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Analysis of Anti-Windup Controllers Based on Analysis of Output Reachable Setsf

Ryo WATANABE*, Kenko UCHIDA** and Masayuki FUJiTA™™*

The actual control systems possess some kind of restrictions on the control inputs like saturation, rate limit,
and so on. It is known that these restrictions usually cause the large overshoot of the controlled variables for
step reference signals. This overshoot phenomenon is called the windup phenomenon. Though the windup phe-
nomenon crucially causes the undesirable performance of the actual control systems, formulation of the windup
phenomenon from a control-theoretical point of view has not been proposed yet.

In this paper, we characterize the windup phenomenon via output reachable sets and propose analysis technique
for the windup based on reachable set analysis. Then we propose a new framework for anti-windup technique
and characterize its anti-windup performance via output reachable sets. We also propose analysis technique for

anti-windup performance based on reachable set analysis.

Key Words: windup, anti-windup, output reachable set, gain scheduling
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Semi-Global L* Gain Analysis of Linear Systems with

Self-Scheduling Parameters*

Takehito AzuMa**, Ryo WATANABE*** and Kenko UCHIDA**

In this paper, we consider semi-global L? gain analysis for nonlinear systems described as linear
systems with self-scheduling parameters. First we show a method to convert linear systems with
self-scheduling parameters into linear systems with scheduling parameters based on evaluation of
Second, using the tools for linear systems with
scheduling parameters, we discuss semi-global L2 gain analysis for the nonlinear systems and
propose an approach together with feasible formulas of computation, which provides a solution to
the so-called hidden loop problem in gain scheduling. Finally, we show numerical examples.

the domain of the self-scheduling parameters.
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Abstract

We discuss control synthesis through a quadratic perfor-
mance index for linear stochastic systems with schedul-
ing parameter, which we call LQG control synthesis for
systems with scheduling parameter. First, modifying the
optimal LQG control synthesis for time-varying systems
such that it leads to the causal dependence on the schedul-
ing parameter, we propose a synthesis method based on
a Riccati differential inequality and a forward Riccati dif-
ferential equation. Being suggested by a relation between
L? gain control for lincar systems with scheduling param-
eter and that for linear time-varying systems, second, we
propose another synthesis method based on two Riccati
differential inequalities which correspond to two Riccati
differential equations in the optimal LQG control synthe-
sis for time-varying systems. To evaluate performance lev-
els of the synthesized T.QG controls, we also discuss some
bounding techuniques of the quadratic performance index.

Notation: (') denotes the transpose of a matrix or vector.

T denotes the identity matrix. X > 0 (X > 0) denotes that |
* thar for linear time-varying systems and the fact that 1.2

the matrix X is positive definite (positive semi-definite),
and X < 0 (X < 0) denotes that the matrix X is negative
definite (negative semi-definite).

1 Introduction

Gain scheduling is a practical approach to nonlinear con-
trol problems. Control theory for linear systems with
scheduling parameter, called linear parameter-varying sys-
tems control theory, has developed recently, and provides
gain scheduling theoretical bases and systematic synthesis
procedures. So far L? gain analysis and synthesis proce-
dures have heen discussed in most of the previous works
(e.g., [7], [1], [6], [3], [9], [11], [10]) and the work [7]which
discusses LQG (Linear-Quadratic-Gaussian) type analysis
and synthesis procedure is an exception. Remembering
the fundamental role of the optimal LQG control in lin-
ear control theory, it is desired to establish QG control

methods also for lincar systcms with scheduling parame-
ter. .

In this paper, we discuss LQG control synthesis for sys-
lemns with scheduling parameler. The scheduling param-
eter is measured only on-line, so that system parameters
which depend on the scheduling parameter are not known
a priori over the whole inferval. This makes 1.QG control
synthesis for systems with scheduling parameter differ-
ent from that for time-varying systems and requires some
other consideration. The frozen parameter technique (see,
e.g., [7]) is a feasible approach to the problem, but can not
generally assure stability and any performance levels of
closed-loop systems. We propose two synthesis methods:
One is based on a Riccati differential inequality and a for-
ward Riccati differential equation, which may be regarded
as a modification of the optimal LQG control synthesis
for time-varying systems such that the synthesized control
depends causally on the scheduling parameter; 'I'he other
is based on two Riccati differential inequalities, which is
suggested by the correspondence between L? gain control
synthesis for lincar systems with scheduling parameter and

gain control (H* control) is reduced to the optimal LQG
control by taking the L? gain level infinity. To evalu-
ate performance levels of the synthesized LQG controls,
we introduce some bounding procedurcs of the expected
quadratic performance index. We also discuss describing
the synthesis and/or evaluation methods with parameter-
dependent LMIs (Linear Matrix Inequalities) instead of
Riccati differential inequalities.

2 Problem Formulation

The linear system with scheduling parameter we consider
is doscribed, over the interval [0, 00), as follows:

%w(ﬂ = A(8(1))(t) + B(8(t))u(t) + D(8(2))(t)

(= 5
y(t) = GO +u(®), 2(0) =z

17



18

2(t) = F(0(t))x(1).

x(t) is the state vector; u(t) is the control input vector;
y(t) is the measurcment veetor; g(t) = (v(t)’, w(t)’)' is the
disturbance vector; A(t) := (2(t)’, u(t)’) is the controlled
vector. 'Lhe scheduling parameter 8(¢) over [0,0) is a
continuously differentiable function such that

d
——9(7‘) € [Umin ) Uma:c]

H(T) € [emim Hmam]a dt

for all t in [0, o0). Let the class of these scheduling parame-
ter §(-) be denoted by ©. A(8), B(8), C(8), D(8), and F(6)
are mabrix funclions whose elements are bounded conlin-
uous functions of 8 in [f,,:n, Omas]- In the case when the
disturbance g is a square-integrable(L?) function, we call
the system (X) the deterministic system; In the case when
the disturbance g is a white-Gaussian random process, the
inivial state @o Is a Gaussian variable with zero-mean and
variance Fy > 0, and g and zy are independent, we call
the system (X) the stochastic system.

The schednling parameter 8(-) is unknown a priori ex-
cept it belongs to the class O, but (%) can be measured on-
line. This requires that the control input depends causally
on the parameter, and implies that the control synthesis
problem differs from the standard control synthesis prob-
lem for time-varying systems where all system parameters
are assumed to be known a priori over the whole inter-
val. To synthesize control inputs which have the causal
parameter-dependence, we assume the structure of admis-
sible controllers in the following, parameter-dependent,
linear form:

(M) : ?d't'xc(f) = A (0(1))z.(t) + Ho(6(1))y ()

u(t) = Ke(0(t)).(1), z(0)=0
where A.(f), H.() and K,(f) are matrix functions whose

elements are bounded continuous functions of ¢ in
[fmin, Omazr]- Our problem, which we call LQG control

synthesis for systems with scheduling parameter, is to find’

a controller of the form(T') such that I) for the stochastic
system(X), it assures a certain (possibly minimum) level
of the performance index of the quadratic form

J=E (1)

T
o(T) Mra(T) + / h(t)’h(’t)di}
0

for 0 < T < o0, where E denotes expectation and My is
a coustant malrix and Mp > 0;  II) [lor the determinis-
tic system(Z}, it makes the closed-loop system internally
stable. The constant T' in the performance index (1) is a
design parameter and could be chosen to specify an initial
interval where transient responses are concerned.

3 Preliminaries

3.1 L? Gain Control for Linear Systems
with Scheduling Parameter and Lim-
iting Form

Here we pay attention to the following synthesis result for
the deterministic case( [9], [8], and also see [5]): For a
positive number v, let matrix functions M(8) and P(6),
whose elements are continuously differentiable functions,

satisfy that M(6) > 0, P(8) > 0,

(6,0, M59) = v M(9) + A(O) M(O) + M(6)A(O)
~(6) [ BOB(Y ~ 5 D(OD@Y | a10) + FOYF(0) <0
vd—ng(ﬁ) + PO)A(BY + A(8)P(8)
_P(6) [C(G)’C(B) - %F(Q)’F(@)] P(6) + D(8)D(6Y < 0

~Qp(0,v,Py) =~

VM(6) ' Qp(0,v, M) M) > Qp(6,v, P7) >0
and Y2M(0)"t > P(8) for all (4,v) in [0min, Omaz] <

Wmin,Vmaz). Then, the controller synthesized in the fol-
lowing form,

L a.(t) = [A((D) ~ BOW)BEWYSEW)
—PO())GO()) CO(8))
+7—12Pwm>F<9<t>)'F<9(t))}mc<t)

+P(O()C(6(2)) v(t)
u(t) = =B(8(t))'(6(2))z.(t), w(0)=0

where S(8) := MO — (1/vy*)P(O)M(6)]7, is causally
parameter-dependent and yields the closed-loop system
internally stable, and the 1.2 gain from the disturbance ¢
to the controlled output h when zp = 0 is less than v for
all scheduling parameters 6(-) in ©. That is, this is an L2
gain controller (H® controller) for the linear system with
scheduling parameter. Consider an extreme case of this
result: Tetting v+ — oo reduces the above condition for
M(8) and P(¢) to that M(6) > 0, P(¢) > 0,

~Q (8,0, M) = /%M(e) + A(0) M(6) + M()A(6)
(2)

—M(8)RB(8)B(G) M(8) + F(8) F(8) < 0
—Qp(6,v, P) = _deé P() + P(8)A(8) + A(F)P(6)
~P(8)C(8) C(8)P(8) + D(8)D(8) < 0 (3)
for all (8, v) in [fmin, Omas] X [Vmin, Vmas), and reduces the
above controller to the limiting form
Lat) = [A(B() ~ BO)B()) MEE)ee(t)
+P(A)CO(1) y(t) = C(O()) (1))

u(t) = —BA®)Y MA(E)z.(), «.(0)=0. (4)



In parallel with the relation between H™ control and opti-
mal LQG control in linear time-invariant or time-varying
systems cases, we expect that the limiting form (4) in-
duced from the H® controller will be a reasonable T.QG
controller for the linear stochastic system with schedul-
ing parameter and the performance index of expected
quadratic form.

3.2 LQG control for Linear Time-Varying
Systems and Riccati Differential In-
equality

To simplify descriptions, we introduce two notations. Let
u(t) = E(tJU()HY()’Y())

denote the control input given by

Laclt) = [AG() ~ BEO)BEO)X(O)] 2.0
FYOCEE) 1) - CEE)e0)]
u(t) = —BOE)) X (Dre(1), 2.(0)=0

and define Apr(t, X) and Ap(t,Y) as

ixm+Awmxmo+xmmwm
B(O(2) BO)Y X (2) + F(6()) F(O(1))
-Ap(t,Y) = _?Ey(t) + Y () AO@) + A0E)Y (1)
Y ()C(0() C(6®)Y (1) + D(O() D(O()) -

In this section, supposing a scheduling parameter 6(-)
over [0, is known a priori, we regard the system () a
linear time-varying stochastic system defined over [0, 77
For the linear time-varying stochastic system (%), it is
well-known that the optimal LQG controller, which min-

—Ap(l, X) =
-X(t

imizes the performance index (1), is given as (see, e.g.,:

Chapter 14 of [4])
u(t) = B¢ y(), M™(), () (5)

and the optimal value of performance index is expressed
as

T
J(M*, P*) = e[ Mg P*(T) +/ {F0()) F(8(L) P*(1)
+ M ()P (O GO 0) P (1) ]

(0)Py + /0 (M (£)D(6()) D(6(2)Y
+ M*(t)B(6(t))B(6(t)) M*(t)P* ()} dt] (6)

= tr[M*

where M*(t) and P*(¢) are the unique solutions to the
Riccati differential equations:

—Apr(t, M*) =0,
. —Ap(t, Py =0,

M*(T) =
P*(0) = P.

Now we consider three modifications of the optimal LQG
controller (5):

u(t) =E(t,y(-), M" (), P(-)) (9)
u(t) =E(t,y(-). M(-), P"(:)) (10)
u(t) =E(t,y(-). M), P(")) (11)

where M (t) and P(t) are continuously differentiable ma-
trix functions which satisfy the Riccati differential inequal-
ities

~Ap(t,P) <0, P(0) > P

(12)
(13)

Here note the following fact:

Lemma 1.
{0,T].

Proof:

M*(1) < M(t) and P*(t) < P(t) for all 1in

From (7) and (12), we can see that

—d'—]\/f*(t)—%A(G( ) M*(t) + M (£)A(6(2))

dt
—M*(£)B(8(t)) B(8(£)) M (t)
FFB()YFO() =0

%M(t) + A1) M(t) + M () A(8(2))
— M(D)B(6(2)) B(A()) M (1)
TR FO®)) + Ape(t, M) = 0.

Now, letting II(¢) := M {#)— M*(t), and A(t) := [A(0(t))—

(1/2)BOANB(6()Y {M (1) + M*(t)}], we have

d TH(1) + ALY TI(L) + T(OA(L) + A (b, MY =0

and, denoting by ¥(-,-) the transition matrix associated
with the time-varying matnx —A(t), we have

() = (¢, T)I(T)E (¢, T)
' T
+/ U(t,s)An (s, MYV(t,5) ds
t
where II(T) = M(T)— Mry > 0 and Ap(s, M) > 0 for

each s, which implies the first inequality. The second in-
eqnality follows from the dual argument. =

Let J(M*,P), J(M,P*) and J(M, P) denote the values
of the performance indices of the three contrellers (9), (10)
and (11) respectively. Then, we ohtain the following eval-
uation:

Lemma 2. J(M*, P*) < {J(M,P*),J(M* P)} <
J(M,P)  where J(M*, P*) is given by (6), and J(M, P*),
J(M*,P) and J(M,P) are expressed as

J(M,P*) = tr[M(T)

PY(T) ,
T

+/ {(F(O) F(0()) + A (1, M) P(2)
0
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FM()P*E)CO()) C(
= [M(0)P*(0) + / D)D)
M()B(6()BOWY MOP ()} d] (1)
J(M*, P) = t2[ M*(T)P(T) /{F(9 ) F(8(1))P(1)
+M* () P(£)C(8(2)) C(8(1))P(t)} ]

()P ()} dt]

‘ :tr[ﬁ/f’”(O)P(O)
T
+/ (M () (D(6(1)D(B()Y + Ap(2, P))
+M* (1) B(6(1)) B (f))’M*(t)P(f)}df] (15)

J(M, P) = t[M(T)P(T)

T
+ / (R FO)) + Apt(t, M) P()

+M(@)P()C(6(¢))' C(0(t)) P(t)} di]
= t2[M(0)P(0)

+ / (M () (D(6) PB®)Y + Ap(t, P))

+M(1)B(6()) BO()Y M()P(t)} dt]).  (16)

Proof: The expressions of the performance indices (14),
(15) and (16) are modifications of the optimal LQG per-
formance expressions (6) with the definitions of Apr(1, M)
and Ap(t, P). The inequalities among three performance
indices are shown by applying the inequalities of Lemma
1 and the inequalities (12) and (13) to the expressions
(14), (15) and (16). o

4 LQG Control Synthesis for Syst-
ems with Scheduling Parameter

4.1 Parameterization

We begin to check feasibility of the four controllers
(5), (9), (10) and (11) as controllers for linear sys-
tems with scheduling parameter. We should note
that from the definition, to construct the control in-
put u(t) = E(t,y(-), X(-),Y (") at time t, we need data
{(4(5),0(5), X(5), Y (5)),0 < 5 < 1), where (8(s), y(s)) is
measured on-line at each time s, and also remember that,
as stated in Section 1, controllers for linear systems with
scheduling parameter are required to have causal depen-
dence on scheduling parameter 8(¢). Then, we see imme-
diately that the optimal LQG controller (5) and the con-
troller (9) are not feasible, because both need M*(-) which
Is the solution of the backward Riccati differential equa-
tion (7) and so has anti-causal dependence on scheduling
parameter. From now on, we focus on the remaining two
controllers

u(t) =
u(t) =

(t,y(), M (), P*(1))
(#,y(-), M (), P(1)).

[l] [I]

First we consider the controller u(t) = Z(¢,y(-), M(-),
P(t)). This controller needs M(-) and P*(-). Let M(§)
be a continuously differentiable solution to the Riccati
differential inequality (1), and set M(t) = M(4(1)) for
a given scheduling parameter #(-). Then, if M(T) =
M(0(T)) > My is satisfied, it is shown by direct substi-
tution that M (t) = M(6(t)) satisfies the Riccati differen-
tial incqualitics (12). P*(-) is the solution of the forward
Riccati differential equation (8) and so, corresponding to
on-line measurement of scheduling parameter 8(-), can be
calculated on-line. Thus we obtain a feasible controller
u(t) = E(t,y(-), M(-), P*(-)). Noting that the inequalities
(2) for all v in [Vmin, Ymasz) can be replaced equivalently
with those at ¥ = vpmin and v = vq, due to the linear
dependence of the inequality (2) on v, we summarize our
discussion as follows:

Step A: Find off-linc a continuously differentiable solu-
tion M(6) of the Riccati differential inequalities

‘_QM(HJ Vmin, A_/f) <0

M) <0, M(8) > My (17)
for all@ in [0nin, Omas). Measure 0(t) and set M(t) =

M(6(2)) on-line.

—QM(Q, Vmaz,

Step B: Measure 0(t) and solve on-line, with respect 1o
P*(t), the forward Riccali differential equalion

—Ap(t,P*) =0, P*(0)=

Through Step A and Step B, we have u(t) =
Z(t,y(), M(), P*(:)) on-line. Here note that, since the
inequalities (17) in Step A allow non-unique solutions
M(6), Oin < 6 < Gpyae, this controller is parameterized
with these solutions.

Next we consider the controller u(t) = E(2,y(-), M(.),
P(t)). This controller needs M() and P(-). Let M(6)
and P(f) be continuously differentiable solutions to the
Riccati differential inequalities (2) and (3) respectively,
and set M(t) = M(A(t)) and P(t) = P(6(t)) for a given
scheduling parameter 6(-). Then, if M(T) = M((T)) >
My and P(0) = P(8(0)) > P, are satisfied, it is shown
by direct substitution that M(t) = M(6(t)) and P(t) =
P(6(t)) satisfies the Riccati differential inequalities (12)
and (13) respectively. Thus we obtain a feasible controller
u(t) = E(t,y(-),M(-),P(-)), which is just the controller (4).
In this case, the construction procedure is summarized as
follows:

Step C: Find off-line a continuously differentiable solu-
tion P(8) of the Riccati differential inequalities

-—QE(Q, Vmin, P) <0

"Qp(g,yma:r,‘; Py <D, _P(ﬂ) > P

(18)

for all @ in [Bmin, Omas]. Measure §(t) and set P(t) =
P(6(t)) on-line.



Through Step A and Step C, we have u(ty =
=(t,y(-),M(),P(-)) on-line. Note that this controller is
parameterized by the solutions M(6), Omin < 0 < Omap of
the inequalities (17) in Step A and the solutions P(f),
“Opin < 0 < Omap of the inequalities (18) in Step C.

Thus, let the controller u(t) = Z(¢,y(-),M(:),P*(:)) be
constructed through Step A and Step B, and the con-
troller u(t) = E(t,y(-),M(-),P*(")) be constructed through
Step A and Step C. Then, both controllers are feasible
and have the following properties:

Proposition 1.

(a) For the linear stochastic system with scheduling pa-
rameler (2), the controller w(l) = Z(Ly(-),M(),
P*(")) is superior to the controller u(t) = Z(t,y("),
M(),P(") in the sense that J(M,DP*) < J(M, D),
where J(M, P*) and J(M, P) are given by (14) and
(16) respectovely.

(b) For the lincar deterministic system with scheduling
parameter (), if there exist positive numbers € and n
such that eI < P*(t) < nl for allt in [0,00), the con-
troller w(t) = E(t,u("),M(),P"(-)) makes the closed-
loop system internally (erponem‘zally) stable.

