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Modeling of Direct-Drive Servovalve which Has Giant
Magnetrostrictive Material and Spool Position Control

by Gain Scheduling*

Takahiro SuciyaMa! and Kenko UcHIDA?

Because of the reasons of favorable features such as high driving force, fast response, fine en-
vironmental durability and big distortion about 10 times more than that of PZT, GMM (Giant
Magnetrostrictive Material) is suitable for the actuation structure of servovalve. But, GMM distor-
tion depends on the magnitude of coil current and the output-gain declines according to decreasing
current magnitude. Then, the dead-zone appears in small current range. One of the important char-
acteristics of servovalve is the fine tracking performance to the reference signal. So far, we attempted
to apply linear controllers, such as PI or H> controller. However GMM tracking performance is
inferior to the traditional driving device for reference signal around null area, and this flaw remains
as an important matter.

In this paper, adopting LPV (Linear Parameter-Varying) system modeling in which we regard
the magnitude of input signal as a scheduling parameter. we design a gain scheduling controller
and attempt to solve the problem that is caused by the nonlinearities mentioned above. Since it
is hard to implement the controller which uses the information on the varying rate of scheduling
parameters, we propose a new approach for output-feedback controller design. First, we describe the
plant modeling as an LPV system, then present an outline of the controller design synthesis without
any information on the varying rate of scheduling parameter and the design process. Lastly, we show

the usefulness of the proposed controller by experimental results.
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Table 1 Coefficients of polynomial
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Abstract

The load variation of the electro-hydraulic servosystem
causes degradation of the control characteristic. This is
because the flow characteristic of the flow control valve
depends on the load condition. Here, we propose the
flow calculation formula to have continues flow between
turbulent and laminar flow so that compose the linear
plant model with a scheduling parameter. Then, design
gain scheduled controllers for the velocity and hydraulic
force control.

1 Introduction

Hydraulic control system is used in various industrial
applications for the power in size, high durability. The
electro-hydraulic servosystem is applied to obtain the
accurate position, velocity or force control, means the
high reproducibility and the fine dynamic performance
in many of cases. However, the hydraulic plant is non-
linear, caused by the relationship between the load
pressure and the effective flow from the control valve
and asymmetric cylinder, so on. Addition to these, the
plant parameters are not sure by the factor such as
oil bulk modulus, viscosity and temperature. Because
of the electro-hydraulic servosystem capability and the
usefulness, mentioned above, a number of studies have
investigated for nonlinear features. Recent approaches
to design controller for the electro-hydraulic servosys-
tem are robust control design by He framework[1] and
adaptive control[2, 3]. In the controller design, which
is based on the linear plant model, only the local sta-
bility and performance can be guaranteed. One of the
reasons to make the situation difficult is the discon-
tinuity of the control flow calculation formula around
the null. In this paper, propose a formula, which inter-
polates the turbulent and the laminar flow in the flow
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control valve so that the linear model becomes con-
tinuous at the boundary for the precise force control.
Then, compose the lincar plant model as an LPV (lincar
parameter varying) system with a scheduling parame-
ter which depends on load force so that design the gain
scheduled controller for the velocity and hydraulic force
control. Simulation outputs and experiment results of
the both velocity and force control loop are presented
in the Injection Molding Machine application.

2 Injection Molding Machine Application

In the Injection Molding process, there is a velocity
control mode of the injection speed and are force con-
trol modes for the holding and back pressure control.
The velocity profile is generated in accordance with
the mold shape so that the velocity between the melt
plastic and mold surface become constant. The force
control of the holding pressure mode makes the plas-
tic stress uniform in order to minimize the deforma-
tion of the product. The electro-hydraulic servosystem
is adapted to both the velocity and force control for
the high power, fast response and fine reproducibity.
The appearance and the structure scheme of the In-

jection Molding Machine, which is used in this paper

is shown in Figure 1. The main components of the
electro-hydraulic servosystem are the hydraulic injec-
tion ram cylinder, the flow control valve and trans-
ducers for the velocity and force. In this experiment,
we adopt the rated velocity is 200 mm/s and the rated
force is 160 kN for the specific product. The actual load
force in the velocity control mode becomes 40 to 50 kN.
In the force control mode, it comes up to 60 kN. The
purpose to design the gain scheduled controller here, is
to have stable and good performance according to the
load force change.



(a) Appearance of the machine

Flow Control
Valve

(b) Machine scheme

Figure 1: Test equipment
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Figure 2: Configuration of the plant

3 Flow Calculation Formulas

In the flow control valve, which has a sleeve and a spool,
there are two typical flow conditions, called the turbu-
lent flow at the metering orifice opening and laminar
flow in the clearance between sleeve and spool. Now,
let think about the flow at the metering orifice A out
of four orifices in Figure 2, as an example. There are
commonly used flow caleulation formulas (1), (3) for
each conditions. However, these two equations are not
continuous at the boundary. Hence, we adopt the pro-
posed equation (2), which interpolates both of the flow

and deviations of the turbulent and the laminar flow
conditions. Then, we have continuous plant model in
whole operating range.

Gine = Kt\ﬂfb‘s 1)+ EVP, —Pa . o S (1)

{3V (B ) (=)
Q2ini = K[ 4 Pg . PZ

“f"h’fc'rm il + 250 L2 < la (2>
P~ P
—(zs — la)
here, Zso = —4C,.vVPs — P2/(3K:K))

Looking at equations (1),(2) and (3), we understand
that the flow from control valve highly depends on
load pressure(force) and nonlinear. Because of such
a characteristics, a fixed controller at the one operat-
ing condition can not satisfy the performances in the
over all operating range.

Py(t), Pi(t) are bore and

rod side pressure, Az, A P,
are cffective piston ar- lo
eas of the actuator. my, Q2in
and m; are masses and ]
z,(t) is piston displace- — e
ment.  Ki, K; are coef-
ficients of the turburant Py(t)
and the laminar flow. Fig-
wre 3 shows lap [, and
¢, is clearance of the spool
and sleeve.

g2int = K vy <lo+ Tsa (3)

Figure 3: Mectring
orifice A

Linearization of the equations (1),(2) and (3) at the
arbitrary operating point (20, Pag). We have

(5(]2,‘7” B l{t (-—-——’E‘"——“—\/P P)o(STé
(-1»50 -1 )
(@ — L EF 2
_.____.____—("’”’0 L re 6P2) (4)
(P: — Pao)

(3 K\ 3(2s — 1.)°
5""’““"(1(,) ( 4 ) P, By 00

33\? (K.,cr>4 (zg —1a)? Kie,
kA eTla) R0 V5P (5
+((I\l) 4 P — Py 2y/P; — Py )

- P, — Pf;o 1 )
Sq2int = K bz SP 6
Q2inl xz( = 1) I p— 3 (6)
When, we choose the corresponding equation from
(4), (5) or (6) according to spool displacement z4(¢),
we yield simple presentation as equation (7).

6(]21'11 = 1{21‘71156-7:5 + ](21'711)25132 (7)

In the same manner as mentioned above, linearization
of the equations at the metering orifice B, C and D are
described below, respectively.

5q2(mt = I\,Zauta;s(sxs + -[(20“1)25])2 (8)
6qlout = Klautzs(sxs + ]<1outp15P1 (9)
5q1in = I\,linz‘séxs + K’linplgpl (10)
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Figure 4: Block diagram of the linearlized plant

4 Modeling

4.1 Linear System

Figure 4 presents the linear block diagram from the in-
put dvgg, which is applied to the flow control valve, to
the measured variable hydraulic force Vi, and piston
velocity Vi,.. vsig is the control variable. rg;, is the
rated signal and g, is the rated spool displacement.
wy and (, represents the control valve dynamics as the
second order transfer function. The pressure change
in the actuator is calculated from the hydraulic com-
pressibility, called as bulk modulus 3, and the effective
volume change caused by flow in and out from pressure
chamber, plus piston displacement. Masses, an equiv-
alent damper and a spring compose the load. In the
injection process, the damper and spring rate change
by the various operating conditions, such as velocity
and force control mode. Here, we take state vector dz
as,

82 = (82, 025, 0Py, 6P1, dapy, 07,)T  (11)

From the linear block diagram in Figure 4, the linear
state space equation is represented in equation (12) and
(13). However, some of the matrix elements, such as
ap(3, 2) is not constant.

2wy —~wy 0 0
1 0 0 0
S = 0 a,(3,2)  ap(3,3) 0
FEL 0 a4 0 a9
10% Aq 1074,
0 O mp+rg - mp+ny
0 0
0 0 Zate
0 0 0
ap(3,5) 0 0
afd5) 0 bt | o | vy (12)
10%h 10%k 0
mp-my mp+ny
0 0

_10,.

Ven Y _ {0 0 2 ~m% 0 0 ),
(V >—(O 0 0 sz (13)

Tpo
Here,

Kainzs — Kooutzs
Va + Ag(Ls + Tpo)
Koinp, — Kooutpy
Vi + Ao(Ln + Tpo)
As

l38) = By T )
A’linws - [{oukzs
Vi + A1 (Ln — xp0)
Kiine, — Kioutp;
Vl + Al (Ln - po)
A
Vi + 4 (L” — {L‘po)

ap(3,2) =7

(1,,(3’ 3) = /3

ap(4,2) =4
ap(4,4) =0
ap(4,5) =8
L,, shows a half of the total piston stroke.

4.2 LPV System

As mentioned before, some of the elements in the state
space equation vary according to the operating condi-
tions. To have linear state space equation, we apply
the LPV system presentation, which has the parame-
ter that is the function of the load force. Equation 12
has the form as

6L = -a%f(lo)(st -+ B,,(Svsig (14)
Sy = Cpoz (15)

The matrix B, and C}, are constant and all elements in
these matrices are decided from the mechanical specifi-
cations. xp is a state at the equilibrium point. But, it is
difficult to have the solution xg from the implicit func-
tion of f(xg)+ Bpusigo = 0. Now, here suppose that z¢
is given and then yo is calculated by yo = Cpwo. Ad-
dition to this, suppose that the scheduling parameter
§ is a smooth function of the yg, such as 8 = ¢(yo).



The linear state space equation, which depends on the
scheduling parameter 8, represents the plant behavior
in the neighborhood of the equilibrium g [4, 5. By
the way, ap(3,2), ap(4,4) and so on, are decided when
Tg0, Poo, Pio and 2,0 are fixed. But, as explained
already, it is hard to decide these values from the re-
lated equations. Therefore, we adopt the means which
use the value of the variable from the simulation result.

For the closed loop simulation, we use PI velocity and

force control in the nonlinear plant model. Then, ap-
ply relatively slow enough ramp velocity and force ref-
erence signal (v, = 0) so that we are able to assume
the state variables are close cnough to the equilibrium
states. Now, we have a set of the equilibrium points for
the specified operating range in both velocity and force
control. Using the values of the entries in the equilib-
rium set, we figure out the elements, such as a,(3, 2) so
on, with respect to corresponding scheduling parame-
ter which is described as equation (19) or (20). Then,
we represent these elelments by the approximate 3rd
polynomial, as follows

ap(0) = app + apr0 + 0,1,202 + apgﬁs (16)

The state space equation (12), (13) yields to equation
(17), (18) with the scheduling paramcter.

82, = Ap(0)6z, + Bpdugy (17)
8y, = Cpbzy, (18)

Considering the flow characteristic which depends on
AP, define the scheduling parameter 8, for the ve-
locity and @, for the force control.
0, =
AV
8, =

e 0<6, <1 (20)

v Friax

Froos 1s maximum force, Fy.rateqd and Fi.rateq are the
rated force in the velocity and force control mode, FY is
actual force which is measured as Vg, . Figure 5 shows
the plant bode plot that depends on the value of the
scheduling parameter #, in the velocity mode. And,
Figure 6 presents bode plot in the force mode.

—r
/1_.}.71‘1.._
“_”T“""—" [0<8, <1] (19)
-1
1 — Forated
1
-1
1_.....151.'...
! -1
]_....En...mmd.

5 Gain Scheduled Controllers

When we design the gain scheduled controller, we take
following issues in consideration. In the velocity loop,
the rise time is within 15ms to the step reference and
minimizes steady state error.

_11_

Figure 5: Plant Varying Range in the Velocity Mode

Figure 6: Plant Varying Range in the Force Mode

In the force controller design, the force follows to the
ramp reference signal, which reaches to the rated force
with 15 ms and zero steady state error. In order to
construct the generalized plant for the H,, controller
design framework, two weighting functions, W(s) for
the sensitivity function and W, (s) for the additive un-
certainty at the input of the plant, are specified after
the several try and error. For the velocity controller,
we use

, 0.0025s + 68.75 5(s+1)
ou(8) = ———eee——— | Wy, (8) = ——rt
Wauls) s +0.005 ) =57
and at the force controller design
.o, 0ds+35 L 25(s+1)
W sn(s) - s +0015 u/a,n,(é) - 5+ 75

Beside these weighting functions, (0.1s 4 0.015)/s is
added in series to the plant in the velocity control.



Also, (50s + 1)/(s + 0.01) is in series to force plant to e L
improve the response performance. When solving Ho
controller design problem with LMI formulation, the Do e T ey
two positive definite matrices, in many cases described s A
as X and Y, also let the function of the scheduling
parameter, such as L —

{
I
Xv<01r) = Xv() + X6, + X11291J2 -+ .)6'7}391,3 :'/l
J

so that minimize the conservatives of the controller (for A e R e e L
the details, see[6, 7]). As the results, the generalized
plant becomes function of the continuous scheduling
parameter and has to solve infinite number of LMIs.
For reducing to finite number of constraints a tech-
nique, that proposed by Azuma et al[8] to construct a
convex hull that covers the model, is introduced. Fig- i

ure 7-(a), (b) arc gain plots of the gain scheduled con- JUUTTTTTTT T
troller for the velocity and force control. Tty \ ]

(b} Force Control

Figure 8: Simulation Results

H =

(b) Force Controller

Figure 7: Gain Plot of Gain Scjeduled Controller

6 Simulation and Test Results

The simulation results, applying the designed velocity ‘ ©
controller to the nonlinear plant model, are shown in
Figure 8-(a) for the 0 to 10 cm/s and 0 to 20 cm/s step L S —
references. These responses satisfy the requirements
quite well. Figure 8-(b) shows force control response.
We obtained good tracking performance in force con-
trol, too. The test results in velocity control is shown
in Figure 9-(a), (b). Pigure 9: Test Results for Veloacity Control

(b) 0 to 20 em/s

_12.._



There is a quite big over shoot in the 10 cm/s response
and observed 9 to 10 ms dead time. In the 0 to 20 cim/s
respouse, to minimize the over shoot, controller out put
is saturated in adequate level. This leads to the slow
response and big differences between simulation results
and experimental results. To examine the cause for the
over shoot, run the velocity simulation again with 3.5
ms dead time at the flow control valve response. The
results from this condition are shown in Figure 10 and
we observe the quite big over shoot, same as the results
from the experiment.
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Figure 10: Simulation Results in Veloacity Control with
Dead Time

Pigure 11: Test Result in the Force Control

On the other hand, as for the pressure control, the
approximately expected result is obtained as Figurell.
In this case, the force control is not as sensitive to the
dead time as the velocity control.

7 Conclusion

In this paper, propose the flow calculation formula
to have continues flow between turbulent and laminar
flow so that compose the linear plant model with the
scheduling parameter. Then, obtained the values of the
system variables by the simulation in order to design

the gain scheduled controller for the velocity and force
control in the eleetro-hydraulic servosystem. The de-
signed controller usefulness is confirmed by simulation.
Tu the force control, we have reasonable results, so far.
However, in velocity control, because of the dead time,
we have the not satisfied response. The design to have
considered the dead time is a subject in the future.
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Abstract

In this paper, we consider the Lyapunov ap-
proach to adaptive identification for systems with
unknown time invariant parameter. We describe
the adaptive identification problem as stability
analysis for linear parameter varying system, and
then discuss the convergence of identification er-
ror and its convergence rate based on parameter
dependent Lyapunov function.

keywords : gain scheduling, adaptive identifi-
cation, parameter dependent Lyapunov function,
linear parameter varying system

1 Introduction

Adaptive identification[l] plays an important
role in adaptive control system, especially in model
reference adaptive control system(MRACS)[4][5],
as an on-line identification technique for systems
with unknown parameter. The objective of the
MRACS is to track the output of the system with
unknown parameter to the output of the reference
model. The MRACS achieves this objective by
combining the adaptive identification with model
reference control that is a technique to track the
output of the known system to the output of the
reference model.

While Morse[5] etc. provide essential results on
the stability of the MRACS, which comprehend
solution to the problem on the asymptotic con-
vergence of the identification error in the adap-
tive identification. These results on the adaptive
identification problem in the conventional adap-

0-7803-7298-0/02/$17.00 © 2002 AACC

tive control theory are based on Lyapunov’s 2nd
method[9]. However, these results require another
discussion[5] to guarantee the asymptotic conver-
gence of the identification error.

Almost all the discussions on the convergence of
the identification error in the conventional adap-
tive control theory are summarized as follows.

1) For adaptive identification system, calculate
the state space representation whose state includes
identification error. Call this state space represen-
tation an error system.

2) Prove the state of the error system is bounded
for all the bounded initial states.

3) Prove the bounded state of the error system
converges to zero.

In the discussion of conventional adaptive con-
trol theory, Lyapunov’s 2nd method is applied in
the step of 2). Namely a quadratic Lyapunov func-
tion defined by a positive definite matrix is in-
troduced for the analysis in that step. For this
quadratic Lyapunov function V, it is shown that
V satisfies the condition below.

V>0, V<O (1)

As is well known, this condition guarantees the
boundedness of the identification error. However,
this condition does not guarantee that the identi-
fication error converges to zero, so the step of 3),
called the “another discussion” in the preceding
paragraph, is required[5].

In this paper we consider the adaptive identifi-
cation problem from a viewpoint that is different
from that of the conventional adaptive control the-
ory and show that the problem can be regarded
as the stability analysis problem for LPV(Linear
Parameter Varying) system treated in modern

_14__



gain scheduling[6]. Then based on this consid-
eration, we introduce parameter dependent Lya-
punov function[7}[8] for the stability analysis. For
this parameter dependent Lyapunov function V,
we show V satisfies the condition below. (Cf. (1))

V>0 V<0

By this approach, we can guarantee that the iden-
tification error converges to zero without the dis-
cussion in the step of 3). In addition we can discuss
convergence rate of identification error.

This paper is organized as follows. In section
2, first we state the description of a system with
unknown parameter and assumptions for the sys-
tem. Then, we formulate the adaptive identifica-
tion problem. In section 3, we discuss the con-
vergence of identification error. First we point out
that the adaptive identification problem can be re-
garded as stability analysis for LPV system. Then
we show that the identification error converges to
zero exponentially under some condition based on
parameter dependent Lyapunov function.

Notation: ||z is the Euclidean norm of a vector
z. P’ is the transpose of a matrix P. P > (<)0 de-
notes a symmetric matrix P is positive(negative)
definite and P > (<)0 denotes a symmetric ma-
trix P is positive(negative) semi-definite. £(P)
denotes the following domain defined by a matrix
P>0.

E(P) ={¢| {'P¢ < 1}

2 Adaptive Identification Problem

2.1 System Description
Consider a linear time invariant system $(6) of
the state space form

%:c = Az + 0A;z + Bw(t), z(0)=0, (2)

where z € R" and w(t) € R™ denote the state and
the input of the system 3(6), respectively. 8 is a
time invariant unknown parameter that satisfies
the condition below.

6 € [0,1].

We assume that the system () satisfies the
following four conditions.

A-1 : The state z of the system X(6) is
measurable.

A-2 : The input w(t) of the system X(6) is
restricted in the bounded domain D € R™ as
follows.

w(t) € D, Vit e [0,00). (3)
A-3 : There exists a matrix P > 0 such that
AP+ PAy <0. (4)

A-4 : The state reachable set[3] of the system
¥(6) is bounded for all § € [0, 1].

