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Abstract

The integration of Graph Neural Network (GNN) into recommendation
systems has demonstrated remarkable performance, but using personal data
to make recommendations raises significant privacy concerns. This thesis
explores the application of fully homomorphic encryption (FHE) to Graph-
SAGE, a variant of GNN, to enable privacy-preserving recommendations. Al-
though the Cheon-Kim-Kim-Song (CKKS) scheme is widely used for privacy-
preserving machine learning, the CKKS scheme introduces errors such as
polynomial approximation errors, encoding errors, and rescaling errors. This
research aims to investigate the impact of these CKKS-induced errors on the
accuracy of FHE-encrypted GraphSAGE inference. Our results show that
a higher degree of polynomial approximation increases the latency most be-
cause of the increased frequency of homomorphic multiplication. Using a
higher scale setting results in smaller encoding errors and increases accu-
racy by 1.15% with 0.19 hours latency increasing. Fewer rescaling operations
introduce smaller rescaling errors. For threshold rescaling, the accuracy de-
creases by 0.48%, but latency decreases by 1.23 hours. To increase the accu-
racy of the inference, we can consider increasing the scale setting first or use
a more precise polynomial approximation technique. To reduce the latency
of the inference, lightweight polynomial approximation should be used first
followed by a small number of rescaling.
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Chapter 1

Introduction

Nowadays, employing machine learning (ML) for recommendation systems
has received rising attraction because of its ability to simulate consumption
from customers. By employing ML for recommendation systems, companies
can rapidly provide recommendations that are specific to each client so that
revenue increases potentially. For recommendation systems, graph neural
network (GNN) has emerged as a useful tool because of its advantage of not
only considering individual data points but also considering the relationships
between the data points in the dataset [1].

However, to provide recommendations, plenty of private information of
customers has to be used in training and employing ML models, which also
raises concerns about leaking the privacy of customers to recommendation
systems providers. Therefore, the potential to enable privacy-preserving com-
putation has made the combination of fully homomorphic encryption (FHE)
and machine learning (ML) an attractive tool to achieve privacy-preserving
machine learning (PPML). By employing FHE on ML models, the ML mod-
els are able to compute without decryption so that privacy can be protected.

Although the research on the integration of FHE and ML has become a
popular topic recently and there is already much-existing research such as
FHE version of ResNet-20 [2], FHE version of convolutional neural network
(CNN) [3] and FHE version of Support Vector Machine (SVM) [4]. Among
different FHE schemes, the Cheon-Kim-Kim-Song (CKKS) scheme [5] has
been most widely used for problems of integration of FHE and machine
learning [6] because of the CKKS scheme’s advantage of approximate com-
putations on real numbers [7]. The research about combining FHE and GNN
is still lacking because of the difficulty of considering the relationships among
instances while the relationships are encrypted for privacy preservation.
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The CKKS scheme introduces errors such as polynomial approximation
error of ReLU, encoding errors [8], and rescaling errors [8] during approximate
arithmetic. Besides, because the CKKS scheme is constrained in its ability
to directly implement conditional branching, the non-linear activation func-
tions in the neural network cannot be implemented. Thus, the non-linear ac-
tivation functions should be approximated by polynomials for homomorphic
operations [9], which also introduces errors. Some existing papers researched
the effect of CKKS-induced errors in other neural networks[10, 9, 11, 12].
However, the CKKS-induced errors may have a larger effect on GNN since it
not only considers the individual data but also the relationships among data,
which requires more homomorphic computations. Therefore, understanding
the effect of CKKS scheme errors on the accuracy of GNN inference is crucial
to ensure the reliability of privacy-preserving GNN.

This thesis focuses on investigating the effect of errors from the CKKS
scheme on the accuracy of GraphSAGE [13] inference with FHE. Graph-
SAGE [13] is one of the GNN models proposed by Hamilton et al. in 2017.
To achieve our goal, this thesis implemented an FHE-encrypted GraphSAGE
inference over the CKKS scheme by Microsoft SEAL [14]. The main contri-
butions of this thesis are as follows:

1. First propose a privacy-preserving GraphSAGE model where the pri-
vacy of the inputs is encrypted by FHE.

2. Investigating the effect of polynomial approximation error of ReLU on
the accuracy of FHE-encrypted GraphSAGE inference.

3. Investigating the effect of encoding error from CKKS scheme on the
accuracy of FHE-encrypted GraphSAGE inference.

4. Investigating the effect of rescaling error from CKKS scheme on the
accuracy of FHE-encrypted GraphSAGE inference.

The privacy-preserving recommendation system of the scenario of this
thesis is shown in Figure 1.1. There are three parties in the privacy-preserving
recommendation system of this thesis. They are customers who send queries,
a graph owner who owns the graph and the pre-trained GraphSAGE model,
and a computation resource to make inferences. The graph owner utilizes
the historical data of customers to generate the graph and train the Graph-
SAGE model. The privacy of the customers can be prevented from being
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leaked from the graph owner and computation resource while making infer-
ences through the privacy-preserving recommendation system.

The threat model in this system is that the graph owner and computation
resources are both semi-honest, which means that they follow the protocol of
the privacy-preserving recommendation system but intend to reveal the pri-
vacy of customers. The workflow of this privacy-preserving recommendation
system is as follows:

1. A Customer sends a request to the graph owner to ask for a recom-
mendation. After receiving the request, the graph owner sends a query
questionnaire to ask the customer to fill in. The questionnaire contains
two parts: features of themselves (features are the own information of
each individual customer), the relationship between them, and some-
thing such as favorite restaurants or favourite institutions depending
on the scenario.

2. The customer will fill out this questionnaire and encrypt it with the
public key as the encrypted query.

3. The graph owner encrypts the graph with the same public key and
sends the pre-trained model, encrypted graph, and encrypted query to
computation resources to make an inference.

4. Finally, the computation resource returns the inference result which is
encrypted. Then, only the customer who has the secret key can decrypt
it and check the result.

Query Node 

Query Questionnaire:Secret Key
:Public Key

Graph owner
Encrypted Graph

Pre-trained Model

Encrypted Query

Computation 
Resource

Inference Result

:Public Key

Customer

:Public Key

Figure 1.1: Overview of proposed privacy-preserving recommendation
system
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There are 5 chapters remaining for this thesis. Chapter 2 describes the
background knowledge which is relevant to this thesis. Chapter 3 explains
related work to this thesis. Chapter 4 presents the methods we used and
experiments we conducted. Chapter 5 shows the results and discussion of
the results of our experiments. Lastly, Chapter 6 is the conclusion of this
thesis.
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Chapter 2

Preliminary

In this chapter, we explain the background knowledge for this thesis.

Section 2.1 introduces the definition of homomorphic encryption (HE).
HE is an encryption technique that enables computation (addition or/and
multiplication) of ciphertexts without decryption. In this thesis, we use fully
homomorphic encryption (FHE) which is one type of HE.

Section 2.2 introduces the Cheon-Kim-Kim-Song (CKKS) scheme [5], one
of the FHE schemes. CKKS scheme[5] is most used in machine learning prob-
lems [6]. In this thesis, we utilize CKKS scheme.

Section 2.3 explains the errors in the CKKS scheme[5]. Although the
CKKS scheme is widely used in secure machine learning problems, the CKKS
scheme introduces some errors. Three types of errors are included in Sec-
tion 2.3: Section 2.3.1 introduces the polynomial approximation errors while
approximating the ReLU function; Section 2.3.2 introduces the encoding er-
ror while encoding the message into plaintext in CKKS scheme; Section 2.3.3
introduces the rescaling error while doing rescaling on the ciphertext in
CKKS scheme.