(¢) For the linear deterministic system with scheduling

parameter (I), the controller u(t) = Z(t,y(),M(),

P(-)) makes the closed-loop system internally (expo-

nentially) stable.

Note that these properties hold for any given scheduling
parameter 8(-) in ©. The part (a) follows directly from
Lemma 2. The parts (b) and (¢) are proved by applying
the Lyapunov stability results for linear time-varying sys-
tems to the closed-loop systerns, since the boundedness of
P*(-) is assumed as in (b) and similar boundednesses of
M(-) and P() are automatically satisfied.

The on-line operation in Step B may be difficult in
practice but is possible in principle (see [7] where the
same idea is used in improving the frozen parameter LQG
method). The off-line calculations in Step A and Step C
can be done by using the techniques for solving parameter-
dependent T.MTs (see, e.g., [10],[2]).

4.2 Optimization

The two controllers obtained above are parameterized by
M(8), Omin < 0 < Omae and P(6), Omin <0 < O ae which
are solutions to the Riccati inequalities (17) and (18) ve-
spectively. To obtain better controllers from the viewpoint
of the performance index (1), we are led to the following
optimization problems:

For the controller u(t) = E(t,y(:),M(:),P*(-)), mini-
mize J(M, P*) with respect to M(&) Omin < 80 < Omaz
subject to (17) where J(M, P*) is given hy (14);

For the controller u(t) = Z(t,y(-),M(-),P(-)), minimize
J(M, P) with respect to (M(), P(8)), Omin < 6 < Omac
subject to (17) and (18) where J(M, P) is given by (16).

. However these optimization problem are generally dif-
ficult to solve, and so we propose an ad hoc procedure
which minimizes some upper bounds of the performance
indexes.

For given positive numbers o and 3, consider the Riccat
differential inequalities

=Q (8, Vmin, M) + T >0
—Q (8, Vmae, Y) + ol > 0,
~Q p(8. Vmin, D) + 51 > 0
~Q p(, Vmas, P) + 81 >0,

M(0) < Mp + al (19)

P(A) < Po+ BT (20)
for all 8 in [frmin, Omaz)-

Let M(8) which is a solution to (17) safisfy (19) and
P(6) which is a solution to (18) satisfy (20), and set
M(1) = M{(6(£)) and P(1) = P(6(1)). Then,

Lemma 3. (a) Ay(t,M) < ol and M(t) < Mp + al
for allt in [0,17.

(b) Ap(t,P) < BI and P(t) < Po+ 81 for allt in [0,7].

Proof: The inequalities of (a) are rewrites of (19) and
the inequalities of (b) are rewrites of (20). o

Using the inequalities of Lemma 3 in the expressions of
J(M,P*) and J(M, P) of Lemma 2, we obtain the fol-
lowing upper bounds of J(M, P*) and J(M, P):

Proposition 2.
J(M,P*) < U(a, P*)and J(M,P) < {U(e, D),V (3, M)}
where the functions U(a,Y) and V{5, X) are defined by

Ula,Y) =

T
tr[Y(T) +/ {Y )+ Y()C(0(2)) C(6(4))Y (1)} dt]or

oMY (T /{F B FOE)Y (1)
+ MpY ()C0()) CO)Y (£)} dt)
V(8.X) =
£[X(0) + X (0) + X(OBO@)BO@)Y X @)} i3
¢

T
(X (0)Po + / (X()DEE) PO
+ X(8)B(0())B(O(t)) X (1)Po} dt).

We see from Proposition 2 that the upper bounds have
linear dependence on either ¢ or 7. Therefore, to obtain
better controllers based on the upper bounds, it is reason-
able to consider the following optimization problems:

For the controller u(t) = Z(t,y(),M (), P~(")), mns-
mize o with respect to M(8), Omin <0 < fmae

subject to {17) and (19);

For the controller u(t) = Z(t,y(-),M (), P(")), minimize
a with respect to M{f), Omm <f< ()max

21
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subject to (17) and (19), and minimize § with respect
10 P(8), Omin < 8 < Omax subject 1o (18) and (20).

The Riccati differential inequalities (17) and (19) can be
rewritten in the form of parameter-dependent LMIs with
a rank condition, though the detail is omitted. Similarly,
the Riccati differential inequalities (18) and (20) can be
rewritten in the form of paramcter-dependent LMIs with
a rank condition. Thus, our problems are reduced to
parameter-dependent LMIs optimizations, and again the
techniques for solving parameter-dependent LMIs (e.g.,
[10], [2]) can be applied.

5 Conclusion

In this paper, we discussed LQG control synthesis prob-
lems for systems with scheduling parameter, and proposed
synthesis mcthods bascd on a forward Riccati differential
equation and Riccati differential inequalities. The pro-
cedures proposed are described by parameter-dependent
LMIs, and can be executed by some promising techniques
recently developed.
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Abstract

This paper considers a synthesis problem of H > con-
trollers for linear systems with time delay in the form
of delay-dependent memory state feedback, and devel-
ops a new linear Matrix Tnequalities (T.MTs) approach.
First, we present an existence condition and an ex-
plicit formula of H* controllers in terms of infinite-
dimensional LMIs. This result is rather general in the
scnsc that it covers, as spccial cases, somc known re-
sults for the cases of delay-independent/dependent and
memoryless/memory controllers, while the infinity dimen-
sionality of the LMIs makes the result difficult to apply.
Second, we introduce a technique to reduce the infinite-
dimensional LMIs to a finitc number of LMIs, and present
a feasible algorithm for synthesis of H° controllers based
on the finite-dimensional LMIs.

1 Introduction

For linear systems with time delay, delay-independ-
ent memoryless state feedback controllers and delay-
dependent memory state feedback controllers can be con-
sidered. We can expect that memory controllers achieve
better performances than memoryless controllers. Thus
some results focus on this memory controller synthesis
problem [12] [11] [2] [8].

For LMI approach to linear systems with time de-
lay, many result focus on memoryless controller synthe-
sis problems [9] [4] [10] [8]. Memory conlroller synthesis
problems via LMI approach are discussed in some results
(2] [8].

In this paper, we consider a synthesis problem of H™
memory state feedback controllers for linear systems with
time delay via TMT approach. First we show a result of

L? gain analysis of linear systems with time delay and
make a comparison with some previous works. Next we
discuss a H°° controller synthesis problem based on this
result of L? gain analysis. Here we also consider a synthe-
sis problem of I controllers with constrained feedback
gains. We derive results of L? gain analysis and H® con-
troller synthesis in the form of infinite-dimensional LMIs.
Nexh we reduce the infinile-dimensional LMTs Lo a finile
number of LMIs. Finally we show a numerical example.

2 System description

Consider a time-delay system,

@(t) = Agz(t) + Arz(t — h) + Bu(t) + Dw(t),
z(t) = Cz(),
2(f) = ¢(B) =0, —h <5 <0,

where z(t) € R is the state, u(t) € R™» is the input,
w(t) € R™ is the disturbance, z(t) € R' is the output and

#(8) € R" is a continuous initial function. Ag € R™*™,

(1)

: AL € R B € RAxme (1 € R*n and D € RY™Mw

are constant matrices. The parameter i denotes the time
delay of this system and h > 0.
We consider the following state feedback controller,

0
u(t) = Kow(t) + / Kn(8e(t+0)d6.  (2)

—h

where Kg € R™*X" is a constant matrix and Koi(B) €
T2([=h,0]; R™+*") is a continuons matrix function.
In this paper, we use a notation,
o

[ P P(B)
P{(e) Pale, B)
VOZ S [“‘h:o]:vﬁ € ['—h:O]v

in the sense that

[ F _ L(Pi() + Pi(B)) } >0
L(P(a)+ P{(B)) %(Pela, )+ Pa(B, ) ’
P{= Py, Py, B) = Po(3, ),

Yo € [=h,0], V6 € [=h, 0],
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where ?>” denotes positive definiteness of matrix and "’
» denotes transposition of vector and matrix.

3 L? gain analysis

First we consider the following linear system with a fime
delay,
B(l) = Agw(/,c)) + Aga(l - h)
+ [ Aoa(B)a(t +B)d5 + Dutt),
2(#) = Calt),

(3)

and show the result of 7.2 gain analysis for this system.
Here we define the L? gain of (3) as follows,

[EPS
llwllze
Now we introduce the following functional V,
Vi{ey) = &'(t)Pz(t)
0
+ / ' (t+ 9)Qu(t + 0)dp

—h

(G sup

weL? wi#0

0
+a'(t) | R(B)a(t+p)dp
+/0 ' (t + o) R (a)daz(1)
—h

0,0
[ [ e+ a)S(e e+ )dads, (4
—hJ-h
where
zr={e(t+8) | —h<BH <O}
P,Q € RM",
R(8) € L*([-h,0]; R™™),
S(a, 8) € LX([~h, 0] x [~h, 0, B™™).
By using this functional, we have a result for L? gain
analysis of the time delay system (3).

Theorem 3.1 If there exist P, Q and continuously dif-
ferentiacble matriz functions R(B), S(a,B) which satisfy
the following inequalities,

Ls(a, /3) proe

AP+ PA+Q i
< T ) PA; - R(~h)
AP - R(-h) -¢
b(a) P + R() A oS
( () +5(a,0) ) e Sty
D'p 0
Pziol(ﬂ) + AE)R(rB) ]
< ~FR(8) +5(0,8) ) i
AR(B) = S(—h,B) 0 05
( /(@) A0t (6) + Avy(e)R(P) ) R/(e)D =
~(F5 + 25)5(e, ) '
D'R(8) -7

[ P R
La(e,B) = | g @) S(a,B) |7
Q> 0,

Yo e [-h, 0], VB e [~h, 0],

0,
(M

then the time delay system (3) is asymptotically stable and
the T* gain of (3) is less than 7. 0

Remark 3.2 We observe thal, for purlicaler choices of
structure of the solution (P,Q,R(8), S{«,B)), LMI con-
ditions of Theorem 3.1 is reduced to the well known con-
dition of delay-independent types [9] or delay-dependent
types [8]. To simplify the discussion, we focus on the case
of the following system,

2(1) = Agx(t) + Arz(t — ) + Duw(t),
z(t) = Ca(t).

First note that the positive definiteness of inequalities
(6) and (7) in Theorem 3.1, which are required for (4) to
be a Lyapunov functional of this system, can be relazed to
positive semidefiniteness except P > 0. In view of this, let
R(B) = 0 and S(w,3) = 0 in the inequality (5), we can
rewrite (5) as

AP+ PA+Q+C'C PA PD
AP —Q 0 <0 (8)
D'pP 0 =~

and obtain the next Corollary 3.3 from Theorem 3.1.
Corollary 8.8 If there exists positive definite P and Q
which satisfy the LMI condition (8), then the time delay
system is asympiotically stable and the 1.2 gain is less than
¥.

The LMI condition (8) is equivalent to the Raiccati in-
equality condition derived by Lee ef. al in [9].

Neat let R(B) = PU(B) and S(o, 8) = U'(a)PU(B},
where U(B) is a matriz function defined by the following
functional differential equation,

£U(B) = (4o + U(0)U(B).

U(—K)= 4y, ~h< B <0, @)

We have a sufficient condition for the inequality (5), which
18 given by

M+CC M PD
M M PD | <0, (10)
D'p D'P -4

where M = (Aq + U(0)) P + P(Ag + U(0)). Thus we can
obtain the next Corollary §.4 from Theorem 5.1.
Corollary 8.4 If there exist a positive definite mairiz P
and ¢ matriz function U (B) which satisfy the inequality (9)
and the LMI condition (10), then the time delay system 1s
asymptotically stable and the T2 gain is less than .



Corollary 3.4 is the result derived by J. He et. al in [8]
where the LMI condition (10) is expressed in the equivalent
Riceati inequality form.

The LMT condition (8) is independent of the time-delay
h and is finite-dimensional. On the other hand, the LMI
condition (10), which seems the finile-dimensional one at
first sight, is infinite-dimensional in actual, since 1t re-
quircs to solve the infinite-dimensional cquation (9) that
depends on the time-delay h. 0

Remark 3.5 As shown in Theorem 9.1 and observed n
Remark 3.2, the Lyapunov functional ({) leads generally
to infinite-dimensional and delay-dependent conditions or
finite-dimensional and delay-independent conditions. In
some special cases, however, our approach with a general-
ization of the functional (4) leads us to finite-dimensional
and delay-dependent conditions. To illustrate this fact,
consider the system with distribuied delay and no conirol
mput,

0
(1) = Agw(l) + / Aot (B)a(l + B)d8,
~h
(1) = Ca(t),
and consider the following Lyapunov functional,

Viz,) = 2'(t)Pe(t)

n
+ / &+ BB+ B8 (12

(m

Note that Q(3) ts here allowed to depend on 8. Lhen cal-
culating the time derivative of (12) and rearranging terms
as in the proof of Theorem 3.1, we have a sufficient con-
dition for £V (z:) + 2'(8)2(t) — Y2w'(H)w(t) < 0, which is
given as @(—h) > 0 and

AP+ PAo+Q(0)  PAn(f) FD
AL (B)P —h~ Q8 0 <0,
D'P 0 ~7?I 1
Y3 e [—h, 0.

This LMI condilion ts the infinile-dimensional one. How-
ever, in the special case of Aa1(ff) = Ao1, selling Q(5) =
(B8 + R)I yields the following finite-dimensional LMI con-
dition of deloy-dependence,

ApP+PAg+hI PAn D
Ap P —h~1T 0 < 0. (13)
D'P 0 —2]

Thus we oblain Corollary 3.6.

Corollary 3.6 If there exisis the positive definite matriz
P which satisfies the LMI condition (13), then the time
delay system (11) with Ag1(8) = Agy is asymptotically
stable and the L* gain is less than 7.

n [10], X. Li and C.F. de Souza derived o finite-
dimensional and delay-dependent LMI condition for robust
stability and stabilization based on a Lyapunov functional
which has essentially the same structure as the Lyapunov
Junctional (12) has. o

4 H* Control Synthesis

From (1) and (2), the closed loop system can be written
in the following form,

#(t) = Aga(t) + Ayz(t — R)
0
+ } Ap(B)e(t + B)dB + Dw(t),

z(t) = Ca(t)

(11)

where

Ay = Ay 4+ BKy, Ay = Ay,
Aoi(B) = BEo ().

Thus considering the previous result of L? gain analysis,
we have the next theorem for H* control synthesis prob-
lem.

Theorem 4.1 If there exist W, X, Zg and continuously
differentiable matriz function Zp1{8) and Y (a, 8) which

satisfy the following inequalities,

LG(Q)B) =

[ WAL+ WA ‘

+X +2W AW —-W
+BZo+ 7L B ) ~
W4, — W e
WA (@) + Zoi(a)' B
( + AW + BZ, ) AW — Y (e, —h)
+Y («,0)
cw 0
I D’ 0

+W AL + 7B
+Y(0, 8)
WAL —Y(—h.B) 0 0

( A (BYW + BZn ()

Aol(/j)VV -+ VVAol(C\f)l < O,
+BZ01(3) + Zp (o) B 0 D
—(3—@&' + 5%)3/(0‘/7[3)
0 -1 0
i 0 -1
(15)
W w . X
L,;(oz,ﬁ) = [ I/‘/ Y(Q,ﬁ) } > Ua (10)
X >0, (17)

Va S [—h1 D}) Vﬂ S [_h) OL

then the time-delay system (1) with the state feedback con-
troller (2)

Ko=ZoW™', Kn(B)= Zn(HW™, (18)
is asympiotically stable and the L? gain is less than «.

At the next remark, we make a comment on robust
stability of the closed loop system, which is formed by the
controller of Theorem 4.1, against variations of time-delay.
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Remark 4.2 Let b be the actual time delay and h # h.
Consider the functional ({) along the trajectory of the
closed loop system with w(t) = 0. We oblain the following
inequality, for a positive number A,

dilfv(mi) < A2’ (Bx(t) - 2(4)2(1)
—y~ "' (t) D' Dn(t)
—2{a(t — ) —a(t = B)Y Aun(t), (19)

where n(t) = W™ {z(t) + f_oh x(t+ 8)dpB}. Now integrat-
ing both sudes of (19) over a large time-interval and using
Parseval equality, we obtain a sufficient condition for ro-
bust stability as follows: If there exists a positive number
p such that, for a sufficiently large positive number N,

0
/\I+C7/C+7’2|l+/ 190 43|21 D/ D
—h

U

(R — ej"’"')A’lW“l(l+/ el“?da)

—h
O 'y 3
+(1 +/ eTIUPARBYW T Ay (eTTWh — eIwhy
-h

> pI) ‘V’w € [-—J\/—, N]r (20)
then the closed loop system is asymplotically stable. Tt is
obvious that asymptotical stability 15 maintained for suffi-
ciently small variations of time-delay. O

Finally we consider H° control synthesis problem with
the constrained feedback gain. We constrain the feedback
gain as follows,

KiRKo <mT, K Kou(B) <7val, "Ae[=h 0], (21)
where 71 and v, are given in advance.
Utilising Theoremm 4.1, we Lave the [ollowing theoren.

Theorem 4.3 For given positive numbers py, p» and g,
if there exist W, X, Zy and continuously differentiable
matriz function Zp1(8) and Y (a,B) which satisfy the fol-
lowing inequalities,

Ls(0,8) <0, Le(a, B) <0, X >0,  (22)
[ oI 7
7’210 L } > 0, (23)
[ pal 7161(5)} .
0 24
Zap T |70 (24)
(gl I
‘ W]>o, (25)

Ya € [~h, 0], Y3 €[~h, 0],

where Ls(a, B) and Le(e,B) are given as (15) and (16)
respectively, then the time-delay system (1) with the slate
fecdback controller (2)

f\',g = ZQVV_l, f\’ol(ﬁ) = 201([3)1-/1/-1, (26)

is asymplotically stable and the L? gain is less than 7.
Here Ko and RKo1(3) are constrained as follows,

]\.6]\’0 < pquI, ]\.’1(,9)/]{1(/9) < ;DQC[QI‘

PROOT:
(23), (24) and (25) are equivalent to the following condi-
tions respectively,

Z(I)Zo <pil

Z01(B) 701 (8) < paT
W < ql

By using the above conditions, we have the following re-
sults,

KiKo =W 720w
<pWiw!

9
<pigT
=W 701(8) Zor (B)W
< pWTTW !

9 ;
< pay-l.

Ko1(8) Ko1(B)

Q.E.D.
Thus by using this theorem and choosing p1, pz and ¢
appropriately, we can ohtain H° controllers with feed-
back gains constrained as (21). Next we show an algo-
rithm to choose p1, p2 and gq.
Algorithm:
Step 1: Lot pig, p2o and go be initial values of py, p2 and
g respectively.
Step 2: Solve inequalities in "Iheorem 4.3 and the follow-
ing inequalities,
7 < -

P1 < Pio, P2 < Pao,

Step 3: Check the next conditions for p;, py and ¢ of
Step 2.
na <71, g’ < e (27)
o If (27) is satisfied, the algorithm is finished.
The controller designed in Step 2 satisfies

(21).
e 1 (27) is not satisfied, go back to Step 1.

5 Reduction to a Finite Number
of LMI Conditions

Inequalities in Theorem 4.1 depend on parameters.a and
3. Tt seems difficult to solve these infinite-dimensional
(parameter dependent) inequalities directly. In our ap-
proach, we reduce these infinite-dimensional inequalities
to a finite number of LMIs by using the technique in {1},
and obtain the solution of the infinite-dimensional inequal-
ities by computing the finite number of TMIs.