Remark The state reachable set in the
condition A-4 denotes the reachable domain of
the state z in the state space by the inputs w(z)
that satisfies the condition A-2. In the case
where D is an ellipsoidal domain (W) defined
by a matrix W > 0, the following condition is
known as a sufficient condition for that the
system £(0) satisfies the condition A-4[2].

There exist a matrix ¢ > 0 and a real number
B > 0 such that

( [Ao +0A4i)Q ) OB
+Q[A4p + 64:] + Q <0,
B'Q —BW

Vo € [0,1). (5)

See appendix for detail of the state reachable set.

Remark If the following condition is assumed
instead of the condition A-3,
A-3’ : There exists a matrix P > Osuch that

(Ag +0A1) P+ P(Ag+64:1) <0, Vte(0,1],

then the condition A-4 holds automatically.

2.2 Problem Formulation

Framework of the adaptive identification in this
paper is shown in Fig.1. In Fig.1, 8 is a time in-
variant unknown parameter, K (z,w) is a param-
eter identification law, § is a parameter estimate,
and eg = 6 — 6 is an identification error. We de-
scribe the adaptive identification problem in this
paper as follows.

Problem Find the parameter identification
law K (z,w) that achieves

lim eg =0.
t—ro0
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@ : unknown
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L 6 + Y e

K(z,w)

=
>

Figure 1: Framework for Adaptive Identification

3 Convergence of Parameter Estimate

3.1 Parameter Identification Law

We consider the parameter identification law
K(z,w) defined by the two differential equations
below,

%:ﬁ = AoZ + 0A1z(t) + Bw(t), #(0)=0, (6)

26= a0 Pa ~=(1), 80 € [0,1]
(7)

where o > 0 is a real number, and P > 0 is a
matrix that satisfies the condition A-3.

Remark  The parameter identification law
K (z,w) given by (6) and (7) is essentially
equivalent to that of [4][5].

3.2 Equivalent Representation

Then we consider the equivalent representation
of the block diagram in Fig.1. From (2), (6), and
(7), the state equations of the block diagram in
Fig.1 are given as follows.

d

pred =(Ap + A1)z + Bw(t), (8)
d
& oo =Aoee + (Al o)
d 1 ;
0=~ E{Alm] Pe,,. (10)

Where e, is defined as follows,

€, =T — T,

and we should note that the following equation
holds since the unknown parameter 8 is time in-
variant.

4, _dg
dt
Then we describe (9) and (10) as follows.

dle] _ | Ao Gz(®)| |& (11)
dt |es F(z(¢)) 0 egl”
We call this differential equation a system I'(z).
In (11), G(z) and F(z) are given as follows.
G(z) =A;z,

Flz) = - %[Alm]’P - _Lgmp

1
o
Since the equation (8) is the state equation of the

system X(6), the block diagram in Fig.1 can be
represented by the block diagram in Fig.2.

€ : unknown

1
L ee) £

['(z)

€p

Figure 2: Equivalent Representation

Remark By the condition A-1 and the block
diagram of Fig.2, the state z is measurable signal
determined by the unknown parameter ¢, the
initial state z(0) and the input w(¢). In addition,
by the condition A-4, the state z has a common
peak value for all w(t) that satisfies the condition
A-2.

Remark  Since the signal z in Fig.2 is
measurable and bounded, it is possible to regard
the system I'(z) as LPV (Linear Parameter
Varying) system[6] with scheduling parameter z.

Remark  The block diagram in Fig.2 is
nonlinear system that consists of two linear
systems, linear time-invariant system 3(6) and
the LPV system I'(z).
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3.3 Analysis of Convergence

Then we discuss the convergence of the param-
eter estimate in the framework of Fig.2. First we
note that the role of the system £(6) in Fig.2 is
only a generator of the scheduling parameter z for
the LPV system I'(z). Then we note that the iden-
tification error ey is a part of the state of the LPV
system I'(z). These suggest that we don’t need
to analyze the nonlinear system shown in Fig.2 to
discuss the adaptive identification problem in this
paper, it is enough to discuss the asymptotic sta-
bility of the LPV system [’(z) in Fig.2. In this
case, we can apply the technique of modern gain
scheduling, especially the analysis technique based
on parameter dependent Lyapunov function{7]8]
since the system I'(z) is LPV system.

Theorem 1  Suppose that the state z(t) of the
system Y.(6) satisfies the following condition for
some real number v > 0.

A1z ()| > v, V€ [0,00). (12)
Then there exist real numbers K > 0 and ¢ > 0
such that the parameter identification law
K(z,w) defined by (6) and (7) achieves the
condition below.

|6(t) — 6] < Ke . (13)

Remark The condition (12) corresponds to
the PE (persistently exciting) condition in the
adaptive control theory.

Remark  Theorem 1 guarantees that the error
ep of identification converges to zero
exponentially. While the results of adaptive
control theory[4][5] do not mention the
convergence rate.

Proof
Step 1: For e; € R™, eg € R, and z(t) € R", we
define a function V (e, e, z(¢)) as follows.

|

The definition of the function P;(z) will be given
in the next step. Then we define the function

Py (z(t))

€x

] [P{(fm)

€6

=
€y

V(ez, €9, z(t))

V (eq, eg, z(t)) for the function V(es, eq, z(t)) as
follows[9].

ov. 8V
Bez 669

¥ easenalt) = [
Ay Gla®)] [e] , OVda
X [F(’I‘(f)) 0 eg + Oz dt (t)
Next we define the functions Li{z), Lo(z,z), and
L3(z) for z € R™ and & € R" as follows.

Li(z) = AyP + PAg + F'(z)P|(z) + Pi{z)F(x)
Ly(z, &) = F'(z)a + AyPi(z) + PG(z)
9P
Z Bau;
L3(x) = G'(z) Pi(z) + P{(z)G(x).

Then the function V{es, e, z(t)) is represented
by Li(z), La(z, %), and Lg(z) as follows.
V(eq, e, z(t)) = {

:
e Iz

L1 (z(t))

Lo (x(t), £(t))
Step 2: For a real number § > 0, we define the
function P;(z) as follows.

Py(z) = —=6G(z) = —0A;r.

Where 4 is a design parameter. For this function
Pi(z), Li(z), Lo(z, %), and Lz(z) is computed as
follows.

—§ [F'(z)G'(z) - G(z)F(z)]
Ly(z,4) = F'(z)a + PG(z) — § [AyG(z) + G(2)]
Li(z) = —26G'(z)G(x).
Since F(z) is given by

€z
€g

( (1), £(t))
Ly(z(1))

F(z) —éG'(x)P,

Ly(z, %) is computed as follows.
Ly(z, &) = —6 [A)G(z) + G(2)] .

Step 3: We define Ly(z), Ly(z, %), and Ls(z) for
Ly(z), Lo(z, %), and L3(z) as follows.

Li(z)  La(e,@)] _ [T 0
{Lé(w &) Lg(m)} [o‘ 1/\/5]
<) B ] a9
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Er(z), Lo(z, %), and L3(z) is computed as
follows.
Li(z) = AQP + P4,
—§ [F(2)G () ~ G(o) F(z)]
Ly(z,2) = =V [A4G(z) + G(2)]
Ls(z) = —2G"(z)G(z).
At this point we note that the following two

inequalities are equivalent conditions since the
design parameter ¢ is a positive real number.

i, G4 <
[ )

Step 4: By the condition A-3 for the system
¥:(#), there exists a matrix P > 0 such that

A{)P + PAy < 0.

While the peak values of the system ¥(6)’s state
z(t) and its derivative &(t) are bounded by the
condition A-4 for the %(8). In addition, from the
condition (12) of the theorem 1, the state z(t) of
the system X(6) satisfies the following condition
for some real number vy > 0.

G'(z)G(z) =z’ A} A1z > ~°.

Therefore if we chose the design parameter § > 0
sufficiently small, then the next inequality holds.

[ P Pl(l‘(t)):' — [ P —(SAl.’lI(t):I
Pl(a(t) o Az a
>0. (15)

Similarly next inequality holds for sufficiently
small § > 0.

[h Ly(a(t)) Ilzgx(t),dr(t))} _
Ly(z(t),2(t)  La(z(#))
ALP + P4y
—8[F'(z)G'(z) ~V3[A4G(2) + G(2)]
—G(z)F(z)]
—V3[G'(z) Ao + G'(2)] —2G'(2)G ()
< 0. (16)

Thus the following condition holds for all
realizable state z(t) of the system X(6) that
satisfies (12).

V{ez, e, z(t)) >0, V{es, ep, z(t)) < 0.

Where inequality sign denotes the function is
positive or negative definite[9]. Since the system
['(z) is linear and its initial state is bounded, we
can conclude that there exist real numbers K >0
and p > 0 such that the state of the system I'(z)
satisfies the condition below[9].

]

< Ke™#,

Q.E.D.

Remark In the proof of theorem 1, the
boundedness of the system X(#)’s state reachable
set plays an essential role. By this property, (15)
and (16) hold for sufficiently small 6 > 0. In the
case where the state reachable set of the system
%(6) is not bounded, for instance the input w(t)
of the system X(8) is not restricted in the
bounded domain, it is impossible to choose such

d.

Remark The typical Lyapunov function V in
the conventional adaptive control theory is given
as follows.

' -
ezl [P 0] |ex

v =[] [0 o] ]

For this V, function V is computed as follows.

, .
. el [ALP+ PAy 0Of leg
Vies,eq) = Le} [ 0 0 0 0 [60] .

Clearly, V and V satisfies the conditions below.
Vieg,eq) >0, V(es ) <0,

The boundedness of the identification error ey
derives from this condition but the convergence
to zero is not guaranteed[9].

4 Conclusion

In this paper, we have considered the con-
vergence of parameter estimate in the adaptive
identification from the viewpoint of modern gain
scheduling. The adaptive identification law used
in this paper was essentially equivalent to that of
conventional adaptive control theory. However, it
guaranteed not only that the identification error
converges to zero but also the convergence rate.

__18._



References

[1] K.J.Astrom, B.Wittenmark : Adaptive Con-
trol 2nd edition, Addison-Wesley (1994)

[2] T.Azuma, R.Watanabe, K.Uchida : Semi-
global L? Gain Control of Nonlinear Systems - An
Approach via Linear Systems with Self-scheduling
Parameters -, 1998 American Control Conference,
781/785 (1998)

[3] W.J.Grantham : Estimating Controllability
Boundaries for Uncertain Systems, Lecture Notes
on Biomathematics, Vol.40, 151/162, Springer-
Verlag (1980)

[4] R.V.Monopoli : Model Reference Adaptive
Control with an Augmented Error Signal, IEEE
Transactions on Automatic Control, 19-5, 474/484
(1974)

[5] A.S.Morse : Global Stability of Parameter-
Adaptive Control Systems, IEEE Transactions on
Automatic Control, 25-3, 433/439 (1980)

[6] J.S.Shamma, M.Athans : Gain Scheduling :
Potential, Hazards, and Possible Remedies, IEEE
Control Systems Magazine, 12, 101/107(1992)

[7] R.Watanabe, K.Uchida, M.Fujita,
E.Shimemura : Z? Gain and H* Control of
Linear Systems with Scheduling Parameter, Proc.
of 33rd IEEE Conference on Decision and Control,
1412/1414 (1994)

[8] F.Wu, X.H.Yang, A.Packard : Induced L?
Norm Control for LPV Systems with Bounded Pa-
rameter Variation Rates, Proc. of American Con-
trol Conference, 2379/2384 (1995)

[9] A.Halanay : Differential Equations : Stabil-
ity, Oscillation, Time Lags, Academic Press, New
York & London {1966)

Appendix: State Reachable Set

Consider a linear system with unknown time-
varying parameter ¢ of the state space form

%m = A(0(t))z + Bw(t), =(0) =0,

where z € R" and w(t) € R™ denote a state and
an input, respectively. We call this system ¥(6).
We assume that the time varying parameter 8 sat-
isfies the condition below.

8(t) € [0,1], Vt € [0,00).

We also assume that the input w(t) is restricted
in the bounded domain D € R™ as follows.

w(t) € D, Vi€ |[0,00). 17

Definition[3] ¢ € R™ is said to be reachable
from z(0) if there exists w(t) that satisfies the
condition (17) and a finite time T € [0, 00) such
that z(T) = £.

Definition[3]  The state reachable set
Ro(E4(0)) of the system 34(6) is defined as
follows.

Ra(2:(6))
= {¢ € R™ : ¢ is state reachable from z(0)}.

In the case where the set D is given by D = £(W)
for some matrix W > 0, the next theorem is known
as a result for the evaluation of the state reachable
set.

Theorem 2 [2]  Suppose that there exist a
matrix @ > 0 and a real number 8 > 0 such that

A(0M)Q+ QA0 +4Q QB | _ 4
BIQ _BW —
g* € 0,1].

Then the state reachable set R, (2,(8)) of the
system X.;(@) satisfies the condition below.

R(24(0)) C E(Q), Vo€ O.
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Abstract

This paper deals with a generalized H,, control atten-
uating initial-state uncertainties. An H,, control prob-
lem, which treats a mixed attenuation of disturbance
and initial-state uncertainty for linear time-invariant
systems in the infinite-horizon case, is examined. The
mixed attenuation supplies H, controls with good tran-
sients and assures H,, controls of robustness against
initial-state uncertainty. We derive a necessary and suf-
ficient condition of the generalized mixed attenuation
problem. Furthermore we apply this proposed method
to a magnetic suspension system, and evaluate attenu-
ation property of the proposed generalized H,, control
approach.

keywords: H,., Control, DIA Control, Initial-State
Uncertainties, Magnetic Suspension Systems

1 Introduction

H, control for linear time-invariant systems attenuates
the effect of disturbances on controlled outputs and is
originally defined under the assumption that the initial
states of the system are zero. Initial states are often
uncertain and might be zero or non-zero. If the ini-
tial states are non-zero, the system adopting an He,
control will present some transients as the effect of the
non-zero initial states, to which the H,, control is not
intrinsically responsible. It is expected that the mixed
attenuation of disturbance and initial-state uncertainty
in controlled outputs supplies H., controls with some
good transients and assures He, controls of robust-

* R. Smith was supported by NSF under grant ECS-9978562.

0-7803-7298-0/02/$17.00 © 2002 AACC

ness against initial-state uncertainty. Recently, hy-
brid/switching control are actively studied, this method
might be one of the reasonable approach to implement
them. In the finite-horizon case, a generalized type of
H_, control problem which formulated and solved by
Uchida and Fujita[l] and Khargonekar et al.[2]. This
problem was extended to the infinite-horizon case, and
a result was derived by Uchida et al.[3](see also Khar-
gonekar et al.[2]). The problem discussed in [3] was,
however, limited to time-invariant systems satisfying
the orthogonality assumptions [4, 5]. This is an im-
mensely serious problem as a matter of fact, if we apply
this problem setup to the real physical control system
design. The previous mixed attenuation of disturbance
and initial-state uncertainty in the infinite-horizon case
is not sufficient[6] in practice, because time-invariant
systems satisfying the orthogonality assumptions re-
strict the degrees of freedom of the control system de-
sign, and have difficulties in regulating control inputs(6).

In this paper, we have formulated an infinite horizon
disturbance and initial state uncertainty attenuation
control problem without the orthogonality assumptions.
The solution based on [4] is given as a natural but com-
plicated extension of the previous results in [3, 6]. A
necessary and sufficient condition for a solution to ex-
ist, together with an explicit formula of the solution,
is derived. Based on the condition, a robustness prop-
erty of He, controls against initial-state uncertainty is
discussed. Moreover, we apply the proposed approach
to a magnetic suspension system, and evaluate the ef-
fectiveness of the generalized Ho control attenuating
initial state uncertainties comparing with the previous
results[6].
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2 Problem Statement

Consider the linear time-invariant system which is de-
fined on the time interval [0, c0) and described by

i

Az + Byw + Bau,
z = Ciz+ Dpu
Cox + Dayw (1)

z (O) = Tg

Il

where z € R™ is the state and zo is the initial state;
u € R is the control input; y € R™ is the observed
output; z € RY is the controlled output; w € RP is the
disturbance. Without loss of generality, we regard zg
as the initial-state uncertainty, and zo = 0 as a known
initial-state case. The disturbance w(t) is a square inte-
grable function defined on [0, 00). Note that this system
does not have the orthogonality assumptions[5]. A, By,
B,, Cy, Cy, D13 and Doy are constant matrices of ap-
propriate dimensions and satisfies that

o (A, By) is controllable and (A4, C1) is observable
e (A, By) is controllable and (4, Cs) is observable
e DL,Dy5, € R™*" is nonsingular

e Dy; DI, € R™*™ is nonsingular

For system (1), every admissible control u(t) is given by
a linear time-invariant system of the form

J(+ Ky
G( + Hy,

U

¢ ¢(0)=0 @)

which makes the closed-loop system given by (1) and
(2) internally stable, where ((t) is the state of the con-
troller of a finite dimension; J, K, G and H are constant
matrices of appropriate dimensions.

i

For the system and the class of admissible controls de-
scribed above, consider a mixed-attenuation problem
stated as below.

Problem 1 DIA Control Problem

Find an admissible control attenuating disturbances and
initial state uncertainties in the way that, for given N >
0, z satisfies

1213 < llwl3 + 25 N~ o 3)

for all w € L*[0,00) and all zo € R", s.t., (w,z0) # 0.

We call such an admissible control the Disturbance and
Initial state uncertainty Attenuation (DIA) control.
The weighting matrix N on zo is a measure of relative
importance of the initial-state uncertainty attenuation
to the disturbance attenuation. A larger choice of N
in the sense of matrix inequality order means finding
an admissible control which attenuates the initial-state
uncertainty more. In the special case when the initial
state is known, that is o = 0, the problem is reduced
to finding an admissible control which assures that

12115 < llwli3 (4)

for all w € L?[0,00). Then, we call the admissible con-
trol the Ho, control as usual.

3 Mixed attenuation of disturbance and
initial-state uncertainty

From the definition, a DIA control should be an H
control when the initial state is known(zg = 0). This
implies that, in order to solve the DIA control problem,
we require the so-called Riccati equation conditions:

(A1) There exists a solution M > 0 to the Riccati
equation

M(A — Bo(DT,D12) ' DT, Ch)

+(A = By(DEDy) ' DLC)TM
~M(By(DL,Dy5) ' BT — BB )M

+CTCy — CT D12(DT, D) *DT,CL =0 (5)

such that

A — By(Df,D12) ' DL C
~Bo(DT,D1,) BT M + BB M (6)

is stable.
(A2) There exists a solution P > 0 to the Riccati
equation

(A - B,Dj,(Dx1D3;) ' C2)P

+P(A — B, DL (D DE) 1 C)T
—P(CT (D DR)2Cy — CTC1)P

+B,BT — B DL (D1 DL) D1 Bf =0 (7)

such that

A— B, DY (Dyy DI Co
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—PCT (D D3)Cy + PCT C4 (8)

is stable.
(A3) p(PM) <1,

where p(X) denotes the spectral radius of matrix X,
and p (X) = max|A; (X)[.

Then we can obtain the following result.

Lemma 1 Suppose that the conditions (A1), (A2) and
(A8) are satisfied, then the central control satisfies the
following inequality.

(9)

for allw € L2[0,00), and all zo € R", s.t., (w,m0) # 0,
where the central control is given by

2113 < llwl3 + 2 P~ a0

—(DL,Dy5)"YBITM + DL,Ci)(I - PM)™¢

u o=
¢ AC + Byu + PCE(C1¢ + Diau)
+(PCT + B1D%)(D21D3) " (y = C2()
¢ = 0 (10)

and S := M(I - PM)™L.

