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Abstract. A network environment that unifies the human movement,
animation and humanoid is generated. Since the degrees of freedom are
different among these entities, raw human movements are recognized
and labeled using the hidden Markov model. This is a class of gesture
recognition which extracts necessary information transmitted to the ani-
mation software and to the humanoid. The total environment enables the
surrogate of the human movement by the animation character and the
humanoid. Thus, the humanoid can work as a mowving computer acting
as a remotely located human in the ubiquitous computing environment.

1 Introduction

Recent advancement of computing power accompanied by the microminiatur-
ization has promoted sophisticated human interfaces. Another social progress
caused by this cost effective enhancement is the networking for the ubiquity.
To be compatible with such trends, this paper presents the unification of human
movements, animation characters and humanoids in the network computing envi-
ronment. It is important for this purpose to incorporate various levels of learning
algorithms on the machine intelligence.

The degree of the freedom of the human movement is around a few hundred.
Humanoids available as contemporary consumer electronics have the freedom
of its one tenth. Animation characters as software agents have the order of
somewhere in the middle according to the software’s sophistication. Because
of such differences in the freedom, human movements are modeled first by a
Hidden Markov Model (HMM). This problem is a class of gesture recognition
which extracts the information transmitted to the animation software and to the
humanoid.

The rest of the paper is organized as follows. Chapter 2 is devoted to the
generation of the data structure compatible with our purpose. In Chapter 3, an
HMM recognizer is designed using the training movements. The learned model is
utilized for controlling an animation character and a humanoid called HOAP-2



[1]. Chapter 4 describes the realization of the humanoid movement mimicking
the human. Chapter 5 gives concluding remarks including the next step.

2 Data Acquisition and Transformation for Human Body
Movement

2.1 Measured Raw Data

Human body’s movements are measured in real time by the MotionStar™ [2]
which uses the direct-current magnetic field. Eleven sensors are used for our
measurement. Bach sensor measures a 3 x 1 position vector and a 3 x 3 rotation
matrix. Therefore, human movements give 11 time series of 3 + 3 x 3 = 12-
dimensional vector-data as numerals. Such raw data per se do not have any
spatial structure for the body movement. Therefore, we have to specify relation-
ships among these time series.

2.2 Bone Frame Expression

Bones are connected. This connection can be expressed precisely by the tree
structure in Figure 1. The root element is selected to represent the Hips. Sub-
elements are LeftHip, RightHip, Chest, each of which has further sub-elements.
These data are expressed by the BVH format (Bio Vision Hierarchical data) [3].

= Hips
= LeftHip
! ©-leftknee
; o Lefthnkle
=1 RightHip
. - Rightknee

i Righténkle

=} Breasgt
= Neck
= LeftShoulder
i B LeftElbow
Lo LeftWrist
&= RightShoulder
=1 RightElbow
Lo RightWrist

Fig. 1. Tree structure of bones.

It is important to maintain the independence of the personal physique. For
the sake of this demand, we give the following comments in advance.



(a) Data from 11 sensors are expanded to 17 time series by the interpolation
according to the tree structure of Figure 1. This is because sensors fixed
at some joints may irregularly move to create inaccurate data. Therefore,
for instance, movements of two elbows and two knees are computed by using
nearby sensors’ data and normalized bones. Such a process gives 17 x 3 = 54-
row data.

(b) Relative rotation angles is found better than absolute ones for the portability
to a wide range of humans.

(c) As will be explained in the experiment in Section 3.4, the original data set
is further expanded to 69-row data.

(d) The time-frame is selected to be 50 ms. Because of the network communi-
cation and the humanoid movement computation, the time-frame needs to
be long enough. But, this can not be too much. Thus, the time-frame of
50 ms was selected so that the movement can be tracked and reproduced
as an animation smoothly enough based upon the experience of the speech
recognition whose typical case is 20 ms.

(e) In the case of the speech recognition, each time-frame is expressed by only
25 rows or so. Therefore, the body movement recognition, or the gesture
recognition, can not be a direct adaptation of the well-established speech
recognition.

3 Recognizer Design by HMM Learning

3.1 Recognition System

Given the input of the 69-row data stream, it is necessary for the recognizer to
categorize human body movement. The Hidden Markov Model (HMM) is a viable
learning algorithm for this purpose. HMM’s transitions correspond to the labels,
The HMM software can be anything if it has a flexible input/output interface.
We chose the HTK (Hidden Markov Model Toolkit) [4] since the modification of
the I/O style matching with it does not require heavy tasks. Figure 2 illustrates
our configuration of the total gesture recognition system. As is usual in learning
systems, the model is fixed after the training.

3.2 Tasks and Associated Data Preparation

As is expressed by the tree structure of Figure 1, movements of four limbs be-
sides the hips are the most important for the gesture recognition. Therefore, we
prepared eight labels for the movements as in Table 1. For this experiment, we
prepared training and test data sets as follows.

(a) 10 sets of 8 patterns generated by a single person for training the recognizer
(10 x 8 = 80 patterns).

(b) 80 patterns by the same person in a different environment for testing.

(c) Different 8 persons’ patterns for testing (8 x 8 = 64 patterns).
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Fig. 2. Recognition system.

Table 1. Recognition labels for movements

ArmUp| ArmDown| LegUp| LegDown
Left | LAU LAD LLU LLD
Right] RAU RAD RLU RLD

3.3 Number of States

The first step is to identify an appropriate number of states. There are theoret-
ical criteria for this purpose such as the MDL (Minimum Description Length),
however, repeated experiments on real data are essential to decide the actual
best number. Therefore, we have to test various number of states by measuring
the recognition performance. Figure 3 compares the average log-likelihood which
reflects the performance of the recognition by the HMM models!. By this test,
the number of states was judged to be 5 or 6.

The next test is to see the difference between the best model and its runner-
up. Table 2 shows the difference in the log-likelihood. This result indicates that
the more the number of states is, the larger the difference is. Therefore, we chose
the number of states to be 6.

3.4 Selected Features

In parallel to the state number selection, we checked to see which form of the
input data is best for the recognition task. We prepared four types of input data:

(A) Use 17 x 3 = 51-row rotation data,
(B) Use bl-row rotation difference data and 3-row root position (Hips),

! These data correspond to the case (D) of Section 3.4.
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Fig. 3. Average log-likelihood.

Table 2. Difference to the Runner-up

8 9
number of states

number of states

4

5

6

7

8 9

First |-6192.33|-6004.40

-6011.06

-6250.39

-6226.51] -6162.67

Second |-8838.18}-9888.39

-10993.00

-13262.22

-14196.33]-15780.30

difference| 2645.86| 3884.00

4981.94

7011.83

7969.82| 9617.63

(C) Use 105-row data by adding (A) and (B),
(D) Use 69-row data by adding (B) and 5 leaves.

Table 3 summarizes the results of the recognition on the data outside the training
data. By this result, the difference of the rotation angle is better than the rotation

angle per se.

Table 3. Recognition performance

method A| method B| method C| method D

subject 1 (48 patterns)| 25%(12)] 100%(48)] 27%(13)] 98%(47)
subject 2 (46 patterns)| 37%(17)| 87%(40)] 43%(20)]  98%(45)
total 31%(29)] 94%(38)| 35%(33)] 98%(92)

3.5 Animation for Monitoring

There are a few commercially available animation tools for BVH data. But,
we had to develop our own display tool. This is because, as in Figure 2, our
system needs to be designed including the recognizer and the controller for the

succeeding system, the humanoid.



Figure 4 illustrates the course of the LeftLegUp. Thus, the label of LeftLegUp
stands for such series of motions, not a still pose of the left-leg-up. This will be
related to the humanoid motion of Section 4.

Fig. 4. A series of movements for LeftLegUp.

4 Humanoid Motion

4.1 Transmission of Recognized Label

Characters in the animation can behave more sophisticatedly according to the
level of the software. But, humanoids can behave only less flexible. Contemporary
humanoids, even though they have made a great advance, are mostly composed
of metallic materials and powered by motors. Body balances of humans and hu-
manoids are very different. HOAP-2 appearing in this paper has 12 joints with
21 degrees of the movement freedom. Considering this ability, we transmit the
recognition results as commands. Transmitting the BVH data directly leads to
malfunctioning of humanoid motions. Imagine standing on one leg as is illus-
trated in Figure 4. This is possible by HOAP-2, however, its duration needs to
be shorter than actual human movement.

4.2 Execution of Transmitted Labels

The recognition and the labeling of human motions given in Section 3 have
the role of ameliorating the discrepancy between the differences of the freedom
and muscle powers. Thus, the obtained labels for the motion can be used as
commands to the humanoid. The humanoid is controlled by the built-in real-time
Linux. Figure 5-left shows LeftLegUp by the humanoid. Figure 5-right illustrates
LeftLegUp by the animation character, which is closer to actual human motion.



Fig. 5. LeftLegUp by HOAP-2 and the animation character.

5 Concluding Remarks

The technical purpose of this paper included

(a) the recognition of human motions,

(b) the utilization of the recognition results for controlling the humanoid,

(c) imbedding the humanoid to a network environment as a movable computing
node.

As the initiative attempt, these items were satisfied. The use of the recognized
label together with lower level data, including biological ones, can enhance the
sophistication of the role of the humanoid in the network. This includes the
surrogate of a remote human. This is the step connected to this paper’s study.
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ABSTRACT

Methods to combine speedup terms and supervisory con-
cept injection are presented. The speedup is based upon
iterative optimization of the convex divergence. The in-
jection of supervisory information is realized by adding a
term which reduces an additional cost for a specified con-
cept. Since the convex divergence includes usual logarith-
mic information measures, its direct application gives faster
algorithms than existing logarithmic methods. This paper
first shows a list of newly obtained general properties of the
convex divergence. Then, these properties are used to de-
rive faster algorithms for the independent component anal-
ysis. Then, an additional term for incorporating supervisory
information is introduced. The efficiency of the total algo-
rithm is tested using a set of real data - - brain fMRI time se-
ries. Successful results in view of convergence speed, soft-
ware complexity, and extracted brain maps are reported. Fi-
nally, another class of the convex divergence optimization,
the a-EM algorithm, is commented upon.

1. INTRODUCTION

Computing and optimizing information measures comprise
many important problems both in theory and in applica-
tions. Independent component analysis (ICA) {1] is has
dual aspects: It is theoretically interesting due to its semi-
parametric nature, and it is rich in applications due to its
independence of physical entity. This paper covers both of
such aspects.

Usually, the target information measure for optimiza-
tion is based upon logarithm [2] and [3]. But, the infor-
mation measure to be optimized in this paper is the convex
divergence [4]. Since the convex divergence includes usual
logarithmic information measures as special cases, we can
expect better performance than the logarithmic ones. In the

This work was supported by the Productive ICT Academia Program
in the 21st Century COE Programs, and by the Grant-in-Aid for Scientific
Research.

problem of the ICA, the merit appears in convergence speed
without losing the algorithm’s flexibility. This is a featuring
aspect of this paper in theory.

The other side of a coin, the application aspect, is related
to the brain functional MRI analysis (fMRI) [5]. Since the
derived algorithm using the convex divergence maintains
flexibility to create variants, an injection of supervisory in-
formation [6] is possible. Therefore, the organization of this
paper becomes as follows. Section II gives basic properties
of the convex divergence and their relationships to the ex-
tended class of logarithm. Section III gives a formulation of
the independent component analysis as a minimization of
the convex divergence. Then, concrete algorithms are de-
rived. On the convergence speed, the proposed method is
faster than traditional or logarithmic methods. This is ex-
amined in Section IV through brain fMRI map distillation.
The separation of brain map’s active areas is quite success-
ful using the supervisory information. Section V gives gen-
eral remarks on the use of the convex divergence. Other
problems coined into the convex divergence minimization,
e.g., expectation-maximization are commented on.

2. PROPERTIES OF THE CONVEX DIVERGENCE

2.1. Definition and Differential Properties

The convex divergence, or f-divergence [4] (as its forerun-
ner, Eq. (4.20) of [7]), is defined as follows. Let ¢ and ¢
be generic parameters for probability density functions. The
convex divergence between two probability densities p,; and
Py 1s defined by the following equation.

Dy(lle) = [5poW)f (py(¥)/po(y))dy
= [52p)9(py () /Py (y))dy
Dywellpy) 2 9(1) = f(1). (D)

Here, ) is chosen to be a N-dimensional Euclidian space.
The function f(r) is convex for r € (0,00). Its dual func-



tion g(r) is defined by

g(r) =rf(1/r), @)

which is also convex for r € (0,00). We normalize the
constant f(1) = 0. Then, the convex divergence is zero if
and only if py (y) = P, (y), y-a.e.

We consider the case that f(r) is twice continuously dif-
ferentiable. Let 8%/ mean that i-times partial differentiation
with respect to ¢ and j-times partial differentiation with re-
spect to . Then, we have the following relationships.

Ds(ellie) =0, 3)
"Dy (¢llp) =0, )
Dy (pllp) = f(1)Fy (p). )

Here, Fy () is the Fisher information matrix. Because of
the relationship (5), the convex divergence can be regarded
as a fundamental amount of information. Then, we pay at-
tention to the following ratio.

49_f f” 1y ~g11(1
€=Fo = om R ©

By using this constant, the following expansions can be ob-
tained:

B8 = aig(r =) +o(1), ™
O - S =D o). ®

From equations (7) and (8), we find that
LO(r) = {5 (r' 7 = 1) ®

can be regarded as an extended class of the logarithm. We
call this the c-logarithm. In fact, we have

LO(r) = logr. (10)
If we add a set of assumptions that
f(zy) = kf(z)f(y) (11

and
(1) =4¢"(1) =1, (12)

then the a-~divergence [8], [9] is obtained. In this case, the
constants ¢ and « have the following relationships:

c= 132 (13)

and
1—c=12 (14

2.2, Information Matrix and Cramér-Rao Bound

By using the c-logarithm, we have the following equality on
the information matrices.

MO () % B, [cp”m‘”“) (%Lwc) (gj%)] (15)

= -, [p~<1-c) (;@%)] = cFy (), (16)

whose early versions are found in [10], [11], [12]. We con-
sider the case that the information matrices are positive def-
inite, i.e., Fy(¢) > 0, ¢ > 0, and hence M)(f)(go) > 0.
Because of Equations (9), (15) and (16), we have that the
Cramér-Rao bound is independent of ¢. This means that
the general convex divergence can be used in estimation
problems without sacrificing the performance in compari-
son with the logarithmic methods. Guaranteed by this fact,
we discuss iterative minimizations of the convex divergence
for the independent component analysis.

3. INDEPENDENT COMPONENT ANALYSIS

USING CONVEX DIVERGENCE

3.1. Problem Formulation

In the problem of the convex divergence, a set of vector ran-
dom data is given.

z(n) = [z1(n), -, zx(n)]" = As(n),
(n=1,---,N). (17)

Here, the K by K matrix A and the source vector

s(n) = [s1(n), -

are unknown. Additional assumptions are the following.

, SK(n)]T (18)

1. The components s;(n) and s;(n) are independent each
other for ¢ # j.

2. The unknown components s;(n), (i = 1, -+, K), are
non-Gaussian except for at most one specific 4.

Therefore, we want to find a demixing matrix
W =AllA~? 19)

so that the components of

Wa(n) € y(n) = [yn), -y )T @0)

are independent each other for every n. Here, A is a nonsin-
gular diagonal matrix and IT is a permutation matrix. These
two matrices are also unknown.



Using the convex divergence Dy, this ICA problem is
formulated as a minimization of the following cost function.

LNSY) Dy (pln, -, ws) TS 0 (wh)

' Dirw)la())

= Dy(a®)lp(v))

= Ig(/\filyi)

= [, p(z)g (%) dz. (2D

3.2. Update Equations

The generalized gradient {13], relative gradient [ 14], or nat-
ural gradient [15] denoted by V is obtained by multiplying
eWTW after partially differentiating (21) with respect to
W. Then, we have the following equality.

STLNE, Y ALY iy

= -—c/X a(y)g’ (I_V_‘i’)_é%()_y_)) {] - ﬁ(y)wTWT} |Wldz W

= —(:/yq(y)g’ (%%) {I-9()y"}dyw. (22)
Here, 9(y) is a vector
ww_mh%%KJ. 23)

We assume that 9¥(y;) be an odd function such as y? and
tanh(y;). Note that VI, = Vi r. Equation (22) is not yet
in a realizable form as a concrete algorithm since it contains
an unknown probability density g(y). Therefore, the next
step is to find a realizable approximation to (22). Since

a9'(a/p) = —g"(Wp+{d'(1) + ¢"W}q+o(1) (24

holds around p =~ g, we have the following update value for
an iterative minimization.

W (cWTW)
=2 (WTW)
= "] {1 - By W)™} W
+(1 = &) {I = By [9(w)y™]} W] to(l), (@25
and
AW = —p ZEWTW (26)

Here, p; is a small positive number called the learning rate.
Thus, 0 < ¢ < 1 is a region for faster convergence with the
ratio of
c.q
c p
Note that ¢ = 1 is the case of the minimum mutual informa-
tion ICA because of (10).

@7

3.3. Utilization of Past and Future Information

Equation (25) still requires the unknown probability density
function ¢(y). Therefore, we need to give an interpretation
of ¢q(y) in iterative updates. Since p(y) is expected to con-
verge to g(y) as the matrix W is updated, we interpret p(y)
and q(y) as follows.

1. [Use of the past information]
For the current iteration index ¢, the interpretation is
P77 (y) := p(y) and p(y) := g(y).
2. [Use of future estimation)
In this case, the interpretation is p®) (y) := p(y) and
PHI) = qy).

Here, 7 is a natural number.

3.4. Algorithms

The first version utilizes a set of past update information.
[Momentum f-ICA]

If we use p(y) as p*~7)(y) and ¢(y) as p*)(y) at the
t-th iteration, then the sample-based learing is as follows.

AW () = AW () + pup AW (t — 7)
= pe[{T = o)yt W (1)

gl = eyt = Tyt - DTIW (E - 7)]
(28)

c

Here, uy = 7%. Thus, we added a momentum term

AW(t — 7) weighted by ;. Note that the case of py =
1 T4 corresponds to the a-ICA [16]. Further special case of
a = 1,ie, ¢y = 0 is the plain minimum mutual informa-
tion method of {2], [3].