Here we restrict solutions in Theorem 4.1 to the follow-
ing forms,

Y(CL,/?) = :YU + gl(aylg) ’1 + ‘J.)(Qﬁ)yz
+ -+ g,,‘(a,ﬁ)Y;W
Z01(8) = Z§ + hi(B)Z2* + ho(B) 23}
++ b, (8)2),

(28)

where g; : R — R is a continuous differentiable function
of @ and @ such that

gi(aa /9) = gi(ﬁ) a):

h; : R — R is a continuous differentiable function of 4,
and the unknown matrices satisfy

Y, e R V! =V (i=0,1,- . ly),
ZM e R (i=0,1,--+,1z).
Note that (28) satisfies matrix inequalities (15) (16). Then

inequalities in Theorem 4.1 can be written in the form of
the following parameter dependent LMI condition,

Fo(M)+ fL(B)Fi(M) + -+ f(0)F (M) <0,
where
00 ={lapl|ae[-h 0,8€[-h, 0]},

and f; : ? — R is a continuous function of o and § ,
and a symmetric matrix function F; depends affinely on
the unknown matrix M = [Yo, -, Vi, 25, -+, Z{}]. The
parameter dependent TMT condition (29) can be reduced
t0 a finite number of LMI conditions as follows.

Theorem 5.1 [1] Lel {p1,p2, -, pq} be verlices of a con-
vex polyhedron which includes the curved surface T,

T = {[/1(8) fo6) - f(0)] | 6 €0} (30)

Assume that there exists M which satisfies the following
LMI condition for allp;(1 =1,2,--,q),

Fo(M)Y+ pir Fy(M) + -+ pp Fr (M) <0,

(29)

for all8 € ©.

The techniques to construct the convex polyhedron
which includes the curved surface T are proposed in [1].

Remark 5.2 Qur approach to reduction is dependent on
choice of functions hy(8) i = 0,1,---,ly and ¢;(, 3),i =
0,1, --,1z. Unfortunately, we have no general guideline
for the choice.

If we adopt the technique derived by Azuma et. al. [1]
lo conslruct the conver polyhedron including the curved
surface T, we recommend that hi(B) should be a mono-
tone (decreasing or increasing) function of § and g;(«, 3)
should be also a monotone function of o and 3 at each «

and 3, e.g.,

hi(B) = B, €°, -
gi(aiﬁ) = a,plgq» e(a-}—ﬁ)’

which makes the technique by Azuma et. al easy to apply.

(31) |
where pi; is the jih element of p;. Then M satisfies (29)

6 Numerical Example
Consider the next time delay system,
2(t) = x(t) + 0.3z (¢t — 1) + u(2),

Ty y(t) = =(1),
e(8) =¢(8) =0, —h < <0.

(32)

Now we design the memory state feedback controller K
such that the error, » — y, is asymptotically zero (Figure
1). When we use the techinique of Section 5, we restrict
solutions of Theorem 4.1 and Theorem 4.3 as follows,

Zou(B) = 7o+ 87+ 67,
Y(,3) = Yo+ (a+ Y+ (o4 8Y)Ys.
rt v [ v | ¥
A 5 (_Jp >
|

Figure 1: The closed loop system

2p

Figure 2: Generalized plant

First we apply Theorem 4.1 to Figure 2 and obtain the
state feedback controller (2) with the next feedback gains,

.Ko
I&’Ol (/3)

115.48 —24.94 |,

75.79 —1245 |

+8] ~9.31 —3.09 |
+6%[ 15.14 —3.53 ]

(33)

Second setting p1 = 3.49 x 104, po = 1.28 x 10%, ¢ =
2.56 and using Theorem 4.3, we obtain the state feedback
controller (2) with the next feedback gains,

Ko =[36.16 —11.74 |,
Ku(B) =| 2349 —4.01] .
+4[ 171 =053 ] (34)

+67 [ =0.07 —0.19 ].

The simulation results are shown in Figure 3, where the
reference is 1 (» = 1). In this figure, the solid line and the
dashdot line denote the simulation result of the case (33)
and (34) respectively. The error 7 — y is asymptotically
zero at both cases. By using Theorem 4.3, we can make
the maximum of the control input small.
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Oulput y{t}

0 i H i H i ; i ; ;
2 0.5 ¥ 15 2 2.5 3 3.5 4 4.5 5
Time t sec

(a) Output y

Input y)

. i i H i i i i i i
o ©.5 1 1.5 2 2.5 3 5 4 4.5 s
Time 1 Bes

(b) Tnput u

Figure 3: Simulation result

7 Conclusion

In this paper, we considered a synthesis problem of /1™
memory state feedback controllers for linear systems with
time delay via LMI approach.
tence condition of A% conlrollers in the form of infinile-
dimensional LMIs and showed a technique to reduce the
infinite-dimensional LMIs to a finite number of LMIs
which is feasible formulas. Finally we demonstrated the
efficacy of our approach by a numerical example.

We derived an exis-

References

[1] T. Azuma and R. Watanabe and K. Uchida, "An

Approach to Solving Parameter-Dependent LMI
Conditions Based on Finite Number of LMI Con-
ditions™, Tn Proc. of American Control Conlerence,
pp. 510-514, (1997)

[2] T. Azuma and T. Kondo and K. Uchida, " Memory

State Feedback Control Synthesis for Linear Sys-
tems with Time Delay via a Finite Number of Lin-
ear Matrix Inequalities 7, IFAC Workshop on Linear
Time Delay Systems, pp. 183-187, (1998)

(3]

[10]

S. Boyd and L. El Ghaoui, E. Feron and V. Balakz-
ishnan, ”Linear Matrix Inequalities in System and
Control Theory”, SIAM studies in applied mathe-
matics, Vol. 15, (1994)

.. Dugard and F.J. Verriest(Fds), "Stability and
control of time-delay systems”, Springer-Verlag,
Lecture Notes in Control and Information Science
No 228, (1997)

K. Gu, ”Constrained LMI Set in the Stability Prob-
lem of Lincar Uncertain Time-Delay Systems”, In
Proc. of American Control Conference, pp. 3657-
3661, (1997)

K. Gu, ”Discretization of Lyapunov Functional for
Uncertain Time-Delay Systems”, In Proc. of Amer-
ican Control Conference, pp. 505-509, (1997)

J. Hale and SM.V. Tunel, “Introduction to
Functional Differential Equations”, Springer-Verlag,
(1993)

J. He, Q. Wang and T. Lee, " H* dislurbance allen-
uation for state delayed systems”, Systems & Con-
trol Letters, pp. 105-114, (1998)

JH. Lee and S.W. Kim and W.H. Kwon, "Mem-
oryless Ho, controllers for state delayed systems”,
IEEE Trans. Automat. Contr., Vol. 39, No. 1, pp.
159-162, (1994)

X. Li and C.E. de Souza, "LMI approach to delay-
dependent robust stability and stabilization of un-
certain linear delay systems”, In Proc. of Conference
on Decision & Control, pp 3614-3619, (1995)

J.J. Loiseau and 1. Brethe, ” An effective algorithm
for finite spectrum assignment of single input sys-
tems with delay”, In proc. of Symposium ”Model-
ing, Analysis and Simulation”, IEEE-IMACS Con-
ference Computational Engineering in Systems Ap-
plications, (1996)

J. Touisel, "A stability analysis for a class of
differential-delay equations having time-varying de-
lay”, Springer-Verlag, Lecture Notes in Mathemat-
ics No 1745, pp. 225-242, (1991)

P. Gahinet and A. Nemirovski, A. J. Laub and M.
Chilali, "LMI Control Toolbox for Use with MAT-
LAB”, The Malh Works,Inc, (1995)

J.C. Shen and B.S. Chen and F.C. Kung, "Mem-
oryless Stabilization of Uncertain Dynamic Delay
Systems: Riccati Equation Approach”, IEEE Trans.
Automat. Contr., Vol. 36, No. 5, pp. 638-640, (1991)



NONLINEAR OUTPUT FEEDBACK CONTROL
OF PWM INVERTER WITH INTERNAL RESISTANCE

Seigo SASAKI!, Tadashi INOUE' and Kenko UCHIDA'

t Dept. of Elect. Engineering,
Naticnal Defense Academy,
Yokosuka, 239-8686 Japan

fax: +81 468 44 5903
{seigo,tinoue}@cc.nda.ac. jp

Keywords: nonlinear control system design, power elec-
tronics, Lyapunov function, convex programming

Abstract

Nonlinear output feedback controllers are derived to achie-
ve active harmonic reduction at ac (alternating current)
port current in PWM (Pulse-Width-Moedulated) inverter
with internal resistance in dc (direct current) port. The
controller design is carried out on the basis of state aver-
aged model which is a bilinear system. The control prob-
lems are treated as nonlinear H, output feedback control
problems for the bilinear system via Lyapunov-based game
theory approach. Convex programming technique gives
concretely the controllers. Computer simulations show ef-
ficiency of the control system design approach.

1 Introduction

There has been a steady growth of interest in control of
power electronics circuits (eg. [2, 6]). Many works (eg. [2})
discuss linear feedback control problems for power elec- “

tronics circuits on the basis of linearized state averaged
model of the circuits. A work [6] discusses passivity-based
feedback control problems for dc/dc power converters on
the basis of Euler-Lagrange systems.

This paper discusses nonlinear output feedback con-
trol problems for PWM inverter with internal resistance
in.dc port. The resistance causes dc port voltage drop,
and so distorts ac port, current whom we would like to
be sinusoidal. The control problems are to achieve ac-
tive harmonic reduction at ac port current in the inverter.
The controller design is carried out on the basis of state
averaged model which is a bilinear system [4].

Our control system design for the problems is given as
follows. First, a switched model of PWM inverter with
internal resistance in dc port is derived. Second, a state
averaged model is derived from the switched model (2],
which is a bilinear system [4]. State variables of the model
consist of averaged variables of an output inductor current
and two input capacitor voltages. In this control system,

! Dept. of Elect, Electr.& Computer Engineering,

Waseda University,
Tokyo, 169-8555 Japan
fax: +81 3 5273 9507
kuchida@uchi.elec.waseda.ac.jp

the output current is an only available state. The aver-
aged model is treated as a bilinear system with uncertain-
ties because our control system design approach regards
unmeasurable nonlinear states as uncertainties. Third,
the control problems are treated as nonlinear Hy output
feedback control problems of the bilinear system. Finally,
a convex programming technique [5] concretely solves the
problems. Computer simulations show efficiency of the
control system design approach.

Notations: [ and 0 denote an identity matrix and & zero
matrix of suitable dimensions, respectively. For a vec-
tor 0 €R™ with positive elements, B} denotes {z||z;| <
oi,i = 1,...,n}, where z; and o;stands for the i-th
element of the vector, respectively. When there cxists
a domain B? CR™ which contains origin, for a con-
tinuously differentiable symmetric matrix-valued function
P(y) : B™ = R"*", a notation P(y) > 0,Vy€B7 means
T P(y)z > 0,Vy e B, Vz € R", z # 0.

2 PWM Inverter with Internal Re-
sistance

This section derives a state averaged model of PWM in-
verter with internal resistance in dc port. The resistance
causes dc port voltage drop, and so distorts ac¢ port current
whom we would like to be sinusoidal. Figure 2.1 shows a
control system of voltage source PWM inverter with in-
ternal resistance, which shall be constructed in this paper.

The figure gives differential equations of the circuit for
two switch states; in a switch state where a switch SW;

is on-state and a SW off-state, i 0
™ 1
d 1 —Bfl“ % Vgl 110 E
E— v = —*g: *—R—;—C‘y 8 Ul[’ -+ 1 ﬁ,
" v 0 0 e U2 1 ME
(2.1)

in the other switch state where the SW;off-state and the
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1
o !

71 y} on-state,
™ T om0 emdb w4y 0
ty L ' E
0 v+ L =
1 E
éf_ “Rgod 12 !
(2.2)

where % denotes an output inductor current, and v; and v,
denote input capacitor voltages. Es denote voltages of dc
voltage sources, R and R resistances, C a capacitance,
and L an inductance. Especially, Rg means an internal
resistance in the voltage sources.

(/%\7\’
Px ox

= c ) swy
i L Rg
—
L L7 — TV l
E T— C ::) vz SW, | =
M
Rg H
1
= |
y Reference
Controller

Carrier wave_ "

Figure 2.1: Control system of PWM inverter with internal
resistance in dc port,

A switch state function p, which takes 1 for the first switch
state (2.1) and -1 for the second switch state (2.2), gives
an equation of the form

—EBL L L
dl* 7 2L 5L L
2 e Rl i A R
Y21 L 3c 0 Frod LV2
i 1
+ < 01 + 5(‘)5 + % (1)
% el U1 Vo u+ P
-L 0 0 1| fieC
2.3)

from the two equations (2.1) and (2.2). The function y
is used as a control input. From the model (2.3), a state
averaging approach, which is introduced in [2], derives a
state averaged model of the form

7 YT —L 7
_d._ 'D o _i _i 5L 77
de || T | ¢ BeC L
Uy Yol 0 ol L0z
1 1 |
15 2 2L °l &
+ <1 B +0 |0 +0, | 0] pp+-|1 RnC
sl 0 0 1 4
(2.4)
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where 2,1’)},1‘)2 and I denote moving averaged variables of
i,v1, vz and u, respectively. In the following section, the
state averaged model (2.4) is used to design the averaged
control input, fi.

Remark 2.1 In inverter systems, an internal resistance
in dc port, causes dc port voltage drop, and so distorts ac
port current whom we would like to' be sinuscidal. The
reason is that dc port currents across the resistances vary
capacitor voltages whom we would like to assume to be
constant. It results in the varying that, the dc port cur-
rent drawn by the inverter first vary as well as sinusoidal
inverter output and second have a second harmonic com-
ponent of a fundamental frequency at the invcrter output
(in addition to high switching frequency component) [3].
The model (2.4) has those characteristics.

3 Nonlinear Control System
Design

This section treats the active harmonic reduction prob-
lems as nonlinear Hy, output feedback control problems.
First, a generalized plant, is constructed to meet a control
system design specification on the basis of the averaged
model (24). Next, a nonlinear Hg, output feedback con-
troller is derived for the generalized plant.

3.1 Control System Design Specification

The worko[bfwrites the averaged model (2.4) into an
averaged model, which is a bilinear system[4], around an
equilibrium point [7,91,02,2] = [ 0, E. E, 0] of the form

; A E I N
d |’ 7 2L 3L !
P78 N Bl BT ReC 0 Uy
B 1 o -1 g,
3C RsC 2

E 0 AL L

L e R _lar _
+ 0] +1 g +0, 0| +0210 i, (3.1)
0 —3& 0 0

where [ 1 9y Uy ] =[i01 02 2 ]~[0E EO0] In
the control problems, i is an only measurable state. A
nonlinear H, control system design technique in the work
[5] treats unmeasurable nonlinear states as uncertainties,
and so treats the model (3.1) as a model with uncertainties
of the form

Ep . Aptp + Bpiwp + {Bpao + yp By } i, 3.2)

Zp = Dp?lﬂ: (3.3)

Yp = CpZy, (3.4)
61

Wp T o §, % (3.5)



where
A .ll.i ~ L
- T {/ 2 2L
rpz[ U1 1)2] , Ap= T35 TR 0 ,
1 0 —
2C RpC
-—l[ 3 RALS 0 E
2 2L Lkl L
Bpp=10 0 V‘B“ A Ve2 | s BpZO'— 01,
_O Wu2 0
[0
Wt 0 1
se= 4] o= )1
L 2C
Cp=[1 0 0], &<, [&|<L

The second term in the right hand side of equation (3.2)
presents uncertainties which are affected by the control
input fi.7v, Ve1, Vo2, Wi, Wuz are suitable weighting pa-
rameters which are specified in the following discussion.

The active harmonic reduction of ac port current in
the PWM inverter is achieved by constructing a control
system to meet the following control system design speci-
fication.

(S} An output inductor current 7 should track a sine-
wave reference (r— z).

(82) A stability of closed-loop system should be kept
against varying dc port voltages (wp—>2p)-

The specification gives a generalized plant, as shown in
Figure 3.1 of the form

&= Ax + Byw + B2{y)u, (3.6)
z =Ciz + Diou, (3.7)
y = Cax, (3.8)
where
e=l o) w=l i) u=he= [ 4]
0 0 0
A—{AO“’ “/ﬂ, An=10 0 o0,
P —kw 0 O

_ |0 _
Clz{ 0 O}’DIZ.—[Dle}’CZ_

and T, denotes state of weighting function for the speci-
fication (S1), which is

kw
W{(s) == 3.9
(s) s(8% + w?) (3.9)
and so whose state space description is
T = AuwTw + Bu(r — Cpzyp), (3.10)
Yuw = CuZu, (3.11)

0 1 0 0

A =10 0 1|, Bu=|0]|, Cu=[10 0]
0 —w? 0 kw
Ze Zp Wp

=
N
(=1
S
b
'e&"'"‘-}

Figure 3.1: Generalized plant,

Note that a controller in Figure 2.1 finally consists of
the weighting function W (s) and a controller designed for
the generalized plant in the following discussion.

3.2 Lyapunov-based
game theory approach

Nonlinear Hy, output feedback controllers are derived via
Lyapunov-based game theory approach in the work [5].
The work [5] considers input-affine polynomial-type non-
linear systems (C) of the form

= A(y)z + Bi(y)w + Ba(y)u, (3.12)
z = Ci(y)x + Dia(y)u, (3.13)
y = Caz, (3.14)

~ where x €R" is the state, and y € R is the measured

output which is directly measurable states in the state x.
The generalized plant in the previous subsection is in a
class of the systems (C). Therefore, the work [5] can treat
the control problems. This section introduces a tractable
sufficient condition for the nonlinear H,, output feedback
control problems to be solvable, which is shown in the
work [5].

Here, in order to simplify notations inthe following
theorem, matrix-valued functions are defined as

Q) = { Qa()) Qs } .

QT Q.
— Qn(’\) Qb ]
Y(QN), N - [ a2,
where,
AERY, Qa()) € RWwX™,

Qb c R x(nz——ny)’ Qc € R(nI —-ny)x(n.:-ny),

A 17 8¢. 9Qa (M) y
Qu(N) == QuN) + 5 | " Sl
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Theorem 3.1 [5] Consider a system (C). For a given pos-
itive constant 7, if there exist a domain (By? x R™==") x
(Bgy x R*= ~m)C R™= x R"*, a matrix X € R™= %" and
a matrix-valued function Q(y—y¢)€R™ " such that

[F1(X, vy xc(y) Bi®)
| Cyx I 0 <0, VyeBy,
L Bg (y) 0 "7211
(3.15)

TEy (Y (Qy — ve)rv — e)r v)
@ | BT W)Y(Qy — ve)> v —ve)
L Ci(y)

Y{Q(y - ye),yI— ye)B1(y) ClTO(y)

. < 0,
0 —~2I
V(y,y/E) € Byrx B, (3.16)
Y —ye), Y — I
(3)[ (Qy ?;g) Y= ¥e) 72X} >0,
V(y,ye) € By x By, (3.17)

where

Fi(X,y) = XAT(y) + A®)X — Ba(y)R ™' (1) B3 (),
B(Y(Q =)y — o) v) =Y (QY — ye), v — ¥e) A(Y)
+ ATWY(QW—ve), v —ve) — C3 Ca,
ye = Cak,
then an output feedback controller (I') solving the problem
is given as
&= Ay)z - B2(y)R™ (y)B] ()X ~'2
+ 7 Bi(y) B (9 X'
+ Y(Q—9),y—9) -y X 70T (y - Cod)
+y YV (Qy —9) vy — 3)
— 42X N X 1 Egn(X, y) X 14,
u=—-R'(y)Bf )X ',

(3.18)
(3.19)

where

:t} = Cz:i,
Eqn(X, ) := XAT (y) + A@)X — (B2(y)R™" (v)B7 (v)
~ v 2Bi(y)BY () + XCT () C1 () X.