Proof:  First note that § = M(I — PM)~! satisfies
the Riccati equation

S(A + PCTCy — (By + PCT Dy12)(D13D12) "' DL, C1)
+(A+ PCTCy
— (B2 + PCT D12)(DT, D12) ' D, C1)" S
—S((B2 -+ PC?Dlg)(DﬂDlz)—l(Bg + PClTDlg)T
— (PCT + B1D3,)(D21D3,) 7} (PCY + BiDJ)T)S

+CTCy — CED12(DT,D12) P DL,Cr =0 (11)
Consider the functional V (¢),
V() =¢TS¢+ (@ - QT P (e = () (12)

then, differentiating both sides with respect to ¢, and
inserting conditions (A1)-(A3) into the right hand side,
we have

V() —ll21? + |lwl®

+|(DT,D12)'*u + (Df, D1z)™/?
x (BT M + DT,C)(I - PM)™'¢|

~|lw — DL (D21 DE)"H(CoP + Dy BT)S¢
- (Bf - DL (DxDL) Y (CoP + Dy BY))

x P~ (z - Q|17 (13)

oo
oo

integrating both sides with respect to t over the interval
[0, 00), we obtain the left hand side as

V (00) = V (0) = —a P g
implying the control input u(t) as (10), and

~zd P zo = —||z]|} + |lwlf3
~|lw — DT, (D31 L)~ (CoP + Da1 B )S¢
— (BT — DL, (D1 DE) ™ (C2P + D BY))

x P~z = ¢)II3 (14)
then we finally obtain as
2113 < flwllf + 25 P~ 2o
n

This Lemma is concerned with the condition for P, not
for N. This conclusion does not solve the infinite hori-
zon DIA control problem, because the inequality (9)
does not generally imply the inequality (3). Next, the
following condition is assumed.

(Ad) N<pP, (N7'>P).

If the condition (A4) holds, the inequality (3) follows

from the inequality (9), and the central control (10) is
a DIA control.

1213 < {lwll3 + 25 P *@0 < llwllf +2g N7 zo  (15)

Since N is regarded as a measure of initial state uncer-
tainties, e.g., a variance matrix, we can state that, if
the initial state uncertainty is sufficiently small (so that
(A4) holds), the central control has robustness against
the initial state uncertainty. In view of the discussion
above, the condition (A4) seems necessary for the cen~
tral control to be a DIA control. We will show that
this is not true by presenting a necessary and sufficient
condition, which is the main result of this paper. In
order to state the result, let us introduce the following
condition:

(A5) Q+ N1 -P1>0,
where Q is the maximal solution of the Riccati equation

Q(A — B1DL (Ds1 DI)71C
+ (B1BT — By DI, (D21 D3)* Dy BT)P7Y)
+(A - B, DL (Dx DE)71C,
-+ (BlB’ir - Bngl(D21D£)-1D21BT>P—1)TQ



~Q(BT - DL, (D3, DL,)"(Co P + Doy BT)L)T
x (BT — DI, (Dyy DL) "1 (CoP + D21 BT )L)Q
=0 (16)

with L := (I — PM)™".

Theorem 1 Suppose that the conditions (A1), (A2),
and (A3) are satisfied. The central control (10) is a DIA
control if and only if the condition (A5) is sotisfied.

Remark 1 The Riccati equation (16) has the mazimal
solution @ > 0 for any P~'. such that

A — B DL (Dyy DI)Y71C,
+(B; BT — By DL (Dy; DL) Dy BT ) P71
~(BY - DL, (D21 DE) ™Y (CoP + Doy BY)L)T
(B? - D:,{l (Dle;’;)_1 (CoP + Dy B)L)Q (17)

is stable, since (A, B;) is stabilizable. Hence, (A4) is a
sufficient condition for the condition (A5) to be satis-

fied.

4 Proof of Theorem 1

We prove Lemma 2 and Lemma 3. Then Theorem 1
follows. Lemma 2 and Lemma 3 require the following
condition:

(A6) : For all (w) € L?[0,00) and all zp € R, s.t.,
(w,zo) £ 0, the inequality

llw —wol2 +2f (NT' =P )z >0 (18)
holds, where wg is given by

Wy = Dg(DZngl)—l(CzP-{‘“ Dz]Bip)SC
+(BY — DI, (D21 D3;) 7 (CoP + D BY))

xP Yz - () (19)
{ = (A+PCTC, ~ (By + PCT D1)(D{,D12) ™"
x(BfM + DT,Cy)L

+(PCT + B, DL) (D1 DE) !

x (CoP + D21 BY)S)¢
+(PC§+B1D§1)(D21D’{1)*1D21

x (w — wp) (20)

Lemma 2 Suppose that the conditions (A1), (A2), and
(A8) are satisfied. The central control (10) is a DIA
control if and only if the condition (A6) is satisfied.

Proof: Consider the functional V(t) = (TS¢ +
(z - ()T P~1 (z — ¢), then, differentiating both sides
with respect to t, and inserting (1) and (10) into the
right hand side, and integrating both sides with respect
to t over the interval [0, 00), we obtain

~ad P lag = —|2[l3 + [lwl} — llw —wol}  (21)
Insert (21) into (18), then, we have
2113 < llwl]l3 + 25 N~ zo. (22)
Converse, insert (21) into (3), then, we have
hw —wol2 +28 (N1 =P 1)z >0  (23)

Lemma 3 Suppose that the conditions (A1), (A2), and
(A8) are satisfied. The condition (A6) is equivalent to
the condition (A5)

Proof: Consider the functional U(t) := fTQf, where
f(t) == z(t) — L(t) is given by

f® = (A+Bi(B - DL(DaDF)™
x(CoP + Doy BD)P™1) f
-+ (31 - L(PC; + Bngl)(Dlegl)—lD21)
x(w —wp), f(0)=mo. (24)

Differentiating both sides with respect to ¢ and com-
pleting the square argument as

U(t) = ”’U) - Wop 4 (Bip - D%(DQID;)—]
x (CoP + Dy BT L)QFII?
~{Jw = wol|? (25)

then, integrating both sides with respect to ¢ over the
interval [0, c0), we finally obtain

lw — wo + (B — D% (DnD3;) ™

x(CoP + D21 BT )L)QFII3
—Jlw — woll2 (26)

—z3 Qzo =

Inserting (26) into the condition (A6), then we have

llw —wo + (B — DL (DyxDI)!
x (CoP + D1 BY)L)QfII3
+2f (Q+N1=P )z >0 (27)

The 1st term in the left hand side are positive, hence

Q+N1-P1t>0



5 Application to Magnetic Suspension Systems

The state-space representation of the magnetic suspen-
sion system is given as follows[6, 7].

Agzg + Byug + Dyug
Cyxg + wo

il

Ty

Yy (28)

il

where ¢, := [z & i]”, ug is a control input, vy and wo
are exogenous disturbance inputs, z(t) is a gap between
the electromagnet and a suspended iron ball, and i(t)
is a current. First, let us consider the disturbances vg
and wg. Since vp mainly acts on the plant in a low
frequency, and wg shows an uncertainty caused via un-
modeled dynamics. Hence let v and wg be of the form

vo = W, (s)ws (29)
W, = &C,(s]—Ay) ' By, ®=[1 1]F
Wy = Www1 (30)

where W,, is a weighting scalar. Next we consider the
variables which we want to regulate. In this study, the
gap and the corresponding velocity are chosen. Then,
as the error vector, let us define as follows;

1 0 0
zg = Fuzg, Fy= [ 01 0 ] (31)
21 = @Zg, 0= diag [ 91 92 ] y %2 = pU (32)

where © is a weighting matrix on the regulated vari-
ables z,, and p is an weighting scalar for the reg-
ulation of the control input u(:= wu,). Finally, let

z:=[zT 2T]", where z,, denotes the state of W, (s),
and w = [w? wl]7, z = [2] 2T'17, then we can

construct the generalized plant as in (33). Note that this
plant does not have the orthogonality assumptions[5].

= Az + Biw+ Bou

== Cl.’IJ+D12’U,
Yy = Cox + Doyw (33)
[ 4, DyCu [0 DyD, [ B,
A=170 41B=lo B, PPT| 0
Fg 0O
CI:[GOQ O:i’Dm:[ng’

CQ“—‘[CQ 0],D21=[Ww O]

Now our control problem setup is: find an admissible
controller K (s) that attenuates disturbances and initial
state uncertainties to achieve DIA condition in (3).

After some control design iteration, the design parame-
ters; W,(s), W, © and p are chosen appropriately, and
a direct calculations yield the Ho, DIA controller K (s).
The frequency response of the controller K (s) is shown
in Fig.1 by a solid line. And the maximum value of the
weighting matrix N is N = 2.7735 x 1072 x I. We de-
signed the standard He controller denoted as Koo (7]
via the MATLAB command hinfsyn.m. The frequency
response of the controller Ko, and the previous DIA
controllers Kpra,(s) and Kpra,(s)[3, 6] are shown in
Fig.1 by a dotted line, a dashed line and a dash-dot line,
respectively. Comparing these four controllers, K(s)
has a high gain at the low frequency and a good roll-off
property at the high frequency, and the comprehensive
frequency response looks like a modified PID controller.
In the previous DIA design framework, it was difficult
to let controllers Kpra, (s) and Kpra,(s)[3, 6] get hold
an integral property.

We have conducted simulations to evaluate properties
of K(s). To ascertain transient responses, we input a
step reference signal to the system with a nonzero initial
state zo. An initial response for zo = [0.0 0.0 0.1]7
is shown in Fig.2, and a time response for a step ref-
erence signal(0.0jmm] — 0.1[mm)]) is shown in Fig.3,
where the signal is added to the system around 1.0[s].
The Kpra, and Kpra, show relatively better perfor-
mance than K for the initial state uncertainty in Fig.2,
K has, however, a better transient performance than
K. Since our concerns are not only in the attenu-
ation of the initial state uncertainty, but also in the
basic control performance of the controllers, we then
wonder whether the controller has a good performance
for the step reference signal. Controller K shows better
and quicker transient response than Ke. Kpra, and
Kpra, show pretty quick responses but bigger over-
shoots around 1.0[s] because of their high gain at the
high frequency in Fig.1, however we must give careful
attention for steady-state error with those controllers.
Kpra, and Kpyra, leave steady-state errors because of
their low gain at the low frequency in Fig.1. In the
previous problem setup, the degrees of freedom in the
design parameters are limited, so that it is difficult to
shape a good controller frequency response[6]. Consid-
ering all the factors, we reached the conclusion that K
has a pretty good performance for all control require-
ments, and has a potential ability to be improved by
using the degrees of freedom in the design parameters.



6 Conclusion 10 ; . . .

In this paper, we formulated and solved a generalized
H, control problem which considers a mixed attenua-
tion of disturbance and initial-state uncertainty in the
infinite-horizon case, without the orthogonality assump-
tions. The solution was given as a natural but com-
plicated extension of the previous results in [3, 6]. A
necessary and sufficient condition for a solution of the
generalized H,, mixed attenuation problem to exist, to-
gether with an explicit formula of the solution, was de-
rived. Based on the condition, a robustness property of

H,, controls against initial-state uncertainty was dis- 10 ;
10 10 10 10 10 10 10

cussed. FREQUENCY [rad/s]

MAGNITUDE

Moreover, we applied an infinite horizon disturbance Figure 1: Frequency Response of the controller K with
and initial state uncertainty attenuation control prob- Kpia, , Kpra, and Keo

lem without the orthogonality assumptions to the mag- 0.04 ! . T T T ; r
netic suspension system. Comparing the proposed con- ' ' : ' : : :
troller with the standard H, controller and the other
controllers based on previous results[6], we showed the
property and effectiveness of the proposed mixed atten-
uation controller.
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Abstract: In the hydraulic system, it is often that switch the control mode over
from one to the other, such as from position to velocity or from velocity to force.
In this paper, propose a flow calculation formula for the flow control valve in order to
have an LPV system representation. Then, design gain scheduled controllers for the
velocity and the force individually. During a switching mode, a control is generated by
adding two controller outputs with appropriate ratios. Usefulness of this approach is
shown by the experiment results, which are obtained from Injection molding machine

application.

Keywords: Injection molding, Electro-hydraulic systems, LPV System, H-infinity,

Switching algorithms

1. INTRODUCTION

Hydraulic control system is used in various in-
dustrial applications for the power in size, high
durability. In most cases, the electro-hydraulic
servosystem is applied to obtain the high repro-
ducibility and the fine dynamic performance of the
position, velocity or force control in the hydraulic
system. The hydraulic plant has many nonlinear
factors and components. For example, asymmetric
cylinder, mechanical friction, deadband, complex
flowpassage relates to hydraulic dynamics, the
effective control flow which depends on load condi-
tion and hysteresis. In addition to the above, plant
parameters are not constant, such as the bulk
modulus depends on the containing air quantity
or viscosity varies according to the temperature.
Also, it is often in indistrial hydraulic applications
that a control mode swicthes over from one to the
other sequentially, such as from the position to
pressure or from the velocity to force. These fac-
tors make a controller design complicated. How-

ever, because of the electro-hydraulic servosys-
tem capability, a number of studies have been
done in designing the controller. Approaches re-
ported recently are adaptive control(Bobrow and
Lum, 1996),(Plummer and Vaughan, 1996)and
sliding mode control(Ha et al., 1995). There, con-
troller structure becomes complicated and it is
not easy to realize the smooth operation and the
fast response. The robust control design by Heo
framework (Tunay et al., 2001) is also applied.
The controller design approach, which is based
on the linear model, make the closed-loop system
stable locally. When the load condition changes
significantly, there is a limitation in appling this
approch. Here, we examine gain scheduling con-
trol of the electro-hydraulic servosystem for the
velocity and force control in order to guarantee
stability and performance under the significant
plant parameter variation.

It is important that we take a varying load con-
dition and a complex flow characteristic of the
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Fig. 2. Test equipment

control valve around the null in consideration to
construct a plant model. One of the reasons to
make the situation difficult is the discontinuity
of the control flow calculation formula around
the null. In this paper, we propose a formula,
which interpolates the turbulent and the laminar
flow in the flow control valve so that the linear
model becomes continuous at the boundary for
the precise force control. Then, we compose the
linear plant model as an LPV (linear parame-
ter varying) system with a scheduling parameter
which depends on load force. Based on LPV plant
models, we design gain scheduling controllers for
the velocity and force. One of the contributions of
this paper is that present the way to design the
gain scheduled controller of the electro-hydraulic
servosystem. The other contribution is that we
study switching behavior from velocity to force
control mode with gain scheduled controllers ap-
plying to the Injection molding machine. Here, we
attempt to add up the outputs from the velocity
and the force controller according to the weighting
coefficient which is determined by the ratio of
actual force and the force reference value.

2. INJECTION MOLDING PROCESS

In the injection molding process, there is an in-
jection velocity control and a holding pressure
control mode. The velocity profile is generated
with respect to the mold shape so that the velocity
between melt plastic and mold surface becomes
constant. The force control of the holding pressure
mode makes the plastic stress uniform in order
to minimize the deformation of the product. The
electro-hydraulic servosystem is adapted to both
of the velocity and force control for the high
power, fast response and fine reproducibity. The

3
€ Is]

Fig. 3. Velocity behavior (Case 1)

g
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Fig. 4. Force behavior (Case 1)
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Fig. 5. Velocity behavior (Case 2)
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Fig. 6. Force behavior (Case 2)

appearance of the Injection molding machine is
shown in Figure 1 and the structure scheme is
shown in Figure 2. Main components are a mold,
heaters, a screw, a hydraulic injection cylinder,
a flow control valve and transducers for the ve-
locity and force. The purpose to design the gain
scheduled controller here, is to have stable and
good performance under significant palnt param-
eter variation, caused by the load force change.
Also, the switching behavior from velocity to force
is important. To make it smooth, we generate
a control by adding up two controller cutputs,
during the transition from velocity to force con-
trol. Figures 3,4 and figures 5,6 show the typical
behaviors, which we see often, when switch the
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controlled variable from velocity to force without
any measures to make the transition smooth. In
figures 3,4, switching occurs at 7.5 cm/s velocity.
Figure 3 shows a rapid velocity change and an
revrse direction velocity at 0.4 sec. This means
that the injection ram moves to backward. This
phenomenon should be avoided in the process. In
Figure 4, there is a pressure peak at the just before
switching happens. In figures 5, 6, switching takes
place at 15 cm/s velocity. In this case, the reverse
velocity behavior and pressure peak are small, but
still exist.

3. FLOW CALCULATION FORMULAS

In the flow control valve, which has a sleeve
and spool, there are two typical flow conditions,
called the turbulent flow at the metering orifice
opening and laminar flow in the clearance between
gleeve and spool. Now, think about the flow at
the metering orifice A out of four orifices in
Figure 7, as an example. There are commonly
used flow calculation formulas (1), (3), with lap
I, and clearance c,, for each conditions. However,
these two equations are not continuous at the
boundary. Hence, adopt equation (2) in order to
interpolate flow and derivation of the turbulent
and the laminar conditions.

Four Meetering Orifices

P,A BP CDP,
WA ML
e === [
— 2 =
— | wleeln =
\ k
P =P 1 j\/\[
A |
—~ my ., Yy ___U
— |4 b
— OGN0

Fig. 7. Configuration of the plant

Then, continuous flow in whole operating range,
is given as follows

Qint = Kt\/(ms —1a)? + cZ\/Ps —Py . lg <35 (1)
o (_3.)3 (Ktcr>4 (zs — la)®
qQ2ini = K{ '_‘4' - "P‘—'_s — P 2’

+Ktcr\/ P~ Py ... la + Zsa S zs < la (2)

P; - P
—(zs —la)

here, Zsa = —4Cr+/Ps— Pof(3K1K})

According to these equations (1),(2) and (3),
the flow from control valve highly depends on
load pressure (or force) and is nonlinear. Because
of such a characteristics, a fixed controller at

Dint = Ki v s <la+Tsa (3)

the one operating condition can not satisfy the
performances in the over all operating range.
Py(t), Py(t) are bore and rod pressure, Az, 4; are
effective piston areas of the cylinder. m, and my
are masses, Tp(t) is piston displacement. Ky, K,
are coefficients of the turburant and the laminar
flow. Linearization of the equations (1),(2) and
(3) at the arbitrary operating point (zs0, Pao). We
have

zs0 ~ la

Sqaint = Kt |~ 1/ Ps — P206%s
YV (:1:5() - la)2 + c,"i
V(@0 = 1a)? + 2
_ V(@0 —la)® + e 75P2) (4)

24/ (Ps — P20)

33 Ktcr>43(a:so—la)2 (3)3
0qini = | = — —_— —_
b (Kz) ( 4 P 2t \\ T
4 133
% (Ktcr) (msO la,) _ Kicr 5P, (5)
4 P — Py 2/Ps ~ Py
Py — Pag 1
int = K| - 3P 6
0qaint '(—(mso—za)‘m e 2) ©)

For the simple presentation such as (7), choose
the corresponding equation from (4), (5) or (6)
according to spool displacement x4 (t

802in = Koinzs0%s + Kainp20 P2 (7

The same way as above, derivative equations of
the metering orifice B, C and D are described
below, respectively.

6q20ut = KooutasdTs + KZoutp26P2 (8)

dqrout = KioutzsbTs + Klou.tp15P1 (9)

0q1in = Kiinzgs0Ts + Klz’np16P1 (10)
4. MODELING

4.1 Linear System

Figure 8 presents the block diagram of the linear
system from the input vy, which is applied to
the flow control valve, to the controlled variable
hydraulic force Vg, and piston velocity Vi p - Usig
is the control. 74, is the rated signal and 7 is the
rated spool displacement. w, and {, represents the
control valve dynamics as the second order trans-
fer function. The pressure in the actuator chamber
is calculated from the hydraulic compressibility,
called as bulk modulus B, and the effective vol-
ume change caused by flow in and out from the
chamber, plus piston displacement. A mass, an
equivalent viscous resistance and a spring com-
pose the load. In the actual injection process, the
viscous resistance and spring rate change under
the various operating conditions. Here, suppose
that they are constant in the velocity and force
control mode. Here, take state vector éz as

6z = (6zsv, 6zs, 6P2, 6P1, 6Tpy, Ozp)T (11)

From the linear block diagram in Figure 8,
the linear state space equation is represented in
equation (12) and (13).
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~2Cpwy —wg 0 0
1 0 0 0
0 ap(3,2) ap(3,3) 0
6 = 0 ap(4,2) 0 ap(4,4)
0 10 4, 10% Az
mp + my mp + my
0 0 0 0
0 0 Tstr
0 0 Tsig
ap(3,5) 0 0
ap(4,5) 0 S + 0 Susig (12)
102 10%k 0
mp +my mp+my 0
1 0

Az Az
(:,;F" ) = (0 0 77 “dmas O) bz (13)
Py 00 0 0 010
Some of the matrix elements, such as a,(3,2), are
not constant. Here,
K2z‘nms - K20ut:ns
Vo + A2(Ln + 2p0)
KZ'inPg - KZouth
Vo + A2(Ln + xp0)
Az

ap(?”‘r)) - -:@VZ ¥ AZ(Ln T mpO)
Klinms - Kloutms
Vi + A1(Ln — 2po)
Kiinp, — Kioutpy
Vi + A1(Ln — :Epo)
A
Vi 4+ A1(Ln — 2p0)

a'P(S) 2)=p0

ap(av 3) = ﬁ

aP(4) 2)=p
ap(4,4) =8
U’P(475) == ﬂ

L., is a half with total piston stroke.

