitive TEIs,
as described in Egs. (5.2.15)—(5.2.17) for individual atoms. In the calculations of (HF),, the
CPU times of IOTC, LUT-IOTC, and nonrelativistic Hamiltonians scale as n>°2, n*#°, and
n*', respectively. Computational costs of IOTC and nonrelativistic Hamiltonians exhibit
similar scaling tendencies, which are proportional to approximately the cube of the system
size. The LUT scheme slightly reduces the scaling of computational costs. In the
calculations of (HAt),, the CPU times for IOTC, LUT-IOTC, and nonrelativistic

Hamiltonians scale as n*!7, n'!4, and n*"°

, respectively. The computational costs for IOTC
and nonrelativistic Hamiltonians resemble those observed in (HF), calculations, displaying
a similar scaling trend. However, the computational costs for LUT-IOTC exhibit nearly
linear scaling, in contrast to the (HF), calculations. This variation arises from the fact that
in (HAt), calculations, the CPU time for one-center primitive TEIs plays a significantly
larger role in the total CPU time for TEIs, leading to increased CPU time proportional to
the number of atoms. In (HF), calculations, multicenter nonrelativistic TEIs dominate the
total CPU time for TEIs, thus aligning the order of computational costs for TEIs closely
with that of nonrelativistic TEIs. Detailed CPU times for TEIs are provided in Table 5.8.
Figure 5.2 shows the system-size dependence of the CPU time for unitary
transformation of TEIs required for range-separated two-electron operators in the context

of IOTC and LUT-IOTC Hamiltonians, focusing on calculations involving (HF), and

(HAt),. For IOTC Hamiltonian calculations, the CPU times scale as n*% for (HF), and n*°°
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for (HAt),. The LUT scheme clearly reduces the computational costs, with scaling behavior
of n'% for (HF), and n'%* for (HAt),. The calculated scaling agrees well with theoretical
quintic- and linear-scaling for IOTC and LUT-IOTC Hamiltonians, respectively. Detailed
CPU times for TEIs are provided in Table 5.9.

As shown in Figures 5.3 and 5.4 and Tables 5.10 and 5.11, the CPU times required for
full-range two-electron operators, 1/r; and g;f , are close to those of range-separated two-

electron operators. The total computational cost for the two-electron term in the LC-DFT

calculations is approximately twice that for the functional without the LC method.
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Table 5.11. CPU time (in s) for the unitary transformation TEIs of the full-range two-

electron operator calculated by LUT-IOTC and IOTC Hamiltonians. The results are

presented separately by term g;fx (x=1-3).

molecule 1 LUT-IOTC 10TC
sfl sf2 sf3 sfl sf2 sf3
HF
1 0.12 0.12 0.11 0.53 0.58 0.52
2 0.24 0.25 0.24 12.65 12.93 12.79
3 0.34 0.36 0.34 89.22 81.46 92.02
4 0.47 0.49 0.46 303.19 286.97 317.21
5 0.58 0.60 0.57 867.29 883.90 898.09
6 0.71 0.73 0.70 1898.64 1920.19 1938.61
7 0.80 0.84 0.80 4018.05 4135.23 4075.00
8 0.93 0.97 0.93 7227.65 7539.66 7386.39
9 1.04 1.09 1.03 13244.48 13895.36 13568.41
10 1.17 1.22 1.16 2335453 25040.81 25318.40
15 1.73 1.80 1.71
20 2.35 2.45 2.35
25 2.88 3.03 2.86
30 3.51 3.65 3.49
35 4.01 4.20 4.01
40 4.68 4.86 4.63
45 5.11 5.38 5.09
50 5.86 6.10 5.84
HAt
1 58.43 67.32 66.14 103.01 123.25 120.30
2 113.19 133.58 124.96 2052.96 2859.13 2529.41
3 17435 20096 195.23 18472.33  29557.57  23447.03
4 232.68 267.61 258.11 75608.24 105996.79 102044.38
5 292.88 33590 324.17
6 356.77 411.61  398.80
7 422.62 49142  469.02
8 467.07 556.59 517.96
9 55698 64993  623.84
10 590.22  697.34  653.76
15 870.85 1053.22 966.21
20 1207.20 1422.19 1345.41
25 1525.12 1755.10 1698.63
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5.3.4 Application to noble gas dimers

In this subsection, the proposed method is applied to noble gas dimers, which are
typical examples of vdW interactions. Figure 5.5 shows the potential energy curves for the
Rn dimer, calculated using the BOP, LC-BOP, and LC-BOP+LRD methods based on
1e2eLUT-IOTC Hamiltonian with 6"UT. BOP calculations yield an unbound potential,
which is not suitable for representing vdW interactions. The LC method improves the
potential curve, particularly around the equilibrium point, although it still remains unbound.
By contrast, the potential obtained with LC-BOP+LRD is strongly bound and exhibits a
clear equilibrium point. Furthermore, Figure 5.5 includes LC-BOP+LRD calculations
based on the nonrelativistic Hamiltonian for comparison. When comparing nonrelativistic
and LUT-IOTC calculations, the bottom of the potential is shifted towards smaller bond
lengths due to the influence of relativistic effects. Additionally, potential energy curves for
He;, Nes, Ar, Kra, and Xe», calculated using the nonrelativistic and LUT-IOTC
Hamiltonian with LC-BOP+LRD are depicted in Figure 5.6. These curves also exhibit
strong binding and equilibrium points.

Table 5.12 presents equilibrium bond lengths R (in A) and dissociation energies De (in
kcal/mol) calculated using the LC-BOP+LRD method based on the nonrelativistic
Hamiltonian, as well as the 1e2eLUT-IOTC Hamiltonian with 6"YT. As reference values,
experimental results for He,, Nez, Ara, Kr, and Xes,>? as well as twice the vdW radius of
Rny,> are also tabulated. Using LUT-IOTC, shorter R. values are obtained than those
obtained through nonrelativistic calculations. The deviations (A™) in bond length between
LUT-IOTC and nonrelativistic calculations become more pronounced in higher-row
elements. Accounting for relativistic effects through LUT-IOTC brings the calculated bond
lengths closer to the reference values, reflecting the relativistic shrinkage of the vdW radius.
De values obtained by nonrelativistic and LUT-IOTC Hamiltonians are similar. A™ of Xe»
and Rny in D. amount to only —0.005 [kcal/mol]. This suggests that relativistic effects on
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De were not observed in the present calculations.

1.0 i)
0sl + \\ BOP (LUT-IOTC)
: 'i 1';1 -0~ LC-BOP (LUT-IOTC)
0.6 1\5 -A- LC-BOP+LRD (Nonrel.)
0.4 A \u ~®- LC-BOP+LRD (LUT-IOTC)

Bond energy [kcal/mol]
o
)

6 7 8 9 10
Bond distance [A]

Figure 5.5. Potential energy curves of Rn dimer calculated by 1e2eLUT-IOTC Hamiltonian
with 6"YT. As a functional, BOP and LC-BOP (u = 0.47) with/without LRD method were

examined. Nonrelativistic calculation of LC-BOP+LRD is also shown.
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Figure 5.6. Potential energy curves of Hez, Ne2, Arz, Ko, and Xe; calculated using the
1€2eLUT-IOTC Hamiltonian with 6"UT and nonrelativistic Hamiltonian. LC-BOP+LRD

method was used.
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Table 5.12. Calculated equilibrium bond lengths Re (in A) and dissociation energies D (in
kcal/mol) of noble gas dimers by nonrelativistic Hamiltonian (nonrel.) and 1e2eLUT-IOTC
Hamiltonian with "7 (LUT-IOTC). LC-BOP (u = 0.47) with LRD method was used as a
functional. A™ represents the deviations of LUT-IOTC from non-relativistic results. As
references, experimental values of He,, Nez, Arz, Kz, and Xe2*? and twice of vdW radius

for Rn»> are also shown.

Re De
Nonrel. IL (EFTC- A Ref. Nonrel. IL S{FTC- A Ref.

He> 2.957 2.956 0.000 2.970 0.031 0.031 0.000 0.022
Ne» 3.137 3.137 —0.001 3.091 0.095 0.095 0.000 0.084
Ar 3.786 3.784 —0.002 3.757 0.364 0.364 0.000 0.285
Kr; 4.068 4.052 -0.016 4.008 0.483 0.484 0.001 0.400
Xez 4.455 4417 -0.039 4.363 0.678 0.673 —0.005 0.561
Rny 4.659 4533 —0.126 (4.40) 0.784  0.780 —0.005 -
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5.3.5 Application to dissociation energies in heavy-element compounds

Table 5.13 provides dissociation energies for bond cleavage in two reactions: GexHe
— 2 GeHs and Pbx(CH3) — 2 PbCHj;. These values were calculated using the
nonrelativistic method and the 1e2eLUT-IOTC Hamiltonian with 6*UT. The differences in
dissociation energies between the nonrelativistic and LUT-IOTC calculations are
approximately 1 kcal/mol for Ge:Hs — 2 GeHz and range from 7-10 kcal/mol for
Pb2(CHs): — 2 PbCHs. Relativistic effects reduce the dissociation energies in both
reactions. Because both nonrelativistic and LUT-IOTC calculations were performed on the
same structures, the covalency in the Pb-Pb and Ge-Ge bonds was weakened,
corresponding to the relativistic shrinkage of s and p orbitals in the bonding region. Notably,
relativistic effects are more pronounced in Pb compounds (sixth-row element) compared to
Ge compounds (fourth-row element). Additionally, when comparing LC functionals to their
non-LC counterparts, such as LC-BLYP to BLYP, or CAM-B3LYP to B3LYP, the use of
LC functionals increases the dissociation energy. This is important as long-range
interactions tend to stabilize binuclear molecules like Ge,Hs and Pb2(CH3).. This trend
aligns with the values included in the HEAVYSBI11 set, which become closer to the
reference values when LC functionals are employed.*® Furthermore, as shown in Table 5.14,
the changes in dissociation energy due to the LUT-IOTC transformation of two-electron or
density operators are less than 0.3 kcal/mol. This indicates that the treatment of one-

electron operator plays a dominant role in the relativistic effects on reaction energies.
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Table 5.13. Dissociation energies (in kcal/mol) of Ge and Pb compounds calculated by

nonrelativistic (nonrel.) and 1e2eLUT-IOTC Hamiltonian with ¢'VT (LUT-IOTC).

GexHg — 2 GeHs Pb>(CH3), — 2 PbCH3
Nonrel. LUT-IOTC Nonrel. LUT-I0TC
BLYP 65.2 64.4 44.5 37.5
LC-BLYP (u = 0.47) 72.7 71.6 60.0 50.5
B3LYP 66.9 66.1 48.4 40.9
CAM-B3LYP 69.0 68.1 53.1 44.5

Table 5.14. Dissociation energies (in kcal/mol) of Ge and Pb compounds calculated by

nonrelativistic, 1eLUT-IOTC, and 1e2eLUT-IOTC Hamiltonians with and without LUT-

IOTC transformation of density operator 6*UT.
LUT-IOTC
Nonrelativistic le le le2e le2e
with 6"UT with 6"UT
GexHg — 2 GeHs
BLYP 65.2 64.4 64.5 64.4 64.4
LC-BLYP (1 =0.47) 72.7 71.6 71.6 71.6 71.6
B3LYP 66.9 66.1 66.1 66.1 66.1
CAM-B3LYP 69.0 68.1 68.1 68.1 68.1
Pb2(CH3)2 — 2 PbCH;3
BLYP 44.5 37.5 37.6 37.4 37.5
LC-BLYP (u =0.47) 60.0 50.6 50.7 50.4 50.5
B3LYP 48.4 40.9 41.0 40.8 40.9
CAM-B3LYP 53.1 44.6 44.7 44.4 44.5
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5.4 Conclusion

This chapter developed a range separation method for the two-electron term based on
the spin-free IOTC Hamiltonian and conducted the numerical assessment using the LC-
DFT. Total energies and orbital energies of noble gas atoms demonstrated excellent
agreement with 4c¢ energies when employing the full IOTC transformation for one-electron
operator, full-range and range-separated two-electron operators, and density operator. The
LUT scheme was applied to range-separated terms of TEIs, one-electron integrals, full-
range TEls, and electron density in molecular calculations. Energy calculations for
hydrogen halide molecules showed that the errors associated with the LUT scheme were
sufficiently small compared to the errors introduced by the 2¢ transformation with the [OTC
Hamiltonian. The calculations of HF and HAt polymers were also examined using both
IOTC and LUT-IOTC Hamiltonians. The errors introduced by the LUT scheme were small,
particularly when the system size increased. The CPU times for the evaluation and unitary
transformation of TEIs were significantly reduced by the LUT scheme, resulting in linear
scaling in (HAt), calculations. The validity of the LUT scheme was confirmed for the range
separation method. The method was applied to the investigation of spectroscopic constants
for noble gas dimers. The equilibrium bond distances obtained by the LUT-IOTC
Hamiltonian were shorter than those obtained by nonrelativistic calculations, particularly
in heavier-element systems, indicating that vdW interactions are influenced by relativistic
effects. Calculation of bond cleavage energies revealed the importance of relativistic

treatment in reaction energies, particularly in heavy-element compounds.
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Appendix

A5.1 Spin-dependent term of range-separated two-electron IOTC Hamiltonian
This section provides the spin-dependent terms of the two-electron IOTC Hamiltonian.

Using Egs. (2.3.12) and (2.3.13), the spin-free and spin-dependent terms are separated. The

explicit expression of the electronic part of the two-electron IOTC Hamiltonian g,” is

divided into spin-free terms g;" and spin-dependent terms g3 (x = 1-3):

g (i) =g (i.))+ 8" (i.))+ 8" (0. ))

N Rl N s (A5.1)
+g3" (i, 7)+ &7 (i, /) + &% (i),
where
g (z',j) :P(i,j){diM/. \jai -p. llz xpiJM].diJ, (A5.2)
. r,-j _
. 1
g;dZ (i,j) = P(i,j){didj ijal '(Pi [Pj r_12 .pj]xpiJdediJ , (A5.3)
i
and

A3 (- ; ; 1
g (l,]) =-dd, lﬁ' '[l’i (o-f P r_12 ijpriJJ dd,. (AS5.4)

i
(See Egs. (2.3.18)-(2.3.20) in Subsection 2.3 for spin free terms.)

Range separation terms are obtained replacing /7, in Egs. (A5.2)-(A5.4) with

(1 —erf ( ur; )) / r; and erf ( ur; ) / r; as in the case of spin-free terms. Short- and long-range

parts of spin-dependent terms, g5 and g}"" (x =1, 2, and 3) are as follows:

) 1—erf "
g;dl,sr(i’j)P(l',j)£diMl l:io-’ -piMI2 XP,:IM,d,J,

i

(A5.5)
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. 1—erf( ur,
g;dZ,sr (l,]) — P(l,])[dld] |‘10- {pl [p] #12 -pj]xpiJdelea
ij

(A5.6)
&5 (i,j)=—dd, {a" -[p,. [aj P, Mg xp]}x pi]dedi,
i
(A5.7)
£ (0.) - P(i,j>[diM, { 5], xle,d,],
i
(A5.8)
g™ (i,7)=P(i, j)[d,dj {ia" [ . [ D, erf E,ﬂ r”)lz : ijx le‘d]dl],
i
(A5.9)
and
£ (1./) = dd, { [p [ yain ,,J,,]‘M
i
(A5.10)

Hereafter, the implementation of spin-dependent terms is briefly explained using the

long-range terms as examples. The matrix representations of spin-dependent terms are

(a8 2.2
= §k< 2l k) | M|k Kk, ‘iai pyext (ur) [r 1, % plkok, Yk, \d | 2, ) (ke |M| 2,
(AS.11)
(a0, |85 22
= 2 (bl o) tafio” (. (o, ort () 1o, ) ko Yk b )k )

(A5.12)

and
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sd3,Ir

(22| | 220

=2 <Zu | k,){z, |dj|kb ) (k K,

kukbk< k{l

-0 '(Pi (o-f P, erf(,ul;,. )/”,-j 1, xpj)xp,. )‘kckdxkc |d,-|l/1><kd |d/.|;(a>.

(A5.13)
The TEIs that require explicit calculations for the spin-dependent terms are those three

integrals:

ic' - p, erf(,ury. )/ry. 1, xp, kckd>

(.,

(st () e, e

(ki

- '(I’i (O.J' P erf(‘u}’;/.)/l’;j 1, xpj)xpi)‘kckd>.