Moreover, the closed-loop system (I, I) is internally sta-
ble in the maximum supersolid

Qof(aof) =
{(z,&) [T X o+ 7=z - ) T(z ~ )(z — &) < aor}

that is contained in the domain (Bg? x R™ ™™ )x (Bg"' x
R"?= ~"v ), where

T(z-¢) = QCalz =€) =7 X
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3.3 Convex Programming Technique

The condition in Theorem 3.1 consists of state-depended
matrix inequalities. A convex programming technique [5]
can give the solution. The steps are that first we enclose a
domain of state of the system in a convex hull, and second
solve linear matrix inequalities which are given at vertices
of the convex hull [1]. The details are in the work [5]
which applies a result in [7] and gives extensions to solve
nonlinear control problems.

4 Computer Simulations

This section shows efficiency of the control system design
approach through computer simulations. The simulations
use MATLAB, Simulink and LMI Control Toolbox. In the
simulations, system parameters are used as

R =10[0), L =5x1073[H]

Rp=1[0], C=1x10"%[F, E =141[V].

Control system design parameters are given as

Vii=Vip =9, Wu=Wu= 05

v =12,
=1, w=100m, k = 120.

We

Parameters Vi = Vjp2 = 9 meanthat input, capacitor volt-
ages are varying as |01|< 9 and |#2]< 9. In order to en-
close a domain of state for the convex programming tech-
nique, it is also considered that ac port current iis varying
as |i|< 11. Then, the Lyapunov-based game theory ap-
proach in Section 3 gives a quadratic Lyapunov function
as a solution of Theorem 3.1, whose coefficients are shown
in (4.1)(4.2).

The controller, which is constructed on the basis of the
solution, gives simulation results for the averaged model
(2.4) as shown in Figure 41. The control system design
specification is very well satisfied. The controller also gives
simulation results for the switched model (2.3) as shown
in Figure 4.2. Control system block diagram of this case
is shown in Figure 2.1 where a frequency of carrier wave is
5 kHz. The figure 4.2 shows that the controller also acts
very well for the switched model (2.3). The-averaged con-
trol system, which is constructed on the basis of averaged
model, satisfactorily captures behaviors of the switched
control system.

5 Conclusion

Nonlinear output feedback controllers were derived to ach-
jeve active harmonic reduction of ac port current in PWM
inverter with internal resistance in dc port. The controller
design was carried out on the basis of state averaged model
which was a bilinear system. The control problems were
treated as nonlinear Ho, output feedback control prob-
lems for the bilinear system via Lyapunov-based game
theory approach. A convex programming technique gave
the solution. Computer simulations showed efficiency of
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the control system design approach. The averaged nonlin-
ear control system, which was constructed on the basis of
averaged model, satisfactorily captured behaviors of the
switched control system.
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A New LMI Approach to Analysis of
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This paper proposes a new LMI approach to analysis of linear systems depending on schedul-
ing parameter in polynomial forms: we first propose a method to reduce the parameter de-
pendent LMI condition, which characterizes internal stability and L% gain, to the finite number
of LMI conditions by introducing a convex polyhedron which includes a polynomial curve
parameterized by scheduling parameter; next we propose a systematic procedure to construct
the convex polyhedron. Our approach enable us to analyze L% gain of linear systems with
scheduling parameter in polynomial forms through computation of the finite number of LMs.
To show efficacy of our approach, we finally make a numerical experiment of (2 gain analysis
for a gasturbine engine model which is described as a linear system with a scheduling para-

meter in polynomial form of two degree.

1 Introduction

Recently, many results on analysis and design of scheduled
control have been presented for linear systems with sche-
duling parameters [1; 3; 5; 6; 7; 10; 11; 12; 13]. In these
results, analysis and design are characterized by solutions

to algebraic/differential Riccati inequalities which depends

on the scheduling parameter [1; 3; 5; 10; 11; 12; 13]. Using
Schur complement [4], the parameter dependent algebraic/
differential Riccati inequality can be described as a para-
meter dependent Linear Matrix Inequality (LMI). Except
for the particular case (e.g. dependence on the scheduling
parameter is affine [3] or quadratic [5; 13]), the infinite
number of computation is required to solve this parameter
dependent LMI directly.

An adhoc method (gridding method) to reduce this para-
meter dependent LMI to the finite number of LMIs is
discussed in [12]. Although this method can be applied
to the general parameter dependent LMI, it provides, in
general, an approximate solution which satisfies the LMI
only at the finite number of gridding points in the para-
meter space, and requires the very large number of com-
putation to guarantee the feasibility of the approximate
solution. In the case of linear systems depending affinely
on the scheduling parameter, the specific convexifying
methods are proposed which reduce the parameter depen-
dent LMI to the fixed finite number of LMIs [3; 5; 13].

at — Automatisierungstechnik 48 (2000) 4 © Oldenbourg Verlag

The work [3] develops the method to obtain the para-
meter independent solution to the affinely parameter de-
pendent LML In [5], the authors propose the method to
solve the quadratically parameter dependent LMI in the
affinely parameter dependent set of solutions. In [13], a
convex covering technique is applied to gquadratically
parameter dependent LMI with the affinely parameter de-
pendent solutions.(The same case is discussed in [S].)
However, it seems difficult to extend these method to
more general cases such as general polynomial depen-
dence cases discussed in this paper.

In this paper, we focus on the parameter dependent LML,
which characterize internal stability and L? gain for linear
systems depending on the scheduling parameter in polyno-
mial forms, and propose a method to reduce this condition
to the finite number of LMIs by introducing a convex poly-
hedron. Generally volume of the convex polyhedron must
be small to get less conservative result, We also propose a
systematic procedure to construct such small convex poly-
hedron.Thus by taking our approach, the polynomial para-
meter dependent LMI is solved through the finite number
of computations, and the L? gain analysis can be performed
with CAD like LMTLAB [8]. It is noted however that we
must solve the larger number of LMIs to obtain less con-
servative solutions, because in the procedure of construct-
ing convex polyhedron the smaller volume leads to solving
the larger number of LMIs.
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This paper is organized as follows. In section 2, we present
a sufficient condition on internal stability and L? gain for
linear systems with scheduling parameter. We formulate
our problem in section 3, and show the main result of this
note in section 4. In section 5, we demonstrate the proposed
method by a numerical example.

2 Analysis of [? Gain

We first summarize results of analysis of the following lin-
ear systems with a scalar scheduling parameter.

5. X(O=A460)xO+ BEOw (@), x(0) =0,
Tz () = CE @)X,
where x(7) € R" is the state, z() € R’ is the observed out-
put, w(t) € R™ is the disturbance, and 8(r) € R is the sche-

duling parameter of % which is a continuously differenti-
able function of t. We assume the following properties on

(1),
Do) elo, 1], Y tel0,00),
i) 18(H)] < Viax> Viax > 0, ' 1 €10, 00).
Each of 4(6), B(§) and C(6) is the continuous matrix func-
tion of 6.
Internally stability and L?gain of T are defined as follows.

Definition 1 The system T is said to be internally stable
if the trivial solution x = 0 of the following ordinary differ-
ential equation is exponentially stable.

x(1) = AB()x(D).
Definition 2 Let T be an internally stable linear system

with scheduling parameter. Then the 12 gain of T is de-
fined by

[EITE
G(Z)= su ,
(=) n'eLZ,I:';éO w22

where || - || ;2 denotes L? norm.
Then we have the next theorem for L? gain analysis of T by
applying Schur Complement [4] to the result in [10].

Theorem 1 The system T is internally stable and G(3)is
less than y if there exists a matrix function Q(6) defined on
[0, 17 such that

-0® 0 0
0 8% 0
0 0 (A’(G)Q(Q) + 0(0)4(6) >
"81)171(1‘\' %% (9)
0 0 c®)
0 0 B(5)Q®)
0 0
0 0
c'e 0OBE | <0, (1)
~1 0
0 —y2]

forall 6 € [0, 1], where § = 1 or —~1.

THEORETISCHE ARBEIT

Remark 1 Using the parameter dependent Lyapunov
function V = x'Q(8(1))x, the following inequalities are de-
rived for the result of the L? gain analysis.

0(6) > 0, 2

A©)00) + 0O)A® +652©
+COCO +y200BOBO0E) <0, O

V@ € [0, 1], Vé € [_Vum,\‘a vmn.\']-

The condition (1) is a sufficient condition for (2) and (3). In
[12], another sufficient condition which is less conservative
is derived, but the dimension of the condition is larger than
that of the condition (1).

3 Problem Formulation

We assume that A4(6), B(6) and C(6) are described as the
polynomial function of 8 (See Remark 2),

L, Ly .
A@) =Y 0'4;, BO)= 2':9"3,, c©) = }L:e"c[.
=0

i=0 i=0

And we restrict Q(6) such that
L
00) =) 00 0i=0:
i=0

The parameter dependent LMI condition (1) is described as
follows,

F(6) = Fo(Qs) + OF(Q5) + - +O'F(Qs) <0, (4)

where Q; denotes (Qp, 01, -+ Qr,) and r = L, +max
(La» Ly, L.). F; is a symmetric matrix function and depends
affinely on the unknown matrix Qs.

Our problem is to describe the sufficient condition for ex-
istence of solutions to the following polynomial parameter
dependent LMI condition,

Fo(Qs) + OF (Q,) + -+ 0'F:(Qs) < 0, "0 € [0, 1],
as the finite number of parameter independent LMI condi-

tions.

Remark 2 The assumption on system matrices of the
system ¥ is only continuity on 6 € [0, 1], so there exist
finite matrices E,, Fy, Ep, Fp, E. and F, such that the fol-
lowing system includes the system & forany L,, Ly and L.

L,
M) = [Z 6D Ak + E(,Aa<r>Fa] x(1)

k=0

Ly
+ {Z 6"(1)By. + Ep Ab(’)Fb} w(1),
k=0

L.
Zo(f) = {Z ¢ () Ck + EcAc(f)ch\ x(1),

k=0
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where A4(f), Ay(1), and A(2) satisfies
A:((t)Alt(Z) S Iv
AyOANN) =T,
ANAa =T

This observation motivates us to focus the case of system
matrices of polynomial function, 4(6), B(9), C(9).

4 Main Results

We show main results of this paper. First we propose a
method to reduce the polynomial parameter dependent
LMI condition (4) to the finite number of LMI conditions.
In this method, a convex polyhedron plays an important
role, which includes a curve characterized by the schedul-
ing parameter. Next we propose a procedure to construct
this convex polyhedron.

The proposed method is given as follows.

Theorem 2 Let H be a convex polyhedron which in-
cludes a curve T defined as

T={[6 & o] 16el0, 11}

And let vertices of H be {p1, p2, - -+, Py}, where p; € R'.
Assume that there exists Q; which satisfies the following
LMI conditionforallp; (= 1,2,--+, q),

Fo(Qs) + pin F(Qs) + - - - + punF(Qs) < 0, 5

where pj; is the jth element of p;. Then Q; satisfies (4) for
any 6 € [0, 1].
Proof (5)is equivalent to

EFo(Q0E+ ) put F(Q)E <0, (6)
J=1

forall £ € R", & £ 0. We express (6) as

EF(00E+ (f, Q9. pi) <0, O

where (%, %) denotes inner product and

fE Q) =[EF1(0)E EF(Q)) EF0.)¢].

(7) is satisfied for all vertices of H and for all £ € R, so the
following condition is obtained

q
0> §F(Q)E+ ) Mlf(E Q). pi)
i=1

q
= EF(QE+ (€, Q) ) M), ®)
i=1

for all A; > 0, >_i_; A; = 1. This implies that Q; satisfies
the parameter dependent LMI condition (4) for all 8 € [0,
1], because any point on T can be described as linear com-
bination of {p;, p2, Py}

Remark 3 Theorem 2 shows that Q; in Theorem 2 satis-
fies (5) for any point in H. Thus volume of the convex
polyhedron H is closely related to the conservativeness of
the evaluation. It is necessary to construct small size H for
sharp evaluation.

at 42000

Now we consider the construction of a small size convex
polyhedron H and propose the following procedure (See
Figure 1):

(Step 1) We divide the domain of 8 into {©1, ©2,.--+,
®,4). We call d Division Number.

@,:{ewe{%i, é” 9)

We define a curve T as
T, ={[6,6%,---,6') | 6 € ©).

(Step 2) For each T;, we define a polyhedron H; whose
vertices are {p, pl, -+, ).

o i1 i=1y -y
pi'—_ d * d ’ + d ’
Pi=p valiNe (=12, r=1),
Pr=p + o, De;

@@

where

N\J 1N/
o= (-5

and €1, €3, - - -, e, are basis vector on R'. Note that H;isa
convex polyhedron on R" because {p) — =12,
r) are linearly independent.

(Step 3) We define the convex hull H as
H=Co(H UH, U -.-UHy), an

where Co(S) denotes the convex hull of S.

(10)

P
] -
L g 7]
T; 0
0 o, 1
(a) Stepl
93
1 .
1y
0

(c) Step 3 Figure 1: Con-
(H,UHyU---UHy) struction of con-
vex hull,
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Theorem 3 The convex hull H given by (11) is a convex
polyhedron which includes the curve T defined in Theo-
rem 2.

Proof Itis obvious that H is a convex polyhedron includ-
ing H; (i=1,2,--,d), because H is the convex hull of H
U Hy U--- U Hy. So we show that H; includes T;. In this
proof, we first describe T(6) as linear combination of i,
pl. -+, pi}, where T'(6) is a point on 7; and is defined as

TO)=[06 - 67, 60O,

Next we show that each coefficient of its linear combina-
tion is not less than 0 and the sum of all coefficients is equal
to 1.

T(6) can be expressed as follows,
T(6) = Oe; + ey + -+ 8¢,
=0 —p) +bey + e+ + e

0 {9 - i—;,—l—}el + {92 - (%iﬂez
P [9"— (’—';;—1>}e

By using (10), T(8) is described as linear combination of pf
(G=0,1,---,7).

T©) =} + i{"f - (%‘l')j}a(i,j)"{zﬂ -
j=1
= [1 - {9 - E:(;-l—]a(i, 1)—1]p?
r—1 ) i—1 7
+ Z[ o - (-—-) }a(i, N
j=1

1 _ (i1 ol FPER
ot = (=) jeti+ 07 o

+ {9" - (’—:i—lﬂa(z pn (12)
Let be
7@=imwa
j=0
ro(0) =1 - {9 - E.—_d—l}a(i, H!
M@=[4—G%§1muﬂ
- [9/’+1 — (%i)j+l}a(i,j+ !
(G=L2,-,r=1
Ar(0) = {9"'— (i—;;—-1>r}a(i, P!
It is obvious that the sum of A;(8) (f =0, 1, - - -, r) isequal to

1.1t is easy to show that 2{(6) (j =0, - - -, ) is not less than 0
forall 6 € ©;.

THEORETISCHE ARBEIT

Remark 4 As the division number increases, conserva-
tiveness improves but the number of LMIs also increases.
(If the division number is d, the number of LMIs is d(r + 1)
where r is the degree of polynomial.) Using our approach,
we must consider such trade-off between improvement of
conservativeness and increase of the number of LMIs.

5 Numerical Example

Consider the following linear system with scheduling para-
meter,

1) = [o + 8041 + (D42 ]x()
+ [Bo + 6(1) By + 6°(1)Ba]w(2),
(1) = Cx(2), (14)

where [Ag | A1 | 42), [Bo | By | Ba), C are given as fol-
lows,

(13)

—4.3650 —0.67230 —0.33630
[Ao | A1 | A2] =] 7.0880 —65570 —4.6010
—2.4100  7.5840  —14.310
~0.56081 0.85534  0.58923
0.66981  —1.3750 —0.99093
31917 17971 —2.5887
0.66981 —1.3750 —0.99093
~2.8963 —1.5292 10.516 |,
—3.5777 2.8389  1.9087
2.3740  0.74850
[Bo| By | By]=]| 1.3660  3.4440
0.94610 —9.6190
—0.16023  —0.35209
0.11622  —2.4839
—0.11058  —4.6057
0.15623  0.13063
~0.49582  4.0379 |,
—0.030616  0.89473
010
c=[0 0 1]’

o e [0, 1), Y1 €[0, co).

This is the model of the gasturbine engine [9] described as
a linear system with a scalar scheduling parameter, where
X1, X2 and x3 are the compressor speed, the fan speed and
the outlet pressure respectively, and 6 is the normalized
compressor speed. The scheduled system matrices, 4A(6)
= Ay + 041 + 643, B(6) = By + 0B, + 6° By, are given
as interpolation of the three system matrices, which are
identified by using maximum likelihood method at three
equilibrium points of the nonlinear simulation model, as
shown in Figure 2. In this figure, * denotes the equili-
brinm point.
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; + Case 1 ;
: x Case?2

5,8 5,0
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Figure 2: System parameters.§

We evaluate I?gain of the above system for the next three

cases,

Case 1: Q(6) = Qo,

Case 2: Q(6) = Qo + 00, + 6’02 and vyuax = 10.0,

Case 3: Q(0) = Qo + 6 01 + 6% 02 + 6 Q3 and vy =
10.0.

Note that, in these cases, we cannot evaluate L? gain by
using directly the technique in [3] or [5], because the sys-
tem parameters A(6) and B(0) are quadratic function of 6.

The result is shown in Figure 3. In this figure, the vertical
axis denotes L’gain evaluated by the proposed technique
and the horizontal axis denotes the division number. +, x
and * are L? gain evaluated for Case 1, Case 2 and Case 3
respectively. Results for Case 1 and Case 2 are almost iden-
tical. This result shows that conservativeness of the evalua-

108k e forn ek Gase B

L2 gain

S 10 15 20 25
Division Number

Figure 3: Evaluation of L2 gain.

tion is improved as the division number increases; conser-
vativeness is greatly improved while the division number is
small; conservativeness is improved very little at the divi-
sion number larger than some number (e.g. 20 in this exam-
ple). Thus it seems that we can obtain good evatuation of
L? gain even if the division number is not enough large.

If the interdependence of the parameters, 8(f) = a(1), 6:(t)
= 62(1), is neglected, the system (13) is reduced to the lin-
ear systems with two, independent, scheduling parameters,

(1) = [Ao + 61(D) A1 + 02() A)x(t)
+ [By + 61 () By + 62(8) Ba]w(?),
where 6)(7) and 6,(7) satisfy
0 €0, 1], 62(H €0, 11, V1 €0, o0),
61(2) € [—10, 10], 6y(z) € [-20, 20], 1 € [0, oc0).

Since the system (15) depends affinely on scheduling para-

(15)

" meters, the technique of [5] can be applied. That is, taking

the solution to the vector form of (3) in the affine form,

0(61,62) = Qo + 6101 + 620>
and using the technique of [5], we evaluate the I? gain as

y; = 1.5764.

The corresponding result of the L? gain analysis using our
technique is that of Case 2, and the value is evaluated from
Figure 3 as

2 = 0.960.

Thus we can see less conservative evaluation of the L? gain
by considering interdependence of scheduling parameters.

6 Conclusions

We proposed a new LMI approach to analysis of linear sys-
tems depending on scheduling parameter in polynomial
forms. In the numerical case study, we evaluated actual L?
gain for a given linear system with scheduling parameter
and verified its efficacy. Though we considered the polyno-
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mial case in this paper, the proposed approach can be ex-
tended to more general cases [2].
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Abstract: In this paper, we consider Ho, output feedback control problems for bilinear systems,
and present a design example of artificial rubber muscle actuator control system. First we derive
two types of He, output feedback controller via differential game approach. The controllers are
characterized in terms of the solutions satisfying two Riccati inequalities depending on the state
of generalized plant or controller. Second, we propose algorithms to solve the Riccati inequalities
via specifying a domain of the state and solving constant coefficient Riccati inequalities. The
proposed algorithms include an evaluation method for the domain of internal stability. Finally,
we demonstrate efficiency of the proposed algorithm through a numerical example.