The second version utilizes estimation of a future value.

[Turbo (Look-ahead) f-ICA]
AW (t) = AW (t) + v AW (t +7)
= o [{T = Py IW (1)

g ({1 = (@t + )i+ TIW (E+7)]
29

Here, vy = ;1; = l=¢

The look-ahead terms W(t+7’) and §(¢+ ) are estima-
tions of W (t + 7) and y(t + 7) using the usual log-version,
Thus, we added a predicted term AW (¢ + 7) weighted by
vf.

We give the following comments on the above two up-
date methods.



1. Equation (28)' is the result of a weighted superposition
of convex functions: Positively weighted superposi-
tion of convex functions gives another convex func-
tion.

2. There is a duality between Equations (28) and (29).

3. 7 = 1 works effectively enough for both anticipatory
and non-anticipatory methods.

4. On the use of the look-ahead method, a semi-batch
mode is recommended to show the merit of speedup.

3.5. Partial Supervision

Because of the unknown permutation matrix II, the result-
ing matrix W forces users to identify which source is which.
This enhances undesirable off-line nature of the algorithm.
Therefore, we consider injection of partially supervisory in-
formation so that the target information is recovered as the
top source.

From Equation (20), the observed signal x(n) is ex-
pressed by a mixture of y{n) by

z(n) = Wy(n) < Uy(n). (30)
Let
U (w1, ukl] 3
Here,
uj = [urg, - us) (32)
Then,
z(n) =wyi(n) + - +ugyx(n). (33)

Thus, the vector uy possesses the information on the mix-
ture. Therefore, we consider to control the ordering of
{ur }H< | and each vector’s components. Suppose we have
a set of teacher signals or a target pattern, say R. Then, this
teacher information can be incorporated into the iterative
minimization by adding a descent cost term obtained from

F(U,R) = tr{(R-U)T(R-U)}. (34)
For this cost function, the gradient descent term is
AU = MR -U), (35)

where ) is a small positive constant. If R is nonsingular, the
following approximation can be used

AU = AR{I - (WR™ )} ~ AR(WR-1).  (36)

Since we have to use the effect of AU with the increment
AW, the following transformed version is used.

AV = —W{AU}W. 37

This equation comes from an expansion of an the update
matrix U~ [17], [18].

4. APPLICATIONS TO BRAIN MAP ESTIMATION

4.1, Assigned Task and Teacher Pattern

Experiments in this section is used to evaluate convergence
speed and accuracy of extracted brain maps. An important
feature here is that the test data is a real world one - - not a
simulation.

As was explained in the previous section, the supervi-
sory information is injected to the matrix U by specifying
the task pattern R. This supervision is column-wise. Let a
column vector

a1 = col[0,0,0,1,1,1,0,0,0,---,1,1,1,0,0,0], (38)

be an on-off pattern of the assigned task to the subject. Then,
we compute its power-matched version 7#; where the col-
umn sum is zero and the variance is the same as u,. Then,
Auy was computed by using Equation (33). Since the rest
vectors {#;}, j > 1, are arbitrary, i.e., unsupervised, this
freedom was interpreted as Au; = 0 for j > 1. Note that

(i) Selecting k = 11is a process of finding an appropriate
permutation.

(i) The power matching reduces the amplitude’s uncer-
tainty in A.

4.2. Experiments

The presented algorithm was tested for visual area separa-
tion experiments on human brain fMRI data. Time and spa-
tial axes are transposed so that independent areas are ob-
tained [5]. Figure 1 illustrates the comparison of the con-
vergence speed. This figure shows that

[Presented method with a constant learning rate]
V
[Presented method with
Hestenes-Stiefel type learning rate adjustment]
\
[Minimum mutual information method].

Figure 2 illustrates an obtained activation pattern. Be-
cause of the partially supervised learning, this pattern is ob-
tained as the first column of the matrix U. Figure 3 is the
extracted brain map which gives separation of V1 and V2
areas. This result is compatible with the one obtained from
the t-test.

5. CONCLUDING REMARKS

In this paper, we discussed the utilization of the convex di-
vergence for iterative optimization. Besides the theoreti-
cal interest as a generalization, there is a concrete merit of
speedup of convergence in comparison with usual optimiza-
tion of logarithmic information measures. In the problem
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Figure 1: Speed comparison of the presented methods and
the traditional method.

of ICA, the convex function f(r) was directly used for the
derivation of concrete algorithms. This is because, in the
problem of ICA, the effect of the convex divergence is con-
centrated on the number ¢ of Eq. (6). In a different class
of convex divergence minimizations, however, a restriction
on the function f is necessary so that a closed form update
can be obtained. The a-EM algorithm is such a case, where
the cv-divergence is used. Interested readers are requested to
refer to [11], [12].
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ADDITIONAL REMARKS

Reviewers gave comments on this paper. The authors are
quite thankful to them. Since the comments were diverse
in their contents, the authors decided to summarize their
replies here so that the page space can be effectively used.

1. “Speedup” in this paper is used to indicate the com-
parison of this paper’s method and its subclass, the
minimum mutual information.

2. The method of ICA is different from EM. The ICA is
semi-parametric.

3. Experiments using simulated data are givn in [16]. It
is observed that the speedup is the effect beyond the
increase of the learning rate.

4. For the momentum ICA, ¢ = 0.7 is a recommended
rule-of-thumb. Note that ¢ = 0.5, or & = 0, is the
case of the Bhattacharyya distance [19], and equiv-
alently the Hellinger distance [20]. Thus, properties
obtaind therein will be beneficial to readers.

5. The vertical axis of Figure 1 shows
D(W) 4+ H(X) — % log(2me)
[21]. Therefore, the value can be a negative number.

6. Additive regularization term to the main function can
be used in a wide variety of gradient-style ICA algo-
rithms. It is necassary to decrease this effect as the
iteration proceeds so that the independence of esti-
mated components is the main target. The term used
in this paper worked effectively beuause of its sim-

plicity.
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Abstract. A new class of learning algorithms for independent compo-
nent analysis (ICA) is presented. Starting from theoretical discussions on
convex divergence, this information measure is minimized to derive new
ICA algorithms. Since the convex divergence includes logarithmic infor-
mation measures as special cases, the presented method comprises faster
algorithms than existing logarithmic ones. Another important feature of
this paper’s ICA algorithm is to accept supervisory information. This
ability is utilized to reduce the permutation indeterminacy which is in-
herent in usual ICA. By this method, the most important activation pat-
tern can be found as the top one. The total algorithm is tested through
applications to brain map distillation from functional MRI data. The
derived algorithm is faster than logarithmic ones with little additional
memory requirement, and can find task related brain maps successfully
via conventional personal computer.

1 Introduction

Optimization of information measures is a rich resource of learning algorithms.

This is mainly because observed data are often probabilistic in nature. Indepen-

dent component analysis (ICA) [1] is a typical case obtained from such opti-

mization. Usually, the performance measure for the optimization is based upon

logarithmic information measures [1], [2], [3]. But, there is a wider class of in-

formation measure called the convex divergence or the f-divergence [4]1.
Starting from discussions on the basic properties of the f-divergence, we derive

a new class of ICA algorithms called the £ICA by minimizing this information

measure. Contribution of this paper can be previewed as follows.

(1) New properties of the f-divergence and related information measures are
presented.

(ii) The £ICA contains usual logarithmic ICA as a special case. Convergence
speed is faster than the logarithmic one.

(ili) Obtained algorithms are modifiable to be partially supervised learning.

(iv) Corresponding software is executable on a personal computer. Applications
to human brain map distillation from functional Magnetic Resonance Imag-
ing (fMRI) are successfully made.

! Equation (4.20) of [5] is a forerunner of the f-divergence.



2 Convex Divergence and New Properties

2.1 Definition and Properties

Convex divergence is a measure of information which gives a directed distance
between two probability densities py and p, by using an adjustable convexity.
Here, ¢ and ¢ are generic parameters. Let f(r) be convex on r € (0,00), and

let g(r) Y (1/r) be its dual convex function. Then, the convex divergence, or
f-divergence, is defined as follows [4].

Dy (o) & /y P () F (0o () /9o )y

= /y Pe )9y (1) /p4(y))dy = Dy(ell) > g(1) = F(1) L0 (1)

We are interested in the case that f(r) is twice continuously differentiable. This
assumption makes it possible to discuss information matrices and gradient style
learning. Differential properties are as follows.

Dy(ellp) = Dy(elle) =0 (2)
D (pllp) = 8 Dy(pll) = 0 (3)
0% Dy (plip) = () Fy (p) = g"(1)Fy () = 8*°Dy(plp) 4)

Here, 6% stands for i and j times partial differentiation with respect to 1 and
i, respectively. Fy () is the Fisher information matrix.
Next, we define the following constant?.

dﬁf f”(lz _ //(1
o= i =~ € (-00,00), (®)

Then, the following expansion holds around r = 1.

ity = () {0 e = 1} +o(1) (6)
2= () {&Zre -1} +o) )

Here, o(1) is the higher order term. From Equations (6) and (7), we find that
L(r) = (' = 1) (8)

is regarded as an extended class of logarithm. In fact, L(})(r) = log r in the limit.
This “c-logarithm” has relationships to the Fisher information matrix and the
Cramér-Rao bound. Let L. be an abbreviated notation of L(¢) (pp). Then, we
have

- def —2(1~ (- 2
M () By, [eng™™ (%) (85)] = ~En, [p2%7 ()] ©)
% If we add a set of assumptions that f(zy) = kf(z)f(y) and (1) = g"(1) = 1, then

the a-divergence [6], [7] is obtained. In this case, c = 152 holds. The symbol o(1) in
(6) and (7) becomes unnecessary.



The case of ¢ =1 is reduced to the Fisher information matrix Fy(y):
My () = eM{ () = cFy (p). (10)

Because of Equations (10), the use of the information matrix M)(,C) () does not
deteriorate the Cramér-Rao bound [8], [9], [10]. We assume that underlying prob-
lems are regular, so that M(?(¢) > 0, F(p) > 0, and ¢ > 0.

2.2 Optimization Transfer

Equations (4), (8), (9) and (10) mean that the f-divergence and the c-logarithm
can be used as targets of optimizations instead of logarithmic information mea-
sures. That is, optimizations can be transferred to the f-divergence and Jor to the
c-logarithm [10], [11]. From the next section, independent component analysis
is discussed through the minimization of the f-divergence between the observed
joint probability density p and the independent probability density g¢.

3 The f~-ICA Algorithm

3.1 Derivation of the Algorithm
In the problem of ICA, we are given a set of vector random variables.
x(n) = [z1(n),- -, zx(n)]F = As(n), (n=1,---,N). (11)
Here, the matrix 4 and the vector
8(n) = [s1(n), -+, sx(n)]” (12)

are all unknown but the following: (i) The components s;(n), (i = 1,---,K),
are non-Gaussian except for at most one i. (i) The components s;(n) and s;{n)
are independent each other for 4 # 5.

Under the above conditions, we want to estimate a demixing matrix

W = AITA™! (13)

so that the components of

Wa(n) E y(n) = [y(n), -, yx ()] (14)

are independent each other for every n. Here, 4 is a nonsingular diagonal matrix
and IT is a permutation matrix, both of which are unknown too.

For the independent component analysis of this paper, we minimize the fol-
lowing f-divergence.

(NS YD) = Dy (plun, - wi) TS, (o)

= D, (T a:wdllpts, -+ w)) E LAY (15)



This quantity counts how the joint probability density p(y1,- -, yK) is close to
HZ —1 ¢:(y:). Traditional methods [1], [2], [3] minimize the mutual information or
maximize the differential entropy, which corresponds to ¢ = 1.

For the estimation of the demixing matrix W, we use a gradient descent. In
this case, we obtain

VI -2 [ wiawy (U0 (T py)aT) de

p(x)
(16)
Here,

T a4 (y1) e wi) ]
o(y) = or(wn), e (ur))” = — (S, ghetud] (17)

is a nonlinear function assumed to be such as ¢;(y) = y® or tanh(y). For the
natural gradient [12], [13], [14], we multiply ¢W7 W. Then, we have

VI (ALY -G W)

= —C i _ T

- /yq@)g (84 {1 - e(w)y”} dyw

= 1"W)[e{I = By o™} W (1~ ) {T - By low)y W]+ o(1)(18)

Here, the last equality is obtained by the expansion of qg’(q/p) around p =~ g¢.
Then, the update equation is

W(t+1) = W(t)+ 4,W (1), (19)

with ~

AW = o0 {-VLNZY, (20)
Here, p(t) is a small positive number called the learning rate. We call the learning
algorithm (19) and (20) the £ICA. Note that ¢ = 1 is the case of the minimum
mutual information ICA [2], [3]. The region 0 < ¢ < 1 gives faster convergence
with the ratio of 1+ 1524,

3.2 Realization Using Past and Future Information

Equation (18) is a resource of f-ICA algorithms. The next important step is
to find effective interpretations of this expression. Since we are given sample
observations, the expectation Epy) can be approximated by repeated applica-
tions of given data in either a batch or a successive style. But, the expectation
Ey(y) contains an unknown probability density function ¢{y) because of the
semi-parametric formulation of ICA. Since “p(y) — q(y)” holds as the update is
repeated, p(y) and ¢(y) can be considered as two time-ordered states extracted
from learning iterations [15]. Therefore, we can use a time-shifted version of p
for the sake of unknown ¢. This interpretation leads to the following versions
which are readily programmable for computer software.



[Momentum f-ICA]
If we use p(y) as p~")(y) and ¢(y) as p® (y) at the t-th iteration, then the
sample-based learning is realized as follows.

AW () AW () + pdW(t - 7)

= P [{T = PO IW (el — eyt = 7yl - W (-] (21)
Here, puy = ;. Thus, we add a momentum term AW (¢t — 7) weighted by e

[Turbo (Look-ahead) f-ICA]
If we use p(y) as p! (y) and q(y) as p*+7)(y) at the t-th iteration, then the
sample-based learning is realized as follows.

AW (t) & AW () + v AW (¢ + 7)
= ) [{1 = OO YW O+rell = (e + Dyl + 1) W (e +7)] (22)

Here, v, = 121;' = %, and W(t + 7) is a predicted future value.

3.3 Batch and Semi-Batch

Since we are given {z(n)}I_, as a set of source vectors, the expectation Epl]
is approximated by —71: ZL[-}, where T is the number of samples in a selected
window. The case of T' = N is the full batch mode. If we use T < N as a window,
it becomes a semi-batch mode. If T = 1, the case is an incremental learning. It is
possible to choose a window size smaller than N for the look-ahead part so that
the computation is alleviated. This style of semi-batch mode is recommended
for the turbo f-ICA.

3.4 Partial Supervision

Because of the unknown permutation matrix I7, the resulting matrix W still
requires users to identify which source is which. This aggravates undesirable off-
line nature of the algorithm. Therefore, we consider to inject partially supervising
data so that the target information is recovered as the top source.

From Equation (14), the observed signal 2(n) is expressed as a transformation

of y(n) by

z(n) = Wly(n) & Uy(n). (23)
Let
U fuy, - ug) (24)
and
uj = [ury, - ugs]” (25)
Then,

z(n) = wiy1(n) + -+ - + ugyx(n). (26)



Thus, the vector {u; }f(zl possesses the information on the mixture. Therefore,
we consider to control the ordering of u;. Suppose we have a set of teacher
signals or a target pattern, say R. Then, this teacher signal can be incorporated
into the iterative minimization [16]. The method is to add a descent cost term

F(U,R)=tr{(R~-U)T(R-U)}. (27)

For this cost function, the gradient descent term is

AU =~(R - U), (28)

where v is & small positive constant. If R is nonsingular, the following approxi-
mation can be used

AU = yR{I — (WE™Y)} ~ yR(WR - ). (29)

Since we have to use the effect of AU with the main increment AQW of (20),
the following transformed version is used.

AV = —-W{AU}W. (30)

This equation comes from an expansion of an the update matrix U~ [11], [16],
[17]. Since we applied the natural gradient to obtain the main update term (20),
we need to use the same method to AV. But, the natural gradient in this case
is the same as AV becase of the following equality:

AV = —-W{AUYUTD)YW(WTW) = AV. (31)

4 Real-World Applications of the f-ICA: Brain Map
Distillation

The purpose of this experiment is to find independent spatial patterns in the
brain functional magnetic resonance imaging (fMRI) using a conventional per-
sonal computer. Since Equation (26) holds, we can regard each column vector
of U = W™ as an activation pattern of separated brain maps [18]. The fMRI
data are measured by assigning a series of “on-off” stimuli to a tested person.
Figure 1 illustrates convergence speed. The dotted line shows the speed of
the usual logarithmic method (minimum mutual information with natural gradi-
ent). The solid line is the presented method using the momentum strategy with
constant learning rates. Thus, the presented method in this paper is successful.
Note that, placed between these two lines is the curve using Hestenes-Stiefel type
learning rate adjustment. Because the true cost function is semi-parametric in
ICA, time-dependent adjustment of the learning rate may not always be effective.
Figure 2 is the extracted activation pattern (a time course) which corresponds to
an assigned on-off task to a subject (a young male)®. This pattern is the top one,
i.e., uy. The prior knowledge injection of Section 2.4 was so successful. Figure 3
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Figure 1. Learning speed. Figure 2. Corresponding activation.

Figure 3. Separation of V1 and V2.

is the resulting brain map. This map clearly separates the edges of visual regions
V1 and V2.

Experiments were executable by a conventional personal computer. This is
due to the increased speed of the presented algorithm which exploits the second
term of Equation (18). A usual memory size is sufficient since the presented
algorithm requires very little memory increase.

5 Concluding Remarks

In this paper, the concept of the optimization transfer to an information measure
which is more general than the logarithmic one was explained. This paper showed
(i) basic properties of the f-divergence and related information measures, (ii)
derivation of a general class of ICA algorithms based upon the convex divergence,
(iil) reduction of indeterminacy in ICA by using a partially supervised strategy,
(iv) applications to human brain’s fMRI map distillation. It was shown that
human brain’s fMRI data can be handled by a conventional personal computer.