Section 2.4 explains the GraphSage[13] model. The GraphSage model
was proposed by William L. et al. in 2017, which is one of the most famous
graph neural network (GNN) models.
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2.1 Homomorphic Encryption (HE)
HE is an encryption technique that enables computation (addition and/or
multiplication) with ciphertext without decryption. Equations 2.1 and 2.2
show the processing of homomorphic addition and homomorphic multiplica-
tion respectively, where Ptx and Pty are two plaintexts of x and y respectively.
The Enc and Dec represent encryption and decryption, respectively.

Dec(Enc(Ptx) + Enc(Pty)) = x+ y (2.1)

Dec(Enc(Ptx)× Enc(Pty)) = x× y (2.2)

There are different types of homomorphic encryption (HE). For instance,
partially homomorphic encryption, which supports either addition (additive
Homomorphic Encryption) [15] or multiplication (multiplicative homomor-
phic encryption) [16] and fully homomorphic encryption (FHE) [17] which
can support an arbitrary number of both multiplication and addition over ci-
phertexts by applying a technique called bootstrapping. Besides, one type of
HE called leveled homomorphic encryption (LHE) [18] can also support both
homomorphic addition and homomorphic multiplication but in pre-defined
times.

2.2 Cheon-Kim-Kim-Song (CKKS) Scheme
There are many different HE schemes, for instance, Paillier scheme [15],
Boneh-Goh-Nissim (BGN) scheme [19], Brakerski-Fan-Vercauteren (BFV)
scheme [20], and Brakerski-Gentry-Vaikuntanathan (BGV) scheme [21]. Among
various HE schemes, for machine learning problems, the Cheon-Kim-Kim-
Song (CKKS) scheme [5] is the most used [6] because it is able to do approx-
imate computation on real numbers [7].

There are several terminologies in the CKKS scheme, the Figure 2.1 shows
the processing of a message encrypted in the CKKS scheme and performing
homomorphic computations and Rescaling/Relinearization for FHE (boot-
strapping and rotation are omitted).
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Rescaling/
Relinearization

Encode

Decode

Encrypt

Decrypt
Ciphertext

PlaintextMessage

Figure 2.1: Processing in CKKS scheme

Message: A message is an original input which is encrypted in the CKKS
scheme.

Plaintext: Plaintext is the polynomial format data as a polynomial
within a ring structure converted from messages. The polynomial rings is
Z[X]/(Xn + 1). The Z means the set of integers, X means the variable in
the polynomial and n is the degree of the polynomial rings. After encoding
the message into plaintext, the HE can encrypt and do further computations.

Encoding/Decoding: Encoding is the process of transforming the mes-
sage into plaintext which can be encrypted later in HE. Decoding is the op-
posite operation that converts the plaintext into the message. In the CKKS
scheme, a set of messages can be packed together and then encoded and en-
crypted [5]. For instance, A message contains three decimal numbers, [2.12,
3.19, 6.12]. All three elements in the message can be packed into one plain-
text but in different slots. The number of slots is half of the polynomial
modulus degree of the CKKS scheme [5].

Rotation: A technique to switch the element in the slots in ciphertex-
t/plaintext clockwise or counterclockwise.

Level: The number of remaining modular reductions (rescaling opera-
tions) that a ciphertext can do before the ciphertext cannot be decrypted
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correctly.

Key Generation: For CKKS scheme, five types of keys are required.
The secret key (sk) is for decrypting the ciphertext into plaintext. The sk
is a polynomial with coefficients. The public key (pk) is for encrypting the
plaintext into ciphertext. The pk consists of two polynomials (pk0, pk1). The
pk0 = −a × s + e mod q and pk1 = a mod q. The a is a random
polynomial sampled in uniform distribution and e is sampled in Gaussian
distribution. The × operation in the equation is convolution for each pair
of polynomial rings. The evaluation key (evk) is applied for homomorphic
computations. The rotation key (rk) is for rotating the slots in the cipher-
text. The relinearization key (relink) is used for the relinearization operation,
which reduces the components of the ciphertext from 3 to 2 after homomor-
phic multiplication to manage the size of the ciphertext.

Encrypt/Decrypt: Encryption is the process of encrypting the plain-
text to ciphertext. The algorithm of encryption is shown as equation 2.3,
where the vis a random polynomial from a uniform distribution, Ct is the
ciphertext, Pt is the plaintext and the e is the random noise from a Gaussian
distribution. The × operation in the equation is convolution for each pair of
polynomial rings.

Ct = v × pk + Pt + e (2.3)

The decryption is the verse, decrypting the ciphertext back to plaintext.
The algorithm of decryption is shown as Equation 2.4, where the q is the
ciphertext modulus. The × operation in the equation is convolution for each
pair of polynomial rings.

Pt = (Ct × sk) mod q (2.4)

Ciphertext: Ciphertext is the ciphertext encrypted from plaintext.

Homomorphic Addition/Homomorphic Multiplication: Homomor-
phic addition and holomorphic multiplication are the addition and multipli-
cation over ciphertext as we mentioned in section 2.1. Besides, the CKKS
scheme supports the homomorphic addition and homomorphic multiplication
between ciphertext and plaintext as we have shown in Equation 2.5 and 2.6.

Dec(Enc(Ptx) + Encode(y)) = x+ y (2.5)
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Dec(Enc(Ptx)× Encode(y)) = x ∗ y (2.6)
Scale: In the CKKS scheme, there is a factor being introduced to scale

the incoming message during encoding. The factor is called the scale. This
scale is useful for maintaining the precision of the message during several
operations in the CKKS scheme. For example, the message=1.35 with scale
102 will be encoded into around 135 as a plaintext (it is not exactly 135
because of the errors from Fast Fourier Transform (FFT)).

Rescaling: The scale of the result ciphertext will increase after perform-
ing homomorphic multiplication. In this situation, rescaling is performed for
scale management since the ciphertext cannot be decoded correctly if the
scale exceeds a threshold. For instance, assume there are two ciphertexts
whose scale is ∆ respectively. After one time of homomorphic multiplica-
tion, the scale of the result is ∆2. By employing rescaling, we aim to reduce
the scale of the result and manage noise growth. When applying rescaling,
the polynomial modulus decreases one element and the level decreases one.

Relinearization: Assume that the C1
t and C2

t are two ciphertexts. The
ciphertext can be recognized as two components. For instance, C1

t consist
of C0,1 and C1,1. After performing homomorphic multiplication of two ci-
phertexts, the number of components in the result (ciphertext) increases as
shown in Equation 2.7. Relinearization can be used to reduce the number of
components in the ciphertext [22].

C1
t × C2

t = (C0,1, C1,1)× (C0,2, C1,2)

= (C0,1 × C0,2, C0,1 × C1,2 + C1,1 × C0,2, C1,1 × C1,2)
(2.7)

2.3 Errors in CKKS Scheme

2.3.1 Approximation error of activation function
Non-linear activation functions, such as ReLU, cannot be directly imple-
mented in FHE privacy-preserving machine learning models due to the CKKS
scheme’s limitations in supporting conditional branching. To address this,
polynomial functions are used to approximate non-linear activation functions
in FHE privacy-preserving machine learning models. However, these polyno-
mial approximations introduce errors since they do not exactly replicate the
behaviour of the original non-linear functions. This discrepancy between the
polynomial approximation and the actual activation function can affect the
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overall accuracy and performance of the privacy-preserving machine learning
models.

