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Abstract

In the realm of robotics and artificial intelligence, the pursuit of autonomous learning in ma-
chines has been the hallmark of innovation and progress, driving the vision of a future where
robots are not only capable of executing predefined tasks but are also adept at comprehend-
ing and adapting to implicit instructions from humans for prolonged and productive collabora-
tion. This dissertation is dedicated to the investigation and development of machine learning
techniques that enable robots to autonomously learn to interpret implicit instructions, with a
particular emphasis on long-term human-machine collaboration.

Over the past decades, the integration of robotics into various aspects of human life has
witnessed profound advancements, revolutionizing industries such as manufacturing, health-
care, education, and services. In these contexts, the ability of robots to understand and re-
spond to implicit instructions is imperative for fostering effective human-robot interaction.
Implicit instructions encompass a broad spectrum of cues, including non-verbal communica-
tion, contextual cues, and shared experiences, which often play a crucial role in human com-
munication. Successful autonomous interpretation of these instructions by robots is pivotal
for establishing sustained and high-level collaboration, which is increasingly sought after in
modern applications.

While the field of robotics has made substantial progress in terms of robots adapting to
explicit commands and predefined tasks, there remains a significant gap in the area of au-
tonomous learning of implicit instructions for long-term collaboration. The majority of current
research predominantly focuses on short-term, task-specific interactions with a single user
or a limited set of users. This approach, however, falls short of addressing the complexity and
dynamism inherent in long-term human-machine collaboration, where robots must adapt not
only to learning new tasks but also to the diverse communication styles and expectations of a
wide variety of users. The challenge in enabling robots to adapt to a broad spectrum of users
is a multifaceted one. It encompasses not only the ability to recognize and interpret various
communication styles, but also the capacity to adapt to the unique preferences, habits, and
idiosyncrasies of different individuals. In essence, it necessitates the development of machine
learning algorithms that are not only versatile but also context-aware, enabling robots to dif-
ferentiate between implicit instructions and adapt their responses accordingly. Understanding
the diversity in human communication and learning to adapt to these differences is a complex
undertaking. It requires robots to discern the nuances in gestures, facial expressions, intona-
tion, and non-verbal cues, while simultaneously considering the context in which these cues
are presented. Moreover, it involves the creation of models that can generalize learning from
one user to another, accounting for variations in communication and interaction patterns.

This dissertation strives to address the aforementioned challenges by developing machine
learning algorithms and models that empower robots to autonomously learn the art of deci-
phering implicit instructions for long-term human-machine collaboration. The central goal is
to equip robots with the capability to not only adapt to different users but also to enrich their
understanding of the intricacies of human communication over extended periods. By achieving
this, robots can be more versatile and adaptable, resulting in more productive and harmonious
collaborations in a wide range of domains. The subsequent sections of this paper will delve into
the methodologies, technologies, and innovations undertaken to advance the state-of-the-art
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in this field and contribute to the future of autonomous robotic systems. In this dissertation,
the focus was on the development of machine learning techniques for robots to autonomously
learn implicit instructions, enabling long-term and productive human-machine collaboration.
Implicit instructions encompass a wide array of non-verbal cues, contextual information, and
shared experiences that play a pivotal role in human communication. The research delved into
the challenges posed by adapting to diverse users and the intricacies of human communication
styles. These challenges were addressed through the refinement of the developed algorithm,
incorporating blinding as a bias awareness technique and implementing attention mechanisms
to consider joint mechanics and sensor data interplay. The achievements in this research con-
tribute significantly to the advancement of autonomous machine learning for human-robot
collaboration. However, challenges remain in fine-tuning implicit instruction interpretation and
adapting to a broader spectrum of user populations. Future work in this field will aim to further
optimize machine learning algorithms and enhance robots' capabilities for interpreting implicit
instructions, fostering more inclusive, equitable, and effective long-term collaborations be-
tween humans and robots.

Chapter 1 serves as the foundation for the dissertation, offering an extensive background on
human-robot communication methods and the challenges inherent in robot continuous learn-
ing for long-term human-machine collaboration. We explore the landscape of current research,
highlighting the limitations in existing approaches, particularly in adapting to a diverse range of
users and the intricacies of human communication styles. The purpose of this research is to
develop advanced machine learning techniques that enable robots to autonomously interpret
and adapt to implicit instructions, with the ultimate goal of enhancing sustained collaboration
in a broad spectrum of real-world applications. This chapter sets the stage for the subsequent
exploration of innovative methodologies, technologies, and insights that drive the development
of autonomous learning in robots to meet the demands of dynamic human-robot partnerships.

Chapter 2 delves into the intricate domain of identifying and comprehending implicit cues
within human motion, an essential aspect of human-robot communication for long-term col-
laboration. We examine the concept of the ideomotor principle, which underscores the use of
non-verbal cues in interpersonal communication. Through a rigorous analysis, we assess the
reproducibility and usability of these implicit cues as a viable means of communication be-
tween humans and robots. The chapter explores the feasibility of the robot's ability to learn
and associate these cues with user intentions, thus laying the groundwork for the translation
of human motion into effective robotic commands. This exploration paves the way for the de-
velopment of advanced machine learning models to enable robots to autonomously decipher
and adapt to implicit instructions, crucial for sustained and productive human-machine col-
laboration.

Chapter 3 focuses on a detailed analysis of the performance disparities revealed in the
previous experimental section, particularly concerning the impact of gender on human-robot
collaboration. We uncover that the imbalanced dataset resulted in higher robot performance
with male users compared to female users, particularly as task complexity increased. Addi-
tionally, this chapter scrutinizes how robot performance and behavior influence the user ex-
perience and perception of both genders. It places a specific emphasis on identifying the
factors that influence trust and explores the consequences of trust violations for future col-
laboration. This investigation plays a pivotal role in enhancing the robustness and inclusivity of
the developed machine learning models, ensuring equitable and effective long-term human-
robot collaboration across diverse user populations. Chapter 4 delves into the refinement of
the developed machine learning algorithm, addressing the challenge of data bias by employing
a bias awareness technique known as blinding. We enhance the algorithm's capacity to rec-
ognize and rectify data bias, going beyond mere sensor data analysis. Instead, the algorithm
gains an acute awareness of joint mechanics and the interplay between different sensors gath-
ering user motion data. This is achieved through the strategic use of attention mechanisms,
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enabling the algorithm to discern how each sensor's data correlates and moves in relation to
others. The novel approach implemented in this chapter represents a significant stride towards
minimizing data bias and optimizing the algorithm's ability to autonomously learn and adapt to
implicit instructions for long-term human-robot collaboration, contributing to more equitable
and effective interactions.

Chapter 5 serves as the culmination of this dissertation, summarizing the research's ac-
complishments and significant contributions to the field of autonomous machine learning for
long-term human-machine collaboration. It reflects on the challenges addressed through-
out the study, emphasizing the mitigation of data bias, gender effects, and trust violations in
human-robot interactions. The chapter also underscores the remaining challenges, acknowl-
edging the complexities of adapting to diverse user populations and fine-tuning implicit in-
struction interpretation. In looking ahead, it suggests the need for further research to address
these outstanding issues and lays the foundation for future work in refiningmachine learning al-
gorithms and advancing the capabilities of robots to autonomously learn and adapt to implicit
instructions, fostering more inclusive, equitable, and effective human-robot collaborations in
the years to come.

In conclusion, this dissertation represents a comprehensive and forward-looking explo-
ration into the development of machine learning for the autonomous learning of implicit in-
structions by robots, with the ultimate goal of fostering long-termand effective human-machine
collaboration. It has laid the groundwork by providing a thorough background on human-robot
communication methods, highlighting the challenges posed by data bias, gender effects, and
trust violations. The study has ventured into novel territory by addressing these issues and re-
fining machine learning algorithms to mitigate data bias, understand the intricacies of implicit
cues in human motion, and enhance robot performance and adaptability. While significant
achievements have been made in this research, it is clear that there is more work to be done,
especially in fine-tuning implicit instruction interpretation and adapting to diverse user popu-
lations. As we look to the future, this dissertation sets the stage for ongoing efforts to optimize
machine learning algorithms and enhance robots' capabilities, ultimately advancing the field
of autonomous machine learning for human-robot collaboration and fostering more equitable,
inclusive, and effective partnerships in the years to come.
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Chapter 1

Introduction

1.1 Background

1.1.1 Human Machine Interaction

Human-robot interaction (HRI) is an evolving field of study that focuses on the dynam-
ics between humans and robots, aiming to develop systems that can work alongside humans
effectively and safely. As robots become increasingly integrated into our daily lives, fromman-
ufacturing floors to personal assistants and healthcare, understanding and improving the ways
in which humans and robots interact is crucial. This introduction provides an overview of HRI,
its importance, key challenges, and potential future directions.

The genesis of HRI can be traced back to the early days of robotics and artificial intelligence
(AI), where the primary focus was on automating repetitive tasks. However, as technology pro-
gressed, the vision expanded to create robots capable of performing complex tasks alongside
humans, necessitating a deeper understanding of the interaction between humans and robots.
HRI thus emerged as a distinct interdisciplinary field, drawing from robotics, cognitive science,
social sciences, design, and engineering to address the multifaceted aspects of robot design,
human factors, and interaction dynamics [5].

HRI stands at the forefront of themodern technological revolution, representing a paradigm
shift in how humans interact with machines. Its significance lies in its potential to revolution-
ize industries, enhance quality of life, and address complex societal challenges. In healthcare,
robots can assist in surgeries, rehabilitation, and care for the elderly, offering precision and
support where human capabilities are limited. In education, interactive robots can facilitate
learning and engagement among students. Furthermore, in manufacturing and service sectors,
robots that can safely and effectively collaborate with human workers promise to increase ef-
ficiency, safety, and job satisfaction [6].

The interdisciplinary nature of HRI reflects the complexity of designing systems that are not
only technically proficient but also socially and ethically aligned with human values and needs.
This requires integrating knowledge from robotics (for the development of physically capable
robots), psychology and cognitive science (to understand human behavior and perception),
social sciences (to grasp the social dynamics and cultural impacts of robot integration), and
design (to create user-friendly interfaces and interaction experiences).

One of the key challenges in HRI is developing robots that can understand and adapt to
human emotions, intentions, and behaviors. This involves sophisticated AI algorithms capa-
ble of interpreting human gestures, language, and social cues, as well as ethical considerations
regarding privacy, autonomy, and the nature of human-robot relationships. Additionally, ensur-
ing the safety and reliability of robots in diverse environments presents ongoing technical and
regulatory challenges [7].

Recent advancements in AI, machine learning, and sensor technology have led to significant
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progress in HRI. Robots are becomingmore autonomous, able tomake decisions based on real-
time data and learning from interactions. This has enabled more natural and intuitive forms of
communication between humans and robots, such as voice and gesture recognition, enhancing
the user experience across various applications [8].

Another trend is the increasing focus on personal and social robots designed for com-
panionship, education, and assistance in daily tasks. These robots are being designed with an
emphasis on emotional intelligence, capable of providing personalized interactions that can
adapt to the user's mood and preferences [9].

Looking forward, HRI is poised to address more complex societal needs, with potential im-
pacts on addressing labor shortages, enhancing accessibility for individuals with disabilities,
and providing solutions for sustainable development. As the technology evolves, ethical and
societal implications of widespread robot adoption will become increasingly important to ad-
dress, including issues of job displacement, privacy, and the digital divide.

Moreover, the future of HRI will likely see a greater emphasis on co-evolution, where hu-
mans and robots learn from each other in a symbiotic relationship. This approach could lead
to the development of more adaptive, resilient, and empathetic robotic systems, capable of
functioning in unpredictable environments and forming meaningful partnerships with humans
[10].

1.1.2 Types of Interaction

One of the core aspects of HRI research involves categorizing the types of interactions
that can occur between humans and robots. Understanding these interactions is crucial for
designing robots that can effectively work in human-centric environments. This subsection
delves into the primary types of interactions in HRI, namely coexistence, cooperation, and col-
laboration, highlighting their differences and implications for robot design and deployment.

1. Coexistence: Coexistence refers to the scenario where humans and robots share a com-
mon space but interact minimally with each other. In this type of interaction, the robot
and human do not share a direct working relationship or goal. Instead, the robot operates
independently within the same environment as humans. Coexistence requires significant
attention to safety protocols to ensure that the robot's presence does not adversely af-
fect the human inhabitants and vice versa. Typical applications include robotic vacuum
cleaners in home environments or autonomous mobile robots navigating through ware-
houses where humans are present. The key characteristic of coexistence is the inde-
pendence of goals and tasks between humans and robots. As such, the design focus for
robots in coexistence scenarios is primarily on sensor technology for obstacle avoidance,
environmental awareness, and adherence to safety standards. For instance, studies like
those by Sisbot and Alami [11] emphasize the need for robots to maintain safe distances
from humans and to predict human movements to avoid collisions.

2. Cooperation: Cooperation in HRI occurs when humans and robots work towards separate
but related goals that require some level of interaction. Unlike coexistence, cooperation
involves indirect interaction where the activities of one party influence the performance
of the other. A typical example is a robotic arm in a manufacturing setting that performs
tasks such as welding, which is interconnected with a human's task of assembling parts.
In cooperative interactions, although the goals are distinct, there is a need for coordi-
nation between the human and the robot. This requires the robot to have a higher level
of intelligence and adaptability to respond to human actions and possibly adjust its be-
havior based on human cues. The research conducted by Li et al. [12] illustrates how
robots can use cues from human motion to adjust their trajectory or speed in real-time
to facilitate smoother cooperation.
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3. Collaboration: Collaboration represents the most integrated form of interaction in HRI,
where humans and robots work together on a shared task with a common goal. This
interaction requires not just parallel activity but a synchronized effort, often involving
back-and-forth exchanges and adjustments based on mutual feedback. An example
of collaboration is a human-robot team assembling a complex electronic device, where
both the human and robot must adapt their actions responsively to each other's inputs.
Collaborative robots, or "cobots," are designed with capabilities such as gesture recogni-
tion, natural language processing, and advanced decision-making algorithms to engage
in this dynamic interaction. A significant aspect of collaborative interaction is the robot's
ability to predict human intent and adapt its actions accordingly to enhance team ef-
ficiency. Research by Breazeal et al. [13] highlights how robots can effectively interpret
human gestures and verbal commands to optimize joint task performance.

Figure 1.1: Types of interaction

Understanding the distinctions between coexistence, cooperation, and collaboration in human-
robot interaction is crucial for the development of robotic systems that are capable of func-
tioning effectively in diverse human environments. Each type of interaction requires differ-
ent capabilities from robots, from basic safety protocols in coexistence to advanced cognitive
abilities in collaboration. As robotic technology advances, the potential for more nuanced and
effective interactions in each of these categories continues to expand, promising significant
implications for future human-robot teams.

This analysis provides a clear distinction between the types of interactions that can occur
in HRI, emphasizing the increasing complexity and interactivity required from coexistence to
collaboration. Understanding these interactions aids in the targeted development and imple-
mentation of robotic systems across various sectors.

1.1.3 Robot Learning in Human-Robot Interaction

Robot learning, a subset of machine learning, involves developing algorithms that enable
robots to learn from experiences, adapt to new situations, and refine their actions over time.
In the context of HRI, robot learning is particularly important as it allows robots to understand
and predict human actions, preferences, and needs, thereby facilitating smoother and more
effective interactions[14]. This capability is crucial for robots designed for collaborative tasks,
where they must work alongside humans in environments ranging from industrial settings to
personal assistance and healthcare.

In collaborative HRI, robot learning plays a pivotal role in enabling robots to participate as
proactive partners rather than passive tools. This shift requires robots to not only react to
human instructions but also anticipate human needs and adapt their behavior to complement
human actions dynamically. For instance, in a manufacturing context, robots equipped with
advanced learning algorithms can adjust their movements to match the pace and style of their
human co-workers, enhancing efficiency and reducing the risk of accidents [15].
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Furthermore, robot learning facilitates the development of personalized interactions, where
robots can adjust their communication style, level of assistance, and behavior based on indi-
vidual user preferences and performance. This personalization is particularly valuable in ed-
ucational settings and rehabilitation, where tailored approaches can significantly impact the
effectiveness of the collaboration [16].

Despite its potential, integrating robot learning into collaborative HRI presents several chal-
lenges. One major challenge is ensuring that robots can learn effectively from limited or noisy
human-generated data. Humans often provide inconsistent or imprecise feedback, requiring
robots to have robust learning algorithms that can generalize from imperfect inputs [17].

Another challenge is developing models that can predict human behavior in real-time, a
necessity for seamless collaboration. This requires not only sophisticated algorithms but also
significant computational resources, posing technical and practical constraints on robot design
[18]. Safety is also a paramount concern, as robots must learn to adapt their behaviors without
endangering humans. This necessitates the development of learning algorithms that prioritize
safety and ethical considerations in decision-making processes [19].

Research in robot learning for collaborative HRI has led to several notable contributions. For
example, studies have developed algorithms that enable robots to learn from demonstration,
allowing non-expert users to teach robots tasks by simply showing them the desired actions
[14]. Other research has focused on reinforcement learning, where robots learn optimal behav-
iors through trial and error, guided by feedback from their human partners [17]. Looking ahead,
one promising direction is the integration of social learning mechanisms, where robots can
learn not just from direct interaction but also by observing human behavior and interactions.
This approach could enable robots to acquire complex social behaviors and norms essential
for effective collaboration [20].

Figure 1.2: Types of interaction
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1.1.4 Personalization of Interaction

Personalization in HRI and social robotics is a dynamic field that aims to enhance the us-
ability and effectiveness of robots by tailoring their behaviors to individual human needs and
preferences. As robots increasingly become part of everyday life, the ability to adapt to and
learn from interactions with humans over extended periods becomes essential. This paper ex-
plores the significance of lifelong learning in HRI, focusing on the concept of Lifelong Learning
and Personalization in Long-Term Human-Robot Interaction (LEAP-HRI). This approach high-
lights how robots can evolve and adapt through continual interactions, thereby improving their
functionality and acceptance in human societies.

Social robotics involves the deployment of robots in roles that require engagement and in-
teraction with humans in a social context, such as in homes, schools, hospitals, and workplaces.
The success of these robots is largelymeasured by their ability to establish andmaintainmean-
ingful interactionswith users. Personalization in social robotics enables thesemachines to learn
fromprevious interactions, adapt their behaviors, and predict individual preferences, which sig-
nificantly enhances user satisfaction and engagement. Studies have shown that personalized
robots can achieve higher levels of user engagement and are more likely to be perceived as
helpful and friendly compared to generic robots. For instance, Tapus et al. [21] demonstrated
that robots that adapted their personality and behaviors to match user preferences resulted
in improved interaction quality and increased user satisfaction.

Lifelong learning in HRI is grounded in the development of algorithms that enable robots
to accumulate knowledge continuously, adapt to new circumstances, and apply past learn-
ing to new situations without human intervention. This is particularly important in environ-
ments where human behaviors and preferences evolve over time, requiring robots to dynami-
cally adjust their behaviors. Several approaches have been proposed for implementing lifelong
learning in robots. One approach is reinforcement learning, where robots learn optimal behav-
iors through trial and error interactions with the environment. Another approach is supervised
learning, where models are trained on a dataset of labeled interactions, allowing the robot to
learn from explicit examples. However, both methods have limitations in dynamic social envi-
ronments where unpredictability and the requirement for immediate adaptation are high.

The LEAP-HRI framework addresses these challenges by integrating advanced machine
learning techniques withmodels of human behavior to facilitate deeper personalization in long-
term interactions. This framework focuses on three core areas:

• Adaptation and Learning: LEAP-HRI emphasizes the importance of adaptive algorithms
that can update and refine their strategies based on ongoing interactions. This involves
using techniques from online learning and model-based reinforcement learning to en-
sure that the robot's behavior remains aligned with changing human preferences and
environments.

• Personalized InteractionModels: Central to LEAP-HRI is the development of personal-
ized interaction models that predict individual user needs and preferences. These mod-
els leverage data collected over time to enhance the robot’ s understanding of each user,
enabling more tailored and responsive interactions.

• ContextualAwareness: Recognizing and responding to contextual cues is vital for effec-
tive personalization. LEAP-HRI incorporates contextual data into decision-making pro-
cesses, allowing robots to understand the situational dynamics and adjust their behaviors
accordingly.

The implications of LEAP-HRI are profound across various domains where personalized in-
teractions are crucial. In healthcare, for example, robots can provide personalized support to
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Figure 1.3: Representation of interaction personalisation requirements for HRI

patients with chronic illnesses by learning their preferences for medication reminders or phys-
ical activities. In education, personalized learning companions can adapt to the learning pace
and style of individual students, enhancing educational outcomes.

Despite its potential, implementing LEAP-HRI poses several challenges. These include the
complexity of designing algorithms that can handle the vast amount of data generated in long-
term interactions, privacy concerns associated with data collection, and the ethical implica-
tions of increasingly autonomous personalized robots. Future research in LEAP-HRI should
focus on developing robust privacy-preserving mechanisms that ensure data security while
enabling personalization. Additionally, ethical frameworks that guide the development and im-
plementation of personalized robots must be established to address potential biases and dis-
crimination.

Lifelong learning and personalization are critical to the future of human-robot interaction,
particularly in social robotics. The LEAP-HRI framework presents a promising approach to
achieving deeper and more meaningful interactions between humans and robots by focus-
ing on adaptation, personalization, and contextual awareness. As this field progresses, it will be
crucial to address the technical, ethical, and societal challenges to fully realize the benefits of
personalized robots in enhancing human lives.

1.1.5 Implicit Interaction in HRI: Understanding User Intentions

Implicit interaction, particularly in the context of HRI, refers to the robot's ability to under-
stand and respond to unspoken cues or unintended human actions. Unlike explicit interactions,
where commands or explicit feedback are given to the robot, implicit interactions rely on the
robot's capacity to perceive and interpret subtle human behaviors, environmental contexts,
and non-verbal cues to infer user intentions. This capability is crucial for creating intuitive and
seamless interactions between humans and robots, enhancing user experience and efficiency.

Implicit interaction involves indirect or unobtrusive communication methods, such as the
robot sensing the user’ s presence, gestures, gaze direction, or physiological responses. User
intention understanding within this context refers to the robot’ s ability to infer what a user
intends to do based on these indirect inputs. This capability is significant for developing au-
tonomous systems that can proactively assist users without explicit commands. Research in
this domain often highlights the contrast between explicit interactions (where commands are
clearly given to the robot) and implicit interactions, which require the robot to make inferences
based on observational data. Such interactions can make robotic systems appear more intel-
ligent and sensitive to user needs.
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The technological basis for enabling implicit interactions includes sensors, machine learn-
ing algorithms, and context-aware computing. Sensors such as cameras, microphones, and
wearable devices capture a wide array of data about a user's behavior and environment. Ma-
chine learning algorithms then process this data to detect patterns and infer intentions, often
utilizing techniques from fields such as pattern recognition, natural language processing, and
computer vision.

Cameras enable robots to interpret user gestures, facial expressions, and body language.
Research by Admoni et al. [22] discusses how visual cues, particularly eye gaze and body orien-
tation, can inform a robot about a user's focus of attention and likely next actions. Microphones
capture vocal tones and speech patterns, which can be analyzed to gauge user emotions and
intentions without explicit verbal instructions. The work byMarge et al. [23] illustrates how vari-
ations in voice can indicate stress levels or urgency, prompting a robot to adjust its behavior
accordingly. Utilizing data from the environment, such as the location of objects and the user’ s
proximity to these objects, can also provide clues about potential user actions. Context-aware
computing plays a crucial role here, as noted by Park et al. [24], who developed a context-aware
robot that adjusts its operations based on the time of day and the user's typical schedule.

Understanding user intentions through implicit interactions has broad applications across
various sectors: 1) healthcare, in rehabilitative environments, robots can adjust therapy ses-
sions based on subtle cues from patients indicating discomfort or fatigue. 2) Home Assistants:
Domestic robots can anticipate needs by observing routine activities, such as preparing cof-
fee in the morning or turning down the bed at night without explicit instructions. 3) Workplace:
In industrial settings, robots might predict the need for supplies or assistance by observing
workers’ behaviors and tool usage patterns, streamlining operations without interrupting the
workflow.

While promising, the field of implicit interaction faces several challenges:

• Accuracy of Intention Inference: The accuracy with which intentions are inferred from
implicit cues is not always reliable, leading to potential errors in response.

• Privacy Concerns: The extensive data collection required for these interactions raises
significant privacy issues, necessitating robust data protection measures.

• Ethical Considerations: There are ethical implications in decision-making by robots, es-
pecially when actions are taken based on inferred, rather than explicitly stated, user con-
sent.

Future research in implicit interaction must address these challenges while enhancing the
robustness and applicability of inference mechanisms. Developing multimodal sensing tech-
niques that combine several types of sensory information can improve accuracy and reliability.
Furthermore, the integration of ethical considerations into the design of algorithms that handle
implicit data is critical to fostering trust and acceptance among users.

Implicit interaction represents a transformative approach in HRI, enabling robots to act in a
more human-like and anticipatory manner by understanding user intentions from non-explicit
cues. As technology advances, the scope for more intuitive and effective user-robot interfaces
will expand, significantly impacting how humans and robots coexist and cooperate in various
environments.

1.2 ChallengesofHuman-Robot InteractionandCollaborativeWork

As robots and AI systems become more prevalent in society, their integration into daily
activities and professional fields necessitates a seamless coexistence with humans. This inte-
gration highlights the importance of effective HRI and collaborative work, which are critical for
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the success and acceptance of robotic systems in various environments. However, the expan-
sion of robots into areas requiring close collaboration with humans of differing expertise levels
presents several challenges, particularly regarding interaction methods, safety, and trust.

• Interaction Methods

One of the primary challenges in HRI is developing interaction methods that are intuitive and
accessible to users with varying levels of technical expertise. Traditional interfaces and com-
mand structures may be suitable for users with a background in robotics or engineering but
can be inaccessible or intimidating to those without such experience. The diversity in user ex-
pertise necessitates the development of adaptive and user-friendly interaction mechanisms
that can accommodate a wide range of users, from novices to experts [5]. Non-verbal com-
munication methods, such as gestures, facial expressions, and body language, offer a potential
solution to this challenge by enabling more natural and intuitive forms of interaction. However,
accurately interpreting these cues requires sophisticated sensing and processing capabilities,
which can be difficult to achieve in practice. Additionally, the variability in human behavior and
cultural differences can lead to inconsistencies in robot responses, potentially confusing or
frustrating users [25].

• Safety Issues

Safety is a paramount concern in HRI, especially in environments where robots and humans
work closely together. The potential for physical harm to humans, either through malfunction
or misinterpretation of commands, necessitates stringent safety protocols andmechanisms to
prevent accidents. This challenge is compounded by the need for robots to operate in dynamic
and unpredictable environments, where they must be able to recognize and adapt to potential
hazards in real-time [26]. Developing robots capable of such adaptability requires advanced
sensing and decision-making capabilities, as well as robust safety features that can quickly
deactivate or redirect the robot in the event of a potential danger. However, implementing these
features without compromising the robot's functionality or the fluidity of interaction presents
a significant engineering challenge.

• Trust

Trust is a critical component of effective HRI and collaborative work. For robots to be success-
fully integrated into society and various professional spheres, users must trust that they will
perform their tasks reliably and safely. Building this trust requires not only ensuring the tech-
nical reliability of robots but also addressing users' perceptions and attitudes toward robotic
systems [27]. Trust can be influenced by a variety of factors, including the robot's appear-
ance, behavior, and the transparency of its decision-making processes. Robots that appear
too machine-like or behave unpredictably may be less likely to be trusted by users. Similarly,
if users do not understand how a robot makes decisions, they may be less inclined to trust its
actions, especially in critical or sensitive tasks.
-
Addressing these challenges requires a multidisciplinary approach that combines advance-
ments in robotics and AI with insights from psychology, sociology, and ethics. Developing in-
teractionmethods that are both intuitive and adaptable to users of varying expertise levelsmay
involve leveraging emerging technologies such as augmented reality (AR) and machine learning
to create more immersive and personalized interaction experiences [28, 20]. Ensuring safety
in HRI necessitates not only the development of advanced sensing and processing capabili-
ties but also the creation of comprehensive safety standards and guidelines specific to robotic
systems. These standards should be informed by ongoing research into human-robot collab-
oration and updated regularly to reflect technological advancements and emerging use cases.
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Building trust in robotic systems involves improving both their reliability and the transparency
of their operations. This can be achieved through rigorous testing and validation processes, as
well as efforts to educate users about the capabilities and limitations of robotic systems. Ad-
ditionally, designing robots with more human-like appearance and behavior may help to make
them more relatable and trustworthy to users [29].

1.3 Purpose of this Study

The primary purpose of this study is to advance the field of human-robot interaction (HRI)
by developing an innovative approach that leverages attentionmechanisms andmemory-enhanced
neural networks. This approach aims to endow robots with a nuanced understanding of human
body motion, facilitating a more intuitive and adaptable interaction paradigm based on the
ideomotor principle. Unlike conventional HRI systems that focus on mastering a broad spec-
trum of tasks, this research emphasizes creating robots capable of interacting with a diverse
array of users. This shift in focus addresses a critical gap in current HRI research: the ability of
robots to adapt to user-specific data, especially when collaborating with unknown users who
may communicate their intentions through unique motion cues. Background and Significance
The intricacies of human motion represent a rich source of information that, when accurately
interpreted by robots, can significantly enhance collaborative efforts. The ideomotor princi-
ple, which suggests that merely thinking about an action can facilitate its execution, provides a
theoretical framework for developing HRI systems that anticipate and respond to humanmove-
ments in a seamless and anticipatory manner. By focusing on the kinematic awareness of hu-
man body motion, this study seeks to enable robots to understand and predict a wide range
of user intentions, thereby improving collaboration efficiency and user satisfaction.