In this paper’s ICA, the transferred optimization was the minimization of the
convex divergence. There is an important relative to the optimization transfer.
1t is the alpha-EM algorithm. In that case, the likelihood ratio of Equation (8) is

8 The authors are very grateful to Dr. Keiji Tanaka and Dr. R. Allen Waggoner of
RIKEN BRI for permitting them to try out their data set.



mazimized. This method contains the traditional log-EM algorithm as its special
case. Interested readers are requested to refer to 8], [9], [10].
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Abstract — Iterative optimization of convex diver-
gence is discussed. The convex divergence is used as a
measure of independence for ICA algorithms. An ad-
ditional method to incorporate supervisory informa-
tion to reduce the ICA’s permutation indeterminacy
is also given. Speed of the algorithm is examined us-
ing a set of simulated data and brain fMRI data.

I. INTRODUCTION

Computing and utilizing information measures have been
placed at the center of information theory. In this paper,
such a measure is the convex divergence. Following a list of
new basic properties of the convex divergence, this measure
is iteratively minimized for Independent Component Analysis
(ICA). The speed is faster than logarithmic methods. Flex-
ibility to accept supervisory information is maintained. The
obtained algorithms are tested using both simulated data and
brain functional Magnetic Resonance Imaging data (fMRI).

II. CoNnVEX DIVERGENCE, INFORMATION MATRIX
AND CRAMER-RAO BOUND
Let 9 and ¢ be generic parameters for probability densities.
The convex divergence, or f-divergence [1}, between py and p,,
is defined by the following equation.
def

Dslle) = [y, 2o W) f (s @) /po(w)dy > F(1) S0 (1)
The function f(r) is convex for r € (0,00). For g(r) =
rf(1/r), the duality Ds(¥ll¢) = Dg(pllty) holds. We con-
sider the case that f(r) is twice continuously differentiable.
Then, the following differential equalities hold:

8Dy (plp) =0, 0™Dslellp) = f'(VFr(p). (2)

Fy(p) is the Fisher information matrix assumed to be pos-

itive. Next, define ¢ def /() = -g"(1)/g'(1) € R

Then, the following expansions are obtained:
IO Q) = (r =) /{e(1 = ¢)} +o(1), @)
9" /g’ (1) = —(r'* = 1/{e(l - )} +0(1).  (4)
Equations (3) and (4) indicate that L' (r) = (r17¢=1)/(1—¢),
with L(l)(r) = logr, can be regarded as an extended class

of the logarithm. This is called the c-logarithm. Then, the
following equality can be obtained:

M) ¥ B, 709 () (8]

(T 2
= -E, [p (1-0) (foaﬁﬁ)} =cFy(p).  (5)
Because of Equation (5), the Cramér-Rao bound is indepen-

dent of ¢. Therefore, the convex divergence can be used in
estimation problems without sacrificing the performance.

1This work was supported by the Productive ICT Academia
Program in the 21st Century COE Programs, and by the Grant-in-
Aid for Scientific Research.

III. INDEPENDENT COMPONENT ANALYSIS

In the ICA, observed vector data is assumed to satisfy
o(n) = [z1(n), -, zx(n)]" = As(n), (n=1,---,N). (6)
The mixing matrix A and the source vector s(n) are unknown
except for the following: (i) The components s;(n) and s;(n)
are independent each other for i # j. (i) The unknown
components si{n), (i = 1,---,K), are non-Gaussian except
for at most one specific i. Therefore, we want to find a
de-mixing matrix W = AIIA™! so that the components of

Wa(n) et y(n) are independent each other for every n. Here,
the nonsingular diagonal matrix A and the permutation ma-
trix II are also unknown. The de-mixing matrix W is itera-
tively estimated by adding a decent cost fraction of

—{8Dg(TT{, aslwi)llp(ys, - -+, yx ) [OW HeWTW)
= (1) [e{I = By 9y }W

H(1~ I = By W@y W] +0(1). (1)
Here, 9;(r) is assumed to be such as r® or tanh(y). Equation
(7) can be realized as (i) utilization of the past update (mo-
mentum [CA), and/or (i) utilization of the prediction (look-
ahead ICA). Plain logarithmic methods [2] do not have the
property (i) nor (ii). Figure 1 shows momentum ICA’s speed
and the resulting brain map separating V1 and V2 areas. In
this experiment, an additive regularization term which reflects
designed time course is incorporated [3].

IV. CONCLUDING REMARKS
Transferring optimization to the divergence gives effective
tools. Applications to the EM algorithm can be found in [4].
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Abstract

Generation and allocation of mobile agents that
can convey various contents are discussed. Mobile
agents can move around the networked computing en-
vironment autonomously. Therefore, by plain strate-
gies, traditional agents often concentrate themselves
in a higher performance computer. This creates un-
desirable monopoly or oligopoly by a few computers
which leads to degradation of the total network per-
formance. This paper presents a method to circum-
vent such concentrations. The presented system re-
alizes a novel agent allocation mechanism over the
network where each agent can migrate within the
network in a performance-increasing manner. This
system is built on the middleware called FINALE
(Framework for Intelligent Network Agents Looking
at their Environment). The FINALE itself is im-
proved so that the total network watch becomes pos-
sible. Experiments measuring the total network per-
formance show that the presented agent allocation
method is very effective and close to the omniscient
situation.

1. Introduction

Recent progress in networking technologies creates
a variety of hardware for the network. In spite of
limited computational resources, terminal machines
for the network, such as cellular phones and PDA’s,
are versatile in their own sophistications. Then, net-
worked computers need to watch out and control dis-
patched tasks so that the total network performance
is free from undesirable concentrations on specific
sub-networks. This is because each computer may
have a different computing resource in the network.
Therefore, it is necessary for the network computing
system to have a resource allocation mechanism for
the high performance operation. We regard that this
mechanism is desirable if

(i) the allocation reflects the total network perfor-
mance, and

(ii) terminal users need not consider the network in
detail.

Considering these trends, we select the mobile agent
strategy and present a novel resource allocation
method for such a network.

Mobile agents (often called agents in the text un-
less confusion exists) can move around the network.
This is a fascination property. But, naive strategies
may cause undesirable concentration on a few spe-
cific computers. Therefore, we provide a middleware
for the agents migration, which is called FINALE
(Framework for Intelligent Network Agents Looking
at their Environment) [1] written in Java. In this
paper, the FINALE itself is extended on the agent
migration control.

Following this section, this paper is organized as
follows. In Section 2, mobile agents and the re-
source allocation are discussed. Explanations on two
types of administrations are given. In Section 3, the
structure and ability of the basic FINALE are ex-
plained. In Section 4, agents scheduling methods are
explained. The original FINALE is extended here
so that it matches to the controlled mobile agent mi-
gration. Section 5 shows experiments on performance
evaluation. Therein, performance near to the omni-
science knowledge is reported. Concluding remarks
are given in Section 6 including further sophistica-
tions.

2. Mobile Agents and Network Re-
sources

One of the main purposes of this paper is to give
an effective framework contributing to the ubiquitous
computing. The importance is to find a systems tech-
nology to utilize the network’s computing resources
as effectively as possible. There can be a variety of
choices on basic strategies. We choose the mobile
agent technology since it can support various contem-
porary information terminals such as cellular phones
and PDA’s beside traditional computers [2].



2.1. Mobile Agent Technology

The mobile agent technology applied to the net-
work computing is promising due to the possibility to
move around and to add various features to agents
[3]. This can be easily admitted from theoretical or
abstract thinking at the idea level. But, the impor-
tance exists how to devise this mechanism. Before
giving detailed explanation on this paper’s contribu-
tions, we list up two salient features of the mobile
agents. The mobile agent technology is different from
other realizations as follows.

1. Mobility:

Each agent can move in the network. There are
two types of agents:

(i) an agent which can move with its class file
[4], 5], and

(ii) an agent whose class file need to be left at
its original environment [6].

There are another classification on agents:

(a) an agent which can carry its current status
at its migration [4], 7], and

(b) an agent which need to restart when it mi-
grates [5].

Our agents are of the type (i)(b). The reason
that our type is not (i)(a) is that we are inter-
ested in the resource allocation. In addition to
this, once our agent finds its environment, the
execution can start. In this paper, Java class
files will be used.

2. Flexibility:

Besides the class file, an additional set of meta
information can be attached to each agent when
it migrates. Such a set of meta information can
be utilized on the administration of the agent
migration and the parameter adjustment.

2.2. Optimization of Resource Allocation to
Mobile Agents

If agents could move to anywhere at their uncon-
trolled will, agents would select possibly one com-
puter whose original or starting resources are affluent.
Provided that one computer were much more pow-
erful than others, this could be allowed. But, this
still wastes other computers’ resources. Computer
networks holding only a few dominant machines are
unrealistic these days, however, oligopoly may still
emerge. Therefore, we have to find a mechanism to
avoid such concentrations of agents.

The concentration may occur if agents can move
without any guidance or with a static or an old one.
Thus, it is desirable for agents to have the latest in-
formation for its migration and resource acquisition.
Figurel illustrates what should be considered for the

Execution Time
Execution Time

Figure 1: Resource allocation

optimization of resources. The width of machines A,
B, and C represents conceptual computational power
and resources. If agents in the machine B are com-
pleted and yet the rest agents run in machines A and
C, the CPU of the machine B becomes idle. There-
fore, we want to devise a mechanism to migrates
agents from the machine A as is expressed by a thick
arrow. The right side of Figure 1 is a resulting allo-
cation while the networked system is working. Here,
we would like to notice readers in advance that this
figure still conveys static aspect since actual mecha-
nism in later sections provides queues for migrating
agents.

2.3. Scheduling of Mobile Agents

Scheduling considered in this paper stands for the
direction for agents to move in the network. The
network here is closed in the sense that agents can
move to computers with access rights. LAN is such
an example. The network size is independent of this
definition.

In order to make each computer’s completion time
even, there are two types of scheduling:

(a) Scheduling of agents’ migrations between com-
puters.

(b) Scheduling of agents’ execution order in one
computer.

For Item (a), we introduce the concept of the task size
(TaskSize). TaskSize is a measure which reflects the
heaviness of each agent’s task. Thus, the FINALE
decides the destination of the migration. Then, the
destination computer decides the ordering with the
migration information and its own environment.

2.3.1. Destination Decision

Concerning to Item (a), the network system com-
putes the expected completion time (ECT), and then



decides the destination machine. The ECT depends
on each computer.

ECT [ms]| = TaskSize/k; [ms] (1)

Here, the number k; stands for the j-th computer’s
ability. A faster machine with a higher clock fre-
quency has a proportionally larger value.

2.3.2. Execution Order

After the migration of an agent, each computer
decides which agents should be processed. The basic
strategy is the smallest-task-size-first strategy. That
is, an agent with the smallest TaskSize is processed
with the highest priority. But, the preemptive control
may occur according to the information given at the
migration. This part is explained in Sections 3 and
4.

3. FINALE

3.1. Structure of the FINALE

It is necessary to prepare a middleware which gives
an environment to support agents’ generation, migra-
tion and execution. FINALE (Framework for Intelli-
gent Network Agents Looking at their Environment)
[1] written in Java is a good candidate for the resource
allocation. Figure 2 shows the basic configuration of
the FINALE.
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Figure 2: Basic configuration of the FINALE

There are four core parts in each FINALE unit. Their
roles are as follows.

1. Manager administrates generation and migra-
tion of agents. Especially, the manager controls
allocation of agents.

2. Messenger is used for communications between
FINALE units. Note that the control of agents
is undertaken by the manager.

3. Laborer gives CPU rights to agents with or
without the computer priority. So far, each pro-
cessor in one FINALE unit accepts one agent for
execution.

4. Scheduler decides the scheduling based on mu-
tual queries between computers.

3.2. Activities in FINALE

The process transition in the FINALE is as fol-
lows:

[generation] — [ready] —
[migration (when necessary)] — [ready] —
[run (if migration occurs)] — [report)

“Generation,” “Migration,” “Execution,” “Report,”
are explained in more detail as follows.

1. Generation:

This is a process of turning a Java class file to an
agent via the FINALE. Meta information con-
taining

{(a) the generated time,

(b) the generated position (a machine),

{c) the task size,

(d) the deadline,
)

(e) the file information

are needed for execution. Here, the deadline is
a maximum duration for the preemption.

2. Migration:

When an agent becomes running, it may look
for an executable machine. Any destination of
the agent is not pre-assigned, but is found by
the network scheduling algorithm. Agents are
serialized before they migrate. Since each agent
possesses a class file and meta information, it be-
comes active in the new environment. Such dy-
namic loading is possible because of Java’s abil-
ity. Figure 3 illustrates the migration from a
computer to another.

3. Execution:

When an agent migrates to the destination, it is
placed in the target machine’s queue. The po-
sition in this queue need not be at the end, but
can be in its middle by reflecting TaskSize. The
execution occurs by its class method’s invoca-
tion.

4. Report:

When an agent completes its execution, this sta-
tus is reported to the computer which generated
this agent.
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4. Process Scheduling over the Network

The network computing via agents requires an in-
tegrated scheduling both in one computer and inter-
computers. We explain such a total scheduling meth-
ods step by step.

4.1. Default Model (Level 1)

The default model stands for a naive system which
assigns an equal number of agents to each machine
according to their generated order. The default
model uses the original FINALE which was explained
in Section 3. Note that this basic system will be ex-
tended in Sections 4.2 and 4.3, which is this paper’s
main contribution.

Figure 4 illustrates such an unsophisticated
scheduling. Since this assignment does not reflect

generate agent
|

FINALE

rer

disposed agents queue

i th generated agent

FINALE /"

Figure 4: Default model

each computer’s CPU power nor any resources, com-

pletion times of agents become very uneven.

4.2, Information Administration Server
(Level 2)

The next step is to relocate agents, i.e., to cause
forced migration. Repeated migrations of agents may
degrade the network performance because of exces-
sive communications. Therefore, at Level 2, we de-
sign a mechanism which does not transfer agents but
only their essential information. For this purpose,
the FINALE was extended so that it can behave as
an administration server for this information. The
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Figure 5: Information administration server

administration server has a queue for generated in-
formation corresponding to each agent. This infor-
mation contains the name and the generated posi-
tion of the agent. There is another queue which con-
tains only over-deadline agents’ information. Figure
5 illustrates this mechanism. Such a mechanism can
improve Level 1, however, it does not reflect each
computer’s ability yet.

4.3. Inside Scheduling (Level 3)

Computers in the network are usually different in
their CPU powers. Therefore, powerful computers
can accept many agents. Inferior computers can ac-
cept few. Yet, inferior computers need to be utilized
as members of the network. Therefore, Level 3 is
provided to realize the mechanism which can adjust
termination times of computers as even as possible.
Figure 6 illustrates this machanism of Level 3.
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At Level 3, we prepare an information queue for
each computer. This mechanism is heavier than that
of Level 2, however better performance can be ob-
tained. This is because each agent’s information is
stored in a selected queue by predicting termination
time.

One may have a feeling that the environment for
each agent varies with time. Pre-assignment or pre-
diction may fail. Therefore, Level 3 contains an in-
formation feedback mechanism. Each agent’s actual
termination time is reported so that the selection of
the best queue can reflect actual results. If a big
discrepancy is detected between actual and previous
scheduling, corresponding agent’s information is ex-
changed for the dynamic model improvement.

5. Performance Measurement

In this section, we present experimental results on
the performances of the Levels 1, 2, and 3, as well
as the omniscient performance. Here, “omniscient”
means that perfect oracle with no misplacement nor
division into agents. This ideal situation can never be
attained in agent computing, so that our purpose is
how to make our system performance as close as pos-
sible. Measurements are performed in the following
way.

In our experiments, we checked to see the follow-
ing.

(i) How the presented methods can perform in the

sense of the execution time.
(if) How the latency time is increased or decreased.

The agent set is generated by a benchmarking de-
terminant computation. Table 1 describes a set of
resulting performances. Figures 7 and 8 are their
graphical illustrations. X-time in Table 1 stands for

Table 1: Execution time and latency time

strategy | X-Time | L-Time | presenter
Level 1 249.4 | 51893.3 | anybody
Level 2 110.4 | 21572.7 | this paper
Level 3 108.0 | 24799.7 | this paper
OMNI 100.0 - the omniscient

the execution time, and L-time means the latency
time. OMNI stands for the omniscience which can
never be achieved by human knowledge. The X-time
is normalized by OMNI=100 which is also a normal-
ized value of the JVM execution time without agents.
Table 1 tells the following.

(1) The execution times of Levels 2 and 3 are much
better than Level 1. This is because of the
existence of the information server which en-
ables each computer to possess its execution sta-
tus. Level 3 is better than Levels 1 and 2, and
is nearer to the unrealizable omniscient perfor-
mance. This is due to a kind of conscience
mechanism for arranging the termination time
by each machine.

(ii) On the latency time, Levels 2 and 3 are similar.
But, Level 2 is better than Level 3. This is natu-
ral since Level 2 issues via the small-first princi-
ple which has low overhead. On the other hand,
Level 3 reallocates agents according to their in-
formation.

(iii) It is important emphasize that X-time includes
L-time for all agents in each machine. Therefore,
X-time is authoritative on measuring the system
performance.

6. Concluding Remarks

The main purpose of this paper was to show that
resources in the computer network can fully utilized
via mobile agent strategy. It is expected that the mo-
bile agent method can contribute to the realization
of ubiquitous computing. Therefore, our study was
focused on the network where mobile agents exist.
In this paper, we developed network adiministration
mechanisms where total system can process agents in
a shorter time. It is important to note here that each
machine are heterogeneous in its power. We started
from the basic FINALE.
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The FINALE-based systems presented in this pa-
per showed the performances summarized in Table 1.
This is a creditable result of mobile-agent-based sys-
tems. Besides the speed, any user can exploit our sys-
tem only by understanding the communication mech-
anism. Therefore, developers of application software
can use our system without knowing the inside of the
network. They need to generate Java programs with
usual class files.

Our system has further possibility of improve-
ments. By listing up such possibility, we complete
this paper.

(a) When we turn one big Java program into a set of
mobile agents, task sizes of resulting agents can
not be predicted with a good guess in advance.
It is desirable to have a good prediction method

on this information.