(ko

Using the following equation,

id~A><B—[ j, (A5.14)

0 <A><B>yj () Goen)

-1
—(AxB)y 0, (AxB) —(AxB)
the first one is rewritten as
(kJe,[ia” - py erf () [ 1, % p |l e, )

0, <kakb (p,erf (pry) 1y 1, % p, )y‘kckd>

(Pi erf(/urij )/}/;'j L, xp, )y‘kckd> 0,
(p,erf (pr,) [ry 1, % p, )x‘kckd>

(pl. erf(yrij)/ry 1, xpl.)z kckd> ,

ka kb

—

(P[ erf(/’lrzj )/’”zj 1, x p, )Z‘kckd> <kakb

(pi erf(:urij )/72, 12 xD; )X‘kckd> _<kakb

(A5.15)
with

<kakb (pyerf (pary) 1,1, % p, )x‘kckd>

N Ok \_ [0k
oy oz oz

erf(/urzj )/Vij 1, aa_];ckd>’

exf (ur; ) 11,

(A5.16)
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<kk

(p erf(,ur )/r 1, ><p ‘kk>

< , |exf () aa’;c kd>—<aakz by |exf (ury) 11, ‘38’; kd>,
(A5.17)
and
<kak (perf (sar,) /1, 1, p, ‘kk>
=<aak K erf (uar, ) 1, 1, ‘2’; kd>—<%kb erf (ur,) /1,1, %kd>.
(A5.18)

The second integral is as follows:
io' -(p,- (p,A erf (ur, ) /1,1, -pj)xpi )‘kckﬁ

02 <kakb
_<kakb

<kakb

(”f (p,erf (ur, ) [r, 1, )% p, )y‘k"k">
(p,.(pjerf(,ur )/, 1, p/)xp) ‘kk> 0,
(2.(p, erf () /115, )% ‘kk> <kakb (pl(p/erf(,ury)/rlllz-p/)xpl)xkckd>J

(p(pyert () 1o, ) ) k) (ki (p,(p,erf(m,,)/,;,lz.,,_,)x,,,,)z\kckd>’

(A5.19)
with
<kak (pi(pjerf(,ur) rl,- pj xp k >
:<%kb (pjerf(,ur 11, pj > <66_ erf ,ur r 1,- pj) %’; kd>
ok ok,
<8y (V k, ) erf(,ur )> < erf ,ur /r 1, o (V k )>,
(A5.20)

122



ok
(5

( ( erf(,ur)/r lz-pj)xp[)‘kckd>

ok, ok
—k, )—(—%k
0z d> <82 ’

ok, kd>

erf ,ur r1 pj) (pjerf(,uri)/rl pj) e

:<% erf yr /r 1, %(Vrjkd» <66k (V k ) erf(ylgj)/igjl %k (V k )>
(A5.21)

and

<kakb (pl.(pjerf(,ur) n1, p} xp k >

:<%k (pjerf(,ur 11, p/ > <% p; erf yr r 1,- p/) (Z; kd>
:<%(V k ) erf(,ur )> < erf ,ur /r 1, %(Vr/kd».
(A5.22)

The third one is as follows:
Kk |=o'(p (o7 p,ert (sar,) 1,1, xpj)xpi)‘kukd>
< Kalia'(pi (o’ pyext () fry 1, )b )| kckd>

0, <kak,, (. (i py ext (1, ) /1,1, p, )% p, )y‘kpkd>
{ ’ (p (i7 - p, erf (s, )/r./.lzxp.)xp,.) ‘kfkd> 0, J
(p.(i0” - pyert (), 1%, )<, )x‘kckd> }

(.(io” - p, erf (), 1< p, )% p, )Z‘kckd> |

. (p(w' perf( )/rlxp ‘kk> <kakb

; (p(lo' perf( )/rl ij ‘kk> —<kakb

(A5.23)
The matrix elements in Eq. (A5.23) are also rewritten as similar procedure as the first and

second integrals using Eq. (A5.14). Therefore, the Gaussian-type TEIs of operator

erf ( ur; ) / r; are explicitly evaluated.
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Chapter 6 Evaluation of PCE on FON states in

noble gas atom?®

6.1 Introduction

The total energy of DFT is expressed as a functional of electron density' shown in Eq.
(2.3.28) in Chapter 2. Because the exact functional form is unknown, approximate
functionals are generally used. Despite the widespread use of DFT, the approximate
functionals are limited by inaccurate definitions of chemical phenomena such as reaction
barriers,> band gap,* polarizability,> and charge transfer.’ The causes of these errors have
been discussed in terms of the SIE, which stems from the exchange term of the approximate
functional.” More inclusively, the definition of the delocalization error is proposed.®’

The delocalization error occurs in the FON states.®!° The ground-state energy obtained
by the exact functional varies piecewise linearly with respect to the FON electrons between
two consecutive integers. However, the approximate functional deviates from the linearity.
For example, the total energy change dependent on electron number with FON states
becomes a concave curve in the HOMO.!?

Several researchers have developed methods for correcting the delocalization error or
SIE”!!"15; however, this aspect continues to be challenging in DFT.!® Global and range-
separated hybrid functionals, which mix certain ratios of HFx into exchange functional,
reduce these errors to a certain extent. The LC-DFT,'”!® which calculates exchange energy
as long-range HFx and short-range exchange functional, indicates linear dependence of
total energy on change of the occupation number of HOMO.! For the description of the

linearity in core orbitals, the importance of short-range HFx is revealed by the LCgau

$ Reproduced from the article by Chinami Takashima and Hiromi Nakai, DOI: 10.1007/s00214-023-
03089-3
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scheme?” and core-valence-Rydberg functional.?!?

The accurate description of linearity is one measure of evaluating the performance of
functionals. Orbital-specific hybrid functionals are constructed by imposing the linearity
condition for orbitals of FON states, which reasonably reproduces the ionization potential
and excitation energies involving core, valence, and Rydberg orbitals.?>2® The localized
orbital scaling correction was developed by enforcing the linearity condition for the relation
between energy and electron number and correctly described phenomena such as
polarizability, molecular dissociation, and band gap.'*?"-°

In this chapter, the PCE of FON states is examined in the 2c¢ relativistic theory based
on the IOTC Hamiltonian. The remainder of this chapter is organized as follows. In Section
6.2, the linearity condition for FON states as the theoretical background is discussed.

Section 6.3 explains the computational details. The results and discussion are presented in

Section 6.4 followed by the conclusion in Section 6.5.

6.2 Linearity condition for FON states
The energy of the exact DFT with respect to FON electron is expressed as follows:

E(N+An)=(1-An)E(N)+AnE(N +1)
=(E(N+1)-E(N))An+E(N), (2D
where N is a positive integer, An is a fractional number (0 < An <1), and E(N) is the ground-
state energy of an N-electron system.*! The curve of E with respect to An becomes straight,
which is termed the linearity condition for total energies.

According to Janak’s theorem,* orbital energy &;, which is the eigen value of ¢;, is

adherent to the following expression:

o _ £, (6.2.2)
of;

where f; is the occupation number of the i-th orbital. The HOMO energy is equivalent to
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the negative value of the first ionization potential.*® Differentiating Eq. (6.2.2) by f; in the

range of 0 to 1 yields the following expression:

O’E
of’

_os,

0< /<1 %,

~0, (6.2.3)

0<f;<1

indicating that the orbital energy is constant for the change of occupation number of the

corresponding orbital. This is the linearity condition for orbital energies.

6.3 Computational details

Noble gas atoms (Ne, Ar, Kr, Xe, and Rn) were numerically analyzed. Sapporo-TZP-
2012-+d basis sets for Ne, Ar,>* and Sapporo-DKH3-TZP-2012+d basis sets for Kr, Xe, and
Rn* were applied in an uncontracted manner.

The exchange-correlation functionals used in this study were 100% Becke’s exchange
(B88)*® with Lee—Yang—Parr (LYP)*’ correlation (BLYP), Becke’s half-and-half exchange
(50% B88 + 50% HFx) with LYP correlation (BHHLYP),*® 100% HFx with LYP correlation
(HFLYP), and LC-BLYP with range-separation parameter 0.47.> The modified ratio of B88
and HFx, namely, 40% B88 + 60% HFx, 30% B88 + 70% HFx, 20% B88 + 80% HFx, and
10% B88 + 90% HFx, were also employed in conjunction with LYP correlation.

3 with two-

For the 2c¢ calculation, the one-electron spin-free IOTC Hamiltonian
electron Coulomb operator (1eIOTC) and one- and two-electron spin-free 10TC
Hamiltonian*’ (1e2eIOTC) were used along with the PCC*!*? (6*") and -uncorrected density
operator, which are described in Chapter 2. FON energy was calculated self-consistently

by varying the occupation numbers of HOMO or ls orbital. All the calculations were

performed with the modified version of the GAMESS program.*’
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6.4 Results and discussion
6.4.1 PCE on delocalization error
In this subsection, the PCEs on the delocalization error are examined. Figures 6.1-6.4

show the total energy deviation AE,
AE = E(N +An)—[ {1-|An|} E(N) +|An| E(N -1)], (6.4.1)

with respect to An. According to the linearity condition, AE becomes 0 regardless of An in
the exact energy.

Figure 6.1 provides the HOMO result of Ne, Ar, Kr, Xe, and Rn atoms obtained by the
BLYP functional. As relativistic treatments, nonrelativistic Hamiltonian, 1eIOTC, 1eIOTC
with 0, 1e2elOTC, and 1e2elOTC with & are compared. The right panels show the
enlarged view near the minima. All elements and relativistic treatments show the concave
curves. Comparing elements, the absolute value of AE is largest in Ne and smaller in Ar,
Kr, Xe, and Rn in that order. Lighter elements have a larger delocalization error. In the
results of Ne and Ar, the relativistic treatments indicate close values to nonrelativistic
treatments. The relativistic treatments estimate lower AE of Kr, Xe, and Rn than the
nonrelativistic treatment. The differences among 1eIOTC, 1eIOTC with 0% 1e2eI0TC, and
1e2elOTC with ¢*" are hardly identified. PCEs of two-electron and density operators rarely
affect the FON states of HOMO, which are over stabilized by one-electron relativistic
effects.

Figure 6.2 presents the results for 1s orbital. Contrary to the case of HOMO shown in
Figure 6.1, the absolute value of AFE is largest in Rn and becomes relatively small in Xe,
Kr, Ar, and Ne in that order. Heavier elements are limited from larger delocalization error
in the FON states of ls orbital. Comparing nonrelativistic and relativistic treatments, the
differences are found in Ar, Kr, Xe, and Rn, which are minor in Ar and obvious for other

elements in the order of magnitude Kr < Xe < Rn. The PCEs of two-electron and density
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operators are also large. 1eIOTC (1eIOTC with %) yield lower AE than that of 1e2elOTC
(1e2eIOTCwith 6*). In terms of 6*", the AE obtained by 1eIOTC (1e2elOTC) is higher than
that obtained by 1eIOTC with ¢*' (1e2elOTC with 6*f). For example, the AE of Rn at An =
0.5 is —155.6, —161.6, —137.6, and —143.7 eV for 1elOTC, 1eIOTC with 6, 1e2elOTC,
and 1e2elOTC with 6°. The PCE of two-electron and density operator overestimates and
underestimates delocalization error, respectively. The results of a comparative analysis of
the difference owing to the picture change of two-electron and density operators show that
the PCE of two-electron operators (~16 eV in Rn at An = 0.5) are larger than those of the
density operator (~6 eV in Rn at An = 0.5).

Figures 6.3 and 6.4 show the results obtained by the HFLYP functional for HOMO and
Is orbital, respectively. Contrary to Figures 6.1 and 6.2, all curves are convex. HFx
destabilizes the FON states. These errors are referred to as a localization error, which is
derived from the lack of electron correlation in HFx.® The absolute values of AE are smaller
than those of BLYP. Electron correlation in the exchange term is smaller than the error
derived from the inexact form of exchange functional. In the results of HOMO shown in
Figure 6.3, the localization error for the lighter elements increases. The differences between
nonrelativistic and relativistic treatments, which is slightly observed in Rn, are small. The
PCE values of two-electron and density operators are also small in all elements.

Opposite to the HOMO, the localization errors of 1s orbital shown in Figure 6.4 are
larger in heavier elements. The effects of relativistic treatments are apparent in Ar, Kr, Xe,
and Rn. The PCE of the two-electron operator, which overestimates the localization error,
is clear in Xe and Rn. In contrast to the BLYP in Figure 6.2, the differences due to 6*' are
so small as to be invisible. The exchange part of HFLYP is not affected by the PCE of
density operator because it does not include electron density. Although the correlation part
is influenced by the PCE of the density operator, the correlation energy is considerably
smaller than the exchange energy. Therefore, the PCE of the density operator for HFLYP is
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small.
Owing to the error cancellation of concave and convex characteristics of BLYP and
HFLYP functionals, the curvature of AE becomes smaller when B88 exchange and HFx are

mixed as shown in Figure A6.1 in Appendix of this chapter.
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Figure 6.1. Total energy deviation (in eV) from ideal energy of FON states of HOMO in
(a) Ne, (b) Ar, (c) Kr, (d) Xe, and (e) Rn atoms obtained by BLYP functionals with several

relativistic treatments. Right panels show the enlarged view near the minima.
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Figure 6.2. Total energy deviation (in eV) from ideal energy of FON states of 1s orbital in
(a) Ne, (b) Ar, (c) Kr, (d) Xe, and (e) Rn atoms obtained by BLYP functionals with several

relativistic treatments. Right panels show the enlarged view near the minima.
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Figure 6.3. Total energy deviation (in eV) from ideal energy of FON states of HOMO in
(a) Ne, (b) Ar, (¢) Kr, (d) Xe, and (e) Rn atoms obtained by HFLYP functionals with several

relativistic treatments. Right panels show the enlarged view near the minima.
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Figure 6.4. Total energy deviation (in eV) from ideal energy of FON states of 1s in (a) Ne,
(b) Ar, (c) Kr, (d) Xe, and (e) Rn atoms obtained by HFLYP functionals with several
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6.4.2 Orbital energy dependence of FON

This subsection examines the behaviors of orbital energy with respect to FON. Figures
6.5-6.8 demonstrate the orbital energies with respect to FON electron An. The results of
the lightest and heaviest elements, Ne and Rn, are presented here. The slopes of the graphs
of orbital energy with respect to An calculated using the least square method are tabulated
in Tables 1-4. The results of other elements, Ar, Kr, and Xe, are provided in Figures A6.2—
A6.7 and Tables A6.1-A6.5 in the appendix of this chapter.

Figure 6.5 shows the results for the HOMO of Ne. The corresponding slopes are shown
in Table 6.1. The orbital energies enomo of BLYP monotonically increase as An increases.
Upon adding HFx, the slope of enomo versus An graph becomes smaller. In the results of
HFLYP, enomo decreases as An increases. Moreover, 30%B88+70%HFx+LYP shows the
smallest absolute value of the slope, indicating the smallest FON dependence of enomo. The
slope of LC-BLYP is similar to that of BHHLYP. Nonrelativistic and relativistic treatments
exhibit the above tendency and quantitatively similar orbital energies. One-electron
relativistic effects and the PCE of two-electron and density operators are small in the
HOMO of the Ne atom.

Figure 6.6 shows the results for 1s orbital of Ne. The corresponding slopes are shown
in Table 6.2. The qualitative tendency of the orbital energies €15 with respect to An is similar
to that of enomo: €15 increases in BLYP and decreases in HFLYP as An increases and the
combinations of B88 and HFx lie between BLYP and HFLYP. Moreover,
40%B88+60%HFx+LYP indicates the smallest absolute value of the slope, namely the
smallest FON dependence of ¢15. The magnitude of the slope is larger than that of the
HOMO, indicating that AE of 1s orbital in Fig. 2(a) are larger than that of HOMO in Figure
6.1(a). The slope of LC-BLYP is larger than that of BHHLYP and closer to BLYP. As
mentioned in previous studies,?’?? the short-range HFx is important in inner shell orbitals.
The relativistic effects and PCE are small, as in the results of HOMO.
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Figure 6.7 shows the results for the HOMO of Rn. The corresponding slopes are shown
in Table 6.3. The qualitative trends are similar to the results for HOMO of Ne, with the
exception of the results of LC-BLYP. Among the combination of B88 and HFX,
10%B88+90%HFx+LYP indicates the smallest FON dependence of enomo. enomo obtained
by LC-BLYP, whose graph shows smaller slope than that of 10%B88+90%HFx+LYP, is
almost independent from An. As in the case of Ne, the relativistic effects are small.