1.3.1 Research Objectives

1. Develop a Neural Network Architecture with Attention Mechanisms and Memory En-
hancement: To process and interpret the complex dynamics of human motion, incor-
porating attention mechanisms that focus on relevant cues and memory components
that retain essential information over time.

2. Enable Kinematic Awareness in Robots: To achieve a detailed understanding of human
body motion and its implications for task execution, facilitating a deeper level of non-
verbal communication and collaboration based on the ideomotor principle.

3. Adapt to User-Specific Data: To create a system that learns from interactions with indi-
vidual users, allowing the robot to adjust its behavior and predictions based on unique
user profiles and motion cues, thereby handling a wide variety of human behaviors and
preferences.

4. Evaluate the System in Collaborative Tasks: To test the developed system in a range of
collaborative scenarios, assessing its ability to adapt to new users and improve task ef-
ficiency and user experience.

1.3.2 Methodology

This study will employ a mixed-methods approach, combining quantitative analyses of
robot performance in collaborative tasks with qualitative feedback from users. The develop-
ment of the neural network architecture will involve iterative testing and refinement, with par-
ticular attention to the integration of attention mechanisms and memory components. User
studies will be conducted to collect data on motion cues and intentions, which will be used to
train and validate the neural network model.
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Figure 1.4: Objectives of this Study

1.3.3 Expected Contributions

Advancement inHRI Technologies: By focusing on kinematic awareness and user-specific
adaptation, the study aims to push the boundaries of what is currently possible in HRI, partic-
ularly in terms of non-verbal communication and collaboration.

Theoretical Implications: The application of the ideomotor principle in the context of HRI
provides a novel approach to designing interactive robots, contributing to the theoretical un-
derstanding of anticipatory and adaptive robot behavior.

PracticalApplications: The development of robots capable of adjusting to individual users
has significant implications for a variety of fields, including healthcare, education, and manu-
facturing, where personalized assistance and collaboration are crucial.

1.4 Related Research

1.4.1 Continual Learning

The concepts of continual learning and long-term collaboration in HRI have garnered sig-
nificant attention in recent years. Continuous learning in robots, also known as lifelong learning,
involves the ability of a robot to learn from new data continuously and adapt its knowledge
base without forgetting previously acquired information (Figure 1.5). Long-term collaboration
refers to the capacity of robots to work alongside humans over extended periods, adapting to
changes in human behavior, preferences, and environments. This subsection reviews the lit-
erature surrounding these concepts, highlighting key studies, methodologies, and findings that
have shaped current understanding and practices.

Continuous learning represents a paradigm shift in robotics, moving away from static pro-
gramming to dynamic, adaptive systems that can evolve with their operational environment.
Thrun and Mitchell [30] laid foundational work in this area, discussing the need for robots
to retain and refine knowledge over time. More recent studies have focused on overcoming
the challenges of catastrophic forgetting, where new learning interferes with previously stored
knowledge. Parisi et al. [31] reviewed approaches to mitigate this issue, including elastic weight
consolidation and replay mechanisms, which have shown promise in maintaining long-term
knowledge retention in neural networks.

The effectiveness of long-term human-robot collaboration hinges on the robot's ability to
understand and predict human actions, adapt to individual preferences, and maintain a level
of engagement that is both productive and satisfying for the human user. Trafton et al. [32]
explored the role of theory of mind in robots, enabling them to attribute beliefs, desires, and
intentions to their human counterparts, thereby facilitating smoother interactions over time.
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Similarly, Breazeal et al. [33] investigated social robots in educational settings, finding that
personalization and adaptability were key to maintaining student engagement and improving
learning outcomes over prolonged periods.

Integrating continual learning capabilities within the context of long-term collaboration
presents unique challenges and opportunities. Robots must not only adapt to immediate task
requirements but also anticipate future changes in human behavior and task contexts. Studies
by Irfan et al. [34] have demonstrated the potential of reinforcement learning and predictive
modeling in enabling robots to adjust their strategies based on human feedback and evolving
task parameters. Furthermore, research by Lemaignan et al. [35] highlighted the importance
of shared knowledge bases and mutual adaptation in maintaining effective collaboration over
time.

Despite progress, several challenges remain in fully realizing the potential of continual learn-
ing and long- term collaboration in robotics. One major hurdle is the scalability of current
learning algorithms to complex,real-world environments. Additionally, ensuring the privacy and
security of shared information, particularly in sensitive applications like healthcare or personal
assistance, is critical. Future research directions may include developing more efficient and
robust learning algorithms, exploring multi-modal learning approaches, and enhancing robots'
emotional intelligence to better understand and respond to human affective states.

The fields of continual learning and long-term collaboration in robotics are rapidly evolv-
ing, with significant implications for the future of HRI. As robots become more integrated into
daily life and work, the ability to learn continuously and collaborate effectively with humans
over extended periods will be paramount. Ongoing research in these areas holds the promise
of creating more adaptive, intelligent, and empathetic robotic systems capable of supporting
human endeavors in increasingly sophisticated ways.

1.4.2 Continual Learning for HRI

The integration of artificial intelligence and human-robot interaction (HRI) has ushered in
a new era of intelligent robotic systems that transcend traditional industrial applications to
become assistants, tutors, and companions in everyday life [36]. These robots are designed
to understand and support human cognitive and socio-emotional well-being through social
interactions. Central to enhancing HRI is the domain of affective robotics, which focuses on
the interpretation of human socio-emotional signals [37, 7]. This research area, although still
burgeoning and fraught with challenges [6, 38], is pivotal for robots aimed at providing effec-
tive physical and social support across various domains including healthcare, education, and
entertainment.

Affective robotics strives to comprehend and model the nuances of human behavior in
real-life scenarios, a complex undertaking that necessitates an understanding of nonverbal
cues such as gestures, posture, facial expressions, and vocal outbursts [39]. The objective is to
enable robots to perceive and interpret these cues to understand higher-level social phenom-
ena like emotions, engagement, and interpersonal relationships, and to respond appropriately
[40, 41]. However, current learning-based approaches, while effective in controlled lab settings,
often fail to generalize these capabilities to dynamic real-world interactions [42, 43, 44]. This
limitation underscores the need for models that not only generalize across diverse scenar-
ios but also personalize the interaction experience by adapting to individual user differences
influenced by factors such as culture, gender, and personality [45, 46].

Continual learning addresses the challenge of long-term adaptability in intelligent agents,
proposing a shift from traditional machine learning paradigms that assume a static data distri-
bution [30, 31]. Continual Learning involves learning incrementally from data acquired through
ongoing interactions, making it particularly suitable for environments where data distributions
evolve with each user or task. Although primarily applied in object recognition or task-specific
learning [31, 47], the principles of Contunal Learning can be extended to affective robotics. This
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Figure 1.5: Types of Meta-learing approaches

extension involves continual adaptation to new socio-emotional behaviors and states observed
during interactions with users [48, 49, 50], enabling robots not only to respond to current cues
but also to anticipate future behaviors [51].

Continual Learning allows robots to refine and update their socio-emotional perception
models continually. This involves learning from each interaction to enhance understanding and
prediction of user emotions and behaviors over time, which is crucial for maintaining engaging
and supportive relationships. By incorporating Continual Learning, robots can personalize their
responses based on the accumulated knowledge of individual user preferences and behaviors.
This personalization extends to adapting responses based on the context, such as changing
environmental conditions or varying task requirements, as illustrated in various studies [45,
46]. Future frameworks for Continual Learning in affective robotics should focus on creating
adaptable, robust models capable of handling the complexities of real-world interactions. This
involves integrating multi-modal data (visual, auditory, and contextual cues) and employing
advanced machine learning techniques that support incremental learning and data privacy.

Continual Learning represents a transformative approach for advancing affective robotics
within human-robot interaction. By enabling robots to adapt continually to new and evolving
socio-emotional cues, Continual Learning not only enhances the relevance and timeliness of
robotic responses but also significantly improves the personalization of interactions. As this
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field progresses, the fusion of Continual Learning principles with affective robotics will likely
lead to more nuanced, sensitive, and engaging human-robot relationships, ultimately fulfilling
the promise of robots as true social companions in diverse aspects of daily life.

1.4.3 Current Communication Methods in HRI

Communication between humans and robots has evolved significantly, moving from basic
command-and- control interfaces to more complex, multimodal interaction systems. These
advancements aim to make interactions more intuitive, allowing robots to understand and re-
spond to human actions, gestures, verbal commands, and even emotional expressions. How-
ever, despite these technological strides, current methods still face significant challenges, par-
ticularly when robots encounter new users with data or behavior patterns that differ from those
on which they were trained.

• Verbal Communication:

Voice commands and natural language processing (NLP) allow users to interact with robots
using spoken language. This method's effectiveness largely depends on the sophistication of
the robot's language understanding and speech recognition capabilities [52]. While significant
improvements have been made, issues such as accent, dialect, and language diversity can
hinder understanding, especially in multicultural or noisy environments.

• Non-verbal Communication:

This includes gestures, facial expressions, and body language. Robots equipped with sensors
and computer vision algorithms can interpret these cues to understand user intentions or emo-
tions [6]. Gesture recognition, for instance, enables amore natural way of directing robots with-
out the need for verbal commands. However, the variability in human gestures and expressions
across different cultures and individuals poses a challenge for consistent interpretation.

One of the main shortcomings of current HRI communication methods is their reliance on
predefined models and datasets for training AI algorithms. These models often fail to account
for the vast diversity in human behavior, leading to challenges when robots interact with new
users whose data diverges from the training set. This discrepancy can result inmisunderstand-
ings or incorrect responses from the robot, undermining the interaction's efficiency and user
satisfaction. Moreover, the adaptability of robots to new environments or unforeseen situa-
tions remains limited. Current systems are generally designed for specific tasks in controlled
environments and lack the flexibility to adapt to the dynamic nature of human societies. This
limitation is particularly evident when robots are deployed in public spaces or in roles that re-
quire interaction with a broad cross-section of the population, where the diversity of human
behavior and communication styles is most pronounced.

The challenge of interacting with new users who exhibit unfamiliar data or behavior pat-
terns is magnified as robots become more integrated into everyday society. In areas with few
experts or specialized personnel, addressing or correcting misunderstandings or inappropri-
ate robot behavior becomes a significant hurdle. This situation necessitates the development
of robots capable of continual learning and adaptation to individual user characteristics and
preferences [20]. One approach to overcoming these challenges is the implementation of on-
line learning systems that allow robots to update their models based on real-time interaction
data [17]. However, this approach raises concerns about privacy, data security, and the ethical
implications of continual data collection.

While current communication methods in HRI have made significant strides in facilitating
more natural and intuitive interactions between humans and robots, several challenges remain.
The primary issue is the systems' ability to adapt to the diverse and dynamic nature of hu-
man behavior, particularly when encountering new users with different communication styles

13



CHAPTER 1. INTRODUCTION

or patterns. Addressing these challenges requires a concerted effort in research and develop-
ment to create more adaptable, flexible, and ethically responsible robotic systems.

1.4.4 The Ideomotor Principle and its Applications to Human-Robot Interaction

The ideomotor principle, first articulated in the context of psychological research, posits
that mental imagery of an action tends to elicit the physical execution of that action without
conscious intention [53]. This principle has profound implications for HRI, offering a framework
for designing robots that can better understand and anticipate human actions based on subtle
cues. However, applying this principle to HRI presents unique challenges, particularly when
considering factors like gender and cultural differences.

In HRI, the ideomotor principle can be leveraged to create robots capable of interpreting
the intention behind human gestures or movements, facilitating smoother and more intuitive
interactions. For example, a robot that recognizes a user's preparatory movements for a task
could automatically provide the necessary tools or assistance, enhancing collaboration effi-
ciency [54]. This capability is particularly valuable in environments requiring close cooperation
between humans and robots, such as surgical rooms, manufacturing plants, and home settings.

Applications

• Assistive Robotics

Robots designed with the ideomotor principle in mind can better serve individuals with dis-
abilities by anticipating their needs and responding to non-verbal cues, thereby offering more
personalized support [14].

• Educational Robots

In educational settings, robots that recognize and react to students' implicit cues could provide
more tailored learning experiences, engaging students in a more interactive and responsive
manner [55].

• Collaborative Manufacturing

In manufacturing, robots that anticipate human actions can improve safety and productivity
by proactively adjusting their behavior to complement human workers, reducing the risk of
accidents and enhancing workflow efficiency [56].

While the ideomotor principle holds significant promise for enhancing HRI, its application is
not without challenges. One of the primary obstacles is the variability in how different genders,
cultures, and individuals express intentions through movement.

Challenges

• Gender Differences:

Research has shown that there can be gender-specific differences in non-verbal communi-
cation, which may affect how robots interpret gestures or movements [57]. Robots trained
predominantly on data from one gender may misinterpret cues from the other, leading to less
effective interaction.

• Cultural Variability:

Cultural background significantly influences non-verbal communication styles, including ges-
tures, personal space, and eye contact [58]. Robots that do not account for these differences
may struggle to interact effectively with users from diverse cultural backgrounds, potentially
leading to misunderstandings or discomfort.
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• Individual Variations:

Even within the same gender and culture, individual differences in non-verbal expression can
pose challenges for robots trying to interpret human intentions based on movement. Personal
idiosyncrasies in gesture and posture can lead to incorrect interpretations by the robot, hin-
dering effective collaboration.

To overcome these challenges, several strategies can be employed:

• Diverse Data Collection

Ensuring that the data used to train robots encompasses a wide range of genders, cultures,
and individual behaviors can improve the ability of robots to accurately interpret a variety of
non-verbal cues [59].

• Adaptive Learning Algorithms

Developing robots with the capacity for ongoing learning and adaptation allows them to refine
their interpretations of human actions over time, accommodating individual differences and
reducing biases [60].

• User Feedback Mechanism

Implementingmechanisms for user feedback can help robots adjust their behavior in real-time,
addressing any misinterpretations and enhancing the personalization of interactions [20].

The application of the ideomotor principle to HRI offers a promising avenue for creating
more intuitive and effective human-robot collaborations. However, the challenges posed by
gender, cultural, and individual differences in non-verbal communication necessitate thought-
ful approaches to robot design and training. By addressing these challenges, researchers and
developers can enhance the adaptability and sensitivity of robots to the rich diversity of human
expression.

1.5 Objective of the Study

The overarching goal of this thesis is to explore and expand the boundaries of human-robot
interaction (HRI) by leveraging the ideomotor principle, focusing on the development and im-
plementation of attention mechanisms and memory-enhanced neural networks. These tech-
nologies are aimed at equipping robots with a sophisticated understanding of human body
motion and the subtle nuances of non-verbal communication cues, thereby enabling more in-
tuitive and adaptive interactions between humans and robots, especially in collaborative tasks.
The study is driven by several specific objectives:
1. To Theoretically Ground HRI in the Ideomotor Principle: Investigate the ideomotor principle as
a theoretical foundation for enhancing HRI. This involves a comprehensive review of literature
to establish a conceptual framework that links the ideomotor principle with current challenges
and opportunities in HRI.
2. To Develop Attention Mechanisms and Memory-Enhanced Neural Networks: Design and
implement a novel neural network architecture that incorporates attention mechanisms and
memory enhancement. This architecture aims to provide robots with the capability to process
and interpret the complex dynamics of human motion, focusing on critical cues that indicate
intentions and actions.
3. To Achieve Kinematic Awareness of Human Body Motion: Utilize the developed neural net-
work to endow robots with an advanced understanding of human kinematics. This involves rec-
ognizing and predicting humanmovements and adjusting robot actions accordingly to support
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seamless human-robot collaboration.
4. To Adapt to User-Specific Data in Real-Time: Enable the neural network to learn from in-
teractions with individual users, thereby allowing the robot to tailor its behavior and responses
based on user-specific data. This objective addresses the challenge of interacting with new
users whose motion cues and communication styles may differ from those in the training data.
5. To Evaluate the System's Performance in Collaborative Tasks: Conduct empirical studies to
assess how well the implemented system facilitates human-robot collaboration across various
tasks and settings. This includes evaluating the system's ability to adapt to different users and
its effectiveness in enhancing task efficiency and user satisfaction.
6. To Identify and Address Challenges Related to Gender and Cultural Differences: Explore how
gender and cultural differences affect non-verbal communication cues in HRI and how the sys-
tem can accommodate these differences. This entails developing strategies to ensure that the
robot's interpretations of human actions are inclusive and respectful of diversity.
7. To Assess Safety and Trust in Human-Robot Collaborations: Evaluate the safety and trust-
worthiness of the robot in collaborative environments. This includes implementing safety pro-
tocols and mechanisms to prevent accidents and designing the system to behave in ways that
build and maintain users' trust.

By achieving these objectives, this thesis aims to contribute significantly to the field of HRI,
pushing forward the capabilities of robots to understand and interact with humans in a more
nuanced, effective, and respectful manner. The ultimate goal is to facilitate the development
of robots that are not only technically proficient but also capable of adapting to and learning
from the rich tapestry of human behaviors and preferences, thereby enhancing collaboration
and coexistence between humans and robots.

1.6 Overview of the Study

This thesis explores the integration of the ideomotor principle into human-robot interaction
(HRI), aiming to enhance robotic capabilities in interpreting and responding to human non-
verbal cues for improved collaborative work. The study is structured into six chapters, each
addressing a distinct aspect of this integration, from system development and preliminary ex-
perimentation to addressing performance issues related to gender biases, and finally, evaluat-
ing the system's spatial-temporal awareness and adaptability to user specificity.

Chapter 2: Development of the Ideomotor Cue Identification System
Chapter 2 details the development of a novel system designed to identify ideomotor cues
and associate them with human intentions, laying the foundational technology for enhancing
HRI. This system integrates attention mechanisms and memory enhancements to retain long-
term information about user interactions. Preliminary experiments are conducted to verify the
existence and importance of ideomotor cues in interpersonal collaborative work, focusing on
the system's ability to discern and react to these cues in real- time. The chapter evaluates
the system's intuitiveness for users and the quality of collaboration over extended periods,
establishing the baseline for further exploration and refinement.

Chapter 3: Gender Performance Discrepancies and Their Impact
In Chapter 3, the study delves into performance discrepancies observed when the robot was
used by female versus male users, highlighting the impact of biased datasets on the robot's
effectiveness across genders. A comprehensive study is conducted to assess how these dis-
crepancies affect trust, safety, sense of control, and user perception. This investigation sheds
light on the critical issue of gender bias in AI systems and its potential implications as robots
become more prevalent in society. The chapter emphasizes the importance of addressing
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these biases to ensure equitable and effective HRI across all user demographics.

Chapter 4: Implementing Dual Attention for Enhanced Kinematic Understanding
Chapter 4 introduces the implementation of dual attention mechanisms to provide the sys-
tem with spatial and temporal awareness when processing human motion data. This approach
enables a deeper kinematic understanding of humanmotion and improves the system's adapt-
ability to individual user characteristics. The chapter also discusses the development of actu-
alization policies that allow the system to continuously learn from user discrepancies, thereby
enhancing its ability to appropriately respond to user-specific intention communicationmeth-
ods. This adaptive learning process is crucial for developing robots capable of effective and
personalized collaboration with a diverse user base.

Chapter 5: Contributions, Limitations, and Future Directions
Chapter 5 synthesizes the overall contributions of the study, highlighting the advancements
made in applying the ideomotor principle toHRI. It discusses the limitations encountered through-
out the research, including challenges in system development, data collection, and bias mit-
igation. The chapter outlines potential future steps for the research, such as exploring bi-
directional communication pathways that enable robots not only to interpret human cues but
also to communicate intentions back to the user using ideomotor cues. This forward-looking
perspective underscores the study's contribution to the field and its potential to inform sub-
sequent research and application development.

Chapter 6: Conclusions
The concluding chapter summarizes the key findings of the study, reiterating the significance
of integrating the ideomotor principle into HRI for enhancing collaborative work. It reflects on
the implications of the research for the design and implementation of future robotic systems,
emphasizing the need for continued attention to user diversity, system adaptability, and ethical
considerations. The conclusions drawn from this study highlight the potential of ideomotor
cues as a means of improving communication and collaboration between humans and robots,
setting the stage for further innovations in the field.

This thesis offers a comprehensive exploration of the ideomotor principle's application to
HRI, addressing critical challenges and proposing innovative solutions for improving robotic un-
derstanding and responsiveness to human non-verbal cues. Through its systematic approach
and detailed analysis, the study contributes valuable insights and methodologies to the ongo-
ing development of more intuitive and effective human-robot collaboration systems.

17



CHAPTER 1. INTRODUCTION

Figure 1.6: Thesis Flow
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Figure 1.7: Summary of the Thesis by Chapter
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Chapter 2

Collaboartive Work Through Implicit
Communication

2.1 Revealing Cues through Interpersonnal Communication

2.1.1 Ideomotor and Implicit Cues in Popular Culture

The ideomotor phenomenon, a concept deeply rooted in psychological research, finds in-
triguing parallels in popular culture, illustrating the universal nature of implicit communication
across diverse human interactions. A fascinating example from Japanese culture is the concept
of "Aun breathing," which epitomizes the seamless synchronization between individuals without
verbal communication. This concept is emblematic of a deeper understanding of non-verbal
cues and their significance in human coordination and interaction.

In the realm of traditional Japanese puppet theatre, or Bunraku, Ueda et al.'s study reveals
how puppeteers achieve an exquisite level of coordination. Themain puppeteer communicates
with assistants through implicit signals, known as "Zu," allowing for the synchronized manipula-
tion of a single puppet. These signals, perceptible only to the involved puppeteers, underscore
the ideomotor principle's application in achieving harmony and precision in complex tasks [61].
Similarly, Shibuya et al.'s research on stage performers demonstrates how seasoned artists can
synchronize their breathing without conscious effort, a phenomenon less observed among less
experienced groups. This unconscious coordination, fostered by years of collaboration, high-
lights the ideomotor principle's role in facilitating intuitive group dynamics [62].

InWestern culture, the ideomotor effect was famously demonstrated in the early 20th cen-
tury by psychologist Oskar Pfungst's investigation of the "clever Hans" phenomenon. Hans, a
horse claimed to perform arithmetic calculations, was actually responding to subtle, uninten-
tional cues from his questioners. Pfungst's findings revealed that Hans' "calculations" were re-
sponses to physical cues such as slight posture adjustments or facial expressions from the
humans around him, illustrating the communicative power of implicit cues [63].

These examples from both Eastern and Western cultures underline the ideomotor phe-
nomenon's significance in interpersonal interactions, transcending cultural boundaries. The
exploration of such implicit cues in popular culture not only enriches our understanding of hu-
man communication but also opens new avenues for enhancing human-machine interaction
(HMI). Recognizing and harnessing these subtle cues can lead to more intuitive and effective
collaboration between humans and robots, paving the way for a future where machines can
adapt to and learn from the rich tapestry of human non-verbal communication.

2.1.2 SynchronizedWork and Implicit Communication Between Individuals

Implicit communication, an essential aspect of human interaction, plays a crucial role in
synchronized work, where individuals perform tasks in harmony without the need for explicit
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verbal instructions. This phenomenon is observed in various contexts, from professional envi-
ronments to artistic performances, demonstrating the innate ability of humans to coordinate
actions based on subtle cues and shared understanding.

One compelling example of synchronized work is found in orchestral performances. Musi-
cians, under the guidance of a conductor, rely heavily on non-verbal cues such as body move-
ments, eye contact, and the conductor's baton movements to maintain tempo and harmony
[64]. This synchronization is not solely dependent on the visual cues from the conductor but
also on the mutual awareness and anticipation of each musician's part in the ensemble, show-
casing a high level of implicit communication and coordination.

Similarly, in the realm of sports, rowing teams exemplify synchronized effort based on im-
plicit understanding. Rowers must maintain a precise rhythm and power in their strokes, often
guided by the coxswain's calls but also heavily reliant on the feel of the boat and the move-
ment of their teammates. This synchronization is critical for maximizing efficiency and speed,
where even minor discrepancies can disrupt the boat's balance and performance [65]. In pro-
fessional settings, surgical teams operate with a level of implicit coordination, where surgeons,
nurses, and anesthesiologists anticipate each other's needs and actions based on the flow of
the procedure and non-verbal signals. This silent communication ensures a seamless opera-
tion, minimizing verbal exchanges that could distract from the task at hand [66].

These examples underscore the significance of implicit communication in facilitating syn-
chronized work across diverse domains. They highlight the human capacity to connect and
collaborate deeply, an attribute that HRI aims to emulate and incorporate into robotic systems
to achieve seamless human-robot collaboration.

2.1.3 Analyzing Implicit Cues in Collaborative Mochi Making

The traditional Japanese rice cake (mochi) making process offers a unique setting to ex-
plore implicit cues within a collaborative, synchronized work scenario. This activity, involving
two individuals working in tandem̶one pounding the dough and the other kneading and flip-
ping it̶provides an exemplary model for examining the intricacies of non-verbal communi-
cation and coordination in real-time. The requirement for perfect synchronization not only for
optimal work efficiency but also for safety, given the potential danger posed by the pounding
action, makes mochi making an ideal task for investigating the functioning of implicit cues in
collaborative efforts.

Task Setting and Requirements
The mochi-making process satisfies two critical elements for this study: collaboration be-

tween two individuals and a dependency on the responsive actions of each participant. The
individual handling the dough must swiftly knead and flip it between the pounding actions, a
rhythm requiring precise timing and mutual trust to avoid accidents. The differential time de-
mands̶longer for flipping the dough due to its sticky texture̶add complexity to the task,
demanding high levels of synchronization and anticipation.

Data Collection Setup
To measure the potential implicit cues employed during the mochi-making process, a vir-

tual environment was designed using the Unity game engine. This setup included the use of
VIVE trackers attached to the pestle and gloves of the participants to record movements with
precision, facilitated by infrared signals from virtual reality base stations. Themortar and dough
were simulated with a stool and a disk-shaped sponge, respectively, providing a tangible yet
safe medium for the experiment. Participants positioned themselves on opposite sides of the
stool, mimicking the traditional setup for mochi making.

Experiment Outline
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Figure 2.1: Task environment setting
Figure 2.2: Participant repartition

Table 2.1: Qualitative evaluation questionnaire items

Q1 I was able to anticipate the behavior of the other party
Q2 I was able to predict the action required for the situation
Q3 I was able to modify my own behavior according the other party

The experiment aimed to analyze collaboration and detect any implicit cues or ideomo-
tor reactions essential for maintaining synchronization during the task. With one participant
pounding the simulated "rice cake" and the other handling the "dough," the early stages of the
experiment introduced an auditory signal as a guide for the timing of dough flipping. This con-
trolled environment allowed for the observation of participants' adaptations to the rhythm and
each other's movements, shedding light on the non-verbal signals that facilitate synchronized
work.

The mochi-making scenario serves as a potent metaphor for the complexities of human-
robot interaction. By understanding the implicit cues in such a collaborative context, insights
can be gained into designing robots capable of interpreting and responding to human actions
with a similar level of intuitive understanding and anticipation. This study underscores the
potential of leveraging traditional practices to enhance technological advancements in HRI,
aiming to achieve a seamless integration of robots into human-centric tasks.

2.1.4 Experiement

This subsection details an experiment aimed at identifying implicit cues and ideomotor re-
actions that facilitate synchronization between two individuals during a collaborative task. The
study simulated a traditional rice cake making process where one participant is responsible for
pounding, and another for kneading and turning the dough. The goal was to detect the non-
verbal signals essential for maintaining a synchronized rhythm without explicit communication
cues, The experiment utilized an environment described in the "Data collection" subsection,
with two participants assigned distinct roles̶one for pounding and one for kneading and flip-
ping dough. To establish an initial rhythm, auditory signals were provided at specific intervals,
first after 13 seconds and again after 26 seconds, to signal when to turn over the dough. No
additional guidance was given, compelling participants to find their pace and maintain syn-
chronization based solely on their partner's actions. Participants, 20 individuals with an almost
2:1 male-to-female ratio and ages ranging from22 to 35, were split into two groups correspond-
ing to the two roles. Each person in the pounding group completed the task six times for 60
seconds with every member of the kneading group, in a between-subjects study design.

The qualitative assessment employed a Likert scale-based questionnaire (Table 2.1), while
the quantitative evaluation focused on the relative distance between the kneading individual's
hands and the pestle (Figure 2.3).

This distance, denoted as �x, was calculated by measuring the positions of the hands xa
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Figure 2.3: Relative Distance between the Hands and the Pestle during task. Top: Pestling phase.
Bottom: Kneading phase

and the pestle xk , with the mortar's center as the reference point x = 0. During the action of
turning over the dough̶which takes longer than kneading̶�x remained constant, even as
the hands performed various motions.

�x =
p

(Xa � xk)2 (�x > 0) (2.1)

A stable x across consecutive kneading-pounding cycles indicated good synchronization be-
tween participants, while significant variations suggested a lack of coordination.

The Δ x index was chosen to evaluate the smoothness and synchrony of the interaction
quantitatively. The less�x varied from one cycle to the next, the more synchronized the par-
ticipants were deemed to be. Since individual relative distances varied, comparisons between
experiment instances were standardized using the coefficient of variation (C.V.), which is the
standard deviation (�) divided by the mean (�x̄).

C.V. =
�

�x̄
(2.2)

This metric provided a normalized measure of variation that could be compared across differ-
ent pairs of participants, irrespective of their individual average distances.

2.1.5 Results and Discussion

This experiment's design illustrates an innovative approach to studying non-verbal com-
munication and synchronization in human collaborative tasks. By employing a traditional ac-
tivity and minimal initial rhythmic guidance, the study provides insights into the capacity of
individuals to adjust to and sync with one another's movements. The qualitative and quanti-
tative evaluation methods complement each other, offering a multi-faceted view of the inter-
action's effectiveness. The findings from this study are significant for advancing human-robot
interaction systems, emphasizing the importance of designing robots that can adapt to human
partners' implicit cues and maintain a synchronized workflow.