(b) Methods in this paper do not have its own secu-
rity mechanism. Although this theme is not the
main focus of this paper, it is worthy to pursue
towards applications with security demands.

Acknowledgment

This study was supported by the Grant-in-Aid for
Scientific Research #15300077 and by the Produc-
tive ICT Academia of the 21st Century COE Pro-
gram granted to Waseda University. The authors are
grateful to Mr. Y. Aoki of SONY for his early con-
tributions.

References

[1] Y. Aoki, “Construction of the FINALE with a
Three-Dimensional Library for Distributed Co-
operative Application” Master’s Thesis, Depart-
ment of Electrical, Electronics and Computer
Engineering, Waseda University, 2002.

(2] K. Hiroshige, K. Kawakami, H. Sasaki, Y.
Okataku, and S. Honiden, “Agent Migration
Control for Mobile Environment,” IPSJ SIG
Notes on Mobile Computing and Wireless Com-
munications, 2001.

[3] A. Fuggetta, G.P. Picco, G. Vigna, Understand-
ing Code Mobility, IEEE Trans. Soft. Eng., Vol.
24, No. 5, pp. 342-361, 1998.

[4] B.D. Lange and M. Oshima, “Programming and
Deploying Java Mobile Agents with Aglets,”
Addison-Wesley, 1998.

(5] 1. Satoh, “A Mobile Agent-Based Framework
for Active Networks,” Proceedings of IEEE

Systems, Man, and Cybernetics Conference
(SMC’99), pp. 71-76, IEEE, 1999.

[6] T. Kawamura, T. Hasegawa, A. Ohsuga, S.
Honiden, “Bee-gent: Bonding and Encapsula-
tion Enhancement Agent Framework for Devel-
opment of Distributed Systems,” Systems and
Computers in Japan, John Wiley & Sons, Inc.,
Vol. 31, No. 13, pp. 42-56, 2000.

[7] E. Truyen, B. Robben, B. Vanhaute, T. Con-
inx, W. Joosen and P. Verbaeten, “Portable Sup-
port for Transparent Thread Migration in Java,”
Lecture Notes in Computer Science, Springer-
Verlag, September, 2000.



Middleware Design Issues for Ubiquitous Computing

Tatsuo Nakajima, Kaori Fujinami, Eiji Tokunaga, Hiroo Ishikawa
Department of Computer Science
Waseda University

tatsuo@dcl.info.waseda.ac.jp

ABSTRACT

Our daily lives will be dramatically changed by embedded
small computers in our environments. The environments are
called ubiquitous computing environments. To realize the
environments, it is important to reduce the cost to develop
ubiquitous computing applications by encapsulating com-
plex issues in middleware infrastructures that are shared by
various applications.

In this paper, we describe three middleware infrastruc-
tures for supporting ubiquitous computing, that have de-
veloped in our projects. Our infrastructures have tried to
hide some complexities to make it easy to develop ubiqui-
tous computing applications in an easy way. We also show
some lessons learned in our projects.

Keywords
Ubiquitous Computing, Middleware Design

1. INTRODUCTION

Our daily lives become more and more complex every
day. Information technologies have been increasing these
complexities, because a large proportion of our daily lives
is currently spent in analyzing various sorts of information.
Ironically, present ubiquitous computing technologies will
increase the amount of such information dramatically, and
increase complexities in our daily lives. A variety of ap-
pliances surrounding us rapidly become commodities. To-
day, it is very diflicult to create an appliance that offers
special, distinctive features. For example, we cannot dis-
tinguish among different vendor’s televisions. Therefore, it
is important to take into account pleasurable experiences
when a user uses the appliances[14].

These devices and appliances should be integrated to work
together, and it is important to develop many attractive ser-
vices and applications. However, it is not easy to develop
ubiquitous computing applications on exisiting software in-
frastructures currently since we need a variety of knowledge
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to develop them. We believe that middleware infrastruc-
tures for ubiquitous computing that hide a variety of com-
plexities such as distribution and context-awareness are im-
portant to make it easy to develop ubiquitous computing
applications.

In this paper, we present overviews of three middleware
infrastructures that we have developed. We have considered
the following issues during the design and implementation
of our systems.

o Which abstraction is appropriate ?

¢ How to hide complexities in ubiquitous computing en-
vironments?

¢ How to reduce the development cost of middleware ?

Our middleware infrastructures offer high level abstrac-
tion for building specific application domains to hide com-
plexities such as distribution and context-awareness. We
report how to offer high level abstraction and to implement
non functional properties hidden in the middleware infras-
tructures. We also discuss how to implement them on stan-
dard infrastructure software and protocols to make it easy to
develop our systems. Finally, we show what we have learned
during their design and implementation.

The remaining of the paper is structured as follows. Sec-
tion 2 describes three middleware infrastructures for ubig-
uitous computing. In Section 3, we show six lessons learned
for building our middleware, and Section 4 concludes the

paper.

2. MIDDLEWARE INFRASTRUCTUREFOR
UBIQUITOUS COMPUTING

This section describes three middleware infrastructures
that have developed in our project. These middleware in-
frastructures do not offer generic services for building ubig-
uitous computing applications. They support to develop
applications for specific domains to realize ubiquitous com-
puting visions.

2.1 Middleware for Mixed Reality

2.1.1 Design Issues

The middleware infrastructure described in this section
allows us to build distributed mixed reality applications in
an easy way. When designing the middleware, we take into
account the following issues.
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¢ An application programmer should not take into ac-
count complex algorithms for implementing mixed re-
ality applications.

o Distribution should be hidden in the middleware.

¢ Dynamic reconfiguration according to the current sit-
uation should be hidden from a programmer.

Our middleware infrastructure makes it dramatically easy
to develop mixed reality applications for ubiquitous comput-
ing by composing existing multimedia components, and the
connections among the components are reconfigured when
the current situation is changed, but the change is not aware
from programmers.

2.1.2 Basic Architecture

Our middleware infrastructure called MiRAGe[16] con-
sists of the multimedia framework, the communication in-
frastructure and the application composer, as shown in Fig-
ure 1. The multimedia framework is a CORBA(Common
Object Request Broker Architecture)-based component frame-
work for processing continuous media streams. The frame-
work defines CORBA interfaces to configure multimedia com-
ponents and connections among the components. In the fig-
ure, each circle means a multimedia component that can be
controlled through the CORBA interface.

Multimedia components supporting mixed reality can be
created from the MR class library. The library contains
several classes that are useful to build mixed reality ap-
plications. By composing several instances of the classes,
mixed reality multimedia components can be constructed
without taking into account various complex algorithms re-
alizing mixed reality.

The communication infrastructure based on CORBA con-
sists of the situation trader and OAS:iS. The situation trader
is a CORBA service that supports automatic reconfigura-
tion, and is colocated with an application program. It con-
tains Adaptive Pseudo Objects(APO), Pseudo Object Man-

agers(POM), and a configuration manager that are used for
dynamic configuration of multimedia components, that are
described in Section 2.1.4. Its role is to manage the configu-
ration of connections among multimedia components when
the current situation is changed. OASIS is a context infor-
mation database that gathers context information such as
location information about objects from sensors. Also, in
our framework, OASIS behaves like as a naming and trad-
ing service to store objects references. The situation trader
communicates with OASIS to detect changes in the current
situation.

Finally, the application composer, written by an appl-
cation programmer, coordinates an entire application. A
programmer needs to create several multimedia components
and connect these components. He specifies a policy on how
to reconfigure these components to reflect situation changes.
By using our framework, the programmer does not need to
be concerned with detailed algorithms for processing media
streams because these algorithms can be encapsulated in ex-
isting reusable multimedia components. Also, distribution
is hidden by our CORBA-based communication infrastruc-
ture, and automatic reconfiguration is hidden by the sit-
uation trader service. Therefore, developing mixed reality
applications becomes dramatically easy by using our frame-
work.

2.1.3  Multimedia Framework

The main building blocks in our multimedia framework
are software entities that internally and externally stream
multimedia data in order to accomplish a certain task. We
call them multimedia components.

A multimedia component consists of a CORBA interface
and one or more multimedia objects. Our framework offers
the abstract classes MSource, MFilter and MSink'. Develop-
ers extend the classes and override the appropriate methods
to implement functionality. Multimedia objects need only
to be developed once and can be reused in any components.
For example, Figure 1 shows three connected components.
One component contains a camera source object for captur-
ing video images, one component contains the MRDetector
and MRRenderer filter objects for implementing mixed real-
ity functionality, and one component contains a display sink
object for showing the mixed reality video images.

In a typical component configuration, video or audic data
are transmitted between multimedia objects, possibly con-
tained by different multimedia components, running on re-
mote machines. Through the CORBA interface defined in
MiRAGe connections can be created in order to control the
streaming direction of data items between multimedia ob-
jects.

2.1.4  Communication Infrastructure

A configuration manager, owned by the situation trader,
manages stream reconfiguration by updating connections
between multimedia objects. Complex issues about auto-
matic reconfiguration are handled by the situation trader
and they are hidden from application programmers. The
situation trader is linked into the application program.

In our framework, a proxy object in an application com-
poser refers to APO, managed by the situation trader. Each

'In Figure 1, Cam is an instance of MSource, MRDetector
and MRRenderer are instances of MFilter, and Disp is an
instance of MSink.



APO is managed by exactly one POM that is responsible for
the replacement of object references by receiving a notifica-
tion message from OASiS upon a situation change.

A reconfiguration policy needs to be set for each POM.
The policy is passed to OASiIS through the POM, and OA-
SiS selects the most appropriate target object according to
the policy. In the current design, we can specify a location
parameter as a reconfiguration policy. The policy is used to
select the most suitable multimedia component according to
the current location of a user.

A configuration manager controls the connections among
multimedia components. Upon situation change, a callback
handler in the configuration manager is invoked in order
to reconfigure affected streams by reconnecting appropriate
multimedia components.

2.1.5 Mixed Reality Class Library

The MR class library is a part of the MiRAGe framework.
The library defines multimedia mized reality objects for de-
tecting visual markers in video frames and superimposing
graphical images on visual markers in video frames. These
mixed reality multimedia objects are for a large part imple-
mented using the ARToolkit[2]. Application programmers
can build mixed reality applications by configuring multime-
dia components with the mixed reality objects and stream
data between them. In addition, the library defines data
classes for the video frames that are streamed through the
mixed reality objects.

MRFilter is a subclass of MFilter and is used as a base
class for all mixed reality classes. The class MVideoData
encapsulates raw video data. The MRVideoData class is a
specialization MVideoData and contains a MRMarkerInfo ob-
Jject for storing information about visual markers in its video
frame. Since different types of markers will be available in
our framework, the format of marker information must be
defined in a uniform way.

The class MRDetector is a mixed reality class and inher-
its from MRFilter. The class expects a MVideoData object
as input and detects video markers in the MVideoData ob-
ject. The class creates a MRVideoData object and adds in-
formation about detected markers in the video frame. The
MRVideoData object is transmitted as output. The class
ARTkDetector is a subclass of MRDetector that implements
the marker detection algorithm using the ARToolkit.

The MRRenderer class is another mixed reality class de-
rived from MRFilter. The class expects an MRVideoData as
input and superimposes graphical images at positions spec-
ified in the MRMarkerInfo object. The superimposed image
is transmitted as output. The OpenGLRenderer is a special-
ization of MRRenderer and superimposes graphical images
generated by an OpenGL program.

2.1.6  An Application Scenario

In a typical mobile mixed reality application, our real-
world is augmented with virtual information. For example,
a door of a classroom might have a visual tag attached to it.
If a PDA or a cellular phone, equipped with a camera and
an application program for capturing visual tags, the tags
are superimposed by a schedule of today’s lecture.

We assume that in the future our environment will de-
ploy many mixed reality servers. In the example, the near-
est server stores information about today’s lecture schedule
and provides a service for detecting visual tags and superim-

posing them by the information about the schedule. Other
mixed reality servers, located on a street, might contain in-
formation about what shops or restaurants can be found on
the street and until how late they are open.

To build the application, an application composer uses
components for capturing video data, detecting visual mark-
ers, superimposing information on video frames and display-
ing them. The application composer contacts a situation
trader service to retrieve a reference to a POM managing ref-
erences to the nearest mixed reality server to a user. When
he moves, a location sensor component notifies sensed loca-
tion information to OASIS, and OASIS notifies the situation
trader to replace the current object reference to the reference
of the nearest mixed reality server currently. In this way, the
nearest mixed reality server can be selected dynamically ac-
cording to his location, but the automatic reconfiguration is
hidden from an application programmer.

2.2 Middleware for Interaction Devices

2.2.1 Design Issues

Future ubiquitous computing applications will use a va-
riety of interaction devices to control them. These devices
are distributed and are changed according to a user’s current
situation. Since we already have many interactive applica-
tions that adopt existing GUI toolkits, we like to reuse these
applications in ubiquitous computing environments. To re-
alize the goal, we take into account the following issues when
designing the second middleware.

¢ Existing interactive applications can be controlled by
various interaction devices.

¢ Interaction devices can be changed according to a user’s
current situation.

An application programmer needs not to consider which
interaction device is appropriate by hiding the complex de-
cision into the middleware infrastructure, and he can use
existing GUI toolkits to develop ubiquitous computing ap-
plications by adopting our middleware.

2.2.2 Basic Architecture

Figure 2 shows an overview of the architecture of our mid-
dleware infrastructure that is called Unit[11]. In the ar-
chitecture, an application generates bitmap images contain-
ing information such as control panels, photo images and
video images. These applications can receive keyboard and
mouse events to be controlled. The user interface middle-
ware receives bitmap images from applications and trans-
mits keyboard and mouse events to the applications. The
role of the middleware is to select appropriate interaction
devices by using context information. Input/output events
and mouse/keyboard events are converted according to the
characteristics of respective interaction devices.

The application implements graphical user interface by us-
ing a traditional GUI toolkit such as the GTK+ or Qt. The
bitmap images generated by the user interface system are
transmitted to our middleware. On the other hand, mouse
and keyboard events captured by the middleware are for-
warded to the toolkit. The protocol between the middleware
and the user interface system are specified as a standard pro-
tocol called a universal interaction protocol.

Our system consists of the following four components.
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Interactive applications generate graphical user interface
written by using traditional GUI toolkits. In our system,
we can use any existing GUI based interaction applications,
and they are controlled by a variety of interaction devices
that are suitable for a user’s current situation.

The Unit server transmits bitmap images generated by
a GUI toolkit using the universal interaction protocol to a
Unit proxy. It forwards mouse and keyboard events received
from a Unit proxy to the GUI toolkit.

The Unit prozy is the most important component in our
system. The Unit proxy converts bitmap images received
from a Unit server according to the characteristics of out-
put devices. The Unit proxy converts events received from
input devices to mouse or keyboard events that are compli-
ant to the universal interaction protocol. The Unit proxy
chooses a currently appropriate input and output interac-
tion devices for controlling appliances. To convert interac-
tion events according to the characteristics of interaction
devices, the selected input device transmits an input speci-
fication, and the selected output device transmits an output
specification to the Unit proxy. These specifications contain
information that allows a Unit proxy to convert input and
output events.

The last component is input and output interaction de-
vices. An input device supports the interaction with a user.
The role of an input device is to deliver commands issued
by a user to control interactive applications. An output de-
vice has a display device to show graphical user interface to
control the interactive applications.

In our approach, the Unit proxy plays a role to deal with
the heterogeneity of interaction devices. Also, it can switch
interaction devices according to a user’s situation or prefer-
ence. This makes it possible to personalize the interaction
between a user and appliances.

2.2.3  Unit Proxy

The current version of Unit proxy is written in Java, and
the implementation contains four modules. The first mod-
ule is the universal interaction module that executes the
universal interaction protocol to communicate with a Unit
server. The second module is the plug and play management
module. The module collects currently available interaction
devices, and builds a database containing information about
respective interaction devices. The third module is the input
management module. The module selects a suitable input
interaction device by using the database contained in the
plug and play management module. The last module is an
output management module. The module also selects a suit-
able output interaction device. Also, the module converts
bitmap images received from the universal interaction mod-
ule according to the output specification of the currently
selected output interaction device.

2.2.3.1 Management of Available Interaction Devices:

The plug and play management module detects currently
available input and output devices according to context in-
formation. The module implements UPnP(Universal Plug
and Play) to detect currently available interaction devices.
An interaction device transmits advertisement messages us-
ing SSDP(Simple Service Discovery Protocol). When a Unit
proxy detects the messages, it knows the IP address of the in-
teraction device. Then, the Unit proxy transmits an HTTP
{HyperText Transfer Protocol) GET request to the interac-
tion device. We assume that each interaction device con-
tains a small Web server, and returns an XML(eXtensible
Markup Language) document.

The XML document contains information about the in-
teraction devices. If the interaction device is an input de-
vice, the document contains various attributes about the
device, which are used for the selection of the most suit-
able device. For an output device, the document contains
information about the display size and the attributes for
the device. The plug and play management module main-
tains a database containing all information about currently
detected interaction devices.

2.2.3.2  Adaptation of Input and Output Events: .

The role of the input management module and the output
management module is to determine the policies for selecting
interaction devices. As described in the previous paragraph,
all information about currently available interaction devices
are stored in a database of the plug and play management
module. The database provides a query interface to retrieve
information about interaction devices. FEach entry in the
database contains a pair of an IP address and a list of at-
tributes for each interaction device, then the entry whose
attributes are matched to a keyword provided in a query is
returned.

The output management module converts bitmap images
received from the universal interaction module according to
the display size of an output device. The size is stored in the
database of the plug and play management module. When
an output device is selected, the display size is retrieved
from the database. The bitmap image is converted according
to the retrieved information, then it is transmitted to the
selected output device.



2.2.4 An Application Scenario

An example described in this section is a ubiquitous video
phone that enables us to use a video phone in various ways.
In this example, we assume that a user speaks with his friend
by using a telephone like a broadband phone developed by
AT&T Laboratories, Cambridge. The phone has a receiver
like traditional phones, but it also has a small display. When
the phone is used as a video phone, the small display ren-
ders video streams transmitted from other phones. The dis-
play is also able to show various information such as photos,
pictures, and HTML(Hypertext Markup Language) docu-
ments that are shared by speakers. Our user interface sys-
tem makes the phone more attractive, and we believe that
the extension is a attractive application in ubiquitous com-
puting environments.