2.3.2 Encoding Error
As we introduced in section 2.2, the encoding converts the message into
plaintext which can be operated in the CKKS scheme. Furthermore, during
encoding, an initial scale is employed to save the precision of the message.
Thus, regarding different initial scale settings, a different amount of rescaling
error is introduced and affects the precision of the message. Figure 2.2 shows
an example of precision loss from the message due to the use of improper
initial scaling for encoding for real numbers. In Figure 2.2, the information
we want to encrypt in the message 1.2345678 is encoded with the initial scale
of 107. However, because the Fast Fourier Transform (FFT) is an approxima-
tion method and it introduces errors because of finite precision arithmetic,
even if the message is integer, errors are introduced from encoding. After
decoding with the same scale (107), the decoded result is around 1.2345678
but not exactly 1.2345678.

1.2345678
107 Polynomial Format

≈12345678 Decode

10-7
12345678

FFT Inverse FFT
≈12345678 ≈1.2345678

Figure 2.2: An example of encoding error

2.3.3 Rescaling Error
As we introduced about rescaling in section 2.2, the rescaling is important
since the scale of ciphertext will increase after homomorphic multiplication.
The ciphertext cannot be decrypted correctly if the scale is over the cipher-
text modulus q. However, rescaling also introduces some errors. Figure 2.3
shows an example of an occurrence of rescaling error. Assume that there
is a ciphertext 1.23456 and a ciphertext 2.34567 with initial scale ∆ is 105.
After multiplication, the scale of the result will become 1010. Thus, we can
apply rescaling to reduce the scale of the result ciphertext. The rescaling
makes some errors since the CKKS scheme employs FFT to round the re-
sult to round 289, 587. As a result, a rescaling error of about 3.55× 10−7 is
introduced.
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2.34567 x 1051.23456 x 105

2.895870355 x 1010

Rescaling
2.89587 x 105

Decrypt & Decode

2.89587

Figure 2.3: An example of rescaling error

2.4 GraphSAGE
A data structure called graph that requires researchers to consider not only in-
dividual instances but also the relationships between instances in the dataset.
In this scenario, graph neural network (GNN) has the advantage compared
with other traditional ML models such as convolutional neural network (CNN)
since it considers the relationships [1].

There are several famous GNN modes. The graph convolutional network
(GCN) [19]. The GCN aggregates features from neighbors of a node to do
inference. In 2017, graph attention network (GAT) [23] was proposed, which
aggregates features with attention coefficient. GraphSAGE [13] was proposed
by Hamilton et al. in 2017. Compared with GCN and GAT, there are some
advantages of GraghSAGE as follows:

1. Inductive Learning: GraphSAGE is an inductive learning model;
which means that GraphSAGE is able to infer for the nodes which are
never shown during the training.

2. Neighbors Sampling: For GCN and GAT, all nodes in the graph
need to be considered for inference. However, GraphSAGE only consid-
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ers the specific number of neighbors nodes, which reduces computation
complexity and saves resources.

Algorithm 1 shows the algorithm of the node update in GraphSAGE [13].
The L means the levels of the neighbors being considered in GraphSAGE.
Each node contains |V | features. For updating the feature values of each
node, we need to aggregate the node’s neighbors relevant feature values and
we get the aggregation result as hl

N (v) at Line 3 in Algorithm ～1. There are
many aggregation methods such as mean aggregation and max aggregation.
After getting the aggregation result, do a CONCAT operation for the feature
of the node itself and aggregation result. Multiply with the concat result with
Wl to get the update feature of the input node. Finally, let the updated
feature of the node go through a non-linear activation function to get hl

v.

Algorithm 1 Features updation for nodes in GraphSAGE [13]
Input: Level L; weight matrices Wl, ∀l ∈ {1, . . . , L}; input fea-
tures at level l {hl

v, ∀v ∈ V}; non-linearity σ; aggregation function
AGGREGATEl, ∀l ∈ {1, . . . , L}; neighbors finding function N : v → 2V

Output: Vector representations of updated notes at level l hl
v for all

v ∈ V
1: for l = 1 . . . L do
2: for v ∈ V do
3: hl

N (v) ← AGGREGATEl

(
{hl−1

v , ∀v ∈ N (v)}
)

4: hl
v ← σ

(
Wl · CONCAT(hl−1

v , hl
N (v))

)
5: end for
6: end for

Figure 2.4 shows an example of a target node A to get updated by the
inference of the GraphSAGE model. In Figure 2.4 example, the feature of
the target node is updated by two sageLayers. Each sageLayer considers two
neighbors. The activation function used in this example is y = x and the
weights for both sageLayers are [1, 1].
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0

1
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Layer 1

Layer 2

(b)

Update the features of 2 level-1 neighbors 
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Layer 2
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1

3
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Figure 2.4: An example of inference of GraphSAGE with two layers
neighbors
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Chapter 3

Related Work

In this chapter, we present some existing works for this thesis. Section 3.1
explains existing research about privacy-preserving GNN models. Section 3.2
explains the works investigating the effect of CKKS scheme errors on the
accuracy of ML models with FHE.

3.1 Privacy-preserving GNN
The existing research on privacy-preserving GNN mainly utilizes federated
learning techniques. In 2021, Yang Pei et al. [24] proposed a decentralized
federated graph neural network (D-FedGNN). D-FedGNN allows multiple
participants to train a GNN without a centralized model. Yang Pei et al.
have conducted their D-FedGNN and resulted that their D-FedGNN has
a similar performance to the state-of-art centralized federated GNN model
proposed by Chaoyang He et al. [25] but faster training time on datasets in
MoleculeNet benchmark [26].

In 2022, Chaochao Chen et al. [27] proposed a vertical federated graph
neural network (VFGNN) for privacy-preserving GNN. For the method pro-
posed by Yang Pei et al. [24], the multiple participants have different parts
of the nodes in the graph. However, in the method proposed by Chaochao
Chen et al. [27], to protect the privacy of the graph, all clients have the
same nodes but different features and partial relationships for those nodes.
Chaochao Chen et al. employed a semi-honest server to infer the inference.
This method requires communication among different parties.

In 2023, Songlei Wang et al. [28] proposed a privacy-preserving GNN
model called SecGNN. In their scenario, the SecGNN can employ the out-
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sourced cloud system by utilizing additive secret sharing to protect privacy.
SecGNN uses a multi-server, decentralized trust setup where the power of the
cloud is divided among three cloud servers housed by different cloud service
providers in order to be compatible with the additive secret-sharing operat-
ing paradigm.

All of the methodologies proposed by previous papers require high band-
width for communication because they all require multi-party computation
protocols. By employing FHE, we can implement the computation of infer-
ence while protecting the privacy of a single party, which can obviously over-
come the disadvantage of high communication consumption requirements.

Besides, In 2023, Sajadmanesh Sina proposed a method to utilize differ-
ent privacy (DP) to implement privacy-preserving GNN [29]. The method
in [29] introduces two types of DP, local DP and global DP. The local DP
adds noise to features of nodes before training and the global DP adds noise
to the aggregation step of neighbors in GNN. Compared with DP, FHE pro-
vides the ability to perform computations on ciphertext without decryption.
However, the DP requires a trade-off between data utility and privacy.