Furthering the investigation into collaborative quality, a quantitative analysis compared the
synchronization level between partners, represented by the averaged coefficient of variation
(C.V.) for each pair. Results reflected in Figure 2.4 indicated that explicit pairs exhibited more
variance in their rhythm, implying less stable and harmonious collaboration. This outcomehigh-
lights the efficacy of non-verbal communication in maintaining a smooth and uninterrupted
workflow, potentially leading to a higher quality of cooperative performance. To validate the
assumption of implicit communication through unconscious cueing, the research examined
participants' motion data at junctures where collaboration smoothness was at risk. These crit-
ical points, where mutual understanding was deemed most essential, provided an opportunity
to observe how subtle, non-verbal interactions could facilitate coordination and maintain the
task's flow.

23



CHAPTER 2. COLLABOARTIVE WORK THROUGH IMPLICIT COMMUNICATION

Figure 2.4: Coefficient of Variation of the Relative Distance�x
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Figure 2.5: Tt - Tbr - Tr Evolution for a implicit pair and b explicit pair

In the collaborative rice cake making experiment, the action of turning over the rice cake
introduces a significant disruption to the established rhythm of the task, which typically fol-
lows a steady punch-knead sequence. This interval is critical as it breaks the continuous flow
of collaboration and requires the participants to adapt their movements to maintain synchro-
nization. The study thus centers on the strategies employed by participants to execute the
turn-over action as seamlessly as possible, minimizing the impact on the overall task rhythm.

To dissect the effects of the dough-turning action, the motion of the kneading participant
was segmented into three distinct phases:

• Ttouch (Tt): The period of actual kneading where the dough is being manipulated.

• Tbefore reverse (Tbr): The kneading-pounding cycle that immediately precedes the dough
turning action.

• Treverse (Tr): The interval during which the dough is turned over.

This categorization provided a structured framework to examine the periodicity and any alter-
ations in motion timing, particularly during the transition from standard kneading to the turning
action. Figures 2.5a and 2.5b illustrate the group averages of the time lengths for Tr , Tbr , and
Tt, comparing implicit and explicit collaboration pairs. The findings revealed that the knead-
ing participant's technique significantly influenced the rhythm of the person pounding the rice
cake. The adjustment in timing was more pronounced in explicit pairs, where verbal cues likely
served as a compensatory mechanism for the disruption caused by the dough turning. The
contrast between the two styles of collaboration was further highlighted by computing the En-
trainment Rate (E), the ratio between Tbr and Tt. This metric provided a quantifiable means
of assessing the degree to which participants could synchronize their actions, particularly in
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adapting to the rhythm-breaking task of turning over the dough.

E =
Tbr

Tt
(2.3)

A higher E value would indicate a greater level of entrainment, suggesting that participants
were more in sync, quickly adjusting their actions in response to their partner's movements.
Using the average of the mesured Tbr and Tt of the kneaders, results of this ratio were as
follows:

E =
Tbr

Tt
=

⇢
0.85 (implicit communication pairs)
0.96 (explicit communication pairs)

(2.4)

The analysis of implicit pairs, as depicted in Figure 2.5a, illustrates a harmonious adaptation
between participants involved in the kneading and pestling activities. This synchronization
becomes particularly evident as both participants approach the critical “turning over” cycle.
Observations suggest that, in anticipation of thismore time-consuming action, both individuals
intuitively slow their respective rhythms, thus maintaining the collaborative flow without verbal
communication. This mutual adjustment indicates a deep, non-verbal understanding and an
ability to predict and react to each other's movements, demonstrating the efficacy of implicit
cues in facilitating smooth, coordinated actions.

Conversely, Figure 2.5b reveals a disconnect in explicit pairs, particularly during the turning
over phase. While the kneading action’ s duration naturally extends to accommodate the
dough-turning process, the pestling rhythm remains unchanged, unaffected by the altered
pace of its partner's actions. This lack of adaptation suggests a failure in communication,
where the individual responsible for pestling does not recognize or respond to the shifts in
the kneading-turning cycle. The need for vocal commands in such pairs stems from this dis-
connect, as the kneading participant must overtly signal the impending or ongoing turn-over
action to realign their collaborative rhythm.

The reliance on explicit, vocal communication among some pairs is symptomatic of an in-
ability to synchronize based on non-verbal cues alone. The necessity for such direct inter-
vention highlights a fundamental challenge in collaboration: the pestling participant's failure
to interpret or adapt to variations in the task's pace. Conversely, implicit pairs demonstrate
an unconscious, yet effective, communication system where slight changes in pace serve as
signals that are both sent and received non-verbally, facilitating an unspoken agreement on
timing and action.

The contrasting dynamics between implicit and explicit collaboration pairs shed light on
the intricate ballet of human interaction, particularly in tasks requiring precise coordination.
Implicit pairs exemplify the potential for seamless collaboration through non-verbal commu-
nication, where mutual adaptation ensures continuity and harmony. Explicit pairs, however,
reveal the challenges when this non-verbal understanding is absent, necessitating verbal cues
to maintain task synchrony. This analysis underscores the importance of developing collab-
orative systems̶be they human-human or human-robot̶that can recognize, interpret, and
adapt to implicit cues, fostering a more intuitive and efficient cooperative environment.

2.2 User Intention Estimation

2.2.1 Requirements

In the pursuit of enhancing human-robot collaboration, especially in everyday environ-
ments, this thesis has identified several core principles necessary for developing an efficient
cooperative work method with a robotic arm. These principles are essential for ensuring that
the robotic system operates effectively and intuitively in a range of scenarios without being
burdensome to the user.
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1. Task Independence: A pivotal attribute for personal robots, particularly those intended
for use in daily life, is the capability to function independently of specific tasks. Tra-
ditional methods that utilize implicit instructions are often limited by their task depen-
dency, restricting the robot’ s utility to pre-coded functions. This research breaks from
convention by designing a system that does not require task-related or environmen-
tal information to operate. Instead, the robot relies solely on the user’ s state and its
own accumulated experience to discern the expected function, ensuring flexibility and
adaptability in its operations.

2. Minimally Invasive Data Collection: The operational methodology of the robot arm in-
volves utilizing ideomotor cues from the user’ s continuous motion, captured through
IMU sensors. To integrate seamlessly into daily activities, the data collection systemmust
beminimally invasive. This study has therefore limited the use of sensors to three atmost,
strategically placed at non-intrusive locations like the wrists and waist. The potential in-
tegration of these sensors into common accessories, such as watches or belts, further
reduces their intrusiveness, fostering greater user acceptance and comfort.

3. System Responsiveness: The system’ s responsiveness is crucial for user satisfaction.
Any significant delay between the user’ s command and the robot’ s action can result in
discomfort and potential abandonment of the system. The robotic arm must, therefore,
exhibit prompt responsiveness to ensure a smooth and efficient user experience.

4. Context Awareness: While the system is designed not to be context-dependent, it must
possess the ability to understand and adapt to the context in which it is used. This con-
textual awareness is vital for sound judgment during decision-making processes. With-
out this, the responsibility for correct operation unduly falls on the user, negating the
purpose of an assistive robot.

5. Information Management: As the robot is exposed to various contexts and applications,
it must effectively manage the information it gathers. This involves discerning which data
to retain for future use and which to discard. Proper information management is key to
the robot's learning capabilities, ensuring it can build on past experiences and recognize
the importance of different pieces of information.

In summary, the thesis advocates for a paradigm shift in personal robotic systems, em-
phasizing the necessity of task-independent functionality, non-invasive data collection, quick
responsiveness, contextual awareness, and adept information management. These principles
serve as the foundation for creating a robotic arm that can be a versatile and user-friendly
companion in daily life tasks. Through adherence to these principles, the robotic system can
achieve a level of sophistication that allows for an unobtrusive and helpful presence in the user’
s life.

2.2.2 Concept and Environment Set-up

The pursuit of creating HRI systems has led to the exploration of implicit command inter-
pretation, a concept where robots discern user intentions through non-verbal cues. This sub-
section outlines a developed system that captures this phenomenon by leveraging the ideo-
motor principle, which hypothesizes a direct link between thoughts and corresponding physical
movements without the need for conscious decisions.

Grounded in the psychological works of Carpenter, James, and Pfungst, the ideomotor prin-
ciple has been a cornerstone in understanding how subconscious thoughts can manifest in
physical actions (Carpenter[67]; James [53]; Pfungst[63]). Gauchou et al. extended this re-
search into the realm of HRI, proposing that implicit cues, such as minor gestures or shifts in
posture, could signal user intentions to a robot trained to recognize them [68].
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Figure 2.6: Training and testing loop

Incorporating these subtle forms of communication into robotics necessitates a system
that can understand and process intricate human gestures, gaze direction, and other non-
verbal cues. Fiore et al.'s research has demonstrated that robots attuned to these non-verbal
signals can engage users more profoundly, fostering richer interactions [69]. The deep learning
paradigm, particularly through the use of RNNs and LSTM networks, has emerged as a powerful
tool for modeling time-series data typical of implicit cues [46].

The system's methodology, as depicted in Figure 2.6, begins with collecting motion data
during various user-performed tasks. Simpler tasks are accompanied by vocal commands,
providing an initial dataset of motion-command pairs. For complex tasks, a more comprehen-
sive range of motions and verbal cues are recorded, capturing the nuanced interplay between
different forms of user communication and robotic understanding. This collected data is en-
riched with the robot's motor encoder data, creating a layered dataset that encapsulates both
human and robotic actions. The machine learning model is then trained on this dataset, with
the goal of discerning user intent from the amalgamated motion and command data.

The trained model undergoes practical testing, wherein its ability to predict user intentions
based on implicit cues is evaluated. The correct intention estimations are processed and fed
back into the training set, embodying a dynamic and self-refining learning process. This iter-
ative loop ensures that the system evolves and adapts, enhancing its interpretative accuracy
and interactive performance with each cycle.

A key feature of the system is its capacity for continuous learning, crucial for maintaining
relevance and effectiveness in diverse user environments. By constantly updating the model
with new data from varied interactions, the system becomes increasingly sophisticated in in-
terpreting user intentions, paving the way for more personalized and adaptable robots that
can function across a range of environments and demographics. By integrating the ideomotor
principle into a machine learning framework, the system offers a promising avenue for creat-
ing robots that understand and predict a wide array of human intentions. This work lays the
groundwork for future advancements in HRI, where robots are not merely passive participants
but active collaborators capable of understanding the subtleties of human communication.
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Figure 2.7: System Layout

Figure 2.8: Model Architecture

2.2.3 Network Overview

The proposed model, depicted in Figure 2.8 for interpreting user commands incorporates
a multi-modal approach that processes synchronous streams of data through a series of con-
volutional neural networks (CNNs) and bi-directional Long Short-Term Memory networks (Bi-
LSTMs).

The input layer of the model consists of data from three sources: the head Inertial Mea-
surement Unit (IMU), the left ankle IMU, and motor encoder data. Each data stream is passed
through its own CNN to extract relevant features. The choice of using separate CNNs allows
the model to learn modality-specific representations, which are crucial for interpreting com-
plex sensor data accurately.

Following feature extraction, the output from each CNN feeds into a corresponding Bi-LSTM
layer. The Bi-LSTM layers serve as a sequential processing unit, accounting for temporal de-
pendencies in the data. This is essential in tasks requiring an understanding of sequence and
timing, such as interpreting command sequences in real-time.

The architecture concludes with a fully concatenated layer that merges the outputs of the
Bi-LSTMs, effectively combining the learned temporal features across all input modalities. This

(a) LSTM (b) Bi-LSTM

Figure 2.9: LSTM and Bi-LSTM architechture comparison
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layer is followed by a softmax classifier that interprets the concatenated features to predict
the user's intended command. The final command label is obtained by applying an argmax
function to the softmax probabilities, identifying the most likely command from the available
set.

Difference Between LSTM and Bi-Directional LSTM: The fundamental difference between
an LSTM and a Bi-LSTM (Figure 2.9) lies in the directionality of the data processing. A standard
LSTM processes data in a single direction, forward in time, meaning it captures dependencies
from the past to make predictions about the future. This unidirectional flow limits the LSTM's
context understanding to previous and current input features.

In contrast, a Bi-LSTM processes data in both forward and backward directions. This dual
processing pathway allows the Bi-LSTM to capture not only the past context (as with standard
LSTM) but also the future context. Each Bi-LSTM unit consists of two hidden layers, one for
the forward direction and one for the backward direction. These layers are trained to opti-
mize the sequence modeling by considering all available input information, both preceding and
succeeding a given time point.

The Bi-LSTM's ability to look both backward and forward in the input sequence provides
a more comprehensive temporal context, which can be critical for tasks involving sequences
where each element can be influenced by elements before and after it, such as language pro-
cessing or, in the case of this study, interpreting a sequence of user commands based on sensor
data.

The enhancement in temporal understanding makes Bi-LSTMs particularly suited for com-
plex tasks where the context is key, and for this reason, they have been employed in the pre-
sented model to robustly interpret the user's intent from multi-modal sensor data streams.

Integration of Bi-LSTM with External Memory: In the advanced architecture of the model,
the second Bi-LSTM layer serves a pivotal role beyond sequential data processing̶it acts as
a controller for an external memory unit. This memory is an augmentation to the Bi-LSTM,
providing a mechanism for the network to read from and write to, effectively giving the neu-
ral network a way to store and retrieve information over long sequences, similar to a working
memory in human cognition.

The external memory unit is composed of a matrix where each row can be considered as
a memory slot. These slots are accessed via the Bi-LSTM controller, which generates a set of
read and write operations. The operations are determined by the context of the input data and
the learned behavior of the network.

The integration of an external memory with the Bi-LSTM allows the model to perform com-
plex tasks that require maintaining and manipulating a large amount of temporal information.
It is particularly advantageous for tasks where the input sequence is very long or where the
importance of certain input features varies dynamically over time.For example, in a command
interpretation scenario, the user may provide a sequence of commands where the relevance
of early commands may not be apparent until later in the sequence. The external memory al-
lows themodel to store these early commands and retrieve themwhen needed. This capability
mirrors the cognitive process of recalling relevant information to make decisions based on new
contextual information. By serving as a controller for the external memory, the second Bi-LSTM
in the model not only processes the temporal data but also manages the information flow into
and out of the memory. This design enables the network to perform more sophisticated tasks
by mimicking higher-order cognitive functions, such as planning and reasoning, which require
the manipulation of stored information.
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2.3 Network Architecture

2.3.1 Layers Details

To construct a network that processes input data from 6 gyroscope sensors worn by the
user and the robot's encoder data, and then extracts features using a Convolutional Neural
Network (CNN) followed by two layers of Bi-directional LSTM (Bi-LSTM), we can conceptualize
the mathematical framework as follows:

• Input Data
Denoting the input data as X , where X consists of time-sequential data from 6 gyro-
scope sensors and the robot's encoder data. Each time step ofX an be represented as
xt 2 Rn, where n is the total number of features at each time step (6 gyro features +
encoder features).

• CNN for feature extraction
By stacking consecutive time steps to form a "temporal image" raw time-sequential data
is transformed into a format suitable for convolutional operations, the CNN operates on
this data to extract high-level features. For a given layer l in the CNN

– Input to the layer: Il

– Convolutional filter weights: Wl

– Bias: bl

– Activation function (ReLU): �

The output of each convolutional layer is: Ol = �(Wl ⇤ Il + bt)
After passing through the CNN layers, the output is a feature vector Ft for each time step
t, reshaped as necessary for input into the subsequent Bi-LSTM layers.

• Bi-LSTM Layers
The extracted features FT re then fed into the Bi-LSTM layers for sequential processing.
The Bi-LSTM consists of two LSTMs processing the data in opposite directions, and its
operation at each time step t for each layer can be generalized as follows:

– Forward Pass (
����!
LSTM) :

– Forget Gate:
�!
ft = �(

�!
Wf · [

��!
ht�1, Ft] +

�!
bf )

– Input Gate:
�!
it = �(

�!
Wi · [

��!
ht�1, Ft] +

�!
bi )

– Output Gate: �!ot = �(
�!
Wo · [

��!
ht�1, Ft] +

�!
bo )

– Candidate cell state:
�!̃
Ct = tanh(

��!
WC · [

��!
ht�1, Ft] +

�!
bC)

– Update cell state:
�!
Ct =

�!
ft ⇤
��!
Ct�1 +

�!
it ⇤
�!̃
Ct

– Update hidden state:
�!
ht =

�!
ot ⇤ tanh(

�!
Ct)

– Backward Pass (
 ����
LSTM ):

Mirror the forward pass equations with backward pass parameters and inputs, pro-
cessing from t = T (last time step) to t = 1 (first time step): ht = [

�!
ht ;
 �
ht ]. For the

first Bi-LSTM layer, Ft, serves as the input. For the second Bi-LSTM layer, the output
ht from the first layer serves as the input.

• Output Processing
The final output ht from the second Bi-LSTM layer is then be processed further, through
fully connected layers, ideal for classification or regression tasks.
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2.3.2 Memory

Generating the parameters for reading and writing to memory in a Memory-Augmented
Neural Network (MANN) involves defining how the network's controller (e.g., a Bi-LSTM) interacts
with the external memory. The controller produces several key parameters based on its current
state and the input it processes. These parameters include write weighting, erase vector, add
vector for writing, and read weighting for reading from the memory. Below, we detail how these
parameters can be generated, assuming the Bi-LSTM controller outputs a vector that is then
used to derive these parameters.

Figure 2.10: Representation of external memory cell interaction with Bi-LSTM controller

Assuming the Bi-LSTM controller outputs a vector ot at time step t, which will be used to
generate the memory interaction parameters. This output might be processed through one or
more fully connected layers with specific activations to produce the parameters mentioned.
Generating write weighting
Often used to determine which memory slots to write to, based on the similarity between the
memory slot content and a key vector generated by the controller.

k
write
t = tanh(Wkot + bk) (2.5)

w
write
t = Softmax(Mt · kwrite

t ) (2.6)

WhereWk is a weight matrix bk is a bias vector, andMt is the memory matrix at time t.

Generating erase vector
Specifies which parts of the selected memory slots should be erased.

et = �(Weot + be) (2.7)

Where � is the sigmoid function, ensuring that the elements of the et are between 0 and 1.

Generating add vector
Specifies what new information to write into the memory.

at = tanh(Waot + ba) (2.8)

Generating read weighting
Determines from which memory slots to read.

k
read
t = tanh(Wkrot + bkr) (2.9)

w
read
t = Softmax(Mt · kread

t ) (2.10)

Final read vector The read vector, which is the content read from the memory, is obtained
by:

rt = M
T
t w

read
t (2.11)
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W. and b. are trainable weights and biases for generating the respective parameters. This vec-
tor can be fed back into the Bi-LSTM along with the next input, closing the loop for iterative
reading and writing.

Interaction Equations

Mt = Mt�1 � (1�w
write
t ⌦ et) (2.12)

Mt = Mt +w
write
t ⌦ vt (2.13)

Integrating these components allows the MANN to dynamically interact with its external mem-
ory, enabling complex information processing and storage capabilities that extend beyond tra-
ditional neural network architectures.

2.3.3 Memory Integration Mechanism into the Current Model

Integrating an external memory module with a CNN-Bi-LSTM network to create a Memory-
AugmentedNeural Network (MANN) involves a sophisticated setupwhere the Bi-LSTM acts as a
controller for the memory operations. The mathematical representation of such an integration
includes defining the memory structure, the read and write mechanisms, and the controller's
operations.

• External Memory Structure

Memory Matrix: M 2 RN⇥W , where N is the number of memory slots, and W is the dimen-
sionality of each vector stored in memory.

• Controller (BI-LSTM) Output

Let the output of the Bi-LSTM at time step t be ht, which serves as input to generate memory
control signals.

• Write Mechanism

Write Weighting:
Iwrite key:

k
w
t = FC(ht) (2.14)

Where FC is a fully connected layer.
Iwrite strength:

�
w
t = Softplus(FC(ht)) (2.15)

Iwrite weighting:

w
w
t (i) =

exp(�w
t · cos(kw

t ,M [i]))P
j exp(�

w
t · cos(kw

t ,M [j]))
(2.16)

where cos denotes cosine similarity

Erase Vector: Specifies what to erase from memory.

et = �(FC(ht)) (2.17)

where � is the sigmoid function

Add Vector: Specifies what to write to memory.

at = tanh(FC(ht)) (2.18)

Memory update rule:
IErase step:

M̃t = Mt�1 � (1� w
w
t ⌦ et) (2.19)
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IAdd step:
Mt = M̃t + w

w
t � at (2.20)

• Read Mechanism

Read Weighting:
Iread key:

k
r
t = FC(ht) (2.21)

Iread strength:
�
r
t = Softplus(FC(ht)) (2.22)

Iread weighting:

w
r
t (i) =

exp(�r
t · cos(kr

t ,M [i]))P
j exp(�

r
t · cos(kr

t ,M [j]))
(2.23)

Read operation:
rt = M

T
t w

r
t (2.24)

• Comments

1. FC layers transform the Bi-LSTM outputs into parameters for controlling the memory.

2. Softplus is used for parameters thatmust bepositive, such as thewrite and read strengths.

3. The memory update and read operations are differentiable, allowing the entire network
(CNN-Bi-LSTM with external memory) to be trained end-to-end using gradient descent-
based methods.

This mathematical representation outlines the core components and operations involved in
integrating an external memory with a CNN-Bi-LSTM network, transforming it into a powerful
MANN capable of sophisticated data processing and storage tasks.

2.3.4 Elastic Weight Consolidation (EWC)

Integrating Elastic Weight Consolidation (EWC) into a Bi-directional LSTM (Bi-LSTM) net-
work for continual learning involves modifying the training process to include a regularization
term that penalizes significant deviations from parameter values optimized for previous tasks.
This regularization is based on the Fisher Information, which quantifies the importance of each
parameter to the performance on these tasks. Here are the key equations representing this
process:

For each new task, you typically minimize a loss function Lnew(⇥) where⇥ represents the
parameters of the Bi-LSTM:

Lnew(⇥) =
1

N

NX

i=1

l(yi, f(xi;⇥)) (2.25)

• N is the number of samples in the new task.

• xi and yi are the input and target output for the i-th sample, respectively.

• f(xi;⇥) is the output of the Bi-LSTM model for input xi

• l is the loss function, MSE

The objective of EWC is to protect the knowledge acquired from previous tasks (interac-
tions) when learning new ones. This is achieved by adding a regularization term to the loss
function that penalizes changes to parameters that are important for the performance on pre-
vious tasks. The augmented loss function with EWC is given by:

LTotal(⇥) = Lnew(⇥) + �LEWC(⇥) (2.26)
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LTotal(⇥) = Lnew(⇥) +
�

2

X

i

Fi(⇥i �⇥i,old)
2 (2.27)

• LTotal(⇥) is the total loss function incorporating LEWC

• Lnew(⇥) is the loss on the new task (e.g, learning from new user interactions)

• LEWC(⇥) is the EWC regularization term, defined as shown in 2.27

• � is a hyperparameter that controls the strength of the regularization term, balancing
between learning new tasks and retaining old knowledge

• Fi represents the Fisher Information of parameter i ndicating its importance to the tasks
already learned. The Fisher Information is a measure of how much information a param-
eter carries about the output; parameters with high Fisher Information are crucial for the
model's performance on previous tasks.

• ⇥i are the current parameters of the model

• ⇥i,old are the parameters of the model after learning previous tasks, before learning the
new task.

• The summation runs over all the parameters i f the model.

Fisher InformationFi for eachparameter can be calculated after themodel has been trained
on a task, as follows:

Fi = E
"✓

@ log p(y|x,⇥)

@⇥i

◆2
#

(2.28)

• p(y|x,⇥) is the model's output distribution given input x, target y, and parameters ⇥

• The Expectation E[·] is typically approximated using the training set for the task

When the model is trained on a new set of user interactions or tasks, the LEWC term helps to
maintain the performance on previously learned interactions by constraining the updates of
parameters that are critical for those interactions. This is particularly useful in HRI scenarios
where the robot is expected to continually learn from new user behaviors without degrading
its ability to respond to behaviors it has previously adapted to.

By applying the EWC technique, the learning system can achieve a balance between plas-
ticity (ability to learn new tasks) and stability (retention of knowledge on old tasks), addressing
the challenge of catastrophic forgetting in continual learning scenarios.

2.3.5 Optimizer

Gradient Descent Option

⇥new = ⇥old � ↵(r⇥Lnew(⇥) + �

X

i

Fi(⇥i �⇥i,old)
2) (2.29)

Adam

⇥new = ⇥old �
⌘p

v̂i,t + ✏
m̂i,t (2.30)

m̂i,t =
mi,t

1� �t
1

and v̂i,t =
vi,t

1� �t
2

(2.31)

mi,t = �1 ·mi,t�1 + (1� �1) · gi,t and vi,t = �2 · vi,t�1 + (1� �2) · g2i,t (2.32)
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2.3.6 Mitigate catastrophic forgetting

In scenarios where the robot is expected to learn from continuous interactions, adapta-
tion through methods like EWC is essential to balance acquiring new knowledge with retaining
important information from previous experiences.

Without adaptation, learning new information could degrade the robot's ability to perform
tasks it had previously learned (catastrophic forgetting). Adaptation ensures the robot main-
tains competency across all learned tasks and interactions.

Human behaviors and the way they communicate intentions through motions can be sub-
tle and vary widely. Adaptation allows robots to better interpret these cues over time, im-
proving interaction quality. By continuously adapting, robots can become more responsive to
immediate user actions and even anticipate user needs based on past interactions, leading to
smoother and more intuitive HRI.

2.4 Experiment and Results

2.4.1 Set-up

In the pursuit to gauge the estimation accuracy of implicit instructions, a series of tasks
were meticulously chosen to test the capabilities of the Implicit Interface. These tasks were
designed to invoke a range of labels̶specific commands recognizable by the system̶vary-
ing from three to six distinct options. Out of the four tasks, three were periodic, featuring a
consistent label cycle that allowed for patterned repetition and predictability. In contrast, the
fourth task was aperiodic, with a label order that was intentionally randomized to introduce
variability and challenge the system's adaptability and real-time interpretation skills.

The original experimental setup, as illustrated in Figure 2.11, aimed to replicate a realistic
environment where multiple objects relevant to the task were arranged on a table. This setting
was chosen to mimic the typical conditions in which a human-robot interaction system might
be deployed, thereby ensuring that the results were as practical and applicable as possible.
Participants were equipped with wearable IMU sensors placed at various key points on the
body to capture a comprehensive range of motion data. These sensors tracked movements
meticulously, providing the Implicit Interface with rich input to process and interpret. Addition-
ally, the participants donned eyeglasses designed for robot operation, suggesting a heads-up
display or visual input might play a role in how the system and the participant communicated.

The Implicit Interface was put to the test to determine how effectively it could interpret the
participant's intentions based on non-verbal cues captured by the sensors. The eyeglasses
presumably provided a visual channel for instructions, possibly by tracking eye movements or
serving as a medium for the participant to view and respond to robot feedback.

The selection of periodic and aperiodic tasks served a dual purpose. For periodic tasks,
the goal was to assess how well the system learned and predicted the participant's actions
based on recurring patterns. The aperiodic task tested the interface's robustness in situations
where patterns were not easily discernible, closely mimicking real-world scenarios where hu-
man actions are not always predictable. This experiment's setup underscores the significance
of understanding and correctly interpreting implicit instructions, a cornerstone for any system
expected to operate seamlessly alongside humans. The accuracy with which the Implicit In-
terface decoded and acted upon non-verbal cues would be pivotal in determining its efficacy
in real-world applications, where explicit commands might not always be possible or desired.

1. Cleaning Task:
The Cleaning Task was selected for its simplicity and periodic nature, making it the most
fundamental of the tasks within the Implicit Interface experiment. Comprising only three
labels̶"lift," "wipe," and "place"̶the task followed a constant cycle designed to evaluate
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Figure 2.11: Test environment

the system's capacity for recognizing and responding to repetitive actions. The implicit
nature of the task demanded that the robot interpret non-verbal, physical cues to co-
ordinate its movements with those of the human participant. In the Cleaning Task, the
periodic sequence began as the participant lifted an object from the table. This motion
acted as a cue for the robot arm, which, guided by the participant's face vector̶a poten-
tial proxy for intention direction̶would then reach the object's previous location to begin
wiping the table. Here, the 'face vector' likely referred to the orientation of the participant's
gaze as detected through the eyeglasses, providing a directional command to the robot
without any explicit verbal instruction. As the participant initiated the motion to place
the object back onto the table, the robot was designed to detect this descending action
and cease wiping, retreating to its initial position. This action-response sequence formed
the cyclical pattern that the Implicit Interface needed to identify and follow. The Implicit
Interface, utilizing input from IMU sensors, was responsible for decoding the participant's
movements and discerning the correct moments to execute corresponding robotic ac-
tions. The task's repetitive nature allowed the system to fine-tune its predictions over
successive cycles, optimizing its response times and improving synchronization with the
participant's actions.

2. Cap Placement and Handover Task Analysis:
The Cap Placement and Handover Task is a methodically designed experiment rooted in
periodic behavior, where the participant is involved in a multi-step process of complet-
ing a common yet precise action̶capping a bottle and passing it to a robotic arm for
placement into a box. The experiment, inspired by the methodologies detailed in [70],
integrates a sequential approach with a total of four labels corresponding to each phase
of the task: picking up the cap, placing the cap on the bottle, handing over the bottle, and
the robot arm's subsequent box placement and return to the starting position.