When a user needs to start to make a dinner, he will go
to his kitchen, but he likes to keep to talk with his friend.
The traditional phone receiver is not appropriate to continue
the conversation with his friend in the kitchen because his
both hands may be busy for cooking. In this case, we use
a microphone and a speaker in the kitchen so that he can
use both hands for making the dinner while talking with
his friend. In the future, various home appliances such as a
refrigerator and a microwave have displays. Also, a kitchen
table may have a display to show a recipe. These displays
can be used by the video phone to show a video stream.
In a similar way, a video phone can use various interaction
devices for interacting with a user. The approach enables
us to use a telephone in a more seamless way.

Our system allows us to use a standard VolP application
running on Linux. The application provides a graphical user
interface on the X window system, but our system allows a
user to be able to choose various interaction styles according
to his/her situation. If his/her situation is changed, the cur-
rent interaction style is changed according to his preference.

2.3 Middleware for Home Computing
2.3.1 Design Issues

In the future, there are many home applications in our
home environments. It is important to control these ap-
pliances in an easy way. The third middleware infrastruc-
ture called a personal home server{12] allows us to aggregate
them by using a personal device. While designing the mid-
dleware, we take into account the following issues.

e We like to control home appliances from various pre-
sentation documents such as HTML and Flash.

* A way to control home appliances is changed according
to a user’s preference.

Our middleware offers high level abstraction to specify ap-
pliances that a user likes to control, and each user’s personal
device contains rules for personalizing the control of appli-
ances. Since a personal home server can be carried with a
user, he can aggregate home appliances by using the same
preferences in a seamless way anytime anywhere.

2.3.2  Basic Architecture

A personal home server that is carried by a user is im-
plemented in a personal device like a cellular phone, a wrist
watch, or a jacket. Thus, the server can be carried by a user

anytime anywhere. The personal home server collects infor-
mation about home appliances near a user, and creates a
database storing information about these appliances. Then,
it creates an HTMI-based presentation document contain-
ing the attributes of appliances and the commands to con-
trol them. A display near the user also detects the personal
home server, and retrieves the presentation document con-
taining the automatically generated user interface. The dis-
play shows the presentation document on the display. The
document contains URLs(Uniform Resource Locator) em-
bedding the attributes of appliances and their commands
specified by using our URL-based naming scheme. Also,
the presentation document is customized according to the
user’s preference. When the user touches the display, a
URL containing the attributes of an appliance and its com-
mand is transmitted to his/her personal home server via
the HTTP protocol. The server translates the URL to a
SOAP command by accessing a database containing infor-
mation about the appliance that s/he likes to control. IMi-
nally, the SOAP(Simple Object Access Protocol) command
is forwarded to the target appliance.

2.3.3 Spontaneous Appliance Detection

2.3.3.1 URL-based Naming Scheme: .

Our framework allows a user to access one or more ap-
pliances through a personal home server. We introduce a
URL-based naming convention for specifying and controlling
appliances. In our approach, by embedding the attributes
of appliances and commands in URLs, an HTML-based pre-
sentation document can be used to control home appliances.
The convention is defined within the standard URL but the
path elements of the URL form can contain some additional
information.

The URL definition is very flexible because we can spec-
ify various attributes to identify a target home appliance.
We can also use attributes that represent context informa-
tion such as location. A personal home server can select an
appliance in a context-aware way.

2.3.3.2 Service Management: .

In our system, the service management module in a per-
sonal home server knows respective appliances via SSDP,
and retrieves service specification documents represented as
RDF(Resource Description Framework).

The service database in a personal home server contains
all service specification documents detected currently. It
contains a link to a WSDL(Web Service Description Lan-
guage) document identifying commands that can be accepted.
If an appliance contains several functionalities, its specifi-
cation document may contain several links to WSDL docu-
ments. Also, attributes of the document are used to identify
a target appliance.

2.3.3.3  Personalization Management. .

A personal home server customizes a presentation doc-
ument according to a user’s preference encoded in a pref-
erence rule. Now, a personal home server detects several
types of light appliances. We assume that a rule to filter
light alliances whose type is not a ceiling light is stored in
the personal home server. The presentation document con-
tains only ceiling lights that reside in a room where a user
is. A personal home server omits information about other



types of light appliances. The preference rule is encoded in
a tag, and it can be registred in a personal home server by
closing the tag to a user’s personal device[13].

2.3.4  An Application Scenario

In this scenario, we assume that surrounding various ob-
jects will embed tags. Since these tags contain different
preference rules, the customization is changed according to
objects near a user. For example, if a child holds a stuffed
animal that contains tags, the rules encoded in the tags
are registered in the child’s personal coordination server.
S/he can customize how to control information appliances
by changing stuffed animals that s/he holds currently.

For example, we assume that a child is holding a stuffed
toy dog. The dog contains a tag including a rule for selecting
televisions because the child believes that the dog likes to
watch televisions. Thus, a display shows a user interface to
control televisions. On the other hand, when the child holds
a stuffed toy rabbit, the display shows a user interface for
music players because she believes that the rabbit likes to
listen to music.

The tags can also be embedded in our daily goods like
clothes, accessories, and shoes. Especially, a young person
usually wants to put on these goods according to his/her
feeling or emotion everyday. The goods reflect his/her pref-
erences and current mental condition either consciously or
unconsciously. Customizing services depending on what a
user puts on today makes his/her daily lives more pleasur-
able.

3. DISCUSSIONS

The section describes some experiences while building our
middleware infrastructures, and identifies six lessons learned
from the experiences.

3.1 High Level Abstraction and Middleware
Design

One of the most important design issues for building mid-
dleware infrastructures for ubiquitous computing is what
properties the middleware infrastructures should hide. In
our first middleware, distribution and automatic reconfigu-
ration are hidden from a programmer. In the second middle-
ware, the automatic selection of interaction devices is hid-
den from an application programmer. The last middleware
hides device discovery and personalization from a program-
mer. Our experiences show that hiding these complex issues
makes application programming dramatically easy. How-
ever, achieving complete distribution transparency is very
hard to be implemented because different abstractions re-
quire different ways to hide the distribution. Each abstrac-
tion may also have different assumptions and constraints to
hide dynamic reconfiguration. It is not easy to hide these
properties in a common infrastructure that can be shared
from various middleware for ubiquitous computing, and we
need to carefully consider how to hide the properties in each
middleware infrastructure.

High level abstraction supporting a specialized applica-
tion domain is very useful to develop ubiquitous computing
applications easily. The similar conclusion is discussed in
a middleware infrastructure for supporting synchronous col-
laboration in an office environment[15], and a middleware in-
frastructure for building location-aware applications{6]. In
our approach, the first middleware focuses on supporting

continuous media applications. The second middleware sup-
ports interactive applications that are controlled by a variety
of interaction devices. The third middleware makes it easy
to aggregate home appliances in a spontaneous way. These
middleware supports only specialized application domains,
and their functionalities do not overlap each other. Thus,
they can coexist to develop one application. For example,
we can use the second middleware to control an mixed real-
ity application implemented on the first middleware. Also,
the third middleware can be used to discover multimedia
components implemented on the first middleware dynami-
cally.

Lesson 1: It isimportant to develop specialized high level
abstraction for supporting one specific domain, but the
abstraction should be generic to cover a wide range of
applications.

Middleware infrastructures for ubiquitous computing need
to offer various non-functional properties such as context-
awareness, timeliness, reliability and security. For example,
the first and second middleware infrastructures automati-
cally change the configurations according to a user’s situ-
ation, and the third middleware infrastructure generates a
graphical user interface automatically according to the cur-
rently available appliances. However, it is not easy to offer
a common service for supporting context-awareness because
modeling our real world for building any ubiquitous com-
puting applications require to define ontologies in a com-
plete way. Therefore, we suspect that we can implement a
generic and reusable high level service to support context-
awareness that is used in various middleware for ubiquitous
computing. On the other hand, we believe that a low level
support for handling context information like [4] can be used
uniformly in many middleware infrastructures. This means
that it is desirable to hide the details of the behavior of sen-
sors in a component to develop middleware infrastructures
in an easy way, but the middleware should not interpret the
meaning of the value retrieved from sensors because there is
no common consensus how to model our world in a standard
way.

Also, we found that it is not easy to offer a common ser-
vice for adding security in each middleware infrastructure.
In the second system, a system needs to register their in-
teraction devices before using them manually, but after reg-
istering them, the devices can be changed according to a
user’s situation automatically. In the third system, a very
light-weighted security support is implemented to make the
system simple[12]. We found that each middleware infras-
tructure requires a customized security support because each
application domain may have different requirements for sup-
porting security.

We believe that future middleware infrastructures should
offer a variety of non-functional concerns such as security,
timeliness, privacy protection, trust relationship among peo-
ple, and reliability. The generic support of the concerns
may make the infrastructures too big and complex. Espe-
cially, when multiple middleware infrastructures are inte-
grated, the concerns are cross-cut across them. Therefore,
it is important to support only minimum supports, and cus-
tomized supports for non-functional properties should be
implemented respectively using software structuring tech-
niques like an aspect-oriented programming technique[9] on
the minimum supports.



Lesson 2: Common generic services that offer non-functional
concerns may make it difficult to develop practical
ubiquitous computing applications. The service should
be customized in respective middleware infrastructures.

3.2 Development of Middleware Infrastruc-
tures

The third middleware has adopted standard protocols such
as SOAP as underlying protocols. This makes it easy to
adopt commercial products in our experiments, and the ap-
proach is very important for incremental evolution of ubig-
uitous computing environments. However, devices and ap-
pliances in smart environments may want to change their
interfaces independently. We need a more spontaneous ap-
proach to collaborate them. We believe that it is desirable
not to fix interface between appliances, but to determine
the message format to communicate with each other. The
format may adopt the XMI-based representation. In the
approach, each appliance may add extra tags that offer ad-
ditional functionalities, Let us assume that an appliance re-
ceives the message. If the message contains some tags that
cannot be understood by the appliance, the tags can simply
be ignored. Therefore, each appliance can extend the mes-
sage format independently. We believe that the approach is
desirable in ubiquitous computing environments to support
communication among appliances.

In the first middleware, we have adopted CORBA to com-
pose multimedia components. The middleware offers multi-
ple interfaces to communicate between an application com-
poser and components. The approach is useful to support
multiple versions of the interfaces, and components can ex-
tend its functionalities by adding new interface.

Lesson 3: Each program should extend its interface inde-
pendently without considering other programs if they
are loosely coupled.

Our project has adopted Linux, CORBA, OSGi and Java
as underlying infrastructures, and they reduce the develop-
ment cost dramatically. We think that it is not a good ap-
proach to extend existing commodity software because this
makes it difficult to replace software platforms. Our middle-
ware exploits to use existing software and appliances. For
example, in the first middleware, we use a CORBA system
as an underlying infrastructure. However, we have not mod-
ified the existing CORBA runtime to support dynamic con-
figuration. Therefore, we can use any commercial CORBA
runtimes for executing our middleware. The second mid-
dleware allows us to use existing GUl-based applications as
ubiquitous computing applications without modifying them.
Thus, the approach allows us to use exisiting interactive ap-
plications in ubiquitous computing environments. Also, the
third middleware adopts OSGi[3] as its component frame-
work. Therefore, we can use standard services provided by
OSGi, and we can use any OSGi components to develop new
services on personal home servers.

We believe that the approach to use traditional commod-
ity software without modifying them is very desirable to
migrate to new platforms easily when old platforms will be-
come obsolete. If we adopt a modified version of commodity
software, it is difficult to promote our middleware on the new
platforms. The approach is very desirable to migrate from
the current environments to ubiquitous computing environ-
ments in a seamless and incremental way. For example, in

[10], we have extended CORBA to support dynamic trans-
port protocol selection. However, we need to rewrite appli-
cations to select the most appropriate transport protocol.
The approach is very useful to optimize the performance of
applications on a specific environment, but the modification
cost is not cheap to use existing large applications,

Lesson 4: We should not extend traditional standard mid-
dleware infrastructures to support advanced ubiqui-
tous computing services if possible.

3.3 Human Factors

In our middleware infrastructures described in the paper,
dynamic reconfiguration is hidden from a user. However,
these properties are closely related to human factors. For
example, if an interaction device is switched in an unex-
pected way, a user may surprise the context change. This
means that middleware infrastructures that hide dynamic
reconfiguration will need to take into account human fac-
tors when designing middleware[5]. Our experiences show
that automatic selection of interaction devices is not good
approach. Instead, we use a token to choose the most suit-
able interaction device in an explicit way. For example, let
us assume that a user is using a telephone in a living room.
When s/he moves to a kitchen, s/he may use a speaker and
a microphone in the kitchen. In this case, the user brings a
token attached to the telephone, and put it into a base in
the kitchen. Our system detects the event, and changes the
interaction devices for the user.

However, implicit changes may be attractive for realizing
pleasurable services. For example, if an environment detects
that a user and his girl friend are together in a room, it is
desirable to make the room’s lighting strategy more roman-
tic automatically. Also, implicit changes are desirable if a
user utilizes services without being aware. In this case, the
services should not interrupt the user’s current activity that
he is focusing on. We believe that it is better to control the
strategies for dynamic reconfiguration should be customized
in each application. The programming interface to control
dynamic reconfiguration should be clearly separated from
other programming interface to make the structure of an
application clear.

When representing personal information on a display, we
need to take into account how to protect privacy information
of a user. However, the information is useful to offer better
services customized for the user. We found that it is impor-
tant to take into account the tradeoff between the quality
of services and the amount of privacy information. When a
user cannot trust an application, s/he will not offer his/her
personal information, but if s/he wants better services and
trusts the services, s/he can offer more his/her personal in-
formation. Also, when multiple users share a display, it is
desirable to abstract information represented on the display
to protect privacy information. The abstraction level of the
representation is determined according to how the informa-
tion is secret. Ambient displays or informative art[7]is a
first step towards information abstraction that allows us to
protect privacy information and to reduce information over-
load in our society.

Lesson 5: Middleware infrastructures should be flexible
to implement dynamic reconfiguration and informa-
tion representation according to the requirements of
respective applications.



In the near future, designers for ubiquitous computing
middleware should learn psychology, and we need to con-
sider that the adaptation of software should not contradict
our mental model. We believe that how to implement the
real world model and the mental model in middleware infras-
tructures is an important research topic for building practi-
cal middleware for ubiquitous computing. For example, in
our second middleware, if choosing a suitable interaction de-
vice is ot consistent with a user’ s mental model, the user
will confuse which interaction device s/he should use. In the
first and second middleware, if the dynamic configuration is
not consistent with a user’s mental model, the user may sur-

" prise the dynamic changes. However, the implementation of
a real world model and mental model requires to represent
ontologies in a standard way to access them from a variety
of middleware for ubiquitous computing.

We also need to consider social aspects and cultural as-
pects when designing applications interacting with the real
world. For example, it is important to take into account
trust and privacy in future ubiquitous computing environ-
ments, but we need to learn sociology and anthropology to
know whether our understanding is enough or not. We be-
lieve that it is important to consider how to model psycho-
logical, social, and anthropological concepts into our pro-
grams to interact with the real world properly when de-
signing middleware infrastructures for ubiquitous comput-
ing. For example, in our middleware infrastructures, we
use a user’s location to offer context-aware services, but it
depends on a user’s situation to offer location information
to our middleware. These information related to privacy
should be treated very carefully, and traditional concepts
about privacy and trust are very naive to offer practical
ubiquitous computing services.

We also believe that the designers for ubiquitous comput-
ing middleware should know aesthetics to provide pleasur-
able services[8] or to abstract information. To develop plea-
surable services, we may need to take into account emotion,
peak experience, and unconsciousness to develop software.
For example, our third middleware supports a mechanism to
design pleasurable experiences by encoding preference rules
in RF tags. Our system infrastructure allows us to embed
tags into various objects and places, and controls our expe-
riences by changing the behavior of applications[13], and we
found that the approach is very useful to offer pleasurable
services.

Lesson 6: Middleware infrastructures should incorporate
a model for psychological, sociological and anthropo-
logical concepts explicitly.

4. CONCLUSION AND FUTURE DIRECTION

This paper has described three middleware infrastructures
that have developed in our project. We have also presented
several experiences and future directions for building mid-
dleware for ubiquitous computing. We believe that there are
new requirements to develop the middleware infrastructures
for ubiquitous computing. Especially, we believe that it is
important to take into account human factors to develop
them.

One of the most important future topics in our project
is to develop a pattern language[1] for building middleware
infrastructures for ubiquitous computing. The language will
support to consider what abstraction should export, which

properties should be hidden and how to offer non-functional
properties. Also, the language will help to consider how to
implement middleware infrastructures in an easy way and
how to use legacy software.
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Abstract

Generation of the ordered set of ICA bases (Indepen-
dent Component Analysis bases) and its applications
to image compression are discussed. The ICA bases
have similar properties to existing orthogonal bases.
. Orthogonal bases generate uncorrelated coefficients,
while, the ICA bases bring about independent co-
efficients.  The independence is stronger than the
uncorrelatedness. Therefore, the ICA bases can extract
source information better. One difficulty using ICA
is the permutation indeterminacy among these bases.
This paper presents partially supervised learning for
generating self-aligned ICA bases. It is observed that:
(i) Each basis reflects edges and textures like the early
vision. (i3) Bases can be self-aligned in the sense of
spatial frequency. (%) Coefficients of the bases can
be used for image compression. Ezperiments show
that (iv) the set of ICA image bases is a well-qualified
alternative to existing orthogonal ones.

1. Introduction

Independent Component Analysis (ICA) [1] is a
method of multivariate analysis to decompose mea-
sured data into independent components. It is a class
of learning algorithms from data. Its application is
wide including images, speech, music signals and so
on. Therefore, ICA has received much attention from
communities of adaptive learning and multimedia pro-
cessing. This paper contributes to these fields by show-
ing a new method to obtain ICA image bases and novel
applications to image compression.