4.2 LPV System

As mentioned above, some of the elements in
the state space equation vary according to the
operating conditions. To have linear state space
equation, we adopt a LPV system presentation,
which has the parameter that is the function of
the load force. Equation 12 has the form as

, 5]
6% = af(mo)ém + Bpdusig (14)
Sy = Cpdx (15)

Two matrices B, and C, are constant and all
elements in these matrices are decided based on
the mechanical specifications. zo is a state at the
equilibrium point. But, it is difficult to have the
solution of zq from the implicit function of f(zo)+
Bpusigo = 0. Now, suppose that zp is given and
then 1o is calculated by yo = Cpxo. Addition to
this, suppose that the scheduling parameter ¢ is
a smooth function of the yo, such as 6 = ¢(yo).
The linear state space equation, which depends on
the scheduling parameter ¢, represents the plant
behavior in the neighborhood of the equilibrium
zo (Uchida, 1995), (Rugh and Shamma, 2000). By
the way, a,(3,2), ap(4,4) and so on, are decided
when 50, Peo, Pio and Tpp are fixed. But, as
explained already, it is hard to decide these values

from the related equations.

Here, we use a value of the variable which is
obtained from the following simulation. Apply
PI controller to close the velocity loop in the
nonlinear plant model. Then, apply relatively slow
enough ramp velocity reference signal (6veig =
0) so that we are able to assume all state variables
are close enough to the equilibrium states. Now,
we have a set of the equilibrium points for the
specified operating range in both velocity control.
Using these values, whose could be considered
as the equilibrium set, figure out the elements
of equation (12), such as a,(3,2) so on, with
respect to corresponding scheduling parameter
that is described as equation (19) or (20). In the
case of force plant model, the way to have PLV
representation is same as mentioned above. Then,
we represent these elelments by the polynomial
approximation, as follows

ap(6) = ago + ap10 + ap26® + apst® (16)

The state space equations (12), (13) are rewrited
as equations (17), (18) with the scheduling param-
eter.

§ip = Ap(0)dzp + Bpbusig (17)
Syp = Cpdp (18)

Considering the flow characteristic which depends

on /&SP, define the scheduling parameter 6, for
the velocity and 6, for the force control as

1
-1
Py

1 — e

Fras

v = 1
-]
/1 _ Furated
Frox
1
— 1
Fg
A1 Fres
T ,[0<6n < 1] (20)
S

1 — Frorated

Frmax

6 s, <1 (19)

O =

Fopaz is maximum force, Fy.rated and Fy.roted aT€
the rated force in the velocity and force control
mode, F; is actual force which is measured as Vp, .

5. GAIN SCHEDULED CONTROLLERS

Designing gain scheduled controllers for the voloc-
ity and force, we take following issues in consider-
ation. In the velocity loop, the rise time is within
15ms to the step reference and minimizes steady
state error. In the force controller design, the force
follows to the ramp reference signal, which reaches
to the rated force with 15 ms and zero steady
state error. In order to construct the generalized
plant for the Hy controller design framework,
two weighting functions, W;(s) for the sensitivity
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function and W,(s) for the additive uncertainty
at the input of the plant, are specified after the
several try and error. For the velocity controller,
we use

0.0025s + 68.75 5(s+1)
W, = W, = et
(s) sro0ms el = S
and at the force controller design
0.45+5 25(s+1)
W = W = —
n(9) = S Vel = i

Beside these weighting functions, (0.1s+0.015)/s
is added in series to the plant in the velocity
control. Also, (50s + 1)/(s + 0.01) is in series
to force plant to improve the response. When
solve Ho, controller design problem with LMI
formulation, the two positive definite matrices, in
many cases described as X and Y, also let the
function of the scheduling parameter, such as

X, (05) = Koo + K10y + Xo20® + Xo30,°

so that minimize the conservatives of the con-
troller. As the results, the generalized plant be-
comes function of the continuous scheduling pa-
rameter and has to solve infinite number of LMIs.
In order to reduce this problem to finite num-
ber of constraints, a technique that proposed
by Azuma (Azuma et al., 2000) to construct a
convex hull is introduced. For the more details
of the gain scheduled controller for the velocity
and force control, see (Sugiyama et al, 2000),
(Sugiyama and Uchida, 2001) and (T. Sugiyama
and K. Uchida, 2002).

6. SWITCHING SCHEME AND TEST
RESULTS

In this experiment, the rated velocity is 200 mm/s,
the rated force is Firateqd = 160 kN and the
maximum force Fiqr = 183 kN are defined by the
specific product and mold capability. The actual
load force in the velocity control mode becomes
40 to 50 kN , which is used in calculation of

the scheduling parameter 8,. In the force control
mode, the controlled force comes up to 60 kN in
the process. The way to add up the outputs form
the velocity and force controller is described in
Figure 9.

a1‘ G:(0,1) B:(0.9,1) F:(11,1) C
I
/
/
] } >
0:0,0) A{0.7,0) 1 E(13,00 D £

Fig. 9. Explanation of the switching method

Summing up control depends on the force level
and whether it overs a set point or not. If the force
F, over the set force level F, when the switching
oceurs. In this case, follows the line "D-E-F-G” in
Figure 9. Moreover, set the velocity reference as
zero. And, the force crosses the point "F”, comes
from the direction of "E”, switch to the force
control completely. In the other case, it means
that the force level is below to a set point, follows
the line " O-A-B-C” and keep to use the velocity
reference as it is. In the range ”A” to ”B” or "E”
to "F”, we use the add up control. Let’s say, uy
is the velocity controller output and uy is the one
of the force controller. The switching control u is
calculated as

ug = (1 — a)uy + ouy (21)

In Figure 10,11 and 12,13 show the transitional
behaviors that occurs in 7.5 and 15 cm/s veloc-
ity. At the beginning of the velocity control, the
big overshoot or fluctuation is observed. This is
caused by dead time that we do not consider in
gain scheduled controller design, so far. But, there
is not significant influence on switching opera-
tion. Looking at the switchig behaviors, obtain
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reasonable results by the switching control prin-
ciple, mentioned in this paper. It is obvious that
the velocity comes down near to zero level very
smoothly in the both of cases. Force is chang-
ing quite smooth, too. The smooth transition is
achieved.

7. CONCLUSION

In this paper, we propose the flow calculation for-
mula to have continues flow between the turbulent
and laminar flow so that compose the linear plant
model with a scheduling parameter. Then, we

obtained the values of the system variables by the
simulation in order to design the gain scheduled
controller for the velocity and force control based
on LPV system. The usefulness of the controller
design method, described here, is confirmed to the
electro-hydraulic servosystem. Also, the way de-
scribed here to switch from velocity to force makes
the transition behavior smooth successfully.
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Gain Scheduled Velocity and Force Controllers for Electro-hydraulic Servosystem

Takahiro Sugiyama, Member (Moog Japan Ltd.), Kenko Uchida, Member (Waseda University)

The load variation of the electro-hydraulic servosystem causes degradation of the control characteristic.

This is because the flow characteristic of the flow control valve depends on the load condition. Here, we pro-

pose the flow calculation formula to have continues flow between turbulent and laminar flow so that compose

the linear plant model with a scheduling parameter. Then, design gain scheduled controllers for the velocity

and hydraulic force control.
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Table 1. Experiment machine parameters

Supply pressure Ps 13.7 [MPa)]
Hydraulic fluid

Bulk modulus Jél 686.5 [MPa]

Specific gravity (15/4°C) 0.866

Kinematic viscosity {(40°C) 30.1 [eSt]
Cylinder

Head side area Ay 1327 [em?)

Rod side area Ay 542 [em?]

Stroke L, 12 [cm)
Trapped fluid volume

Head side Va 450 [cms]

Rod side Vi 350 [em®)
Flow control valve (Model:J790-004 Moog Japan Ltd.)

Rated flow (at 6.86MPa drop) 1650 [1/min]

Rated signal rsig +10 V]

Rated stroke rser 0.32 fem]

Frequency response (at 14MPa with £25% of rated signal input}

90 deg phase lag w, 534 [rad/s]
Damping ratio Cu 0.94

Lap la 5 %UT

Clearance cr 0.0075 [mm]
Mass (m=mp + m;) m 14 tkg)
Coeflicient of viscous damping b 198.4 [N/{cm/s)]
Spring stiffness

Velocity mode k, 30538 [N/em]

Force mode ky 93163 [N/cm]

25

Velocity  [em/s]

i
0 EEHIMIaL—T a3 VER

Fig.9. Velocity control simulation results
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INFINITE-DIMENSIONAL LMI APPROACH
TO ANALYSIS AND SYNTHESIS
FOR LINEAR TIME-DELAY SYSTEMS

KoiJiro IKEDA, TAKEHITO AZUMA AND KENKO UCHIDA

This paper considers an analysis and synthesis problem of controllers for linear time-
delay systems in the form of delay-dependent memory state feedback, and develops an
Linear Matrix Inequality (LMI) approach. First, we present an existence condition and an
explicit formula of controllers, which guarantee a prescribed level of L? gain of closed loop
systems, in terms of infinite-dimensional LMIs. This result is rather general in the sense that
it covers, as special cases, some known results for the cases of delay-independent/dependent
and memoryless/memory controllers, while the infinity dimensionality of the LMIs makes
the result difficult to apply. Second, we introduce a technique to reduce the infinite-
dimensional LMIs to a finite number of LMIs, and present a feasible algorithm for synthesis
of controllers based on the finite-dimensional LMIs.

1. INTRODUCTION

The fact that the state space of time-delay systems is infinite-dimensional leads gen-
erally to infinite-dimensional characterizations for analysis and synthesis in time-
delay systems. For example, it is well known that the optimal LQ control for time-
delay systems is given in the memory, i.e. infinite-dimensional, state feedback form
whose feedback gains are characterized by the infinite-dimensional Riccati equations;
as for state feedback control synthesis, we could say that the memory state feedback
form is general and natural for time-delay systems, and can expect that memory
state feedback controllers achieve better performance than memoryless state feed-
back controllers [2, 11, 16, 17]. Of course, the infinite-dimensional characterizations
give us contrary hard problems in computations and implementations [6]. Our con-
cern is to find a feasible approach to such infinite-dimensional tasks in analysis and
synthesis for linear time-delay systems.

Recently the Linear Matrix Inequality (LMI) approach [4] has been developed in
analysis and synthesis problems for linear time-delay systems and its advantages in
numerical computations are presented [6, 8, 9, 11, 14, 15]; however, the approach
is mostly developed under some finite-dimensional assumptions assured by a special
form of Lyapunov functional in analysis and/or a memoryless controller form in

..40...
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synthesis. One exception which does not require such finite-dimensional assumptions
is a series of the works by Gu [8, 9]; he proposes a discretization technique which can
characterize a general Lyapunov functional with a finite number of LMIs. As more
recent references on LMI for time-delay systems, which we learned after submitting
this paper, [5] (and references inside) and [7] should be mentioned; a synthesis
problem of state feedback with delay is discussed in [5], and a memoryless state
feedback is designed for a system with distributed time-delays in [7].

In this paper, focusing on input-output L? gain performance, we consider an anal-
ysis and synthesis problem of memory state feedback controllers for linear systems
with time-delay via an LMI approach which is an extension of the LMI approach
developed in [2] where stability and stabilizability is focused. First we show a result
of L? gain analysis of linear systems with time-delay and make a comparison with
some previous works in some special cases. Next we discuss a controller synthe-
sis problem based on this result of L? gain analysis. We also consider a synthesis
problem of controllers with constrained feedback gains. We derive the results of I?
gain analysis and controller synthesis in the form of infinite-dimensional LMIs, and
present a procedure to reduce the infinite-dimensional LMIs to a finite number of
LMIs. Finally we show a numerical example.

2. SYSTEM DESCRIPTION
Consider the following linear time-delay system defined on the time interval [0, c0),
#(t) = Aoz(t) + A1z(t — h) + Bu(t) + Dw(t),
z(t) = Cz(t), (2.1)
Z’(ﬁ)zo, _hS6SO,

where z(t) € R" is the state, u(t) € R™» is the input, w(t) € R™ is the disturbance,
and z(t) € R' is the output. 4o € R**™, A; € R**", B€ R™™, C ¢ RY™ and
D € R" ™w gre constant matrices. The parameter h denotes the time delay and
h > 0.

The input u(t) is given by the following state feedback controller,

0
u(t) = Kon(t) + /_ Kun(6) alt + )4, (2.2)

where Ko € R™*™ is a constant matrix and Ko1(8) € L*([—h,0; R™*") is a
square integrable matrix function.
In this paper, we use a notation,

)
LeB) = { Pla) Paa, ) } > (<0,

Ya€[-h,0], Y8 € [-h,0],

which means that Py and P (o, 8) are symmetric, that is Pj = Py and P;(a, 8) =

_41_



Infinite~dimensional LMI Approach... 507

Py(B,a), and the symmetrized matrix,

1 Py 5(Pi(a) + Pi(B))

5 (L(aB) + L'(e,B)) = L(Pl(a) + P{(B) 3(Pa(a,B)+ Pa(B,0)) |’

is positive definite (negative definite) for each (a, 8) € [—h,0] x [~h,0], where “/"
denotes transposition of vector and matrix. The notation, L(e, 8) > (<) 0, is
similarly defined. Note that, if a matrix function L(a,$) > 0 is continuous in
(c, B), there exists a positive number A such that L{a,8) > Al for all (a,f) €
[~h,0] x [—h,0], where I denotes identity matrix.

3. L?* GAIN ANALYSIS

3.1. General result

From (2.1),(2.2),the closed loop system can be written in the following form,
0
() = Aoa(t) + ot — 1)+ | Toa(8) alt+8) 86 + Dus), o
—h )

z(t) = C=z(t),

where
ZO = AO +BK07 Zl = A1>
Ap1(B) = BKo1(8).

First we analyze L? gain for the closed loop system (3.1). The L? gain of the
system (3.1) is defined as follows,

G sy L2

weLzwo wllz2’

where || - ||2 denotes L? norm.
Now we introduce the following functional,

0
V(zy) = z'(t) Pz(t) +/hm’(t+ﬁ) Qz(t+ B)dp

0
—~h

0
+2'(8) / R(B)alt+ )48 + / 2(t + )R () daz(t)
i —;) ! S dad 3.2
+ [ [ s o+ daas (3.2)

where

v ={z(t+p)| —h < <0}

P,Q € RTLXTL’

R(B) € L*([—h,0]; R™™),

S(a, B) € L*([~=h,0] x [=h,0]; R™*™).
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By using this functional, we have a result for L? gain analysis of the time-delay
system (3.1).

Theorem 3.1. If there exist constant matrices P, Q and continuously differen-
tiable matrix functions R(B), S(a, ) which satisfy the following inequalities,

i AP+ PAyg+Q Y
( +R’20) + R(OO) +C'C ) Py = R(=h)
AP -R(~h) -Q

Ll(a,ﬁ) = ~ ~
Al (@)P + R'(a)A A — So —
( —%R’(Oz) +.S'(a,00) ) R(a>Al S( ) h)
i D'P 0
PAq (8) + ALR(B) |
( ~ZR(8) + 5(0,6) ) i
A R(B) = S(=h, ) 0 oo @3
R'(a) Ao () + Aos (@R() \ gy ’
< “(% + £)5(@,h) > D
D'R(B) S
_ P R(M)
L2(O‘,ﬁ) - [ R'(a) S(Ol,ﬁ) ] > O, (34)
Q >0, (3.5)

Yae[-h, 0], VB E[~h, O],

then the time-delay system (3.1) is internally, asymptotically, stable and the L? gain
of (3.1) is less than 7.

Proof. (Stability) We shall show that the functional (3.2) is a Lyapnov func-

tional for the system(3.1), that is V(z;) > 0 and LV () > 0forz(t) # 0. V(ze) >0
follows from (3.4),(3.5) and the expression,

V) = [ Oh / Oh [ mae }'Lm,ﬁ) [ e ]dadﬁ
+ /‘Oh ' (t + B) Qz(t + B)dB.

Differentiating both sides of (3.2) with respect to ¢ along the trajectory of the
system (3.1) with w(t) = 0 and rearranging terms, we have

d 0 40 h™tz(t) , h™1z(t)
—V(zs) = hlz(t—h) | Lola,p) h~lz(t —h) | dadfB
d /—h /—h{ o(t +a) 2(t + )
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where
Lo(Ot,,B) =
i Ay P+ PA, . PAu(B)+ 4 IR(ﬁ) -
+0 P4, - R(~h) ( 5 . )
( +R(0) + R(O) ) 1 “a R0 500
A'P— RI(=h) -Q A'R(B) - S(~h, B)
Aot (@) P R!(a) Ao1 (8)
i—R_Q_l(g/)(zi(; R'(a)A; — S(a, —h) +A~01/(Q)R(5>
I +8(a,0) “ e ] |

Using Schur Complement, we can show that the inequality (3.3), that is L1 {a, 8) <
0 is equivalent to the following inequality,

LO(aalB)
c' PD I o 17 C PD ’

+1 0 0 { 0 27 } 0 0 <0.
0 R'(a)D+R'(B)D 7 0 R'(a)D+ R'(B)D

Thus, from (3.3) we have Lo(a, 8) < 0, and from the above expression of £V (z;)

we can see d sV (z¢) < 0 for z(t) # 0. Then, the internal, asymptotic, stabxhty of the
system (3.1) follows from the well-known stability result [10].

(L? gain) First note that the internal, asymptotic, stability of the system (3.1) im-
plies z € L%([—h,0]; RY) and, in particular, z(co) = 0 for any w € L?([~h, 0]; R™).
Hence, from z(8) = 0, —h < 8 < 0, we have the identity,

121122 = 7*llwliZ2

= fooo {z'(t)z(t) — Y2 (t) w(t) + -(%V(mt)} dt

for w € L*([—h,0); R!) . Calculating $V (z;) with (3.2) along the trajectory of the
system (3.1) and substituting it into the above identity, we obtain

llzllZ2 = 7*llwliZ-

h~ 1ac(t) h~1z(t)
/ / / g t +a) QN I h;l(fi;)h) dadg | dt.
tw(t) h™hw(t)
Then G <« follows from (3.3). a

3.2. Results in special cases

It is known that the existence of Lyapunov functional of the form (3.2) is a necessary
and sufficient condition for internal stability of linear time-delay systems. From this



510 K. IKEDA, T. AZUMA AND K. UCHIDA

fact and the analogy of L? gain analysis in linear systems with no delay, we suspect
that the functional (3.2) might lead to a necessary and sufficient condition, and
the LMI conditions in Theorem 3.1 might be rather less-conservative. Instead of
pursuing this issue, here, we observe that, for particular choices of structure of the
solution (P,Q, R(B),S(a,f)), the LMI conditions (3.3),(3.4),(3.5) in Theorem 3.1
is reduced to the well known condition of delay-independent types [11] or delay-
dependent types [14]. To simplify the discussion, we focus on the case of the following
system,

#(t) = Aoz (t) + Arz(t — h) + Duw(t),
2(t) = Cx(t).