Figure 6.8 shows the results for 1s of Rn. The corresponding slopes are shown in Table
6.3. The qualitative trends are similar to the results for 1s orbital of Ne. Unlike Figures 6.5—
6.7, the differences caused by the nonrelativistic and relativistic treatments are pronounced
in the Ls orbital of Rn. The orbital energy changes of relativistic treatments are steeper than
that of nonrelativistic Hamiltonian: the absolute values of the slopes obtained by relativistic
treatments are apparently larger than those by nonrelativistic Hamiltonian. The changes of
e1s (in eV) along the increase of FON, 0 < An < 1 obtained by BLYP are —88176.8 to
—87267.6 in nonrelativistic Hamiltonian, —99454.4 to —98240.7 in 1eIOTC, —99397.0 to
—98129.5 in 1elOTC with 6%, =99671.6 to —98601.7 in 1e2elOTC, and —99613.6 to
—98489.3 in 1e2elOTC with 6*". The range of &5 in 1eIOTC is approximately 11000 eV
lower than that of nonrelativistic Hamiltonian. Comparing 1elOTC with 1e2elOTC, the
range of the &1 of 1e2elOTC is more than 300 eV lower than that of 1eIOTC. Using *
makes the range of &1 higher. The PCE of two-electron and density operators on the values
of e15 cannot be disregarded while the relativistic effects are dominated by the one-electron
term. The linearity of orbital energy is also influenced by PCE. The functional that yields
the smallest slope of ¢15 versus An graph is 20%B88+80%HFx+LYP for nonrelativistic

Hamiltonian and 1e2elOTC and 10%B88+90%HFx+LYP for other relativistic treatments.
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Figure 6.5. Orbital energy changes of HOMO, enomo (in €V) with respect to FON, An in
Ne atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with ¢*,

(d) 1e2el0TC, and (e) 1e2elOTC with 6°',
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Figure 6.6. Orbital energy changes of 1s orbital, 15 (in €V) with respect to FON, An in Ne

atom. Relativistic treatments are (a) nonrelativistic, (b) 1eI0TC, (c) 1eIOTC with 6*, (d)

1e2elOTC, and (e) 1e2elOTC with ¢°".
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Figure 6.7. Orbital energy changes of HOMO, enomo (in €V) with respect to FON, An in
Rn atom. Relativistic treatments are (a) nonrelativistic, (b) 1elOTC, (c) 1eIOTC with o,

(d) 1e2el0TC, and (e) 1e2elOTC with 6°',
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Figure 6.8. Orbital energy changes of 1s, ¢15 (in €V) with respect to FON, An in Rn atom.
Relativistic treatments are (a) nonrelativistic, (b) 1elOTC, (c) 1eIOTC with 6% (d)

1e2elOTC, and (e) 1e2elOTC with 6°'.
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Table 6.1. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO

of Ne atoms in Figure 6.5.

o le2elOTC 1e2elOTC
Nonrelativistic 1eIOTC with 6% 1e2elOTC with 6%
BLYP 16.84 16.84 16.84 16.84 16.85
BHHLYP 5.42 5.42 5.42 5.42 5.42
40%B88+60%HFx
LLYP 3.16 3.16 3.16 3.16 3.16
30%B88+70%HFx
LLYP 0.96 0.96 0.96 0.96 0.96
20%B88+80%HFx
LYP 1.25 1.25 1.25 1.25 1.25
10%B88+90%HFx
LLYP 3.49 3.50 3.50 3.50 3.50
HFLYP —5.76 —5.76 —5.76 —5.76 —5.76
LC-BLYP 5.01 5.01 5.01 5.01 5.01

Table 6.2. Slopes of orbital energy change with respect to FON electron (in eV) in 1s orbital

of Ne atoms in Figure 6.6.

o 1e2el0OTC 1e2elOTC
Nonrelativistic  1elOTC with & 1e2el0OTC with &

BLYP 69.07 69.27 69.31 69.15 69.20
BHHLYP 12.45 12.48 12.51 12.42 12.45
40%B88+60%HFx
LLYP 1.11 1.11 1.13 1.07 1.09
30%B88+70%HFx
LYP 10.08 10.12 10.10 10.14 10.13
20%B88+80%HFx
LYP 21.35 21.42 21.41 21.43 21.42
10%B88+90%HFx
LLYP 32.70 32.80 32.80 32.80 32.80
HFLYP —44.13  —44.27 —44.27 —44.25 —44.25
LC-BLYP 54.41 54.60 54.65 54.49 54.54
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Table 6.3. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO

of Rn atoms in Figure 6.7.
N 1e2elOTC 1e2elOTC
Nonrelativistic  1eIOTC with & 1e2el0TC with &

BLYP 7.74 7.90 7.88 7.90 7.90
BHHLYP 3.23 3.34 3.34 3.34 3.34
40%B88+60%HFx
LLYP 2.33 242 242 242 242
30%B88+70%HFx
LYP 1.43 1.49 1.49 1.49 1.49
20%B88+80%HFx
LYP 0.53 0.57 0.57 0.57 0.57
10%B88+90%HFx
LLYP 0.36 0.35 0.35 0.35 0.35
HFLYP -1.27 -1.27 -1.27 -1.27 -1.27
LC-BLYP —0.03 0.08 0.08 0.08 0.08

Table 6.4. Slopes of orbital energy change with respect to FON electron (in eV) in 1s orbital

of Rn atoms in Figure 6.8.

. 1e2el0TC 1e2el0TC
Nonrelativistic 1elOTC with o5 1e2elOTC with o5
BLYP 927.94 1232.58 1282.72 1088.76 1139.60
BHHLYP 379.21 514.70 540.16 444.66 470.32
o o
4076B88+60%HFx 26949  371.29 391.70 316.00 336.56
+LYP
o o
30%B88+70%HFx 159.77 227091 243.24 187.40 202.82
+LYP
20%B88+80%HFx
LYP 50.06 84.57 94.80 58.86 69.14
10%B88+90%HFx
LLYP 59.64 58.71 53.63 69.63 64.52
HFLYP —170.00 —202.12 —202.52 —198.23 —198.63
LC-BLYP 91339 1217.87 1268.07 1074.04 1124.94
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6.5 Conclusion

In this chapter, the PCE in the FON states of HOMO and 1s orbitals of noble gas atoms
in the framework of the spin-free IOTC Hamiltonian was examined. Calculations of the
delocalization error revealed that the FON electron states were over stabilized by
relativistic treatments. The PCE of two-electron and density operators were remarkable in
the core region of heavy elements: the former and the latter overestimated and
underestimated the delocalization error, respectively. Corresponding to these results of total
energies, the values of orbital energies and the slope of their changes to FON in core region
of heavy elements were affected by PCE. The PCE of two-electron and density operators

should be corrected when considering the linearity condition of total and orbital energies.
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Figure A6.1. Total energy deviation (in eV) from ideal energy of FON states of HOMO
(left panels) and 1s orbital (right panels) in (a) Ne, (b) Ar, (¢) Kr, (d) Xe, and (e) Rn atoms

obtained with 1e2eIOTC with o°F.
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Figure A6.2. Orbital energy changes of HOMO, enomo (in V) with respect to FON, An in
Ar atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with 6*,

(d) 1e2el0TC, and (e) 1e2elOTC with 6°',
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Figure A6.3. orbital energy changes of 1s orbital, e15 (in eV) with respect to FON, An in Ar
atom. Relativistic treatments are (a) nonrelativistic, (b) 1eI0TC, (c) 1eIOTC with 6*, (d)

1e2elOTC, and (e) 1e2elOTC with ¢°".
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Figure A6.4. Orbital energy changes of HOMO, enomo (in V) with respect to FON, An in
Kr atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with &*,

(d) 1e2el0TC, and (e) 1e2elOTC with 6°',
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Figure A6.5. Orbital energy changes of 1s orbital, €15 (in eV) with respect to FON, An in

Kr atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with 6*,

(d) 1e2el0TC, and (e) 1e2elOTC with 6°',
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Figure A6.6. Orbital energy changes of HOMO, enomo (in V) with respect to FON, An in
Xe atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with 6*,

(d) 1e2el0TC, and (e) 1e2elOTC with 6°',
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Figure A6.7. Orbital energy changes of 1s orbital, €15 (in eV) with respect to FON, An in
Xe atom. Relativistic treatments are (a) nonrelativistic, (b) 1eIOTC, (c) 1eIOTC with 6*,

(d) 1e2el0TC, and (e) 1e2elOTC with 6°',
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Table A6.1. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO

of Ar atoms in Figure A6.2.
. 1e2el0TC 1e2elOTC
Nonrelativistic ~ 1elOTC with 6% 1e2elOTC with 6%

BLYP 10.99 10.99 10.99 10.99 10.99
BHHLYP 4.23 4.23 4.23 4.23 4.23
40%B88+60%HFx
LLYP 291 291 291 291 291
30%B88+70%HFx
LYP 1.58 1.58 1.58 1.58 1.58
20%B88+80%HFx
LYP 0.26 0.26 0.26 0.26 0.26
10%B88+90%HFx
LLYP 1.06 1.06 1.06 1.06 1.06
HFLYP —2.38 —2.38 —2.38 —2.38 —2.38
LC-BLYP 1.10 1.11 1.11 1.11 1.11

Table A6.2. Slopes of orbital energy change with respect to FON electron (in eV) in s

orbital of Ar atoms in Figure A6.3.

. 1e2el0TC 1e2elOTC
Nonrelativistic 1elOTC with o5 1e2elOTC with &

BLYP 151.75 153.25 153.56 152.43 152.74
BHHLYP 44.43 44.84 45.01 44 .47 44.65
40%B88+60%HFx
LLYP 22.98 23.19 23.32 22.90 23.03
30%B88+70%HFx
LYP 1.54 1.54 1.63 1.34 1.44
20%B88+80%HFx
LYP 19.88 20.09 20.03 20.20 20.13
10%B88+90%HFx
LLYP 41.31 41.74 41.71 41.75 41.72
HFLYP -62.74  —63.38 —63.38 —63.30 —63.30
LC-BLYP 137.10  138.58 138.89 137.76 138.07
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Table A6.3. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO

of Kratoms in Figure A6.4.
. 1e2elOTC 1e2elOTC
Nonrelativistic  1eIOTC with 6% 1e2elOTC with &

BLYP 9.74 9.77 9.77 9.77 9.78
BHHLYP 3.92 3.94 3.94 3.94 3.94
40%B88+60%HFx
LLYP 2.77 2.78 2.78 2.78 2.78
30%B88+70%HFx
LYP 1.62 1.63 1.63 1.63 1.63
20%B88+80%HFx
LYP 0.48 0.48 0.48 0.48 0.48
10%B88+90%HFx
LLYP 0.67 0.67 0.67 0.67 0.67
HFLYP -1.80 -1.81 -1.81 —1.81 —1.81
LC-BLYP 9.74 9.77 9.77 9.77 9.78

Table A6.4. Slopes of orbital energy change with respect to FON electron (in eV) in s

orbital of Kr atoms in Figure A6.5.

o 1e2el0OTC 1e2elOTC
Nonrelativistic  1elOTC with & 1e2el0OTC with &
BLYP 340.78  356.00 358.80 348.40 351.21
BHHLYP 117.91 123.77 125.19 120.15 121.58
40%B88+60%HFx
+LYP 73.36 77.36 78.49 74.54 75.68
30%B88+70%HFx
LYP 28.82 30.95 31.81 28.95 29.80
20%B88+80%HFx
LYP 15.72 15.45 14.88 16.65 16.09
10%B88+90%HFx
LLYP 60.25 61.82 61.54 62.23 61.95
HFLYP —104.60 —108.03 —108.04 —107.63 —107.64
LC-BLYP 340.78  356.00 358.80 348.40 351.21

155



Table A6.5. Slopes of orbital energy change with respect to FON electron (in eV) in HOMO

of Xe atoms in Figure A6.6.

. 1e2el0TC 1e2elOTC
Nonrelativistic  1eIOTC with 6% 1e2elOTC with &
BLYP 8.32 8.38 8.38 8.39 8.39
BHHLYP 3.43 3.47 3.47 3.47 3.47
40%B88+60%HFx
LLYP 2.46 2.49 2.49 2.49 2.49
30%B88+70%HFx
LYP 1.49 1.51 1.51 1.51 1.51
20%B88+80%HFx
LYP 0.52 0.54 0.54 0.54 0.54
10%B88+90%HFx
LLYP 0.44 0.44 0.44 0.44 0.44
HFLYP -1.42 -1.42 -1.42 -1.42 —1.42
LC-BLYP 8.32 8.38 8.38 8.39 8.39

Table A6.6. Slopes of orbital energy change with respect to FON electron (in eV) in s

orbital of Xe atoms in Figure A6.7.

o 1e2el0OTC 1e2elOTC
Nonrelativistic 1elOTC with & 1e2el0OTC with &

BLYP 550.33  609.40 619.62 581.17 591.47
BHHLYP 211.04 23547 240.60 221.84 226.99
40%B88+60%HFx
LLYP 143.07 160.68 164.82 150.00 154.14
30%B88+70%HFx
LYP 75.14 85.93 89.06 78.19 81.30
20%B88+80%HFx
LYP 7.21 11.24 13.31 6.42 8.49
10%B88+90%HFx
LLYP 60.72 63.45 62.43 65.34 64.31
HFLYP —128.42 —-137.81 —137.87 —136.75 —136.81
LC-BLYP 550.33  609.40 619.62 581.17 591.47
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Chapter 7 Implementation of PCC method into
GAMESS program™

7.1 Introduction

The spin-free 2¢ Hamiltonian is so to speak one-component Hamiltonian, because it
ignores the spin-dependent term of 2c Hamiltonian. In terms of implementation, the spin-
free 2c Hamiltonian can be handled with only a few corrections for nonrelativistic quantum
chemical calculations. Therefore, the spin-free 2c relativistic Hamiltonians for one-electron
operator are available in several quantum chemical program packages, such as GAMESS,!
ORCA,> NWChem,> TURBOMOLE,* CFOUR,> MOLCAS,% and so on. Nakai group has
also implemented the LUT scheme based on the IOTC Hamiltonian into GAMESS
program.® The LUT-IOTC Hamiltonian is available with not only SCF calculations but also
electron correlation methods such as MP2 and CC, DFT, DC®!° for large-scale calculations,
and geometry optimization by analytical energy gradient. However, the PCC for two-
electron operator is necessary to pursue the accuracy close to that of the 4c Hamiltonian.
The density operator also requires the PCC in the case of 2¢ DFT. In this chapter, the [OTC

transformation with and without the LUT scheme for two-electron'!!?

and density
operators'® is implemented into the public version of GAMESS program. The remainder of
this chapter is organized as follows: Sec. 7.2 explains the details of the implementation.

The numerical assessments are presented in the Sec. 7.3. The conclusion of this chapter is

provided in the Sec. 7.4.

** The parts of the contents of this chapter are reproduced from the article by Chinami Takashima,
Junji Seino, and Hiromi Nakai, J. Comput. Chem. Jpn. 19, 128 (2020). Copyright 2021 Society of
Computer Chemistry, Japan. DOI: 10.2477/jccj.2021-0002
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7.2 Implementation
Figure 7.1 shows the algorithm for the energy calculation by PCC method. The
Coulomb-interaction is adopted as a two-electron operator. The IOTC transformation of the

two-electron operator requires three kinds of TEIs in Eq. (2.3.25)—(2.3.27). The evaluation

of TEIs for PBFs, namely, the Coulomb-like <kakb‘1/ r,

k.k,) , Darwin-like

<kakb ‘pil / rg/lz "D

kk,) and specific spin-free interaction terms
(k,k, ‘ plp1/n1,-p, pi‘kck . )» are implemented. The program code for the Coulomb-

like term is similar to that for the nonrelativistic TEIs, which evaluates the TEIs of the

Coulomb operator. Focusing on the momentum of operator, p=—iV, the Darwin-like and

specific spin-free interaction terms are rewritten as

<kakb |P1 Vn,1,-plkk, > = <Vr, k .k, |1/’"12 12|Vr, kckd> (7.2.1)

and

ke, ) =(V, kY, K [Ifr,L,|V, 6V, k). (7.2.2)

(HATAVRVES Ry A K,
Because the basis sets applied in GAMESS program is Gaussian-type functions, {k} is
represented by Gaussian-type functions. Therefore, V, &, is also expressed by Gaussian-
type functions that have different angular momenta from those of k. as referred in Chapter
5. The codes for evaluating the Darwin-like and specific spin-free interaction terms are
similar to that used for <kakb |1/ n, 12|kckd>. The implementation of these TEIs was based
on Gauss-Rys quadrature codes. The transformations of these TEIs are implemented by
modifying the existence codes for (LUT-)IOTC for one-electron operator.

For the calculation of PCC of density operator, the OEIs appeared in Eq. (2.3.35) were
additionally required for the calculation of electron density. The direct calculation of Eq.