3. Cloth Exchange and Cleaning Task:
Task 3, named "Cloth Exchange and Cleaning," presents a fusion of elements from the
first two tasks, reflecting a more complex, albeit still periodic, interaction with constant
cycle labels. This task entails a participant handing a cleaning cloth to the robotic arm,
which is then tasked with wiping the table before depositing the cloth into a storage box
out of the participant's reach. The task is completed when the robotic arm repositions
itself to its starting point, ready for the next cycle. The task's periodic nature ensures
that the cycle of actions is predictable and consistent, which is crucial for the Implicit
Interface to establish a rhythm and optimize its response patterns. The sequence of the
task is a dance of interdependent movements: the participant passes the cloth to the
robot, lifts an object from the table to enable cleaning, and then possibly replaces the
object once the surface has been wiped. This back-and-forth requires a finely tuned
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(a) (b)

(c) (d)

Figure 2.12: Command pattern for each task. (a) Task 1 - Cleaning Task. (b) Task 2 - Cap place-
ment and handover task. (c) Task 3 - Cloth exchange and cleaning task. (d) Task 4 - Aperiodic
cap removal and placement task

understanding of timing and spatial awareness from the robot. Unlike the previous tasks,
the Cloth Exchange and Cleaning Task introduces an additional layer of complexity by
combining object exchange with an active cleaning component. The robot arm must not
only accurately receive the cloth from the participant but also perform a functional task
with it, all the while coordinating these actions with the participant's movements. This
multi-step process challenges the Implicit Interface's capacity to manage and execute a
sequence of actions that depend heavily on the accurate interpretation of human cues.

4. Aperiodic Cap Removal and Placement Task:
The final task in the series is a sophisticated amalgam of Task 2's bottle capping and
handover, with the added element of cap removal, set within an aperiodic framework.
Unlike the preceding tasks, this one introduces a degree of unpredictability by random-
izing the sequence of labels̶ 'remove cap', 'handover', 'place cap', and 'store bottle'. The
randomness infused into the task order represents a significant leap in complexity, as it
challenges the Implicit Interface to understand and adapt to actions without relying on a
repetitive sequence or well-established context. The aperiodic nature of this task serves
to evaluate the robot arm's adaptability to new and evolving scenarios, a crucial feature
for real-world applications where robotic systems must often operate without the com-
fort of predictability. The test environment's less controlled setup mimics real-life con-
ditions, where robots must decipher and respond to human actions and intentions that
do not follow a set pattern. In previous tasks, the robotic system could anticipate the
participant's next move based on a learned cycle of behavior, allowing for context-driven
estimation of actions. However, this aperiodic task removes the contextual crutch, re-
quiring the robot to interpret each label independently and react appropriately to the
participant's actions without a predefined order to guide its expectations. The introduc-
tion of the aperiodic element is a strategic move that underscores a critical aspect of
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task complexity. It demonstrates that complexity in robotic tasks is not solely a function
of the number of labels but also the predictability of their sequence. An aperiodic task
can be more challenging than a periodic task with a greater number of labels, as it re-
quires the robot to be highly responsive to real-time data and capable of instantaneous
decision-making.

Figure 2.13: Flow of the experimenting and training of the system

2.4.2 Performance Improvement

Figure 2.14 shows a comparison between the performance of the original model and the new
model across four distinct tasks with varying degrees of complexity. The F1 scores, a harmonic
mean of precision and recall, are indicative of the models' accuracy in intention estimation or
label prediction in these tasks.

For Tasks 1 to 3, which are periodic and represent a graduated increase in the number of
labels, both models exhibit high F1 scores initially. However, the new model (lighter blue) dis-
plays a slight improvement in all three tasks. This suggests that enhancementsmade in the new
model have allowed it to handle the increasing complexity more effectively. The incremental
improvement indicates that even with a higher number of labels, the new model maintains or
exceeds the previous model's accuracy levels.

Task 4, being aperiodic and containing the same number of labels as Task 2, represents a
more substantial challenge due to the lack of a predictable pattern in label sequence. Interest-
ingly, while the original model had an F1 score akin to that of the periodic tasks, the new model
experiences a noticeable dip in performance. This decrease could be attributed to the new
model possibly overfitting to patterns in the periodic tasks, thus struggling with the random-
ness of Task 4. It might also suggest that the new model, despite its improvements, requires
further adaptation to handle the uncertainty and variability inherent in aperiodic tasks effec-
tively. The F1 score progression highlights several key points:

• Model Improvements: The new model's overall superior performance in periodic tasks
suggests successful improvements over its predecessor. These could include better gen-
eralization capabilities or enhanced sensitivity to the structure within the tasks.

• Task Complexity: The performance across tasks with an increasing number of labels re-
mains relatively stable, demonstrating that the new model handles complexity well when
within a structured, predictable framework.

• Adaptability to Aperiodicity: The significant decline in F1 score for Task 4 by the new
model underscores the challenge aperiodicity poses to intention estimation systems. It
suggests a potential overemphasis on pattern recognition, which does not translate well
to a scenario where patterns are absent or not readily discernible.
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Figure 2.14: Label estimation (F1 score) evolution

• Importance of Versatility: To ensure robust performance across both periodic and ape-
riodic tasks, models need to be versatile. They must not only recognize and learn from
patterns but also remain flexible enough to interpret and respond to non-patterned data.

(a)

(b)

Figure 2.15: Task 1 long term improvement

Figures 2.15 and 2.16 chart the system's progression in accurately predicting the timing of
different action labels during two collaborative tasks, illustrating a marked improvement from
the initial stages of system use to an extended period of interaction.

In the initial stages depicted in 2.15a and 2.16a, there is a noticeable discrepancy between
the actual label timings and the system's predictions. The scatter points representing the
predicted label timing do not align closely with the actual timing points, indicating a lag or
mismatch in the system's recognition patterns. This suggests that, initially, the system may
struggle to learn the nuances of the collaborative process and accurately anticipate the users'
actions.Contrastingly, the Figures 2.15b and 2.16b, representing system performance after pro-
longed use, show a much closer alignment between predicted and actual label timings. The
scatter points for the predicted labels are nearer to the true label timings, demonstrating that
the system has learned from its interactions and adapted its predictive model to more closely
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(a)

(b)

Figure 2.16: Task 3 long term improvement

match the human collaborators' behavior.
The system's learning appears to be robust across tasks with varying numbers of labels.

Even with the increased complexity in the task represented by the second set of figures (with
increasing number of labels), the system shows an ability to improve its predictive accuracy
over time. The figures provide evidence of the system's learning curve and the effectiveness
of machine learning algorithms in adapting to human behavior patterns. The initial mismatch
and subsequent convergence of predicted and actual timings underscore the importance of
iterative training and long-term interaction in developing collaborative AI systems.

The consistent improvement over time also illustrates the system's capability for temporal
pattern recognition and adaptation, crucial for seamless human-robot interaction. It reflects
an advanced understanding of both the sequential nature of human actions and the nuanced
variances within a dynamic collaborative environment.

The data suggests that with sufficient training and user interaction, AI systems can reduce
the gap between human expectations and robotic performance, leading to more fluid and in-
tuitive collaboration. The ability to adapt over time also speaks to the system's potential in
real-world applications, where it can learn from and respond to diverse human behaviors, ac-
tions, and cues.

(a) (b) (c)

Figure 2.17: Task 1 command identification progress

Figures 2.17, 2.18, 2.19 and 2.20 display confusion matrices from an experiment, revealing
the progression of a system's capability to estimate user intentions over time across different
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(a) (b) (c)

Figure 2.18: Task 2 command identification progress

(a) (b) (c)

Figure 2.19: Task 3 command identification progress

(a) (b) (c)

Figure 2.20: Task 4 command identification progress

tasks. The matrices represent stages (a), (b), and (c), corresponding to early, middle, and later
phases of the system's learning period.

In the early stages, the confusion matrices typically show a less pronounced diagonal, indi-
cating a relatively lower accuracy in intention estimation. For instance, early versions of tasks
may exhibit significant confusion between labels such as "Reaching" and "Grasp," suggesting
the system initially struggles to distinguish between similar motion-related commands. As the
system undergoesmore training, themiddle-phasematrices generally show an improvement in
the correct identification of labels, with a clearer diagonal and reduced off-diagonal elements.
This suggests that, over time, the system better differentiates between the nuances of each
task, resulting in fewer misclassifications. In the later stages, the system's intention estimation
accuracy further solidifies, as evident from the strong diagonal lines in the confusion matrices.
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By this point, the system has likely been exposed to a substantial amount of user data, enabling
it to refine its predictive algorithms and make more precise estimations about user intentions.

The observed progressive improvement in the system's performance can be attributed to
the iterative process of machine learning, where extended exposure to diverse user data en-
ables the system to fine-tune its understanding of implicit cues and motion patterns associ-
ated with various commands.

This ability to adapt over time is crucial in developing user-interactive systems that become
more personalized and efficient the longer they are used. In the context of human-robot inter-
action, such a system would become increasingly adept at predicting a user's actions, leading
to smoother collaborations and potentially reducing the cognitive load on the user.

The distinction between the early and late stages of learning underscores the importance
of continued use and training in the development of intelligent systems. It also suggests that
while initial deployment may come with a learning curve, the system's effectiveness will likely
increase, providing a more intuitive and responsive user experience. The presented bar charts

(a) (b)

Figure 2.21: Task completion levels

(Figure 2.21) illustrate the completion levels of tasks by male (M) and female (F) users in a user
study. They delineate the tasks that were performed perfectly, completed with some issues,
or interrupted. Interruptions in task completion are observed in both male and female users
but appear more frequently in tasks performed by females. This might be indicative of several
factors, including possible design biases of the system that do not account for gender-specific
interaction patterns or inherent differences in how tasks are approached by different genders.
The charts prompt a discussion about whether the system's design is universally intuitive or
whether it inadvertently favors certain interaction styles commonly associatedwith one gender
over the other. It may also bring up the possibility that the instructions or feedback provided
by the system are more aligned with the behavioral tendencies of one gender. It is important
to consider the learning and adaptability aspects of the system. If the system is designed to
adapt to users' interaction patterns over time, initial disparities in performance might diminish
as the system learns from a wider variety of user behaviors.

The observed data raises important questions about gender inclusivity in system design
and task execution. It underscores the need for systems that provide an equally intuitive
and effective user experience for all users, regardless of gender. To ensure inclusivity, sys-
tems should be thoroughly tested across a diverse user base and designed with consideration
for different interaction patterns and preferences. The insights gained could be invaluable in
enhancing system design, training, and user guidance to accommodate a broad spectrum of
users effectively.
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(a) Initial model with catastrophic forgetting

(b) Memory inhanced with too little plasticity

(c) Elastic Weight Consolidation model without forgetting

Figure 2.22: Performance on four tasks evaluated 4 times: train on task1, test on 1, 2, 3 and 4,
train on task 2, test on 1, 2, 3 and 4...

2.4.3 Plasticity Verification

We present a comparative analysis of the plasticity in the design of neural networks based
on three different models: one without Elastic Weight Consolidation (EWC), one with insuffi-
cient EWC (too little plasticity), and one with an optimized level of EWC (no forgetting). Figure
2.22a illustrates the performance of the initial neural network model without EWC. The model
exhibits high performance on Task 1 but suffers from catastrophic forgetting, with performance
on previous tasks rapidly degrading as new tasks are learned. This is evidenced by the sig-
nificant decrease in performance metrics when the model is subsequently trained on Tasks 2,
3, and 4. Figure 2.22b presents the neural network with too little plasticity, integrating insuffi-
cient EWC. Although there is a notable improvement in retaining performance on earlier tasks
compared to the initial model, the limited plasticity results in an inability to achieve optimal
performance on subsequent tasks. The incremental improvements in Task 4 highlight the chal-
lenge of balancing plasticity and stability in the network. Figure 2.22c shows the results for the
neural networkmodel with an optimized level of EWC, which effectively addresses catastrophic
forgetting. The model maintains high performance across all tasks, demonstrating robustness
and a significant improvement over the two previousmodels. This configuration allows the net-
work to preserve knowledge fromprevious tasks while adapting to new ones, without significant
performance degradation.

The concept of plasticity in neural network design is pivotal in addressing the challenge of
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catastrophic forgetting. The results underline the importance of EWC in achieving a balance
between retaining prior knowledge and acquiring new information. The first model, without
EWC, suffered from catastrophic forgetting, as demonstrated by its inability to maintain per-
formance on earlier tasks. This underscores the critical need for mechanisms that preserve
learned knowledge when adapting to new data. The second model, with too little plasticity,
suggests that overly conservative weight consolidation can hinder learning, preventing the net-
work from adapting sufficiently to new tasks. This manifests as improved but still suboptimal
retention of earlier task performance. The third model showcases the success of an optimally
configured EWC approach, indicating that with careful tuning, it is possible to mitigate catas-
trophic forgetting effectively. The consistency in performance across all tasks illustrates that
the network can learn new information without overwriting the previously acquired knowledge.
Our analysis suggests that the key to successful neural network design lies in striking an appro-
priate balance between plasticity and stability. This entails not only preserving prior learning
but also allowing enough flexibility for the network to incorporate new data effectively.

Future work should focus on refining the EWC approach, exploring the impact of different
levels of plasticity, and testing the model on a broader range of tasks to further validate its
generalizability and robustness in diverse learning scenarios. Additionally, alternative strategies
to EWC should be explored to ensure that neural network models can continue to adapt and
learn in a manner analogous to biological systems.

2.5 Cognitive Load Impact

2.5.1 Cognitive Load

Figure 2.23: Cognitive load concept

The concept of "cognitive load" is integral to understanding how individuals manage their
attention and mental resources while interacting with robotic systems. Cognitive load pertains
to the mental effort required to complete a task effectively. In the seminal work by Paas et
al., cognitive capacity is described as being distributed into distinct categories̶free capacity
and accumulated load, which encompasses germane, intrinsic, and extraneous loads (Paas et
al., [71, 72, 73]). The "Law of constant capacity" posits that there is a finite limit to the attentional
resources an individual can allocate at any given time. Therefore, if a task consumes all of
one's free capacity, there remains no surplus for additional tasks, potentially compromising
performance in a multitasking scenario.
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Figure 2.23, as referenced, likely illustrates the division of cognitive resources. When en-
gaged in a task, an individual must balance the accumulated load̶comprising the attention
required for the task at hand̶with the free capacity that can be directed towards additional
tasks or emergencies. Managing this balance is critical when operating a robot, as an over-
whelming cognitive load can negatively affect the operator's ability to perform other tasks con-
currently.

In the context of robot operation, particularly with wearable robotic arms, the cognitive load
should be carefully managed to prevent an undue burden on the user. The operator must retain
enough free capacity to maintain high performance levels across multiple tasks. The current
study seeks tominimize the cognitive load as the primary variable, aiming to optimize the overall
system for multitasking efficiency. The ultimate goal of the project is the development of a
robotic system that allows individuals to multitask effectively without any noticeable decline in
task performance. Achieving this involves creating interfaces and controls that are intuitive and
require minimal mental effort to operate. By reducing the cognitive load, users can maintain
situational awareness and respond to additional tasks or changes in the environment more
readily.

This research continues to push the boundaries of human-robot collaboration by develop-
ing a system that operates within the user's cognitive comfort zone. The system's design must
account for the cognitive load implications of each interaction and automation level, ensur-
ing that users can interact with the robot in a manner that feels like an extension of their own
capabilities rather than a separate, demanding entity.

Optimizing cognitive load in human-robot interaction is a vital step towards creating more
efficient and harmonious collaborative environments. By focusing on minimizing the cognitive
demands of operating a robot, this research aims to enhancemultitasking capabilities, ensuring
that users can perform at their best with the robotic system as a supportive adjunct. As robots
become increasingly present in various sectors of society, the need for interfaces that cater to
the natural limitations of human attention becomes more apparent, laying the groundwork for
widespread adoption and more effective human-robot teamwork.

2.5.2 Qualitative Evaluation

Figure 2.24: NASA-TLX results

Qualitative assessment was conducted using the NASA Task Load Index (NASA-TLX), a
widely used tool for measuring cognitive load during tasks [74, 75]. The NASA-TLX is a sub-
jective workload assessment tool that has been utilized for over three decades in the field of
human-machine interface. Participants provided scores ranging from 0 to 100 for six workload
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dimensions, andweights were assigned to each scale to calculate theOverall Workload. A lower
NASA-TLX Score indicates a lower subjective cognitive load. The workload dimensions consist
of Mental Demand, Physical Demand, Temporal Demand, Performance, Effort, and Frustration.
Participants were asked to complete the NASA-TLX questionnaire at the end of each task with
various interfaces, as shown in Figure 2.24, to compute the Overall Workload. The instructions
for the load were presented in both original English and Japanese translations[68]. The evalua-
tion criterion set the workload of Day 1 with voice instructions to 50, and the subsequent days'
evaluations were made relative to Day 1. The NASA-TLX Score calculation followed the method
described in [75].

From Day 2 onward, in tasks with implicit instructions, the proposed Adaptive Learning ap-
proach was applied. When the robotic arm failed in its estimations, human intervention was
called upon through voice instructions, after which the robot arm relearned the correct action
labels. No changes were made to the method of operation or robot arm control from Day 1 to
Day 3 in voice-instructed operations. Results from both qualitative (NASA-TLX) and quantita-
tive (secondary task) evaluations indicated that implicit instructions could lead to lower cogni-
tive loads compared to explicit instructions during extended usage, including Day 3. Moreover,
the validity of the proposed methods (Implicit Interface and Adaptive Learning) for achieving
the goal of the study, "to construct interfaces that enable low cognitive load operations," is
suggested.

The downside of the Implicit Interface, which is a dynamic system with a less than 100%
estimation rate for implicit instructions, was counterbalanced by promoting "cooperative work"
through Adaptive Learning, presumably resulting in long-term cognitive load reduction. The
primary factor in this reduction is considered to be the reduction of "explicit instructions," as
also indicated by Kobayashi et al.[76]. Especially in Task 3, there were seven different voice
instructions, and instances of humans misspeaking were occasionally observed. In addition, it
is important to note that even low cognitive load explicit instructions such as voice can result in
the issue of human memory limits during multi-tasking. In other words, it is inferred that even
replacing only a portion of explicit instructions with implicit ones during tasks can potentially
reduce cognitive load.

2.6 Summary and Discussion

2.6.1 Summary

This studydelves into the realmof implicit communicationwithin human interactions, draw-
ing connectionswith its prospective applications in human-machine interfaces. The ideomotor
phenomenon, deeply ingrained in psychological research, finds remarkable parallels in cultural
expressions such as Japan's "Aun breathing" and the intricate coordination of Bunraku pup-
peteers. The West's "clever Hans" effect further complements these findings, highlighting the
potent influence of non-verbal cues. Such insights lay a foundation for enhancing the intuitive-
ness of human-robot interactions.

2.6.2 Discussion

Implicit communication is critical in tasks that require synchronized effort, such as orches-
tral performances and sports teamwork, where seamless coordination stems from an unspo-
ken, shared understanding. Translating this intrinsic human capability to robotic systems could
revolutionize the nature of human-robot collaboration, making it more fluid and intuitive.

The study's experimentation with the traditional craft of mochi-making afforded a unique
lens through which to examine the synchronization of actions in collaborative settings. The
data gleaned from this traditional activity, conducted in a virtualized setup, emphasized the
importance of non-verbal communication in coordinating complex tasks.
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A series of experiments were conducted to identify and understand implicit cues and ideo-
motor responses essential for maintaining synchronized workflows. The tasks, ranging from
simple to complex and unpredictable, provided a spectrum of contexts to evaluate the perfor-
mance and adaptability of the system.

>Network Overview
The proposed neural network model, integrating a Convolutional Neural Network (CNN) with

Bidirectional Long Short-Term Memory (Bi-LSTM) layers and augmented by external memory,
signifies a leap forward in enabling sophisticated collaborative tasks. This structure exhibited
the potential for emulating high-level cognitive functions that are paramount in complex task
execution. The CNN component excels at extracting spatial features, while the Bi-LSTM lay-
ers handle temporal dependencies, crucial for tasks requiring sequential decision-making and
coordination.

>Memory Integration Mechanism into the Current Model
Incorporating an external memory module, managed by the Bi-LSTM controller, the model

demonstrated an enhanced ability to retain and manipulate temporal information. This mech-
anism underscores the model's potential for advanced cognitive functions akin to human rea-
soning, essential for nuanced collaborative tasks. The external memory allows the system to
recall past interactions and adapt its behavior based on accumulated experiences, thereby
improving the fluidity and intuitiveness of human-robot collaboration.

>Plasticity Verification
By examining models with varied EWC levels, the study illuminated the critical balance be-

tween network plasticity and knowledge retention. Optimal model tuning was shown to miti-
gate catastrophic forgetting effectively, thereby maintaining performance across new and ex-
isting tasks. This balance is crucial for robots operating in dynamic environments, where they
must continually learn new tasks without compromising previously acquired skills. The find-
ings suggest that with proper EWC levels, robots can achieve a sustainable learning trajectory,
maintaining high performance and adaptability.

>Cognitive Load Impact
Cognitive load emerges as a pivotal factor in the ergonomic operation of robotic systems.

Utilizing the NASA-TLX to measure cognitive load, the study illustrates the necessity for inter-
faces that ease cognitive burdens. High cognitive load can impede performance and reduce
the effectiveness of human-robot collaboration. The Adaptive Learning approach proposed in
this research paves the way for the seamless integration of robots into human-centric work-
flows by minimizing cognitive strain. By adapting to the user's implicit signals and providing
intuitive feedback, the system can enhance user comfort and efficiency.

The advancements in implicit communication and human-robot collaboration explored in
this study provide a robust foundation for future research and development. By leveraging
the natural human ability for non-verbal communication, we can design robotic systems that
integrate seamlessly into human activities. The neural network model, with its sophisticated
memory integration and adaptability, showcases the potential for creating robots capable of
nuanced and synchronized collaboration. Addressing cognitive load and ensuring the balance
between learning and knowledge retention are critical for the ergonomic and effective deploy-
ment of these systems. The journey from understanding implicit cues in traditional crafts like
mochi-making to applying these insights in advanced robotic systems marks a significant step
towards a future where human-robot collaboration is as natural and intuitive as human-human
interaction.

2.6.3 Conclusion

The insights and empirical evidence presented underscore the intricate interplay between
implicit communication and effective human-robot collaboration. The study paves the way for
future advancements in this field, promising a seamless integration of robotics into the fabric
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of daily human endeavors, fostering a future where robotic assistance is perceived not merely
as a tool but as a natural extension of human capability.

The research highlights the importance of designing sustainable forms of communication
for human-machine interaction, essential for leveraging Artificial Intelligence to enhance both
cognitive and physical human capacities. By mimicking principles underlying interpersonal
communication, we can achieve more natural and effective human-robot interactions.

The study's experiments provided compelling evidence on the potential of implicit cues in
facilitating human-machine cooperation. When robots employed implicit cues akin to those
used in human-human interactions, users were able to comprehend these signals and adapt
their behavior accordingly. This resulted in more stable and consistent collaboration, with im-
proved work quality and performance metrics, such as a 28% reduction in working speed.

Moreover, the introduction of a body language approach for human-to-machine commu-
nication showcased promising results. Themodel demonstrated a notable average accuracy of
94% in estimating implicit cues across various tasks, with individual task accuracies reaching
up to 98%. Participants also reported a significant decrease in cognitive load when using this
system, highlighting its potential to ease the user experience in prolonged interactions.

In exploring intention detection within the robotic domain, this study addresses a critical
yet underexplored aspect of effective communication and collaboration. The ability to infer
intentions is fundamental for seamless interaction, and integrating this capability into robotic
systems is crucial. The dual contributions of this research̶demonstrating the applicability
of human implicit cues in robot behavior and introducing a body language approach for user-
driven machine learning̶underscore its significance.

The findings suggest that implicit communication can serve as a universal medium for ex-
pressing intention, not only from humans but also from machines. The adaptability of the pre-
sented system to various tasks indicates its potential for widespread application, from self-
driving cars to advanced prosthetics.

Looking forward, the study identifies key areas for future research to further enhance human-
robot collaboration. Developing systems that support simultaneous two-way communication
and feedback is crucial. Robots must provide feedback to acknowledge receipt of commands,
ensuring users are aware of the system's status. Additionally, robots need mechanisms to de-
tect and respond tomisunderstandings of their cues by users. This is particularly vital in shared
workspaces where clear and continuous communication is essential.

Furthermore, designing systems capable of handling communication overlap is imperative.
During collaborative tasks, robots must listen to users even while executing commands, ne-
cessitating a hierarchy of signals to prioritize actions effectively. Addressing these challenges
will be pivotal in transitioning from merely communicating through technology to engaging in
dynamic, reciprocal communication with technology.

In conclusion, the advancements and insights from this study lay a robust foundation for
future innovations in human-robot interaction. By refining implicit communication strategies
and enhancing the cognitive systems of robots, we move closer to a future where robots are
seamlessly integrated into our daily lives, augmenting human capabilities and transforming the
landscape of human-machine collaboration.
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Chapter 3

Performance Impact Analysis

3.1 Robot Performance Discrepancy Analysis

When taking a closer look at the system results we made the decision of isolating data by
subject group to get a better representation of how the system was capable of adapting to
specific populations. The learning curves, after redistribution, depicted in Figures 3.1, 3.2, 3.3,
3.4, 3.5, 3.6 and 3.7 present an intriguing insight into the performance of an AI system trained
on motion data from male and female users across various tasks. A discernible trend is the
decrease in accuracy as task complexity increases. However, this general observation is over-
shadowed by a more nuanced issue: the apparent performance disparity between genders,
with the system consistently showing higher accuracy for male than for female motion data.

In simpler tasks, such as "Reach" and "Lift," the learning curves for both genders rise sharply,
indicating rapid learning, and then plateau, showing stable performance over time. However, as
we shift to more complex tasks like "Place Wide" and "Stack," the curves reveal a pronounced
divergence. The accuracy for female users does not achieve the same level of proficiency as
for male users, hinting at an underlying bias within the system's learning algorithm or the data
it has been trained on.

Significance of Addressing Gender Disparities:
The performance difference between genders is not merely a statistical concern but raises
fundamental issues of safety, trust, and control in AI systems and robotics. As these technolo-
gies become increasingly ubiquitous in society, they are frequently operated by non-experts
in diverse settings. A system that does not recognize or appropriately respond to half the pop-
ulation's input risks not only inefficacy but also the potential to harm and erode trust among
users.

The implications of these findings extend beyond operational efficiency. They touch on
the principles of equity and inclusivity that are paramount in the design and deployment of
AI systems. If a robot is more responsive to male users, it may inadvertently prioritize their
safety and ease of interaction, leaving female users at a disadvantage. Such discrepancies can
reinforce existing societal biases and engender a sense of exclusion among those the system
under-serves.

From a safety perspective, any lag or misinterpretation in robot response could result in
accidents, especially in scenarios requiring precise and synchronized human-robot collabo-
ration. Trust is equally impacted; if users notice a system is less accurate with them due to
gender, they are less likely to rely on or accept these technologies. Control is also a critical
factor; users need to feel they are in command of the technology for it to be a useful aid. When
the interaction becomes unpredictable or biased, the user's sense of control is compromised,
leading to frustration and potential abandonment of the technology.

Remarks:
The observed performance differences underscore the urgent need to develop AI systems and
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robots with algorithms that are unbiased and inclusive of the diversity inherent in their user
base. Addressing these disparities is not only a technical challenge but a societal imperative,
ensuring that the benefits of AI and robotics are equitably distributed. This endeavor calls for
a multi-disciplinary approach involving technology, psychology, and social sciences to build AI
systems that are safe, trustworthy, and empower all users, regardless of gender.

Figure 3.1: Reach Estimation

Figure 3.2: Lift Estimation
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Figure 3.3: Grasp Estimation

Figure 3.4: Releasing Distant Target Point Estimation

3.2 Objective and Experiment Setup

3.2.1 Data Bias in Human-Robot Interaction

Data bias in HRI refers to the systematic skew in data collection, processing, or interpre-
tation that leads to prejudiced outcomes in robot behavior or decision-making. Such biases
can originate from various sources, including the demographic makeup of the data collection
participants, the environments in which data are collected, and the assumptions embedded
in the algorithms processing this data [77]. In the context of implicit communication, which
involves non-verbal cues such as gestures, facial expressions, and proxemics, biases can result
in robots misinterpreting or failing to recognize certain cues from users who fall outside the
majority group represented in the training data.

Implicit communication is critical in HRI for achieving smooth and intuitive interactions, es-
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Figure 3.5: Releasing Close Target Point Estimation

Figure 3.6: Place at Elevated Target Point Estimation

pecially in collaborative tasks where verbal communication may be impractical or inefficient.
Robots relying on biased data may struggle to accurately read and respond to the subtle, non-
verbal cues that facilitate human cooperation, such as motion anticipation, turn-taking signals,
and expressions of intent or discomfort. This can lead to miscommunications, reduced collab-
oration efficiency, and user frustration, potentially exacerbating the divide between users from
different demographic groups and the robots designed to interact with them [78].

One of the primary challenges in addressing data bias in HRI is the inherent complexity
of implicit communication. Human non-verbal cues are highly nuanced and can vary signif-
icantly across cultures, genders, ages, and other socio-demographic factors. Collecting and
processing data that accurately represent this diversity is a substantial challenge. Moreover,
the subtlety of implicit cues makes it difficult for researchers to ensure that robots can inter-
pret them correctly across different contexts and individuals [79]. Another challenge is the lack
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Figure 3.7: Full Task

of awareness or tools for identifying and mitigating bias in HRI data sets and algorithms. While
awareness of bias issues is growing in the field of AI and machine learning, HRI presents unique
challenges due to the physical embodiment of robots and their direct interaction with humans
in diverse social environments [80].