First note that the positive definiteness of inequalities (3.4) and (3.5) in Theo-
rem 3.1, which are required for (3.2) to be a Lyapunov functional of this system, can
be relaxed to positive semidefiniteness except P > 0. In view of this, let R(8) =0
and S(a, 8) = 0 in the inequality (3.3), we can rewrite (3.3) as

AP+ PA+Q+C'C PA PD
AP -Q 0 <0, (3.6)
D'P 0 -9

and obtain the next result from Theorem 3.1.

Corollary 3.2. If there exists positive definite P and Q which satisfy the LMI
condition (3.6), then the time-delay system is internally, asymptotically, stable and
the L? gain is less than 7.

The LMI condition (3.6) is equivalent to the Riccati inequality condition derived
by Lee et al in [14].

Next let R(8) = PU(B) and S(a,B) = U'(a)PU(B), where U(8) is a matrix
function defined by the following functional differential equation,

d _
@wm:me@WW, (3.7)

U(-h) = A1, ~h < B <0,
We have a sufficient condition for the inequality (3.3), which is given by
M+C'C M PD
M M PD | <0, (3.8)
D'P D'P —~%I

where M = (Ao +U(0))' P+ P (Ao +U(0)). Thus we can obtain the next result from
Theorem 3.1.
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Corollary 3.3. If there exist a positive definite matrix P and a matrix function
U(B) which is the solution to the equation (3.7) and satisfy the LMI condition (3.8),
then the time-delay system is internally, asymptotically, stable and the L? gain is
less than 7.

Corollary 3.3 is the result derived by He et al in [11] where the LMI condition
(3.8) is expressed in the equivalent Riccati inequality form.

The LMI condition (3.6) is independent of the time-delay h and is finite-dimensional.
On the other hand, the LMI condition (3.8), which seems the finite-dimensional one
at first sight, is infinite-dimensional in actual, since it requires to solve the infinite-
dimensional equation (3.7) that depends on the time-delay h.

As shown in Theorem 3.1 and observed above, the Lyapunov functional (3.2)
leads generally to infinite-dimensional and delay-dependent conditions or finite-
dimensional and delay-independent conditions. In some special cases, however, our
approach with a generalization of the functional (3.2) leads us to finite-dimensional
and delay-dependent conditions. To illustrate this fact, consider the system with
only distributed delay,

o~ 0 o~
—h .
z(t) = Cz(1),
and consider the following functional,
0
Vize) = z'(t) Pz(t) + /_h ' (t + B) Q(B) z(t + B) dB. (3.10)

Note that Q(f) is here allowed to depend on §. Then calculating the time derivative
of (3.10) and rearranging terms as in the proof of Theorem 3.1, we have a sufficient
condition for £V (z;) + 2'(t)z(t) — v*w'(t) w(t) < 0, which is given as Q(—h) > 0
and

01(B)P 'h_I%Q(ﬁ) 0 <0,
D'P 0 —21

VB e[-h, Q.

[ AP+PA+Q(0)  PAn(8)  PD

This LMI condition is the infinite-dimensional one. However, in the special case of
Ag1(B) = Ao, setting Q(8) = (B + h)I yields the following finite-dimensional LMI
condition of delay-dependence,

AP+ PAy+hI PAy PD
0P —h~1r 0 < 0. (3.11)
D'P 0 -

Thus we obtain the next result.
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Corollary 3.4. If there exists the positive definite matrix P which satisfies the LMI
condition (3.11), then the time-delay system (3.9) with Ag1(8) = Ao: is internally,
asymptotically, stable and the L? gain is less than ~.

In [15], Li and DeSouza derived a finite-dimensional and delay-dependent LMI
condition for robust stability and stabilization based on a Lyapunov functional. We
can see that their LMI has a similar structure to (3.11), and expect that our frame-
work described by (3.9) and (3.10) presents an essential point of their procedure
consisting of a sophisticated system transformation and a special Lyapunov func-
tional.

4, CONTROLLER SYNTHESIS

4.1. Synthesis of controller gain

Now we consider the synthesis of controllers which attain a prescribed level of L?
gain of the closed loop system (3.1). The problem is to find a gain (Kjy, Ko1(8)) of
the controller (2.2) based on the analysis result of Theorem 3.1.

Theorem 4.1. If there exist constant matrices W, X, Zy and continuously differ-
entiable matrix function Zy1(8) and Y (e, 5) which satisfy the following inequalities,

L3(C\(, ﬂ) =

WA{) + W Ap B_;_Z"/(I)}iﬁl)
+X +2W AW -W +Z’B9 wc' D
! 0
+BZy+ Z\B 0.8
- _ WA} ,
WAl -W X ( _Y(<h,B) 0 0
Z(a)B' BZy: (B) <01
01 ! i
+AW + BZ AW Zgi(e)B 0 D
+Y(C¥ O) _Y(aa —h) _(EE + _aﬁ)
’ Y(a, B)
oW 0 0 -I 0
i D' 0 D' 0 —2I |
w w
Ly(a,B) = [ W Y(a,B) ] >0, (4.2)
X >0, (4.3)
Ya€[-h, 0], VB €[-h, 0,
then the time-delay system (2.1) with the state feedback controller (2.2)
Ko=ZW™, Ka(B)=Zoa(B)WT, (4.4)
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is internally, asymptotically, stable and the L? gain is less than 7.

Proof. Assume that the conditions of Theorem 4.1 are satisfied and consider
the closed loop system (3.1) with the feedback gain given by (4.4). Then, using the
inequalities (4.1), (4.2) and (4.3) together with Schur Complement, we can show
that the inequalities (3.3), (3.4) and (3.5) admit the following solutions,

P=w-l, RB =W SB)=W'Y(,HW" Q= wWTixw,

that is, the conditions of Theorem 3.1 are satisfied. Thus, Theorem 4.1 follows from
Theorem 3.1. O

4.2. Constraint on controller gain

To simplify the discussion, we assume that the controlled output z(t) in (2.1) does not
directly depend on the control input u(t). This may lead to large control inputs which
are synthesized by Theorem 4.1. One conventional way to make such a possibility
small is to impose some constraints on the feedback gain.

Now we constrain the feedback gain as follows,

KiKo <ml, Ky Koi(8) < vI, VB €[-h, 0], (4.5)

“where 41 and 7, are given in advance, and consider the same synthesis problem as
in Section 4.1. Based on Theorem 4.1, we have the following theorem.

Theorem 4.2. For given positive numbers py, pz and g, if there exist W, X, Zy
and continuously differentiable matrix function Zo () and Y (e, 8) which satisfy the
following inequalities,

Ls(, B) < 0, Ly(a,8) > 0, X >0, (4.6)

_ pzl.f Zlé ] >0, (4.7)
pl  Zy(B)

_ Zof( ) 01] } >0, (4.8)

qII v{/ ] >0, (4.9)

Yae[-h, 0], VB e [-h, 0],

where L3(a, 8) and Ly(a, B) are given as (4.1) and (4.2) respectively, then the time-
delay system (2.1) with the state feedback controller (2.2)

Ko=2W™Y, Koi(B) =Zaa(B)W™, (4.10)

is internally, asymptotically, stable and the L? gain is less than . Here Ky and
K1 (B) are constrained as follows,

KiKo < pid’I, Ky(B)Koi(B) < pag°l.
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Proof. (4.7),(4.8) and (4.9) are equivalent to the following conditions respec-
tively,

Z(’)ZO < pl, Z(’)l (,3) Zo1 (ﬁ) < pal, wt < gl.
By using the above conditions, we have the following results,

KK, =W tZiZ,W
< plT/V_1W’1
<pq’l
KL (B)Kon(B) =W 2y (B) Zor(B) w
< ng"lW'"l
< pag*l.

O

Thus by using this theorem and choosing p1, p2 and g appropriately, we can
" obtain the controllers with feedback gains satisfying (4.5) and assuring G <. Next
we show an algorithm to choose p;, p2 and ¢.

Algorithm:
Step 1: Let pio, p2o and go be initial values of p1, p2 and g respectively.
Step 2: Solve inequalities in Theorem 4.2 and the following inequalities,

p1 < pio, P2 <p20, 9<dqo

— If Step 2 has no solution, the algorithm has no solution for the
initial values p10,P20,90-
Step 3: Check the next conditions for p1, p2 and g of Step 2.

g’ <m, p2g’ < (4.11)

— If (4.11) is satisfied, the algorithm is finished. The controller
designed in Step 2 satisfies (4.5).

— 1If (4.11) is not satisfied, go back to Step 1.

When we come back from Step 3 to Step 1, pio, 2o and go are generally modified
into smaller ones, so that p;,p2 and ¢ can be chosen smaller in Step 2 and satisfy
(4.11) in Step 3. Note that it is generally more difficult to solve the inequalities
of Theorem 4.2 for smaller p1,ps and g. The solvability condition of the inequal-
ities of Theorem 4.2, which might be characterized by open loop properties, e.g.
stabilizability, of the system (3.1), is our future task of interest.

To illustrate this algorithm, a design example is presented in Section 6. It is a
matter of course that smaller gains (Ko, Ko1(5)), which are realized by taking pi,
po and g smaller, do not necessarily guarantee smaller control inputs. One possible
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way to handle constraints on control inputs such as u(t)'u(t) < p is to introduce a
step of state-reachable set analysis, which is characterized with infinite-dimensional
LMIs [13]. As for the existing results on constrained control input, see Chapter 14
of [6] and references inside.

5. REDUCTION TO A FINITE NUMBER OF LMI CONDITIONS

Inequalities in Theorem 4.1 depend on parameters a and 3. It seems difficult to solve

these infinite-dimensional (parameter-dependent) inequalities directly. In our ap-

proach, we reduce these infinite-dimensional inequalities to a finite number of LMIs

by using the technique in [3, 2], and obtain the solution of the infinite-dimensional

inequalities by computing the finite number of LMIs. :
Here we restrict solutions in Theorem 4.1 to the following forms,

Y(aaﬂ) = Y0+gl(a716)}/1 +92(a>ﬂ)Y2+"'+gly(a7ﬁ)y'ly:

5.1
Zo1(B) = Z0+h(B)Z9 + ho(B)ZSt + - - + My, (B) 2D, (5.1)

where g; : R? — R is a continuous differentiable function of a and f§ such that

gi(e, B) = gi(B, o),

h; : R — R is a continuous differentiable function of 3, and the unknown matrices
satisfy

’Y;:ER’H.XTL, Y;,:Y; (i=O717"‘7lY)J
790 € Rmexn (1 =0,1,--,1z).

Note that (5.1) satisfies matrix inequalities (4.1), (4.2). Then inequalities in The-
orem 4.1 can be written in the form of the following parameter dependent LMI
condition,

FO(M)'*—fl(e)Fl(]w)"'+fr(9>Fr(]\{[)<O: (52)
where
feo= {[Ol ﬁ]/la € ["‘ha 0]:ﬂ € [""h’ O}}>

and f; : R? = R is a continuous function of o and §, and a symmetric matrix
function F; depends affinely on the unknown matrix M = [Yo,- -+, Y1y, 204, -+, 201,
The parameter dependent LMI condition (5.2) can be reduced to a finite number of
LMI conditions as follows.

Theorem 5.1. [3] Let {p1,p2,--+,ps} be vertices of a convex polyhedron which
includes the curved surface T,

T = {[/1(6) £2(6) --- /+(0)) |6 €O} (5.3)
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Assume that there exists M which satisfies the following LMI condition for all p;(i =
17 2: T Q))

FO(Z\/I)+p¢1F1(]V[)+---+piTFT(M) < 0, (54)

where p;; is the jth element of p;. Then M satisfies (5.2) for all § € ©.

A general technique to construct a convex polyhedron which includes the curved
surface T' is proposed in [3].
In the special case that r = 2s,

— fi(a)) i=1,2,-,5,
fz(a,ﬁ)— fz(ﬁ): 1=s8+1,8+2,-,2s,

and f;(a) and f;(B) are polynomial functions of a and 3, respectively, we can use a
simple technique to construct such a convex polyhedron, which is given by

Theorem 5.2. [12] Let p¥/ € R?® be defined such that

where
p° = [hy B2 ---Rf] € R®,
pt = [hg W} - R} € R,
p* = [ha B} .- R3] € R
Then the convex polyhedron whose vertices are given by p¥,i,7=0,1,---,s includes

the curved surface T = {[a a® --- a® B B2 +-- B%)'|a € [h1, o], B € [h1, hel}

Actually taking hy = —h and hy = 0 in Theorem 5.2, we have a desired convex
polyhedron. To make the volume of the convex polyhedron smaller for less conserva-
tive solutions, we may divide the interval [—h, 0] into sub-intervals [hq, hs], [he, hal,

., and apply repeatedly Theorem 5.2 in each sub-interval.

6. NUMERICAL EXAMPLE
Consider the next time-delay system,
t(t) = z(t) +0.3z(t — 1) + u(t),
Tpt y(t) ==(b), (6.1)
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r % u y
> 1/s > > >
\ > >
- > K p
Iy
Fig. 1. The closed loop system.
w
+
U Z
sz, = A

Fig. 2. Generalized plant.

Now we design a state feedback controller K of the form (2.2) such that the error,
r —y, is asymptotically zero. As shown in Figure 1, an integrator is added in order to
assure the asymptotically-zero error for step references. When we use the technique
of Section 5, we restrict solutions of Theorem 4.1 and Theorem 4.2 as follows,

Zo1(B) = Zo+BZy+ B2,
Y(a,8) = Yo+(a+,8)Y1+(a2+ﬁ2)Y2,

First we apply Theorem 4.1 to Figure 2 and obtain the state feedback controller
with the next feedback gains,

Ko = [ 11548 —24.94 |,

Koa(f) =] 7579 —12.45 ] +4[ -9.31 -3.09 ] +4°[ 15.14 -3.53 I. (6.2)

Second setting py = 3.49 x 10%, py = 1.28 x 10%, ¢ = 2.56 and using Theorem 4.2,
we obtain the state feedback controller (2.2) with the next feedback gains,

Ko =[ 3616 —11.74 ],

Koi(8) =[ 2349 —401]+p[ 171 -0.53 1+p82[ —0.07 —-0.19 ]. (6.3)

The simulation results are shown in Figure 3, where the reference is 1 (r = 1).
In this figure, the solid line and the dashdot line denote the simulation result of the
case (6.2) and (6.3) respectively. The error 7 —y is asymptotically zero at both cases.
Note that the asymptotically-zero error is assured for arbitrary L? type references,
since both feedback schemes provide finite L? gain from reference r to error r —y.
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i H i " L L i i L : 1 H
° 0.5 3 15 2 2.5 3 1s ) 45 H o 0.5 1 15 2 23 3 as 4 45 5
Time {39t Time t sec

(a) Output y (b) Input u

Fig. 3. Simulation result (Memory feedback case).

18 : i 3 [ f 15

Tit € e e

(a) Output y (b) Input u

Fig. 4. Simulation result (Memoryless feedback case).

We see also that, by using Theorem 4.2, we can make the maximum of the control
input small.

Our approach with corresponding specializations, which is equivalent to the ap-
proach of [14] for unconstrained gain case, provides memoryless controllers. On this
example, the feedback gain for unconstrained gain case is calculated as

Ko=[ 1449 -527 1, (6.4)
and the feedback gain for the constrained gain case is calculated as
Ko=1[1294 -320 ] (6.5)

The simulation results are shown in Figure 4, where the solid line and the dashdot
line denote the result of (6.4) and (6.5) respectively. Compared with the results
shown in Figure 3, we see worse tracking properties for both cases. We also see that
the maximum of the control input given by (6.5) is larger than that of the control
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input given by (6.4), that is, in the memoryless feedback case, our algorithm cannot
succeed in making the maximum control input small.

7. CONCLUSION

In this paper, we considered L? gain analysis and control synthesis problems for lin-
ear systems with time-delay via an LMI approach. We derived conditions for analysis
and synthesis in the form of infinite-dimensional LMIs and showed a technique to re-
duce the infinite-dimensional LMIs to a finite number of LMIs which provide feasible
formulas. We demonstrated the efficacy of our approach by a numerical example.

The LMI approach presented in this paper requires the exact value of the time-
delay h. This may make us anxious that the constructed controller is sensitive to
any variation of time-delay. However, the closed loop system which is formed by
the controller of Theorem 4.1 is robustly stable against sufficiently small variation
of time-delay, which is discussed in [1].

(Received November 22, 2000.)
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Abstract. We discuss a finite horizon H” control problem for systems
with input delays. Clarifying a relationship between two H® control
problems in input delay case and in measurement delay case, we derive a
solution in input delay case based on the known result for the H” control
problem in measurement delay case, and show that the solution has the same
predictor-observer structure as the solution in measurement delay case has.
Using this structural information on the solution, we also present a direct
proof of the solution to the finite horizon # © control problem for systems
with input delays, which is based only on completion of squares.
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Abstract.

We discuss a finite horizon H” control problem for systems with input delays.

Clarifying a relationship between two H™ control problems in input delay case and in
measurement delay case, we derive a solution in input delay case based on the known result for
the H* control problem in measurement delay case, and show that the solution has the same
predictor-observer structure as the solution in measurement delay case has. Using this structural
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1.  Introduction

In control system designs, input delay appears rather
often and is considered as a small but cumbersome
obstacle.  For systems with input delays, the
H® control problem was actively investigated in
parallel with development of H™ control theory.
The problem was solved by Kojima and Ishijima
(1994) in state-space form, the parameterization of all
the solutions was given by Tadmor (1995), and a
particular  (predictor-observer) structure of the
solutions has been recently been pointed out by
Mirkin (2000). We can find detailed reviews of this
area in (Tadmor, 2000, Mirkin, 2000) and the
references insides. In this paper, we revisit the
H? control problem for systems with input delays in
the framework of finite horizon. The first objective
is to discuss further the predictor-observer structure
of the solution, which is pointed out by Milkin (2000),
from a novel viewpoint. Being suggested by the
first discussion, secondly, we try to develop an
clementary approach to the problem, which is
completely different from the abstract approach based
on evolution equations taken in (Kojima and Ishijima,
1994, Tadmor, 1995) and requires only completion of
squares.

More specifically, the content of this paper is stated
and organized as follows. In Section 2, we
formulate the H ™ control problem for systems with
input delays together with two related H™ control

problems. In Section 3, we first clarify a
relationship between our problem and an H™ control
problem for systems with measurement delays. Next,
we derive a solution based on the known result for
the H* control problem in measurement delay case,
and show that the solution has the same
predictor-observer structure as the solution in
measurement delay case has. In Section 4, using
this structural information on the solution, we present
a direct proof of the solution to the finite horizon
H® control problem for systems with input delays,
which is based only on completion of squares.

Notations:  [*(a,b,R*) is the space of square
integrable functions of & -dimension defined on the
time interval [a,b]. When a=¢, and b=1, the
[’ -norm of f in L*(a,b;R*) is denoted as
IF]Z. [Pl denotes the Euclidean norm of x in
R*.  'For symmetric matrices X and Y ,
X2Y (X>Y) implies that X -Y is positive
semidefinite (positive definite). [ is the identity
matrix of appropriate dimension. ()' denotes the
transpose of vector or matrix. o(X) denotes the
spectral radius of matrix X .