(2.3.35) demands the transformation of matrix. According to Eqs. (2.3.43) and (2.3.44),
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these OEIs are obtained by the product of transformed AOs shown in Egs. (2.3.41) and
(2.3.42), namely the inner product of vectors. The practical implementation adopted
simpler codes using the vector expression instead of the matrix transformation. The
gradient of electron density and kinetic energy density shown in Egs. (2.3.46) and (2.3.48)
are also implemented according to the expression of inner product of vectors. As shown in
Eq. (2.3.53), the exchange-correlation integral has also different formula from that does not
consider PCC. The routine for adding the exchange-correlation term in the construction of
Fock matrix was modified along the Eq. (2.3.53).

Table 7.1 summarizes the major capabilities of the IOTC Hamiltonian in GAMESS
program. The (LUT-)IOTC Hamiltonian for one-electron term is denoted as 1e(LUT-)IOTC
and that for one- and two-electron terms is denoted as 1e2e(LUT-)IOTC. The present
implementation enables electron correlation methods and the DC method based on the
1e2e(LUT-)IOTC. Furthermore, the analytical energy gradient is also available for LUT-
IOTC because the nuclear-coordinate derivative of TEIs in the LUT scheme is the same as
that of nonrelativistic method.

Figure 7.2 shows the sample input of the energy calculation of PCC-DFT based on the
LUT-IOTC Hamiltonian. The 1e2eLUT-IOTC Hamiltonian are available by specifying
“RELWFN=LUTIOTC2” in the SCONTRL name list, which sets the fundamental job
options. In addition, the PCC of density operator can be performed by adding
“PCCDFT=.T.” to the SRELWFN name list, which specifies the details of relativistic
treatments, for example, the speed of light and threshold 7 for one-electron LUT scheme.

Keywords for another options for [OTC Hamiltonians are tabulated in Table 7.1.
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Post Hartree—Fock ] () : newly implemented in this study

Figure 7.1. Schematic diagram of the algorithm for the energy calculation by PCC method.

Items colored in green are the implemented parts in this chapter.

Table 7.1. Major capabilities of IOTC Hamiltonian in GAMESS. ¢ represents the previous

work. % indicates the options that can be possible by the implementation of this chapter.

Analytical Correlation

Hamiltonian Keyword Energy oradient  (MP2, CC) DC
1elOTC RELWFN=IOTC v X v v
1eLUT-IOTC RELWFN=LUT-IOTC v v v v
1e2elOTC RELWFN=IOTC2E * X * *
1e2eLUT-IOTC RELWFN=LUTIOTC2 * * * *
(LUT-)IOTC for 6 PCCDFT=.T. * * - -
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SCONTRL SCFTYP=RHF RUNTYP=ENERGY
RELWEFN=LUTIOTC2 DFTTYP=BLYP SEND
SRELWEN PCCDFT=.T. SEND
SBASIS GBASIS=SPKrDZC SEND
SDATA
Sample input
Cl
H 1.0 -0.46355 8.99463 0.00000
At 85.0 -1.61980 -0.92024 0.00000

SEND

Figure 7.2. Sample input of energy calculation of the PCC-DFT based on the LUT-IOTC

method.
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7.3 Numerical assessments
7.3.1 Accuracy

Table 7.2 shows the deviations in total energy from the 4c results at the
BLYP'"*!/Sapporo(-DKH3)-DZP-2012!¢18 Jevel for diatomic molecules: CuH, Cuz, AgH,
Ago, AuH, and Au,, whose bond distances were set to 1.4658, 2.2192, 1.6179, 2.5303,
1.5324, and 2.4719, respectively. The nonrelativistic, 1eIOTC, and 1e2elOTC
Hamiltonians were adopted. The effects of PCC for density operator by IOTC
transformation ¢°" were also examined. Nonrelativistic Hamiltonian gives large deviations
from 4c results. On the other hand, 1e2eIOTC with ¢*" showed an error of 0.007 hartree
even for Aup, which has the largest relativistic effects, and gives good agreement with 4c
results in all molecules. The effects of PCC for two-electron Coulomb term and density
operator are essential to obtain accurate results; The difference between 1eIOTC and
1e2elOTC are several hartree as well as that between 1e2elOTC with and without ¢*'. In
particular, 1eIOTC with 6* provides larger error than 1eIOTC without ¢*", which is due to
the error cancellation from negative deviation of 1e2elOTC Hamiltonian. The importance
of comprehensive transformation of all operators was confirmed.

Table 7.3 shows the the error caused by the LUT scheme. The errors in all molecules
are less than 1 millihartree and quite smaller than the deviation from 4c values shown in

Table 7.2. The validity of the approximation of LUT scheme was confirmed.
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Table 7.2. Total energy deviation (in hartree) of nonrelativistic and IOTC Hamiltonian from

4c Hamiltonian in the calculations of dimers of coinage metals, CuH, Cu,, AgH, Ag>, AuH,

Aw. IOTC transformations for one-electron (1e), two-electron (2¢), and density operators

(0°") were examined. BLYP functional and uncontracted Sapporo(-DKH3)-DZP-2012 basis

sets were applied. The reference 4c values are shown in parentheses.

Nonrel.  1elOTC Iva’ft?lgcf 162¢I0TC “v’fii;%ffc (4¢)
CuH 14587504 0275606 0490224 0215161 —0.000194  (~1655.820950)
Cur  29.170984  0.551139 0980329 0430280 —0.000391 (~3310.509041)
AgH  117.033352 1490758 2469700 —0.983365 —0.001923  (~5317.695585)
Ag 234057976  2.981425 4939251 —1.966657 —0.003834 (~10634.277804)
AuH 1158437895  9.580662 15360145 —5.808337 —0.003498 (~19028.891526)
Aw 2316820851 19.160914 30719593 —11.616401 —0.007012 (~38056.629824)

Table 7.3. The deviation (in hartree) of total energy obtained by LUT-IOTC Hamiltonian

from that obtained by IOTC Hamiltonian without LUT scheme. Transformations for one-

electron (1e), two-electron (2¢), and density operators () were examined. BLYP functional

and uncontracted Sapporo(-DKH3)-DZP-2012 basis sets were applied.

le le and 0 le and 2e le, 2e, and o
CuH —0.000002 —0.000002 —0.000007 —0.000007
Cu 0.000000 0.000000 —0.000014 —-0.000014
AgH —0.000002 —0.000002 0.000004 0.000004
Ag —0.000006 —0.000006 —0.000007 —0.000008
AuH —0.000014 —0.000014 —0.000017 —0.000017
Aup 0.000024 0.000024 0.000022 0.000022
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7.3.2 Efficiency

Table 7.3 compares the CPU times of calculations of Ir(ppy)s using LUT-IOTC
Hamiltonians at the PBE0'”/Sapporo(-DKH3)-DZP-2012 level. LUT-IOTC transformation
for one-electron, two-electron, and density operator was examined. For comparison, the
CPU times for the nonrelativistic treatment are also given. The total CPU times and the
components of time-consuming steps, namely, evaluation and transformation of TEIs and
the first SCF cycle are shown. For measurement of the CPU times, one CPU core of Intel®
Xeon® Gold 5122/3.60 GHz was used. The numbers of total SCF cycles were 39 and 31
for the nonrelativistic and LUT-IOTC calculations, respectively. The DFT calculations with
the fine Lebedev grid (96 radial and 302 angular points) were performed in 15 cycles for

oY1, and 13 cycles for others.

nonrelativistic Hamiltonian, 14 cycles for 1e2eLUT-IOTC w/
In 1eLUT-IOTC Hamiltonian, the CPU times of TEIs and SCF are similar to those in the
nonrelativistic Hamiltonian. In 1e2eLUT-IOTC with and without 6"V", the CPU times of
TEIs are approximately 16% larger than the others because of the use of local
transformation. Using 8"U7 (i.e. in the calculation by 1eLUT-IOTC with 6"V and 1e2eLUT-
IOTC w/ 6"YT), the CPU times of SCF are larger than those in the others. This is because
the transformation for density operator is performed in all grid points. The 4c calculation
was difficult in the present computing environment. In consequence, the most accurate
calculation using 1e2eLUT-IOTC Hamiltonian with "YT can be accomplished within three
times of CPU times of nonrelativistic treatment.

Figure 7.3 provides the system-size dependence of CPU time for calculations of (HF),
molecules by the Hartree—Fock, MP2, CCSD, and CCSD(T) methods combined with the
DC method. The intra and intermolecular distances of HF were fixed at 0.907 and 1.503 A,
respectively. The bond angles of H-F—-H and F—H-F were set to 120° and 180°, respectively.
Figure 7.3(a) shows the results obtained by nonrelativistic Hamiltonian. Figure 7.3(b)
presents the results of the 1e2elOTC Hamiltonian. For DC calculations, LUT scheme was
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adopted in Figure 7.3(b). The DC method drastically reduced the CPU time and the order
of scaling of the CPU time. Combination of DC and LUT provides similar results to those
of the nonrelativistic calculation. Here, the CPU time for the DC-MP2 is shorter than that
for DC-Hartree—Fock (DC-HF). DC-CCSD and DC-CCSD(T) show the smaller scales of
the CPU times comparing with DC-HF. These results are owing to the dual buffer treatment,
which utilizes the fact that the correlation energies are more localized than Coulomb and

exchange energies.
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Table 7.3. CPU time (in s) for calculation of Ir(ppy)s by nonrelativistic and LUT-IOTC
Hamiltonians. LUT-IOTC transformation for one-electron (le), two-electron (2e¢), and
density operator (6"UT) was examined. PBEO functional and Sapporo(-DKH3)-DZP-2012
basis sets were adopted. The CPU time for Evaluation and transformation of TEIs, the first

SCF cycle of DFT and total calculations are shown.

TEIs SCF Total
Nonrelativistic 1175.17 359.35 12392.61
le LUT-IOTC 1177.74 345.89 9994.87
le LUT-IOTC with 6"V 1195.72 1933.32 32360.91
le2e LUT-IOTC 1368.86 341.39 10025.63
le2e LUT-IOTC with ¢"Y7 1392.46 1949.37 34332.76
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Figure 7.3. System-size dependence of CPU time (in s) in the Hartree—Fock (HF), MP2,
CCSD, and CCSD(T) calculations of (HF), molecules. (a) nonrelativistic and (b)
1e2elOTC Hamiltonians are adopted with and without DC method. In the calculation of
1e2elOTC, the DC method is combined with LUT scheme. As basis sets, uncontracted 6-

311G** were applied.
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7.4 Conclusion

This chapter presented the implementation of the PCC methods for the two-electron
Coulomb interaction and density operators in the GAMESS program package, which
enables accurate and efficient 2¢ relativistic calculations. The details of implementation
and capability of the present methods were provided. Numerical assessments confirmed the
accuracy and efficiency of the implementation In particular, the numerical result for the
whole PCC of the one-electron, two-electron, and density operators clarified to be essential
in order to obtain the results close to those of 4¢ treatment. Furthermore, its computational
costs are slightly larger than but comparable with those of the nonrelativistic calculations.
The GAMESS program including LUT-IOTC for two-electron and density operators was

open to the public in July 2022.
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Chapter 8 Relativistic effects on C—H activation of

N-phenylbezamide using Ir complex™

8.1 Introduction

Relativistic effects have been discussed as essential factors of molecular structures,
properties, and chemical reactions in heavy element systems.'~’ The scalar relativistic effect
contracts and stabilizes s and p orbitals, followed by the self-consistent expansion and
activation of d and f orbitals.® This effect influences bond lengths, vibrational frequencies,
orbital energies, and reactivities. Another relativistic effect originates from the spin-
dependent effect, which is due to the hybridization and rotation of electronic spins.’ This
effect influences magnetic properties, such as the chemical shifts of NMR, the spin-orbit
splitting of degenerated orbitals, and intersystem crossing in photophysical and
photochemical processes. For heavy elements, these effects are more significant.

Relativistic effects in homogeneous catalytic reactions have been examined mainly for
third-row transition metal complexes, but recently for the first- and second-row ones as
well.!*18 For example, the contraction of 6s and 6p orbitals, the expansion of 5d orbitals,
and the spin-orbit splitting of 6p and 5d orbitals shift the energy levels of the HOMO and
LUMO, which have been reported to rationalize the remarkable activities of homogeneous
Au, Pt, and Hg catalysts.!!-13.16

In recent years, C—H functionalization using Ir complexes has attracted considerable
attention because of their high catalytic activities.!”2> For example, the energy barrier in
the C—H amination of benzamides with Ir catalysts has been reported to be lower than that

with Rh catalysts.?® Furthermore, the rate constant of an Ir-mediated C-N coupling reaction

f Reprinted with permission from the article by Chinami Takashima, Hisaki Kurita, Hideaki Takano,
Yasuhiro Ikabata, Takanori Shibata, and Hiromi Nakai, J. Phys. Chem. A 126, 7627 (2022). Copyright
2023 American Chemical Society.
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was shown to be larger than that of the Rh case.?’ Further, various catalytic activities of
cationic Ir complexes have been reported,?®? for example, the sp? C—H alkenylation of
aryl ketones with alkynes,?® the sp> C—H alkylation of pyridylamine with alkenes,** and C—
H conjugate addition to o-substituted o,B-unsaturated esters.*!

In this chapter, the author elucidates the relativistic catalytic activities of cationic Ir
complexes in experimental and theoretical aspects. The difference in the catalytic reactivity
between the Ir and Rh complexes reported in the deuteration of N-phenylbenzamide for C—
H activation is theoretically analyzed using DFT calculations. The scalar relativistic effect
is estimated based on a direct comparison of reaction energy diagrams, geometric
parameters, and electronic structures calculated by relativistic calculations with those of
their nonrelativistic counterparts. The remainder of this chapter is organized as follows.
The next section describes the experimental backgrounds: the results of deuteration of N-
phenylbenzamide. The computational details, results, and discussion are presented in the

third section. The last section presents the conclusion of this chapter.

8.2 Experimental backgrounds

Scheme 8.1 shows deuteration of N-phenylbenzamide, which is covered by this
chapter. N-phenylbenzamide was reacted with excess amounts of D,O using cationic Ir(I)
and Rh(I)-diphosphine catalysts possessing (S)-BINAP derivatives in 1,4-dioxane at 120 °C
for 24 h under standard reaction conditions. Figure 8.1 illustrates the molecular formulas
of (S)-BINAP and (S)-SEGPHOS ligands.

When the Ir—(S)-SEGPHOS or (S)-BINAP catalyst was used, significant D-content
was observed at the ortho positions of the aromatic rings of N-phenylbenzamide: D' and
D? contents were 57 and 60 %, respectively, with Ir—(S)-SEGPHOS and 73 and 74 %,
respectively with Ir—(S)-BINAP. The high catalytic activity of the cationic Ir complex for
C—H activation was ascertained. In contrast, the Rh counterparts were inactive.
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The conceivable reaction mechanism of deuteration of N-phenylbenzamide is shown
in Scheme 8.2. The reactions at the ortho position of amino and carbonyl groups are
described in left and right cycles of Scheme 8.2, respectively. The precursor of these
reactions is the Ir-diphosphine complex (A). The substrate, N-phenylbenzamide (B), is
coordinated to A by an oxygen atom as a directing group (C or C”). The C—H bond cleaves
by the oxidative addition of Ir through a TS (D or D”), which leads to form the Ir-D complex
(E or E”). Then, the H-D exchange occurs on the Ir to form Ir-D complex (F or F?). The C-
D bond is formed on the ortho position of the substrate (G—H or G>—H”). Finally, the
deuterated N-phenylbenzamide (I or I’) is obtained by the elimination of the substrate. Note
that the present quantum chemical calculations treated the C-H bond cleavage, namely, C

—D—E and C’—D’—E’.

[M(cod),]X+ Ligand
(10 mol%) ¥
D,O
Solvent (2.0 M), 120 °C, 24 h T

(10 equiv) T

Scheme 8.1. Deuteration of N-phenylbenzamide using Ir- and Rh- catalysts.

PPh, PPh,
PPh, PPh,

(S)-SEGPHOS (S)-BINAP

Figure 8.1. Molecular formulas of (S)-SEGPHOS and (S)-BINAP.
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8.3 Computational details

Using quantum chemical calculations, the author examined the oxidative addition of
N-phenylbenzamide to the Ir and Rh complexes (C—D—E and C’—>D’—E’ in Scheme
8.2), which might be an elementary step in a series of H-D exchange reactions of N-
phenylbenzamide in D>O. This subsection describes the calculation conditions. Geometry
optimizations were performed for the reactants, TSs, and products of the oxidative
additions. In total, 16 patterns of conditions were considered because of the relativistic or
nonrelativistic setting of the pseudopotential and valence basis set, transition metal
elements (Ir or Rh), ligands (SEGPHOS or BINAP), and reaction positions (ortho position
of amino or carbonyl group). Each combination was indicated by the following
abbreviations: Rel/NR-It/Rh—S/B—A/C. For comparison, the geometry optimizations for
the separated systems, namely, the Ir and Rh complexes and N-phenylbenzamide, were
performed.