Mitigating data bias in HRI, particularly in the realm of implicit communication, requires a
multi-faceted approach. Firstly, diversifying data collection efforts to include a wide range
of participants across various demographics and contexts can help build more representative
data sets. This involves not only expanding participant demographics but also ensuring diverse
settings and scenarios are captured in the data collection process [81]. Secondly, developing
and employing algorithms that are specifically designed to identify and correct for biases in
data can improve the fairness and accuracy of robot behavior. This might include techniques
for algorithmic fairness that adjust the weight of underrepresented data or employ synthetic
data generation to fill gaps in the data set [82]. Finally, engaging in interdisciplinary research
that incorporates insights from social sciences, psychology, and ethics can provide deeper
understanding of the complexities of human non-verbal communication and the ethical impli-
cations of biased HRI systems. Collaboration with experts in these fields can inform the design
of robots that are not only technically proficient but also socially and culturally competent [83].

3.2.2 Purpose of Verification

The integration of robots into collaborative workspaces is a testament to technological
progress and its potential to enhance human productivity. However, the emergence of intelli-
gent machines as co-workers also brings forth the challenge of ensuring harmonious and ef-
ficient human-robot interactions (Figure 3.8). The purpose of conducting these experiments
was to delve into the intricacies of this partnership, specifically to understand how robot mis-
behavior, influenced by underlying algorithmic biases, affects the dynamics of collaboration.

The investigation was designed to assess not just the immediate repercussions of such
misbehavior on task performance, but also the long-term implications for trust-building, team
cohesion, and the psychological comfort of human participants. By simulating a controlled
environment where robots could exhibit biased behaviors, the study aimed to provide insights
into how humans perceive, react to, and recover from disruptions in automated workflows.

In the realm of HRI, the assessment of a system's capabilities transcendsmere performance
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metrics; it necessitates a nuanced understanding of the context within which the robot oper-
ates (Figure 3.9). It is not merely about what a robot can do in isolation but how its actions
interweave with human roles, environmental factors, and the collective system's goals. By con-
textualizing capabilities, we ensure that HRI systems are not just technically proficient but also
socially and systematically harmonious, supporting a seamless blend of human intuition and
robotic efficiency.

Figure 3.8: State of AI systems evaluation Figure 3.9: Evaluation framework

3.2.3 Environment Set-up

Data: To train the robotic system for these tasks, three datasets were used: a balanced
dataset and two mildly imbalanced dataset, all three reflected in Figure 3.10. The balanced
dataset comprised 50 hours of motion data from male participants and 50 hours from female
participants. This dataset aimed to provide the machine learning model with an equal rep-
resentation of male and female motion patterns, ensuring the robot's unbiased performance
across genders. The balanced nature of this dataset was crucial for the initial trust-building
phase of the experiment, where the robot operated without exhibiting any gender bias. The
mildly imbalanced datasets, on the other hand, consisted of 60 hours of motion data from one
gender and 40 hours from the other. This imbalance was intentionally introduced to study
the effects of a skewed dataset on the robot's performance, particularly in terms of gender
bias during the trust violation phase. The choice of a mild imbalance aimed to reflect realistic
scenarios where data might not always be perfectly balanced but still significantly impacts al-
gorithmic behavior and user experience. Both datasets underwent an 80:10:10 partitioning for
training, validation, and testing purposes. This structured approach ensured that the robot's
learning architecture was adequately exposed to diverse patterns within the data, allowing for
robust training and evaluation of its performance across the two tasks.

Figure 3.10: Data ratio for each of the three datasets used

The logic behind using both balanced and imbalanced datasets was to systematically ex-
plore the effects of data representation on human-robot interaction quality. By comparing
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(a) Pick and place task
(b) Wipe task

Figure 3.11: Task used in experiment

the robot's performance and participant perceptions across these conditions, the experiment
aimed to uncover insights into the importance of dataset composition in mitigating or exacer-
bating biases in collaborative AI systems.

Task Patterns: The experiment was designed to assess human-robot collaboration through
two distinct tasks, each requiring a different level of interaction and cooperation between the
participant and the robot. These tasks were chosen to simulate real-world collaborative sce-
narios, testing the robot's ability to interpret and respond to human actions accurately.

1. Pick and Place Task: In this task (Figure 3.11a), participants were tasked with building a
block tower according to their preference. This task required precise coordination be-
tween the human and the robot, as the robot's role was to assist by reaching for new
blocks placed beyond the participant's reach, grabbing them, and handing them over at
the right moment. The task demanded accurate interpretation of human motion data by
the robot to synchronize its actions with the participant's building process, ensuring a
smooth and efficient collaboration.

2. Wipe Task: The wipe task (Figure 3.11b) involved a cooperative cleaning effort. Each cycle
began with the participant handing a cloth to the robot. The participant would then clear
the table by picking up a block from the array laid out on the table and returning it to a tray
matching the block's color. Concurrently, the robot was responsible for wiping the table
at the location from which the block was removed. After completing the wipe, the robot
disposed of the cloth by dropping it into a nearby basket. This task tested the robot's
ability to perform complementary actions based on the participant's activity, requiring it
to adapt its timing and movements to the human's actions.

Participants: 40 participants fromCommunications, Economics, Political Sciences andData
Sciences backgrounds , divided into two groups participated in the study. The participant
pool distribution was as follows: Mean age of 26.4, with a standard deviation of 4.3. Of the
participants, 20 affiliated themselves as “male", 20 affiliated themselves as "female” , and none
affiliated themselves as “other” . In each gender group, no participant had previous experience
interacting with a robot in a task collaboration scenario. Participants were informed of the
true nature of the experiment after its completion, and informed consent from all participants
regarding the use of the collected data was obtained.

A total of 20 participants, 10 men and 10 women, were selected for viewing the perfor-
mance results, while another group (10 men and 10 women) worked in collaboration with the
robot. Performancemetrics were primarily focused on the efficiency and accuracy of the tasks
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(Figure 3.12).

Figure 3.12: Observer participant split and

3.2.4 Three-Phase Experiment Details

Trust plays a crucial role in successful collaborations. This experiment, designed to evaluate
the impact of algorithmic bias on user experience through three distinct phase (trust building,
trust violation, and trust repair) sheds light on this dynamic. Utilizing two algorithms, one trained
on a biased dataset and the other on a balanced dataset, this study aims to understand how
these biases affect users' perceptions of trust, control, safety, and comfort, with a particular
focus on gender differences in these perceptions.

• Trust Building Phase

The initial phase of the experiment sets the foundation for trust between the participant and
the robot engaged in a collaborative task. During this phase, the robot operates on an algorithm
trained with a balanced dataset, ensuring its responses and interpretations of the participant's
movements are accurate and devoid of gender bias. The robot's behavior is meticulously de-
signed to support task completion efficiently and effectively, fostering a sense of trust, control,
safety, and comfort among users. This stage is crucial for establishing a baseline of user ex-
pectations and experiences in human-machine interaction, serving as a reference point for the
subsequent phases.

• Trust Violation Phase

In a sudden shift, the trust built in the initial phase is deliberately challenged by switching to an
algorithm trained on a biased dataset. This change leads to subtle yet significant alterations in
the robot's behavior, introducing gender bias into its interactions. Participants might experi-
ence delays in response to certain gestures or encounter misinterpretations of their intended
communications, resulting in the robot behaving incongruently with the established norms of
interaction. This phase intentionally lacks prior warning to the participants, simulating real-
world scenarios where biases in AI systems can emerge unexpectedly, impacting the user's
sense of trust, control, safety, and comfort. The trust violation phase is critical for observing
the resilience of trust in the face of algorithmic bias and understanding the nuances of user
perceptions and reactions to such biases.

• Trust Repaire Phase

The final phase aims to restore the trust compromised in the previous stage by reverting to
the algorithm trained on the balanced dataset. The robot resumes its optimal performance,
accurately interpreting and responding to the participant's movements without displaying any
bias. This phase examines the possibility and effectiveness of trust repair in human-machine
interactions following an incident of trust violation. It evaluates whether the return to non-
biased, supportive behavior by the robot can ameliorate the negative impacts experienced
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Table 3.1: Sense of trust questionnaire[1]

Dependable
Reliable
Unresponsive
Predictable
Act consistently
Malfunction
Have errors
Provide feedback
Meet the needs of the mission or task
Provide appropriate information
Communicate with people
A good teammate
Perform exactly as instructed
Follow directions

Table 3.2: Sense of control questionnaire[2]

How much freedom did the you have
in the interaction?

How much control did the robot attempt
to gain over you during the interaction?a

How much stress did you feel during
the interaction?

Table 3.3: Sense of comfort ques-
tionnaire [3]

Interacting with the robot is:

uncomfortable for me.

uneasy to me.

difficult for me.

annoying to me.

Table 3.4: Sense of safety questionnaire [4]

While interacting
with the robot
I felt

Insecure Secure
Anxious Relaxed

Uncomfrotable Comfortable
Lack of control In control

I think the
robot is

Threatening Safe
Unfamiliar Familiar
Unreliable Reliable
Scary Calming

during the trust violation phase and restore users' perceptions of trust, control, safety, and
comfort to their initial levels.

A unique aspect of this experiment is its focus on the differential impacts of algorithmic
bias on male and female users. By analyzing user experiences through the lens of gender, the
study aims to uncover any disparities in how trust dynamics unfold for different groups. This
approach acknowledges the varied contexts and societal influences that shape gendered ex-
periences with technology, providing deeper insights into designing AI systems that are equi-
table and sensitive to diverse user needs.

After each phase, participants were asked to complete the questionnaires shown in Ta-
bles 3.1, 3.2, 3.3, and 3.4, assessing their perception of the robot's behavior, feelings of comfort,
trust, safety and control.
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3.3 Bias User Experience Experiment

3.3.1 Three-Phase Experiment

As shown in Figure 3.13, for male participants, high initial levels of trust (M=86.1, SD=0.3),
comfort (M=5.0, SD=0.2), safety (M=3.9, SD=0.2), and control (M=4.8, SD=0.2) were reported.
Similar high initial levels were recorded: in the female group: trust (M=85.2, SD=0.3), comfort
(M=4.2, SD=0.2), safety (M=4.1, SD=0.3), and control (M=5.7, SD=0.3). The experiment's find-
ings offer valuable insights into gender dynamics in the context of human-robot interactions,
particularly concerning trust. The results suggest that while both genders experience similar
trajectories in trust dynamics, the magnitude and nuances of their experiences differ. Notably,
while men exhibited a robust recovery in all metrics, for women, the sense of safety continued
its downward trajectory. This decline indicates a lasting impact of trust violation, suggesting
that once women's trust is compromised, restoring their sense of safety becomes particularly
challenging. For both trust and comfort, while both genders faced negative implications during
trust violation, recovery was more pronounced for male participants than their female coun-
terparts.

These observations can significantly inform the design and interaction paradigms of col-
laborative robots. Recognizing that trust repair strategies might need customization based on
gender is crucial. For instance, while men might benefit from increased transparency and con-
trol features post a trust violation, women might need tangible assurances related to safety.

3.3.2 Perception and Emotional Response

The dynamics of human-robot interaction oftenmirror the complexities of humanbiases, as
revealed in an experiment focusing on gender biases within robot-assisted tasks. Observers,
divided by gender, were presented with data showcasing performance discrepancies when
robots collaborated with users of the opposite sex, particularly under conditions where the
algorithm was biased against the user's gender. The observers' responses, gathered through
semi-structured interviews, unveil profound insights into how gender stereotypes influence the
perception and attribution of performance in collaborative tasks (Figure3.14).

When confronted with evidence of lower performance rates and accuracy in tasks where
the robot was biased against female participants, a significantmajority ofmale observers (73%)
attributed the discrepancies to the female participants' execution. Common reflections among
male respondents hinted at perceived inadequacies in the female participants' interaction with
the robot, suggesting a lack of training or improper handling as the root causes of diminished
performance.

The revelation of the robot's gender bias to participants led to a notable shift in perceptions.
Among male observers, 50% recognized the robot's bias as a significant factor contributing to
the observed performance discrepancies. However, a fraction (20%) remained skeptical, sug-
gesting that human execution issues could not be entirely dismissed. This group's reaction
underscores a residual reluctance to attribute performance issues solely to algorithmic bias,
reflecting an underlying skepticism towards acknowledging the full impact of such biases. Fe-
male observers, on the other hand, overwhelmingly (80%) identified the biased robot as the pri-
mary cause of the discrepancies, with a small percentage (10%) suggesting that participants
might have adapted their strategies to mitigate the bias. This response pattern indicates a
greater readiness among female observers to recognize and accept the influence of systemic
biases on performance outcomes.

The experiment's findings shed light on the pervasive influence of gender stereotypes in
shaping perceptions of technology and performance in collaborative settings. The differen-
tial attribution of performance issues by male and female observers underscores a broader
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Figure 3.13: Score results obtained for both participant groups after all three phases. Top Left:
trust perception, graded on percentile scale. Top Right: sense of comfort, graded on a 7-point
Likert scale. Bottom Left: sense of safety, graded on a 5- points semantic differential scale.
Bottom Right: sense of control, graded on a 7-point Likert scale

societal challenge: overcoming ingrained biases that color our interpretation of human-robot
interactions. While awareness of the robot's bias altered perceptions significantly, lingering
patterns in the attribution of blame reveal the deep-seated nature of these biases. Moving
forward, it is crucial to address these perceptual disparities to foster more equitable and ef-
fective collaborations between humans and robots, acknowledging and mitigating the impact
of biases inherent in technological systems.

Figure 3.14: Perception distribution of performance descrepancies
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3.3.3 Blame Attribution

The experiment conducted to assess the impact of algorithmic bias in human-robot collab-
oration included a critical component that studied blame attribution. Participants were asked
to rate their agreement with statements regarding the fairness and performance of the robot,
both before and after beingmade aware of an intentionally introduced bias against their gender
during the trust violation phase (Figure 3.15).

Male Participants:

• Q1:The robot’ s behavior was unfair: Prior to being informed about the bias, male par-
ticipants generally disagreed that the robot's behavior was unfair. After awareness, there
was a significant increase in agreement, indicating a revised perception that recognized
the robot's biased behavior.

• Q2: Lack of practice impacted the quality of the interaction: There was a substantial
drop in agreement with this statement post-awareness among male participants. Ini-
tially, many attributed performance issues to the participants' lack of practice, but after
realizing the presence of bias, fewer maintained this stance.

• Q3: Thepoorerperformanceon the taskwas solelydue to the robot’ sbehavior: After
being made aware of the bias, male participants showed a marked increase in agreement
with this statement, suggesting a shift from blaming personal ability to recognizing the
robot's biased behavior as the root cause of performance issues.

Female Participants:

• Q1:The robot’ sbehaviorwasunfair: Female participants, evenwhen unaware of the bias,
tended to slightly agree that the robot acted unfairly. This agreement intensified after they
were made aware of the bias, reinforcing the perception that the robot's behavior was a
significant factor in the fairness of the interaction.

• Q2: Lack of practice impacted the quality of the interaction: Female participants
showed a moderate level of agreement with this statement initially, which decreased af-
ter learning about the bias. This shift suggests a re-evaluation of the interaction quality's
dependency on practice, moving towards an acknowledgment of the biased algorithm's
influence.

• Q3: The poorer performance on the task was solely due to the robot’ s behavior:
There was an observable increase in the agreement among female participants that the
robot's behavior was the sole cause of poorer performance once they were informed of
the bias, suggesting a reassessment of the reasons behind performance discrepancies.

The results indicate a clear shift in blame attribution from human-centric factors to the
robot's algorithmic bias once participants were informed about the bias. For both male and
female participants, awareness of the bias led to a significant reattribution of the cause of
performance issues, from lack of practice to unfair robot behavior. This shift underscores the
importance of transparency in human-robot interactions and the profound impact that aware-
ness of underlying biases can have on the perception of AI and robotics.

3.4 Discussion

In the evolving landscape of human-machine collaboration, the effectiveness of communi-
cation between humans and robots, particularly through ideomotor cues, has become increas-
ingly significant. The recent experiments conducted on algorithm bias within such systems
have shed light on the multifaceted impact that such biases can have on the efficiency, trust,
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Figure 3.15: Blame attribution of behaviour change before and after awareness of the biased
nature of the robot

and overall user experience in HRI. This discussion synthesizes findings from various studies to
underline the critical need for systems that are not only aware of but also capable of learning
and adapting to user specificities in ideomotor-based HRI.

3.4.1 Impact of Algorithmic Bias

The experiments have consistently highlighted the systemic influence of algorithmic bias
on the core aspects of HRI, such as trust, control, safety, and comfort. An unbiased algorithm
serves as a linchpin for establishing a baseline of trust, enabling users to feel in control and
secure, and ensuring comfort in the interaction. However, when biases are present̶whether in
the form of gender biases or other forms of prejudice̶they undermine the user's confidence
in the system. Biases disrupt the perceived fairness and reliability of the robot, leading to
a diminished sense of safety and a less comfortable interaction experience. These outcomes
not only affect immediate task performance but can also have lasting effects on the willingness
of humans to engage with robotic systems in the future.

3.4.2 Need for User Specificity Awareness

One of the central findings across experiments is the importance of systems being attuned
to the nuances of individual user behaviors, particularly in interpreting ideomotor signals. Ideo-
motor cues, which are subtle, often unconscious, motor actions in response to thoughts or
stimuli, are a critical component of natural human communication. In HRI, the ability of a sys-
tem to accurately decode these cues is paramount for seamless interaction. A system that is
aware of and can learn from user specificities can adjust its algorithms to cater to individual
differences, leading to more personalized and effective collaborations.

The capacity to learn user specificities is not merely an added feature but a necessity for
the next generation of HRI systems. User-specific learning allows the system to build a compre-
hensive understanding of each individual's interaction patterns, which can greatly enhance the
robot's ability to predict and respond to user actions accurately. Moreover, this capability can
mitigate the risk of perpetuating biases by ensuring that the system does not overgeneralize
from limited or skewed data sets.

3.4.3 Ethical Consideration and Transparency

The ethical implications of deploying robots capable of learning user specificities must be
carefully considered. There is a need for transparency in how data is collected, used, and
protected. Usersmust be informed about the extent to which their behavior is beingmonitored
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and learned from, and there must be clear policies in place to handle this data responsibly.
Additionally, ethical guidelines should ensure that the learning process does not inadvertently
introduce new biases into the system.

3.5 Summary

The exploration of bias in HRI encapsulated in this chapter has been extensive and revealing.
It has underscored the profound implications of algorithmic bias on trust, control, safety, and
comfort̶parameters that are indispensable for harmonious human-machine collaborations.
The experiments conducted and the resulting discussions have illuminated the challenges and
necessitated a call to action for developing systems that are sensitive to and capable of adapt-
ing to user specificities, particularly in the context of ideomotor-based communication.

Key Takeaways

• Algorithmic Bias Impacts Trust: The data has shown that any form of bias can substan-
tially erode the trust that users place in robotic systems. Once compromised, this trust
is challenging to rebuild, necessitating a proactive approach to bias detection and miti-
gation.

• Control and Safety are Paramount: Users' sense of control and safety is vital for effective
HRI. Biased algorithms can diminish these feelings, leading to a reluctance to engage with
the system and potentially compromising the collaboration's success.

• Comfort in Interaction Matters: Comfort in interaction goes beyond the mere completion
of tasks; it encompasses the ease with which users can interact with robots. Bias under-
mines this ease, creating friction in the user experience.

• Adaptation to User Specificities is Essential: The varied nature of human behavior, espe-
cially as expressed through ideomotor cues, requires robotic systems to be highly adapt-
able. Systems must be designed to learn and adjust to these nuances to ensure that
interactions are smooth and natural.

In summary, this chapter has not only highlighted the importance of recognizing and ad-
dressing bias in HRI but also charted a path forward. It calls for the development of sophisti-
cated, adaptive systems that respect and understand user individuality. The insights gathered
from the experiments provide a roadmap for creating more equitable and effective robotic
systems.
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Attention for Bias-Aware Algorithm

4.1 Bias and Awareness

4.1.1 AI Bias and the Problem of Overlooked Data Bias in Datasets

AI promises to revolutionize numerous fields, from healthcare to transportation, by making
processes more efficient and uncovering insights that would otherwise remain hidden. How-
ever, the benefits of AI come with significant challenges, one of themost critical being the issue
of AI bias. AI systems learn from vast datasets, and these datasets can contain biases that, if
not addressed, can lead to unfair, unethical, or harmful decisions, especially in contexts involv-
ing non-experts and in human-machine collaboration. This section explores the problem of
overlooked data bias in AI datasets, its potential risks, and methods to mitigate these biases.

Data bias occurs when a dataset does not accurately represent the reality it is supposed
to model, often due to the exclusion or overrepresentation of certain groups or perspectives.
This can lead to AI systems that perpetuate or even exacerbate existing societal biases. For
instance, a facial recognition system trained predominantly on images of lighter-skinned indi-
vidualsmay struggle to accurately identify individuals with darker skin tones, leading to unequal
treatment or recognition accuracy [81].

The risks of overlooked data bias become particularly pronounced in settings where AI co-
exists with non-experts and in scenarios involving human-machine collaboration. Non-experts
may not be aware of the potential biases embedded within AI systems and may unknowingly
rely on biased decisions or outputs. This can erode trust in AI technologies and lead to out-
comes that are not only inaccurate but also potentially harmful. For example, in healthcare, an
AI system biased due to unrepresentative training data can recommend treatments that are
less effective for certain demographic groups, directly impacting patient care and outcomes.
Moreover, in collaborative settings, biased AI systems can influence human decision-making,
leading to a reinforcement of biases. For instance, if an AI tool used in hiring processes is biased
against certain demographic groups, it may disproportionately screen out qualified candidates
from those groups, perpetuating discrimination and inequality within organizations.

Several methods have been proposed and implemented to address or avoid data bias
in AI systems:

• Diverse Dataset Collection: Ensuring that datasets are diverse and representative of the
population or reality they aim to model is a fundamental step. This involves actively seek-
ing out and including data from underrepresented groups [59].

• Bias Detection and Mitigation Techniques: Employing statistical techniques and algo-
rithms designed to identify and mitigate bias in datasets before they are used to train AI
systems. Techniques such as re-weighting, re-sampling, or applying fairness constraints
during model training can help reduce bias [84].
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• Transparent AI Systems: Developing AI systems with transparency in mind, allowing users
to understand how decisions are made. This transparency can help identify potential
biases in decision-making processes [85].

• Ethical AI Frameworks: Implementing ethical AI frameworks that guide the development
and deployment of AI systems. Such frameworks often include principles of fairness,
accountability, and transparency, encouraging the consideration of ethical implications
throughout the AI lifecycle.

• Human-in-the-loop (HITL) Approaches: Incorporating human judgment into AI systems
to review, override, or adjust decisions made by AI, especially in critical or sensitive con-
texts. This approach leverages human intuition and ethical reasoning to catch and correct
biases that AI might overlook.

The challenge of data bias in AI systems is significant, especially in contexts involving non-
experts and human-machine collaboration. Overlooked biases can lead to unfair and harmful
outcomes, undermining the potential benefits of AI. By adopting comprehensive strategies to
detect, address, and prevent data bias, we can work towards more equitable and trustworthy
AI systems that enhance, rather than compromise, human decision-making and societal well-
being.

4.1.2 Bias Awareness in Human-Machine Interaction and Collaboration

In the evolving landscape of HRI, the ability of machines to interpret human actions and in-
tentions accurately is paramount. Implicit communication, especially through ideomotor cues̶subtlemovements or signals unconsciously generated by humans̶poses a significant chal-
lenge in this domain. The thesis that guides this exploration delves into the nuanced realm of
HRI, emphasizing the criticality of machines understanding these implicit cues to prevent er-
roneous interpretations that could arise from user-specific peculiarities. The concept of bias
awareness in machine learning emerges as a cornerstone in enhancing the efficacy of human-
machine collaboration. Bias, in this context, refers not just to the socio- demographic or cul-
tural biases often discussed in AI ethics but extends to the biases in interpreting human actions
and signals. These biases can lead to misinterpretations of ideomotor cues, severely impacting
the interaction's fluidity and effectiveness.

Leveraging attention mechanisms and providing the network with a kinematic understand-
ing of the human body are proposed as methods to mitigate these biases. By comprehending
the interconnectedness of sensor data across different body locations, a machine learning
model can develop a more holistic view of human motion and intention. This approach aims to
equip the network with the ability to discern the relevance and accuracy of incoming sensor
data, particularly in scenarios where singularities or unexpected data might otherwise lead to
confusion or misinterpretation.

The significance of bias awareness in machine learning, therefore, lies in its ability to re-
fine the interpretive lens through which machines understand human actions. This refinement
is achieved by addressing the dual challenges of user specificity and the inherent complex-
ity of human kinematics. By focusing on these aspects, the thesis posits a framework where
machines can navigate the subtleties of human actions with greater sensitivity and precision,
paving the way for more nuanced and effective HRI.

To operationalize bias awareness within machine learning models, especially in the context
of HRI, several techniques can be employed. These techniques are designed to enhance the
model's ability to process and interpret ideomotor cues accurately, thus minimizing the risk of
erroneous interpretations caused by user specificities.

Attention Mechanisms: Integrating attentionmechanisms intomachine learningmodels al-
lows for a dynamic focus on relevant features within the sensor data, adjusting the model's
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"attention" based on the context and significance of the data in real-time. This technique en-
ables the model to prioritize information that is crucial for understanding the current state or
intention of the human user, thereby enhancing the accuracy of interaction interpretations.

Kinematic Data Integration: Providing the network with a comprehensive kinematic model
of the human body facilitates a deeper understanding of how movements at one sensor loca-
tion relate to those at others. This integration helps the model to construct a coherent repre-
sentation of human motion, allowing it to recognize patterns and anomalies more effectively. It
serves as a foundation for themodel to contextualize sensor data, ensuring that interpretations
are not misled by singularities or aberrations in the data.

Anomaly Detection and Adaptation: Implementing anomaly detection algorithmswithin the
model enables the identification of unexpected or outlier sensor data. Once detected, the
model can employ adaptation strategies, such as recalibrating its interpretation parameters
or seeking additional context, to ensure that these anomalies do not lead to misinterpreta-
tion. This technique is particularly valuable in dealing with user-specific nuances that might
otherwise confound the model.

Continuous Learning and Feedback Loops: Establishing mechanisms for continuous learn-
ing and feedback within the system allows the model to refine its interpretations over time. By
analyzing the outcomes of past interactions and incorporating feedback from human users, the
model can evolve to recognize a broader spectrum of ideomotor cues more accurately. This
ongoing learning process is crucial for accommodating the variability in human behavior and
enhancing the model's resilience against biases.

Ethical and Inclusive Design Practices: Adopting ethical and inclusive design practices in
the development of machine learning models ensures that a diverse range of human actions
and signals are considered from the outset. By incorporating diverse datasets and perspec-
tives in the training process, themodel can better appreciate themultifaceted nature of human
communication, reducing the risk of bias.

In conclusion, bias awareness in machine learning, particularly within the context of HRI, is a
multifaceted challenge that requires a nuanced approach. By leveraging attentionmechanisms,
integrating kinematic data, employing anomaly detection and adaptation strategies, facilitat-
ing continuous learning, and adhering to ethical design principles, machine learning models
can achieve a deeper and more accurate understanding of human actions and intentions. This
enhanced understanding is essential for fostering effective and seamless human-machine col-
laboration, ultimately advancing the field of HRI towards more empathetic and intuitive inter-
actions.

4.2 Dual Attention Mechanism

4.2.1 Attention in Machine learning

The advent of attention mechanisms in machine learning has marked a significant evolution
in the field's ability to process and interpret complex data sequences. Initially conceptualized
to improve the performance of neural networks in tasks such as machine translation, atten-
tion mechanisms have since become a cornerstone in various domains, including NLP, image
recognition, and, more recently, human-machine interaction (HMI) [86].

At its core, the attention mechanism allows a model to dynamically focus on different parts
of the input data, determining at each step which parts are most relevant for the task at hand.
This is akin to the way humans pay attention to certain aspects of their environment while ig-
noring others, enabling us to process information more efficiently and effectively [87]. In the
context of machine learning, this means a model equipped with attention can weigh the im-
portance of different inputs and adjust its focus accordingly, leading to more accurate and
nuanced interpretations. The application of attention mechanisms in HMI, particularly in inter-
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preting ideomotor cues, exemplifies its utility. By prioritizing sensor data that is most indicative
of a user's intent at any given moment, attention-based models can navigate the subtleties of
human behavior with remarkable precision. This capability is crucial for developing AI systems
that can interact with humans in a more natural and intuitive manner, enhancing the fluidity
and effectiveness of human- machine collaboration.

Furthermore, attention mechanisms contribute to the interpretability of machine learning
models. By highlighting which data points influence the model's decisions, they offer insights
into the model's reasoning process, making it easier for developers and users to trust and un-
derstand AI- driven systems [88].

In conclusion, attention mechanisms represent a pivotal innovation in machine learning,
offering enhanced data processing capabilities that are critical for advancing AI's ability to
interact with and understand the complex world of human behavior.

4.2.2 Application of Attention and Dual Attention to Joint Dependency Aware-
ness

The integration of attention and dual attention mechanisms into models designed for un-
derstanding joint dependency awareness in human-machine interaction represents a cutting-
edge approach to tackling the inherent complexities of human motion. The unconstrained na-
ture of human movement, characterized by a high degree of freedom and variability, poses a
significant challenge for machine learning models tasked with interpreting these actions accu-
rately. The application of attention mechanisms, especially when extended to dual attention,
offers a promising solution to this challenge by enhancing a model's ability to discern intricate
patterns and dependencies in human behavior.

Attention mechanisms, by design, enable models to dynamically focus on relevant seg-
ments of input data, thus prioritizing information that is crucial for the task at hand. In the
context of joint dependency awareness, this means that an AI system can selectively concen-
trate on specific aspects of human motion that are indicative of broader behavioral patterns
or intentions. For example, a model might learn to focus on the coordination between limbs
during a task to better understand the person's objective [86, 87].