The summary of previous papers is shown in Table 3.1.
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Table 3.1: Summary of papers related to privacy-preserving GNN

Paper Published
Year

Method Advantages Disadvantages

Yang Pei
et al. [24]

2021 Federated
Learning

Using key
exchange to
allow multiple
participants
to train a
GNN

Require high
bandwidth for
communica-
tion among
parties

Chaochao
Chen et
al. [27]

2022 Federated
Learning

Parties have
the same
nodes but dif-
ferent features
and partial re-
lationships for
those nodes in
the graph

Require high
bandwidth for
communica-
tion among
parties

Songlei
Wang et
al. [28]

2023 Federated
Learning

Utilizing ad-
ditive secret
sharing to
protect pri-
vacy

Require high
bandwidth for
communica-
tion among
parties

Sajadmanesh
Sina [29]

2023 Differential
Privacy

Adding dif-
ferent types
of noise to
protect pri-
vacy, fast and
reducing com-
munication
costs

DP requires
a trade-off
between data
utility and
privacy

This thesis 2024 Fully
Homo-
morphic
Encryp-
tion

Performing
computations
on cipher-
text without
decryption;
reducing com-
munication
costs

High Latency
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3.2 CKKS-induced errors in PPML

3.2.1 Polynomial approximation error of ReLU
Because of the limitations in supporting conditional branching, FHE does
not support the implementation of the non-linear activation functions, such
as ReLU. Some of the existing research is about approximating the ReLU by
the polynomial.

In 2016, Nathan Dowlin et al. [10] proposed the first privacy-preserving
neural network with HE called CryptoNets. In CryptoNets, Nathan Dowlin
et al. used a square function to replace the ReLU function. The approxima-
tion of ReLU function is utilized twice. Although the square function works
well in CryptoNets as getting the accuracy with 99% in the experiments with
the MNIST dataset. However, for a larger range of inputs, the square func-
tion does not perform well in approximating ReLU.

Therefore, papers [30, 31, 32] tried to use Taylor approximate polyno-
mials to approximate ReLU. Although the Taylor approximation performs
well in the small range, when the range gets wider, especially for negative
numbers, the Taylor approximation cannot approximate the ReLU well. Be-
sides, papers [33, 34, 35, 36] another approximation approach is least-square.
The least squares approximation method finds the polynomial which has the
smallest square sum error with real ReLU with a given degree. The least
squares approximation method has an accurate approximation on the whole
range [37].

In 2023, Junghyun Lee et al. [9] proposed a method to approximate ReLU
and max-pooling functions. The method proposed in this paper is based on
the composition of minimax approximate polynomials. According to the re-
sults shown in this paper, a precision parameter α is required for deciding
the approximation precision level. The polynomial of degree must be bigger
than 21.0013α−2.8483 for the proposed method in [9]. When the α is over 12, the
polynomial approximation of ReLU has only around 1% difference against
the original ReLU in the range of [-50,50]. However, for achieving high accu-
rate approximations of ReLU, the degree of the polynomial approximation
generated by the method proposed in [9] is high. According to the experi-
ments in this paper, when the α is 12, the highest degree of the polynomial
approximation is 15. Therefore, the approximation method proposed in [9] is
not feasible for privacy-preserving GraphSAGE because of the requirement
of a large number of homomorphic multiplications.
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Although the existing research investigates the polynomial approxima-
tion methods on different neural network models. Because privacy-preserving
GNN not only considers the node itself individually but also the relationships
among the nodes, more homomorphic multiplication is required to extract
the relationships among the nodes in the graph. The errors introduced in
different polynomial approximations of ReLU may extend and affect the accu-
racy of privacy-preserving GNN with FHE inference. Therefore, investigating
the effect of low-degree polynomial approximation of activation functions on
the accuracy of FHE-encrypted GNN is essential for implementing privacy-
preserving recommendation systems.

3.2.2 Encoding error and rescaling error
In 2023, Devharsh Trivedi et al. [11] implemented FHE-encrypted Logistic
Regression (LR) and Support Vector Machine (SVM) for website log anomaly
detection. In their experiments, they discussed the effect of different scale set-
tings on the accuracy of LR and SVM. According to the experiment results,
when the scale settings are different, the accuracy of models is affected. Espe-
cially, when the scale is 240, the accuracy of LR with polynomial approxima-
tion activation function A3

50 = 0.49714848+0.026882438x−(7.728304e−6)x3

increased to 93.50%. However, when the scale setting is 230, the accuracy is
91.20%.

Also in 2023, Sogo Pierra Sanon et al. [12] discussed the impact of errors
in the CKKS scheme on traffic prediction in 5G wireless networks. In their
experiments, Sogo Pierra Sanon et al. implemented privacy-preserving re-
current neural network inference under homomorphic parameter settings at
different scales using federated learning and the CKKS scheme. According to
their results, the average mean square error of the FHE encrypted recurrent
neural network performs as well as the unencrypted model when the scale
exceeds 225 for the number of federated parties required for federated learn-
ing ranging from 2 to 8.

Although both papers [11, 12] discuss the effect of the error from the
CKKS scheme on the accuracy of PPML, there are still some limitations
that make our thesis meaningful. For example, although [11] and [12] em-
ployed different scale settings of the homomorphic parameters to investigate
the error from the CKKS scheme on different PPML models, the considera-
tions are incomplete. According to Section 2.3, both encoding and rescaling
operations in the CKKS scheme will introduce errors. Thus, it is crucial
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for us to separate the experiments to discuss the effect of encoding error
and rescaling error individually to investigate their effect on the accuracy of
FHE-encrypted ML respectively. By analyzing these errors separately, we
can identify the primary reason for accuracy degradation in these two types
of error. This separation allows for a more precise understanding of the error
mechanisms so that we can enhance the accuracy of the FHE-encrypted ML
models.

Besides, the investigation of the effect on the accuracy of integration of
FHE with GNN remains underexplored. In FHE-encrypted GNN, it is vital
to encrypt the graph to protect privacy (both node features and relation-
ships), which is large and complicated. Trying to extract the encrypted in-
formation in the graph to do the inference for FHE-encrypted GNN requires
more computations and operations. Therefore, it is important for us to in-
vestigate the effect of the CKKS scheme on the accuracy of FHE-encrypted
GNN models. By investigating the effect of the CKKS scheme, we can iden-
tify the specific reasons for the accuracy degradation of FHE-encrypted GNN
models, which is crucial for us to implement high-accuracy FHE-encrypted
GNN models in the future.

The summary of previous papers is shown in Table 3.2.

Table 3.2: Summary of papers related to CKKS-induced errors in PPML

Paper Published
Year

PPML model Encoding Error
Investigation

Rescaling Error
Investigation

Devharsh
Trivedi
et
al. [11]

2023 Linear
Regression
& Support
Vector
Machine

✓

Sogo
Pierra
Sanon
et
al. [12]

2023 Recurrent
Neural
Network

✓

This
thesis

2024 GraphSAGE ✓ ✓
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Chapter 4

Experiment Designs

In this chapter, we explain the experiments to investigate how errors in-
troduced by the CKKS scheme[5] affect the accuracy of the FHE-encrypted
GraphSAGE inference.

Section 4.1 provides a detailed description of the dataset we used in our
experiments. Besides, the generation of the graph is introduced in this sec-
tion.