2.  System Description and Problem Statement
Consider the linear time-varying system with the

time-delay 2>0 in the comtrol input, which is
defined on the interval [f,,7,] and described by
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-C%x(t) = A(t)x(2) + B(t)u(t - h) + D(E)v(8) ,
y(t) = C()x() +w(e), 4]

t
gi)y= E(( t))}

where x(f) the n -dimensional internal-variable;
u(f) is the r -dimensional control input; y(f) is
the m -dimensional measurement output, g(f) is
the (g+r) -dimensional controlled  output;
d@t) = (v@),w(®)") is the (p+m) -dimensional
disturbance; the initial condition (x(Z), #,,) (where
u, ={u(t+p),-hs f<0}) in R x I*(-h,0;R") ,
is given by a constant matrix N>0 and an
n -dimensional parameter £ as

z(t) = F()x(#)

x(ty) = N¢, u, =0. @

A@), B(),C(5), D(t) and F(r) are matrices of
appropriate  dimensions ~ whose elements are
continuous functions of time. For the system (1)
with the initial condition (2), the admissible control
u(f) = ®p(t,y) isgivenbya causal function of the
measurement data specifically to be the form
u(®) = O (t, (5), tg S5}, L SEShH—h

3
Problem ID ( H® Control Problem with Input Delay):
Given the system described by (1) and (2) and a
coustant number y >0, the problem is to find an
admissible control (3) which satisfies the inequality
e} <72 qaly +e e (w, =0) (D)
for all d =", w) in L*(ty,t;;R?™) and all &£
in R" suchthat (d,£)=0.

Remark : The terminal penalty &N¢ implies that
the controls are determined so as to attenuate the
effect of the uncertain initial internal-variable x(Z,)
which is known to be in Im(N); if N =0, the
initial internal-variable is completely (to be zero), and
if N is nonsingular (positive definite), the initial
internal-variable is completely unkmown.  For
simplicity, in this paper, we discuss only the
nonsingular case. The extension to the singular case
can be done by a perturbation technique (Uchida and
Fujita, 1992).

The H® control problem for systems with input
delays was solved by Kojima and Ishijima (1994), the
parameterization of all the solutions was given by

Tadmor (1995), and a particular (predictor-observer)-

structure of the solutions has been recently been
pointed out by Mirkin (2000). Problem ID is an

extension of the problem discussed in these
literatures in the points that the system with a finite
horizon is time varying and the criterion includes a
terminal penalty, and could be solved by extending
the arguments of (Kojima and Ishijima, 1994, Tadmor,
1995). In this paper, instead of pursuing this line,
we will develop another approach and provide a new
characterization of the solutions, which is inspired by
the observation in (Mirkin, 2000).

We first consider an auxiliary problem to Problem ID.
The system is defined on [fo,7;] and described by

-g; x(t) = A@)x(t) + BQ)u(t —h)+ D(yv(e),

$(0) = CO() +W(2) @
8= L é(?h)}, 2(t) = F@)*(0)

with the initial condition }

x(ty) = NE, ®

and the admissible control u(t) =® 4p(t,¥) is
given by a causal function of the measurement data
specifically to be the form

u(t) = ,
d)AID(t)! to —-hStSfo.
(6)

Problem AID (Auxiliary H® Control Problem with
Input Delay): Given the system described by (4)
and (5) and a constant number y >0, the problem is
to find an admissible control (6) which satisfies the
inequality

lelfy < 7> djall +& ¥2)

for all d=0",w) in L*(t,t;;RT™) and all &
in R" suchthat (4,5 =0.

(AID)

The difference between Problem ID and Problem
AID is found only in the role of
u,, = {ulty +5),-h< B0}, that is, u, 1is fixed
(to be zero function) as a part of the initial condition
in Problem ID, while #, is a part of the control
input to be determined in Problem AID. Although
Problem AID itself is an H® control problem
applicable to some control designs, we will use
Problem AID to bridge a gap between Problem D
and another H® control problem introduced in the
following.

We consider next an H® problem which does not
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have input delays but has measurement delays. The
system is defined on {#,,#;] and described by

g;x(z‘) = A(®)x(t) + B(u(®) + DEW(),

y(@) =C@Ox(t)+w(t), D
o= £) = F()x(t
gty = i z(t)Y = F(t)x(t)
with the inifial condition
x(ty) = N&, )]

and the admissible control u(f) =®,p(t,y) is
given by a causal function of the delayed
measurement data specifically to be the form

(DMD (0, [, StSty+h

®

Problem MD ( H® Control Problem with

Measurement Delay): Given the system described

by (7) and (8) and a constant number ¥ >0, the

problem is to find an admissible control (9) which
satisfies the inequality

el < 72l + & vo) (MD)

for all d=(",w'") in L*(f,,4;R”™) and all &
in R" suchthat (d,&) 0.

4() ={(D1\a)(t: D)1, <s<t-h}), ty+hstsy

The H®™ control problem for systems with
measurement delays was also solved completely in
(Basar and Bernhard, 1991, Nagpal and Ravy, 1997),
and, as is expected from existence of information
delays in constructing control inputs, the solution has
a natural predictor-observer structure.

Our approach to Problem ID, which we will take in
the following sections, is summarized as follows.
We establish first some relationships between
Problem ID and Problem MD via Problem AID, and
try to solve Problem ID based on the relationships
and the solution of Problem MD, so that the solution
of Problem ID has the same predictor-observer
structure as the solution of Problem MD has.

3. Structure and Characterization of Solution

To find relations among three Problems ID, AID and
MD, we observe the detail of the term of the
controlled output in each criterion. In (ID), if we
take an admissible control given by (3), we have

1
lelf? = ft el + J ' o=k o to < sse-mpffa .
0

L,
tg+h
(10)
In (AID), if we take an admissible control given by
(6), we have

1, t)
el = j ool e +I 0 ap - sz ssst-mpfPar
ty to+h

toth
+ £ " |0 ap - .

1]
an
In (MD), if we take an admissible controf given by
(9}, we have

¢, 1;
Il = [ e [ Josnn 0w sss-mffan
ty to+h

Lo+
+j ‘ Hd’AID(t)uzdt'
)

(12)
The following result is an immediate conclusion from
the descriptions of three Problems (ID), (AID) and
(MD) and the expressions of (10), (11) and (12).

Proposition 1: a) If u(f)=®,(t,y) defined by
(3) is a solution to Problem ID, the control
u(t) =@ (t,y) together with #, =0 isa solution
to Problem AID. Conversely, if a control
u(t) =D 4p (¢, y) defined by (6) is a solution to
Problem AID and satisfies #, =0, the control
u(t) = D 4p(t,y) is a solution to Problem ID.

b) If acontrol u(f) =® ,,(¢,y) given by (6) is
a solution to Problem AID, the delayed control
u(t) =D 4 (t~h,y) is a solution to Problem MD.
Conversely, if u(t) = @, (¢,y) defined by (9) is a
solution to Problem MD, the advanced control
u(t) =Dy p(t+h,y) is asolution to Problem AID.

c) U u()=Pup(¢,y) defined by (9) is a
solution to Problemn MD and satisfies u, ., =0, the
advanced control u(f) = @, ., (£ +h,y) is a solution
to Problem ID. Conversely, if u()=®,(t )
given by (3) is a solution to Problem ID, the delayed
control uty=0,pt-h,y) together  with
#,+» =0 is a solution to Problem MD.

Using the fact c) in Proposition 1 and a solution to
Problem MD, we will derive a solution of Problem
ID. Now we present the solution to Problem MD,
which is a slight modification of the result given by
Basar and Bernhard (1991). We need to introduce
the following four conditions.

(C1) There exists a solution M), t, S5t to
the Riccati differential equation
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—%M(z‘) = M@®OAE +AQ) M@ +F (@) F(@)

- M@®)(B®B@Y-y 2 DODIM @),
M) =0.
(13)
(C2) There exists a solution P(f), fy SI<I- h
to the Riccati differential equation

%P(t) = AP+ P(OA@)+D() D)

— P()(C() C(t) =y 2F(t) F(t) P),
P(t,)=N.

(4
(C3) There exists a solution
O(t+p,t-h), ty+h<t<t, ~h<f<0 to the
Riccati differential equation

—é%Q(t+ﬂ,t—-h) = At + PO+ B,t—h)

+Q(t+ Bt - A+ BY+D(t+ B D(t + B
+y 20t + Bt —=R)F(t + B) F(t + Ot + B,1 = h),
Ot —h,t—h)=P(t—h).
(15)
pOM(t+ B+ B =) <7’

(C4)
tothst<st, —h<B<0

Proposition  2: Assume that the conditions
(C1)-(C4) are satisfied. Then, a solution to Problem
MD is given by

u(t) = {‘B(’)'S(f,t—h)i"(t,t ~k), ty+hstsH

0, tySt<ty+h
(16)
where S(¢,t—#h) is defined by
S(t+p.t—-h)
= M(t+B)I ~y2Q(+ Bt -mME+B),
-h<B<0
an

and X%(t,f—#) is predicted with the “predictor”

a by —
a—ﬁx(mﬁ,r—h)_(A(Hﬁ)

+720(t+ Bt ~h)F(t +B) F(t+J)
—B(@t+P)B(t+p)S(t+pB,¢ —-h)E(+ p.t~h),
-h<pBs0

(18)
from the estimate X(¢—h,t—h)=Xx(—h) which is
estimated with the “observer”

g;f(t) = (A(t) +7 P POF (O F )

— B(H)B@Y SENE(E) + P)CEY (1) - C(HX()),
() =0.
a9
The proof can be found in the next section. From b)
in Proposition 1 and Proposition 2, a solution to
Problem AID is given by

~B({t+h)SE+h, DX +h,2), Ly SISH -h
{o, ty~h<t<t
(20)
which is the advanced form of the control (16).
Moreover, since the solution (16) satisfies %, ., =0,
it follows from ¢) in Proposition 1 and Proposition 2
that the advanced version of (16) given as

u(t) = —B{t +h)SE+ANF(E+h,0), toSt<h—h

e @1
is a solution to Problem ID. Here note that the
solutions (20) and (21) have the same
predictor-observer structure. That is, in constructing
the controls (20) and (21), the estimate %(#) is
estimated with the observer (19) based on the data
{(s), bty Ss<t}y, and %(f+h,t) is predicted with
the predictor (18) from the estimate ¥(z,2) = X(¢) .
It is also noted that the conditions (C1)-(C4) form the
same sufficient condition for existence of solutions to
Problems AID and ID. We can summarize these
facts, together with necessity of the conditions
(C1)-(C4), in the following form.

Theorem: a) There exists a solution to Problem
ID if and only if the conditions (CH~(C4) are
satisfied. If the conditions (C1)-(C4) are satisfied,
the control (21) is a solution to Problem ID.

b) There exists a solution to Problem AID if and
only if the conditions (C1)-(C4) are satisfied. If the
conditions (C1)-(C4) are satisfied, the control (20) is
a solution to Problem AID.

¢) There exists a solution to Problem MD if and
only if the conditions (C1)-(C4) are satisfied. If the
conditions (C1)-(C4) are satisfied, the control (16) is
a solution to Problem MD.

In the next section, we provide a direct proof of this
theorem by using an elementary argument based only
on completion of squares (Uchida and Fujita, 1990).

4. Proof of Theorem (Completion of Squares)

We prove only b) in Theorem, because a) and ¢)
follows from b) and Proposition 1. Before starting
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the proof, we present a preliminary result.

Lemma 1. Let Q@+pt-h), tg+hstSty , —hs f<0
be a solution to the Riccati differential equation (15)
in (C3) with the initial condition given in (C2). The
solution satisfies the Riccati differential equations

2 0t~y = A=+ Ot~ RACY

+D()D(Y+y 202, 1~ HF (t) F(6)Q(t, = )

~ (1,1~ RYP(t ~WYC(2 = KY C(t = BP(t — Y¥(1,1 =AY,
"g-ﬂ-Q(to +h+ f,t9) = Aty +h+ Qo +h+ B.tp)

+O(tg+h+ B,19)A(tg + h+ BY+D(f +h+ B)D(tg +h+ BY
+7720( + 1+ B,10)F (g + h+ BY F(to +h+ F)Q(t0 +h+ B, o),

Q(fo,i‘g) =N.

22)

where W(r,t—4) is the transition matrix associated
with A +y~20(z,t - DF(T) F(7) .

Lemma 2: The condition formed by (Cl1), (C2),
(C3) and (C4) is equivalent to the condition formed
by (C14), (C2) and (C3), where (C14) is defined as
follows.

(C14) There exists a solution S@+B.1-4) ,
n+hstsy , -hspso to the Riccati differential
equations

—%—S(r,t ~ny=8(t,t =, t =M +T(,1~h)S(,t—h)

+ F(tY F(t) - S(t,t = KXB()B(Y -y~ 2 F(1,t ~ H)P(t = ) x
x C(t =Ky C(t = h)P(t—B)F(t,1 = h))S(t,t = ),
S, - =0,

E%—S(t+ﬁ,t——h)=S(t+ﬂ,t—h)l"(t+ﬂ,l—-h)

T+t =h) S+ Bt ~h)y+ Ft+ BYF(t+ B)

=8(t+ B,t =Bt + HB(t+ ) S(t+ it —h),
[¢+pBt-h)= A(z+ﬁ)+y'2Q(z + B —-WF+BYF(t+5).

(23)

Proof of Sufficiency of b) in Theorem: Assume that
the conditions (C1), (C2), (C3) and (C4) are satisfied
so that (C14) is also satisfied, and consider the
functionals

Vi(t+ Bt -Hy=%(+ Bt —h)S(t+ Bt - H)x(t + f,t - h)

Va(t+ Bt - by = (u(t + By F(t + Bt = R 720Ut + Bt~hy"! x
x(x(t+ By - X(t + B,t = 1))

where Q(:—h,t-h)y=P(t~h), and further assume that,
for a fixed admissible control =) , x(z+p) is
generated by (3) and (4) and  X(:+ .t~ k) given by

t+f5
T(t+ Bt ~H)y="¥(t + Bt — E( = hy+ | ¥t + B, )B(syu(s —~ h)ds,
t-h

(24)
—st-i(t —-hy=(A(¢-"+ ¥ 2Pt~ WF(t - B} F(t =h)E(t—h)
+B(t = Byu(t — i)+ P(t ~ YC(t = Y (y(t = )y = C(t — WYE(t = h)),
tg)=0.
(25)
Substituting the definitions (24) and (25) together
with the formulas (14), (22) and (23) into the
following identities

.r' vt =+ Ve + At =)
endl g A

b3] d
'EEVz(f +g.t- h)l ﬁ=“”+§t_V2(‘ —h,t-R)}dt

=Wty 1 =W +Va .1 = ) =Vilto + A1) =V (o + ko)

in the interval [z +h,5] and

0 3 d
I_h{'é'ﬂ‘Vl(to +h+f,t,) +:9—,B—V2(t° +h+B,t)3d8

= V’](fo +h,t0) +V2([0 +h,t0) "'I/'] (to, to)"'r/z (to,to),

in the interval {fo,1,+4], and rearranging terms, we
obtain

4
lelf - Qe + £ 9= [ e 1= smne=
0

= )= Vi O = 7O = Wenax (N 3t

- P2 () - F(t, 1 ~ B Oty h = B (et ) = (1~ )
: (26)
Where u,in(), Vmex(® and wy, () are defined by

ey ~B(t+hyS@E+hOT(E+h1), taSt<t—h
Homin () = —B(t +Hy S(t + I 1g)E(t +h,80), to—hStsty

Veaa () = D(0) Ot = B ((r) = %(2,1 = )
0, y~hstsy
~C(EXR() - RN+ ¥ 2C()P(2) x

)=
Pima (1) xF(t +h,tY S@E+h,DX(t+h,1),
1pstsy—h
From (26), we see thal wu(t)=uy,(r) assures

lel? - 7|} +& ¥ s 0, and also see that the equality
holds only if (W) w(®) = Vpnax () ¥imax(t)  aNd
() =%(,n~n so that (d.H=0 . Thus
u()=upn(t) iS a solution to Problem AID.
Furthermore, when u(t) = upn(t) , it follows from (24)
and (25) that %(:+4,r) is generated also by (18) and
(19) and Et+hig)=0, tp-hststy. (Note that the
above proof together with Proposition 1 proves
Proposition 2.)
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Proof of Necessity of b) in Theorem: We show that,
if there exists a solution to Problem AID, (C2), (C3)
and (C14) must be satisfied. Then, necessity of the
conditions (C1), (C2), (C3) and (C4) follows from
Lemma 2.

Suppose that the condition (C2) does not hold; then,
we can find the smallest time * e[z,s) such that
(14) has a solution P(2), rp<z<:" and there exists a
nonzero vector o such that lm Py a=0 .
Now using the functional Vy(r—ht-Ah+hst<T+h
and a same argument as in the proof of sufficiency,
choosing nonzero (4,£) such that

0, () = {(o, 0), ) T<tsh-h
(Vinax (0= COXHD = 2(1)), St <T
(T<r
and ¢ guarantees x(T)-#T)=a, and taking 7 as
T->t", we have

.
la -7l +5 92 || dF@self ruofyarzo
]

for all admissible controls «() . This inequality
contradicts the existence of a solution. Thus, (C2)
st hold.

As to the condition (C3), by using the functionals
Vitto+h+Borgy and W+per-n) and modifying
slightly the above argument for (C2), we can show
the existence of solutions Qp+h+pB.t) and
o@+p.t-n) to the Riccati equations (15). Thus,
(C3) must hold.

Suppose that the condition (C14) does not hold; then,
we can find the largest time . (g +h,n] such that
the first equation of 23 has a
solution S¢t,t- k), t.<t<t; and there exists a nonzero
vector g such that lim S(T,T-hf=w. Now using
the functionals Vi3 B.i-h and We+pi-h) ,
T <<t , repeating the same argument as in the proof
of sufficiency, and choosing nonzero (4.¢) such that

e (), Wmax (), T<15h
W), W) = { ©,0, o +hErST (<D

and ¢ assure x(n)-x(.n-h)=0 and ¥I,T-m=§,
where §=0 assures (4.&)=0,we have

t;
el - 72 el + & vy 2 L’ () = im0
+H(H(T) = BY KT, T~ By {(x(T)= By + B S(T.T - B~ £ N&.

Taking 7 as T-t*, the right hand side of the
above inequality becomes arbitrary large. This
contradicts the existence of a solution. Thus, the
first equation of (23) has a solution on the whole
interval. Using this solution S¢:z-#) as a terminal
condition for the second equation of (23) and
repeating the same argument, we can show that the

second equation of (23) has a solution
S@+pt-n, -hspso. Thus, the condition (C14)
must hold.

5. Conclusion

We discussed a finite horizon H control problem
for systems with input delays. We derived a
solution based on the known result for the
H® control problem in measurement delay case, and
showed that the solution has the same
predictor-observer structure as the solution in
measurement delay case has. Using this structural
information on the solution, we also presented a
direct proof of the solution to the finite horizon -
H* control problem for systems with input delays,
which is based only on completion of squares.
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1. INTRODUCTION

In this paper, we consider H* control in mem-
ory state feedback for the state delay systems,
when the control input is constrained. First, we
propose an H° controller synthesis which make
the closed loop system asymptotically stable and
its L? gain less than a specified value. Next, ex-
tending the analysis method of state reachable
sets for systems no delay proposed in (Watanabe
and Fujita, 1998),(Boyd and Valakrisham, 1994),
we provide a method to evaluate an admissible
range of state. Finally, based on the reachable set
analysis, we propose an H* controller synthesis
method when control constraint is imposed.

For recent and related developments in this
area, see (Niculescu and L.Dugard, 1996) and
(Tarbourieh, 2000), where the memory feedback
case presented in this paper is not discussed.

2. SYSTEM DESCRIPTION AND PROBLEM
STATEMENT
System Description

Consider a linear system with delay in state. The
system is defined over the interval [0,00) and

described by
©(t) =Aoz(t) + A1z(t — h)

0
+ /_ Au(@)a(t + B)d5 + Bu(t) + Du(®)

M
z(t) =Cz(t)

Here, w(t) is the disturbance vector; u(t) is the
control input vector; z(t) is the controlled output
vector; and the state at time t of the system is
described by (z(t), z:), here, z; = {z(t+0)|—h <
B < 0} € L*([—h,0]; R*). The initial condition
is (2(0),z0) € R™ x L*>([—h,0]; R™). The number
h denotes the length of time delay and h > 0.
The parameters Ao, A1, B, D, C are constant
matrices and the parameter Agi(8), is a matrix
function whose elements are bounded continuous
functions.

In this paper, we consider this constraint condi-
tion about disturbance w

w(t) €W, Vte0,00) (2)
W = {wjw'Wpw < 1}.