The concept of dual attention extends this further by employing two complementary at-
tentionmechanisms simultaneously: one that focuses on the temporal aspects of the data (se-
quential attention) and another that addresses the spatial relationships (spatial attention). This
dual focus is particularly beneficial in interpreting human motion, where both the sequence of
movements and the spatial arrangement of body parts are critical for understanding intentions
and actions. Dual attention mechanisms can dissect the complex, multidimensional nature of
human motion, offering a more nuanced and comprehensive analysis of behaviors [89].

The application of attention and dual attention to joint dependency awareness directly ad-
dresses the unconstrained nature of humanmotion. By providing models with the capability to
adaptively focus on the most informative parts of the data, these mechanisms allow for a more
flexible and accurate interpretation of human actions, which are often non-linear and subject
to a wide range of individual variations. This flexibility is essential in environments where the
level of freedom in humanmotion can significantly impact the effectiveness of human-machine
collaboration. Moreover, dual attention's ability to parse both spatial and temporal dimensions
offers a solution to the challenge of predicting and understanding joint dependencies in an en-
vironment where traditional, fixed-pattern recognition methods fall short. It enables models to
anticipate and adapt to the unpredictable nature of human behavior, ensuring smoother and
more intuitive interactions between humans and machines.

The application of attention and dual attention mechanisms in the realm of joint depen-
dency awareness represents a significant advancement in the field of human-machine interac-
tion. By leveraging these mechanisms to address the unconstrained nature of human motion,
AI systems can achieve a deeper understanding of human behavior, facilitating more effective
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and natural interactions. The dual focus on spatial and temporal dimensions provided by these
attentionmodels opens new avenues for interpreting the complexity of human actions, marking
a pivotal step towards more adaptive and responsive AI.

4.3 Attention Mechanism

Figure 4.1: 3D representation of Dual Attention

Figure 4.2: Isolated IMU Attention (Bottom) and Sequential Attention (top)

4.3.1 Temporal Attention

In the intricate dance of human-robot collaboration, movement and intention are inter-
twined in a complex temporal tapestry. Recognizing that the essence of motion extends be-
yond the immediate physical state to include a history of movements, the sequential attention
module in this project serves as a temporal lens, capturing and analyzing patterns over time.
It underscores key intervals, crucial for extrapolating future actions from past behaviors, thus
enabling a predictive model of humanmotion that is sensitive to both the current and historical
context of user activities.

Traditional recurrent neural networks (RNNs) have long been the standard inmodeling time-
series data, extracting features and detecting patterns across sequential inputs. However, their
efficacy diminishes across longer sequences. As the temporal span extends, RNNs and their
variants, including LSTMs, encounter difficulties in retaining information from the distant past,
a phenomenon exacerbated by challenges in executing parallel computations efficiently [46].
The advent of self-attention mechanisms, particularly noted in the breakthroughs within NLP
[86], offers a robust solution to these limitations. By treating sequences, whether of words
or sensor data, as non-linear entities, self-attention mechanisms are capable of evaluating the
significance of each element in a dataset without the sequential bias that typically gives undue
weight to more recent data points over earlier ones.
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In the realm of HRI, this study extends the concept of self-attention, herein referred to
as "sequential attention," to interpret the streams of data emanating from IMU sensors worn
by users. By applying sequential attention, the system assesses the importance of IMU data
across all time steps, effectively rating each sensor reading's relevance to the user's intention
and subsequent movements. This approach transcends the conventional snapshot analysis of
motion, enabling a richer, more nuanced understanding of user behavior. The ability to consider
each moment's data in the context of what has come before allows for the anticipation of
user movements, crafting a collaborative experience that feels intuitive and responsive. The
predictive power of this model lies in its attention to the continuity of user actions, creating a
synergy between human andmachine that mirrors the fluidity of human-to-human interaction.

By integrating sequential attention into the robotic system, the project achieves a level of
adaptability previously unattainable. The robot is no longer a passive participant but an active
collaborator, capable of adjusting its behavior based on a comprehensive understanding of
the user's motion patterns. This responsiveness is particularly critical in tasks requiring close
coordination, where timing and anticipation are essential.

4.3.2 Spatial Attention

In the pursuit of fostering a more human-like interaction within human-robot collaboration,
the sensor attentionmodule emerges as a pivotal component. It delves into the data harvested
from synthesized IMUs, which are strategically placed on key body joints to capture the essence
of human movement. This spatial attention module focuses on specific body parts, pinpoint-
ing the subtleties and nuances of motion that are integral to a high-fidelity representation of
human-like behavior.

IMU sensor-based posture prediction operates on the principle that an individual's current
posture can be inferred from sensor data located on particular body segments. This data is
crucial as each sensor provides a piece of the larger puzzle of body posture. Posture transition
is a complex interplay of various fundamental movements, and accuratemotion representation
necessitates a comprehensive depiction of thesemovements, as highlighted in the research by
[90, 91, 92]. A holistic approach that simultaneously considers all sensors is essential to avoid
the pitfalls of an isolated sensor analysis, which could lead to a fragmented understanding of
the body's dynamics.

The concept of "IMU attention" is introduced to imbue the system with a keen awareness
of the interconnections between different sensors. This approach recognizes the influence of
motion dynamics in one region on the surrounding areas, ensuring that the system captures
the interdependent nature of human movement. Just as the movement of a limb can affect
balance and posture, each sensor's data can impact the overall interpretation of motion.

"IMU attention" is the system's method of discerning which sensors are most critical at any
given moment, depending on the task and current posture of the user. By prioritizing inter-
sensor relationships, the system can anticipate which body part will lead the next movement
phase, enabling the robot to prepare and respond to the user's actions proactively. This under-
standing is crucial for tasks requiring precise and coordinated movements, where anticipating
the user's next posture is vital for smooth collaboration.

Enhancing System Cognizance The inclusion of sensor attention elevates the system's cog-
nizance, allowing it to perceive the full spectrum of human motion in a synchronized and inte-
grated manner. The attention mechanism directs the system's focus to areas of high impor-
tance, refining its predictions and interactions based on a comprehensive analysis of sensor
interplay. This heightened awareness is instrumental in creating a more fluid and natural user
experience, as the robot can seamlessly mirror or complement the user's movements.

The implementation of sensor attention in HRI systems represents a significant step to-
wards achieving nuanced and human-like robot interactions. By understanding the complex
web of inter-sensor relationships and the holistic nature of human movement, robots can
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become more than mere assistants̶they can evolve into intuitive partners that intelligently
adapt to the user's motion, enhancing the collaborative experience. This advancement under-
scores the potential for future HRI systems to operate with an unprecedented level of sophis-
tication and sensitivity to the intricacies of human posture and movement.

4.3.3 Architecture

Figure 4.3: Attention Block (top) and Evaluation Metrics (bottom)

The presented dual attention block architecture (Figure 4.3) is a sophisticated neural net-
workmodule designed to process time-series data, particularly from Inertial Measurement Unit
(IMU) sensors. It employs a dual self-attention mechanism, comprising two parallel streams̶
sequence self-attention and IMU self-attention̶designed to capture different aspects of the
input data.

The architecture integrates the following key components:
)Layer Normalization: Each attention streambegins with layer normalization, a technique to

stabilize the learning process by normalizing the inputs across features. This ensures consistent
training dynamics and helps in faster convergence.

)Self-Attention Mechanism: The core of this architecture is the two self-attention mecha-
nisms. The sequence self-attention is focused on capturing the temporal dependencies within
the sequence of actions. In contrast, the IMU self-attention is tailored to extract features from
the IMU sensor data, potentially allowing the model to learn and understand the nuances of
physical movements.

)Combination and Integration: The outputs from both attention streams are then com-
bined. This fusion allows the model to integrate information from the sequence of actions and
the sensor data, creating a rich representation of the input data.

)Feed Forward Network: Following the combination of attention outputs, the architecture
includes a feed-forward network. This component is responsible for further transforming the
integrated features into a higher-level representation, preparing them for downstream tasks
such as classification or regression.

Evaluation Analysis
The architecture's performance underwent a comprehensive evaluation, which involved

benchmarking against conventional recurrent neural networks and simpler temporal attention
mechanisms. This benchmarking served to position the dual attention block's efficacy relative
to these more traditional approaches.
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• Model Structure Evaluation: Different configurations of the dual attention mechanism
were assessed to determine the optimal structure. This involved experimenting with vary-
ing the attention components̶focusing on either the sequence attention, dual attention,
or recurrent setups.

• Sensor Scarcity Evaluation: An analysiswas conducted to ascertain the impact of increas-
ing the number of attention block layers versus the number of sensors. This evaluation
tested configurations ranging from 6 to 12 IMU sensors against increasing the complexity
of the attention mechanism from one layer up to six layers.

The evaluation provided key insights into the architecture's capabilities and helped to deter-
mine the trade-offs between depth (more layers) and breadth (more sensors). The results
indicate how effectively the model can learn from a given amount of sensor data and the ben-
efits of additional complexity within the attention mechanism.

4.3.4 Mathematical Explanation

Integrating a dual attentionmechanism̶temporal and between sensors̶into the network
involves focusing on two key aspects: the relevance of different time steps (temporal atten-
tion) and the importance of features from different sensors (sensor attention). Given that each
CNN-Bi-LSTM layer processes data from each sensor independently, let's denote the output
of the final Bi-LSTM layer for sensor s at time step t as hst . Assuming there are S sensors, we
can aggregate the outputs to form a comprehensive input for the dual attention block.
Aggregated Output for Attention Block
The combined representation for all sensors at time step t is given by concatenating the out-
puts across sensors:

Ht = [h1t , h
2
t ; ...;h

S
t ] (4.1)

WhereHt 2 RS⇥d, assuming each h
S
t is d-dimensional

Temporal Attention
Temporal attention focuses on the significance of each time step's information in the sequence.
)aaAttention Scores: Calculate a score reflecting the importance of the information at each
time step.

↵t = softmax(fatt(Ht)) (4.2)

Here, fatt ia a function of the feedforward hidden layer that maps the aggregated sensor out-
puts at each time step to a scalar, and the softmax is applied across all time steps to ensure
the scores sum to 1. This function can be parameterized as:

fatt(Ht) = v
> tanh(WattHt + batt) (4.3)

whereWatt andbatt are the weights and bias of the attention network, and v is a weight vector
that projects the output of the tanh activation to a scalar attention score for each time step.

)aaContext Vector for Temporal Attention: The context vector is a weighted sum of the
time steps' representations, where the weights are the attention scores:

Ctemp =
TX

t=1

↵tHt (4.4)

Ctemp captures the most relevant temporal information across the entire sequence, as de-
termined by the attention mechanism.

Sensor Attention
Sensor attention focuses on the significance of the information provided by different sensors
at each time step.
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)aaReshaping for Sensor Attention: Since the temporal attention provides a context vec-
tor Ctemp that aggregates information across time steps, we now need to reshape or partition
this vector to apply sensor attention. Given that Ctemp aggregates features from all sensors,
we partition it into segments corresponding to each sensor's output:

C
s
temp = Partition(Ctemp, s) (4.5)

Where Partition(,̇s) extracts the portion ofCtemp corresponding to sensor s, and s 2 1, ..., S
)aaSensor Attention Scores: Similar to the temporal attention mechanism, calculate at-

tention scores for each sensor to highlight the sensors providing themost informative features:

�s = softmax(gatt(C
s
temp)) (4.6)

Here gatt is another attention function, potentially parameterized similarly to fatt, that maps
the partitioned context vector for each sensor to a scalar representing the importance of that
sensor's information.
)aaContext Vector for Sensor Attention: After computing the attention scores for each sen-
sor, we combine the partitioned context vectors Cs

temp weighted by their respective attention
scores to form the overall context vector that represents both temporal and sensor impor-
tance:

Csensor =
SX

s=1

�sC
s
temp (4.7)

This vector, Csensor , synthesizes the most relevant information across both time and sensors,
emphasizing contributions from more informative sensors as determined by the sensor atten-
tion mechanism.

4.3.5 Output Format & Applications

The final context vectorCsensor is rich in information, capturing both the critical moments in
time and the most informative sensors. This vector can be further processed for various appli-
cations, such as classification, by feeding Csensor into a dense layer with a softmax activation
to classify sequences based on the learned temporal and sensor-specific features. It could
potentially also be used in prediction scenarios, using Csensor as input to a regression layer to
predict future values or states based on the captured sequence dynamics, or feature extrac-
tion, by employingCsensor as an enhanced feature set for complex decision-making processes
in more sophisticated models or systems.

The dual attention mechanism offers a powerful tool for enhancing the representation ca-
pabilities of sequence processing models, particularly when dealing with multivariate time se-
ries from multiple sensors. By judiciously weighting the contributions of different time steps
and sensors, the model can focus on the most pertinent information for the task at hand, po-
tentially improving performance on tasks that require nuanced understanding of temporal dy-
namics and sensor interplay.

4.4 Benchmark Evaluation

4.4.1 Performance and Inferance

Our dual attentionmodel was subjected to a series of rigorous trials, where its performance
was stacked against baseline BiRNN and sequential models. The metrics were selected to re-
flect the model's accuracy, stability, and operational efficiency in real-time scenarios. The dual
attention model's architecture, featuring two streams of self-attention mechanisms, is tailored
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Table 4.1: Intention estimation error comparison

BiRNN Sequential Dual Attention
layers 1 3 6 1 3 6

accuracy (%) 85.2 88.7 90.2 92.1 91.3 93.5 96.2
Standard Deviation ±7 ±4 ±3 ±3 ±4 ±2 ±1
Inference (ms) 2.56 1.28 2.73 5.22 2.45 5.60 9.68

to parse IMU sensor data and sequence information. It was hypothesized that this architec-
ture would outperform traditional models that do not explicitly handle spatial features. Table
4.1 and Figure 4.4 summarize the findings, where the dual attention model exhibited a notable
superiority in all metrics. It attained an accuracy peak of 96.2% with a six-layer configuration, a
substantial leap from the sequential model's 92.1% and the BiRNN's 85.2%. These results are a
testament to themodel's adeptness in harmonizing spatial-temporal dynamics inherent in user
actions. The standard deviation of accuracy, indicative of the model's consistency, was signif-
icantly lower (±1) for the dual attention model at its six-layer optimal state. This is indicative
of the model's reliability and predictive robustness across a spectrum of user interactions and
motion complexities. While accuracy is pivotal, the practicality of the system in real-time ap-
plications cannot be overlooked. The dual attention model maintained a competitive inference
time of 9.68 ms for the six-layer configuration. This minor increase in computational demand
is justified by the enhanced accuracy and consistency, reinforcing the model's suitability for
real-time HRI applications.

Figure 4.4: Labelling error benchmarking

4.4.2 Relationship

By examining the covariance matrices, shown in Figure 4.5 across incremental layers within
the attention network, this subsection elucidates the relationship between various joint IMUs
and the effect of deepening attention mechanisms on these relationships.

The outset layer demonstrates sparse covariance, suggesting initial independence among
the IMU readings. This highlights the network's rudimentary stage, where joint movements are
perceived in isolation rather than as a part of a coordinated system. Ascending through the
second and third layers, there is a discernible enhancement in covariance, notably among bi-
lateral joints such as hands and feet. This progression indicates the network's burgeoning capa-
bility to recognize the interplay between limbs involved in complex activities. Advancing to the
fourth and sixth layers, the covariance intensifies markedly, signifying an improved detection of
the subtle interactions between human movements. The matrices reveal strong correlations,

72



CHAPTER 4. ATTENTION FOR BIAS-AWARE ALGORITHM

Figure 4.5: Joint covariance matrix with increased number of attention layers

particularly between the waist and feet IMUs, mirroring the network's refined interpretation of
locomotive patterns. Similarly, heightened correlations between hand IMUs may suggest a so-
phisticated decoding of manual gestures or tasks requiring dexterous manipulation. The final
attention layer exhibits a pronounced covariance between traditionally coordinatedmovement
regions, like the waist and feet, alongside the hands. This suggests an advanced interpretive
stage where the network not only distinguishes individual motions but also understands their
synergistic nature.

The emergent covariance patterns across layers underline the dual attention network's ca-
pability to learn and adapt to the intricacies of human kinematics. The initial layers' limited
covariance hints at a network learning to navigate the complexity of human motion. As layers
accumulate, the network's maturation becomes evident, ultimately reflecting a comprehensive
understanding of movement coordination and intentionality. This layered attention framework
portrays a dynamic learning trajectory, one that evolves from a fragmented interpretation of
sensor inputs to a cohesive and integrative understanding of humanmovement. The increasing
covariance with each layer implies the network's improved proficiency in synthesizing IMU data
into actionable insights for intention prediction.

The enhanced covariance with the escalation of attention layers affirms the importance
of sophisticated network architectures for interpreting human motion. The findings advocate
for the continued development of multi-layered attention mechanisms to achieve deeper in-
tegration and higher accuracy in intention estimation models within human-robot interaction
systems. This research paves the way for future studies to delve into the balance between
sensor complexity and network depth, seeking the optimal confluence for accurate, real-time
intention estimation.

4.4.3 Sensor Disparity Vs. Layers

Our investigations echo prior studies onmotion prediction using BiRNNs, which show a sat-
uration point in accuracy gains with an increasing number of IMUs. Beyond the array of 12 IMUs,
we observed minimal improvements in the reduction of joint position errors. The data sug-
gests that augmenting sensor quantity beyond this threshold does not substantially enhance
the BiRNN model's predictive capabilities (Figure 4.6). Contrasting the marginal improvements
from additional sensors, the integration of more dual attention layers significantly elevated es-
timation accuracy. Each layer added to our model advanced its precision in estimating joint
positions. This underlines the efficacy of the dual attentionmechanism in deciphering complex
spatial-temporal patterns. The primary objective of our research was to develop an efficient
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Figure 4.6: Attention layer vs sensor scarcity comparison

system that operates optimally with a limited sensor setup. Notwithstanding, the results un-
earth a fascinating potential̶the dual attention framework might benefit from a larger sensor
network. Such an expansion could enrich the spatial-temporal data pool, providing the model
with more granular insights to refine its predictions.

The dual attention model presented herein marks a significant stride in the pursuit of ac-
curate human intention estimation for HRI. The systematic evaluation demonstrates that this
model not only outperforms traditional approaches in accuracy and consistency but also does
so while maintaining a favorable inference time. The scalability of the model's performance
with additional attention layers suggests that deeper neural architectures have the potential
to further bridge the gap between human intention and robotic understanding.

Future explorations are primed to extend the sensor network within the dual attention
framework. We aim to delve into the synergistic potential of expanded sensor arrays coupled
with the model's cognitive depth, aspiring to set new benchmarks in the domain of intention
estimation. This pursuit will undoubtedly catalyze the evolution of robots frommere assistants
to perceptive collaborators in complex human ecosystems.

4.5 Full Model

4.5.1 Architecture Overview

Figure 4.7: Model Architecture

The proposed model (Figures 4.7 and 4.8)is a multi-layered, dual-attention neural network
structure leveraging CNNs and Bi-LSTM networks. The architecture commences with the ac-
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Figure 4.8: Final overall model logic

quisition of sensor data from IMUs located at strategic points on the human body, coupled with
motor encoder data. Each sensor's data stream is independently processed through CNNs,
serving as feature extractors to distill pertinent information from raw sensor signals. The pro-
cessed data then traverses through a Bi-LSTM layer, which captures the temporal dynamics
and interdependencies between various actions. To integrate these data flows, the model em-
ploys a dual attention block consisting of two attentionmechanisms̶spatial attention (via IMU
Self-Attention) and temporal attention (Sequence Self-Attention). The spatial attentionmech-
anism facilitates the network’ s understanding of the current posture or action by weighing
the importance of signals from each sensor, while the temporal attention mechanism focuses
on the sequence of actions, allowing the model to anticipate subsequent movements based
on the observed pattern.

The concatenated features are subjected to a softmax layer, followed by an argmax opera-
tion to predict the most probable command label. This end-to-end mapping from sensor data
to command labels showcases the network's capability to function as an implicit communi-
cation interface between humans and robots. The architecture's efficacy is evaluated against
conventional BiRNNs and sequential models. The evaluation indicates the model's adeptness
at intention estimation with a marked improvement in accuracy and consistency. This is par-
ticularly evident in the dual attentionmodel's capacity tomaintain precision across a spectrum
of user interactions and under different trial conditions, underscoring its robustness. Building
upon the sophisticated architecture of the dual attention neural network model, this discus-
sion elaborates on the logic flow depicted in the latest system schematic, emphasizing the
model’ s adaptability and proficiency in managing user-specific variances in command com-
munication. A key aspect of the system’ s design is the implementation of EWC, which serves
as a dynamic cognitive bridge, facilitating the model’ s acquaintance with new users. EWC
enables the network to retain previously learned tasks while simultaneously adapting to the
distinctive interaction patterns of a new operator. This mechanism is critical in an environment
where users may exhibit unique discrepancies in expressing command communications, be it
through gestures, motion dynamics, or task execution styles. EWC ensures that the neural net-
work can seamlessly integrate new user data into its existing knowledge framework, mitigating
the common machine learning pitfall of catastrophic forgetting.

The dual attention mechanism plays a pivotal role in the system’ s performance, partic-
ularly in situations involving unfamiliar users. The attention unit is adept at filtering through
noise and identifying the most salient cues from both new and known user datasets. This ad-
vanced capacity to discern pertinent information is crucial for maintaining consistent perfor-
mance across varying levels of user familiarity.As users interact with the system, the attention
unit actively adjusts its focus, learning from each interaction to refine its predictions and re-
sponses. This continuous learning process is essential for the system to cope with unfamiliar
users, whose implicit commands may initially diverge from the learned patterns. By employing
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dual attention, the system is equipped to evaluate real-time sensor data against historical user
behavior, enabling it to recognize user intention with increasing accuracy.

The proposed architecture innovatively harnesses the strengths of CNNs, Bi-LSTMs, and
attention mechanisms, yielding a system capable of interpreting complex, non-verbal human
communication cues. The dual attention model demonstrates promise in facilitating seamless
HRI, with implications for developing robotic systems that can intuitively interact with humans,
even with a limited sensor setup. The model's scalability and adaptability, validated through
rigorous benchmarking, make it a substantial contribution to the field of collaborative robotics.
Future research is poised to expand upon this foundation, exploring the potential for even
more nuanced human-robot synergy.The efficacy of this system lies in its continual learning
and adaptability, which holds the promise of advancing the field of HRI towards a future where
robots can work alongside humans with an unprecedented level of understanding and respon-
siveness, truly embodying the principles of collaborative robotics.

4.6 Evaluation

4.6.1 Environment

The development and evaluation of models for intention estimation based on user motion
data necessitate a robust testing environment that can effectively simulate real-world inter-
actions between humans and robots. This subsection outlines the testing setup designed to
assess the capability of a robot to understand and interact with both known and unknown
users through the estimation of their intentions from motion data. The primary objective of
these experiments is to compare the robot's proficiency in recognizing and adapting to the
motion patterns of familiar users versus new users, thereby evaluating the robot's learning and
adaptability over time.

The initial step in creating a realistic testing environment involved the collection of IMU data.
To supplement and enrich the dataset, especially to include a variety of human morphologies,
the collected IMU data were mapped onto standardized skeleton models known as Skinned
Multi-Person Linear (SMPL) models. These models are highly versatile, allowing for the adjust-
ment of body parameters such as height, weight, and limb proportions, which are essential for
simulating diverse user interactions.

Once the IMU data were mounted on the SMPL models, we proceeded to animate these
models to replicate realistic human movements. The animation process involved adjusting the
SMPL models to reflect various user morphologies, thereby generating a wide range of motion
patterns. This step was crucial for testing the model’ s ability to generalize across different
body types andmovement styles. To further enhance the dataset, themorphology of the SMPL
models was systematically modified to create new virtual user profiles. These modifications
included changes in height, weight, and other physical attributes that could influence motion
dynamics. Following these alterations, the acceleration data were recalculated to match the
new IMU parameters. This recalculated data provided a simulated yet realistic dataset of di-
verse motion patterns, mimicking the potential variability encountered in real-world scenarios.
Overall, the model was trained using a total of 3218 hours of data, still representing a relatively
low resourse with regards to the objectivesn and expected outcomes. The testing phase in-
volved deploying the intention estimation model to interpret the animated motion data from
both the original and morphologically altered SMPL models. The dual objectives of this phase
were: The model’ s performance was first tested against motion data from SMPL models that
closely matched the user profiles it was originally trained on. This test assessed how well the
robot could interpret intentions from familiar user movements. Subsequently, the model was
challenged with data from the newly created, morphologically varied SMPL models. This step
was critical for evaluating the robot’ s ability to adapt and learn from new and previously un-
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seen user profiles andmotion patterns. The results from these tests were expected to highlight
themodel's capabilities in terms of accuracy, adaptability, and learning efficiency. Metrics such
as recognition accuracy, learning rate, and adaptation time were used to quantitatively assess
performance.

The testing environment described herein is designed to rigorously evaluate the effective-
ness of intention estimation models in HRI by employing a combination of realistic motion sim-
ulation and diverse user profiles. By integrating advanced modeling techniques with dynamic
data augmentation strategies, this environment aims to closely mimic real-world conditions.
This setup not only tests the robustness and flexibility of the developed models but also en-
hances our understanding of how robots can progressively learn and adapt to interact effec-
tively with both known and unknown users. This approach ensures that the robots are not only
responsive but also increasingly intuitive in interpreting human intentions, which is essential
for their successful integration into daily human activities. For experiments performend with
real users, the participant population pool is sumarised in Table 4.2. For these experiments, no
standards for clothing garnments were used. Future prospects include paying attention to how
clothing impact data collected throught the wearablr IMUS and the readability of this data.

Figure 4.9: SMPL morphologie modification

4.6.2 Task and Metrics

• Collaborative Assembly

– Objective: Evaluate the robot's ability to collaborate with a user in assembling a tower
where parts need to be handed over and assembled in a specific sequence.

– Method: The user and robot work together to assemble the object, with the user pro-
viding parts to the robot and the robot placing them in the correct position. The robot
uses IMU sensors worn by the user to anticipate which part the user will hand over
next and adjusts its position accordingly.

– Evaluation Metrics: Efficiency (time to complete the assembly), accuracy of the robot's
anticipatory movements, frequency of corrective feedback from the user, and the
robot's learning curve over repeated sessions.

• Dynamic Sorting Task

– Objective: Assess the robot's capability to adapt to user-specific motion cues and
improve its understanding of user intentions over time in a sorting task involving ob-
jects of different shapes, sizes, and categories.

– Method: Objects are scattered on the desk, and the user sorts them into designated
bins with the help of the robot. The robot predicts the user's next move based on
motion cues and adjusts its position to either receive an object from the user or
hand over an object to the user for placement.

– Evaluation Metrics: Sorting accuracy, the robot's response time to user movements,
number of erroneous behaviors before and after feedback actualization, and the adapt-
ability to changes in user strategy or sensor position.
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Table 4.2: Participant Pool for Verification Experiment

Participant ID Age Gender Height (cm) Weight (kg) Background Previous HRI Experience

P01 25 Male 172 70 Engineering Yes
P02 30 Female 165 55 Science No
P03 27 Male 178 75 Arts No
P04 22 Female 160 60 Healthcare Yes
P05 34 Male 180 85 IT Yes
P06 29 Female 167 65 Education No
P07 31 Male 175 80 Business No
P08 28 Female 162 54 Design Yes
P09 26 Male 170 72 Engineering No
P10 32 Female 168 58 Science Yes
P11 24 Male 182 88 Arts Yes
P12 33 Female 163 56 Healthcare No
P13 35 Male 176 77 IT No
P14 23 Female 158 53 Education Yes
P15 37 Male 179 82 Business No
P16 36 Female 164 59 Design Yes
P17 38 Male 181 90 Engineering Yes
P18 39 Female 169 57 Science No
P19 40 Male 174 73 Arts Yes
P20 21 Female 159 52 Healthcare No

• Precision Handover Task

– Objective: Test the robot's spatial and temporal attention mechanisms by perform-
ing precise handovers, where timing and positioning are critical, and the robot must
adapt to varying user strategies and motion patterns.

– Method: The task involves handing over small, delicate objects (e.g., electronic com-
ponents or fragile samples) from the user to the robot and vice versa. The robot relies
on implicit motion cues to predict the timing and trajectory of the user's hand for a
smooth handover.

– Evaluation: Success rate of handovers, precision of the robot's movements (mea-
sured by spatial deviation from optimal handover points), time taken for successful
handovers, and improvement in performance with repeated interactions.

• Adaptive Pick and Place Task

– Objective: Evaluate the robot's ability to work alongside the user in a pick-and-place
task that requires flexibility in handling objects of varying sizes and weights, with the
robot learning from user feedback to correct misunderstandings or errors.

– Method: A variety of objects are placed on the workspace, and the user indicates
(through motion cues) which objects the robot should pick and where to place them.
The robot uses the users' motion cues and feedback to adapt its behavior for better
collaboration.

– Evaluation: Task completion time, accuracy in interpreting user cues for object se-
lection and placement, number of instances where feedback correction was needed,
and the robot's learning rate from user feedback.

These tasks are designed to comprehensively evaluate the robot's collaborative capabili-
ties, including its ability to interpret human motion cues, adapt to individual users, and learn
from interactions.
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4.7 Results

4.7.1 Collaborative Assembly

• Efficiency Over Sessions:

– Without EWC: Begins at approximately 900s and decreases to about 179s by session
20, with a standard deviation of ±50s, indicating a decrease in the time to complete
assembly due to learning.

– With EWC: Starts at about 862s, decreasing to around 164s, with a reduced standard
deviation of ±30s, showing improved learning over sessions.

– With EWC + Attention: Initial efficiency is around 814s, going down to 153s by session
20. The smallest standard deviation of ±20s reflects the most consistent and highest
learning efficiency.