Harmonic vibrational frequencies were analytically calculated to examine whether the
optimized structure had an equilibrium geometry or TS. TS structures were confirmed to
connect the corresponding reactants and products using IRC**37 calculations. In Gibbs
energy calculations, the temperature and pressure were set to 120 °C (393.15 K) and 1 atm,
respectively. Solvation effects (1,4-dioxane, ¢ = 2.2099) were considered using the
polarizable continuum model based on solute electron density.>® Further, NBO analysis was
performed using the NBO 6.0 program*®® to recognize the relativistic effect from the
viewpoint of localized orbitals.

The above quantum chemical calculations were performed at the DFT level with the
®B97X-D exchange-correlation functional,*® using the Gaussian 09 program package.*!
For the core electrons of Ir ([Kr]4d'%4f'4) and Rh ([Ar]3d'?), nonrelativistic and relativistic
Stuttgart-Dresden (SDD)*** pseudopotentials were used. As nonrelativistic and
relativistic basis sets for the corresponding valence orbitals, (18s7p6d)/[4s2p2d] and
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(20s9p8d)/[4s2p2d] were adopted, respectively. For the other atoms, such as C, H, N, O,
and P, the 6-31G(d,p) all-electron basis sets***> were used. Additionally, relativistic single-
point calculations were performed with the all-electron basis sets at the optimized
geometries using the above pseudopotentials. Sapporo-DKH3-DZP-2012 basis sets for Ir
and Rh and Sapporo-DZP-2012 basis sets for H, C, N, O, and P were adopted. These all-

electron calculations were performed by the GAMESS program.

8.4 Results and discussion
8.4.1 Geometry optimization

Figure 8.2 illustrates the optimized structures for relativistic treatment for the Ir
complex with SEGPHOS as a ligand for C—H activation at the ortho position of the amino
group: i.e., Rel-Ir-S—A. In this figure, two P atoms are distinguished by P, and Py.

Here, the geometries of the reaction centers for the Ir and Rh complexes with
SEGPHOS at the amino-group reaction position calculated at the relativistic and
nonrelativistic levels, i.e., Rel/NR—Ir/Rh—S—A are the subject. The reaction center consists
of Ir or Rh, denoted as M, P, and P, of SEGPHOS coordinated to M, O of the carbonyl
group being coordinated to M, and C and H of the C—H bond being activated. Table 8.1
lists six bond distances (A) and six bond angles (degrees) of the reaction center, namely
M-P,, M-P,, M-O, M-C, M-H, and C-H distances and P,—-M-P;, P,-M-0O, P,~-M-C, P~
M-H, P,—~M—-H, and C-M-H angles. A represents the difference between the nonrelativistic
and relativistic results.

In the separated systems, the geometric parameters of a free N-phenylbenzamide
molecule are the same between the relativistic and nonrelativistic data because they
involved only light elements, such as C, H, N, and O, which were uniquely treated at the
nonrelativistic level with the 6-31G(d,p) basis sets. The C—H bond distance at the ortho
position of the amino group was calculated to be 1.08 A. Two M—P bond distances, i.e., M—
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P, and M-P;, were equal because of the symmetry. The M—P bond distances in the Ir
complex were calculated to be 2.19 and 2.28 A at the relativistic and nonrelativistic levels.
The shortening by 0.09 A for the former was due to the relativistic shrinkage of the d
orbitals of Ir. In contrast, the shortening of two M—P bond distances in the Rh complex was
minor: 0.02 A. Although the P,—~M-P, bond angles in the Ir and Rh complexes were
approximately right angles, the relativistic treatment afforded slightly increased values of
94.6 and 92.8 degrees in the Ir and Rh complexes, respectively.

In the reactants, N-phenylbenzamide was attached to the metal complex by forming
an M—O bond. Regardless of the metal species and relativistic treatments, the C—H bond
lengths of the reactants were not directly activated and were calculated to be 1.09 A, which
was not significantly different from that of the free N-phenylbenzamide molecule, i.e., 1.08
A. The M-O distances were in the range of 2.16-2.26 A. For both reaction positions, A
values were —0.09 and —0.02 A for the Ir and Rh complexes, respectively. This difference
indicates that the relativistic effect shortened the M—O distance in the Ir complex than in
the Rh complex. The M—C and M—H distances were calculated to be 2.58-2.71 and 2.61—
2.74 A, respectively, which were regarded as van der Waals contacts. The shortening of the
M-C and M-H distances in the relativistic treatment was due to the above-mentioned
shortening of the M—O bonds rather than the direct relativistic effect. Although the P.—M—
P, bond angles slightly decreased from those of the isolated metal complexes, they were
kept quasi-perpendicular. The P,—-M—O bond angles were calculated to be quasilinear. The
M-P, bond distances at the trans position were slightly elongated because the M—O bonds
were newly formed. The P,—M—C angles were estimated to be 147.2—152.2 degrees, which
were remarkably smaller than the linear angles. The P,-M—-H and P,—~M-H angles were
estimated to be larger than the right angles, 116.9-119.1 and 123.4-129.3 degrees,
respectively.

In the products, the C—H bonds were cleaved as the distances were elongated to 2.41—
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2.56 A, and the M—C and M—H bonds were newly formed in addition to the M—O bond.
Notably, the relativistic effect directly shortened the M—C and M—H distances in the Ir
complex more than those in the Rh complex. As shown later, the reduced M—H and M—C
distances led to the stabilization of the product. For the reactants, the P,—M—P; bond angles
were conserved quasi-perpendicular. The P,—M—O bond angles were calculated to be
quasilinear. The newly formed M—C bonds, which were located at the trans-position of
the M—P,, bond, elongated the M—P;, bond distances by approximately 0.2 A in comparison
with those in the isolated complexes and the reactants. The newly formed M—H bonds
were located at the cis positions of the M—P, and M—P;, bonds; the P,—M-H and P,-M-H
bond angles were quasi-perpendicular. Consequently, the products had approximately
square-pyramidal structures.

In the TSs, the differences in the C—H distances were characteristic. The relativistic
treatment shortened the C—H distance by 0.24 A in the Ir complex while such difference
was estimated to be 0.11 A in the Rh complex. The C—H distance was the main reaction
coordinate for the C—H activation. The relatively short C—H distance of 1.45A in the Ir
complex indicates that the TS was closer to the reactant than the product. Similar trends
were observed for the C~-M-H bond angles. According to Hammond’s postulate,*® the
relativistic and nonrelativistic treatments demonstrated the early and late TSs in the Ir
complex, respectively, while both treatments showed the late TSs in the Rh complex. The
relativistic results for the Ir complex were rather regarded as mid-TSs.

As shown in Table 8.1, for Rel/NR—-Ir/Rh—S—A, the geometric parameters for the
other cases, Rel/NR-Ir/Rh—S—C, Rel/NR-Ir/Rh—-B—A, and Rel/NR-Ir/Rh-B-C, are
tabulated in Tables A8.1-A8.3 in Appendix of this chapter. Table 8.2 summarizes the C—H
distances and the C-M—H angles in all cases. For Rel/NR—It/Rh—S—C, relatively large
differences between the relativistic and nonrelativistic treatments were obtained in the TSs

of the Ir complexes. Conversely, relatively small differences were observed in the reactants
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and products of the Ir and Rh complexes and the TS of the Rh complexes. As will be
discussed in the next section, these differences were caused by the stabilization of the

products by the relativistic effect in the Ir complexes, which led to the early or mid-TSs

because of Hammond’s postulate.
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Figure 8.2. Schematic illustrations of optimized structures of separated systems, reactants,
TSs, and products of the C-H bond cleavage at the ortho position of amino and carbonyl

groups by the Ir complex with the SEGPHOS ligand, which were calculated at the

relativistic treatment.
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Table 8.1. Bond distances (in A) and bond angles of reactants, TSs, and products of the C-

H activation at the ortho positions of amino group by the Ir and Rh complexes with the

SEGPHOS ligand. Those of separated systems, namely, free N-phenylbenzamide molecule

and isolated metal complexes, are also tabulated. M designates the transition metal (Ir or

Rh). A represents the difference between the results obtained by the relativistic (Rel) and

nonrelativistic (NR) calculations.

Ir Rh
Rel NR A Rel NR A
Separated System
N-phenylbenzamide
C-H 1.08 1.08 0.00 1.08 1.08 0.00
Metal Complexes
M-P, 2.19 2.28 —0.09 2.20 222 —-0.02
M-P;, 2.19 2.28 —0.09 2.20 222 —-0.02
P,-M-P; 94.6 91.1 3.5 92.8 91.3 1.6
Reactant
M-P, 2.25 2.33 —-0.08 2.24 2.26 —-0.02
M-P,, 2.22 2.31 —0.09 2.23 2.25 —0.02
M-O 2.16 2.26 —-0.09 2.16 2.19 —0.02
M-C 2.63 2.71 —-0.08 2.58 2.63 —0.05
M-H 2.71 2.74 —0.03 2.61 2.64 —-0.03
C-H 1.09 1.09 0.00 1.09 1.09 0.00
P.--M-P; 92.7 90.6 2.0 92.1 91.1 1.0
P.-M-O 174.8 177.1 -2.3 173.6 173.3 0.3
P,-M-C 151.1 152.2 -1.1 148.7 147.2 1.6
P,-M-H 119.1 117.7 1.3 117.5 116.9 0.6
P»-M-H 127.7 129.3 -1.6 124.6 123.4 1.2
C-M-H 234 23 0.4 242 23.8 0.4
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Table 8.1. Continued.

Ir Rh
Rel NR A Rel NR A
Transition State
M-P, 2.29 2.37 —-0.08 2.29 2.32 —-0.03
M-P,, 2.37 2.48 —0.11 2.39 2.44 —0.05
M-0O 2.11 2.16 —0.06 2.09 2.10 —-0.02
M-C 2.14 2.16 —-0.03 2.09 2.09 0.00
M-H 1.61 1.60 0.01 1.53 1.53 0.00
C-H 1.45 1.69 —0.24 1.65 1.76 —0.11
P.-M-P; 92.4 91.4 1.1 92.1 91.6 0.5
P.-M-O 171.3 173.0 -1.6 167.6 171.1 -3.6
Py-M-C 167.2 165.4 1.9 161.3 165.9 —4.6
P.--M-H 96.7 93.0 3.6 93.5 92.6 0.9
P»-M-H 126.5 116.5 10.0 112.0 112.4 -0.3
C-M-H 42.8 50.9 8.1 51.4 55.6 —4.2
Product

M-P, 2.30 2.37 —-0.07 2.29 2.32 —-0.02
M-P,, 242 2.51 —-0.10 242 2.45 —0.03
M-O 2.11 2.17 —0.06 2.10 2.11 —0.02
M-C 2.07 2.13 —0.06 2.04 2.06 —-0.02
M-H 1.52 1.55 —-0.03 1.49 1.49 —0.01
C-H 2.56 2.54 0.02 2.41 2.41 0.00
P,-M-P; 93.1 923 0.8 93.1 92.6 0.6
P.-M-O 173.5 176.8 -33 173.4 174.4 -1.0
Pp-M-C 170.4 169.4 0.9 169.8 169.6 0.2
P.,-M-H 88.5 88.0 0.5 88.2 87.8 0.4
Ps-M-H 85.4 86.8 -1.4 88.9 89.0 -0.2
C-M-H 89.5 85.8 3.7 84.7 83.9 0.8
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Table 8.2. C-H distances (in A) and C-M-H angles in all cases, namely reactants, TSs, and
products of the C-H activation at the ortho positions of amino and carbonyl groups with
SEGPHOS and BINAP ligands. M designates the transition metal (Ir or Rh). A represents
the difference between the results obtained by the relativistic (Rel) and nonrelativistic

(NR) calculations.

Amino group Carbonyl group
Ir Rh Ir Rh
Rel NR A NR Rel A NR Rel A NR Rel A
SEGPHOS
Separated System
C-H 1.08 1.08 0.00 1.08 1.08 0.00 1.08 1.08 0.00 1.08 1.08  0.00
Reactant
C-H 1.09 1.09 0.00 1.09 1.09 0.00 1.09 1.09 0.00 1.09 1.09  0.00
C-M-H 234 230 0.4 238 238 04 226 242 15 23.7 24 0.3
Transition State
C-H 145 1.69 -0.24 1.76 1.65 —0.11 1.77 1.50 -0.27 1.74 1.76  0.01
C-M-H 428 509 8.1 55.6 514 42 55.6 463 93 57 57.9 0.9
Product
C-H 2.56 2.54 0.02 241 241 0.00 2.58 2.63 0.05 2.49 2.53  0.04
C-M-H 895 858 3.7 839 847 08 87.8 932 54 87.4 90.1 2.8
BINAP
Separated System
C-H 1.08 1.08 0.00 1.08 1.08 0.00 1.08 1.08 0.00 1.08 1.08  0.00
Reactant
C-H 1.09 1.09 0.00 1.09 1.09 0.00 1.09 1.09 0.00 1.09 1.09  0.00
C-M-H 23.0 232 0.2 23.6 237 02 23.1 234 03 24.1 243 0.2
Transition State
C-H .71 144 -0.27 1.75 1.66 —0.10 1.78 1.50 -0.28 1.74 1.74  0.00
C-M-H 515 422 -9.3 552 517 35 56.1 464 9.6 57.0 57.2 0.2
Product
C-H 2.54 253  -0.01 242 242 0.01 2.60 2.64 0.04 2.50 2.51  0.01
C-M-H 858 883 2.5 84.1 852 1.0 88.8 932 44 87.8 89.0 1.3
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8.4.2  Energy diagram

Figure 8.3 shows the electronic energy diagrams of the C—H activation, which
compares the nonrelativistic and relativistic calculations and the Ir and Rh complexes. Four
diagrams were used to show the ligands and reaction positions, Figures 8.3 (a), (b), (¢), and
(d), correspond to Rel/NR-Ir/Rh—S—A, Rel/NR-Ir/Rh—S—C, Rel/NR-Ir/Rh-B-A, and
Rel/NR-Ir/Rh—B-C, respectively. The corresponding enthalpy and Gibbs energy diagrams
under standard conditions are shown in Figures A8.1 and A8.2, respectively. Notably, the
enthalpy and Gibbs energy diagrams, including the thermal correction, did not significantly
change from the electronic energy diagrams in these systems.

The reaction energies for the Ir complexes were calculated to be in the range of —5.2—
—0.1 and 21.3-25.3 kcal/mol by the relativistic and nonrelativistic treatments, respectively,
while those for the Rh complexes were 15.1-17.9 and 23.5-26.3 kcal/mol, respectively.
This indicates that the reaction of the Ir complexes was exothermic, according to the
relativistic calculations, while the others were endothermic. The drastic differences were
mainly due to the stabilization of products: the stabilization energies obtained by including
the relativistic effect were 25.4-26.2 and 8.2-8.4 kcal/mol for the Ir and Rh complexes,
respectively. As shown in Table 8.3, the additional calculations to dissociate the H atom
from individual products for Rel/NR—Ir/Rh—S—A clarified that the relativistic effect
increased the binding energies of Ir-H and Rh—H by 19.8 and 8.8 kcal/mol, respectively.
Therefore, we speculated that the binding energies for the relativistic stabilizations of Ir—C
and Rh—C were ~5 and ~0 kcal/mol, respectively.

The reaction barriers for the Ir complexes were calculated to be in the range of 7.2—
13.1 and 27.9-30.8 kcal/mol for the relativistic and nonrelativistic treatments, respectively,
while those for the Rh complexes were 19.6-22.3 and 26.3 — 28.9 kcal/mol, respectively.
The reaction barriers decreased to 17.0-20.8 and 6.6—6.9 kcal/mol for the Ir and Rh
complexes, respectively because of the relativistic effect. Notably, the large decreases in
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the reaction barriers for the Ir and Rh complexes were mainly due to the changes in the TS
structures, from the late TS to the mid-TS, as shown in the previous section.