Organization of this paper is as follows. In Section
2, the ICA problem is formulated. The role of the ICA
basis set is elucidated. The permutation indetermi-
nacy, which essentially exists in the ordinary ICA, is
explained. Presentation of the ICA model for image
construction is also given. Then, in Section 3, pre-
processing, orthonormalization, and ordinary ICA al-
gorithms are explained to assist later explanations on
improved methods. In Section 4, The ICA learning
with weak guidance is presented. This partial super-
vision is effective to the reduction of the permutation
indeterminacy, whose step is necessary for the applica-
tion of ICA bases. In Section 5, experiments on digital
images are executed. The ICA image bases are suc-
cessfully aligned by reflecting spatial frequencies. Ex-
periments show that the ICA bases are promising in
the image compression as the theory predicts. Section
6 gives concluding remarks with prospects of future
studies.

2. Problem Formulation of ICA
2.1. Mixture of Independent Components

In the problem of ICA, a vector random variable
@ = [21, -, n]" 1)
is assumed to be generated by another random variable
s=[s1,,5n) (2)
by the following mixture.

z=As=la1 --,an]8s =3 . a;s (3)



The matrix A and the vector s are both unknown ex-
cept for the following information.

a) The components s; and s; are independent each
J
other for ¢ = 7.

(b) The components s;, (i = 1,---
Gaussian except for at most one 1.

,n), are non-

Under the above conditions, we want to estimate a
demixing matrix

W = AITA™! (4)
so that the components y;, (i =1,---,n), of
def
Wae=y=[y, " (5)

are independent each other. Here, A is a nonsingular
diagonal matrix which decides components’ scale, and
II is a permutation matrix. These matrices are un-
known too. This property is called the indeterminacy,
which essentially exists in the ICA formulation. In this
paper, such indeterminacy will be carefully avoided.

2.2. ICA bases

Column vectors of W1 % U can be interpreted
as ICA bases since the following equality holds for the
observed data x.

T = Uy = {uh T ’un}y = E?:luiyi (6)

In order to save notational alphabets, U is re-expressed
by A hereafter, and so is y by s. This is applied only
if there is no confusion.

When an ICA basis a; is used in image process-
ing, it is interpreted as a two dimensional patch
{{ai(z,y)}s1 }i1. Then, each pixel is modeled by

I(.’L’,y) = E?:Ni(fﬂ» y)si’ (7)

where n = m2. Once the ICA bases are learned from
data, they are fized. Therefore, {s;}}_; are subject to
coding for image compression.

3. ICA Learning Algorithms
3.1. Preprocessing and Orthonormalization

Observed data are preprocessed in the following way
80 that the estimate of W converges properly.

1. [Mean and variance normalization] Observed data
are normalized to have the zero mean and the unit
variance.

2. [Whitening] Observed data are then transformed
to z = Va so that £[zzT] = I. Here, £ stands for
the expectation. We use V' = D™ Y2ET in our ex-
periments. Here, D is a diagonal matrix whose el-
ements are eigenvalues of £[zzT). E is the matrix
whose columns are corresponding eigenvectors.

3. [Orthonormalization] Another transformation is
the orthonormalization: W «— (WW7T)~1/2py.
This is an expensive computation, however, the
merits of U = W' and WTW = I are obtained.

3.2. First-Stage Learning Algorithm

Estimation or learning of W from observed data is
performed by the following iteration:

Whew — f(WOld), (8)

or equivalently,
Whew Wold + AW, (9)

The updated vector W"®" can be obtained by opti-
mizing statistical measures for the independence [2] ~
[7].

We gave necessary explanations on the first-stage
algorithm for W except for the following. We are
given sample image patches rather than an abstract
random variable in a probability space. Therefore, we
need to write down these samples in matrix forms:
X = [x(1),---,z(m)], § = [s(1),--+,8(m)], and ¥ =
[y(1),---,y(m)]. Thus, the data generation model is
expressed by

X =AS. (10)
Then, the first-stage learning algorithm becomes as fol-
lows.
[First-stage learning algorithm]
[Step 1 (Preprocessing 1)]
Obtain a sample matrix X as a training data set.

Normalize each column vector to be zero mean and unit
variance.

[Step 2 (Preprocessing 2: Whitening)]

Obtain Whitening Matrix V' from X, and compute
Z=VX.
[Step 3 (Initialization)]

Choose an orthonormalized initial value for W.
[Step 4 (Update 1)]

Update W by (8) or (9).
[Step 5 (Update 2)]

Orthonormalize the matrix W.

[Step 6 (Convergence check)]



Check to see if convergence is achieved. Otherwise
repeat Steps 4 and 5.

[Step 7 (Resulting matrices)]
Resulting matrices are obtained by

Wtager = WV, (11)

and
Astagel = (WV)-l = V—le. (12)

It is necessary to comment here that:

(1) The first-stage algorithm still inherits the permu-
tation indeterminacy. We need further learning
algorithms which does not suffer from this inde-
terminacy.

(ii) In the image compression, the matrix
Ydata = Wstagel Xdata (13)
is encoded to Ydaaa~ Decoded is then

Xdata = Astagel ydata' (14)
4. Learning Under Weak Guidance

4.1. Indeterminacy Reduction I: Topographic
Alignment of ICA Bases

The above Agtage1 could be used as a set of image
compression bases, if one would dare to check manu-
ally the whole matrix pattern, and if high performance
is not required. Thus, the bases are more suitable for
the image compression if they have ordered by spatial
frequencies precisely. Therefore, we consider to use the
resulting image bases as an initial set for further learn-
ing modification. This is allowed since the image bases
need not be computed on-line but to be stored in the
encoder-decoder pair. There is one more evidence to
support this: All computation in this paper can be car-
ried out by a conventional personal computer, which
will be understood in Section 5.

The first step to obtain an aligned image basis set is
to modify the matrix Wage1 by using the topographic

ICA [8]. In this case, (9) is used with the following
computation:
Aw; = nBlz(w] z)ri, (15)

ri = Yoh A K)G (T bk, i) (w] 2%). (16)

On the choices of G(y) and h(i,j), readers are re-
quested refer to [8]. Hereafter, the update matrix by
(15) is denoted by AWy,

4.2, Indeterminacy Reduction I1: Weak Guidance

Resulting ICA bases as a topographic map show an
intriguing visual pattern. But, a very important inde-
terminacy is not yet resolved. A human can instantly
find the position of the central basis corresponding to
the lowest spatial frequency, however, machines can not
do so instantly. Therefore, we need a further impor-
tant mechanism to reduce such indeterminacy. This is
the method of weak guidance as a partially supervised
learning. Such a method was first used in the distilla-
tion of brain maps from fMRI data [9], [10].

[Weak Guidance]

First, we prepare a teacher signal, or a reference pat-
tern, as a matrix R. Then, we compute U = viwT.
The increment by the teacher signal is

AU =V{MR-U)}. (17

Here, ) is a learning parameter. Then, the update term
for the weak guidance is computed by

AW g = —-WAUW, (18)

Readers are requested refer to [9] or [10] for the deriva-
tion of (17) and (18).

4.3. Total Learning Algorithm

By the preceding preparations, the total algorithm
to obtain the ICA bases can be described as follows.

[Step 1 (Learning parameters)]

Control rules of the small learning parameters n > 0
and A > 0 are decided. The rules can be arbitrary as
long as (i) 7 increases and saturates. (ii) A decreases.

[Step 2 (Weak guidance)]
Compute the updated matrix with the weak guid-
ance

W e W+ AW . (19)

[Step 3 (Topographical map)]
Compute the updated matrix with the topographic
constraint

W e W + AW, (20)

[Step 4 (Convergence check)]

Check to see if the matrix update is converged. If
not, then the iteration is repeated on Steps 2 and 3
after the update of A, n, and W.



5. Experimental Results
5.1. ICA Image Bases with Self-Alignment

All necessary tools were given in the preceding sec-
tions. We can now apply them to real images. Training
data for the ICA bases contain many images such as
natural images, screen text images, and animations.
Figure 1 illustrates the ICA bases obtained by the to-

Figure 1. Image bases only by the topo-
graphic method.

pographic method alone, i.e., without the weak guid-
ance. Fach basis is of 8 x 8 pixels so that the size is
compatible with usual JPEG and JPEG2000. As can
be observed, the basis of the lowest spatial frequency
is located off-centered in the two dimensional array.
This position can not be specified in advance. There-
fore, the human perception is still necessary to identify
where the exact center is. Besides, the obtained ICA
bases are inefficient since the center is near the corner
of the array.

Figure 2 shows the resulting self-aligned ICA bases
by our weak guidance method. The first basis is lo-
cated at the north west of the four central bases. Low-
frequency bases are concentrated around the center of
the two-dimensional array. High-frequency bases are
located at the corners. This was specified to be so
by virtue of the weak guidance. We call such a class
of bases the ICA ripplet set, or simply the ripplet set.
The ripplet set is readily applicable to the image com-
pression due to the following properties.

(a) Ordering from low to high spatial frequencies is
completed.

Figure 2. Self-aligned image bases by the
weak guidance.

(b) Bases are balanced because of the centering by the
weak guidance.

Item (a) can be observed from Figure 3 which was ob-
tained from Figure 2 by the clockwise spiral sorting
started from the origin, the north west of the four cen-
tral bases. This figure clearly shows a self-aligned or-
dering from low to high spatial frequencies which has
the following merit:

(c) Users of this set can understand the role of each
basis in a linearly ordered sense. High-frequency
bases may correspond to noisy patterns. Such a
merit will be utilized in Section 5.3.

Figure 3. Aligned image bases.



Figures 1 to 3 can claim the similarity to the recep-
tive fleld properties [11]. Not only appreciating such
an intriguing similarity, but we pay attention to the
self-aligned ICA bases of Figures 2 and 3 on the use for
the image compression.

5.2. Distribution of Coefficients

Source images are reconstructed by using Equation
(7). We remind readers here that the relationship on
the ICA image bases: A™! «— W. Since the image
bases are not altered any more, they are memorized
in the encoder and the decoder. In the encoder, co-
efficients s; are obtained by § = A7'X. Here, each
column vector of X corresponds to an image patch.
Then, encoded values of elements s; in S are transmit-
ted (in a two dimensional form, s; ;).

The distribution of s is {8 x 8 = 64}-dimensional
which is unable to illustrate visually. But, the flatness
of the distribution can be estimated from the histogram
of s; ;. If the distribution of s; ; were nearly flat, there
would be very little possibility for data compression be-
cause of high entropy. Therefore, we have to examine
the distribution on real images. Figure 4 is the result-
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Figure 4. Distribution of coefficients to be en-
coded.

ing distribution obtained from an image outside of the
training data. The horizontal axis shows values of s;.
The vertical axis shows the number of appearances, i.e.,
the frequency. As can be observed, this distribution
is far from flat. It is highly super-Gaussian reflecting
the nature of the ICA transformation of images. This
means that most of s; are centered around zero. Few
important numbers are distant from zero. Therefore,
we can judge that the distribution of s is very sparse.
This property encourages us with the anticipation that
the encoding for data compression will be effective.

5.3. Image Compression

Here, we discuss the case of variable-length coding
based upon the run-length and Huffman coding. The
source to be compressed is the matrix

S =[s1, --,8Mm] (21)

Here, s; is the vector coefficient for one patch in the
source image. Therefore, M = 3750 for a 600 x 400
pixel image since (600/8) x (400/8) = 3750. The vec-
tor s; is quantized in group. The quantization is set to
be granular if a coefficient is for a low spatial frequency.
On the other hand, the quantization is rough if the co-
efficient is for higher frequencies. Quantized zeroes ap-
pear frequently because of the sparseness explained in
Section 5.2. Then, we denote the resulting coefficient
matrix by S. We found that quantized zeroes run con-
secutively if we raster scan this S vertically because of
the property explained in Item (c) of Section 5.1: High-
frequency bases correspond to noisy patterns. There-
fore, run-length coding is effective. Huffman coding is
used for non-zeroes.

Figure 5. Uncompressed image.

Figure 6. Compressed image 1.

Figures § is a source image selected from [12]. Figure
6 is a compressed image by this paper’s method. The
compressed image has the performance of SNR,, =
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Figure 7. Compressed image 2.

35.2 dB at 1.24 bit/pixel. Figure 7 is another com-
pressed image containing charecters. This image is
not a set of outline fonts but is obtained from a com-
puter display. This image has the performance of
SNRpp = 34.8 dB at 1.28 bit/pixel.

More experiments besides Figures 6 and 7 were
tried. We can conclude that the image compression
based upon the ICA bases designed by this paper’s
method shows the excellent performance.

6. Concluding Remarks

The main purpose of this paper was to show that

(i) The permutation indeterminacy of the ICA can be
avoided. The resulting bases can be used in engi-
neering applications, particularlly for image com-
pression.

(i) The ICA bases learned from images extract im-
portant information. Such bases can be applied to
reconstruct unlearned images.

(ili) Coefficients for the reconstruction can be used for
the image compression.

It was possible to show that the image compression
based upon the ICA bases is promising. We shall have
the immediate sophistication of this paper’s study as
follows:

(a) Incorporation of better lossless coding on coeffi-
cients.

(b) Applications to color image compression.
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Abstrace—Independent component analysis (ICA) is applied
to image coding. There, new design methods for ICA bases are
presented. The new feature of this learning algorithm includes
the weak guidance, or decreasing supervisory information. The
weak guidance reduces the permutation indeterminacy which
is unavoidable in usual ICA algorithms. In view of the image
compression, this effect corresponds to the generation of image
bases honoring the space frequency’s neighborhood and 2-D
ordering. Following the presentation of this learning algorithm,
experiments are performed to obtain serviceable ICA bases.
Finally, image compression and restoration are demonstrated to
show the eligibility for “image. ipeg.” Other applications such as
image retrieval are also commented.

I. INTRODUCTION

Independent Component Analysis (ICA) [1] finds generic
components which can reproduce source data. ICA algorithms
find such components as unsupervised iterative learning. Ap-
plications can be quite wide including images, speech, music,
fMRI data and so on. Since physical entities of data can be
versatile, ICA has received growing attention from the commu-
nities of multimedia processing, communications, biomedical
engineering and others. This paper contributes to these fields,
especially to the areas handling images. More precisely, we
present a novel method to obtain ICA image bases and their
applications to image compression.

For the above purpose, the text of this paper is organized as
follows. Section II gives the formalization of ICA. The role
of ICA bases is explained. There, the indeterminacy of the
permutation and the amplitude, which essentially exist in the
ordinary ICA, is explained.

In Section HI, pre-processing and orthonormalization are
introduced. Then, ordinary ICA algorithms are explained as
the first step to assist later sophistication on improved methods.

In Section IV, the result of the ordinary ICA bases is
used as an initial value for this learning step. Then, the
ICA learning algorithm with weak guidance is presented.
The weak guidance is a supervisory mechanism which can
inject designer’s specification to usual unsupervised learning.
Such partial supervision is effective to the reduction of the
permutation indeterminacy. This step is necessary for the
application of ICA bases.

In Section V, smoothing of the obtained ICA bases using
the Gabor function is tried. This is motivated by the desire to
understand the relationship between compression and feature
extraction.

In Section VI, experiments on digital images are executed.
The ICA image bases are successfully generated in a 2-D
aligned manner by reflecting spatial frequencies. Experiments
show that the ICA bases are promising in the image com-
pression as the theory predicts. Results are expected to lead
to “image.ipeg’” On the other hand, smoothed bases using
the Gabor function sometimes fails in image restoration. This
is compatible with our anticipation that this basis set would
rather fit to feature extraction than compression.

Section VII gives concluding remarks for further steps. The
concept of “image.ipeg” is not only for data compression but
also for data retrieval. This issue is also commented.

II. PROBLEM FORMULATION OF ICA
Here, the formulation of ICA is given to explain what the
basis set and the indeterminacy are.
A. Mixture of Independent Components
In the problem of ICA, a vector random variable

x =z, -, zn]T (D
is assumed to be generated by another random variable
s=|s1, - ,8n]T @
by the following mixture.
z=As=la; - ,an)s =3 o a;s; 3)

The matrix A and the vector s are both unknown except for

the following information.

(a) The components s; and s; are independent each other for
1]

(b) The components s;, (i = 1,---,n), are non-Gaussian
except for at most one i.

Under the above conditions, we want to estimate a demixing
matrix

W = AITA™! “4)
so that the components y;, (i =1,--+ ,n), of
def
Wz = y:[ylv 7yn]T (5)

IThe file extension “ipeg” may be abbreviated to “jpe” in case that the
usage of “ipg” conflicts with other existing formats. This truncation is the
same as “hrm” for ‘html”



are independent each other. Here, A is a nonsingular diagonal
matrix which decides components’ scaling, and IT is a permu-
tation matrix. These matrices are unknown too. This property
is called the indeterminacy, which essentially exists in the ICA
formulation. One purpose in this paper is to show a learning
mechanism to reduce such indeterminacy in view of image
compression.

B. ICA bases

A set of vectors which decompose and recover the source
vector is regarded as the bases. In the problem of ICA, column
vectors of W2 % U can be interpreted as bases since the

following equality holds for the observed data x.

z=Uy=[us, Uy =3 o Wil (6)

Hereafter, U is re-expressed by A in order to save notational
alphabets.

T=Ay=lai, - ,an)y = 1 @iy @)

We carefully apply this convention so that there is no confu-
sion.

When an ICA basis a; appears in image processing, it goes
as a two dimensional patch: {{a;(z,y)}7 }jL . That is, each
pixel at (z,y) is modeled by

I(z,y) = Y, ai(z,9)y, (8)

where n = m? for a square region. Once the ICA bases are
leamed from training data, they are fixed. Such a superposition
is illustrated in Figure 1. It is important comment here that
{y:}7., are encoded for image compression, and the coding
method affects the designer’s specification on the ICA bases.
As can be observed from Equation (8) and Figure 1, the

= w), By, + WY,

Fig. 1.

Image Restoration by ICA-Basis Superposition

idea of the ICA restoration and compression of source data
is fundamental [2]. But, this paper’s sophisticated generation
and utilization of the two-dimensional ICA basis array are
original.

III. ICA LEARNING ALGORITHMS
A. Preprocessing and Orthonormalization

Preprocessing of source data is very effective for later
learning phase. Since we use a fixed set of ICA image patch,
preprocessing has no effect on coding delay. Computationally
expensive methods can be applied as long as they fall in the
realm of contemporary PC power.