Here, Wp is the given and positive definite matrix.

We consider the feedback controller for the time-
delay system as described by
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0
u(t) = Kox(t) + /_ Ko(@)a(t+0)dp. ()

Here, K is a constant matrix and Ko (6) is a
matrix function whose elements are in L2[—h, 0].A
closed loop system applied the controller (3) to the
system (1) is described as

i(t) =Aoz(t) + Arz(t — h)
0
+ / Aor (B)s(t + B)dB
—h

where, Ay = Ao + BKy, Ay = A, 1‘101([3) =
Ap1(B) + BKo;.

Now, we prepare a notation for defining a quadratic
form of the state. Denote by {P,R,S} a triplet
of three matrices P, R(8) and S(«, ) with the
same dimensions such that P is a constant matrix,
R(B) is a matrix function whose elements are in
L?[~h,0] and S(a, B) is a matrix function whose
elements are in L%([—h,0] x [—h,0]). A triplet
{P,R,S} is called symmetric if P = P and
S'(a, B) = S(a, B). For a given symmetric triplet
{P,R, S}, a quadratic form associated with this
triplet is defined as follows:

(& OLP, R, S}E,0)
0
.= £'PE + 28 /_ R(B)(8)dI @

0 .0
+/_h /_hC(a)S(a’IB)C(,B)dOLdﬂ,

here, (¢,¢) satisfies (§,¢) € B™ x L*([—h,0]; R").
A symmetric triplet {P, R, S} is called positive
semi-definite if (£,¢)'{P, R,S}(,¢) > 0 for all
(¢, ¢) and, in particular called positive definite
if there exists a positive number e such that
(&,¢)'{P, R, S}(€,¢(8)) > (& ¢)'{el 0 0}(¢,¢) for
all ¢, ¢, where I denotes identity matrix. We
denote {P,R,S} > 0 (> 0) when {P,R,S} is
positive semi-definite (definite). Negative semi-
definiteness and negative definiteness are similarly
defined.

We describe L2([—h,0]; R™) as L? for the simplic-
ity.

State Reachable Sets

Here, we assume the case that the disturbance of
system (1) is constrained by (2). Now, we make
the following definitions.

Definition 1. For A = (£,{) € R™ x L?, if
there exists a disturbance w that satisfies (2)
and there exists a time 7' < oo that satisfies
¢ =z(T),( = T, then A is called state reachable
from (z(0), zo).

Definition 2. A reachable set R(z(0),zo) from
(z(0), o) is defines as
R(LE (O)a zO)
={(,¢) e R" x L?
: (£,¢) is state reachable from (z(0), zo)}.

Now, for simplicity we assume about the matrix
W that constrains the disturbance w as

Wp=1
And we define a set £ as follows.
Definition 3. For any positive definite triplet
{P,R, S}, £ is defined as
E(P,R,S) =
{x= (¢ € R* x L*|AT{P,R, S} < 1}.

Lemma 1. Assume that there exists a positive
definite triplet {P, R, S} that satisfies LMI con-
dition LMI-1 for any A = ({,{) € R"® x
I?, ¥{P,R,S}A>1and for any w € W, where

(LMI — 1)

1e T
o 0 |17
/ / #C(=h)

| e

W )
A/ll Agp Az Ay . 7€
Al Az Agz Agy +¢(—h)
Alz Ay Asz Agy (@B | "¢ i) apao:
Ay AYy Ayy Ay tw

<0
Where,
Ay = Ay'P + PAy + R(0) + R(0)
Ayp = PA;, — R(~h)
A13(B8) = PAo1(B) + Ao’ R(B)
0

- %R(ﬂ) +5(0,8)
Ay =PB, Ax»=0
Aos(B) = A/'R(B) — S(~=h,B8), A2 =0

Asz(a, B) = R(a)' Ag1(B) + Ao1()' R(B)
3] 0
- (6—[3— + %)S(G,ﬂ)
Agy(e) = R(®)'B, Bu=0
and, if A;; is a function of parameter a or B8, A
is defined as follows:

AL (8) = Aji(a),
Aji(a, B) = Aji(B,a)

Then, the state reachable set R(0,0) of the time-
delay system described by (1) and (2) satisfies

R(0,0) C £(P,R, S)

/
ij

Ali(a) = Aji(8)
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Problemn Statement

Our objective of this paper is to design a state-
feedback controller (3) when the closed loop sys-
tem is asymptotically stable and the L? gain,
defined by (5), of the system is less than a scalar
v for any disturbance w which constrained by
W, and the input u of the closed loop system is
included by U:

U = {u®)u(t)Uu(t) <1},

where, Wp is the given and positive definite
matrix.

Here, an L? gain g is defined by

“z”Lz )
weL2,w#0 ”w”Lz

g= (5)
In this case, we call the L2-gain as “semi-global
L?-gain”, because the disturbance is constrained
by W.

3. H* CONTROLLER SYNTHESIS

In this section, we propose a synthesis method
of state-feedback controller that makes the closed
loop system asymptotically stable and semi-global
I? gain of the closed system less than . First,
consider the case that we do not limit the size of
the input.

Theorem 1. Assume that there exist non-negative
scalar p, matrices and matrix functions W,Y (o, ),
Zy and Zg1(B) that satisfies conditions LMI-2,

(LMI — 2)
W W

W Y(8)] ~

X >0,

[ T11 Ti2 Tig T
Iy Tag Tag Ty
F:13 5:23 g?s 1;34

a Doy gy Laa

(,8) < 0

Where,

Iy = WAy + AW + ZyB + BZy + 2W + pW
F12 = A1W W

T'13(8) = Ao1(B)W + BZo1(8) + WAy + ZoB'
+Y(0,8) +pW

I'ig =BW, T93=0

[o3(8) = WA, =Y (-h, )

F24 - 0

Das(e, B) = Ao1 (B)W + BZo1(8) + W Ao1 (8)’
+ Zo1(B)'B’

(2 DY (@,0) + p¥ ()
5ﬁ

T34 = BW, Tgy=-—-pl

o]

o1

A1 Aig Agz Ay Ags
Aly Aoy Mgz Aoy Ass
2:13 A;‘zg, ﬁ?s ﬁ34 1/:35
14 Az A’34 A;14 A45
15 Do Agg Nygs Ass

(o, 8) < 0.

Where,
A= WA6 + AW + X +2W + BZy + Z(’)B’
Ao = AW -W

A13(B) = Ao (B)W + BZo1(8) + WAy + ZB'
+Y(0,0)

A =WC', Ais=D, Ap=-X

Aos(B) = WA =Y (=h,B), Au=0

A25 =0

A33(0£,,B) = AOl (ﬁ)W -+ WA01 (CY)’ + BZ()l(,B)
+ Z01 (Oé)'BI
- (g + 5 (@)

A3y =0, Ass=D, Au=-

Ais =0, Ass=-7"1

where, W = W', Y(a, 8) = Y'(8,@). Then, the

closed Ioop system with the feedback controller(3)
for the system(1) is asymptotically stable and the
trajectory of the closed loop system exists in a
range M:

M = {(z(t), z:)|
(@(t),z) (WL, W L WY W (2(8), 2:) < 1},
and the semi-global L? gain of the closed loop

system is less than v > 0. Here, the feedback gain
Ky and Ky () are given by

Ko=ZoW™, Ko(B) = Za(B)W™

O

Here, we note that the state reachable set of
the closed loop system where a disturbance w is
constrained by W is evaluated by

EW LWL wrlyw ),
so we obtain the next theorem to design a state

feedback gain when the input of the closed loop
system is in U.

Theorem 2. If there exists a non-negative scalar
p and matrices or matrix functions W, Y (a, 8), Zo
and Zo1(B) that satisfies conditions LMI-3 and
LMI-2 in Theorem2,

(LMI - 3)
wow  Z
w Y Zo1 (,3)’ >0
Zo Z01 (a) U—-l

then, the closed loop is asymptotically stable and
its semi global L? gain is less than v, and its input
isincluded in U{. Here, the feedback gains are given
by

Ko =ZoW™, Ko(B)=Za(B) W™ (6)



Proof.
From (6),

w(®) Uu(t) =
(@(t), z) (W 25 ZoW
W Z01(8) Z0W ™,
W Zo1(B)' Zo1 (B)W ~* }(z(t), z¢).-

Now, the state reachable set is included in

EWL W LWtYW) = {A € R* x L*|
MW=L w L wlyw A <1},

so, if the following condition is satisfied, the input
of the system is included in .

w-twLwlyw'}
- {wzlz,w,
W2y Zo (B)W 1,

W_l.ZOl (,B)lZm (/B)W—l} >0

&=

[W tw- 1YW“ ]
[ W Zo1(8) Zo1(B

1ZOZ Wl W2, Z0 ()W
Wt

> 0
=4

[ V=[5 aatirion] > 0

= ([VVK V;’]; [zoiém'} [Zoﬁéﬁ)']l >0
<~ (LMI-3

Q.E.D.

As a special case, we consider the case when
Ap1(B) in (1) and Koi(8) in (3) are zero. In
this case, the system has only the point delay
and the controller is memoryless controller. The
condition of this system which corresponds to
that of Theorem 2 is described in the following
theorem.

Theorem 8. If there exists a non-negative scalar
p and matrices W, (a, ), Zo that satisfies the
conditions:

W>0 X>0,
i WAL + AW i
<+BZ0 L2 B ) AW D <0
WA 0 0 =
I D' 0 —pWp |
i WA6 + A+ W 7
+X we' AiW D
+BZy + Z4B'
CW ., <0,
WA 0 -X 0
i D' 0 0 -]
(W Z}
i Zo U_l] >0

then, the closed loop system is asymptotically
stable and its semi-global L? gain is less than 7,
and its input is included in U. Here, the feedback
gain is given by

Ko = ZOW_l

4. ALGORITHM

The condition given by Theorem2 includes bilin-
ear terms, difficult to solve . Here, we propose
an algorithm which overcomes such difficulty in
solving LMI conditions iteratively.

Algorithm

Step 1 Define the initial values of W and Y (o, )
asW=el,Y(a,p) =€l

Step 2 Solve the following LMIs (LMI-2’),
(LMI-3) and (LMI-4) given as

(LMI - 2')

W W

W Y (0, 5) >0, X>0,

[Tq1 Tig Tz Tig
[yg T2 Tog T'ag
P:13 F:23 F?g T4
| T1a T4 Ty T'aa

(,8) <0

where,
Ty, = WAL + AW + Z4B + BZo + 2W + pW

T13(8) = Ao (B)W + BZo1(B) + W Ay + ZoB'
+Y(0,8) +pW
Ta3(a, B) = Aa(B)W + BZo1(8)
+ WAw(B) + Zo:1(8)'B'

(4 gV (e )+ (@)

All A].Z A13 A14 A-15
AQZ A22 A23 A24 A25
l3 AIZ3 A33 A34 A35
34 ’24 A{34 A44 A45
Aly Abs Agg Als Ass

(a,8) <0
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(LMI — 3)
w o w  Z
l:W Y Zm(ﬂ)’} >0
Zn Zgl(a) Ut
(LMI — 4)
ww W W
wy]<w Y]

Step 3 If solutions W, Y («, B) are obtained, then
the W, Y(a, 8) are solutions to the problem. If
the solutions W, Y («, B) is not satisfactory, put
W =W,Y(a,8) = Y(a,B) and go to Step 2.

Remark 1. The conditions in step 2 are linear, but
infinite-dimensional ones, and the computational
complexity is very high. Here, using a technique
which we show in the next section, the conditions
are reduced to the finite dimensional conditions,
and becomes feasible ones.

Remark 2. A special case of this algorithm is
applicable to the conditions in Theorem 3. Here,
we note that when we apply the special case of
this algorithm to the conditions in Theorem 3, we
can show a convegence property of the algorithm.

5. REDUCTION TO FINITE-DIMENSIONAL
LMIS

These LMI conditions, proposed in the algo-
rithm, are infinite-dimensional LMI conditions.
These infinite-dimensional LMI conditions are
still difficult to solve,and some idea is needed to
solve them. Now, we propose a method to re-
duce infinite-dimensional LMI conditions to finite-
dimensional LMI conditions(lkeda et al., 2001).
This method doesn’t need descritization.

Now, we assume that, in LMI conditions (LMI-
2%), (LMI-3) and (LMI-4), Ag:1(8), Zo1(B) and
Y (e, B) is described like:

Ao1(B) = AQy + BAG, + BPAG, + - + B AY

Zo1(B) = Z$ + BZ3 + B2 23, + - + B' Zg,

Y(a,8) = Yo+ (a+B)Yi +--- + (o + Y,
then, LMI conditions in (LMI-2’), (LMI-3) and
(LMI-4) are written as:

Fo(M) + f1(0)Fu(M) + f2(0)Fa (M) + - -
+£(0)F(M) <0
Here, 0 is a vector like:
9€ 0= {[o flllos f € [-h,0)}

and f; : R* = R is a polynomial function of 6,
F; is an affine matrix function for a symmetric
and unknown matrix M. Here, an LMI written
like this form is able to be reduced to a finite-
dimensional LMI without so-called discritization.

6. NUMERICAL EXAMPLE

In this section, we show a numerical example with
a system which has only point delay:

&(t) = Aoz(t) + A1z(t — h) + Bu(t) + Dw(t)
(™
z(t) = Cx(t).
and a memoryless controller:
u(t) = Koz (t). (8)

In this case, the system has only point delay,
then, the matrix inequality conditions given by
Theorem 3 are finite dimensional.

The system parameters of (7) are given as:

-2.00.0 -0.2 0.0
Ao = [0.0 —1.5} A= {0.0 0.5]’

1.0 —0.1
B= [0.5] D= [—0.2]'
The values of Wp,U which determines the range

of w,u respectively and the value of the L? gain
are chosen as:

Wp =1.0x10", U=1.0x 1072, v=1.732.

With these conditions, we solve the LMI condi-

tions by the special case algorithm introduced the

section 4, and we obtain these solutions in the 1st

iteration.

W= [0.0536 0.0253] X = [3.1548 1.5652}
0.0253 0.0151 |’ 1.5652 0.7781 |’

—~2.2261 32,2513
Zo = [—1.1356] » Ko = [—21.0170] ’

p = 3.5357 x 1075,

And in the 20th iteration, we obtain these solu-
tions. Here, we really found the decreasing prop-
erty of W with iterations.

W= 0.0021 —0.0007
~ {=0.0007 0.0021)°

x = [0:4035 0.1994
~ | 0.1994 0.1005 |’
—0.3000 _ [ —184.4005
Zo= [—0.1579]  Fo = [—134.7405] ’
p = 0.0306.

The responce of the step disturbance (0.5 < ¢ <
1.5) with this feedback gain is described in Fig.1.

We found that u(t) stays in the range ¢/ which is
defined by the given matrix U.

7. CONCLUSION

We proposed an H* controller synthesis method
for linear time-delay system, when a size of the
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Fig. 1. Simulation result : Input u(t)

input is constrained. The controller makes the
closed loop is semi-globally asymptotically stable
and its L? gain less than a specified value.
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L?-gain Analysis and State Feedback Control Synthesis for Linear Time-Delay Systems

— Infinite-Dimensional LMI Approach —

Kojiro Ikeda, Student Member (Waseda University), Takehito Azuma, Non-member (Kanazawa
University), Kenko Uchida, Member (Waseda University)

In this paper, we propose a new method of L2-gain analysis and state feedback control synthesis for
time-delay systems via infinite-dimensional LMI, which reflects explicitly infinite-dimensionality features of
time-delay systems. First, we show an infinite-dimensional LMI condition for L?-gain analysis. The infinite-
dimensional LMI condition depends two parameters, and difficult to solve. Next, we propose a method of
solving such infinite-dimensional LMI conditions using a convex polyhedron. The method consists of two

steps: the first step is to make a convex polyhedron, and the second step is to reduce an infinite-dimensional
LMI condition to a finite-dimensional LMI condition using the convex polyhedron. Finally, we discuss a
state-feedback control synthesis based on the infinite-dimensional LMI conditions for L?-gain analysis and
the method of solving infinite-dimensional LMIs, when the feedback gain is constrained.

F—T7—F ! GEBERY AT A (time-delay system), L?4° 4 (L*-gain), #FATFIAZER (Linear Matrix Inequality:LMI),

IREET7 4 —F 3y 7 (state feedback)

1. @ U &I

WE, BIEHE Y 27 LOBIT-ZEHI BT, ARk il
HETVIT ) X L% BT 5BFATHIAZER (Linear Matrix
Inequalities: LMIs) # AW 2 FEFEE STV 5, ) (10
LMIFENDERAIL, VA7 LORED 2 AKX TELLNS
V777 7TEEDH BT A L — VB (storage function)
DEHT LMIOBEIRES S22 L12H 5,

LMI FEA2 RO ERY 27 L OB - sxshio g+
LTERALTTICHE L ENTVEY, EXLDH2
FRY GuOREEMBATOMEE OVEKRINE, G2 BM 2w
HEERBOBFRRT LMl O#EANTOERL 25T
WH N, £ TR, REO2ABREL TE, £9EH
B0 2RER e dLETEREENLDE A, $77,
KE7 4 =Py 7HWEIE LTI AEY —L AT 4 —F
Ny ZIZRETHZ L2 Lo T LMI FEQOETATEL
ZoTBY, Whid, BHOBRES,LAEBRLRTIZEEL
RZYDTHE, LPL, GEEBEY AFLAORAOEYIE

ZOEBRRTIEZH D @, BEEOLITZOERBRRTELTE
BV RBL AR - RRETEIC R A LA ATHIZES, &
FERIE LMINCEDS C 72 BEY AF LOH L WEN - 3E
EOBRE LD TVD O, KBTIEFRLBE,S, L2741
VIR ERET 4 —F Ny s oy PO -5 OBREHIIONT,
FERRRTC LMIIZED CHL VIR - BREHETRET 2,
RRFLUEL-BOREEOE T Lo2L, OF
D2 B, 1 BB, KE2RERXE L TETEHE
SEDREBRD S %5 LR 27 L OERRTO
WREO—WE 2 REXE 2, 20 2RERXOEREH
% 2DI8T A— 5 |\ TIKET B ERBRTT LMI £4H1218% &
BRI ETHD, RRETIIETEERSO 2 KFRIZE
ELTWwE, 2881, ZOEBRITLMI %, 5 2—%
EREICEL S WSHEREERTAI LI L o TEBICHE
S eD L BRBO LMIIZRESRDLILTH D, E
FRRTC LMI &3 RR BEEZ L T wn I ths, R
RFEVBEEL72EREL D RFEOL L EHTH D, E
B, 2 MEOERRIC LM OBEIIBCTRFEZ %<
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T2 EFTENE, ERELDBVEREEL LN
%@%%O&B,2@@@%@%%@1Wﬂ@%%,ﬁﬁ&
= LMI 4 EBRMEO LML icRE S TroB HER, &
5D ko TIREENT:, ¥ AV AFTVa— Y &R
B BT A—FEE LMIOBEOT AT TERL LD
THD, O IOFEIBNTIE, BRTENILVEELRES
P IE8T A — F I B ALSEENERFEET
&D,~ﬁ%&%ﬁ&ﬁ%ﬁéntw%g”$%fu,ﬁ
%ﬁﬁﬁﬁ%@&z%AWL%%m%w?ﬁéKﬁfaﬁ
AT LML Téh AL, S5i2, ERRILMI A2 @O
85 A—FITIRET A E VO BREEFZEL T, RTHED
I AnuHLWLSEAOBREZRET 5.