The C—H activation by the cationic Ir catalyst played a key role in the H-D exchange
reaction of the N-phenylbenzamide experimentally observed. The product of the C—H
activation further accepted D,O as a ligand of the Ir complex, followed by the H-D
exchange between the ligands. To produce deuterated N-phenylbenzamide, the reverse
reaction of the C—H activation should proceed. As shown in Figure 8.3, the reaction barriers
of the reverse reactions for the Rh complexes were estimated to be 3.9—4.9 and 2.6-3.1
kcal/mol at the relativistic and nonrelativistic levels, respectively, when neglecting the
energetic effect of the deuteration. The reverse reactions occurred more easily than the
positive reactions. Similarly, those of the Ir complexes were estimated to be 4.8-6.8
kcal/mol at the nonrelativistic level. Conversely, the reaction barriers of the reverse
reactions for the Ir complexes became slightly larger because of the relativistic treatment:
12.1-13.8 kcal/mol. Notably, the reaction barriers of the positive and reverse reactions for
the Ir complexes were comparable at the relativistic level.

Based on the TS theory given by

k—KkB—TeX —AGI —KkBTeX AS ex —£ (8.1
n PR )T T T R )T TR ) |

the reaction constants at the standard condition, i.e., the absolute temperature (7) of 298.15
K, were estimated to be 3.2 x 103, 1.7 x 1072, and 8.7 x 107 s™! for AG* of 10, 20, and 30
kcal/mol, respectively. Here, kg is the Boltzmann constant (1.38 x 1072 J-K™!), 4 is the
Planck constant (6.63 x 1072* J-s), and R is the gas constant (8.31 J-K™' mol™"). The
frequency factor x was assumed to be 1. The reciprocals of the rate constants, which
indicate the orders of reaction times, were estimated to be ~3 us, ~1 min, and ~32 years for
AG* of 10, 20, and 30 kcal/mol, respectively. Therefore, the author concludes that the
comparable reaction barriers obtained for the Ir complexes, which were provided by the
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mid-TSs, were favorable for accomplishing the overall H-D exchange reactions.

Figure 8.4 shows the electronic energy diagram obtained by the all-electron
relativistic calculation. The scalar-relativistic IOTC Hamiltonian with the LUT scheme was
adopted for the relativistic all-electron calculations. The relativistic treatments were applied
to the one-electron Dirac Hamiltonian, which is termed LUT-IOTC Hamiltonian. Single-
point energy calculations were performed on the structure shown in Figure 8.2, namely the
Ir and Rh complexes with the SEGPHOS ligands. The results of the all-electron
calculations also indicated that the reaction barriers for the Ir complex were considerably

smaller than those for the Rh complex.
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Figure 8.3. Energy diagrams of the C-H activation. (a) and (b) correspond to the SEGPHOS
ligand and (c) and (d) to the BINAP ligand. (a) and (c) correspond to the ortho position of
the amino group and (b) and (d) to that of the carbonyl group. Black and gray lines represent
the results of the Ir and Rh complexes, respectively. Dashed and solid lines represent the

results of the nonrelativistic (NR) and relativistic (Rel) calculations, respectively.
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Table 8.3. Bond dissociation energies (in kcal/mol) of the Ir/Rh-H bond in product. AEvond
represents the difference between the results obtained by the relativistic (Rel) and

nonrelativistic (NR) calculations.

Rel NR AFEbond
Ir 86.3 66.5 19.8
Rh 73.3 64.5 8.8
20 20

(b) Carbonyl group 16.1

H
]
g T
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o
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1
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Figure 8.4. Calculated electronic energy diagrams obtained by the all-electron relativistic

calculation with LUT-IOTC Hamiltonian.
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8.4.3  Natural bond orbital analysis

This section provides a qualitative understanding of the relativistic catalytic activity
of the cationic Ir complex in the C—H activation reactions. The Ir and Rh catalysts with the
SEGPHOS ligand for the C—H activation at the ortho position of the amino group, i.e.,
Rel/NR-Ir/Rh—S—A, are used as typical examples; the other cases exhibit similar trends.

Table 8.4 shows the orbital energies of 11 NBOs in the valence region of the reactants
and products for the Ir and Rh complexes, which were calculated using nonrelativistic and
relativistic treatments. The corresponding occupation numbers are shown in parentheses in
the table. Additionally, Table 8.4 shows the orbital energies and occupation numbers for the
separated systems, i.e., the free N-phenylbenzamide and the isolated Ir and Rh complexes
with the SEGPHOS ligand. The orbital characters given in Table 8.4 were assigned from
the NBO figures shown in Figures A8.3—A8.5 and the NBO population analysis shown in
Tables A8.4—A8.7 in the Appendix of this chapter. For the four different calculations, i.e.,
Rel/NR-Ir/Rh—S—A, the NBO data with the same orbital character were listed in the same
column. Since the data were arranged in the order of orbital energy for Rel-Ir-S—A, the
orbital energies were occasionally reversed in the other cases.

Figures 8.5 (a), (b), (c), and (d) show the orbital correlation diagrams of Rel-Ir-S—A,
NR-Ir-S-A, Rel-Rh—S—A, and NR-Rh—S—A, respectively, illustrating the NBO analysis
in Table 8.4. The vertical axis corresponds to the NBO energy. Both sides show the orbital
levels of the separated systems, i.e., the metal complex and N-phenylbenzamide. The inset
shows the orbital levels assigned to the Ir complex and N-phenylbenzamide in the reactant.
The center corresponds to the product. Although the occupation number of NBOs is a non-
integer, the orbital levels with and without up-and-down arrows are adopted to distinguish
between the quasi-occupied and quasi-unoccupied orbitals.

Three NBOs of the free N-phenylbenzamide were one non-bonding orbital of O in the
carbonyl group (n0), one C—H bonding orbital (¢c-n), and one C—H anti-bonding orbital
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(6" c_n). Although these NBOs were partially occupied, no and oc i were assigned to quasi-
occupied orbitals and ¢"c_y to quasi-unoccupied orbitals. Notably, the four data points in
the same column are equivalent for the free N-phenylbenzamide. As shown in Table A8.4,
the NBO populations of no are 58.1% and 41.8% for the 2s and 2p orbitals of O,
respectively. The oc n and o ¢ 1 populations were {19.5%, 44.8%, and 35.6%} and {10.8%,
24.8%, and 64.3%}, respectively, for the {C2s, C2p, Hls} orbitals, respectively.

The eight NBOs of the isolated Ir and Rh complexes were two M—P bonding orbitals
(oM-pa, OM-P»), fOur non-bonding orbitals of metals, such as Ir and Rh (nm), and two M—P
bonding orbitals (¢"M pa, 0 M_ps). Notably, ny consists mainly of d orbitals and partially of
the s orbitals of the metal. These results are consistent with the fact that the electron
configurations of the Ir and Rh monocations are [Xe]4f'*5d"6s! and [Kr]4d’5s!, respectively.
The orbital energies of om p, and o\ py obtained by the relativistic treatment were lower
than those obtained by the nonrelativistic treatment for the Ir and Rh complexes. This
indicates that the binding between the metal and the SEGPHOS ligand was relatively strong
when the relativistic effect was included. The origin is the activation of the d orbitals, which
was caused by the relativistic self-consistent expansion of the d orbitals. The orbital
energies of nv for the relativistic treatment were slightly higher than those for the
nonrelativistic treatment. Furthermore, the aforementioned differences for the Ir complex
were remarkably larger than those for the Rh complex, further showing that the relativistic
effect becomes more remarkable in heavy elements.

Although 11 NBOs in the reactants were regarded as a combination of the separated
systems, i.e., three NBOs of N-phenylbenzamide and eight NBOs of the metal complex,
there were characteristic changes. The orders of no and oc_ were opposite in all cases. no
was not a purely non-bonding orbital but a lone-pair orbital coordinating to the metal,
because the carbonyl group of N-phenylbenzamide was coordinated to the metal, of which
the trans position was P,. For the three-center-four-electron bond, denoted by A:B:C, the
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NBO analysis generally separates one two-center bonding orbital and one non-bonding
orbital, such as A:B and :C. Furthermore, the covalence between A and B is larger than that
between B and C, although the opposite is true for the ionicity. The three-center-four-
electron bond of P,:M:0O was separated into P,: and M:O in this NBO analysis. Therefore,
the M—P, and M—O bonds were significantly covalent and ionic, respectively.

In the products, the C—H bond was cleaved, and the M—C and M—H bonds were newly
formed, as discussed in Section 3.2. Therefore, instead of oc u and ¢'c u vanishing, two
bonding orbitals, oum ¢ and oy n, and two anti-bonding orbitals, 6"m ¢ and ¢ v n, appeared.
Although the frans-position of the M—H bond was vacant, P, was located at the trans-
position of the M—C bond. The three-center-four-electron bond of P,:M:C was separated
into Py: and M:C by the NBO analysis. As mentioned above, the M—P, and M—C bonds
were significantly ionic and covalent, respectively. Furthermore, the binding of M—C and
M-H was calculated to be stronger for the relativistic treatment than for the nonrelativistic
treatment because of the self-consistent expansion of d orbitals. The relativistic effect was
greater for the heavy Ir complex than for the Rh complex.

The products had three non-bonding metal orbitals (nv), which only involved d
orbitals. These results are consistent with the fact that the electron configurations of the Ir
and Rh monocations are [Xe]4/*5d° and [Kr]4d®, respectively. The C—H activation led to
the oxidation number of the metal from +I to +III. Notably, the newly formed M—C and M—
H bonds were significantly covalent, which played a key role in the catalytic activity of the
Ir complex.

The discussion based on the NBO analysis is summarized as follows; The d orbitals
of Ir were activated by self-consistent expansion, followed by a strong interaction with the
Ls orbital of H and the 2s and 2p orbitals of C, resulting in strong Ir—H and Ir—C covalent
bonds. The stabilization of the product afforded mid-TS, resulting in the lowering of the
reaction barriers, as described in Sections 3.2 and 3.3. This was confirmed to be the origin
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of the relativistic catalytic activity observed for the Ir complexes.
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Figure 8.5. Orbital correlation diagram for the C-H activation at the ortho position of amino

group by the metal complex with the SEGPHOS ligand. (a) and (b) correspond to the Ir

complex, while (c) and (d) to the Rh complex. The orbital levels of (a) and (c) were

estimated by the NBO analysis at the relativistic treatment, while those of (b) and (d) at the

nonrelativistic treatment.

192




080°0—  (8%C°0) 080°0 (z81°0) 091°0 19€°0— (901°0) LLOO (0L1°0) LEY0 PdN 0
660'0—  (081°0) 090°0 (s81°0) 6510 19€°0— (901°0) LLOO (691°0) 8€Y°0 94N 0
1200  (286'1)  TIE0—  (S86'1)  TECO- ¥10°0 (LL6'T) SIE0- (T86'1) 62€0— Wit
st00  (9g6'1)  Ligo-  (€T6'D)  TEEO- 1100 (888°1) L1E€0— (L16'1) 8T€0— Wt
910°0 (€06'1)  €ze0—  (656'1)  6£€0— 100 (106'1) TTE0- (Te6'D) 9€€°0— Wt
L1000 (1z6'D)  1¥€0-  (LI6'D)  8SE0- $00°0 (8,8°1) 6¥€ 0~ (016'1) €5€°0— Wi
€100—  (€98°'1)  ISt0—  (bI8T)  8EY0— 980°0— (€06'1) S0S°0— (sz8'1) 0Ty 0— 4dNo
6200—  (698°1)  99¥'0— (1181  8€v°0— 980°0— (€06'1) S0S°0— (sz8'1) 0T 0— PdNo
xo[dwo) e
0000 (+10°0) 9650 (+10°0) 9650 0000 (¥10°0) 9650 (¥10°0) 9650 +HD0
0000 (z86'1)  $950—  (T86'1)  +95°0— 0000 (T86'1) ¥95°0— (T86'1) ¥95°0— HDp
0000 (LLe'n)  8790—  (LL6'T)  8T90— 0000 (LL6'1) 879°0— (LL6'T) 879°0— Ou
oprwrezudqrAuayd-N
waIsAg pareredog
\% BN} N \% EX1 AN
LRl 1

"sasoyjudIed ur umoys a1e S[e3IqIo Y} JO squnu uonedndd() ‘suone[nd[ed ([9y) d1SIADR[AL

pue (YN) OUSIANB[RIUOU Y} AQ PauUIeIqO SINSAI AY) UIIMIIQ QOUIIP Ay} syudsaidor y (Y 1o 1) [ejow uonisuen) ay) sAeudIsap N

‘sdnoi3 ourwre jo suonisod oyz.10 Yy 1 SOHJOAS UM uoneAnde H-O Y3 Jo 1onpoid pue ‘S [, Jueidoedl Jo (danuey ur) A310u0 OGN +'8 d[qeL,

193



2000—  (€10°0) 8€S°0 (€10°0) 0¥S°0 €00°0— (€10°0) 6€S°0 (€10°0) s o HO 0
8100 (8+C°0) 080°0 (LsT0) 7900 101°0— (6£2°0) 7800 (¥sT0) €810 4N 0
L10°0 (081°0) 090°0 (€61°0) €700 121°0— (z91°0) ¥50°0 (681°0) SLT0 W 0
$00°0 (86'1)  TIgo—  (€86°'1)  LIEO- LT10°0 (8L6'T) 8670~ (186'1) S1E0— Wi
€000 (9¢6'1)  Ligo—  (Tr6'D)  0TE0- ¥10°0 (606'1) ¥0€°0— (Lg6'T) 81€0— Wi
0000 (co6'1)  €zeo— (1161 +Teo- LT10°0 (698°1) €1¢0— (906'1) 0€€°0— Wu
€000 (126'1) Iv€0-  (8T6'1)  +¥E0- #00°0 (z68°1) 62€'0— (Tze' D) TEC0— Wt
€100—  (€98°1) IsP0-  (I¥8'1)  8€p'0— 650°0— (668°1) 88%'0— (rr81) 6TY 0~ 4No
S100—  (698°1)  99v'0—  (9¥8'1) 1Sy 0- ¥50°0— (€06'1) S6t°0— (6v8°1) 70— *dWo
6000—  (FI8T)  90S0—  (9T81) L6V 0— 9€0°0— (s6L°1) TS0~ (928'1) L8Y'0— Ou
2000—-  (SL6'D)  S190-  (SL6'D)  €190- €00°0— (sL6'D) 919°0— (9L6'1) €19°0— HD0
JuR)ORY
\% EXI AN \% EXI AN
LR 1

‘ponupuo) ‘'8 dqeL

194



vS1'0—  (601°0) T60°0 (sz1°0) 9’0 €PE0- ($80°0) T01°0 (L01°0) 910 HIW 0
0s0'0—  (19¥°0) 1500 (85¥°0) 101°0 8T1°0— (0L¥°0) L90°0 (St+°0) S61°0 IW 0
gero—-  (€ge0) w00 (Tre0) SLT0 8TE€0— (867°0) 1500 (Lz€0) 6L€°0 PN 0
6600 (90s'1)  6LT0—  (€€91)  8LEO— 880°0 0Ly’ 1) SLTO- (Teo 1) €9¢°0— adu
$00°0 (Sv6'1)  €8¢0—  (TS6'1)  L8EO- 9100 (Tzoe'1) 99¢'0— (8+6'1) €8€°0— Wit
#00°0 (€96'1)  18€0—  (L96'1)  16£0— 9100 (€v6'1) 0LE0— (196'1) $8¢°0— Wu
¥00°0 (c96'1)  06£0—-  (696'T)  S6£0— S10°0 (8+6'1) 9LE 0~ (596'1) 16€°0— Wit
§90°0—  (€s8°1)  €ev0—  (8T8T)  69€0— 0€1°0— (€06'1) 19%°0— (958°1) 1€€°0- HNo
8¢00—  (LL8T1)  obbo—  (6S81)  TOPO— 8L0°0— (806'1) L9V 0~ (€£8°1) 68€°0— N
6200—  (848°1)  +8%'0—  (€98'1)  ¥SH0— 9900~ (06'1) 80S°0— (€£8°1) Ty 0— o
6000—  (s9L' 1) 86¥'0—  (ILL'D)  06¥°0— 620°0— (0sL'1) 8150~ (99L'1) 68°0— Ou
onpold
\% EX1 AN \% oY AN
LRt I

panuUNu0) '8 dqeL

195



8.5 Conclusion

This chapter elucidated that the relativistic effect is essential for the C—H activation of
N-phenylbenzamide with cationic Ir catalysts. The deuteration experiments reported that
the C—H activation of N-phenylbenzamide occurred using Ir—diphosphine catalysts and did
not occur for Rh—diphosphine catalysts. DFT calculations suggest that the difference in
reactivity originates from the relativistic effect. The self-consistent d orbital expansion
causes the activation of the d orbitals of Ir, stabilizing TS and affording the product of the
C—H activation. The relativistic effect of the Rh catalysts is similar but small in magnitude.
Consequently, the origin of the catalytic activity was clarified from the viewpoint of the

relativistic effect on the geometric parameters and electronic structures.
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Appendix

Table A8.1. Bond distances (in A) and bond angles of reactants, TSs, and products of the
C-H bond activation at the ortho positions of carbonyl group by the Ir and Rh complexes
with the SEGPHOS ligand. Those of separated systems, namely, free benzamide molecule
and isolated metal complexes, are also tabulated. M designates the transition metal (Ir or
Rh). A represents the difference between the results obtained by the nonrelativistic (NR)

and relativistic (Rel) calculations.