Key Words: bilinear system, Ho, control, Riccati inequality

1 Introduction

Bilinear systems comprise perhaps the simplest class of nonlinear systems. However, the lin-
earization of bilinear systems easily lose the essential nature of the problem for the systems.
Moreover, bilinear systems are nonlinear systems that have a lot of practical applications in var-
ious fields. Many researchers have studied various aspects of bilinear systems for the past thirty
years [11]. However, there is few research that considers exogenous inputs, e.g. disturbamnce, to
bilinear systems. It is important for practical applications to consider the exogenous inputs for
guaranteeing a good performance.

H., theory is a control theory that considers explicitly the exogenous inputs for guaranteeing
a good performance [3). Since the time-domain methodology has been developed for the linear
H, control problem, H,, theory has been generalized to nonlinear systems [7, 6]. In particular,
the differential game theory [1] can generalize the linear Ho, theory in the time domain to the
nonlinear Hy, theory. For the linear H,, control problem, we obtain the solution by solving
the Riccati inequality. On the other hand, for the nonlinear Heo control problem, we obtain
the solution by solving the partial differential inequality called “Hamilton-Jacobi-Isaacs (HJT)
inequality”. But until now, it seems to us that there does not exist a true effective method to
solve the HJI inequality. It is just the same with H, control problem for bilinear systems that
are a special class of nonlinear systems. So far, there exists the formal tensor series solution
of the HJI inequality for bilinear Ho state feedback control problem [2]. The work [13] solves
finite time horizon Hu, output feedback control problems for bilinear systems via information
state approach.

In this paper, we consider (infinite time horizon) He, output feedback control problems for
bilinear systems. Generalizing the approach of the work [10] that discusses the linear Ho, output
feedback control problems, we derive two types of He, output feedback controller. To construct
the controllers needs solutions satisfying two Riccati inequalities that depend on the state of
a generalized plant or a controller. But it is difficult to obtain the solutions satisfying the
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inequalities. We propose algorithms to obtain the solutions satisfying the Riccati inequalities
via specifying a domain of the state and solving constant coefficient Riccati inequalities. The
proposed algorithms include an evaluation method for the domain of internal stability. Finally,
we demonstrate efficiency of the proposed algorithm through a design example of artificial rubber -
muscle actuator control system.

The paper is organized as follows. Section 2 gives a statement of bilinear H, output feedback
control problem. Section 3 gives sufficient conditions for the existence of controllers solving the
problem. Section 4 gives algorithms that obtain a solution satisfying the sufficlent conditions.
Final section demonstrates efficiency of the proposed algorithm through a numerical example.

Notations: For a vector z, ||z|| denotes the Euclidean norm. For a matrix X, || X denotes the
norm induced by the Euclidean norm (largest singular value). || - ||z denotes the norm of the
space of square integrable signals, and is defined as

1
& 2
lell = ([ lelPer)” e € .
La, denotes the set of bounded functions with ||z(t)]| < pforallt € [0,00). For a real matrix P,

P > 0(P > 0) means P is symmetric and positive(positive-semi) definite. I denotes the identity
matrix of appropriate dimensions.

2 Bilinear H,, Control Problem

We consider a nonlinear system () :

¢ = Az+ Byw+ B(z)u, ' (2.1)
z = Ciz + Diqu, (2.2)
y = Ciz+ Dnw, (23)
where, ‘
B(z) = By + {aN}, (2.4)
{aN}:=Y zNi, DN;€R™Ti=1,...,m (2.5)
=1

z; stands for the i-th element of z.

z(t) € R" is the state, u(t) € R" is the control input, y(t) € R™ is the measured output,
z(t) € R? is the controlled output and w(t) € RP is the exogenous input. A4, B1, B2, C1, C2, D1,
Doy are coefficient matrices of appropriate dimensions, and satisfy the following “Orthogonality
Condition”: "

a0y oLl c D1 | [o I], (2.6)

il

D | BY o | =10 1. (2.7)
For given matrices N;,2 =1,...,7, there exist matrices M;,7 =1,...,7 such that
{eN}u = {uM}z, (2.8)

for all z, u, where {ulM} is defined as

.
{ub} = uiM;, M; RV, j=1,.,7 ' (2.9)
—~



u; stands for the j-th element of u.
For the system (), we consider an output feedback controller (I') of the form

£ = m(€)+ m(Ou+ &)y, (2.10)
u = 91(6)1 7 (2'11)

where 11(€), m2(€), n3(€), 61(€) are sufficiently smooth functions with 7;(0) = 0, 6:(0) = 0.
For the closed-loop system (Z,T), an internal stability is defined as follows.

Definition (Internal stability)

Let © C R® x R™ be a domain that contains the equilibrium point (0,0). Consider the
closed-loop system (Z,T) with w = 0. If the equilibrium point (0,0) is (locally) asymptotically
stable and the solution (z(t),£(t)) starting in the domain {2 approaches to the point (0,0) as
t — o0, we say the closed-loop system (£,T) is internally stable in the domain Q.

In this paper, we consider the following problem.

Bilinear Ho., Control Problem [P]

Consider a system (X). Given v (> 0), find an output feedback controller (I') satisfying the
following conditions (P1) and (P2), and characterize the domain € satisfying the condition (P1):
(P1) The closed-loop system (£,T) is internally stable in a domain Q C R™ x R™ that contains

the equilibrium point (0,0); :
(P;) Whenever (z(0),£(0)) = (0,0), there exists some p(> 0) and |||z < 7|jw|2 forall w € Lyp.

3 Characterizations of Controllers

Now assume that the structures n1(€), m(€), m(§) of the controller (I') are already designed.
Then, the differential game approach (7, 1} leads usto that the problem [P] is solved by obtaining
a solution V(z,) satisfying the Hamilton-J acobi-Isaacs (HJI) inequality,

v
01,

min =~ max [
u=01(¢) w=w(z,u)

() (o) + oo+ fa)s) + AP = Plwl?] <0, @)
for the augmented system that consists of the system (Z) and the controller (T'), given as

b = filze)+ falzawt fa(za)u, (32)
z = Ciz+ Diou, (3.3)

where

T Az
e [ : } o flee)= { m(€) + m(E)Cr } ’

_ Bl _ B(fL‘)
falzme) = { n3(§) D21 } o Jolee) = [ m2(¢) } '

It is not easy to obtain the solution V(z,) satisfying the HJI inequality (3.1). In this paper,
by restricting a structure of the solution V(z,) totwo particular types, we obtain two solutions
presented in Theorems 3.1 and 3.2. The solution V(z,) for Theorem 3.1 has the structure

V(z,) = ETSE+ 4% (2 - )TY Hz = &), - (34)
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and the solution for Theorem 3.2 the structure
V(ze) = a7 Xz + 4%z - Tz - ©). (3.5)

These structures of the solutions are the same as those of the linear case [10, 3]. We might
think that the structures (3.4),(3.5) are introduced as the second order approximation of V(z,)
with respect to the linearization model in neighborhood of the equilibrium point (z,€) = (0,0) of
the bilinear system (2.1) and controller (2.10). This is not true, because the linearization model
of bilinear system (2.1) is generally useless because of lacking the control input. In this paper,
we regard the state z in the bilinear term as an unknown parameter, and the bilinear system
(2.1) as a linear system with an unknown parameter. We can prove the following theorems with
the same technique “completing the square” as in the linear case [10].

Theorem 3.1 Consider the system () satisfying the condition (AO). If there exzists a domain
&, C R™ x R" that contains the origin, and for all (z,£) € @1,(z,8) # (0,0), there evist
S >0,Y > 0 such that
(C11) Equy (S, B(£)) :=

S(A+~v72YCTCr) + (A+772Y T Ci)Ts - S(B(€)BT(€) = 7Y CTCaY)S + CTC1 < 05

(3.6)
(C12) Eqn,(Y) :=
v AT 4+ AY - Y(CFCy —472CTC1)Y + B1BY < 0; (3.7)
(C18)
¢TEqn, (S, B()E + 7 (e — §)TY T [Ean,(Y) +Y {(OM)T + {»(OMY]Y T (e - §) <0,
(3.8)
where p(€) := —BT(£)S¢,
then, the controller (T') solving the problem [P] is given as
&= Ag — B(z)BT(2)Sz + v72Y CTC1z + Y CF (y - Caa), (3.9)
uw=-BT(z)Sz. (3.10)

Moreover, the closed-loop system (,T) is internally stable in the mazimum hyper-ellipsoid
Q(01) = { (2,6) | €+ (2= Y e - Sn }y (3.11)
that is contained in the domain ®1.

Theorem 3.2 Consider the system () satisfying the condition (AO). If there exists a domain
&, C R" x R™ that contains the origin, and for all (z,6) € B3,(z,€) # (0,0), there ezist
X > 0,T > 0 such that '

(C21) Equa(X, B(z)) =

XA+ ATX — X(B(2)BT(z) — v *BiBI)X + C{ C1 <5 (3.12)
(C22) Equy(T, B(z)) :=

T(A + 2B, BTX)T + (4 + 772 B BI X)T = T(C7 C2 - v~2X B(z)BT(2)X)T + By B < 0;
(3.13)



(C23)

eTEqng(X, B(z))z + 7% (z — &)T T [Equy(T, B(z)) + T{o(§) M} + {o(§)MITIT ™ (z — &)
+|BY(2) Xz - BT(6)X¢|* - || BT (2)X (2 - E)I* < 0, (3.14)

where 9(£) 1= —BT(£)XE,
then, the controller (T') solving the problem [F] is given as

i = A% — B(2)BT(8)X4 + 7 *BiBI X3 + TC (y - C2), (3.15)
v =-BT(2)Xz. : (3.16)

Moreover, the closed-loop system (,T) is internally stable in the mazimum hyper-ellipsoid

V(o2) = {(z,6) | 7 Xz + 72z - )T T e - ) < }, (3.17)
that is contained in the domain 1.

Remark 3.1 Theorem 3.2 corresponds to a case which we let V(z) = 27Xz and Q(z — &) =
72 (z — €)TT 1 (z — ¢) in Theorem 3.1 of the work [7]. In the work [2], however, there is not
a tesult to which Theorem 3.1 of this paper corresponds. This paper gives another type of
controller as shown for linear systems in the work [3, 10].

Remark 3.2 We use the condition (C23) (or (C13)) to obtain the largest domain as possible.
In a extreme neighborhood of the origin (for example, in [7]), the higher-order terms of the
condition (C23)(or (C13)) with respect to the state are contained in a “gap” of the inequality
(3.13) (or (3.7)) and the condition (C23)(or (C13)) becomes useless. The paper [7] does not
discuss the evaluation of a domain in which a system is internally stable.

Remark 3.3 In Theorem 3.1, first we find a solution satisfying the conditions (C11) and (C12),
and construct the controller (I'). Next, we use the condition (C13) to evaluate the domain in
which the closed-loop system (Z,T) is internally stable. In the same way, in Theorem 3.2,
first we find a solution satisfying the conditions (C21) and (C22), and construct the controller
(T'). Next, we use the condition (C23) to evaluate the domain in which the closed-loop system
(Z,T) is internally stable. The conditions (C11)(C12) and (C21)(C22) correspond to two Riccati
inequalities in linear H,, control problems (3, 10], respectively. We see those in the following

algorithms. In Remark 4.3, we give more constructive characterization of domains 1 and 2.

4 Controller Synthesis Algorithms

In Section 3, we showed two theorems which present the sufficient conditions to obtain the
output feedback controller (I') for the problem [P]. To construct the controller (T), from the
sufficient conditions, we must solve the Riccati inequalities that depend on the state z (or §) of
the generalized plant (or the controller). In this section, we propose algorithms which consist of
considering the admissible domain of the state = (or £) and solving constant coefficient Riccati
- inequalities. The algorithms give also the domain {4 (or ) in which the closed-loop system
is internally stable. Algorithm 1 and 2 proposed here correspond to Theorem 3.1 and Theorem
3.2, respectively.
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Algorithm 1
Stepl. Set a domain @%1 C R™ that contains the origin. For all £ € @%1, find a matrix B such
that ,

BBT < B()BT(9), (41)

and § > 0,Y > 0,4; > 0,A; > 0 such that
Eqn1(5'7_-B_) + _A_l = 07 v ' (42)
Equyo(Y)+ 4, = 0. (4.3)

At this time, the obtained S,Y give a controller (T) in the form of (3.9), (3.10).
Step2. Find oy such that

Q= {(2,0)78+77 (e - )Y (e - <o } S O (4.4)

Q) is a domain in which the closed-loop system (z,T) is internally stable, where ®; is an
admissible domain that contains £, defined as

®;:= (R x &}*) n @', (4.5)

" Here, ®12 is defined as

812 = {(z,6)| - £7[S(B(&)BT(€) — BE)S + Al |
193z = OTY Y {w() M} + {MOMIY - A )Y N - <0} (46)

Algorithm 2
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Stepl. Set a domain ®2' C R™ that contains the origin. For all z € @2 find matrices B, B
such that

BBY < B(z)BT(z) < B.BI, (4.7)

and X > 0,7 > 0,A; > 0,A3 > 0 such that
Eqng(X, B)) + 41 =0, (4-8)
Eqny(T, Bu)+ Az = 0. (4.9)

At this time, the obtained X, T give a controller (I') in the form of (3.15), (3.16).
Step2. Find oy such that

Qp = {(2,8) [T Xz + v}z — T Tz — §) L 02} C 2. (4.10)

Q, is a domain in which the closed-loop system (z,T) is internally stable, where @5 is an
admissible domain that contains (g, defined as

By = (B2 x R*)n %%, A (4.11)
Here, ®22 is defined as
8% .= {(z,8)] - 2T [X(B(z)B () ~ BIB )X + Az
—7¥(z ~ T X(B,BT - B(2)BT(2))X(z - €)
(o - EFTUTHE MY + ((OMIT = Aol (@ ~ €) + || BT ()X ~ BHOX &I’
~|BT(z)X(z - &)||* < 0}. (4.12)

In Algorithm 1 and 2, (4.6) is given by substituting (3.6)(3.7)(4.2)(4.3) into (3.8), and (4.12) is
given by substituting (3.12)(3.13)(4.8)(4.9) into (3.14).



Remark 4.1 A basic idea of the algorithms is to solve the constant coefficient Riccati inequali-
ties instead of the Riccati inequalities that depend on the state z (or £), by setting the admissible
domain for z (or ) and evaluating the nonlinear term with respect to z (or &) in the admissible
domain. It is a key point of the algorithms how large admissible domain we set for z (or £):
For example, in Algorithm 1, if there exists B such that BTB < B(6)BT(¢) for all £ € R™,
then we get Eqny (S, B(€)) < Eqny (S, B). Therefore, by solving the inequality Eqn,(5,B) < 0,
we can solve the inequality Eqn,(S,B(€)) < 0. Note that the smaller |.BBY|| is, the more
difficult it is to obtain the solution; conversely, the larger | BBY|| is, the smaller the admissible

domain is (see Figure 4.1).

Remark 4.2 In Algorithm 1, we consider a domain of ¢ to solve Riccati inequalities. In Al-
gorithm 2, we consider a domain of z to do so. At this time, we restrict a lower bound of the
nonlinear term in Algorithm 1, and both upper and lower bounds in Algorithm 2. Therefore,
in those algorithms, the structure (3.4) of solution V(z,) gives an easier task than another
structure (3.5) does.

B(&)BT(¢) | o B(z)BT(z)

b

/ BBT / BiBf

. : , ey
- J ST
1) Algorithm 1 ' 2) Algorithm 2

Figure 4.1: Bilinear term vs. Admissible domain

Remark 4.3 In Step 2, to obtain a domain in which the system is internally stable (that is, to
get oy in Algorithm 1, or o3 in Algorithm 2), we solve a nonlinear optimization problem given
as

oy = (z,?)%%@l {Eng + 4% - Y Yz - 5)] , 1)
or
o= miy [oTXet e - 7T e 6. (4.14)

Section 5.2.2 shall discuss the problem in detail.

5 Numerical Example

In this section, we present a design example of artificial rubber muscle actuator control system.
We demonstrate efficiency of the proposed algorithm through the numerical example. We model
a single-link manipulator with paralleled artificial rubber muscle actuators as a bilinear system,
and construct a nonlinear Hy, output feedback controller which controls the joint angle.
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5.1 Bilinear Model of Rubber Muscle Actuators

We consider a single-link manipulator with paralleled artificial rubber muscle actuators shown
in Figure 5.1.

7]

R A NN AL
D
R A
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s

ue,k,b et

Figure 5.1: Single-link manipulator with paralleled artificial rubber muscle actuators

By transforming difference in shrinking forces of the actuators into a rotation force, we use a
pair of actuators like a human muscle. On the basis of the works [8, 9], we model it as a bilinear
system of the form

Tp = AnTn + (Bn + Tp1Nn1 + $n2N'n.2)u) (5-1)
Yn = Chln (52)

where z,,u, An, Bn,Cn, Nn1 and Nypg are given as

_|f RETEE
xn—[é},u_[ue]’
0 1 rlo 0
A”"[o 0}’3”‘7[1 —1}’0”“{1 O]’
r| o 0. r|0 0
anz_"j[k k}y an:_f[b b}

Here, 6 denotes a joint angle, uy, u. shrinking-forces, I an inertial moment, r a radius of joint
part and k,b constant coefficients. The following discussion uses I/r = 0.03,k = 0.2,b = 0.05

8],

5.2 Control System Design

We design a control system for the bilinear model (5.1)(5.2). First, we construct a generalized
plant meeting our specifications. Then, for the generalized plant, we construct an H., output
feedback controller, and at the same time, we evaluate a domain of stability.

5.2.1 Generalized Plant Design

We shall design a control system meeting the following specifications:

(S1) A joint angle § should track output signals of a reference model (wy — z1),
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(S2) Sensitivity from process noises to a control input should be reduced (wg — 22).

Thus, we obtain a generalized plant (Figure 5.2) of the form
dfz,] [4 0 ] ea 0 10] -
By, Nn 0
([B]=lw]eslo]) o

b
HEEHIHENE

T
y=| -K;Cp K { "}-1— 0 0 1w (5.5)
[ 2 2] Tp [ ]
where z, denotes a state of reference model M(s) of the form
M(s) = —2—= ——.
s+a, s+1
wy 7 M(s) Z1
22
wa
w3
{wnNn}u o
+1 +iza[ 4 T | +1
¢ Bn—=0—F s Cn

— I&"2 T
,J 9
Anr ‘

Figure 5.2: Generalized plant

The model M(s) does not reflect on any particular actual problem. We consider an external input
ws only for the orthogonality condition to hold. Correspondingly, we add a gain block Kz = 10
to the nominal plant in order to attenuate an influence of ws on constructing a controller.

5.2.2 Controller Design and Evaluation of Domain of Stability

We construct an output feedback controller by using Algorithm 1 given in Section 4. The
following numerical calculations use MATLAB/ LMITOOL [4]/Optimization Toolbox (5]

Algorithm 1
Step 1. We shall construct a controller. The bilinear term of (5.3) gives

B(Q-‘-[%n}-i*&{]\rgl}+§2{N52]+53[g},
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where ¢ denotes a state of controller. Figures 5.3 and 5.4 illustrate maximum and minimum
eigenvalues of B(£)BT(¢) as functions of states of controller (¢1,£2) € ( [~100, 100] , [-100,
100}), respectively.

max{eig(B{xi)B({xi}})
min{eig{B{xi}B{xi})}

x2 -0 -t00 it xi2 -1 -0 -

Figure 5.3: Max-eigenvalues of B(¢)BT(¢) Figure 5.4: Min-eigenvalues of B(¢)BY(¢€)

From these figures, we easily obtain an inequality B(0)BT(0) < B(£)BT(¢) for all £ € R®. Thus,
the matrix 1_3’__BT, which satisfies

0 0 0
0 22222 0 | = BBT < B(0)BT(0),
0 0 0

assures that the inequa,lity BBT < B(£)BT(£) holds globally, i.e. @21 = R3.

matrix BBT, we obtain solutions

1.0828
0.11208
-0.97144

1.6254 0.46810
0.46810 0.61939
1.3757 0.29732

Y

0.11208
0.015301
—0.097308

By using this

~0.97144
-0.097308 |,
0.87464

1.3757
0.29732
1.3460

(5.6)

(5.7)

which satisfy Riccati equations (4.2) and (4.3) with v = 0.8, and a controller.
Step 2. We shall evaluate a domain of stability €;(o1), which is done by finding ;. To obtain
o1 (or a lower bound of 1), we solve two constrained nonlinear optimization problems

V(z,§) <oy = min V(z,§)

(‘7:15) 68@1

min
((L‘,é)eaBr
where V(z,&) = €756 + 9%z — £)TY " (z - ¢), and B, is a maximum hyperball contained in
®; = (R® x R®) N ®%2. Then we obtain an inequality (see Figure 5.5)

4.0057 x 107°% < oy = 1.1177.