Section 4.2 describes the pre-trained plaintext GraphSAGE model[13]. In
specific, the number of SageLayer, the number of neighbors each SageLayer
considers, and the activation functions employed are introduced in this sec-
tion.

Section 4.3 introduces the graph and queries. How graph and queries are
encrypted in our experiments by FHE, and the details of encrypted nodes
and queries are explained in this section. Besides, how we extract the neigh-
bors and aggregate them to make inferences in FHE-encrypted GraphSAGE
is also included in this section.

Section 4.4 analyzes the complexity of doing mean aggregation for differ-
ent levels of neighbors.

Section 4.5 details the experimental environment for doing our experi-
ments. The devices, the version of the C++ and other external packages
employed are introduced in this section.

Section 4.6 discusses the experiments conducted to investigate the impact
of three types of errors introduced by the CKKS scheme [5] on the inference
of FHE-encrypted GraphSAGE. This section is divided into three subsec-

20



tions, addressing polynomial approximation error of ReLU, encoding error
and rescaling error.

Section 4.7 provides the details of the evaluation metric we used to eval-
uate the results of our experiments.

4.1 Dataset
In our experiments, we use the Cora Dataset [38]. There are 2,708 scientific
publications in the Cora dataset. According to the contents of the publi-
cations, these 2,708 scientific publications can be categorized into 7 classes.
Additionally, there are 5,429 connections among these publications, forming
a graph. Each connection represents a citation from one publication to an-
other, indicating a directional relationship.

For each scientific publication, there are 1433 features to explain whether
the scientific publication contains a specific unique word or not. For each
word, if the word is contained in a publication, the value of the feature is 1.
Otherwise, the value is 0.

Table 4.1: Cora Dataset

Dataset Node Edge Features Classes

Cora 2,708 5,409 1,433 7

4.2 Pre-trained GraphSAGE model
The pre-trained model in our experiments uses the architecture proposed by
William L. Hamilton et al. [13] called GraphSAGE. The GraphSAGE model
contains two sageLayer, three activation layers, and one linear layer for a
classification problem with the Cora dataset involving 7 classes.

The only difference between the GraphSAGE model and the GraphSAG
model in William L. Hamilton experiments is that each sageLayer consid-
ers only 5 neighbors. The reason we chose to consider only 5 neighbors per
sageLayer is that when considering only 5 neighbors, the GraphSAGE can
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already have the accuracy as 86.58%. However, after increasing the num-
ber of considered neighbors for each sageLayer to 10, the accuracy only has
a small improvement as 87.98%. In addition, sageLayer that considers too
many neighbors will cause the size of the encrypted graph in our experiments
to increase, resulting in a huge amount of memory consumption.

Figure 4.1 provides a detailed illustration of the plaintext GraphSAGE
architecture for the Cora dataset. The dimensions change in the inputs and
output are shown in Figure 4.1. The “a x b”means the dimension of
the inputs or outputs. For instance, before going through the SageLayer1,
the dimension of input is 1 x 1433, which means a query node with 1,433
features in the Cora dataset. Table 4.2 presents the configurations of the
GraphSAGE model in our experiments. The workflow of the GraphSAGE
making an inference by a query is as follows:

1. The sageLayer 1 samples 5 direct neighbors (Level-1 neighbors) of the
input and aggregates the features of the 5 level-1 neighbors by mean.
After getting the mean aggregation of level-1 neighbors, CONCAT op-
eration is done with features of input and multiply with a weight1
whose dimension is 2466 × 128 as shown in Algorithm 1. Besides, the
sageLayer 1 does the same operations to the 5 direct neighbors (level-
2 neighbors of input) of level-1 neighbors to update the features for
level-1 neighbors, which is required for sageLayer 2.

2. The activation activates the inputs by ReLU function.

3. The sageLayer 2 does the CONCAT operations for updated input and
its updated 5 level-1 neighbors. Multiplying the CONCAT result with
the weight2.

4. The activation activates the result by ReLU function for the result from
sageLayer2

5. The liner layer classifies the input into 7 classes. The class with the
highest possibility is the predicted result.
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1 x 1433

SageLayer 1 Activation SageLayer 2

Activation

Linear Layer

1 x 128 1 x 128 1 x 128

1 x 1281 x 7

Figure 4.1: GraphSAGE architecture for Cora Dataset

Table 4.2: Pre-trained Plaintext GraphSAGE model

Layer type Description Considered
Neighbors

Input Di-
mensions

Output Di-
mensions

SageLayer 1 Aggregating
the neighbors
by mean and
update the node
embedding val-
ues

5 1,433 128

Activation Applying ReLU
function

N/A 128 128

SageLayer 2 Aggregating
the neighbors
by mean and
update the node
embedding val-
ues

5 128 128

Linear Layer Contains 7
weights and bias
to classify the
node among 7
classes

N/A 128 7

As we mentioned in our Figure 1.1, the parameters of the GraphSAGE
model are not encrypted. Therefore, the parameters of SageLayer1, Sage-
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Layer2 and Linear Layer remain in plaintext. Due to the limitations of FHE,
which does not support conditional branches, we use a polynomial approx-
imation to approximate the ReLU activation function. In our experiments,
we used the least-square method to approximate the ReLU function [33] in
the range from -3 to 3. Similar to Takumi Ishiyama et al. [33], we also
used the ‘curve_fit’function in ‘SciPy’library [39] to approximate the
ReLU by quadratic polynomial and quartic polynomial. The two polynomial
approximations of ReLU are shown in Table 4.3. The rg means the approxi-
mation range and the deg means the degree of the approximation. Figure 4.2
shows the difference between ReLU-rg3-deg2, ReLU-rg3-deg4 and ReLU in
the range -3 to 3.

Table 4.3: Polynomial approximation of ReLU

Name Degree Range Formula
ReLU-rg3-deg2 2 [-3,3] 0.1459x2 + 0.4804x+ 0.3033
ReLU-rg3-deg4 4 [-3,3] −0.0107x4 + 0.2514x2 + 0.4859x+ 0.1906
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Figure 4.2: Approximation of ReLU in range -3 to 3

4.3 Graph and Queries
To make inferences of FHE-encrypted GraphSAGE, the graph and queries
are needed as inputs. The graph is the graph-structured data that contains
the numerous nodes and each node will have features and relationships with
other nodes in the graph. A query consists of two parts: an adjacency matrix
and node features. All information in the graph and queries are encrypted
by FHE.

4.3.1 Graph
The graph is recognized as two parts: the features of the node itself and the
features of the neighbor of the node. As an example shown in Figure 4.3,
there are five nodes in the graph and each node has two features.
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1 2

5 4

3

[0.21, 0.12] [0.32, 0.24]

[0.02, 0.08] [0.39, 0.28]

[0.18, 0.34]

Figure 4.3: An example of a graph

For convenience in computation, we convert the graph into a graph chart
according to the graph and the pre-trained GraphSAGE model. The graph
chart is a 2-d vector. For example, the graph in Figure 4.3 can be converted
to a graph chart as shown in Figure 4.4, where the pre-trained GraphSAGE
model considers two neighbors for level-2 neighbors.