Ir Rh
NR Rel A NR Rel A
Separated System
Benzamide
C-H 1.08 1.08 0.00 1.08 1.08 0.00
Metal Complexes
M-P, 2.28 2.19 —0.09 222 2.20 —-0.02
M-P, 2.28 2.19 —0.09 222 2.20 —-0.02
P.-M-P, 91.1 94.6 3.5 91.3 92.8 1.6
Reactant

M-P, 2.30 2.23 —0.06 2.25 2.23 —-0.02
M-P; 2.31 2.21 —-0.09 2.25 2.22 —-0.02
M-O 2.32 2.19 —-0.13 2.23 2.20 —-0.04
M-C 2.74 2.60 —-0.14 2.63 2.61 —-0.02
M-H 2.80 2.61 —-0.19 2.66 2.62 —0.04

C-H 1.09 1.09 0 1.09 1.09 0
P,-M-P, 91.1 93.2 2.0 91.7 92.6 0.9
P,-M-O 174.4 172.4 -1.9 173.1 172.5 —-0.6
P»-M-C 154.0 160.4 6.4 158.0 158.9 1.0
P.,-M-H 111.2 105.5 =5.7 107.3 106.0 -1.3
Ps-M-H 157.3 157.9 0.6 159.5 159.2 -0.3

C-M-H 22.6 24.2 1.5 23.7 24 0.3
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Table A8.1. Continued.

Ir Rh
NR Rel A NR Rel A
Transition State
M-P, 2.35 2.27 —-0.09 2.28 2.27 —-0.02
M-P; 2.56 241 —-0.15 247 2.46 —-0.01
M-O 2.21 2.14 —-0.07 2.14 2.13 —-0.01
M-C 2.08 2.05 —-0.02 2.00 1.99 —0.01
M-H 1.62 1.62 0 1.57 1.55 —0.03
C-H 1.77 1.50 —-0.27 1.74 1.76 0.01
P.-M-P, 92.1 93.4 1.3 95.3 94.2 -1.1
P.-M-O 177.9 175.1 -2.8 176.6 176.8 0.3
P»-M-C 134.1 145.8 11.6 121.1 131.9 10.8
P.,-M-H 89.3 90.2 0.9 89.9 89.1 -0.7
P»-M-H 169.5 165.5 —4.0 174.8 168.4 —6.4
C-M-H 55.6 46.3 -9.3 57 57.9 0.9
Product

M-P, 2.36 2.29 —0.08 2.31 2.28 —-0.03
M-P, 2.50 241 —-0.09 2.46 242 —-0.03
M-O 2.20 2.14 —-0.06 2.14 2.12 —-0.02
M-C 2.12 2.06 —0.06 2.05 2.04 —-0.02
M-H 1.56 1.52 —0.03 1.50 1.49 —-0.01
C-H 2.58 2.63 0.05 2.49 2.53 0.04
P,-M-P, 91.8 92.9 1.1 92.8 93.8 1.0
P,-M-O 172.7 172.7 0.1 171.4 171.1 -0.3
Py-M-C 168.5 166.8 -1.6 168.1 167.3 -0.9
P.--M-H 84.5 85.8 1.3 82.5 83.9 1.4
P»-M-H 95.4 92.4 -3.1 98.4 96.7 -1.7
C-M-H 87.8 93.2 5.4 87.4 90.1 2.8
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Table A8.2. Bond distances (in A) and bond angles of reactants, TSs, and products of the
C-H bond activation at the ortho positions of amino group by the Ir and Rh complexes with
the BINAP ligand. Those of separated systems, namely, free benzamide molecule and
isolated metal complexes, are also tabulated. M designates the transition metal (Ir or Rh).
A represents the difference between the results obtained by the nonrelativistic (NR) and

relativistic (Rel) calculations.

Ir Rh
NR Rel A NR Rel A
Separated System
Benzamide
C-H 1.08 1.08 0.00 1.08 1.08 0.00
Metal Complexes

M-P, 2.28 2.20 —0.08 2.22 2.20 —0.02
M-P; 2.28 2.19 —-0.09 2.22 2.20 —0.02

Po-M-P;, 89.8 93.1 33 90.3 91.6 1.3

Reactant

M-P, 2.32 2.25 —-0.07 2.26 2.24 —-0.02
M-P, 2.31 2.22 —-0.09 2.25 2.23 —-0.02
M-0O 2.26 2.16 —-0.10 2.18 2.16 —-0.02
M-C 2.70 2.67 —-0.04 2.65 2.63 —-0.02
M-H 2.73 2.72 —-0.01 2.67 2.65 —-0.02

C-H 1.09 1.09 0.00 1.09 1.09 0.00

Po-M-Py, 90.1 92.1 2.0 90.7 91.5 0.8

P.-M-O 175.9 175.3 —-0.7 174.5 175.0 0.4

P»-M-C 151.4 151.8 0.4 150.0 150.6 0.5
P,-M-H 119.4 118.0 -1.4 118.2 117.6 —-0.6

P»-M-H 128.5 128.6 0.2 126.5 126.8 0.4

C-M-H 23.0 23.2 0.2 23.6 23.7 0.2
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Table A8.2. Continued.

Ir Rh
NR Rel A NR Rel A
Transition State
M-P, 237 2.28 —-0.09 2.32 2.29 —0.03
M-P; 2.48 2.36 -0.12 242 2.38 —0.04
M-O 2.17 2.12 —0.06 2.11 2.09 —-0.01
M-C 2.17 2.15 —-0.02 2.10 2.09 —-0.01
M-H 1.59 1.61 0.02 1.52 1.53 0.00
C-H 1.71 1.44 —-0.27 1.75 1.66 —-0.10
P.-M-P, 89.8 91.2 1.4 90.2 91.1 0.9
P.-M-O 169.2 167.9 -1.2 167.4 165.8 -1.6
P»-M-C 163.5 164.5 1.0 161.7 161.2 —-0.6
P.,-M-H 93.0 95.4 24 92.0 93.0 1.1
P»-M-H 113.6 124.0 10.4 108.2 111.2 3.0
C-M-H 51.5 42.2 -9.3 55.2 51.7 -3.5
Product

M-P, 2.38 2.30 —-0.08 2.32 2.30 —-0.02
M-P, 2.50 2.40 —-0.10 2.45 242 —-0.03
M-O 2.17 2.11 —0.06 2.11 2.09 —-0.01
M-C 2.13 2.07 —0.06 2.06 2.04 —-0.02
M-H 1.55 1.52 —0.03 1.49 1.49 —-0.01
C-H 2.54 2.53 —-0.01 242 242 0.01
P,-M-P, 91.0 92.1 1.0 91.6 92.2 0.6
P.-M-O 176.7 170.8 =59 173.7 172.7 -1.0
Py-M-C 170.5 170.4 —-0.1 170.3 170.6 0.3
P.--M-H 88.6 89.0 0.4 87.7 87.9 0.3
P»-M-H 87.3 86.1 -1.2 89.0 88.7 -0.3
C-M-H 85.8 88.3 2.5 84.1 85.2 1.0
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Table A8.3. Bond distances (in A) and bond angles of reactants, TSs, and products of the
C-H bond activation at the ortho positions of carbonyl group by the Ir and Rh complexes
with the BINAP ligand. Those of separated systems, namely, free benzamide molecule and
isolated metal complexes, are also tabulated. M designates the transition metal (Ir or Rh).
A represents the difference between the results obtained by the nonrelativistic (NR) and

relativistic (Rel) calculations.

Ir Rh
NR Rel A NR Rel A
Separated System
Benzamide
C-H 1.08 1.08 0.00 1.08 1.08 0.00
Metal Complexes
M-P, 2.28 2.20 —0.08 2.22 2.20 —0.02
M-P; 2.28 2.19 —-0.09 2.22 2.20 —0.02
Po-M-P;, 89.8 93.1 33 90.3 91.6 1.3
Reactant

M-P, 2.31 2.23 —0.08 2.24 222 —-0.02
M-P, 2.31 2.21 -0.10 2.25 222 —-0.02
M-0O 2.30 2.19 —-0.11 2.22 2.19 —-0.03
M-C 2.68 2.66 —-0.02 2.62 2.61 —0.01
M-H 2.74 2.70 —0.05 2.60 2.56 —-0.04

C-H 1.09 1.09 0.00 1.09 1.09 0.00
Po-M-Py, 90.4 92.4 2.0 91.1 91.9 0.9
P.-M-O 174.0 171.5 2.4 173.4 172.6 —-0.8
P»-M-C 159.6 161.4 1.9 157.6 157.8 0.2
P,-M-H 110.5 106.5 -4.0 107.4 106.0 -1.4
P»-M-H 156.5 157.0 0.5 159.9 160.2 0.3
C-M-H 23.1 23.4 0.3 24.1 243 0.2
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Table A8.3. Continued.

Ir Rh
NR Rel A NR Rel A
Transition State
M-P, 2.35 2.27 —-0.09 2.29 2.27 —-0.02
M-P; 2.57 241 —-0.16 2.47 245 —-0.02
M-O 221 2.14 —-0.07 2.14 2.12 —-0.02
M-C 2.08 2.05 —-0.02 2.00 1.99 —-0.01
M-H 1.62 1.62 0.00 1.57 1.56 —-0.02
C-H 1.78 1.50 —-0.28 1.74 1.74 0.00
P.-M-P, 91.1 92.4 1.3 94.4 93.2 -1.2
P.-M-O 178.9 176.8 -2.1 176.6 177.5 0.9
P»-M-C 134.4 148.1 13.7 121.0 130.6 9.6
P.,-M-H 89.9 91.5 1.6 90.7 90.3 -0.3
P»-M-H 168.9 162.9 —6.0 174.9 170.3 —4.6
C-M-H 56.1 46.4 -9.6 57.0 57.2 0.2
Product

M-P, 2.36 2.29 —-0.08 2.31 2.28 —-0.03
M-P, 2.50 2.40 —-0.10 2.45 242 —-0.03
M-O 2.20 2.13 —-0.07 2.12 2.11 —-0.02
M-C 2.12 2.07 —0.05 2.06 2.05 —-0.02
M-H 1.55 1.52 —0.03 1.50 1.49 —-0.01
C-H 2.60 2.64 0.04 2.50 2.51 0.01
P,-M-P, 91.1 92.4 1.3 92.1 92.6 0.5
P.-M-O 172.7 175.3 2.6 174.4 174.6 0.2
Py-M-C 168.8 167.3 -1.4 168.5 168.1 -0.4
P.--M-H 84.7 87.8 3.1 85.1 86.2 1.1
P»-M-H 96.4 92.7 -3.7 97.6 96.7 -0.9
C-M-H 88.8 93.2 4.4 87.8 89.0 1.3
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Figure A8.1. Enthalpy diagrams of the C-H bond activation. (a) and (b) correspond to the
SEGPHOS ligand and (c) and (d) to the BINAP ligand. (a) and (c¢) correspond to the ortho
position of the amino group and (b) and (d) to that of the carbonyl group. Black and gray
lines represent the results of the Ir and Rh complexes, respectively. Dashed and solid lines
represent the results of the nonrelativistic (NR) and relativistic (Rel) calculations,

respectively.
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Figure A8.2. Gibbs energy diagrams of the C-H bond activation. (a) and (b) correspond to
the SEGPHOS ligand and (c) and (d) to the BINAP ligand. (a) and (c) correspond to the
ortho position of the amino group and (b) and (d) to that of the carbonyl group. Black and
gray lines represent the results of the Ir and Rh complexes, respectively. Dashed and solid

lines represent the results of the nonrelativistic (NR) and relativistic (Rel) calculations,
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Figure A8.3. Visualization of NBOs in the valence region of the separated system, namely

GV

U

N-phenylbenzamide and Ir and Rh complexes with SEGPHOS ligand, which were

calculated by the nonrelativistic (NR) and relativistic (Rel) treatments.
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Figure A8.4. Visualization of NBOs in the valence region of the reactants of the C-H
activation at the ortho position of amino group with SEGPHOS ligand, which were

calculated by the nonrelativistic (NR) and relativistic (Rel) treatments.
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calculated by the nonrelativistic (NR) and relativistic (Rel) treatments.
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Table A8.4. NBO population analysis (%) in the valence region of the Ir complexes with

SEGPHOS ligand in the C-H activation at the ortho position of amino group calculated by

the relativistic treatments.

Ir H
5d 6s 2s 2p s
Separated System
N-phenylbenzamide
no 0.00 0.00 0.00 0.00 0.00
OC-H 0.00 0.00 19.54 44 .81 35.59
OC-H* 0.00 0.00 10.81 24.78 64.34
Metal Complex
OM-Pa 18.84 16.30 - - -
OM-Ph 18.83 16.30 - - -
nM 99.62 0.33 - - -
nm 99.81 0.18 - - -
nM 99.76 0.00 - - -
nm 93.03 6.87 - - -
o M-Ph 34.64 29.99 - - -
0 M-Pa 34.65 29.98 - - -
Reactant
ocH 0.00 0.00 19.47 45.07 35.40
no 0.00 0.00 0.00 0.00 0.00
OM-Pa 16.48 13.61 0.00 0.00 0.00
OM-Pb 16.67 16.50 0.00 0.00 0.00
nM 99.79 0.17 0.00 0.00 0.00
nm 99.84 0.07 0.00 0.00 0.00
nM 99.78 0.21 0.00 0.00 0.00
nm 95.38 4.60 0.00 0.00 0.00
0" M-Pb 33.57 33.22 0.00 0.00 0.00
0" M-Pa 38.25 31.56 0.00 0.00 0.00
o'cn 0.00 0.00 10.68 24.72 64.54
Product
no 0.00 0.00 0.00 0.00 0.00
OM-Pa 21.02 12.39 0.00 0.00 0.00
oM-C 23.92 13.37 17.51 45.19 0.00
OM-H 42.57 15.48 0.00 0.00 41.83
nm 99.68 0.24 0.00 0.00 0.00
nM 99.98 0.00 0.00 0.00 0.00
nm 99.96 0.01 0.00 0.00 0.00
npy 0.00 0.00 0.00 0.00 0.00
0" M-Pa 41.79 24.63 0.00 0.00 0.00
o'MC 40.22 22.48 10.41 26.89 0.00
oM 30.72 11.17 0.00 0.00 57.98
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Table A8.4. Continued.

Py

Rest
3s 3p 3s 3p 2s 2p
Separated System
N-phenylbenzamide
no - - - - 58.13 41.82 0.05
OC-H - - - - 0.00 0.00 0.06
oc-H* - - - - 0.00 0.00 0.07
Metal Complex
OM-Pa 18.76 45.77 0.00 0.00 - - 0.31
OM-Pb 0.00 0.00 18.77 45.78 - - 0.32
nm 0.00 0.00 0.00 0.00 - - 0.05
nM 0.00 0.00 0.00 0.00 - - 0.01
nm 0.00 0.00 0.00 0.00 - - 0.24
nM 0.00 0.00 0.00 0.00 - - 0.10
o M-Pb 0.00 0.00 10.20 24.89 - - 0.28
0 M-Pa 10.21 24.90 0.00 0.00 - - 0.28
Reactant
OC-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06
no 0.00 0.00 0.00 0.00 21.37 78.58 0.05
OM-Pa 23.23 46.51 0.00 0.00 0.00 0.00 0.17
OM-Pb 0.00 0.00 21.17 45.48 0.00 0.00 0.17
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.04
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.09
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0 M-Pb 0.00 0.00 10.51 22.60 0.00 0.00 0.11
0 M-Pa 10.01 20.05 0.00 0.00 0.00 0.00 0.13
o'cn 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Product
no 0.00 0.00 0.00 0.00 20.21 79.73 0.06
OM-Pa 20.84 45.54 0.00 0.00 0.00 0.00 0.22
OoM-C 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OM-H 0.00 0.00 0.00 0.00 0.00 0.00 0.11
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.08
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.02
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.03
npb 0.00 0.00 15.03 84.90 0.00 0.00 0.07
0 M-Pa 10.48 22.90 0.00 0.00 0.00 0.00 0.19
o M-C 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0 M.H 0.00 0.00 0.00 0.00 0.00 0.00 0.14
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Table A8.5. NBO population analysis (%) in the valence region of the Ir complexes with

SEGPHOS ligand in the C-H activation at the ortho position of amino group calculated by

the nonrelativistic treatments.