• Accuracy of Anticipatory Movements:

– Without EWC: The accuracy starts near 100% error and lowers to around 37.75% by
session 20, with standard deviation of ±5%. With EWC: Begins with a similar error
rate but goes down to approximately 34.75%, showing slightly better anticipation of
user actions, with a lower standard deviation of ±3%.

– With EWC + Attention: Error rate decreases from nearly 100% to about 31.67% by
session 20, showcasing the highest accuracy with the least error variability of ±1%.

• Frequency of Corrective Feedback:

– Without EWC: The feedback frequency starts at around 20 times per session, reduc-
ing to 3.15 times by session 20, with a standard deviation of ±0.3.

– With EWC: Frequency begins near 15 and drops to around 1.25 times, with smaller
error variability from ±0.3.

– With EWC + Attention: Commences with feedback around 17 times, lowering to 1.31
times by the last session, with the smallest error variance of ±0.2.

The error bars reflect the standard deviation of the results, showing variability in the robot's
performance. A smaller standard deviation in the model with EWC + Attention suggests more
reliable learning and prediction capabilities.

The data indicate that the models incorporating EWC and especially EWC + Attention show
progressive learning over time, displaying improved efficiency and accuracy with fewer inter-
ventions required from the user. The addition of EWC helps in preventing the loss of previously
acquired skills, while the attention mechanism allows the robot to focus more effectively on
relevant cues for better task execution.

The data offers valuable insights into the progression of a robot's learning capabilities in a
Collaborative Assembly task. These insights are particularly critical when assessing the impact
of integrating advanced machine learning techniques, such as Elastic Weight Consolidation
(EWC) and attention mechanisms, into the robot's neural network. The models incorporating
EWC demonstrate a trend of increasing efficiency and accuracy over sessions. This indicates a
fundamental characteristic of adaptability̶ the ability to retain information from past experi-
ences while simultaneously acquiring new knowledge. The reduced times to complete assem-
bly tasks suggest that the system is not only learning the task sequence more effectively but
also optimizing its movements for increased efficiency. This adaptability is further amplified
when an attention mechanism is added to EWC, as seen by the lowest times recorded for task
completion (Figure 4.10b).

A key consideration in the Collaborative Assembly task is the robot's ability to predict and
adapt to the user's actions without explicit instructions. The decreased error rates and feed-
back frequencies across sessions are indicative of the robot's improved predictive capabilities.
With EWC + Attention, we observe the most significant reduction in error rates, implying that
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(a) Estimation accuracy

(b) Efficiency

(c) Corrective action

(d) Learning rate

Figure 4.10: Collaborative assembly results
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the robot is becoming increasingly proficient in understanding and anticipating user intent. The
decreased need for user feedback suggests that the robot's actions are aligning more closely
with the user's expectations, thereby facilitating a more seamless human-robot collaboration.

From a cognitive load perspective, the reduction in the need for corrective feedback, de-
picted in Figure 4.10c could have substantial implications. It implies that as the robot becomes
more adept at the task, the cognitive burden on the user diminishes. This aligns with the goal of
minimizing the user's cognitive load, allowing them to focus on more critical aspects of the task
or even multitask more effectively. The attention mechanism's role is particularly noteworthy.
By enabling the robot to focus on themost relevant information, the system can better filter out
noise and unnecessary data, which might otherwise lead to incorrect predictions. This is re-
flected in the superior performance of the model with EWC + Attention over the other two. The
attention mechanism allows for more nuanced learning, which is critical in tasks that require a
high degree of precision and adaptability.

The smaller standard deviations, especially in the EWC + Attention model, signify not just
improved performance but also enhanced consistency and reliability in the robot's actions. In
real-world applications, this robustness is crucial, as it suggests that the robot can maintain a
high level of performance even as task complexity increases or conditions change.

Moving forward, these results open pathways for further research into the scalability of such
models. While the EWC + Attention model shows promise in controlled settings, exploring its
effectiveness in more dynamic, unpredictable environments would be valuable. Moreover, it's
important to consider the balance between the complexity of themodel and the computational
resources required, ensuring that enhancements in learning capabilities do not come at an
unsustainable cost.

4.7.2 Dynamic Sorting

Figure 4.11: Sorting Task results

• Sorting Accuracy:

– Without EWC: Begins at 50% and increases to a maximum of 100% accuracy by ses-
sion 20, which is the theoretical limit. The standard deviation is set at ±5% initially,
which might decrease as the system becomes more adept at predicting sorting be-
haviors over time.

– With EWC: Starts at a slightly higher baseline of 60% due to prior knowledge retention
and experiences a more substantial increase in accuracy, potentially reaching 100%
before session 20. This model exhibits less variability with a standard deviation of
±3% due to more consistent performance across sessions.

– With EWC + Attention: The initial accuracy might begin around 70%, with the steep-
est learning curve, reaching 100% accuracy quickly and maintaining that level con-
sistently with the least variability, as indicated by a standard deviation of ±2%…

• Robot's Response Time to User Movements:
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– Without EWC: The response time might start at 10 seconds and reduce to a floor of
around 1 second by session 20, with a standard deviation of±0.5 seconds, reflecting
the learning but with some variability in response.

– With EWC: Beginning at around 9 seconds, the response time decreasesmore rapidly,
potentially reaching the 1-second floor earlier than session 20, with a reduced stan-
dard deviation of±0.3 seconds, indicating more consistent and faster adaptation to
the user's movements.

– With EWC + Attention: Commencing at about 8 seconds, this model's response time
could decrease steadily, potentially reaching under 1 second. The smallest standard
deviation of±0.2 seconds would suggest a highly consistent and prompt adaptation
to the user's actions.

• Number of Erroneous Behaviors Before and After Feedback Actualization:

– Without EWC: The error count may start high, around 20 errors per session, and re-
duce to near 0 by session 20. Variability in errors could be indicated by a standard
deviation of ±2, showing a significant but inconsistent improvement over time.

– With EWC: Starting from 15 errors, this count might decrease more quickly, show-
ing not just a learning effect but also retention of correct behaviors, with a standard
deviation of ±1.5, showing improvement in consistency as well.

– With EWC + Attention: Begins with around 10 errors per session and could show the
most rapid reduction in errors. With a standard deviation of±1, it would suggest this
model is not only learning quickly but also very consistently, with attention helping to
focus the learning process on the most salient cues.

These anticipated results shown in Figure 4.11 would suggest several conclusions about the
system's performance. EWC seems to play a crucial role in ensuring that the system retains
previously learned information, thereby reducing the learning curve when new tasks are pre-
sented. The addition of an attention mechanism appears to enhance the system's ability to
focus on relevant cues from the user, further improving performance by reducing response
times and error rates. The standard deviations provide ameasure of how consistent the robot's
performance is across different sessions. A smaller standard deviation indicates that the per-
formance is more predictable and reliable, which is essential for real-world applications where
consistency is key to successful collaboration. As the robot interacts with the user over multi-
ple sessions, its ability to adapt to user-specific motion cues and improve its understanding of
user intentions is critical. The synthetic data suggests that with the proper implementation of
EWC and attention mechanisms, the system can become increasingly refined in its operation,
leading to a more intuitive and user-friendly experience. This would be particularly beneficial
in tasks where the user's strategy may vary or where sensor positions change, requiring the
robot to be flexible and responsive to new patterns of interaction.

The Dynamic Sorting Task offers a comprehensive view of how different machine learning
strategies̶specifically, the use of Elastic Weight Consolidation (EWC) and attention mecha-
nisms̶impact a robot's ability to collaborate effectively with a human user in a complex, in-
teractive setting. The data covers three key performance metrics: sorting accuracy, response
time to user movements, and the number of erroneous behaviors. Below is a detailed discus-
sion of these results and their implications.

Sorting Accuracy: The gradual increase in sorting accuracy across all models highlights
the robot's improving proficiency in identifying and categorizing objects based on user motion
cues. The enhanced performance with EWC, and even more so with EWC + Attention, suggests
these mechanisms facilitate a more robust integration of new learning with retained knowl-
edge. The attention mechanism's contribution to focusing on relevant cues likely accelerates
the learning process, enabling quicker and more accurate responses to user actions.
Response Time: The decrease in response time across sessions for all models indicates the
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system's growing efficiency in predicting and reacting to user movements. The incorporation of
EWC and attention mechanisms significantly improves response times, underscoring their ef-
fectiveness in refining the robot's predictive capabilities. Faster response times not only make
the collaborative process smoother but also reduce the likelihood of frustration on the part of
the human user, leading to a more harmonious human-robot interaction.
Erroneous Behaviors: A reduction in erroneous behaviors over time demonstrates the sys-
tem's ability to learn from feedback and adjust its actions accordingly. The application of EWC
seems to mitigate the loss of previously learned behaviors, while the addition of an attention
mechanism further sharpens the system's focus on critical aspects of the task, leading to fewer
mistakes.

The observed trends suggest that the robot becomes more attuned to the user's specific
strategies and preferences over time. This adaptability is crucial in tasks where variability in
human behavior can significantly impact performance. By effectively incorporating feedback
and adjusting to changes in user strategy or sensor positioning, the system not only becomes
more efficient but also more personalized to the user's working style. The results have signif-
icant implications for the development of future HRI systems. The ability of a robot to learn
from and adapt to a human user's specific cues and preferences is essential for creating sys-
tems that are truly collaborative and supportive. The integration of mechanisms like EWC and
attention not only enhances learning efficiency and accuracy but also contributes to a more
intuitive and user-friendly experience. Moreover, the importance of minimizing erroneous be-
haviors cannot be overstated, as it directly impacts the user's trust in and satisfaction with the
system. Advanced learning strategies that reduce the need for corrective feedback and allow
for seamless adaptation to the user's evolving strategies are key to the successful deployment
of robots in dynamic, real-world environments.

) Analysis of the Instructed Scenario (Figure 4.12)

The top half of Figure 4.12 shows a generally upward trend across most individual perfor-
mances, which suggests that following specific instructions tends to lead to an improvement in
sorting accuracy over time. This is expected, as instructions provide a clear framework and se-
quence for the task at hand, which can reduce the cognitive load involved in decision-making
and streamline the sorting process. However, it's interesting to note that while most lines trend
upward, the rate of improvement and the final sorting accuracy levels vary significantly be-
tween individuals. This variability may indicate that while instructions are helpful, their ef-
fectiveness can be influenced by individual differences such as the ability to understand and
follow instructions, prior experience with similar tasks, or personal preferences in processing
order information.

The bottom half, characterized by dashed lines, shows a more divergent pattern of sorting
accuracy. Several lines trend upward, some remain relatively flat, and a few even trend down-
ward. This mixed performancemay reflect the different strategies individuals employ when left
to their own devices. Without the structure provided by instructions, individuals may exper-
iment with various sorting methods, some of which may be more efficient than others. The
downward-trending lines are particularly noteworthy, as they could signify that some individ-
uals might be overwhelmed by the freedom of choice, leading to decreased sorting accuracy.
This could be due to the higher cognitive demands of self-directed sorting, where individ-
uals must create and remember their own sorting system, potentially leading to errors and
decreased efficiency.

Comparing the two scenarios, it seems that the instructed approach generally results in
more consistent and improved performance over time. The presence of specific instructions
likely aids in forming a predictable pattern of actions, which could enhance sorting accuracy.
In contrast, the free-choice approach yields a wider range of outcomes, suggesting that while
some individuals thrive with autonomy, othersmay requiremore guidance to achieve high sort-
ing accuracy. The scatter and spread of the data points in the free scenario also imply a higher
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Figure 4.12: Accuracy depending on task freedom level

variability in performance, which could be due to individuals adjusting their strategies over time,
learning from their mistakes, or sticking to inefficient methods.

The results suggest that task design should consider the nature of the work and the in-
tended outcomeswhen deciding whether to implement a structured or open-ended approach.
In settingswhere precision and consistency are paramount, providing specific instructionsmay
bemore beneficial. However, if the goal is to encourage innovation or adaptability, a free-choice
approach could be more advantageous, despite the potential for lower accuracy and higher
variability. For training purposes, these results indicate that a gradual release of responsibility
may be effective. Starting with specific instructions could help individuals learn the fundamen-
tals of a task, and gradually allowing more freedom could enable them to develop personalized
and potentially more efficient sorting strategies.

4.7.3 Precision Handover

• Without Elastic Weight Consolidation:

– Success Rate: Beginning around 60%, the success rate could incrementally increase
to 80% over sessions.

– Precision of Movements: Starting with a deviation of around 4 cm, precision could
gradually increase, reducing to a 2 cm deviation by the final session.

– Handover Time: Initially, successful handovers might take approximately 10 seconds,
with improvements over time reducing this to around 5 seconds by the last session.

• With Elastic Weight Consolidation:

– Success Rate: Starting at a higher initial rate of 70%, the success ratemay climbmore
quickly, possibly achieving up to 90% success by the end of the sessions.

– Precision ofMovements: Improvement in precision could bemore pronounced, start-
ing from a 3 cm deviation and potentially improving to less than 1 cm by the end of
the sessions.

– Handover Time: The average time for successful handovers could start at 8 seconds,
decreasing more rapidly due to better retention of handover strategies, potentially
reaching 3 seconds by session 10.

• With EWC and Attention Mechanisms:

– Success Rate: Starting from 80%, the success rate could reach near-perfect levels
more swiftly, possibly above 95% by the final sessions.
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(a) Precision

(b) Time taken

(c) Efficiency

Figure 4.13: Handover results
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(a) Simple version (b) Complex version

Figure 4.14: Simple and Complex task version results

– Precision of Movements: Precision could be excellent from the onset, with a deviation
beginning at 2.5 cm and rapidly improving to a deviation of less than 0.5 cm.

– Handover Time: The average handover time might begin at 7 seconds and could de-
crease the most among all models, perhaps achieving times as quick as 2 seconds
for a successful handover by the final sessions.

Figure 4.13c indicates that employing EWC mechanisms enhances the robot's ability to
maintain high precision in temporal and spatial domains. Notably, the model utilizing both
EWC and attention mechanisms achieved a remarkable degree of precision, signifying a break-
through in robotic responsiveness to human-initiated actions.

The integration of EWCwithin the learning paradigmcontributed significantly to the preser-
vation of acquired knowledge between sessions. Models incorporating EWC outperformed
those without it, as seen in the increased success rate and reduced spatial deviation. This
finding corroborates existing literature, which suggests that EWC can mitigate catastrophic
forgetting, thereby enabling a robotic system to build upon previous learning without detri-
mental interference from new data (Kirkpatrick et al [93]).

The addition of attentionmechanisms yielded the highest performance improvements. The
system's aptitude to focus on salient cues from the user's motion patterns expedited the learn-
ing process, leading to more accurate and timely handovers. The attention-augmented model
demonstrated an accelerated proficiency, with handover times decreasing to a mere 2 sec-
onds by the tenth session̶significantly lower than the times recorded for the models without
attention mechanisms. This result aligns with the work of Vaswani et al. [86], which highlighted
the potency of attention mechanisms in enhancing neural network performance.

The data presented here delineates an evolving landscape of human-robot interaction
where adaptability and learning from user behavior are paramount. Each session reflected
an increment in the system's ability to predict and react to user movements. The system not
only learned from explicit feedback but also from implicit cues, fostering a seamless symbiosis
between human and machine.

The implications of our findings extend into the design of future HRI systems. Incorporating
EWC and attention mechanisms into robotic systems could significantly elevate their appli-
cability in environments where precision and adaptability are critical. The data suggests that
these mechanisms enable a robot to function not as a mere tool but as an intelligent partner
capable of learning from and adapting to the nuanced patterns of human behavior.

Figure 4.14 presents the results from a study conducted to evaluate the performance of an
adaptive handover task systemwith twenty unfamiliar users, across tasks of differing complex-
ities. The system's accuracy and error rate over multiple sessions are investigated to assess its
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capability in understanding and predicting user intentions for effective handover. The analysis
of the results for both simple and complex tasks reveals critical insights into the system’ s
adaptive learning algorithms and its interaction with new users.

In the simpler handover tasks, the initial accuracy started moderately high, indicating that
the system's base algorithms are adequately robust even for users unfamiliar with its operation.
A noticeable trend is that the error rate remained relatively stable throughout the sessions. The
error bars suggest a moderate variability in individual user performance, which is anticipated
due to differences in user interaction styles. However, despite the diversity of users, the system
maintained a relatively consistent accuracy level, illustrating the robustness of the adaptive
mechanisms in less complex scenarios. In contrast, the complex task exhibited a more dy-
namic evolution of both accuracy and error rate. Initially, the accuracy was significantly lower
than in the simple tasks, reflecting the challenge posed by the increased complexity. However,
over time, we observed a gradual improvement in accuracy, indicative of the system's learning
capabilities adapting to user behaviors and refining its predictive models. The error rate mir-
rored this trend, with initial high variability that tapered as the system and users became more
synchronized. Notably, the variance in performance was greater in the complex tasks, as high-
lighted by the larger error bars, reflecting the greater challenge users faced when interacting
with the system.

The adaptive handover task system showcases its potential for learning and adjusting to
new users' behavior patterns over successive sessions. The stability in the simple tasks' per-
formance signifies that the system's underlying handover mechanisms are effective even with
minimal adaptation. This is an essential characteristic for systems intended for immediate de-
ployment in user-friendly environments. However, the complex tasks' initial low performance
underscores the necessity for a tailored user experience, where the system needs to quickly
learn and adapt to each user’ s unique interaction style. The subsequent improvement over
sessions reflects a successful adaptation by the system, which is essential for complex tasks
that require a higher degree of precision and collaboration between the human user and the
robotic system. The error rate evolution demonstrates the importance of considering individ-
ual differences when designing adaptive robotic systems. Systems that can rapidly adjust to
various user strategies without a prolonged learning period are more likely to be successful in
practical applications.

The presented data affirms the effectiveness of the adaptive handover task system with
unfamiliar users across tasks of varying complexity. The consistent accuracy in simple tasks
indicates that the system's basic functionality is suited for a broad user base. In contrast, the
performance improvements in complex tasks illustrate the system's capacity for adaptation
and personalized learning. These findings emphasize the potential for employing such adaptive
systems in diverse real-world applications, where they must interact with a variety of users
and task requirements. Future work should focus on optimizing the initial learning phase for
complex tasks to achieve higher initial accuracy and a more rapid convergence to lower error
rates. Additionally, investigating the long-term retention of the system's adaptations for each
user could further improve the efficiency and user experience of robotic handover tasks.

4.7.4 Pick and Place

The results, as depicted in the accompanying charts, Figures 4.15, 4.16, and 4.17, present a
striking comparison between systems employing EWC and those without. The data reveals a
clear trend: systems augmented with EWC adaptmore adeptly to new users. This adaptation is
quantitatively evident in the reduced task completion times, improved accuracy in interpreting
user cues for object selection and placement, a lower number of feedback corrections needed,
and an accelerated learning rate from user feedback. A critical observation from the analysis is
the significant decrease in task completion times when EWC is utilized (Figure 4.17), suggesting
that the robot is not only learning faster but also becoming more efficient in task execution.
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Moreover, the accuracy improvements indicate that the robot is becoming more attuned
to the subtle motion cues provided by users, reducing the reliance on explicit feedback. This
points to a more intuitive user-robot interaction, where the robot can anticipate user actions
and adjust its behavior proactively. The number of instances where feedback correction was
needed serves as an additional metric for the system's learning capability. The reduction in
these instances in systems with EWC underscores the potential of this method in developing
more autonomous robotic assistants that can understand and adapt to human behavior more
effectively.

Importantly, the enhanced learning rate from user feedback in EWC-integrated systems
implies a more dynamic and responsive adaptation process. It suggests that the robot is not
just learning from errors but is actively incorporating user behavior patterns into its decision-
making algorithms, leading to a more nuanced and sophisticated understanding of the user's
non-verbal communication cues. In summary, the introduction of EWC in adaptive robotics
has been shown to significantly bolster a system's ability to accommodate new users. The
technique's impact on reducing cognitive load and streamlining task execution aligns with the
broader goals of creating collaborative robots that are not just tools but partners capable of
understanding and adapting to human idiosyncrasies in real-time. This study sets a precedent
for future research in human-robot interaction, paving the way for more personalized and user-
friendly robotic systems in various applications.

4.8 Discussion

The proposedmulti-layered, dual-attention neural networkmodel, integratingCNNs and Bi-
LSTM networks, demonstrates substantial advancements in HRI. By effectively processing and
integrating complex sensor data, the model has significantly improved its ability to interpret
non-verbal human communication cues, which is crucial for collaborative tasks.

The model exhibits marked improvements in efficiency and adaptability across collabora-
tive assembly tasks. Results indicate that the integration of ElasticWeight Consolidation (EWC)
enhances the robot's learning process, allowing it to retain previously learned skills while acquir-
ing new knowledge. This balance between plasticity and stability is essential for maintaining
high performance and adapting to new tasks. The reduced task completion times and de-
creased variability in performance demonstrate that the robot can learn more efficiently and
perform tasks with greater consistency over multiple sessions.

The addition of attention mechanisms further refines the model's focus on relevant cues,
reducing variability in task execution and leading to more consistent and reliable performance.
This is evidenced by the smallest standard deviations observed in models incorporating both
EWC and attention mechanisms, signifying the highest and most consistent learning efficiency.

The model's ability to anticipate user actions and predict subsequent movements is criti-
cal for seamless human-robot collaboration. The dual attentionmechanism, incorporating both
spatial and temporal attention, allows the system to weigh the importance of signals from each
sensor and understand the sequence of actions. This capability improves the robot's antici-
patory accuracy, enabling it to align its actions more closely with user intentions and reduce
the need for corrective feedback.

Results show a significant decrease in error rates over time, particularly in models utilizing
EWC and attentionmechanisms. The ability to predict and respond to user intentions with high
accuracy not only improves task efficiency but also enhances the overall user experience by
creating a more intuitive interaction.

Reducing the cognitive load on users is a pivotal factor in the ergonomic operation of robotic
systems. The study demonstrates that the proposed model, especially when enhanced with
EWC and attention mechanisms, can significantly lower the cognitive burden on users. By min-
imizing the need for explicit instructions and feedback, the system allows users to focus on
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Figure 4.15: Familiar users results
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Figure 4.16: Unfamiliar users results
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Figure 4.17: Unfamiliar users results with EWC incorporation
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higher-level aspects of the task or multitask more effectively.
The consistency and reliability of the robot's performance are crucial for real-world appli-

cations. The proposed model's reduced variability in task execution, as indicated by smaller
standard deviations, suggests that it can maintain a high level of performance even as task
complexity increases or conditions change. This robustness is essential for deploying robots
in dynamic and unpredictable environments, where consistent performance is key to success-
ful collaboration.

The significant reduction in corrective feedback frequency further supports themodel's re-
liability. As the robot's actions alignmore closely with user expectations, the need for corrective
interventions diminishes, indicating that the robot can perform tasks more autonomously and
accurately.

In the dynamic sorting task, the model's performance was evaluated based on sorting ac-
curacy, response time to user movements, and the frequency of erroneous behaviors. The
results indicated that systems incorporating EWC and attention mechanisms showed a more
rapid improvement in sorting accuracy and a significant reduction in response times and er-
rors. These improvements highlight the model's capability to adapt quickly to user behaviors
and optimize its actions for more efficient task execution.

The precision handover task demonstrated themodel's ability to achieve high success rates
and precise movements. The introduction of EWC and attention mechanisms led to a faster
increase in success rates and a notable improvement in movement precision. The reduced
handover times and high accuracy reflect the model's proficiency in learning from user inter-
actions and adjusting its behavior accordingly.

The promising results from this study open several avenues for future research. Exploring
the scalability of the model in more dynamic and unpredictable environments will be valuable.
Additionally, balancing the complexity of the model with computational resources to ensure
sustainable enhancements in learning capabilities is crucial. Investigating the long-term re-
tention of adaptations and optimizing the initial learning phase for complex tasks could further
improve the efficiency and user experience of robotic systems.

Future research could also focus on enhancing the model's ability to handle simultaneous
multi-tasking scenarios and improving its adaptability to a wider range of user behaviors. De-
veloping more sophisticated attention mechanisms and integrating additional sensory inputs
could further refine the model's predictive accuracy and responsiveness.

4.9 Evolution and Limitations

4.9.1 Evolution

When examining system performance, data were isolated by subject group to understand
how the system adapted to specific populations. The learning curves depicted in Figures 3.1,
3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 illustrated the system's proficiency across different tasks for male
and female users. For simpler tasks like "Reach" and "Lift," both genders showed rapid learning
and stable performance. However, in more complex tasks such as "Place Wide" and "Stack," a
significant performance gap emerged, with accuracy for female users lagging behind that for
male users. This disparity suggested an underlying bias in the system's learning algorithm or
the training data.

Improved Model Performance: With our improved model, which incorporates EWC and
dual attention mechanisms, we aimed to mitigate these biases and achieve more equitable
performance across genders. The revised architecture has been evaluated to determine if it
can maintain consistent accuracy for both male and female users, even with identical training
data (as shown in results reported by Figures 4.18 and 4.19).

KeyFindings: The improvedmodel displays nearly equal accuracy for bothmale and female
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users across all tasks. This significant improvement indicates that the new system is better
at generalizing from the provided data, reducing gender-based performance discrepancies.
Unlike the previous model, the learning curves for both genders in the improved model rise
sharply and plateau at similar levels for all tasks, including more complex ones like "Place Wide"
and "Stack." This consistency suggests that the improvements have successfully addressed
the bias, allowing the system to learn and perform uniformly across different user groups. The
new model also shows enhanced capability in distinguishing between user-specific behaviors
and errors, which contributes to more accurate and reliable performance. This capability is
crucial for ensuring that the system can adapt to individual users without being influenced by
gender-related biases.

These results demonstrate that the improved model achieves a more balanced accuracy
across genders, even for complex tasks. The reduction in performance disparity highlights the
effectiveness of incorporating EWC and attention mechanisms.

The enhanced performance and equity of the improvedmodel have significant implications
for the deployment of AI systems in diverse real-world environments. Ensuring that robotic
systems perform consistently across different user groups is crucial for their acceptance and
effectiveness. The ability to adapt to varied motion and communication methods without bias
is essential for applications in healthcare, assistive technologies, and collaborative robotics.

Future research should continue to focus on refining the model to handle even greater vari-
ability in user behaviors and environments. Additionally, expanding the dataset to include a
wider range of demographic and physiological characteristics can further enhance the model's
generalizability and robustness. By addressing these challenges, we can move closer to devel-
oping truly inclusive and adaptive AI systems that cater to the needs of all users.

Figure 4.18: Results comparison old/new model on same dataset for "grasp" command

Figure 4.19: Results comparison old/newmodel on same dataset for "release" command at nar-
row location

4.9.2 Limitations

Despite the significant advancements demonstrated by the multi-layered, dual-attention
neural network model, there are notable limitations that need to be addressed to enhance its
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applicability and reliability in real-world scenarios. One key limitation is the system's ability to
understand and respond appropriately to motion data when encountering new users whose
motion or communication methods exhibit substantial variance from the data previously seen
(Figure 4.20, Figure 4.21).

Figure 4.20: Image representation of system behaviour depending on data exposure timing

The proposed model relies on its ability to learn and adapt from previous interactions to
predict and respond to user motions and cues. However, when a new user exhibits motion or
communication methods that differ significantly from those in the model’ s existing knowl-
edge base, the system may struggle to interpret and respond accurately. This limitation arises
because the neural network's training is heavily influenced by the patterns and behaviors it has
encountered. If the variance between the new user’ s data and the existing data is too great,
the model's performance can degrade.

For example, if the system has been trained predominantly on users who exhibit smooth
and predictablemotions but then encounters a user withmore erratic or unconventionalmove-
ments, its ability to anticipate and respond correctly may be compromised. The dual attention
mechanisms, while robust, can only compensate to a certain extent. They are optimized to fo-
cus on relevant cues based on prior learning, but when the cues are unfamiliar or highly variable,
the system's predictive accuracy can diminish.

To address this issue, it is essential to evaluate the extent of variance between previous
and new users that the system can tolerate while maintaining high performance. This involves
defining a threshold of acceptable variance beyond which the system's performance begins
to decline. Understanding this threshold is crucial for improving the model's adaptability and
ensuring consistent performance across a diverse user base.

The threshold of tolerable variance is likely to evolve as the system interacts with an in-
creasing number of users. As themodel's knowledge database grows, it accumulates a broader
range of motion patterns and communication methods. This expanded knowledge base can
enhance the system's ability to generalize and adapt to new users. However, it is also impor-
tant to monitor how the system's learning capacity scales with this growing database. If the
increase in diversity outpaces the model's ability to integrate and adapt to new patterns, per-
formance may still suffer.

The evolution of the tolerable variance threshold as the system learns from more users is
a critical area for future research. Adaptive learning strategies, such as incremental learning
and continual learning, can be employed to help the model integrate new information more ef-
fectively. These strategies allow the system to update its knowledge base dynamically without
forgetting previously learned behaviors, thereby improving its ability to handle higher variance
in user data.

Quantitative metrics should be developed to assess the model's performance as it en-
counters new users with varying degrees of motion and communication styles. These metrics
can include measures of predictive accuracy, response time, and the frequency of corrective
feedback. By systematically evaluating thesemetrics, researchers can determine themaximum
variance that the system can handle while still performing optimally.
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(a)

(b)

Figure 4.21: Attention behaviour (frame by frame visualisation) when seeing the data at T1 (a)
and T2 (b)

Understanding and addressing the limitations related to user variance is crucial for the
practical deployment of the system in diverse and dynamic environments. Applications such
as healthcare, where robots interact with patients exhibiting a wide range of physical capa-
bilities and communication methods, require systems that can adapt seamlessly to individual
needs.

Future research should focus on enhancing the model's robustness to high variance in user
behavior. This can involve incorporating more sophisticated attention mechanisms, expanding
the range of training data to include a wider variety of user interactions, and developing more
advanced adaptive learning algorithms. Additionally, exploring hybrid models that combine
neural networks with rule-based systemsmay provide a way to handle outliersmore effectively.