Observed data are preprocessed in the following way which
helps the estimation of W to converge properly.

1) [Mean and variance normalization] Observed data are
normalized to have the zero mean and the unit variance.

2) [Whitening] Observed data are then transformed to
z = Ve so that £[zzT] = I. Here, £ stands for the
expectation. We use V = D™Y2ET in our experiments.
Here, D is a diagonal matrix whose elements are
cigenvalues of E[zx”]. E is the matrix whose columns
are corresponding eigenvectors.

3) [Orthonormalization] Another transformation is the or-
thonormalization: W «— (WW7T)~1/2W_ This is an
expensive computation, however, the merits of U =
W7 and WITW = I are obtained.

B. First-Stage Learning Algorithm

We use ordinary or unsupervised ICA learning as a process
to generate a viable set of ICA bases which can be exported
to later ICA phases.

Any estimation or learning of W from observed data is
summarized by the following iteration:

Wwhew _ f(WOld), (9)
or equivalently,

wrew — wold L AW, (10)

The updated vector W™ can be obtained by optimizing
statistical measures for the independence [3] ~ [8]. For the
generation of the initial ICA bases, any of these methods are
equally viable. Therefore, we omit rehashing this subject, but
give a bridge to image processing.

We are given M sample image patches rather than an
abstract random variable in a probability space. Therefore, we
need to write down these samples in matrix forms:

X:[wla"'amM]7 (11)
S =[s1,-,8Mm], (12)
Yz[yla""yM}' (13)

Thus, the data generation model is expressed by
X =AS. (14)

Then, the first-stage learning algorithm becomes as follows.
[First-stage learning algorithm]
[Step 1 (Preprocessing 1)]
Obtain a sample matrix X as a training data set.
Normalize each column vector to be zero mean and
unit variance.
[Step 2 (Preprocessing 2: Whitening)]
Obtain Whitening Matrix V' from X, and compute
Z=VX.
[Step 3 (Initialization)]
Choose an orthonormalized initial value for W.
[Step 4 (Update 1)]
Update W by (9) or (10).
[Step 5 (Update 2)]
Orthonormalize the matrix W.
[Step 6 (Convergence check)]



Check to see if convergence is achieved. Otherwise
repeat Steps 4 and 5.

[Step 7 (Resulting matrices)]
Resulting matrices are obtained by

ufstagel = WV, (15)

and

Astagel = (VVV')—1 =viwT, (16)

We commnent here again that

(i) Resulting ICA bases at this first-stage are exported to the
next ICA phase.

The resulting ICA bases here still inherits severe permu-
tation indeterminacy. We need further learning algorithms
which do not suffer from this indeterminacy.

(i1)

(iii) If we dare to use the ICA bases here for the image
compression, the matrix
Yiata = Witage1 X data )
is encoded to Yyuta. Decoded is then
X data = Astage1 Yaata- (18)

Equations (17) and (18) remain the same for the compression
and restoration in later ICA bases except for the suffix stagel.

IV. LEARNING UNDER WEAK GUIDANCE
A. Indeterminacy Reduction I

The above Asgpager could be used as a set of image com-
pression bases, if one would untiringly check manually the
whole matrix pattern, and if low performance is bearable. But,
the bases are more suitable for the image compression if they
reflect spatial frequencies in an aligned manner. Therefore, we
consider to use the resulting image bases as an initial set for
further learning modification. This is allowed since the image
bases need not be computed on-line but to be stored in the
encoder-decoder pair. There is one more evidence to support
this: All computation in this paper can be carried out by a
conventional personal computer, which will be understood in
Section VI

The first step to obtain an aligned image basis set is to
modify the matrix Wiage1 by using the topographic ICA [9].
In this case, (10) is used with the following computation:

Aw; = nE[z(w] z)ry), (19)
ri = op_1h(i, k)G (X ik, §)(w] 2)).  (20)

On the choices of G(y) and k(< §), readers are requested refer
to [9]. Hereafter, the update matrix by (19) is denoted by
AW,

It is important to comment here that AW,;, is an update term
by the unsupervised learning. There is no explicit engineering
specification incorporated in this term. This is a neat learning
device, however, we need further ability:

1) More separation of high frequency and low frequency
in bases is necessary.

2) The non-floating center of the frequency pattern is
necessary.

Readers will understand these items from experiments in
Section VL.

B. Indeterminacy Reduction II: Weak Guidance

Resulting ICA bases by the Indeterminacy Reduction I show
an intriguing visual pattern as a topographic map. But, a very
important indeterminacy is not yet resolved.

1) Positions of low frequency bases are often separated.

This leads to information loss.

2) The center of the low frequency area is still floating. A
human can instantly find the position of the central basis
corresponding to the lowest spatial frequency, however,
machines can not do so instantly. Besides, this property
could lead to another information loss if the central area
happens to be off-centered in the topographic map.

Thus, we need further important mechanisms to reduce such
indeterminacy. This is the method of weak guidance as a
partially supervised learning. Such a method was first used
in the distillation of brain maps from fMRI data [10], [11],
and then in the precursor of this paper [12].

[Weak Guidance]

The weak guidance? is a method to inject supervi-
sory information to unsupervised or self-organizing
mechanisms. First, we prepare a teacher signal, or a
reference pattern, as a matrix R. Then, we compute
U = V'WT. The increment by the teacher signal
is

AU = V{AR-U)}. @1

Here, A is a learning parameter. Then, the update
term for the weak guidance is computed by

AWy, = -WAUW. 22)

Readers are requested refer to [10] or [11] for the derivation
of (21) and (22).

C. Total Learning Algorithm

By the preceding preparations, the total learning algorithm
to obtain the ICA bases can be described as follows.

[Total learning algorithm]

[Step 1 (Learning parameters)]

Control rules of the small learning parameters n > 0
and A > 0 are specified. The rules can be arbitrary
as long as these parameters decrease to zero. In the
experiments, they are set to decrease monotonically.

[Step 2 (Weak guidance)}

2This terminology was named after Richard P. Feynman’s informal lecture
in early 80’s on his anticipation of weak force in the quantum computing
mechanism.



Compute the updated matrix with the weak guidance

W — W + AW, (23)

[Step 3 (Topographical map)]
Compute the updated matrix with the topographic
constraint

W« W + AW,,. (24)

[Step 4 (Convergence check)]

Check to see if the matrix update is converged. If
not, then the iteration is repeated on Steps 2 and 3
after the update of A, n, and W.

In the above description of the algorithm, Steps 2 and 3 are
separated. But, their increments can be added to update W

V. FITTING TO GABOR FUNCTION

As was stated in Section I, the main purpose of this paper
is set to data compression on images. But, as can be observed
from later experiments, ICA image bases have similarities to
receptive field properties too [13]. Therefore, we try a little bit
of digression to compute a set of smoothed ICA bases using
the Gabor function [14]. This is motivated by our desire to
understand the relationship between compression and feature
extraction.

Let g(x, y|®) be a Gabor function with the parameter set ®.
Then, smoothed ICA bases are obtained by the minimization
of the cost function E;(®):

E(®) = > lalz,y) — g(z,y|®)I>. (25)
z oy

This will give a set of smoother bases. Therefore, some of
busy patterns may not be restored by such bases. Experiments
will give evidences on such trend.

VI. EXPERIMENTAL RESULTS

All necessary tools were given in the preceding sections.
We can now apply them to real images.

A. ICA4 Image Bases with Self-Alignment for Image Coding

1) Training Data: Source data of 10,000 training samples
from 10 typical images were prepared. Thus, the training data
contain patches from natural images, screen text images, and
animations. Each patch consists of 8 x 8 pixels so that the size
is compatible with usual JPEG.

2) Bases by Plain ICA: Figure 2 illustrates the ICA bases
obtained by usual unsupervised ICA. It can be observed
that there is no consistent relationships among image bases.
By inspection, we can find that low frequencies and high
frequencies are covered luxuriously. On the other hand, middle
frequencies which are responsible for “twilight zones” need
more bases. Precise ordering of the bases by inspection is
difficult.

Fig. 2. Image Bases by Plain ICA

Fig. 3. Image Bases by Topographic ICA

3) Bases by Topographic ICA: Figure 3 illustrates ICA
bases obtained by the topographic method alone, i.e., without
the weak guidance. As can be observed, the basis of the
lowest spatial frequency is located off-centered in the two
dimensional array. This position is floating. Therefore, the
human perception is still necessary to identify where the exact
center is. Besides, the obtained ICA bases are inefficient since
the center is near the corner of the array. The floating center
property remains even if we use a 2-D torus,

4) Bases by ICA with Weak Guidance: The weak guidance
is imposed to the ICA learning through the patterns illustrated
in Figure 4. The location of the first one is at the northwest
of the center. The second one is placed at the southeast of
the center. Then, we obtain the self-aligned ICA bases by our

Fig. 4. Suprtvisory Pattern

Fig. 5. Self-Aligned Image Bases by the Weak Guidance

weak guidance method as in Figure 5. The first basis is located
at the northwest of the four central bases as we specified.



Low-frequency bases are packed around the center of the two-
dimensional array. High-frequency bases are relegated to the
frames and corners. This was specified to be so by virtue of the
weak guidance. We call such a class of bases the ICA ripplet
set, or simply the ripplet basis. The ripplet basis is readily
applicable to the image compression due to the following
properties.

(a) Bases are well-balanced in a 2-D array because of the

centering by the weak guidance. Such a class of harmony
will contribute to the efficiency of coding appearing in
later sections.
Ordering from low to high spatial frequencies is clear.
This ordering starts from the center and ends at the
frames. High-frequency bases corresponding to noisy
patterns are located in the rings around the frames. This
is the very property the 2-D ripplet basis. Linear sorting
of plain ICA bases do not lead to such balanced rings.
The merit of the ring pattern will be exploited in Section
VI-C.

(b)

B. Distribution of Decomposed Signals

We use the self-aligned ICA bases of Figures 5 for the
image compression. Source images are reconstructed by using
Equation (18). We remind readers here that the relationship
on the ICA image bases: A™' «— W. Since the image bases
are not altered any more, they are stored in the encoder and
the decoder. In the encoder, coefficients y; are obtained by

Y =A"1X. (26)

Here, each column vector of X corresponds to an image patch,
Then, encoded values of elements y; in Y are transmitted . If
some pdf’s of y;’s are inappropriate for data compression, the
total coding performance will not be effective. Therefore, we
have to examine their distribution on real images. Figures 6
and 7 are resulting distributions obtained from image patches
outside of the training data. The horizontal axis shows values
of y;. The vertical axis shows the number of appearances,
ie., the frequency. As can be observed, these distributions
are highly super-Gaussian reflecting the nature of the ICA
transformation of images. Other y;’s have the same trend. This
means that most of y; are centered around zero. Few important
numbers are distant from zero. Therefore, we can judge that
the distribution of y is very sparse. This property encourages
us with the anticipation that the encoding for data compression
will be effective.

C. Image Compression

Here, we discuss the case of variable-length coding based
upon the run-length and Huffman coding. The source to be
compressed is the matrix

Y =[y, - yuml @27

Here, y; is the vector representing one sub-patch in the source
image. Here, M = 3750 for a 600 x 400 pixel image since
(600/8) x (400/8) = 3750. Each component of the vector
Yy, is scalar-quantized in group. The quantization is set to be

| M/A M

Fig. 6. Distribution of Component ys
- |
Fig. 7. Distribution of Component ys0

granular if a coefficient is for a low spatial frequency. On
the other band, the quantization is rougher if the coefficient
is for a high-frequency basis located in the rings near the
frames of the ripplet basis. Quantized zeroes appear frequently
because of the sparseness explained in Section VI-B. Then, we
denote the resulting coefficient matrix by Y. We found that
quantized zeroes run consecutively if we raster-scan this Y
horizontally. This is due to the property explained in Item (c)
of VI-A.4 which tells that high-frequency bases correspond
to noisy patterns. Therefore, run-length coding is effective.
Huffman coding is used for non-zeroes.

Figure 8 is a source image selected from [15]. Figure 9
is a compressed image by this paper’s method which is a
class of variable-length coding. The compressed image has the
performance of SNRp, = 30.0 dB at 1.00 bit/pixel. Figure 10
is another compressed image. This image has the performance
of SNRpp = 30.0 dB at 1.42 bit/pixel.

Fig. 8. Uncompressed Image

Numerous experiments were tried besides Figures 9 and 10.
We always compared the IPEG performance with the JPEG.
Since the JPEG is also a variable length coding with three-level
specifications, {high, medium, low}-quality, simple distortion-



Fig. 9. Compressed Image 1

Fig. 10. Compressed Image 2

rate comparisons in SNR often fail to reflect the compression
performance appropriately. But, the firm quality was found that
the image compression based upon this paper’s ICA bases is
more effective than the JPEG under the medium-quality button
which is the default selection of the JPEG coding.

D. Smoothed Ripplet Basis by Gabor Function

We re-computed the ripplet basis of Figure 5 by minimizing
Equation (25). This is to modify the ripplet so that the bases
approach to Gabor functions. The resulting ripplet basis is
illustrated in Figure 11. As we expected, this ripplet basis is
smoother and cleaner than Figure 5. But, such clean smooth-
ness leads to lack of restoration ability for image coding. On
the other hand, the Gabor-smoothed ripplet of Figure 11 shows
a set of motifs which can decompose and reconstruct image
patterns. In the light of such pattern handling, this motif ripplet
basis can find its own application areas. Such applications
include image retrieval and feature extraction.

Fig. 11. ICA Bases Fitted to Gabor Function

VII. CONCLUDING REMARKS

The main objective of this paper was to show the following:

(a) To construct the total ICA learning algorithm which
generates a set of 2-D aligned ICA bases effective to
image compression.

(b) To demonstrate this algorithm’s ability to generate a
desirable basis set, i.e., the ripplet basis.

(c) To show this ripplet’s excellent data compression perfor-
mance on images.

As was presented in the text, all were satisfied. That is, it was
possible to show that the image compression based upon this
paper’s ICA bases is promising. Furthermore, there can be a
variety of directions to the next step for this paper’s method.
(1) Design of joint ripplet and encoding.

(2) Image retrieval and feature extraction using the motif

ripplet.
(3) Applications to other sophisticated image handling.
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Abstract

A new method for E. coli DNA segment classification on
promoters and non-promoters is presented. The algorithm
is based on the Independent Component Analysis (ICA).
Since the DNA segments are composed of discrete symbols,
this paper contains two major steps: (1) Position-dependent
transformation of DNA segments to real number sequences,
and (2) Applications of the ICA to the E.coli promoter
recognition. These steps are related to each other. There-
Jore, algorithmic explanations are given in detail while re-
Serring mutually. The automatic precision of 93.7% is ob-
tained. Since the presented method allows threshold adjust-
ments, twilight-zone data can be further cross-checked in-
dividually so that false negatives are reduced.

1. Introduction

DNA sequences contain portions of special functions
[1], [2]. The promoter is one of such an important struc-
ture which works as a polymerase binding site. Recogni-
tion of promoter patterns keeps its importance because of
the relationship to the transcription [3]. In this paper, the
recognition of E. coli promoter segments is addressed. Ex-
isting recognition methods use artificial neural networks [4]
and their combination with the expectation maximization
algorithm [5]. The new method in this paper, however, is
based on the Independent Component Analysis (ICA). On
the ICA, we will use our own generalized algorithm [6], [7]
derived by the minimization of the convex divergence which
is the ultimately general version of the entropy.

The ICA is a statistical learning algorithm for numerical
data. On the other hand, DNA sequences are composed of

four symbols {4, T, G, C} Lfp, Thus, consistent conver-
sions from symbol sequences to real number series are nec-
essary. Therefore, this paper includes a position-dependent
conversion based on symbol frequencies. By the ICA with
such numerical conversions, the resulting automatic preci-
sion of 93.7% is obtained. Since the presented method al-

Ryo KAWAMURA

Sony-Kihara Research Center Inc.,
Tokyo, 141-0022 Japan
ryo@asagi.waseda.jp

lows threshold adjustments, twilight-zone data can be fur-
ther cross-checked individually so that false negatives are
reduced.

2. E.coli Promoter Recognition

2.1. Structure and Function of E. coli Promoters

Figure 1 is a conceptual illustration explaining the struc-
ture of the E.coli promoter. There are specific sub-

+35 box -10 box, +1 region
CGCGGG | GTGACA | AGGGCGCGCAAACCCTC | TATACT GCGCGAGCTG
Spacer3s Spacertl

Figure 1. Conserved regions in the E. coli pro-
moter.

configurations in the E. coli promoter. They are called the
-35 box, the -10 box, and the +1 region. The transcrip-
tion starts from the +1 region. The region between the -35
box and the -10 box is called the Spacer35. The region be-
tween the -10 box and the +1 region is called the Spacer10.
The -35 box and the -10 box have the fixed length of 6 nt!.
But, their contents may vary. The length of the Spacer35
may vary from 15 to 21 nt. The Spacerl0 may vary from
3 to 11 nt length. Thus, there are various promoter pat-
terns for E.coli sequences. Therefore, symbolic pattern
matching is not quite appropriate for the promoter anal-
ysis, but efficient pattern recognition methods including
probabilistic or soft decisions are required.

2.2. Procedure of E. coli Promoter Recognition

Every pattern recognition method contains an off-line
training phase (learning phase) and an on-line test phase

1 “nt” stands for nucleotide.



(execution phase). This paper’s training procedure for the
E. coli promoter recognition is previewed as follows.

[Training Steps: Off-line]

[TR 1] A set of length-adjusted E. coli promoter
segments is prepared.

[TR 2.1] The set of -35 boxes is changed to a real
valued matrix.

[TR 2.3] A random matrix for the -35 box is gen-
erated and juxtaposed to the -35 box matrix.

[TR 2.3] From the total -35 box matrix, the fea-
ture of the -35 box is learned by the ICA.

[TR 3.1] The set of -10 boxes is changed to a nu-
merical matrix.

[TR 3.2] A random matrix for the -10 box is gen-
erated and juxtaposed to the -10 box matrix.

[TR 3.3] From the total -10 box matrix, the fea-
ture of the -10 box is learned by the ICA.