In the graph chart as shown in Figure 4.4, each row represents a node in
the graph and its neighbors (2 neighbors in this example). For instance, the
first row represents the features of node 1 and the features of its neighbours,
node 2 and node 5 respectively. Vertically, each column in the graph chart
represents one of the feature values. In the example of the graph shown in
Figure 4.3, each node has two features. Therefore, in its converted graph
chart as shown in Figure 4.4, the first and second columns represent the
feature value of each node itself. The third and fourth columns; and the fifth
and sixth columns represent the features of the first and the second picked
neighbors of level 1 nodes, respectively.
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0.21 0.12 0.02 0.08 0.32 0.24

0.32 0.24 0.21 0.12 0.18 0.34

0.18 0.34 0.32 0.24 0.39 0.28

0.39 0.28 0.18 0.34 0.02 0.08

0.02 0.08 0.39 0.28 0.21 0.12

Features of node
itself (two features

for each node)

neighbor 1 of the
node (marked as

red) at the left

Each cell in a column
represents a feature

value of a node 

Each row represents a node
(2 features) in the graph

and its 2 neighbors

neighbor 2 of the
node (marked as
red) at the left

Level 1 Level 2_1 Level 2_2

Node 1: Black
Node 2: Red

Node 3: Green
Node 4: Purple
Node 5: Orange

The graph chart is
encrypted vertically ( each
read square represents a

ciphertext)

Figure 4.4: An example of a graph chart with 2 levels neighbors being
considered

In the example as shown in Figure 4.4, the pre-trained GraphSAGE model
considers 2 neighbors for level 1 nodes. In reality, nodes in the graph may
have less or more than 2 neighbors. If the number of neighbors of a node
is over 2 in the graph, we sample 2 neighbors in all of its neighbors. If the
number of neighbors of a node is less than 2, we oversample the neighbor by
picking the same neighbor twice [13]. The neighbors are randomly sampled
in no particular order.

The equation to calculate the number of rows in the graph chart is shown
in Equation 4.1. The Nr represents the number of the rows in the graph
chart and Nn represents the number of nodes in the graph.

Nr = Nn (4.1)
Besides, the equation to calculate the number of columns in the graph

chart is shown in 4.2, the Nc means the number of the columns in the graph
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chart, the Nf represents the number of the feature of each node and the N2

represents the number of level-2 neighbors required by GraphSAGE model.

Nc = Nf ∗ (1 +N2) (4.2)

Accordinig to the graph that is shown in Figure 4.3, the graph contains
5 nodes and each node has 2 features. Therefore, as shown in Figure 4.4, the
graph chart has six columns in total. Because we encrypted the graph chart
vertically, six ciphertexts are created. Therefore, the number of ciphertexts
for the graph chart N g

ct can be calculated as equation 4.3.

N g
ct = Nc = Nf ∗ (1 +N2) (4.3)

According to section 4.1, the Cora dataset includes 2,708 nodes, and each
node has 1,433 features. In our GraphSAGE model, we consider five level-2
neighbors for each node. Consequently, our graph chart has 8,598 columns in
total. In our experiments, we encrypted the graph chart vertically, resulting
in 8,598 ciphertexts to create the encrypted graph chart.

4.3.2 Queries
The query consists of two parts: an adjacency matrix and node features. The
adjacency matrix is used to extract the relationships (whether the query node
is connected with one of the nodes in the graph or not) between the query
node and the nodes in the graph. As an example shown in Figure 4.5, the
left one is the adjacent matrix and the right one is the features of the query
node. The example of Figure 4.5 is made by a scenario in which each node
has two features and the GraphSAGE model considers 2 level-1 neighbors.
The adjacent matrix will be encrypted into one ciphertext and each feature
of the node will be encrypted into one ciphertext for convenience. Therefore,
the number of ciphertexts for a query can be calculated as equation 4.4. The
N q

ct is the number of ciphertext for a query and the Nf is the number of
features.

N q
ct = 1 +Nf (4.4)

For the Cora dataset and the plaintext GraphSAGE model, each query
contains 1,433 ciphertexts to store its features. In other words, each feature
will be a ciphertext. Additionally, there is another ciphertext whose 2,708
slots have been used for storing the adjacency matrix of the query node.
Since our Plaintext GraphSAGE model considers only five level-1 neighbors,
only five slots in the adjacency matrix ciphertext have a value of 1, which
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indicates a connection between the query node and specific nodes in the
graph, while the other slots have a value of 0, which indicates no connection.

0

0

1

1

0

A ciphertext
contains the
encrypted

adjacent matrix
Top two slots of
this ciphertext

store the
features of the
target node;

other slots are 0

0.61

0.12

0

0

0

A ciphertext contains the
encrypted feature values

of the target node

1 means the target
node is connecting to
the node in the graph;

0 means no connection

Figure 4.5: An example of a query

4.3.3 Neighbors Extraction and Aggregation
To extract the neighbors, we need to do homomorphic multiplication between
the graph chart and the adjacent matrix of the query node. As we mentioned
above, the graph chart is encrypted vertically. Thus, after a homomorphic
multiplication, only the neighbors picked have values but others become 0 as
shown in Figure 4.6.
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After this homomorphic multiplication, we can get the level-1 neighbours’
features from the first and second columns. Then we can use the rotation
technique mentioned in Section 2.2 to get the sum of the neighbors and mul-
tiply the sum by homomorphic multiplication with a plaintext (1/N1, N1 is
the number of the level-1 neighbors) to get the result of mean aggregation.
The computation is shown as in Figure 4.7

0 0

0 0

0.18 0.34

0.39 0.28

0 0

0.29 0.31

0.29 0.31

0.29 0.31

0.29 0.31

0.29 0.31

Total Sum

0.57 0.62

0.57 0.62

0.57 0.62

0.57 0.62

0.57 0.62

X 1/2 (Calculate
mean)

Level 1 neighbors
Sum of level 1

neighbors
Sum aggregation of

level 1 neighbors

Figure 4.7: Mean aggregation of level 1 neighbors

Similar to getting the mean aggregation of level-1 neighbors. We can get
the sum of the level-2 neighbors by adding the ciphertexts in the graph chart
together regarding their feature index. The example is shown in Figure 4.8.
After getting the summation, we can multiply the ciphertext which represents
the summation of each feature with a plaintext (1/N2, N2 is the number of
the level-2 neighbors) to get the result of mean aggregation.
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Figure 4.8: Mean aggregation of level 2 neighbors
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4.4 Complexity Analysis of Mean Aggrega-
tion

For the mean aggregation of level 1 neighbors, we need to calculate the sum
of the numbers in different slots of a ciphertext. Therefore, we need to em-
ploy rotation and homomorphic addition. Specifically, times of rotation and
homomorphic addition are log2(Nslot) − 1. The Nslot means the number of
the slots in a ciphertext. After getting the sum of the level 1 neighbors, we
need to do Nf times homomorphic multiplication, where the Nf means the
number of features of a node. The computation complexity of getting mean
aggregation of level 1 neighbors is log2(Nslot) +Nf .

For the mean aggregation of level 2 neighbors, we need to do Nf times
homomorphic addition to get the sum of the neighbors. After getting the
summation, do Nf times homomorphic multiplication to get the mean ag-
gregation of level 2 neighbors. The computation complexity of getting mean
aggregation of level 2 neighbors is Nf .

The summary of the complexity analysis is shown in Table 4.4.