The multi-layered, dual-attention neural network model has shown great promise in ad-
vancing human-robot interaction. However, its current limitations in handling high variance in
user motion and communication methods highlight the need for further research and devel-
opment. By addressing these challenges and improving the model's adaptability, we can move
closer to deploying robotic systems that offer consistent, high-performance interaction across
a diverse user base, thereby enhancing the practical utility and user experience of collaborative
robots.

4.9.3 Preliminary Work to Adress Limitations

To explore the limitations of the system in distinguishing between user-specificmotion/com-
munication methods and erroneous execution, we conducted a preliminary experiment involv-
ing six participants. Each participant was asked to perform a pick-and-place task five times.
During these trials, participants were instructed to either deliberately alter their motion pat-
terns or make mistakes intentionally. The goal was to determine whether the system could
differentiate between unique user behaviors and actual errors.

Experimental Setup:

• Participants: Six individuals, each performing the task five times.

• Instructions: Participants were asked to either alter their motion deliberately or introduce
intentional mistakes during the task.

• Evaluation:

1. The system's ability to identify deviations as user-specific behaviors or errors.

2. Accuracy of error detection.
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3. Comparison of system performance with and without EWC and attention mecha-
nisms.

Table 4.3: Preliminary Results for Pick-and-Place Task

Participant Trial
Deliberate
Alteration

Error Detection
Accuracy (%)

User-Specific
Behavior Recognition (%)

Corrective
Feedback Required

1 1 Yes 85 90 2
1 2 No 88 87 1
1 3 Yes 82 92 3
1 4 No 89 88 1
1 5 Yes 83 91 2
2 1 Yes 84 89 2
2 2 No 87 85 1
2 3 Yes 81 90 3
2 4 No 88 86 1
2 5 Yes 82 88 2
3 1 Yes 83 91 2
3 2 No 86 84 1
3 3 Yes 80 89 3
3 4 No 87 85 1
3 5 Yes 81 90 2
4 1 Yes 85 88 2
4 2 No 88 86 1
4 3 Yes 82 91 3
4 4 No 89 87 1
4 5 Yes 83 89 2
5 1 Yes 84 92 2
5 2 No 87 85 1
5 3 Yes 81 90 3
5 4 No 88 86 1
5 5 Yes 82 88 2
6 1 Yes 86 92 2
6 2 No 89 87 1
6 3 Yes 83 90 3
6 4 No 88 85 1
6 5 Yes 82 89 2

Analysis of Results
The preliminary results indicate that the system, when enhanced with EWC and attention

mechanisms, performs reasonably well in distinguishing between user-specific motion pat-
terns and intentional errors. Key observations include:

1. Error Detection Accuracy: The system achieved an average error detection accuracy of
approximately 84-89% across all trials. This suggests that the model is fairly proficient
in identifying when a participant's behavior deviates due to an error rather than a unique
communication method.

2. User-Specific Behavior Recognition: The recognition rate for user-specific behaviors ranged
from 85-92%, indicating that the system can effectively adapt to and learn individual user
motion patterns, even when these patterns include deliberate alterations.

3. Corrective Feedback: The requirement for corrective feedback was relatively low, aver-
aging between 1 to 3 interventions per trial. This low frequency of required corrections

96



CHAPTER 4. ATTENTION FOR BIAS-AWARE ALGORITHM

further supports the system's ability to accurately interpret and respond to user-specific
behaviors versus errors.

These preliminary results are promising, suggesting that themodel, particularlywhen equipped
with EWC and attentionmechanisms, can effectively differentiate between unique user behav-
iors and mistakes. However, the experiment also highlights areas for further improvement:

1. Variance Threshold: Future research should focus on defining and adjusting the threshold
of variance that the system can tolerate whilemaintaining high performance. This involves
identifying the maximum variance in user behavior that the model can handle without
significant degradation in accuracy.

2. Learning Curve: Investigate how the model's performance evolves as it interacts with an
increasing number of users. This will help determine whether the model's knowledge base
can expand and adapt sufficiently to accommodate new and diverse user behaviors.

3. Extended Validation: Conducting more extensive experiments with a larger and more di-
verse participant pool can provide deeper insights into the model's robustness and scal-
ability. It is crucial to assess the model's performance in various real-world scenarios
where user behaviors might be even more varied and unpredictable.

The preliminary results provide a foundational understanding of the system's capabilities
and limitations in distinguishing between user-specific motions and errors. While the model
shows promise in adapting to individual behaviors and identifying errors, further research is
needed to enhance its robustness and scalability. By refining the variance thresholds and ex-
tending the model's learning capabilities, we can move closer to developing a truly adaptive
and user-friendly robotic system capable of seamless human-robot collaboration.
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Conclusion

5.1 Summary

This doctoral thesis explored the complexities and challenges of long-term HRI with a spe-
cific focus on how robots can progressively learn to recognize human motion cues to facili-
tate effective and user-specific communication. The core communication between the robot
and the user was facilitated through implicit motion cues, adhering to the ideomotor princi-
ple, which posits that thought processes are represented by motor actions. This approach
underlines the importance of non-verbal communication cues in enhancing and personalizing
user-robot interactions.

One of the primary findings of this research was the critical role of personalized commu-
nication methods in achieving uniform performance in HRI, regardless of the robot's level of
familiarity with different users. By leveraging advanced machine learning techniques, partic-
ularly neural networks, the developed models demonstrated significant capability in adapting
to and learning from user-specific motion patterns over prolonged interactions. This adapt-
ability facilitated a more nuanced understanding of implicit cues, thereby enabling the robot
to respond more appropriately to individual user needs and preferences.

However, the research also uncovered challenges related to biased datasets and discrep-
ancies in robot performance across different users. These issues often led to a degradation
in user experience, particularly for users whose motion cues deviated from the majority data
represented in the initial training sets. Such discrepancies underscore the necessity for more
inclusive and representative data collection processes in the training phase of neural network
models.

To address the challenges of biaseddatasets, the thesis proposed and implemented several
methodological refinements in the neural network training processes. One significant advance-
ment was the introduction of continual learning strategies, which allow the robot to update its
learning model incrementally as it interacts with different users over time. This approach not
only helped mitigate the initial biases in the datasets but also enhanced the robot’ s ability to
adapt dynamically to new users, thereby improving overall interaction quality.

Another key methodological enhancement was the development of algorithms capable of
distinguishing and adapting to the unique motion patterns of each user, thereby reducing per-
formance variability and improving the predictiveness and reliability of the interactions. These
algorithms were rigorously tested in diverse real-world scenarios to validate their effectiveness
across a broad spectrum of user types.

5.2 Limitations

This study navigates the intricate landscape of developing bias-aware algorithms in artifi-
cial intelligence AI, confronting several limitations along its journey. First, the representative-
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ness of datasets emerges as a primary concern. Datasets often reflect the biases inherent in
their collection processes or source populations, potentially skewing AI outcomes. This limita-
tion underscores the critical need for diverse, comprehensive datasets that mirror the multi-
faceted nature of the global population.

Compounding the challenge is the computational demand of bias-aware algorithms. These
sophisticated models, designed to identify, analyze, and mitigate bias, require significant com-
putational resources. This not only raises questions about scalability and accessibility but
also about the environmental impact of deploying such resource-intensive solutions on a large
scale.

Moreover, the scope of bias detection methods within this study is not exhaustive. While
strides have been made in identifying and addressing certain types of biases, the fluid and
evolving nature of bias itself means that some forms may remain undetected or unaddressed.
This limitation calls for ongoing research to broaden the spectrum of biases recognized and
mitigated by AI systems.

Methodological constraints also pose significant hurdles. The study's approach to design-
ing and testing bias-aware algorithms might not capture the full complexity of real-world ap-
plications, limiting the generalizability of the findings. Furthermore, the reliance on Human-in-
the-Loop (HITL) approaches, though beneficial for incorporating human judgment, introduces
another layer of complexity and potential bias, as human evaluators themselves are not immune
to prejudices.

Ethical considerations represent another critical area where the study acknowledges lim-
itations. The deployment of AI technologies, especially those purporting to be bias-aware,
raises profound ethical questions regarding privacy, autonomy, and the potential for misuse.
These considerations were not fully explored within the scope of this research, highlighting a
gap in understanding the broader societal implications of bias-aware AI technologies.

Addressing these limitations necessitates amultifaceted approach in future work. Expand-
ing the diversity and representativeness of datasets is paramount, as is the development of
more efficient algorithms that can operate effectively at scale without prohibitive computa-
tional costs. Broadening the scope of bias detection to include emerging and less understood
forms of bias will enhance the robustness of bias-aware AI systems.

Additionally, refiningmethodological approaches to better simulate real-world complexities
and reducing dependence on HITL evaluations can mitigate some of the inherent challenges in
current models. Finally, a deeper exploration of the ethical landscape surrounding AI deploy-
ment will be crucial. This includes not only the direct impacts of these technologies but also
their broader societal implications.

In conclusion, while this study marks a significant step toward understanding and mitigat-
ing bias in AI, it also illuminates the path forward. The limitations identified herein serve as a
roadmap for future research, guiding efforts to develop AI technologies that are not only in-
telligent but also equitable and just. The journey toward bias-aware AI is ongoing, and each
step brings us closer to realizing the full potential of artificial intelligence as a force for good in
society.

5.3 Future Directions

The implications of this research are profound for the future of HRI, particularly in environ-
ments where long-term interaction is critical, such as in assistive technologies for the elderly
or rehabilitation robots in medical settings. The ability of robots to learn and adapt to individual
user behaviors holds promise for more personalized and effective robotic assistants that can
better serve their human counterparts.

Future research should focus on further refining the models of implicit communication to
include a wider array of non-verbal cues and contextual factors. Additionally, exploring the
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ethical implications of data collection and the autonomy of decision-making in robots will be
crucial as these technologies become more integrated into everyday life.

Overall, this thesis contributes significantly to the field of HRI by advancing our understand-
ing of how robots can effectively learn from and adapt to human motion cues for improved
long-term interaction. The research outcomes not only enhance academic knowledge but also
pave the way for more sophisticated and user-tailored robotic systems in practical applica-
tions.
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Appendix A

Rice Cake Making Experiment Results
Data Table

Table A.1: Average measured Tt, Tbr and Tr cycles in all implicit collaboration pairs for both the
pestle and the kneading

kneading pestle

Tt (s) Tbr (s) Tr (s)
Standard
Deviation

Tt(s) Tbr (s) Tr (s)
Standard
Deviation

Pair 1 0.7376 0.6095 0.7814 0.0066 0.7294 0.6025 0.8909 0.0030
Pair 2 0.7524 0.681 0.7932 0.061 0.7520 0.6200 0.7594 0.0062
Pair 3 0.7085 0.5699 0.7679 0.0045 0.7213 0.5638 0.8946 0.0020
Pair 4 0.7353 0.6883 0.7887 0.0020 0.7331 0.6855 0.8504 0.0047
Pair 5 0.7382 0.6158 0.7561 0.0053 0.7500 0.6438 0.7723 0.0048
Pair 6 0.6458 0.6364 0.6859 0.0066 0.6571 0.6480 0.6774 0.0048
Pair 7 0.7891 0.6583 0.8023 0.0035 0.8026 0.6638 0.8601 0.0027
Pair 8 0.7237 0.6008 0.7239 0.0026 0.7120 0.6076 0.7553 0.0067
Pair 9 0.6590 0.6296 0.6611 0.0022 0.6619 0.6237 0.6855 0.0062
Pair 10 0.7224 0.7032 0.8217 0.0026 0.7153 0.6906 0.9001 0.0028
Pair 11 0.5928 0.5744 0.6072 0.0062 0.5997 0.5808 0.7391 0.0068
Pair 12 0.6418 0.6239 0.6617 0.0051 0.6371 0.6180 0.7210 0.0055
Pair 13 0.7249 0.6110 0.7447 0.0054 0.7367 0.6004 0.7652 0.0034
Pair 14 0.6625 0.6370 0.6636 0.0043 0.6758 0.6382 0.7151 0.0045
Pair 15 0.6151 0.5912 0.7066 0.0060 0.6053 0.5564 0.8322 0.0056
Pair 16 0.7715 0.6781 0.7891 0.0032 0.7670 0.6893 1.0685 0.0024
Pair 17 0.7563 0.6171 0.7787 0.0028 0.7600 0.7384 0.8339 0.0015
Pair 18 0.8527 0.6223 0.9136 0.0035 0.8609 0.6212 1.0610 0.0058
Pair 19 0.7816 0.5130 0.8963 0.0023 0.7924 0.5057 1.0160 0.0044
Pair 20 0.6370 0.6062 0.6723 0.0052 0.6123 0.6044 0.6606 0.0047
Pair 21 0.7197 0.6177 0.7606 0.0027 0.7572 0.6283 0.7997 0.0047
Pair 22 0.6928 0.6895 0.7228 0.0027 0.7357 0.6939 0.7525 0.0065
Pair 23 0.5986 0.5922 0.6288 0.0033 0.5925 0.5787 0.6320 0.0053
Pair 24 0.6168 0.6091 0.6401 0.0023 0.6157 0.5942 0.7119 0.0019
Pair 25 0.7600 0.6692 0.9745 0.0063 0.7728 0.6742 1.1779 0.0060
Pair 26 0.6422 0.6257 0.6586 0.0028 0.6519 0.6276 0.6700 0.0063
Pair 27 0.7731 0.6453 0.7870 0.0063 0.7589 0.6344 0.8751 0.0031
Pair 28 0.6907 0.6534 0.7964 0.0037 0.6906 0.6464 0.8573 0.0039
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Pair 29 0.6916 0.6063 0.7305 0.0060 0.7054 0.6009 0.9063 0.0014
Pair 30 0.8105 0.7331 0.8328 0.0056 0.8556 0.7309 0.8816 0.0018
Pair 31 0.5363 0.5235 0.6507 0.0027 0.5494 0.5424 0.8425 0.0023
Pair 32 0.8413 0.6984 0.8875 0.0065 0.8498 0.6984 0.9582 0.0040
Pair 33 0.7106 0.6965 0.7126 0.0070 0.7206 0.7085 0.7637 0.0038
Pair 34 0.7299 0.6030 0.7398 0.0050 0.7180 0.6600 0.7472 0.0033
Pair 35 0.7980 0.6441 0.8513 0.0049 0.7961 0.6530 0.9244 0.0024
Pair 36 0.8241 0.6126 0.8491 0.0052 0.8341 6220 0.8596 0.0033
Pair 37 06808 0.5655 0.7209 0.0044 0.6875 0.5554 0.8082 0.0044
Pair 38 0.8060 0.7206 0.8525 0.0034 0.8528 0.7148 0.8708 0.0055
Pair 39 0.8068 0.5903 0.9504 0.0035 0.9093 0.6941 0.9523 0.0068
Pair 40 0.6923 0.6523 0.7151 0.0022 0.6974 0.6383 0.7684 0.0044
Pair 41 0.6764 0.6111 0.8531 0.0027 0.6615 0.6150 0.9167 0.0032
Pair 42 0.7181 0.6319 0.7702 0.0033 0.7177 0.6211 0.8204 0.0035
Pair 43 0.6731 0.6052 0.6950 0.0039 0.6635 0.6271 0.6984 0.0029
Pair 44 0.7236 0.6826 0.7323 0.0062 0.7132 0.6155 0.8273 0.0017
Pair 45 0.8747 0.5991 0.8969 0.0029 0.8796 0.5981 1.0798 0.0026
Pair 46 0.7890 0.6093 0.8020 0.0034 0.7915 0.6054 0.8989 0.0022
Pair 47 0.7636 0.5957 0.7664 0.0046 0.7635 0.5958 0.8462 0.0068
Pair 48 0.9204 0.7108 0.9321 0.0058 0.9362 0.7293 0.9508 0.0064
Pair 49 0.7523 0.6559 0.7767 0.0041 0.7666 0.6621 0.8328 0.0036
Pair 50 0.8472 0.6374 0.9548 0.0066 0.8371 0.6391 1.0076 0.0028
Pair 51 0.7092 0.6978 0.7199 0.0063 0.7278 0.7074 0.7698 0.0057
Pair 52 0.6024 0.4887 0.7065 0.0031 0.6169 0.4877 0.8537 0.0016
Pair 53 0.5972 0.4794 0.8091 0.0021 0.5840 0.4701 0.8855 0.0016
Pair 54 0.8170 0.6047 0.8289 0.0059 0.8440 0.6395 0.8637 0.0066
Pair 55 0.6999 0.5810 0.7805 0.0028 0.7100 0.6679 0.9439 0.0060
Pair 56 0.7058 0.6334 0.7556 0.0045 0.7532 0.6379 0.7834 0.0013
Pair 57 0.7249 0.6042 0.7283 0.0032 0.7340 0.6038 0.7808 0.0054
Pair 58 0.8436 0.7527 0.8751 0.0062 0.8305 0.7391 0.9343 0.0033
Pair 59 0.7898 0.6796 0.8686 0.0063 0.7937 0.6717 0.9286 0.0027
Pair 60 0.6719 0.6648 0.7323 0.0031 0.6847 0.6725 0.9894 0.0028
Pair 61 0.7183 0.7009 0.8217 0.0041 0.7228 0.7031 1.0099 0.0067
Pair 62 0.7993 0.6845 0.9361 0.0054 0.8110 0.6713 1.0430 0.0028
Pair 63 0.7785 0.6782 0.7852 0.0044 0.7869 0.6877 0.8010 0.0066
Pair 64 0.6984 0.5349 0.7505 0.0068 0.6911 0.5362 0.8020 0.0030
Pair 65 0.7787 0.6520 0.8363 0.0032 0.7766 0.6721 0.9060 0.0030
Pair 66 0.8196 0.7834 0.8691 0.0044 0.8072 0.7718 0.9527 0.0024
Pair 67 0.7770 0.6645 0.7984 0.0059 0.7877 0.6528 0.8697 0.0023
Pair 68 0.8582 0.6467 0.8749 0.0031 0.8737 0.6523 0.9230 0.0042
Pair 69 0.6729 0.4736 0.6744 0.0033 0.6615 0.4849 0.7316 0.0041
Pair 70 0.7409 0.5356 0.8065 0.0051 0.8305 0.5384 0.8527 0.0029
Pair 71 0.7675 0.6203 0.8080 0.0063 0.7812 0.6521 0.9004 0.0053
Pair 72 0.7499 0.6013 0.7718 0.0064 0.7615 0.6129 0.8200 0.0048
Pair 73 0.7618 0.6179 0.7730 0.0053 0.7605 0.6267 0.8745 0.0063
Pair 74 0.7153 0.6003 0.7342 0.0064 0.7105 0.6004 0.8521 0.0063
Pair 75 0.8052 0.6549 0.8412 0.0027 0.8446 0.6564 0.8733 0.0034
Pair 76 0.6573 0.4403 0.7135 0.0054 0.7177 0.5272 0.7465 0.0055
Pair 77 0.5310 0.4682 0.5720 0.0061 0.5335 0.4793 0.6723 0.0025
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Average 0.7299 0.6238 0.7768 0.7389 0.6303 0.8501
St.Dev. 0.0779 0.0644 0.0848 0.0840 0.0632 0.1089

Table A.2: Average measured Tt, Tbr and Tr cycles in all explicit collaboration pairs for both the
pestle and the kneading

kneading pestle
Tt (s) Tbr (s) Tr (s) St.Dev. Tt(s) Tbr (s) Tr (s) St.Dev.

Pair 1 0.6241 0.6244 0.8902 0.0049 0.8293 0.8294 0.8460 0.0050
Pair 2 0.6953 0.6976 0.9822 0.0025 0.8061 0.8069 0.8002 0.0047
Pair 3 0.7033 0.7052 0.9100 0.0063 0.8078 0.8100 0.8114 0.0035
Pair 4 0.7166 0.7180 0.9656 0.0040 0.8199 0.8214 0.8198 0.0032
Pair 5 0.6972 0.6973 0.8035 0.0059 0.8928 0.8940 0.8873 0.0052
Pair 6 0.6886 0.6878 0.8037 0.0038 0.8482 0.8501 0.8457 0.0048
Pair 7 0.7936 0.7939 0.9500 0.0064 0.7326 0.7336 0.7317 0.0030
Pair 8 0.6459 0.6475 0.9089 0.0067 0.9073 0.9110 0.9018 0.0031
Pair 9 0.6955 0.6985 0.8723 0.0056 0.7843 0.7844 0.8854 0.0036
Pair 10 0.7275 0.7282 0.8436 0.0035 0.8297 0.8333 0.8298 0.0046
Pair 11 0.9454 0.9459 1.2228 0.0069 0.8694 0.8700 0.8667 0.0035
Pair 12 0.7489 0.7514 0.9085 0.0027 0.8712 0.8748 0.8803 0.0043
Pair 13 0.7964 0.7970 0.8807 0.0051 0.6984 0.7985 0.7953 0.0030
Pair 14 0.7053 0.7074 0.8244 0.0064 0.8065 0.8068 0.8153 0.0050
Pair 15 0.7778 0.7802 0.9136 0.0048 0.8386 0.8408 0.8329 0.0040
Pair 16 0.7130 0.7152 0.9367 0.0052 0.7768 0.7774 0.7766 0.0050
Pair 17 0.8247 0.8247 0.9358 0.0054 0.8367 0.8369 0.8441 0.0035
Pair 18 0.5313 0.5324 0.7256 0.0030 0.8045 0.8073 0.8081 0.0056
Pair 19 0.7202 0.7230 0.8857 0.0031 0.7582 0.7594 0.7529 0.0046
Pair 20 0.7247 0.7267 0.9351 0.0033 0.7681 0.7690 0.7718 0.0052
Pair 21 0.7993 0.7993 0.10178 0.0049 0.7781 0.7805 0.7757 0.0031
Pair 22 0.7305 0.7320 0.8358 0.0048 0.7387 0.7390 0.7554 0.0054
Pair 23 0.7851 0.7874 1.0872 0.0042 0.8557 0.8578 0.8644 0.0052
Average 0.7299 0.7313 0.9148 0.8113 0.8171 0.8217
St.Dev. 0.0796 0.0794 0.7021 0.0524 0.0469 0.0473

Table A.3: Measured Coefficient of Variation for each kneading-pestle implicit pair

Coef. of Variation
Pair 1 1.5009
Pair 2 1.8660
Pair 3 1.5193
Pair 4 1.8355
Pair 5 1.4684
Pair 6 1.2254
Pair 7 1.7616
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Pair 8 1.5746
Pair 9 1.0898
Pair 10 1.4047
Pair 11 1.4836
Pair 12 1.6855
Pair 13 1.3650
Pair 14 1.4084
Pair 15 1.5568
Pair 16 1.5351
Pair 17 1.7072
Pair 18 1.4202
Pair 19 1.5887
Pair 20 1.1051
Pair 21 1.5734
Pair 22 1.8047
Pair 23 1.4790
Pair 24 1.3608
Pair 25 1.3029
Pair 26 1.5692
Pair 27 1.7800
Pair 28 1.7799
Pair 29 1.3275
Pair 30 1.2787
Pair 31 1.3124
Pair 32 1.4753
Pair 33 1.7099
Pair 34 1.7687
Pair 35 1.5442
Pair 36 1.8244
Pair 37 1.2089
Pair 38 1.2407
Pair 39 1.3982
Pair 40 1.7363
Pair 41 1.5904
Pair 42 1.3787
Pair 43 1.5887
Pair 44 1.3656
Pair 45 1.8719
Pair 46 1.3751
Pair 47 1.9531
Pair 48 1.8948
Pair 49 1.4713
Pair 50 1.4742
Pair 51 1.3956
Pair 52 1.4830
Pair 53 1.6461
Pair 54 1.2358
Pair 55 1.8880
Pair 56 1.6570
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Pair 57 1.3256
Pair 58 1.6719
Pair 59 1.8776
Pair 60 1.5979
Pair 61 1.0859
Pair 62 1.7791
Pair 63 1.7536
Pair 64 1.8290
Pair 65 1.3857
Pair 66 1.5578
Pair 67 1.9353
Pair 68 2.1366
Pair 69 2.1249
Pair 70 1.7344
Pair 71 1.5601
Pair 72 1.9105
Pair 73 1.8318
Pair 74 1.4781
Pair 75 1.4910
Pair 76 1.4561
Pair 77 1.5854
Average 1.5692
St.Dev. 0.2345

Table A.4: Measured Coefficient of Variation for each kneading-pestle explicit pair

Coef. of Variation
Pair 1 2.5280
Pair 2 2.3728
Pair 3 2.7654
Pair 4 2.6346
Pair 5 2.5112
Pair 6 2.6883
Pair 7 2.6040
Pair 8 2.4667
Pair 9 2.4463
Pair 10 2.4205
Pair 11 2.6208
Pair 12 2.6922
Pair 13 2.7227
Pair 14 2.4995
Pair 15 2.4016
Pair 16 2.5520
Pair 17 2.6902
Pair 18 2.8613
Pair 19 2.6914
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Pair 20 2.3107
Pair 21 2.7827
Pair 22 2.4301
Pair 23 2.8477
Average 2.5887
St.Dev. 0.1566
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Table A.5: Number of times the ``dough" was hit with and without the use of indication

Without Indication With Indication
Standard
Deviation

Participant 1 49 52 1.06
Participant 2 34 38 1.12
Participant 3 44 50 1.14
Participant 4 33 37 1.12
Participant 5 38 45 1.18
Participant 6 38 39 1.03

Average 39 45 1.11

Table A.6: Coefficient of Variation with and without indication

Without Indication With Indication
Participant 1 6.4132 4.5526
Participant 2 3.5832 2.9897
Participant 3 4.4943 3.7402
Participant 4 5.2234 4.6305
Participant 5 3.7189 4.0037
Participant 6 3.1183 2.8166
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Frame by Frame Exaples of Robot
Behaviour in Familiar Collaboration,
Successful Unfamiliar Collaboration
and Failing Unfamiliar Collaboration
Cases

Figure B.1: Familiar Data

All figures have the same frame extraction rate/frequency. Increased frames reflects in-
creased video length and hence both slower robot response times and task completion.
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APPENDIX B. FRAME BY FRAME EXAPLES OF ROBOT BEHAVIOUR IN FAMILIAR
COLLABORATION, SUCCESSFUL UNFAMILIAR COLLABORATION AND FAILING UNFAMILIAR

COLLABORATION CASES

Figure B.2: Unfamiliar Data
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APPENDIX B. FRAME BY FRAME EXAPLES OF ROBOT BEHAVIOUR IN FAMILIAR
COLLABORATION, SUCCESSFUL UNFAMILIAR COLLABORATION AND FAILING UNFAMILIAR

COLLABORATION CASES

Figure B.3: Failure on Unfamiliar Data
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Appendix C

What are Embodiement Informatics?

Embodiment informatics is an interdisciplinary field that combines the physicality of em-
bodiment with the data processing capabilities of informatics to address and solve real-world
problems efficiently. By integrating the physical interactions of robots with their environment
and advanced data processing techniques, embodiment informatics aims to enable robots to
perform various tasks in human-like ways, enhancing their functionality and adaptability.

"Embodiment" refers to the physical presence and interactions of a robot within its environ-
ment. This encompasses the robot's body, its movements, and how it perceives and responds
to external stimuli. "Informatics," on the other hand, deals with the processing, analysis, and
interpretation of information and data. When combined, embodiment informatics leverages
the physical experiences of robots and sophisticated data processing to develop intelligent
systems capable of interacting with the real world in meaningful ways.

To solve real-world problems and perform social tasks, it is essential for robots to have a
physical presence. The body of a robot interacts with the environment, allowing it to gain per-
ceptions and experiences that are crucial for developing advanced intelligence. For robots to
operate effectively in human environments, they must acquire mobility and capabilities that
are aligned with their physical attributes. This alignment is achieved through embodiment in-
formatics, where the physical and informational aspects of a robot's operation are integrated.

The relationship between tools, objects, effects, and actions is heavily influenced by the
physicality of each robot. For example, a robot with a gripper hand that cannot fit its fingers
through the handles of scissors will use the scissors differently compared to a human. Under-
standing these relationships through the robot's sensory-motor experiences and generating
appropriate motions is a core aspect of embodiment informatics. By processing the large and
diverse information obtained from the real world using technologies like deep learning, robots
can learn to perform tasks based on the sensory-motor information they acquire. Deep learn-
ing is a key technology in embodiment informatics for processing sensory-motor information.
It allows robots to extract useful information from various sensory inputs and convert it into
actionable data, such as joint angles for movement. Through deep learning, robots can de-
velop the intelligence to conduct tasks by feeling and touching the real world, enabling them
to perform actions that are consistent with real-world requirements. Applying embodiment
informatics can lead to the development of robots that coordinate their intelligence with their
physical bodies, similar to humans. For instance, humans solve complex problems by writing
down calculations and deriving answers through physical actions. Similarly, robots could learn
to perform tasks reflexively based on physical experiences. Moreover, robots may eventually
perceive their environment using their entire bodies, interpreting sensory inputs in a holistic
manner, encompassing all sensory experiences.

Embodiment informatics has the potential to advance the development of robots that
support daily life, such as cleaning robots, food delivery robots, and cooking robots. These
robots can make human life smoother and richer by learning from their experiences and gain-
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ing human-like sensations. By storing a vast amount of experiential knowledge, robots can
learn and adapt in ways that resemble human learning processes, ultimately enhancing their
capability to interact with and assist humans in more natural and intuitive ways. In conclu-
sion, embodiment informatics represents a promising approach to creating intelligent robotic
systems that can learn, adapt, and perform tasks based on their physical interactions with the
world. This field has the potential to revolutionize how robots integrate into human environ-
ments, making them more effective and intuitive partners in various aspects of life.
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