[TR 4.1] The set of the length-adjusted promot-
ers are changed to a real number matrix.

[TR 4.2] A random matrix for the promoters is
generated using the ICA results of TR 2.3 and TR
3.3. This random matrix is juxtaposed to the pro-
moter matrix.

[TR 4.3] From the total data matrix, the promoter
structure is learned by the ICA.

It is important to note here that the ICA is used three
times; on the -35 box, on the -10 box, and on the total seg-
ment.

The test phase is previewed as follows.

[Test Steps: On-line}

[TS 1] A segment to be tested is given. This may
be a set of segments.

[TS 2] The given segment is length-adjusted? by
using the ICA matrices for the boxes obtained in
the training steps.

[TS 3] The length-adjusted segment is trans-
formed to a real number sequence.

[TS 4] Using the ICA matrices, the segment is
judged to contain an E. coli promoter or not. Esti-
mated boxes are obtained here.

In the above training and testing steps, there are novel
features distinctive to this paper.

(a) To all aspects of the training and test steps, the Inde-
pendent Component Analysis (ICA) is related.

(b) On the conversion of symbols to real numbers,
position-dependent base frequencies are used. This
is not a naive transformation of symbols to unit vec-
tors.

2  The length adjustment in this paper has a different purpose from
ClustalW, BLAST, and so on.

(c) In the training data for boxes and total segments, ran-
dom segments are juxtaposed to pure data. This is re-
lated to the data augmentation or the bootstrap method.

(d) The length-adjustment uses learned ICA matrices.

3. Independent Component Analysis
3.1. Mixture of Independent Components

In the problem of the Independent Component Analy-
sis (ICA), observed or given data are assumed to be an un-
known mixture of unknown data. That is, the observed data
x(t) = [z1(t), - ,zn(t)]T is generated from unknown
source s(t) = [s1(t),--- ,sn(t)]T by

x(t) = As(t) = [a1, -+ ,an]s(t) = S0 aisi(), (1)

as is illustrated in Figure 2. We want to estimate s(¢) and
A by observing only x(¢). The ICA algorithm gives an
estimation of A™! as a de-mixing matrix W. The vector
y(t) = Wx(t) has de-mixed, or independent components.
In this problem setting, we are allowed to assume that the
components of s(¢) are independent each other.

50 x{ »in
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) - i 77 o

i

! t

e e e I A
F T T T g
unknown observed de-mixing separated

Figure 2. ICA structure (V = 2).

In our application of ICA to the promoter recognition,
the data x(t) come from -35 boxes, -10 boxes, and total seg-
ments of the E.coli DNA. Therefore, three de-mixing ma-
trices, say W _g5, W _1g, and Wi will be learned from
given training sets.

To be precise, available information on the mixing struc-
ture is only the following: (a) The components s; and s; are
independent each other if 7 # j. (b) The components s;(¢),
(i =1,---,N), are non-Gaussian except for at most one 1.

Given such assumptions, we want to estimate a de-
mixing matrix W = AITA ™! so that the components y;(t),
(i=1,---,N),of

Wx(t) € y(0) = ®, - v @O @
are independent each other. Here, A is a nonsingular diag-
onal matrix which decides each component’s scale, and II
is a permutation matrix. These matrices are unknown too.
This property is called the indeterminacy.



3.2. ICA Bases

Column vectors u; of U = L W1 are interpreted as ICA
bases. This is because the observed data x is expressed by
the weighted summation of the de-mixed components:

x(t) = Uy(t) = [ug,- -, unly(®) = N wg(t). (3)

The terminologies “ICA bases” and “DNA bases” should
not be confused. They are totally different concepts. The
ICA basis is the very one which represents the promoter
structure. This will be illustrated as an experimental result
in Section 6.2 (see Figure 3).

3.3. Derivation of the ICA Algorithm

Let p(y) = p(y1,- -+ ,yn) be a joint probability density,
and ¢(y) = Hfil ¢:(y;) be a product probability density.
Then, the independence is obtained by the minimization of
the following cost function.

LANLY) D (plyn, -+ ym) T 0:(00))

= Di(p)lla(y) = Dola)Ip())
= [.p(x)g (det(V(V)‘I y)) dx @)

Here, D¢(pllg) is the convex divergence [8] between p
and ¢ in terms of a twice differentiable convex function
f(r) with f(1) = 0. The dual function g is defined by
g(r) = rf(1/r). Note that a special case of the convex di-
vergence is the Kullback-Leiber divergence or the average
mutual information. Further special case is the Shannon’s
entropy.

By computing the negative gradient of I #( /\z 1Y3), the
increment A +W of the following ICA learning equation
can be obtained [6], [7]:

W(t+1)=W(t) + AW, %)

where ¢ is the iteration index for learning®, and
AyW = — pg—’LWTW
=p [{I — Epy) [#(y } W
+u{I- EQ(Y)[ y'1} W} (6)

Here, @(y) is a nonlinear vector function such as ¢;(y) =
y? or ;(y) = tanh(y;). The coefficient p is a small pos-
itive number called the learning rate. p is a non-negative
number for the effect of the acceleration on the learning.
Epy)l-] and Eyy)[ -] are expectations with respect to the
suffixd probability densities. Both are computed from given
data. Since ¢(y) is the unknown target, this quantity is re-
garded as a time-shifted version of p(y) in programming.

3 This should not be mistaken for the sample data index.

3.4. Sample Data and Pre-processing

In actual data processing, we are given samples of ran-
dom vectors x(t), (¢t = 1,---,M). We write down the
set of samples in matrix forms: X = [x(1),--- ,x(M)],
S = [S(l)v T 7S(M)}’ Y = {y(l)? T 1y(M)] Thus, the
data generation model (1) is expressed by X = AS. Also,
the de-mixed result is expressed by Y WX. Then, the
expectation Ey,(x[-] is replaced by Z L

Usually, observed data X is pre-processed so that the
separability into independent components is increased. The
first pre-processing is to make the data to be zero-mean. An-
other important pre-processing is the whitening using the
covariance matrix. On these standard pre-processing strate-
gies, readers are requested to refer to ICA literatures, e.g.,

[7].

4. Parts of Training Steps

4.1. Learning on De-mixing Matrices for Boxes
4.1.1. Numerical Expression of Training Data for Boxes
First, the training set of -35 boxes are changed to a numeri-
cal matrix by the following way.

(a) For the training steps, length-adjusted promoters are
given. In the later experiment, the total number is
N, = 106 drawn from [4]. Each -35 box is 6 nt length.

(b) For each position of the -35 box, normalized
{A,T, G, C}-frequencies are count. This position-
dependent count generates a 4 x 6 matrix, which we
call the Table_z5.

(c) From the training data of -35 boxes, we have an (N, —
k_35) X 6 matrix. Here, N, — k_z5 means the re-
moval of k._g35 identical patterns. In the training set,
Ny — k=35 = 72. Then, each entry of the -35 boxes
is changed to a numeral by using Table_g35. The re-
sulting matrix is called B_35. The matrix B_g5 will
be used as a core part for obtaining the ICA de-mixing
matrix W _ss.

Next, the same procedure is tried for -10 boxes to obtain
the ICA de-mixing matrix W _y.
4.1.2. Random Matrix Juxtaposition for Learning
on W_35 and W_;( For obtaining the de-mixing ma-
trix W _gs, an artificially generated random matrix is jux-
taposed to the data matrix B_35. This is a kind of data
augmentation.

(a) A random data matrix of (N, — k—35) X 6 is prepared.
Here, each entry is drawn from {A,T,G,C}="D.

(b) Using the Table_s5, each entry is changed to numer-
als. This matrix is called C_3zs.

(c) By juxtaposing BT - and C%;, we have a data ma-
trix of size 6 x 2(NNp, — k_35). This is called X _35.



(d) The matrix X _z5 is preprocessed for the ICA to be the
zero mean and the unit covariance. The resulting ma-
trix is renamed X _35.

(e) Using the data matrix X _35, the ICA leaning is carried
out. Then, the de-mixing matrices W _35 and the de-
mixed data matrix Y _g5 are obtained.

For W_qg and Y_1j, the same procedure using BT,
and CT ) is executed.

4.2. Segment Length Adjustment

On the -35 box and -10 box, length adjustments were not
needed since their lengths are fixed to 6 nt. But, on the pro-
cessing of the total promoter region, appearing later in Sec-
tion 4.3, a length adjustment will become necessary. This is
because the Spacer35 and the Spacerl0 are variable-length.
The algorithm is based on [4]. But, our method uses ICA re-
sults of W_35, Y35 W_10 and Y_1p, which are obtained
in advance.

The following steps generate length-adjusted segments.

(a) A segment to be length-adjusted is given with an iden-
tified start point.

(b) Looking back from the starting point, find the best end-
ing point of the -35 box in the region [15---21]. The
best position is identified by the maximum inner prod-
uct using the column vectors y—g5(k), k = 1,--,7.
Here, 7 appears as the zone length of the possible end-
ing point. The mechanism of the maximum inner prod-
uct will be explained in detail in 4.3.2.

(c) The best ending point of the -10 box is identified in the
same way using the column vectors y_10(k) in the re-
gion [3---11].

(d) Gaps are inserted so that the total length becomes 65
nt [4].

4.3. Feature Extraction for Total Promoter Struc-
ture by the ICA

4.3.1. Numerical Expression for Promoters First, the
training set of promoters is changed to a numerical matrix
by the following way: (a) There are N, = 106 training pro-
moters with 65 nt length. (b) For each column, the normal-
ized frequencies on each position in the 65 nt length are ob-
tained. This generates a table of the size 5 x 65 since the pro-

moter sequence contains {A, T, G, C, —} 4 D+ This fre-
quency table is called the Tablepromoter- (¢) By using the
Tablepromoter, @ Numerical matrix of size N, X 65 is ob-

tained. This is called Bpromoter-

4.3.2. Random Matrix Generation for Promoter Learn-
ing Similar to the ICA learning on the -35 box and -10 box,
a random matrix, say Cpromoter, is generated. This matrix
will be juxtaposed to the data matrix Bpromoter later.

(a) Prepare N, random segments of length 50 nt whose
elements contain {4, T} and {G, C} to be 60% and
40%.

(b) The first A or G from the end is regarded as the start-
ing point in this random sequence [4].

(c) A putative -35 box in each segment is found as follows:
(1) Prepare 7 sliding segments of length 6 in the re-
gion [15---21}. Make a 6 x 7 matrix. Change each ele-
ment to numerals using Table _35. This matrix is called
Z_35. (2) Compute W _35Z . 35. This de-mixed ma-
trix is called Y. 35,¢, whose column vectors are called
y-35¢(j), j = 1,--+,7. (3) Using the column vec-
tors y_35(k), of Y45, compute the summations of the
inner products by ¢(j) = 228:1 nyS,C(j) y_35(k).
(4) Set the putative end position of the -35 box to be
J-35 = arg maxy <7 q(J).

(d) Find aputative -10 box in the segment in the same way
as the -35 box.

(e) Perform the length adjustment to arrange the length to
be 65 nt. This generates a random matrix of the size
106 x 65.

(f Change the entries of this random matrix to numerical
numbers by using Tablepromoter- The resulting matrix
is named Cpromoter-

4.3.3. ICA on the Total Promoter Structure Since the
matrices Bpromoter ald Cpromoter are prepared, the ICA
learning for the total promoter region can be carried out.

(a) Juxtapose the matrices BT oter and CTomoter- The
resulting 65 x 212 matrix is called Xprompter-

(b) Preprocessing for the zero-mean and the whitening
is executed on Xprompter. The resulting matrix is re-
named Xprompter-

(c) Using the data matrix Xprompter, the de-mixing matrix
W prompter and the de-mixed matrix Y prompter are ob-
tained by the ICA algorithm. This completes the whole
training phase.

5. Testing on Given Segments
5.1. Preparation of Test Data

Bach test segment is processed in the following way:
(a) A test segment with a given starting point is given. (b)
The sequence is adjusted to be the length of 65 nt by us-
ing W_3s5, Y_35, W_10 and Y_1p. On the estimation of
-35 box and -10 box, Table_35 and Table_1q are used for



the numerical conversion. The mean values and the whiten-
ing matrices obtained in the learning phase are also applied.
(¢) The resulting segment is changed to a 65-row numerical
vector using the Tablepromoter- Then, the mean value adjust-
ment and the whitening are carried out by using the results
obtained in the training phase. This is called X¢egt.

5.2. Promoter Recognition

Given a vector X to be tested, the following judgment
is carried out:
(a) Compute Yiest = WopromoterXtest. (b) If the first ele-
ment “Yrest (1) is positive, the tested sequence is judged
to contain a promoter. Otherwise, it is regarded as a non-
promoter. For the positive sequence, gaps are removed to
identify the estimated boxes. This completes the testing
phase.

6. Experiments on Training and Testing
6.1. Data Preparation

A set of training data of length-adjusted segments were
obtained from [4]. From this set, the matrices B_3s, B._1,
and Bpromoter Were generated. Then, they were changed to
numerical matrices by the aforementioned methods which
reflect position-dependent symbol frequencies.

Next, random matrices C_35 and C_4 were generated
and changed to numerical matrices. Then, by the juxtapo-
sition, X_35 and X _1o were generated. Then, by the ICA
algorithm, W_35, Y_35, W_1g, and Y _1, were obtained.

Next, the random matrix Cpromoter Was generated. Then,
it was changed to a numerical matrix by the aforementioned
method. By the juxtaposition of CT. to B the

promoter promoter
training matrix Xpromoter Was generated.

6.2. Execution of the ICA Algorithm

By the execution of the ICA on X promoter, the de-mixing
matrix Wromoter Was obtained. As was explained in Sec-
tion 3.2, each column vector of W;rf)moter works as an ICA
basis. The first one, say u, represents the major property
of the promoter. Figure 3 illustrates the resulting ICA ba-
sis. We can observe that there are humps around the posi-
tions 27 and 52. They correspond to the -35 box and the -10
box, respectively.

6.3. Promoters and Non-Promoters

For the testing and performance evaluation, we prepared
126 promoter segments and 1,000 non-promoter segments,
The set of 126 promoter segments were drawn from [4].
But, all gaps were removed in advance since our length-
adjustment uses W_3s, Y_35, W_1; and Y. 1g. There-
fore, the length of each segment varies at first.

Figure 4. Decision by a threshold.

Generated non-promoter segments contain {4, 7’} and
{G, C} by the ratio of 60% and 40%. The length of each
segment is 50 nt. The first A or G from the end was re-
garded as the starting point.

On such 1,126 segments, the following test procedure
was carried out.

(a) Using W_35, Y_35, W_10 and Y_1, the length-
adjustment was made.

(b) Each entry was changed to a numerical value by using
Tablepromoter. Pre-processing using the learned data
was executed.

(c) The resulting matrix X et is of 65 x 1126 in the size.

(d) The de-mixed matrix was computed by
Ytest = WpromoterXtest-

(e) The first row of Yiest, say “Yiest(1),” was taken
out. Each element corresponds to each tested seg-
ment. The 1,126 elements in “yiest(1)” were judged
if they are positive or not. If the k-th element is pos-
itive, then a promoter exists in the k-th segment,
k =1,---,1126. Otherwise, the segment was judged
to be a non-promoter. Figure 4 illustrates the result-
ing “yiest(1).” As can be observed, there is a clear
separation by the threshold at zero.

6.4. Performance Evaluation

On the recognition of promoters, the performance mea-
sures {precision, specificity, sensitivity} were computed. In
order to compare the performances with existing studies [4],
[5], the performance measures are defined in the usual way.

(a) The precision is computed by P = C/Nygga1 X 100%.
Here, C is the number of correct judgments, and Nioga;
is the total number of tested segments.



(b) The specificity is defined by S, = (1 — Nip/Nnp) X
100%. Here, Ny, is the number of false positives. Nyp
is the number of tested non-promoter segments.

(c) The sensitivity is defined by S,, = Nip/Np x 100%.
Here, Ny is the number of true positives. N, =
Niotal — Nnp 15 the number of tested promoter seg-
ments.

Performances by various methods are summarized in Ta-
ble 1. The first line is the performance of our method. The
second line is the performance of [5] which use the unit vec-
tor expression of { A, T, G, C'}, the EM algorithm, and arti-
ficial neural networks. The third line is the performance of
[4] which uses the unit vector expression of {A,T,G,C}
and artificial neural networks. Thus, the presented method
has the best precision of 93.7%. It is important to note that
the consensus for the -35 box was TTGACA, and that of the
-10 box was TATAAT.

P S Sn

P
This paper | 0.937 | 0.934 | 0.968
Method [5] | 0.919 | 0.918 | 0.992
Method [4] | 0.904 | 0.902 | 0.980

Table 1. Performances of various methods

The score of our ICA method in Table I is merely an au-
tomatic result via the fixed threshold of ¥ = 0.0. Upon ob-
serving Figure 4, however, readers can easily find that there
are negative segments having scores only slightly below 0.0
(for instance, the one around the number 210 in Figure 4).
They are highly likely to be false negatives. By watching
the score, our method accepts additional interactive cross-
examinations to reduce the false negatives.

7. Discussions and Concluding Remarks

In this paper, a new statistical method for E.coli pro-
moter recognition was presented. The novelties in the pre-
sented method are summarized as follows: (1) The method
is based upon the independent component analysis (ICA)
which is unsupervised. But, the presented method beat ex-
isting supervised learning methods in the precision. (2) The
threshold can be adjusted so that false negatives are re-
duced. (3) The numerical expression of DNA segments re-
flects position-dependent symbol frequencies.

The presented method can be extended and combined
with other methods for further sophistication: (a) In this pa-
per, promoters were recognized by using identified starting
points. It is known that the transcription initiation sites may
be diverse and can be identified exactly only via wet bio-
logical experiments, e.g., [9]. But, posterior probability ap-
proaches looking back from the promoter patterns are possi-

ble. The ICA promoter recognition method in this paper ex-
ists in the realm of this category. Our preliminary study sup-
ports this matter. (b) Incorporation of partially supervised
mechanism [10] will improve the ability of the ICA. (c) The
EM algorithm [11], [12] which contains the Hidden Markov
Model as its special class can be combined.
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