Table 4.4: Summary of complexity analysis

Phase Operations Times of opera-
tions

Mean aggrega-
tion of level 1
neighbors

Rotations log2(Nslot)− 1
Multiplications over ciphertext log2(Nslot)− 1

Additions over ciphertext Nf

Mean aggrega-
tion of level 2
neighbors

Rotations 0
Multiplications over ciphertext Nf

Additions over ciphertext Nf

4.5 Experiment Environment
In our experiments, we used SEAL 4.1 [40] and C++ to generate a FHE-
encrypted GraphSAGE. To reduce the latency, we implement parallelization
in the inference process by OpenMP. Table 4.5 lists the specifications of the
machine used in the experiment.
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Table 4.5: Machine Specification

CPU

Model Number Intel Xeon E7-8880 v3
Frequency (base) 2.30 GHz
Frequency(turbo) 3.10 GHz

#cores/CPU 18
Hyper-threading Disabled

L1i cache capacity/core 32 KiB
L1d cache capacity/core 32 KiB
L2 cache capacity/core 256 KiB
L3 cache capacity/CPU 45 MiB

#CPUs 4
Memory Capacity(total) 3TB

OS CentOS 7.9.2009

Library

Microsoft SEAL 4.1.1
Numpy 1.16.2

Pillo 8.3.2
Photon 0.3.51

Pyparsing 2.3.1
Scikit-learn 0.20.3

Scipy 1.2.1
Six 1.12.0

Sklearn 0.0
Torch 1.0.1.post2

Torchvision 0.2.0.post3

Compiler & API g++ 11.2.1
OpenMP 4.5

4.6 Experiments of investigating errors from
CKKS scheme

4.6.1 Experiments of polynomial approximation error
of ReLU

To investigate the effects of different polynomial approximation methods of
ReLU on the accuracy of inference of privacy-preserving GraphSAGE, we
design the controlled experiments as utilizing the two different polynomial
approximations of ReLU in the implementation of privacy-preserving Graph-
SAGE. In one group, we use the quadratic polynomial to approximate ReLU
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as 0.1459x2 + 0.4804x + 0.3033 as a name called ReLU-rg3-deg2 mentioned
in Table 4.3. In another group, we use the quartic approximation (ReLU-
rg3-deg4) of ReLU as −0.0107x4 + 0.2514x2 + 0.4859x + 0.1906. The FHE
parameters in the experiments will be the same except for quartic approxi-
mation requires one more level to do one more homomorphic multiplication.
The Table 4.6 shows the experiment settings in detail.

Table 4.6: Experiments settings of polynomial approximation error of ReLU

Level Degree of poly-
nomial rings N

Polynomial
approxima-
tion method

Scale Bits of coefficient
modulus

11 32,768 ReLU-rg3-deg2 230 (60, 30 . . . 30, 30)
12 32,768 ReLU-rg3-deg4 230 (60, 30 . . . 30, 30)

For experiments in Section 4.6.2 and Section 4.6.3, we utilize the ReLU-
rg3-deg2 as the activation function.

4.6.2 Experiments of encoding error
Here we assess the effect of encoding error on the accuracy of inference of the
FHE-encrypted GraphSAGE. We run the inference of the FHE-encrypted
GraphSAGE with the test data mentioned in Section 4.1.

To implement the controlled experiments for investigating the effect of
encoding error on inference, we use different FHE parameters. In detail, our
strategy involves changing the initial scale for encoding inputs into plaintext
in Microsoft SEAL[14] so that it changes the accuracy when encrypting and
decrypting. The setting we chose for our experiments is shown in Table 4.7.

Table 4.7: Experiments settings of encoding error

Level Degree of poly-
nomial rings N

Slot counts Initial scale Bits of coefficient
modulus

11 32,768 16,384 230 (60, 30 . . . 30, 30)
11 32,768 16,384 240 (60, 40 . . . 40, 40)
11 32,768 16,384 250 (60, 50 . . . 50, 50)

4.6.3 Experiments of rescaling error
To investigate the effects of rescaling error on the accuracy of inference of
FHE-encrypted GraphSAGE, we modify the rescaling times after the mul-

35



tiplication involving ciphertext-ciphertext or ciphertext-plaintext. Specifi-
cally, we created three experiment groups in our experiments. We set the
initial scale as 230 for three groups. We were trying to change the bits of
coefficient modulus so that we could do different ways of rescaling in our
experiments. For Naive Rescaling group, we set the bits of coefficient mod-
ulus as (60, 60 . . . 60, 60) and never do any rescaling in nodes inference of
FHE-encrypted GraphSAGE. For No Rescaling group, we set the bits of co-
efficient modulus as (60, 30 . . . 30, 30) and we rescale the scale after every time
of homomorphic multiplication. Lastly, for the Threshold Rescaling group,
we set the coefficient modulus as (60, 60 . . . 60, 60) and we do rescaling only
when the scale is over 90 bits. Table 4.8 presents the settings we use in our
experiments.

Table 4.8: Experiments settings of rescaling error

Group
Name

Degree of poly-
nomial rings N

Rescaling Strat-
egy

Scale Bits of coefficient
modulus

Naive
Rescal-
ing

32,768 rescale every time 230 (60, 30 . . . 30, 30)

No
Rescal-
ing

32,768 without rescaling 230 (60, 60 . . . 60, 60)

Threshold
Rescaling

32,768 rescale when scale
bits over 90

230 (60, 60 . . . 60, 60)

4.7 Evaluation Metrics
In our experiments, we employ accuracy as our evaluation metric. As we
mentioned in section 4.6, each type of error is discussed with different set-
tings. The difference in the inference accuracy with different groups will be
analyzed and discussed in the results of our experiments.

Accuracy =
TP + TN

N
(4.5)

Equation 4.5 shows the definition of accuracy, where‘TP”is the number of
correctly predicted positive instances, ’TN’is the number of correctly pre-
dicted negative instances, and ’N’ is the total number of predicted instances.

Besides, the time used to make each time inference is also recorded in
experiments in section 4.6.2 and section 4.6.3 to investigate the relationship
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between different scale settings or rescaling times in the CKKS scheme and
latency of making an inference.
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Chapter 5

Evaluation Result and
Discussion

5.1 Pre-trained GraphSAGE
For our experiments, we used 5-fold cross-validation to train and test the pre-
trained GraphSAGE model. This method involves devising the whole CORA
dataset into five subsets. One of the five subsets was used as the test set and
the remaining four subsets were used as training set. There are 10 epochs
for each time of training. Because we only focus on the inference phase,
choosing one model configuration that has the best accuracy is enough for our
privacy-preserving GraphSAGE experiments. After determining the model
configuration that has the best accuracy 84.58% during the cross-validation
phases, we used the test set of this round of cross-validation as the test set
for FHE-encrypted GraphSAGE inference in our further experiments.

5.2 Experiments results of polynomial approx-
imation error of ReLU

The experimental results of investigating the polynomial approximation error
of ReLU on the accuracy of the inference of the privacy-preserving Graph-
SAGE are shown in Table 5.1. According to the results shown in Table 5.1,
when employing ReLU-rg3-deg2, the privacy-preserving GraphSAGE has the
lower accuracy as 75.40% compared with privacy-preserving GraphSAGE em-
ploying ReLU-rg3-deg4 whose accuracy is 76.12%. This result is expected
since ReLU-rg3-deg4 is more accurate to approximate ReLU in the range -3 to
3 as we have shown in Figure 4.2. However, the latency of privacy-preserving
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GraphSAGE employing RuLU-rg3-deg4 is higher as 6.89 hours for one infer-
ence. This result is also expected since employing ReLU-rg3-deg4 requires
one more homomorphic multiplication.