Here, if the value oy 1.1177 is a local optimal solution, then the value is only an upper
bound of the true solution. In this problem, we obtain fairly small lower bound because there
is difference of 1 ~ 10° between magnitudes of eigenvalues of § and Y.



oy = 4.0057 x 1073

Figure 5.5: Domain of stability

5.3 Computer Simulations

We show efficiency of the obtained controller through computer simulations. Consider four cases:
Case 1 (R14D1), Case 2 (R1+D2), Case 3 (R2+4D1) and Case 4 (R2+D2), where reference input
wy and process noise wp are given as follows:

Rl: w;=1(0<t<8), D1: w; =0,
R2: wy = sin(0.57t) (0<t<8), D2 wy=-03(L5<t<8).

Results for the four cases are shown in Figures 5.6-5.9. Figures 5.6 and 5.8 show that a joint
angle @ tracks reference output signals r, and so mean that the obtained controller satisfies the
specification (S1). Figures 5.7 and 5.9 show that the obtaining controller attenuates influence
of process noises w; and satisfies the specification (52).

o

o
8

)
g 8

o
@
]

magnitude

magnitude
o

Y ; ; ; ! ; ;
0

a) Joint angle () - b) Control input (u)

Figure 5.6: Case 1 ( R1+D1)
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magnitude
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o
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0.2y

magnitude

0.15

Qg freerees oo

0.05F-/

tracking error
<

005k

0.25

0.2

0.15

tracking efror

~0.05

time time

a) Joint angle (8) b) Control input (u)

0.025

0.02

0.015

2.01

0.005¢

magnitude
o

i
~0.005H: -
~0.01}
~0.015} i

-0.02

N A : i i :

2 3 4 5 s 7 8 : : ; ; ; ; ;
time ~0.025g 1 2 3 4 5 6 7 [}

time
a) Tracking Error (6 —r) b) Control input (u)

Figure 5.8: Case 3 ( R2+D1)

0.05F -/

J T T T T T 003 T I T T T T T

0.02f e

0.0t

magnitude
o

~0.01}

-0.02

S WO SO S o ST S S S

time lime

a) Tracking Error (6 — ) b) Control input (u)

Figure 5.9: Case 4 ( R2+D2)



6 Conclﬁsion

We considered Ho, output feedback control problems for bilinear systems, and presented a
design example of artificial rubber muscle actuator control system. We derived two types of Hy
output feedback controller via differential game approach, and proposed algorithms to construct

the controllers based on Riccati inequalities. We also demonstrated efficiency of the proposed:

algorithm. The algorithm has also been examined through other numerical examples. Details
can be found in [12]. ' '
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Abstract. Focusing I? gain analysis and H” state feedback control synthesis, we present two
approaches to finite-dimensional characterizations of analysis and synthesis for linear time-delay
systems. One is based on the spectrum decomposition and the other is based on a convex covering
technique.

1 Introduction

The fact that the state space of time-delay systems is infinite-dimensional leads generally to
infinite-dimensional characterizations for analysis and control synthesis in time-delay systems.
For example, stability of linear time-delay systems is completely analyzed with the infinite-
dimensional Lyapunov equations. As for control synteses, it is well known that the optimal
LQ control for time-delay systems is given in the memory, i.e. infinite-dimensional, state
feedback form whose feedback gains are characterized by infinite-dimensional Riccati
equations (see, e.g. [3]); we could say that the memory state feedback form is general and
natural for time-delay systems, and can expect that the memory state feedback controllers
achieve better performance than memoryless, ie. finite-dimensional, state feedback
controllers. Of course, the infinite-dimensional characterizations contrary give us hard
problems in computations and implementations. Our concern is to find a feasible and
effective approach to such infinite-dimensional tasks in analysis and control synthesis for
linear time-delay systems.

In this paper, we focus L’ gain analysis and H*” state feedback control synthesis, and present
two approaches in which the main steps of analysis and synthesis require only finite-
dimensional computations: (Approach I) The first approach is based on focusing, by using
the spectrum decomposition technique [3], only a finite number of specific modes of the
system; controlled outputs are generalized such that they include the history of state in the
delay interval, so that the approach makes it possible to control the finite number of modes,
and the feedback gains are characterized by finite-dimensional Riccati equations. (Approach
II) The second one is based on a reduction technique which was originally developed for
solving parameter-dependent linear matrix inequalities (LMIs) for analysis and control



K. Uchida

synthesis of LPV systems [1]; we first derive infinite-dimensional LMI conditions for
analysis and control synthesis in linear time-delay systems, and, applying the reduction
technique to the infinite-dimansional LMIs, characterize the analysis and control synthesis by
finite-dimensional LMIs.

2 Problem Formulation

Consider the following linear time-delay system defined on the time interval [0,0),
x(1) = Ax(t) + Ax(t = h) + Bu(t) + Dw(t) (1)

with the initial condition such that x(f#)=0,-h< <0. Here, x(f) is the »n -dimensional
state vector, u(#) is the m, -dimansional control input vector, and w(z) is the m, -

dimensional disturbance vector. The positive number /> 0 is the length of time-delay. The
system parameters 4,, 4,, B, D are constant matrices. The control vector is given in the

following form of state feedback with memory:

u(t) = Kpx(t) + [ Ko (Bt + )P @

where K, is a constant matrix and K, (f) is a matrix function whose elments are square

integrable functions, i.e. K,, € L*([-h,0],R™*"). As the controlled output vector z(¢) of -
dimension, consider the following two types: The first type is given by

z(1) = E’x(t)+thm(ﬁ)x(i+ﬂ)dﬂ | N
u(t)

where F; is a constant matrix and F, e I’([-h,0], R/"™"), and the second type is given by
z(t) = Cx(1) (4)
where C is a constant matrix.

The analysis problem discussed in this paper is to check whether I) the closed loop system
formed by the system (1) and the feedback control (2) is asymptotically stable, and II) the

closed loop system has the I gain defined by

j: 2(t) z(2)dt < j:w(z)'w(r)dz, vw e L([0,0); R™), (5)
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where (') denotes transposition. On the other hand, the synthesis problem of this paper is to
find a gain (K, K,,()) of the controller (2) such that the closed loop system satisfies I) and

IT), and such a controller is called an H” controller.

In the following discussions, we use a notation,

LA &
L(a.p) = [ (5

£'(a) Pz(oc,ﬁ)}> (90, V(a,p) e[-h.0] {~,h,01

which means that P, and P,(a, ) are symmetric, that is £'= F, and P'(a,p)=F(B,a),
and the symmetrized matrix defined by

1
B S(B@)+R)

SL@p @)=, ,
(B(@+ R () B+ BBa)

2

“is positive definite (negative definite) for each («,p) €[-h,0]1x[-A,0]. The notation,

L{a,f)2(<)0, is similary defined. Note that, if each elements of a matrix function
L(a, f) >0 is continuous in (a, B), there exists a positive number 1 such that L(a, )2 Al
for all (a, B) €[~h,0]x[~h,0], where I denotes identity matrix.

3 ApproachI (Based on Spectrum Decomposition)

3.1 Infinite-Dimensional Characterization of Control Synthesis

We develop Approach I in the control synthesis problem for the controlled output (3). The
form of the controlled output (3) seems rather specific compared with the (standard) form of
the controlled output (4). From the viewpoint of the state space theory of time-delay systems,
however, the type (3) is a general linear functional of the state (x(¥), x(# + /), h< f<0) and
the control input #(f). As we will see in the next section, this gereral form makes it possible
to obtain a finite-dimansional characterization of the control synthesis besed on spectrum
decomposition. We start to present an infinite-dimensional characterization.

Theorem I  Suppose that there exist a constant matrix A, and continuously differentable

matrix functions M, () and M, (a, B) which satisfy

>0, Y(a,p) e[~h0]x[-h0], (6)

{ M, M,(B) }
M\ (a) M,(a,p)

with M, = M,(-h) and M,(B) = M,(-h,B),-h< <0, and
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<0, Y(a,p)[-h0]x[-h,0] @)

[ QB jl
Q' (a) Q(a.p)

where Q,, Q,(f) and Q,(a, B) are defined as

Q, = 4, M, + M, 4y + 4' M, (0) + M,(0) 4, + F,'F,
— M,(BB'-DD")M,,

Ql<ﬂ>=—5%Ml<ﬂ>+ 4 M, (B)+ A" M,(0, )+ F Fi(B)
- M(BB'-DD"YM,(5),
0,(a,f) = (2 + )M (@ )+ F@F (B)
- M, (a)(BB'-DD" )M, ().

Then, if M, >0 and Q, <0 in addition, an H” controller is given by

u(t) =~B Myx()) - [ B M,() 4x(t + B)p. ®)

This theorem can be proved by using a standard argument of completing the square, and the
details are omitted. Note that the main step of the synthesis based on this theorem is to solve
the infinite-dimensional Riccati inequlaity (7).

3.2 Spectrum Decomposition and Finite-Dimensional Characterization

An appropriate discretization may be a practical approach to solving the infinite-dimensional
Riccati inequality (7), but provides generally only approximate solutions which have no
theoretical guarantee of sufficiency. In this section, we present another approach which
requires only finite-dimensional computations but guarantees necessary properties of
solutions.

Here, we summarize necesarry definitions and notations concerning the spectrum
decomposition: R?(R?') is the ¢ -dimensional space of colum (row) vectors over the field of
real numbers. H'([a,b];R?) is the space of absolutely continuous R* -valued functions on
[a,b] with square integrable derivatives. Whenever necessary the space H'([a,b];R?) is to

be interpreted as its complex extension and correspondingly the transposition (') is to be
interpreted as the complex-conjugate transposition. The unique solution of the system (1)

with zero-input defines a semigroup on the state space R” x L*([-h,0];R"). The semigroup
defines the infinitesimal generator A and the formal adjoint A", given by
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Ao¢(0) + A1¢('—h)
AV(O)} _ ,

w(0)4, +y (M4,
4 V/(O)] _ p
¢ dE

and A.'I: _a
i w(s)

W

where ¢ € H'([-h,0;R") and y e H'([0,h};R™). Let 4,,i=1,,p be eigenvalues of A,
ie. detA(4,)=0,i=1---,p , where A(s)=sl—- 4, - Ale"s” . and define a finite set
A={A,,4,}. If 4, is a zero of det A(s) = 0 of order d, and a pole of A" (s) of order m,,
then the generalized eigenspace of A, is the d,-dimensional space Ker(A,] —A)™, where [
is the identity operator, let ®, eH '([-h,0];R™*) be a basis of this eigenspace.
A, i=1--,p are also eigenvalues of A' and the eigenspace of A, is the d, -dimensional
space Ker(AJ-A")"; let ¥, e H'([0,h]; R%™") be a basis of this eigenspace. These bases
are chosen such that

¥ )0,0)+ [ F(f+M A (Bdp=6,1

where &, is the Kronecker's delta, which is always possible. Note that there exists a d, xd, -
dimensional matrix 4’ such that A®, = ®,4" or A'Y, = 4'Y,. Let ¥=(¥'¥,") and
d=d++d,. Define a d xd -dimensional matrix A4, , a d xm, -dimensional matrix B,

and a d x m, -dimensional matrix D, such that
A, =diag(4'---47), B, =¥()B and D,=¥(0)D.
Now we can state the result.

Theorem 2 Suppose that the coefficient matrix F;, and the coefficient matrix function
F, (/) in the controlled output (3) given by

Fy = F ¥(0), ©
F()l(ﬂ) = FA\Ij(ﬁ+ h)4,

for a constant matrix F, , and that there exists a constant matrix M > 0 satisfying
A'M+MA, +F,'F, - M(B,B,'-D,D,")M <O0. (10)

Then, a solution (M,, M,(f), M,(«, B)) to the inequalities (6) and (7) is given by

M, =¥ (0)M¥(0),
M,(B) =Y OMY(F+h), (11)
M,(a, ) =¥ (a+h)MY(B+h).
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Furthermore, if A contains all the unstable zeros (i.e. the zeros with non-negative real parts)
of the characteristic equation detA(s)=0, the controller (8) given by (11) is an H”
controller. :

The first part of this theorem can be proved by direct substitution. For the proof of the second
part, note that the condition (9) implies that we intend to control only a finite number of
specific modes corresponding to the finite set A. Therefore, the condition that A contains
all the unstable characteristic roots of the open loop system is required for the asymptotic
stability of the closed loop system. The details are omitted.

Approach I, which is based on Theorem 2, consists of the two steps: The first step is the

spectrum decomposition, where a finite number of spectra A to be controlled are chosen and
matrices 4, , B, , D, are calculated; The second step is to find a solution M to the finite-

dimensional Riccati inequality (10); Then, an H” controller is synthesized by (8) and (11).

4 Approeach Il (Based on Convex Cevering Technique )

4.1 Infinite-Dimensional Characterization of Analysis and Synthesis

We develop Approach II in the analysis and synthesis problem for the controlled output (4).
For the analysis problem, let us describe the closed loop system formed by (1) and (2) as

%(t) = Apx(t) + Ax(t =)+ [ A, (Bx(+ faf+ Dw(d),
z(1) = Cx(¥)

(12)

where 4, =4, +BK,, 4 = 4, and 4,,(B) =1‘ BK,, (). We have an infinite-dimensional
charcterization for the I’ gain analysis of the closed loop system in the following form [2].

Theorem 3  Suppose that there exist constant matrices P, ¢ and continuously differentable
matrix functions R(f), S(«, ) which satisfy the linear matrix inequalities (LMISs):

0>0, (13)
i ) Lo (14)
R'(a) S(a,B)]
I Hn P‘ZI _R(‘h) HlB(ﬂ) PD
4P~ R (~h) 0 A'R(B)-S(-h,B) 0O 0 (15)
(@)  R(a)4,-S(a,-h) M, (e, B) R(a)D|
. DP 0 D'R(f) -1

Y(a, B) €[~h,0]x[~h,0],
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where IT,,, I1,(f) and I1;;(a, f) are defined by

I, = 4,'P+ P4, +0+R(0)+R0O)+CC,
I, (f) = ~%R(ﬂ) + PA,(f)+ A, R(B)+ SO, ),

1, (a, ) = —(5% + %}S(aﬁ) + R(@ 4, () + 4, (@RP).

Then, the closed loop system (12) satisfies the conditions I) and II).

This theorem can be proved by using the standard argument of completing the square together
with Schur complement. The details are omitted. Now we consider the synthesis of

H* controllers and provide an infinite-dimensional characterization [2]. The problem is to
find a controller gain (X, X, (f)) based on the analysis result of Theorem 3.

Theorem 4 Suppose that there exist constant matrices W, X, Z, and continuously
differentable matrix functions Z, (f3), Y(a, ) which satisfy the LMIs:

X>0, (16)
7 i 0 (17
>
W Y(a,p) ’
i Z"11 AlW'“ w 213(:3) 214
WA,'-W -X WA'-Y(~h,B) O '
' <0, (18)
Ts'(a) AW- Y(a,~h) Zy(a,p) Z,
Zy,' 0 Zs,' -1

v(a, B) [-h,0]x[-h,0],
where Z,, £,(8), Z,,, Z,(a,f) and X, are defined by

%, =WA,'+WA4, + X +2W +BZ,+Z,'B',
%.,(B) = BZ,, () + WA,'+Z,' B+Y (0, ),

Zy, :[Wcl DJ,

(9,9 AR
(e, p)= (50( + aﬁ)y(aaﬂ)'*‘BZm(ﬂ)"'Zm (BB,
z;=[0 D].

Then, an H* controller of the form (2) is given by

K,= ZOVV-1 and K (f) = Z, BHw. (19)
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The analysis result (Theorem 3) requires to solve the LMIs (13), (14) and (15), and the
synthesis result (Theorem 4) requires to solve the LMIs (16), (17) and (18) Note that these
LMIs are infinite-dimensional.

472 Finite-Dimensional Characterization by Convex Convering Tecnique

The main difficulty in solving the LMIs in Theorem 3 and Theorem 4 comes from their
infinite dimensionality, i.e. the dependence on parameters o and B. In Approach II, we

reduce a infinite-dimensional (parameter-dependent) LMIs to a finite number of LMIs by
using a convex covering technique [1], and obtain the solution of the infinite-dimensional
LMIs by computing the finite number of LMIs.

Here let us focus the infinite-dimensional LMIs in Theorem 4. We start to restrict the
solutions Y(a, ) and Z,, () to the following forms:

Y(a,p) =Y, + &(a. O + g, (. O, +-+g, (@, )Y, ,

(20)
Za(B) =23 + K (DL + h(BZ) ++h, (B)Z}],

where g,(a,f) is a continuously differentiable scalar function such that g(a,p)=g(B )
and 4 () is a continuously differentiable scalar function, and ¥ is the » x n -dimensional

unknown matrix such that ¥, =Y and Z is the m, x n-dimensional unknown matrix. Then,

substituting the forms of solutions (20) into the LMIs (16), (17) and (18), we have the
following form of parameter dependent LMI:

Ly(M) + fi(a, HL, (M)+-+1,(a, )L, (M) <0, @1

where f,(a, ) is a continuous scalar function and L, (M) is an affine matrix function of the
unknown matrix M = (YO,---, Y,.Zy, ---,Z,T). The parameter dependent LMI (21) can be
reduced to a finite-dimensional LMI, by the convex covering technique [1], as follows.

Theorem 5 Let {p,, p,,*:*, p,} be vertices of a convex polyhedron which includes the
curved surface 7T defined by

T={[f(a.) fr(a,B) -+ [, (a,B)] | (e, ) €[-h,0]x[-D0]}.
If there exists a matrx M which satisfies the finite-dimensional LMIs:
L,(M)+p, L (M)+-+p,L(M)<0, i=1--,q, (22)

where p, is the jth element of p,, then the matrix M is a solution to the infinite-
dimensional LMI.
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Thus we obtain the finite-dimensional characterization (22) for the controller synthesis
problem. A general technique to construct a convex polyhedron which includes the curved
surface 7' is proposed in [1]. To make the volume of convex polyhedrons smaller for less
conservative solutions, we may derive the interval [-/,0] into sub-intervals and repeat the

same argument of convex covering on each sub-interval.

5 Conclusion

Focusing I’ gain analysis and H* state feedback control synthesis, we presented two
approaches to finite-dimensional characterizations of analysis and synthesis for linear time-
delay systems. One was based on the spectrum decomposition and the other was based on a
convex covering technique.
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Abstract

Hysteresis of GMM (Giant Magnetrostrictive Mate-
rial) declines the actuator performance, especially for
small input signal range. Here, gain scheduled con-
troller is examined and applied to the actuator posi-
tion control system. '

Plant model is obtained by the system identifica-
tion experiment. Since plant characteristics depends
on the magnitude of input, which is defined to be a
scheduling parameter, a set of the models is acquired
to various magnitude of the M-sequence (Maximum-
length linear shift register sequence) signals.