Ir H
5d 6s 2s 2p s
Separated System
N-phenylbenzamide
no 0.00 0.00 0.00 0.00 0.00
OC-H 0.00 0.00 19.54 44 .81 35.59
OC-H* 0.00 0.00 10.81 24.78 64.34
Metal Complex
OM-Pa 14.19 13.50 - - -
OM-Pb 14.22 13.50 - - -
nM 99.89 0.08 - - -
nm 99.95 0.04 - - -
nM 99.83 0.00 - - -
nm 97.97 2.02 - - -
o M-Ph 36.73 34.90 - - -
0 M-Pa 36.72 34.94 - - -
Reactant
OC-H 0.00 0.00 19.26 44.94 35.74
no 0.00 0.00 0.00 0.00 0.00
OM-Pa 13.74 11.66 0.00 0.00 0.00
OM-Pb 12.55 13.46 0.00 0.00 0.00
nM 99.94 0.02 0.00 0.00 0.00
nm 99.89 0.06 0.00 0.00 0.00
nM 99.90 0.09 0.00 0.00 0.00
nm 97.87 2.12 0.00 0.00 0.00
0" M-Pb 35.66 38.24 0.00 0.00 0.00
0" M-Pa 40.28 34.19 0.00 0.00 0.00
o'cn 0.00 0.00 10.72 25.02 64.20
Product
no 0.00 0.00 0.00 0.00 0.00
OM-Pa 18.48 11.49 0.00 0.00 0.00
oM-C 25.65 12.90 15.88 45.57 0.00
OM-H 41.92 16.18 0.00 0.00 41.77
nm 99.88 0.08 0.00 0.00 0.00
nM 99.98 0.00 0.00 0.00 0.00
nm 99.99 0.00 0.00 0.00 0.00
npy 0.00 0.00 0.00 0.00 0.00
0" M-Pa 43.04 26.77 0.00 0.00 0.00
o'MC 40.88 20.57 9.96 28.59 0.00
oM 30.15 11.64 0.00 0.00 58.08
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Table A8.5. Continued.

P Rest
3s 3s 3s 3p 2s 2p
Separated System
N-phenylbenzamide
no - - - - 58.13 41.82 0.05
OC-H - - - - 0.00 0.00 0.06
oc-H* - - - - 0.00 0.00 0.07
Metal Complex
OM-Pa 20.55 51.43 0.00 0.00 - - 0.33
OM-Ph 0.00 0.00 20.53 51.41 - - 0.34
nm 0.00 0.00 0.00 0.00 - - 0.03
nM 0.00 0.00 0.00 0.00 - - 0.01
nm 0.00 0.00 0.00 0.00 - - 0.17
nM 0.00 0.00 0.00 0.00 - - 0.01
o MPb 0.00 0.00 7.95 19.89 - - 0.53
0 M-Pa 7.94 19.87 0.00 0.00 - - 0.53
Reactant
oc-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06
no 0.00 0.00 0.00 0.00 16.38 83.55 0.07
OM-Pa 23.41 51.05 0.00 0.00 0.00 0.00 0.14
OM-Pb 0.00 0.00 22.83 51.04 0.00 0.00 0.13
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.04
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.05
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.01
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0 M-Pb 0.00 0.00 8.03 17.96 0.00 0.00 0.10
0 M-Pa 7.99 17.41 0.00 0.00 0.00 0.00 0.13
o'cn 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Product
no 0.00 0.00 0.00 0.00 16.58 83.35 0.07
OM-Pa 20.91 48.93 0.00 0.00 0.00 0.00 0.19
oM-C 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OM-H 0.00 0.00 0.00 0.00 0.00 0.00 0.13
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.04
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.02
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01
npb 0.00 0.00 48.18 51.80 0.00 0.00 0.02
0 M-Pa 8.98 21.01 0.00 0.00 0.00 0.00 0.20
o MC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 M.H 0.00 0.00 0.00 0.00 0.00 0.00 0.13
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Table A8.6. NBO population analysis (%) in the valence region of the Rh complexes with
SEGPHOS ligand in the C-H activation at the ortho position of amino group calculated by

the relativistic treatments.

Rh C H
4d 5s 2s 2p s
Separated System
N-phenylbenzamide
no 0.00 0.00 0.00 0.00 0.00
OC-H 0.00 0.00 19.54 44 .81 35.59
OC-H* 0.00 0.00 10.81 24.78 64.34
Metal Complex
OM-Pa 14.99 14.10 - - -
OM-Pb 14.78 14.11 - - -
nM 99.89 0.11 - - -
nm 99.95 0.05 - - -
nM 100.00 0.00 - - -
nm 97.48 2.52 - - -
o M-Ph 36.37 34.73 - - -
0 M-Pa 36.53 34.37 - - -
Reactant
OC-H 0.00 0.00 19.35 44.93 35.66
no 0.00 0.00 0.00 0.00 0.00
OM-Pa 14.21 12.13 0.00 0.00 0.00
OM-Pb 13.19 14.16 0.00 0.00 0.00
nM 99.93 0.06 0.00 0.00 0.00
nm 99.96 0.04 0.00 0.00 0.00
nM 99.89 0.11 0.00 0.00 0.00
nm 98.13 1.87 0.00 0.00 0.00
0" M-Pb 35.02 37.61 0.00 0.00 0.00
0" M-Pa 39.72 33.92 0.00 0.00 0.00
o'cn 0.00 0.00 10.74 24.92 64.28
Product
no 0.00 0.00 0.00 0.00 0.00
OM-Pa 19.29 11.90 0.00 0.00 0.00
oM-C 25.97 13.24 16.21 44.56 0.00
OM-H 42.28 16.17 0.00 0.00 41.46
nm 99.93 0.07 0.00 0.00 0.00
nM 99.97 0.03 0.00 0.00 0.00
nm 99.99 0.00 0.00 0.00 0.00
npy 0.00 0.00 0.00 0.00 0.00
0" M-Pa 42.54 26.24 0.00 0.00 0.00
o'MC 40.24 20.53 10.46 28.76 0.00
oM 30.03 11.49 0.00 0.00 58.37
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Table A8.6. Continued.

Rest
3s 3p 3s 3p 2s 2p
Separated System
N-phenylbenzamide
no - - - - 58.13 41.82 0.05
OC-H - - - - 0.00 0.00 0.06
oc-H* - - - - 0.00 0.00 0.07
Metal Complex
OM-Pa 20.67 50.06 0.00 0.00 - - 0.18
OM-Ph 0.00 0.00 20.78 50.15 - - 0.17
nm 0.00 0.00 0.00 0.00 - - 0.00
nm 0.00 0.00 0.00 0.00 - - 0.00
nm 0.00 0.00 0.00 0.00 - - 0.00
nM 0.00 0.00 0.00 0.00 - - 0.00
o MPb 0.00 0.00 8.45 20.38 - - 0.08
0 M-Pa 8.48 20.54 0.00 0.00 - - 0.08
Reactant
oc-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06
no 0.00 0.00 0.00 0.00 19.54 80.40 0.06
OM-Pa 24.24 49.31 0.00 0.00 0.00 0.00 0.11
OM-Pb 0.00 0.00 23.20 49.33 0.00 0.00 0.11
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.01
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 M-Pb 0.00 0.00 8.74 18.58 0.00 0.00 0.06
0 M-Pa 8.67 17.64 0.00 0.00 0.00 0.00 0.05
o'cn 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Product
no 0.00 0.00 0.00 0.00 18.10 81.83 0.07
OM-Pa 21.22 47.44 0.00 0.00 0.00 0.00 0.15
OoM-C 0.00 0.00 0.00 0.00 0.00 0.00 0.01
OM-H 0.00 0.00 0.00 0.00 0.00 0.00 0.09
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01
npb 0.00 0.00 14.09 85.86 0.00 0.00 0.05
0 M-Pa 9.62 21.52 0.00 0.00 0.00 0.00 0.08
o M-C 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0 M.H 0.00 0.00 0.00 0.00 0.00 0.00 0.11
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Table A8.7. NBO population analysis (%) in the valence region of the Rh complexes with
SEGPHOS ligand in the C-H activation at the ortho position of amino group calculated by

the nonrelativistic treatments.

Rh C H
4d 5s 2s 2p s
Separated System
N-phenylbenzamide
no 0.00 0.00 0.00 0.00 0.00
OC-H 0.00 0.00 19.54 44 .81 35.59
OC-H* 0.00 0.00 10.81 24.78 64.34
Metal Complex
OM-Pa 13.88 13.16 - - -
OM-Ph 13.40 13.13 - - -
nM 99.89 0.08 - - -
nm 99.96 0.03 - - -
nM 99.79 0.00 - - -
nm 98.23 1.75 - - -
o M-Ph 37.03 36.26 - - -
0 M-Pa 37.37 35.42 - - -
Reactant
OC-H 0.00 0.00 19.23 44.87 35.85
no 0.00 0.00 0.00 0.00 0.00
OM-Pa 13.42 11.57 0.00 0.00 0.00
OM-Pb 12.15 13.19 0.00 0.00 0.00
nM 99.92 0.05 0.00 0.00 0.00
nm 99.91 0.02 0.00 0.00 0.00
nM 99.90 0.09 0.00 0.00 0.00
nm 98.52 1.47 0.00 0.00 0.00
0" M-Pb 35.79 38.83 0.00 0.00 0.00
0" M-Pa 40.26 34.70 0.00 0.00 0.00
o'cn 0.00 0.00 10.76 25.09 64.09
Product
no 0.00 0.00 0.00 0.00 0.00
OM-Pa 18.55 11.43 0.00 0.00 0.00
oM-C 13.19 26.41 15.58 4481 0.00
OM-H 42.01 16.52 0.00 0.00 41.40
nm 99.90 0.05 0.00 0.00 0.00
nM 99.96 0.02 0.00 0.00 0.00
nm 99.99 0.00 0.00 0.00 0.00
npy 0.00 0.00 0.00 0.00 0.00
0" M-Pa 43.22 26.64 0.00 0.00 0.00
o'MC 20.12 40.27 10.22 29.39 0.00
oM 29.76 11.70 0.00 0.00 58.46
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Table A8.7. Continued.

i P Rest
3s 3s 3s 3p 2s 2p
Separated System
N-phenylbenzamide
no - - - - 58.13 41.82 0.05
OC-H - - - - 0.00 0.00 0.06
oc-H* - - - - 0.00 0.00 0.07
Metal Complex
OM-Pa 21.05 51.72 0.00 0.00 - - 0.19
OM-Ph 0.00 0.00 21.35 51.93 - - 0.19
nm 0.00 0.00 0.00 0.00 - - 0.03
nM 0.00 0.00 0.00 0.00 - - 0.01
nm 0.00 0.00 0.00 0.00 - - 0.21
nM 0.00 0.00 0.00 0.00 - - 0.02
0 M-Pb 0.00 0.00 7.73 18.80 - - 0.18
0 M-Pa 7.82 19.21 0.00 0.00 - - 0.18
Reactant
oc-H 0.00 0.00 0.00 0.00 0.00 0.00 0.05
no 0.00 0.00 0.00 0.00 18.62 81.32 0.06
OM-Pa 24.11 50.80 0.00 0.00 0.00 0.00 0.11
OM-Pb 0.00 0.00 23.59 50.97 0.00 0.00 0.10
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.03
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.07
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.01
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0 M-Pb 0.00 0.00 8.01 17.31 0.00 0.00 0.06
0 M-Pa 8.04 16.93 0.00 0.00 0.00 0.00 0.08
o'cn 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Product
no 0.00 0.00 0.00 0.00 16.88 83.05 0.07
OM-Pa 21.18 48.67 0.00 0.00 0.00 0.00 0.17
oM-C 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OM-H 0.00 0.00 0.00 0.00 0.00 0.00 0.06
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.05
nm 0.00 0.00 0.00 0.00 0.00 0.00 0.02
nM 0.00 0.00 0.00 0.00 0.00 0.00 0.01
npb 0.00 0.00 47.60 52.39 0.00 0.00 0.01
0 M-Pa 9.09 20.89 0.00 0.00 0.00 0.00 0.16
o M-C 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0 M.H 0.00 0.00 0.00 0.00 0.00 0.00 0.09
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Chapter 9 General conclusion

In this thesis, the author developed theories and computational programs for 2c
relativistic quantum chemistry in terms of the PCC of two-electron and density operators.
The application to the analysis of the C—H activation was also explained. This Chapter
summarizes the thesis and presents the perspectives of this research field.

In Chapters 3 and 4, the author addressed the acceleration of computation of TEIs,
which is the bottleneck of relativistic calculation. CD and LUD for TEI-matrices were
formulated and implemented in Chapter 3. The proposed algorithm reduced the number of
calculations within arbitrary accuracy. The reduction of computational costs was
particularly large in heavy-element systems where relativistic effects are essential, which
confirmed the utility of this matrix decomposition technique. Chapter 4 proposed the
efficient algorithm of LUT based on the element-loop scheme. The proposed algorithm
accelerated the unitary transformation of TEIs; combination with the database of one-center
TEIs realized the constant computational costs for the unitary transformation regardless of
the system size. Applications to heavy-element molecules, such as Au clusters and Pt
complexes, showed the validity of the algorithm assisted by the database.

Chapters 5 and 6 provided approaches to topics related to DFT. Chapter 5 introduced
the PCC of two-electron and density operators to the LC-DFT. The formulation and
implementation were proposed based on the IOTC transformation with and without the
LUT scheme. The considerations of both PCC for two-electron and density operators and
LC for exchange functionals were important for the calculations of heavy-element
properties. Chapter 6 discussed the relationship between PCEs and delocalization error,
which is defined as the deviation from the exact behavior of DFT energy. The functionals

with a small ratio of HFx did not satisfy the linearity condition, the constant energy with
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respect to the FON, and gave large delocalization error. PCC of two-electron and density
operators had remarkable effects on delocalization error in core orbitals of higher-row
elements, which revealed the importance of PCC of arbitrary operators.

Chapter 7 explained the details of the publishment of PCC methods to the GAMESS
program, which is one of the popular quantum chemical program packages. The author
made the PCC methods for two-electron and density operators available based on the spin-
free IOTC Hamiltonian with and without the LUT scheme. The PCC methods were
connected to several functionalities in GAMESS, such as correlation methods and linear-
scaling techniques. Combination of the PCC with the DC method enabled highly accurate
large-scale relativistic calculations.

In Chapter 8, the author explored the reactivity of cationic Ir and Rh catalysts in the
C-H activation of N-phenylbenzamide. Comparing relativistic and nonrelativistic
calculations clarified the origin of the high catalytic activity of Ir complexes. The
relativistic effects on orbitals of Ir causes the stabilization of the product of the Ir—H and
Ir—C bonds leading to the low reaction barrier of TSs. The relativistic effects on Rh catalysts
indicated the similar tendency, but the magnitude was small. Consequently, the relativistic
effects brought about the differences in reactivity depending on the metal species.

The study in this thesis enhances the availability and applicability of relativistic
quantum chemistry. The PCC methods developed in this thesis realize the accurate 2c
calculations with the similar computational costs to the nonrelativistic theory. The public
version of GAMESS program with the PCC methods was released in July 2022, which
allows any researcher to use such accurate and efficient relativistic methods. The progress
of this research field, including this thesis and previous work, completed the foundation for
utilizing the 2c Hamiltonian. Solving the Dirac equation based on the 2c theory will be
more common instead of the Schrédinger equation. In terms of chemical properties,

relativistic effects on transition metals were revealed to play an important role in catalytic
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reactions. The viewpoint of relativistic effects will help to elucidate the reaction
mechanisms of various types of transition metal catalysts. From the examination of orbital
energies and the linearity condition, PCC, the subject of this thesis, was clarified to be
essential particularly in inner-shell orbitals. The proposed methods will be useful to capture
properties involving core electrons, which requires all electron calculations. Furthermore,
the linearity condition is one measure of evaluating the performance of exchange
correlation functional. The relationship between PCE and the linearity condition will be
useful to the development of relativistic exchange-correlation functional, which remains a
challenge of the quantum chemistry. Although this thesis provided only the spin-free
treatment, extension to the spin-dependent framework can be performed straightforwardly
based on program packages that deal with complex variables. The author believes that the
research presented in this thesis will help both theoretical and experimental researchers and

contribute to the further development of relativistic chemistry.
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September 2023.

14. Physical Chemistry Chemical Physics (PCCP) Poster Award,
the 10" edition of the conference of the Asia Pacific Association of Theoretical and

Computational Chemistry (APATCC-10), February 2023.

15. 2020 FEBIREERE, Bfg M K FRbs, 2021 43 H.
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