Table 5.1: pre-trained GraphSAGE and experimental results of using
polynomial approximation of ReLU on privacy-preserving GraphSAGE

Bits of
coefficient
modulus

Model and acti-
vation function

Scale Rescaling
Strategy

Accuracy Latency
for
one
infer-
ence

N/A pre-trained
GraphSAGE
(ReLU)

N/A N/A 84.58% 0.6s

60,30...30,30 privacy-
preserving
GraphSAGE
(ReLU-rg3-
deg2)

230 rescale every
time

75.40% 5.85h

60,30...30,30 privacy-
preserving
GraphSAGE
(ReLU-rg3-
deg4)

230 rescale every
time

76.12% 6.89h

5.3 Experimental results of encoding error
The experimental results of investigating the encoding error on the accuracy
of the inference of the FHE-encrypted GraphSAGE are shown in Table 5.2.
According to the results in the table, while the scaling is increasing, the ac-
curacy is also getting higher. Especially, when the scale is set as 250, our
FHE-encrypted GraphSAGE model can have an accuracy as 76.55%. This
is in line with our expectations.

When the scale setting is higher, the precision of ciphertexts will increase,
which will improve the accuracy performance of the FHE-encrypted Graph-
SAGE. High scale setting is beneficial for making inferences for cases where
the difference between class possibilities is on the order of decimals. The
FHE-encrypted GraphSAGE calculates the possibility of each class (7 classes
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in Cora dataset) as input and outputs the class with the highest possibility
as the prediction result. The higher the scale setting, the more digits can
be accurately calculated for each class of possibility, thus classify the input
more accurately. However, since higher precision of ciphertext is considered,
the computation consumption also increases. Therefore, the latency of the
experiment with scale setting as 250 also has the biggest latency, 11.4 minutes
more compared with the scale setting as 230 for each inference.

Table 5.2: Summary of experimental results of encoding error

Bits of
coefficient
modulus

Rescaling
Strategy

Activation func-
tion

Scale Accuracy Latency
for one
infer-
ence

60,30...30,30 rescale every
time

ReLU-rg3-deg2 230 75.40% 5.85h

60,40...40,40 rescale every
time

ReLU-rg3-deg2 240 75.81% 5.91h

60,50...50,50 rescale every
time

ReLU-rg3-deg2 250 76.55% 6.04h

5.4 Experimental results of rescaling error
The experimental results of investigating the rescaling error on the accuracy
of the inference of the FHE-encrypted GraphSAGE are shown in Table 5.3.
For each experiment, each ciphertext conducts nine times homomorphic mul-
tiplication. As the result shows in Table 5.3, with the number of rescaling
operations employed, the latency increases. In specific, for no rescaling, the
latency decreases to 3.15 hours but also with the lowest accuracy at 72.21%.
On the opposite, the naive rescaling group does rescaling operations after ev-
ery homomorphic multiplication, which has the highest latency of 5.85 hours
but also the highest accuracy of 75.40%. The threshold rescaling group does
the rescaling operation only when the scale is over 90, The threshold rescal-
ing group has the middle latency among the three groups in our experiments
at 4.62 hours and also the middle level of the accuracy as 73.92%.
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Table 5.3: Summary of experimental results of rescaling error

Group
Name

Bits of
coef-
ficient
modu-
lus

Rescaling
Strategy

Scale Accuracy Latency
for one
infer-
ence

Naive
Rescal-
ing

(60, 30 . . . 30, 30) rescale every
time

230 75.40% 5.85h

No
Rescal-
ing

(60, 60 . . . 60, 60) without
rescaling

230 74.21% 3.15h

Threshold
Rescaling

(60, 60 . . . 60, 60) rescale when
scale bits over
90

230 74.92% 4.62h

5.5 Summary of Experimental Results
According to the experimental results we have, the CKKS-induced error af-
fects the accuracy of the privacy-preserving machine learning GraphSAGE
with FHE. For the errors introduced by the polynomial approximation of
ReLU, the higher degree of polynomial approximation results in higher ac-
curacy but also increases latency because more times of homomorphic multi-
plication are needed. In our experiments, the latency increases by 0.93 hours
with 0.72% accuracy increasing. For rapid response applications, latency is
very important for customers, the ReLU-rg3-deg2 which has shorter latency
is more suitable.

The encoding error introduced by the CKKS scheme also has effects on
the accuracy of the privacy-preserving machine learning GraphSAGE with
FHE. Higher scale setting in the homomorphic parameters results in higher
accuracy but also increases latency. According to our experimental results,
increasing the scale setting leads to a significant accuracy improvement, while
the increase in latency is not very large compared with a higher degree of
polynomial approximation of ReLU. The highest scale setting 250 results in a
1.15% improvement in accuracy but only increases the latency by 0.19 hours
compared with the scale setting as 230.

The different rescaling strategy has a huge effect on the latency of in-
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ference but a small effect on the accuracy of inference. If we do threshold
rescaling, the latency decreases by 1.23 hours but the accuracy only decreases
0.48%. Therefore, to decrease the latency, employing fewer rescaling opera-
tions is a good option since it has a small effect on the accuracy of inference
for privacy-preserving GraphSAGE.
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Chapter 6

Conclusion

GraphSAGE, one of the most famous Graph neural network (GNN) model
proposed by William L. et al. [13], performs well in recommendation systems
because it considers not only individual instances but also the relationships
between the instances [1]. However, GraphSAGE requires customers’ private
information to make recommendations. In this scenario, fully homomorphic
encryption (FHE) can be a useful tool since it supports privacy-preserving
computation. Although the CKKS scheme [5] in FHE has been widely used
in privacy-preserving machine learning (PPML) because of its advantage of
approximate arithmetic [6], it is vital to investigate how the errors affect the
accuracy of FHE-encrypted GraphSAGE inference.

In this thesis, we first proposed the FHE-encrypted GraphSAGE model
for inference. In our scenario, the nodes graph is encrypted, which means all
the features of each node and the relationship among nodes are hidden by
FHE. Besides, the information of the query such as features and relationship
with the nodes in the nodes graph are also encrypted by FHE. This scenario
can ensure that privacy can be protected during recommendation creation
by FHE-encrypted GraphSAGE. Furthermore, we do experiments to inves-
tigate the effect of encoding and rescaling techniques on the accuracy of the
proposed FHE-encrypted GraphSAGE, respectively.

The results show that a higher degree of polynomial approximation re-
sults in higher accuracy but increases the latency most because of more times
of homomorphic multiplications. Although the encoding error has effects on
the accuracy of the inference, the increased latency by using a higher scale
setting is less than using a higher degree of polynomial approximation but
also the accuracy increases more. Using fewer rescaling operations has the
most effect on decreasing latency. Therefore, to increase the accuracy of the
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inference, we can consider increasing the scale setting first. To reduce the la-
tency of the inference, employing fewer rescaling operations is a good method.

In future, we want to explore our research on comparing the impact
of CKKS-induced error on the accuracy of inference of various privacy-
preserving machine learning models with FHE such as the models mentioned
in Section 3.2 with our proposed privacy-preserving GraphSAGE model.
By reproducing the models mentioned in Section 3.2 to compare with the
privacy-preserving GraphSAGE model, we hope to obtain clearer insights
into whether CKKS-induced errors have a more significant effect on the
privacy-preserving GraphSAGE model. Besides, the encryption error in the
CKKS scheme is also a potential area for us to discuss in our future re-
search because encryption error is also another important type of error that
is introduced by the CKKS scheme during encryption.
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