A gain scheduled controller synthesis is presented by
solving LMI constraints and applied to experimental
actuator.

1 Introduction

The giant magnetrostrictive material(later, be called
GMM) has the nature, which distorts itself in the mag-
netic field. The distortion is quite small, about 1200
ppm in the 500 Oe magnetic fields. However there are
some merits, such as
1) It has the bandwidth of tens of KHz.

2) The generated driving force is relatively large.

3) Environment capability is better than that of piezo-
electric device.

4) Actuator structure becomes simple.

For these reasons, mentioned above, a variety of study
has been carried out. The actuator structure is shown
in Fig 1.

Gioct Mogrelasiriclive Mol it

Pligt Spagt X
Postion Sermor  Fiaba

Figure 1: GMM Actuator Structure

This actuator shows hysteresis characteristic in
Fig 2. Addition to this, there is an area where the
output docs not follow to the electric current when it
turns around. Because of this feature, the distortion
quantity reduces along with the electric current gets
smaller. Then, the dead zone appears by decreasing
the electric current more and more.

- 3

“ion (V]

~

Actuator posi

ot o5 Q 2% t
Signal into current amplifier [V)
Figure 2: Hysteresis Characteristics

Applying single linear controller that is based on the
specific operation point of the plant, we cannot expect
control ability successfully in whole operation range.
On the other hand, for the dead zone, an inverse com-
pensator is often applied. But, there is a problem to
cause unstable oscillation phenomenon when drift oc-
curs by the temperature variation. "

Here, we attempt to apply gain scheduled con-
troller with the scheduling parameter for the resolu-
tion improvement purpose in a frequency range where
we have concern. We compose the generalized LPV
(Linear Parameter Varying) system, which contains
plant and weighting functions. In addition to value
of scheduling parameter, we assume that the maxi-
mum value of changing rate of the scheduling param-
eter is known so that we could take it consideration
into controller design. Gain scheduled controller 1s
applied in experimental actuator and verified useful-
ness.
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2 Modeling

Considering that scheduling parameter 8(t) (later
6(t) will be presented as 6 for simplicity) which is
cqual to control variable in the closed loop system, is
a normalized magnitude of input signal, plant model
is obtained as equation (3) by means of system iden-
tification experiment as follows.

2.1 System Identification Condition

1) Adopt six resister M-sequence, as identification sig-
nal.

2) Amplitude are * 2,3,5,10,20,30,40,50,60,70,80,90
and 100%.

3) Sampling time is 0.08msec.

2.2 Parameter Calculation

1) Remove bias and trend from experimental results.
2) Used ARMAX model. After some try and error,
order of denominator and numerator are five and four
with one step time-delay.

3) Continuous time models are acquired (order of
denominator and numerator are four and three) by
means of curve-fitting of discrete model to have mini-
mum inverse under-shoot model.

4) Finally, add time-delay as one order Pade model to
above models.

2.3 Transfer Function Representation

The transfer function of continuous time model is

b4(9)54 + b (0)s+ bo

GP(S) = 55 + 04(9)84 +-+a (0)S+ Qg

(1)

Here, each coefficient is supposed to be represented in
the third polynomial approximation of the scheduling
parameter,

ai(G) = a0 + a,-,16 + ai,-z@z -+ a,-,,393
bi(e) = bi,g + bu& + bi’zaz -+ bi‘ges
i=0,1,2,3,4 (2)

Coefficients of polynomial are shown in Table 1.

In Fig 3 (a), (b) shows =% 50%, % 2% response of
various plant models. In order from top,
1) Output of identification experiment
2) Output of discrete time model
3} Output of continuous time model
4) Output of polynomial model
The input signal for calculation is identical with ex-
perimental input signal.
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Table 1: Coefficients of Polynomial

b;(6) bi.o bi 1 b2 bi 3
b4(8) 0.0332 -2.4263 4.527% -3.2769
b3 (6) -0.4526 -26.6971 57.1425 -28.2858
b2(6) 6.7079 -16.8666 16.1603 -13.5530
bl(a) 9.1597 142.4606 -266.5099 146.0958
bo(g) 0.4913 12.7101 -27.1006 16.0888
a;(6) a0 ai1 ai2 03
aa(6) | 1.8881 377046 5.7018 70,8250
as(8) | 13.2543 | -16.3460 | 15.0593 | -3.9602
a2(9) . 22.8389 -14.3179 -5.3850 11.7323
ay(8) | 9.16472 | 27.3741 | -71.8040 | 44.8869
ao(6) 0.3126 2.1733 -5.5099 3.4476

Note: Time axis is scaled by 9425.
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In Fig 3 (b), there is somewhat difference in gain
of experiment result and polynomial model output.
But, a sufficiently good enough model is obtained as
a whole.



2.4 State Space Representation

Equation (1) and (2) are described as state space
representation below,

T,(6)
.’bp = (Ap,() -+ A,,,19 + AP3292 + AP,303)xp + Bpu (3)
Yp = (pro -+ C!,,le -+ Cp,292 + Cp’303).’l7p

Here, z,€R"* is plant state variable, u€R™ is con-
trol variable, y€R! is measured variable. In this case,
np=5,m=1, and l=1. Notice that when we fix the
scheduling parameter, plant becomes a time-invariant
linear system.

[Assumption]
Scheduling parameter satisfies following conditions.
1) g(t)e{amlna gmam} Yt € [0, OO)
2) o(t)eC?

3) B(t)|<Umax Yt € [0,00)

Then the system which is described equation (3), is
called LPV system.

3 Gain Scheduled Controller
Synthesis

3.1 Problem Description

We consider full-rank output feedback controller,
which has same order as that of plant. It is natural
that controller also depends on scheduling parameter.
Then, statc space representation is

EK:{SE:K:AK(Q).’BK-FBK(H)QJ, T (0) =0 (4) 1’

u=Cg(@)zg + Dr(8)y

zx 15 controller state variable.

For the controller design, construct generalized LPV
system (E,(6) )} with additional weighting functions
which reflect closed loop specification. The state space
representation of the generalized LPV system that has
an available scheduling parameter on-line, as follows,

& = A(f)z + B1(0)w + Bz (0)u .
Ly(0) : § z=Ci(0)z + D (f)w + Dip(f)u (5)
y = Ca(6)z + Do (f)w

Again, z € R™ is state variable, w € R™v is distur-
bance and z € R! is controlled variable.
Define Lg4:n as a gain from w to z, such as

IEIP
Loain =  SUp
o WE Lo, wl “?ﬂﬂz

(6)

Then, the controller design problem is that

e make the closed loop system internally stable.
¢ make the upper bond of £, less than or equal to
a positive constant ~ in the whole range of scheduling
parameter for zero initial state of the controller.

3.2 Controller Characterization

Consider generalized LPV system in equation (5)
and supposes assumptions 1) 2) and 3) arc satisfied.
Then, controller design problem is solvable when con-
stant matrices Kg, Ko and continuous positive defi-
nite symmetric matrices Y (), X (6) exist and satisfy
following three LMI constraints (7), (8), (9) and BMI
(10). .

AY(8) + Y (O)A+ Cs(0)Ks + (Ch(6)Ks)' — tmas %‘f}Q
+(Y(0)B+ KDy (6) €' )AL
y ((Y(e)mgwm(e))' ) <o @
XA + AX(6) + B (0)Kc + (B2 (OYKeY + vmamg)—;gz
+ (B (CX(0)+ D(0)Ke) ) &7
BI
x (cx + Di2(O)Kc ) <0 ®)
(y;e) xl(/o) ) S0 | (©)
dY(6) _x-1(5)4X©) )
g a6 <0 (10)
axd dx (6} $
(*7@“" @
Where,
sa= (g H) (11)
A = A(6) + B2(6) D (6)Cs(0) (12)
B := By(8) + B(8) Dk (6) D21 (8) (13)
C := C1(0) + D12(0) Dk (8)C2(6) (14)

and Dg is chosen so that &g > 0.

3.3 Controller Formula

When X (6),Y(8), Kg and K¢ matrices which satisfy
above constraints are given, the full-rank output feed-
back controller is obtained by following calculation.
By, Ckg are
Bk = Z(#)" 'K} (15)
Ck = —-KcX(g)_l (16)

Here, Z(8) =Y () — X(6)~*. Then Ak is
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Ax =27Y(8) [A' +Y(6)AX(8) + K5 C2(8)X (6)

+Y(8)B2(8)Kc + vmx*(e)i‘%@

+(Y(®)B+KpDyn(d) ¢ )aZ

B —1
X<CX+D12(9)KC )}X @

When § is available, BMI constraint (10) disappears
and controller design synthesis is proposed in [1]. It
is a specific featurc in this paper that on-line 6 infor-
mation is not required for controller implementation.

But, BMI constraint (10) can not be solve right
. away. Therefore, we introduce following procedure.

We take d—’%‘)—) > 0. Then, from expression (10), we

have X0 < . Thus, we use these two constraints

instead of (10) to have solution candidates with appro-
priate Umaz (> 0). Then, examine if obtained solution
satisfies BMI constraint (10) or not.

(for the details, see[2])

4 Design Conditions

In this section, we design controller according
to the procedure mentioned before, with given
weighting function of the generalized LPV system
and Y(6),X(8) which minimize . Further, here
Y (9), X(#) are depends on # as polynomial of order
three.

4.1 Weighting Function

Fig 4 shows the generalized LPV system (£,(6)). An
integrator is added at the plant input in order to mini-
mize steady-state error. W,(s) and Wy(s) are selected
so that closed loop characteristics meet requirements.
We(s) is decided as

Wi(s) = ; s+1.5 (18)

(s +0.001)

and state space representation is

E\,V :

3

Ty = Az, + Bpu,
z1 = Coxy + Dyu,

Similarly,

, 28
Wils) = s+ 2

v X J.Tt = At.’rt + Btu
We - zy = C’LIEt + Dtu-
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Figure 4: Generalized LPV System

4.2 Reducing to finite number of LMI
constraints

Thus far LMI constraints depend on continuous
scheduling parameter 6. As a result we have to solve
infinite number of LMI whenever we fix the schedul-
ing parameter. For reducing to finite number of con-
straints, a technique that proposed by Azuma et al{3],
to construct a convex hull that covers the model, is
introduced.

4.3 value of v .

Based on plant physical conditions, candidates of
Umaz = 15,150,1500 are selected. Then, vpmq.. = 150
is chosen such that it minimizes ~y.

4.4 Gain Scheduled Controller

According to the controller synthesis described
above, first we soluve Y (8) and X(f). In this case,
Ymin 15 6.9. Next, Y (8) and X (6) are examined if they
satisfy constraint (10) which cannot be considered in
the design procedure.

To understand the controller features, bode plots of
the controller under the condition of § = 0.01,0.5,1.0
are shown in Fig 5. From Fig §, we know that con-
troller characteristics varies corresponding to the mag-
nitude of the control signal (here, integrator charac-
teristics is not included). For the smaller control sig-
nal, controller has larger gain in low frequency range,
comparing with larger control signal. From these as-
pects, actuator performance improvement is expected
in whole operating range.
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Figure 5: Gain Scheduled Controller Bode Plot

5 Test Results

On the experiment, gain scheduled controller that
corrspond to nine scheduling parameters, is prepared
beforehand because of the throughput performance of
the digital hardware. Then, switch them by schedul-
ing parameter.

5.1 Low Frequency Range Linearity
and Response

In Fig 6 shows closed loop GMM actuator output
characteristics in low frequency. In a whole operat-
ing range, hysteresis is suppressed successfully and lin-
earity of input-output characteristic is achieved. Re-
sponse to the 0.2% peak to peak amplitude of sinu-
soidal command is shown in Fig 7. At the open loop

configuration, there is not any observable output in.

this command range. The linearlization and resolu-
tion improvement are obtained sufficiently.

Actnator Position (V)

g ? t
Command v}

Figure 6: Linearized Characteristic

rwsena IV
< -

Figure 7: Sinusoidal Response

5.2 Response Characteristics

Comparing with results that obtained by the fixed
and linear H,, controller which is designed based on a
typical operating point, rise time of step response by
the gain scheduled controller becomes half. And look-
ing at the frequency response, the bandwidth shifts to
higher frequency range by 1.5 times.

™,

(¥
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o

Actuntor Position [V]

0100 5%

@ as PR ? 23 3 s [ ey s
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Figure 8: Closed Loop Step Response
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Figure 9: Closed Loop Frequency Response

6 Conclusion

Because of hysteresis characteristics of GMM actua-
tor, there is a difficulty to have sufficient resohition for
small command signal in the frequency range where we
have concern.

In this paper, we propose a controller design proce-
dure for gain scheduling control that depends on mag-
nitude of control variable as a scheduling parameter
with pre-information of maximum value of scheduling
parameter changing rate.

We have obtained sufficient results where command
is close to zero range and confirmed the usefulness of
gain scheduling control technique, except undesirable
windup phenomena for larger than 5% of command
signal. To overcome this windup problem is our future
subject.
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Abstract

This paper considers a synthesis problem of
constrained state feedback H* control for non-
linear systems described as linear systems with
self-scheduling parameters. The controllers as-
sure that the closed loop system is asymptot-
ically stable, the semi-global L? gain is less
than a positive value and the input is con-
strained to a given set. First we show a con-

dition to construct constrained state feedback

H®™ controllers in terms of infinite-dimensional
Linear Matrix Inequalities(LMIs). Second we
introduce a technique to reduce infinite-dime-
nsional LMIs to a finite number of LMIs, and
present a feasible algorithm for synthesis of

controllers based on the finite-dimensional LMIs.

1 Introduction

If we consider to apply gain scheduling tech-
niques [9](11] to analysis or controller synthesis
problems of nonlinear systems whose system
parameters depend on the state as follows,

i = A(z)z + By (z)w(t) + Ba(z)u(t),
z=C(z)z,

it is important to evaluate the domain of the
state. If the domain of the state is obtained,
the nonlinear systems can be described as lin-
ear systems with scheduling parameters (called
the linear parameter varying systems: LPV
systems). Thus the gain scheduling techniques
are applicable to analysis or synthesis prob-
lems of the nonlinear systems.

In this article, we consider constrained state

feedback H* control of nonlinear systems whose

system parameters depend on the state. The

controllers designed by using our technique as-
sure that the closed loop system is asymptot-
ically stable, the semi-global L? gain is less
than a positive value and the input is con-
strained to a given set. We derive conditions in
the form of infinite-dimensional Linear Matrix
Inequlities. We show a technique to reduce
the infinite-dimensional Linear Matrix Inequli-
ties to the finite-dimensional Linear Matrix In-
equalities which are feasible formulas.

2 Problem Formulation

In this paper, we consider the following non-
linear system,

& = A(z)z + By (z)w(t) + Bz (z)u(t),
r: z=C(2)z,
z(0) =0,

where z € R™ is the state, z € R' is the output,
w € R™ is the disturbance and u € R™ is the
input. . .

For the general nonlinear system, it is dif-
ficult to discuss system performances (e.g., L2
gain performance) globally against the distur-
bance. We assume that the disturbance w(t)
is constrained to the following ellipse,

w(t) €W, "t €[0,00), W={w|wWw< 1}.

Since the disturbance w(t) is constrained to a
given set W, we consider semi-global L? gain
for Z.

The purpose of this article is to design the
state feedback controller I',

Tiu(t) = K@)z, . Q)

such that



¢ the closed loop system EI‘ is asymptoti-
cally stable,

e the semi-global L? gain G(XT) of the
closed loop system is less than 7,

N EZ)
G(EXIN = su
0= o Twli
w#0

e the input u(t) is included in a given set
U for any time t € [0, o),

U={u|vQ;'u< 1}.

Remark 1. We call the nonlinear system X
as the "linear system with self-scheduling pa-

rameters”, because this system can be described

as linear system with scheduling parameters if
the domain of the self-scheduling parameter
z(t) is obtained.

3 Controller Synthesis

First we show the result of synthesis problem
of state feedback controllers which assure that
the closed loop system XI' is asymptotically
stable and the semi-global L? gain of the closed
loop system is less than +.

Theorem 2. Assume that there exist a scalar
o, a matrix @ and a continuous matrix func-
tion Y (6) which satisfy the next inequalities,

a>0, (2)
Q>0, - (3)
[ AB)Q+ QA'(B) + oQ 1
<+32(B)Y(9)+Y'(0)35(9)) Bi®)] <,
| B(6) —aW,
@
' (A(a)Q+QA'(o)) :
+B,(0)Y(8) | Bi(6) QC'(6)
+Y'(6)B(6) <0,
B(6) — 0
Cc(0)Q 0 I
(5)

Yoc{#ecR"|6Q < 1}

Then the closed loop system XTI is asymptoti-
cally stable and the semi-global L?gain is less
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than v. The state feedback gain K(z) is given
as .

K(z) =Y (2)Q™". (6)

Proof. This theorem is derived by using the
result of [3]. ' Q.E.D.

Considering that the reachable set of the
state z(t) in the closed loop system XT' is given
as g,

Q={z|2'Qlz <1},
our main theorem is given as follows.

Theorem 3. Assume that there exist a scalar
a, a matrix @ and a continuous matrix func-
tion Y'(#) which satisfy the next inequalities,

a>0, (M
Q>0, (8)
[ AB)Q +QA'(6) + oQ T
(+B§(0>Y(a) + Y'(o)B;(o)> B0 <o,
5 B (9) - —oW |
©)
'(A(om + QA’(0)) :
+B, (0)Y(0) By (9) QC’ (0)
+Y'(6) B4(8) | <0,
B (6) -1 0
c(0)Q 0 -I
(10)
QY6
YO) Q. | >0 (1)

Yoe{8ec R |0Q10 < 1}).

Then the closed loop system XTI is asymptoti-
cally stable, the semi-global L%gain is less than
4 and the input u(t) is included in U. The
state feedback gain K (z) is given as

K()=Y(@)Q™ (12)

Proof. From (1) and (12), the next condition
is obtained.

WQ'u=2Q7Y'(2)Q'Y(2)Q™

Now considering that the state reachable set
Q is given as

Q={z|2Q 'z <1},



the input is included in the set I if the follow-
ing condition is satisfied,

Q1 -Q Y (@)QI'Y(2)Q V>0, Yz €.

From (8), (11) and Qu > 0, the next is satisfied
for any z € 92;.

Q Y'(z)
A >

©Q-Y'(2)Q7'Y(z) >0

Q1 -Q Y (2)Q;'Y ()@ > 0

Thus it is assured that the input u(t) is in-
‘cluded in U for any t € [0, o0). Q.E.D.

In Theorem 3, it is difficult to obtain so-
lutions which satisfy inequalities (9), (10) and
(11). The main difficulties are as follows.

P1 (9) is a bilinear matrix inequality about o
and Q.

P2 (9), (10) and (11) depend on the parame-
- ter 6.

P3 The domain of the parameter § depends
on the unknown matrix Q.

As for the problems P1 and P3, we put aside
these problems by adopting recursive calcula-
tion of the following corollary. We consider the
problem P2 in the next section.

Corollary 4. Assume that there exist a scalar

a, a matrix Q and a continuous matrix func-
tion Y () which satisfy the next inequalities.

for a given matrix Q1.

a>0, (13)
@1>Q>0 (14)

F(AG)Q +QA'(0) +aQ '
(+Bz(9)y(9) + Y'(O)B;(IO)) B <o

L 1(9) —aW |
(15)

i (A(G)Q + QA'(")) 1

+B;3(0)Y (6) B;(8) QC'(9)
+Y'(8)By(6) <0

1(6) -1 0

cO)Q 0 -I

(16)
QY0

v Q(u )] >0 (17)

Yoe {0 R"|6QT'0<1}

Then the closed loop system LT is asymptoti-
cally stable, the semi-global L?gain is less than
~ and the input u(t) is included in U. The
state feedback gain K(z) is given as

K(z)=Y(2)Q L. (18)

Proof. The proof is omitted. Q.E.D.

4 Reduction to Einite Dimen-
sional Conditions

Conditions (15) (16) (17) in Corollary 4 are
infinite-dimensional conditions depending on
the parameter 6. In this section, a technique
to reduce this infinite-dimensional conditions
to finite-dimensional conditions is shown.

First we restrict system parameters as fol-
lows,

A(z) = Ag + al(z)fh + et Gp, (SE)A,-a,
Bi(z) = Bio + b11(2) B1s + * -+ + biry; (%) Birys
Ba(z) = Bao + b21(z) Ba1 + - - - + bary, (%) Barys,

C(z)=Co+a(z)Cr+---+ ero(z)Cr.,

(19)

where a;, by;, bai,¢i : R® — R are continuous
functions and Aj, Bii, Bai, Ci are constant ma-
trices with adequate dimensions. The solution
Y (0) is also restricted as follows,

Y(O) =Yo + €1(0)Y1 +-t Ere (a)Yre

where ¢ : R* — R is a continuous function
and Y; is a matrix with an adequate dimen-
sion. &;(f) is given by us and Y; is the unknown
matrix.

Then inequalities (15) (16) (17) are de-
scribed as the form of the following parameter
dependent LMI(Linear Matrix Inequality).

FO(Qu) + fl(a)Fl(Qu) e o fr(e)Fr(Qu)

<0, (20)
pco={0]|0Q'0<1}

f; : R* = R is the continuous function of ¢

and a symmetric matrix function F; depends
affinely on the unknown matrix Qu,

Qu = [Q:Yba )Yrg]‘
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The parameter dependent LMI in this form
can be reduced to a finite number of LMI con-
ditions, which are finite-dimensional, by using
the next theorem.

Theorem 5. [1] Let {py,p2, - ,poHg > r+
1) be vertices of a convex polyhedron which
includes the curved surface T,

T =[£(6) f2(0) --- £, (0)] ,0€6. (21)

" Assume that there exists Q),, which satisfies the
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following LMI condition for all p;(i = 1,2,--- , ¢).

FO(Qu.) +pa Fy (Qu) +-eet PirFr(Qu) < 0'(22)

where p;; is the jth element of p;;. Then Q,
satisfies (20) for all 6 € ©.

Remark 6. The convex polyhedron which in-
cludes the curved surface T is important in
Theorem 5. It is easy to construct this convex
polyhedron if the following two points ry, ry
are obtained, because the hyper rectangular(a

convex polyhedron) whose diagonal points are

ry and r2 includes the curved surface 7.

= [xgxeagfz(ﬂ) max f2(6) - lgleagtfr(o)}

n=[pnh® pghO) - pgno)]

But we need to compute the maximum and the
minimum of f;(6) for 6 € 6. This is a difficult
problem in some cases. We show a convenient
method to get ry, ra. '

1. We construct a hyper rectangular Op
which includes the ellipse ©. (If m;, M;
in the next step are obtained for 0, it is
not needed to construct ©pg.)

2. We compute the following m; and M; for
6 € Or(or 6).

m; < fi(0) < M;
3. We use the next two points as ry, rs.

q=[M M;

Q2 = [m1 m2

Mr]'

. m,]

5 Conclusion

In this article, we consider nonlinear systems
which can be described as linear systems with
self-scheduling parameters and propose a method
to design the state feedback controllers which
assure that the closed loop system is asymp-
totically stable, the semi-global L?gain of the
closed loop system is less than v and the input
u(t) is included in a given set.

4
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Abstract: We formulate an H* control problem for linear systems with delays in control
input and controlled output, and discuss possibility of finite-dimensional characterizations

of the solution. First, we derive a state feedback H “ control formula constructed by
using any solution to an infinite-dimensional Riccati matrix equation or an
infinite-dimensional Riccati matrix inequality. Second, we show that, if the controlled
output is chosen such that it satisfies the “prediction condition”, the solution to the
infinite-dimensional Riccati equation can be calculated by solving a finite-dimensional
Riccati equation and similarly the infinite-dimensional Riccati inequality can be solved
with -a solution to a finite-dimensional Riccati inequality. We provide a system theoretic
interpretation for the prediction condition, and show finally that, if the prediction condition

is satisfied, there isan H” control problem for finite-dimensional linear systems which is
equivalent to the problem formulated in this paper for linear systems with delays in control
input and controlled output. Copyright©2000 IFAC

Keywords: Time-delay, Linear systems, H-infinity control, Riccati equations, Prediction

1. NTRODUCTION

The infinite-dimensional characteristics is an intrinsic
feature of systems with delay, and makes analysis or
synthesis problems for systems with delay difficult to
handle. To overcome or bypass this difficulty, a lot
of approaches have been proposed. For example,
we mention the spectrum decomposition and/or
prediction approach, which guarantees
finite-dimensional characterizations of the solutions,
to LQ control problems (Uchida ef al., 1988a, 1988b)

and H® control problems (Kojima et al, 1994,);
the memoryless feedback control synthesis via linear
matrix inequality (LMI) may be one of such
approaches (Shen ef dl, 1991, Lee et al, 1994,
Dugard and Verriest, 1997); the present authors have
recently proposed the infinite-dimensional LMI
characterization of the solutions and an
finite-dimensional LMI algorithm (Azuma et dl,
1998, Azuma et al, 1999), we also note the
discretization technique of Lyapunov functional (Gu,
1997)
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In this paper we concern ourselves also with
finite-dimensional solutions to synthesis problem in

linear systems with delay. We formulate an H*~
control problem for linear systems with delays in
control input and controlled output, and discuss
possibility of finite-dimensional characterizations of
the solution along the same line developed in (Uchida
et al., 1988b). First, we derive a state feedback

H® control formula constructed by using any
solution to an infinite-dimensional Riccati matrix
equation or an infinite-dimensional Riccati matrix
inequality. Second, we show that, if the controlled
output is chosen such that it satisfies the “prediction
condition”, the solution to the infinite-dimensional
Riccati equation can be calculated by solving a
finite-dimensional Riccati equation and similarly the
infinite-dimensional Riccati inequality can be solved
with a solution to a finite-dimensional Riccati
inequality. We provide a system theoretic
interpretation for the prediction condition, and show
finally that, if the prediction condition is satisfied,

there is an H®  control problem for
finite-dimensional linear systems which is equivalent
to the problem formulated in this paper for linear
systems with delays in control input and controlled
output.

2. SYSTEM DESCRIPTION AND
PROBLEM STATEMENT

Consider a linear system with delays in control input
and controlled output. The system is defined over
the interval [0,00) and described by

x(t) = Ax(t) + Byw(t) + Byu(t) + Byyu(t = h)

0
z(t) = Cyox(t) + | C (B)Byu(t + Bdp
-h
+ Dyu(t)

H
y(t) = Cyx(8) + Dyw()

with the initial condition such that x(0)=0 and
u(f)=0,-h<B<0. Here, x(t) is the internal
variable vector of the system;, w() is the
disturbance vector; u(¢) 1is the control input vector;
z(t) is the controlled output vector; y(z) is the

The number 4
The

are

measurement output vector.
denotes the length of time delay and ~>0.
parameters A,B,,B,y,B,,Cy.D,,C,. D,y

constant matrices and the parameter C;;(f) is a

matrix function whose eclements are bounded
continuous functions. It is noted that the future
trajectory of the internal variable x(7),72t 1is

uniquely determined by the value x(f) and the
function B,u, , where u,:= w(+p),-h<sf<0),
if the future control input u(¢),t<&<7 and the
future disturbance w(&),t < E< ¢ are given. From
this viewpoint, we call the pair (x(#), Byu,) the

state of the system (1). Note that the controlled
output z(f) is a general form of linear function of

the state (x(?), B,u,) and the control input u(?) .

In addition to the measurement output y(z), a part of
the state, that is u,, is available at each time ¢,
because wu, is a past history of the control input.
Thus, we consider the pair (3(1),u,) as the

measurement output, and define each admissible
control input u(f) as a bounded linear causal

function of the measurement output (y(f),#,) .
H® control problem discussed in this paper is to find
an admissible control () which controls the
system (1) such that I) the closed loop system is

asymptotically stable, and 1II') the closed loop system
satisfies the inequality:

sz(t)Tz(t)dt < r w(t wit)dt,
0 0
Yw € L, (0,00)

2)

where “7” indicates transposition. Here we note

that the inequality (2) is equivalent to ||T,,, ()], <1,

where 7,,(s) denotes the transfer function from the
disturbance w to the controlled output z. An
admissible control which satisfies 1) and 1) is

calledan H® control.

3 STATE FEEDBACK H®” CONTROL
AND PREDICTION CONDITION

We consider here a special case of the problem
formulated in Section 2.  Let the system (1) be given
in the following form:

x(1) = Ax(t) + Byw(t) + Bygu(t) + Byyu(t - h)

0
Fyx+ [ R(OByu(t+p)dp
u(t)

z() =

(1) = x(t)

The special form of the controlled output implies that
the state and the control input are evaluated
separately, and the special form of the measurement



output implies that the state (x(),By) 18
available. Now we prepare a notation for defining a
quadratic form of the state. Denote by {55,955}

a triplet of three matrices S, S(B) and S,(a.p)
with the same dimensions such that S, is a constant
matrix, S;(f) is a matrix function whose elements
are in L,[-h0] and S,(a,p) isa matrix fanction
whose elements are in L, ([-h,0]x[-h,0]) . A
triplet {S,,S,,S,} is called symmetric if ST =5,
and SZT (a,f) = S,(B,a). For a given symmetric
triplet {S,,S;,S,}, a quadratic form associated with
this triplet is defined as follows:

(¢’0a¢1)T {0,515, }@o- #1) 1=
0
#5upo+ 260 | Si(PI8(D)B @

' [ sl @y piprdaip
for a vector ¢, and a vector function ¢ in
L,[-h0] . A symmetric triplet  {S,,S;,5,} is
called positive semi-definite if #745,,5,,8,3¢20
for all ¢:=(4,,4,) and, in particular, called positive
definite if there exists a positive number & such that
87 1S,,5,.5, ¢ 2 ¢7 {0, }¢ forall ¢, where [
denotes  identity  matrix. We  denote
£S5,5,,5,320(>0) when {S,,5,,5,} is positive
semi-definite  (positive  definite). Negative

semi-definiteness and negative definiteness are
similarly defined.

3.1. Infinite-dimensional formula.

For a triplet {M,,M,,M,} , introduce a triplet
{©,,9,,Q,} and a matrix function II defined by

Qo(My, My):=
AT M, + My A+ F] Fy+ M,B B] M,
— {M, By, + M, (0) By, }{B3, M + B], M, (0)}

Qmﬂ;zvfo,zvfl,Mz)::~5%M1<ﬂ>

+ AT M () + Fy B (B)+ Mo BB M, ()
~{M By + M;(0) By, }{BzTof\/fl B+ B:1T1Mz 0,5}

5} 8
Q, (o, B, My, My, M) = “(g;“"'é‘ﬂ‘)]\/[z (a.B)

+F (@) F,(B)+ M{ (a)B,B] M,()
~{MT (@) By, + M, (a,0)B,1}
x {BI,M () + B1,M, (0, 5)}

TG, My, My, My):=
[M,(=h) =M, M, (=h,f)~M(B)]

Theorem 1. a) Suppose that (4,F,) is detectable.

If there exists a positive semi-definite solution
{My,M,M,} to the infinite-dimensional Riccati

equation:

QD(M07M1) ::0,
QB My, M, M) = 0,

(5)
Qz(a»ﬁ;Mo’MpMz) =0,
~h<a<0, —hsp<0
with the boundary condition

T3 My, M, M;)=0, ~h< f<0, then an H”
control is given by

u(ty = ~{ B, My + B3, MY (0)}x(t)

0
- [ (BLM () + BL M, 0. )3 Batc+ )P
©

b) If there exists a positive definite solution
{M,,M,,M,} to the infinite-dimensional Riccati

inequality  {Q,,€2,,€,} <0 with the boundary
condition TI(B; M, M, ,M,)=0, ~h< £<0, then

an H® control is given in the form (6).

The above characterizations are shown by following
the standard argument of completing the square with
respect to the quadratic form of the state

(x(t), Bayut )" { My, My, My}(x(), Byu,) . The
details are omitted here.

Remartk. A solution {M,,M,,M,} to the
inequality {Q2,,Q;,Q,} <0 is given by solving the
infinite-dimensional matrix inequality
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1{ Qo(My, M) Q,(B; My, My, My) }

207 (o My, My, M) (0, B, Mo, M, M)
T

+_1_ Qo(My, M) O (B My, My, M) }
2 QlT(a;MO’MDMZ) Q,(a, B My, My, M)
<0,

Va,f e[-h0]

This reformulation is used in  another
finite-dimensional characterization of

analysis/synthesis problems for time-delay systems
(Azoma ef al., 1998, Azuma ef al., 1999).

3.2, Prediction condition and finite-dimensional
Sformula.

For the controlled output of the system (3), we
consider further a special structure described by the
following condition:

C1) - F(B)=Fe*#?, —hsf<0

Theorem 2. a) Suppose that the condition (C1) is
satisfied and (A4, F,) is detectable. If there exists a

positive  semi-definite  solution A  to the
finite-dimensional Riccati equation:

AT M + MA+ Fl Fy— M(B,Bf - BB )M =0 ()

where B, := B,y +¢ *"B,, , then, a semi-definite
solution {M,,M,,M,} to the infinite-dimensional
Riccati equation (5) with the boundary condition is
givenby

M 0 = A/[

M, (By:= Me™ 4P ®)

M,(a,p):= e—AT(a+h)A/[e—A(ﬂ+h)

andan H® control is given in the form (6).

b) Suppose that the condition (C1) is satisfied. If

there exists a positive definite solution A/ to the
finite-dimensional inequality:

AT M + MA+FlF,- M(B,B] -BB[ )M <0 (9)

where B, is defined as above in a), then, a positive
{My, M, M} to  the
Riccati inequality

definite solution
infinite~dimensional

{Q,0Q,,9,1 <0 with the boundary condition is

given in the form (8) , and an H™ control is given
in the form (6).

Theorem 2 is shown by direct substitution of the
formula (8) and using the results of Theorem 1.
Here we present a system theoretic interpretation of
the condition. When the condition (C1) is satisfied,
the controlled output in the system (3) is reduced to
the form:

_| Fop())
z(t)-—[ v } (10)
p(t):=x(t) + J.Ohe_A(ﬁ”’)Bmu(t +p)ds an

From the formula (11), we can see that p(tr) (more

precisely, e p(t) ) corresponds to the predictive

value x(f+h) of the internal variable x(r). Thus,
if the condition (C1) is satisfied, the problem
becomes to control the predictive value of the internal
variable, and we call (C1) the “prediction condition”. .
It is also noted that p(¢) defined by (11) satisfies a

finite-dimensional linear system given as
p(t) = Ap(t) + Byw(t) + Bu(t) (12)
As discussed in the mnext section, the
finite-dimensional ~characterizations presented in

Theorem 2 come from the resultant descriptions of
(10) and (12).

4. PREDICTION CONDITION AND
FINITE-DIMENSIONAL PROBLEM

Here we come back to the output feedback H*
control problem formulated in Section 2. For the
controlled output in the system (1), we consider the
following condition:

(€2) Cy(BBy =Croe By, ~h<f<0

The implication of the condition (C2) is the same to
that of the condition (Cl), although (C2) is more
general than (C1). So we call (C2) also the
prediction condition,

Theorem 3. Suppose that the condition (C2) is

satisfied. Then, the output feedback H* control
problem described by the criterion (2) and the system



(1) is equivalent to the output feedback H “ control
problem described by the criterion (2) and the
following finite-dimensional system:

p(t) = Ap(t) + Byw(t) + Byu(t)
2(t) = Cyp(t) + Dyu(?) 13)
q(t) = C, p(t) + Dyw(1)

where p(¢) is the internal variable with p(0)=0,
g(t) is the

—Ah
B, =By, +e "B,

measurement  output and

We can verify Theorem 3 as follows: Let
u(t)=T(,q(),x) be a solution to the

finite-dimensional H® control problem described
by (2) and (13). Defining

2= p= [ &I Byt + prap
- ()

§0:= g0 =G, P Byutr+ frap

and using (C2), we can show from (13) that x(f)
and y(t) defined above obey the system (1) and the
control

' Q
u(r)zr(t,y(-)JrCJle“‘(ﬁ*"”Bﬂu(-Jr B).u) is an

~ solution to the H® control problem described by
(2) and (1). Conversely, let u(f) = A(z, y(),u) be

a solution to the H® control problem described by
(2) and (1). Defining

p(t):=x(1)+ J'OI e BB u(t+ B)dp
- , (as)
q(t):= y(H) +C, JO’ e AN B, w(t+ PHdp

and using (C2), we can show from (1) that p(f) and
q(t) defined above obey the system (13) and the
control

u(t):A(t,q(-)—CzJ-_Ohe—A(ﬁ”’)Bﬂu(-+ﬂ),uA) is an

solution to the finite-dimensional H* control
problem described by (2) and (13). Thus, we obtain
the conclusion of Theorem 3.

Controlled outputs are chosen correspondingly to
purposes of control design. Finally we comment
briefly on meanings of the prediction condition (C2)
(or (C1)) from the viewpoint of control design. Ifit
is required to control the predictive value of the

internal variable, the prediction condition will be
satisfied automatically.  In the previous work
(Kojima et al., 1994), the authors proved the same
equivalence as in Theorem 3 under the assumption
that the condition

C,y(HBy =0, —h<B<0,

©
ClOA B21:0, 1=O, 1, 2,“'

and showed that the framework of H® control
problems for input delayed systems satisfying (C3)
includes the robust stabilization problems against
additive or multiplicative perturbations (including
uncertain delay case). We can verify immediately
that the condition (C3) is a sufficient condition for
the prediction condition (C2) to hold, and therefore
see that such robust stabilization problems can be
handled also in the framework of this paper. To
clarify more general meanings of the prediction
condition from the viewpoint of control design is still
an open problem of interest.

5. CONCLUSION

We discussed the state/output feedback H ™ control
problem for linear systems with delays in control
input and controlled output, and showed that the
finite-dimensional characterization of the solution is
possible if the prediction condition on the controlled
output is satisfied. We also discussed the meaning
of the prediction condition from the viewpoint of
control design.
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Modeling of Direct-Drive Servovalve which Has Giant
Magnetrostrictive Material and Spool Position Control

by Gain Scheduling*
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Because of the reasons of favorable features such as high driving force,, fast response, fine en-
vironmental durability and big distortion about 10 times more than that of PZT, GMM (Giant
Magnetrostrictive Material) is suitable for the actuation structure of servovalve. But, GMM distor-
tion depends on the magnitude of coil current and the output-gain declines according to decreasing
current magnitude. Then, the dead-zone appears in small current range. One of the important char-
acteristics of servovalve is the fine tracking performance to the reference signal. So far, we attempted
to apply linear controllers, such as PI or H™ controller. However GMM tracking performance is
inferior to the traditional driving device for reference signal around null area, and this flaw remains

as an important matter.

In this paper, adopting LPV (Linear Parameter-Varying) system modeling in which we regard
the magnitude of input signal as a scheduling parameter, we design 2 gain scheduling controller

and attempt to solve the problem that is cause

d by the nonlinearities mentioned above. Since it

is hard to implement the controller which uses the information on the varying rate of scheduling

parameters, we propose a new approach for output-fe
plant modeling as an LPV system, then present
any information on the varying rate of scheduling par

edback controller design. First, we describe the
an outline of the controller design synthesis without
ameter and the design process. Lastly, we show

the usefulness of the proposed controller by experimental results.
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