LT, AT, ITE2ETHEYATLAEREL,
17%%@tb@ﬁﬁkﬁLMI%#%ﬁﬁ?éo%Lf,%
3ETIE, FOERRTO LMI 4% ARED LMI F4+
CEESELFEBICMSEGOBRELRET 5o

K,%4Efd,%3ﬁiffﬂ&tﬂf4>%ﬁ®
%%u%ﬁwtﬁ%74—FNy7:>bn—iwaﬁﬁ,
&63‘,%@W’f%vmk%é%ﬂﬁbt%émﬁﬁ
EIIOWTREL, REICESETILY S,

B, DWTIZBWT Y7 13T5ldH 5\ ikNT PV OIE
%=, WEATH PoB L UNHTIIERE Pa(a, B) 13T

LT, &
| P Pi(B)
““ﬁ*'{awy.%mﬁ>}>(qa
Yo € [-h,0], 8 € [=h,0]

%uam+ﬂm5»

L(Py(e) + PL(B)
%am+am)a%@m+&wm>

€ [~h,0] x [k, 0] 2BV T, EE (B%) Th
5z t%%%#é it,Lﬂ-m%RﬂuEﬁLmﬁ]
CEE AN D T EAMAE n RTENY P VEREOEE
%, C([~h,0];R™), CY([-h,0]; R™) 1X XM [~h,0] TZE
XN BEES L 1 ERERMA TR n RTENY bV
EEBOESE, TRERETLOLT 5,

2. LA iR

(2:1) WBRY AT L
WY ATFLEEZ b

| am—

SE DRI LA SR

(t) = Aox(t) + Arz(t — h)

/ Aon(B

+ Bu(t) + Dw(t)
2(t) = Cx(t)

THHC, 122515, FRUE
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z(0) = ¢(0) , =(B) = ¢(H) ,
22T, ot) € RMIIREE , u(t) € R™IHIBMAT , wlt) €
RPIZ

~h<B<O

PHBAT , 2(t) € RIGHIEE , (6(0),4(0)) €
RﬂxL%kmm, R™) BHIEARAE , R RV AT LT
BT RT.

$72, Ag, A, € R, Aoi(B) € L*([—h,0]; R™™),
BeRY™ CegRI™ DeRY™, h>0Th%,

(2:2) WBREYE CEBEVATL(1)IIBWT
w(t) =0, w(t) =0&LTHLNZ2ENLIRRAY X
FLEEZ Do

( ) AQ:E + Alilt(t — h)

/ Ap(B

HEEBEY AT L (2) ORBEERE2ED L IILER
T5o
(% 1) LEEBEY AT L (Q)EBVT, EEOTHMIK
%wmxwm)uﬁLﬁanﬁﬁuﬁﬁiété,ﬁt
BRI AT L (2) BAHBEETHHEV I,
(2:3) LPAHAREME 20WT, IOHTE, &
ZEEEYAF L (DICBVTu(t) =0 LTHLNZDE
DUTEEBEYATLEEZEL b,

a:(t) = Aom(t) -+ A1:E(t — h)
0
+ [ An(@a(t+8)d8 + Du(t) -+ (3
—h ‘
z(t) = Cz(t)

GEERY AT 4 (3) O LEAET

#£T 5,

(F%2) GEABEYATL (3) KBWwT, AHRE
(6(0),0(8)) = 0 &Lk, EEOAT wlt) €
L2([0,00); RP) W35 L HITD b #12 2(t) € L*([0, 00); BY)
Yhnk i, GEEEYAFLA Q) LPARNRETDH
LEWI,

X512, PARARETH S &) R UERHY AT 4 (3)

DIFEA4Y GE2EDLHIIEET S,

(3% 3) GFEEBEYATFL Q)N LPAHRNEETHALL
5 GEEEVATL () O LAY GEOETER
Th,

TEBEOEDLIE

G= sup lzllze o (4)

weL?,w#0 Hw|lL2

DT gt La /A ERT

(2:8) L2FAEEN  UEEBEY AT L (3) HRHE
EhoyUTD L2741V & o0, ThbbG <y
L hlrdDEEIIROEFBIZEINSZAON 2,
(1) T2 LMI&H (LMI-1) k7 $47518 L0
FEIERE P,Q,R(8), S(a, f) AT 5% 51, U7
RIS AT A (1) ISBWT, u(t) =0 & LA UZREY



25 L (3)
(LMI-1)

HAHRETPOYUTO L2542 8T 5,

Ll(aaIB)

Q>0

I

LQ(aaﬁ) =
ALP + PAg+Q
(+R(0)+R(g+cc) PAy — R(-h)
AL P — R(=h)’ -Q

Agi(e)' P + R( a) A ,
( - C;%(&) (e, )0 > R(a) Ay — S{a,—h)
0

PA(B) + A4 R(B)
2 R(B) + 500, 5) PD
A R(B) - S(~h, B) 0

R(a:)' Ag1 (6) ) < 0-(6)
( )

+A01(0<) R(B) R(a)'D
—(aa + aﬁ)s(a B)
D'R(B)
B, T,
P=P,Q = Q eR™"
R(pB) € C*{([-h,0]; R**™)
S(a, B) = S(8,e)
€ C*([-h,0] x [~h,0); R™*™)
Ve, B € [—h,0]
Thb,
SR8 1 IR T

3. ERAT LMI 25 FRAT LMINDBE

HETEONLEBITERRTO LMI&HTH), 20
TECHHELIEE—RICRETH S, F2T, KETIE
IS DOEERT LMl B2 B DOFEEZRET L,

(3-1) EAWMFIE 2T, (LMI-1)iBwT, ¥
AF 885 2= 5 Ag(B) B IUE R(B), S(a, B) #*

Ao1(B) = AYy + BAS + BPAG + -+ B AL,

R(B) = Ry + BRy + f?Ro +--- + B'R,

S(c,8) = So + (a+B)S1 + -+ + (o' + BYY,
TEZONBLL, WFROLMI L 2XD L HB/NTF A—
& 7F LMI

Fo(M) + f1(0)Fy(M) + f2(0) Fa(M) +

+AOE(MY<0 - (7)
DETEHRARATE D, 72770, E2EDLHIARXRI LT
Hb,

e0:={la f)laec|-h0,5e[-h0]}

IIT, fi: R~ RIZODZERBHRTH Y, Fildxin

9%%ﬁﬂMﬁﬁL?74?&ﬁﬂ@%ﬁ?@%0
k&, DEDOFBIZLY, (7) O&MFITERED LMI

SHIZRESELILENTES,

[EEzN”H%,M21+U@®E§{mw%“mﬂ
(p; € R,i = 1,2,--,k) #H6, #E T =
{1f1(8). £2(6), - -- <)Heee}%m% &G RUZB
Hé&%ﬁﬁk?%ou@ké,H@EE@Eﬁ_ﬁL
D¥ O LMI #7475 MOPSHEETIUE, 20475 M
BEEDI e OIZxL, (7) 2727,

Fo(]W) +p1;1F1(.M) +pi2F2(]\vf) +
+paFy(M) >0 - (8)

ZIT, pREE D FHNERERT,
FE 1 COEERNEEE HOEEDOERIZBVT (8) 4
HSLT UL F OREO AL zw b (8) ALY HZ
LERRLTWS, LT, T EUHEN/ISV HE
%&Téltulb,H?%>®%ﬁuﬁ?%ﬁ?%%&
ETHIENTES,

XEk (1) T, LSEEOBERGELLT

r = [min f1(6) min f2(6) - min fi(6)),

Ty = [1(3}6&&3)(]”1(9) lg"éagfz(g) rgleaécfl(H)]’,

D2 EENACEOBE K QUEOTESEHD) 2 KT
BHEFREL TS, COFERI—BRHEZHEK iBLT
I35 A= FODBENFEEO—EHLEEIERTELLO
T, AHTOMBEILZOETHEATE S, L2L 2
B, TOFEIZFO—FEED/-DOIZ, RFEOREVE
BRIE &%T EEL D o TWD, F2T, UTTIE, KE
DREEICBIF A5 A—-FH 2EL 2D fITLHBEREHT
HHEVI)EREFEZEETAZI LTI ) RTFEOD LV
SHEAEDERTRET S,

(3:2) NBEHOBE  BIETHESBB O ERE Y
AF LR T 5785 A= FERFELMLICHL TE, Tid 2
DDNT A~ Fa BILETFELAZDDICZ S, ZhiE, FEE
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Abstract

In this paper, we consider a synthesis problem of delay-dependent memory state feedback control which
stabilizes linear time-delay systems. First we derive conditions for stability analysis and controller synthesis
in the form of infinite-dimensional (parameter-dependent) linear matrix inequalities (LMIs), while infinite
dimensionality of the LMIs may lead to less conservative results, but makes the conditions difficult to use.
Second we show a technique to reduce the infinite-dimensional LMIs to a finite number of LMIs. A nu-
merical example is given to demonstrate out approach. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Time-delay systems; State feedback control; Linear matrix inequalities

1. Introduction

In state feedback control synthesis problems for linear time-delay systems, two typical classes of
state feedback controllers would be delay-independent memoryless state feedback controllers

u(t) = Kx(t)
and delay-dependent memory state feedback controllers

u(t) = Kox(l‘) + /—h Km(ﬁ)x(t—{— ﬁ) dﬁ
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It is well known that the linear-quadratic optimal control has a memory state feedback form.
From the view point of the infinite-dimensional state space of time-delay systems, memory
controllers are natural state feedback controllers, and we can expect that memory controllers
achieve better performances than memoryless controllers. An inevitable issue of memory con-
troller syntheses is difficulty arisen from their infinite dimensionality in computations and im-
plementations. In this paper, we discuss a synthesis problem of memory controllers which stabilize
a linear time-delay system, and propose a synthesis procedure based on a finite number of linear
matrix inequalities (LMIs).

Syntheses of memory controllers for linear time-delay systems have been discussed from the
various viewpoints (see, e.g. Refs. [9,14,15]). We discuss here a synthesis problem from the
viewpoint of stabilization. Recently the LMI approach [3,5] has been developed in analysis and
synthesis problems for linear time-delay systems and its advantages in numerical computations
are presented in Refs. [4,13,16]; however, the approach has mostly been limited to the case of
utilizing finite-dimensional LMIs and synthesizing memoryless controllers, and one exception is a
discretization technique by Gu [6,7], for stability analysis, which can characterize infinite-
dimensional integral kernels of a general Lyapunov functional with a finite number of LMIs, but
is difficult to apply to memory controller syntheses. For more recent progresses of stability analysis
and synthesis for linear time-delay systems with and without LMIs, we can see Refs. [11,12].

In this paper, we propose a new LMI approach to a memory state feedback control synthesis for
linear systems with delay in the state. First we consider stability analysis and state feedback con-
troller synthesis and derive conditions in the form of infinite-dimensional (parameter-dependent)
LMIs. Second we reduce the infinite-dimensional LMIs to a finite number of LMIs by applying the
technique proposed in results [1,2]. Finally we demonstrate its efficacy by a numerical case study.

2. System description and notation

Consider the linear time-delay system,
x(t) = Aox(t) + A1x(t — h) + Bu(t), 0

x(B) = ¢(B), —h<B<O,
where x(¢) € R" is the state, u(f) € R™ is the input, ¢(B) € R" is a continuous initial function, and
Ay € ™", A, € R™" and B € R™" are constant matrices. The parameter 4 denotes the time delay

of this system and % > 0. For the linear time-delay system (1), we consider the following state
feedback controller,

u(t) = Kox(t) + / KB+ )4, @)

where K, € R™" is a constant matrix and Ko;(B) € L*([—h,0; R"™*") is a matrix function.

The purpose of this paper is to design a delay-dependent state feedback controller (2) which
stabilizes the time-delay system (1). '

In this paper, we use the following notation

P P(B) ,
{P{«x) Pz(a,ﬁ)} >0, Vee[-h0), Vfe[-h0 (3)
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in the sense that

Py 1(Pi(a) + Pi(B))
(P +PE) B+ hGD) | @
P, =P, (5)
P, f) = Pr(Br0), Vor € [0, VB € [~h,0, ©)

where “>” denotes positive definiteness of matrix and “” denotes transposition of vector and
matrix.

3. State feedback control synthesis
3.1. Stability analysis

We consider a linear time-delay system as follows,
0
(0) = Auet) + Aix(c = 1)+ | Au(B)x(e+B) 4P, -
~h

and derive a asymptotical stability condition of the above systems (7).
Now we define a functional V as follows,

0
o) =X P + [ 3

0

(¢ + B)Ox(t + B df +%(2) / R(B)x(t + B)dB

h h

h

+/0 (¢ + )R (o) daex(z / / (t + 2)S (e, B)x(z + B) dordB, (8)

where
= [x(t+ B)| —h<B<O}, P,QeR™, R(B)€L}([~h,0R™™),
S(o, B) € L*([—h, 0] x [—h,0]; R"™").
The following theorem provides a sufficient condition for the linear time-delay system (7) to be

asymptotically stable.

Theorem 3.1 [8]. The linear time-delay system (7) is asymptotically (exponentzally) stable if there
exists a Lyapunov functional (8) such that :

Vi(x,) = ex(t)]” for e >0 (9)

and its derivative along the solution of (7) satisfies
d

5 Vix,)< - ez[x(t)l2 for ¢ > 0. (10)
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By using the functional (8), we have the next theorem for the asymptotical stability analysis.

Theorem 3.2. If there exist P, Q and continuously differentiable matrix functions R(B), S(«, B) which
satisfy the following conditions, LMI-1:

( AP + P4y

( PAy(B) + AuR(B) )
+Q + R'(0) + R(0)

PA, — R(—h
) - —5R(B) +5(0,8)

Li(e, f) = AP~ R(=h) -0 AR(B) — S(—h, B)

( A ()P + R (o)A ) , (R’(@JM (B) + Ay, (2)R() )
R(a) A4, — S(o, —h)
— 2 R(a) + (e, 0) S REANCH)

<0, (11)
Lo h)= | gy sy ] >0 (12)
0>0, Yael[-h0], Ve |-h,0, (13)

then the linear time-delay system (7) is asymptotically stable.

Proof. To show that the linear time-delay system (7) is asymptotically stable, we prove that the
functional (8) is a Lyapunov functional, that is, the conditions (9) and (10) of Theorem 3.1 are
satisfied.

From Eq. (12), there exist continuous functions A, («, f) and 4,(«, f) which satisfy

P (R(OC) +R(ﬂ)) > /'{2(0(, B)], ﬂ.l(d,ﬁ) = /12(06718) > 07

where

11,/12 : [—h,O] X [*’*h,O] — R

and I denotes a unit matrix. Thus the next inequality is satisfied.

=/f /Z [—;l-x’(t) x'(tﬂ)MLz(a, );L/Z(a’m}Lf}xf%)}dadﬁ>0. 14
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Since the functional (8) can be written as follows,

V(x,)zf_z /_f [—}l;x'(z‘) x'(r+<x)}L2(a,ﬁ)[ (’%xf)ﬂ)}dadﬁ+/_Zx’(t+,8)Qx(t+ﬁ)d/3

AR G m TV

0
n / e+ POt + B4,

the inequalities (14) and (13) show that the functional V(x,) satisfies the condition (9).
From Eq. (11), there exist continuous functions As(«, B) and A4(«, f) which satisfy

Ao, B)I < {Ll(a’ A) —;—L’l(oc,[)’) } < Mo, B, As(e, B) < a(o, B) <0, Vo€ [-h,0],

VB € [—h,0],

where
A3, A4 1 [<h,0] X [~h,0] = R.

Thus the next inequality is satisfied.

/h/ {-x:a }{L‘(“’ﬁ)z 1% ﬁ)}{ (E‘f)ﬁ))}docdﬁ<0 (15)

The time derivative of Eq. (8) along the trajectory of Eq. (7) is given as follows,

Lyt = Sxtpet) 4 x0/P ox) + [ x4 B 05l )8
+/~ (r+ﬁ)Q (t+ﬁ)dﬁ+——x z‘)/ R(B)x( r+ﬁ)dﬁ+x(i)’
0 0 0
<[ R(ﬁ)g x(t+ B)df + /hx(t—}—oc)R(oc) du-gx(0)+ [ %x(t—i—oc) R(z)' do - x(2)
/ -xt+cx o, B)x(t + B) docdﬁ-{—/ / (t+ a)'S(a, ﬁ) (H—ﬁ)docdﬂ
h Iz h h :
0 0 Ex(t) },x(t)
= [ [ |ist=) | Late )| 1xle =) | ana, (16)
T Xt + 0) x(t + B)
where we used the following identities,

%x(mﬁ) aﬁ(t+[3) %x(tw):%x(tw)-

From the inequality (15) and the presentation (16), we can show that the time derivative of Eq. (8)
along the solution of Eq. (7), i.e. (d/df)V(x;) satisfies the condition (10). U
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Remark 3.3. It is known (see, e.g. Ref. [11]) that the existence of Lyapunov functionals of the
form (8) with O = 0 is necessary and sufficient for linear time-delay systems (7) to be stable. In this
sense, the LMI condition (LMI-1) given in Theorem 3.1 is a rather general one including some
known conditions as special cases; for example, if we set R(f) = 0 and S(«, f) = 0in LMI-1, LMI-
1 is reduced to the well-known LMI condition for stability (see, e.g. Refs. [4,12]).

3.2. Controller synthesis

From Egs. (1) and (2), the closed loop system is given as follows,

0

#(t) = Ax(t) + dux(t — 1) + / (Bt + ) 3f. (17)
Ay = Ay + BKy,

/II = Al)

Ao = BKyi (B).

Applying Theorem 3.2 (for stability analysis) to this closed loop system with an unknown feed-
back gain (Ky, Ky (), we have the next theorem for state feedback controller synthesis.

Theorem 3.4. If there exist W, X, Zy and continuously differentiable matrix function Zy () and
Y(«, B) which satisfy the following conditions, LMI-2:

(o omene) e (T %VAz;))
Ly(a,B) = Wi, — w x v, - v(-hp) | <o, (8
7, (0)B' + AV , BZ ()+Z()R
(BT 5en)  aw-ve-n (50 )
L4(O‘,ﬁ) = Z Y(Zﬁ) > 0, (19)
X >0, Vae[-h0], VBe[-h0, (20)

where W, X € R, Y(a, ) € R™", Zy € R™" and Zy;(B) € R™*", then the time-delay system (1)
with the state feedback controller (2) given by,

Ky = ZyWw!, (21)

Koi(B) = Zu ()W, o (22)

is asymptotically stable.

Proof. By setting
P =R(p) =W, . (23)
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PloP =X, (24)
P™'S(a, B)P™ = Y(a, ), (25)
Ko P~ = 74, (26)
Ko (B)P™" = Zo1 (), (27)

we can see that LMI-1 and LMI-2 are equivalent. Hence, from Theorem 3.2, the time-delay
system (1) with the state feedback controller (2) given by Egs. (21) and (22) is asymptotically
stable. O

Remark 3.5. Note that, in the above synthesis, we restrict the solution (P,Q,R(f),S(«,f))
of LMI-1 to the special form satisfying P = R(f). The more general synthesis is possible, while
the more complicated LMIs will be solved. To the contrary, if we take R(f) =0 and S(e, ) =0
in LMI-1, LMI-2 is reduced to the well-known LMI condition for memoryless controller
synthesis [4].

4. Reduction to a finite number of LMI conditions

Inequalities in LMI-2 depend on parameters « and f. It seems difficult to solve these infinite-
dimensional (parameter-dependent) inequalities directly. In our approach we reduce these
infinite-dimensional LMIs by using the technique in Refs. [1,2], and construct a solution to the
infinite-dimensional LMIs by using a solution to the finite number of LMIs.

We restrict solutions in LMI-2 to the following forms,

Y(Oé,ﬁ) =1 +g1(0(» ﬂ)Yl +gz(06,ﬁ>Y2 T +g/¥(a7ﬁ)Y/y7 (28)

Zo(B) = 22 + W (HZ + ma(B)Z + - + ki (B, | (29)

where g, : R> — R is a continuous differentiable function of « and B such that

gi(a’ ﬂ) = gl(ﬂ? OC),

k- R — R is a continuous differentiable function of B, and the unknown matrices ¥; and Z' are
assumed as

Y € R™ Y =Y(i=0,1,...,1y),
ZLQI € Rmxn(i — O’ 1, . ,,lz).

Note that Eq. (28) satisfies the condition (6). Then inequalities in LMI-2 can be written in the
form of the following parameter-dependent LMI condition,

R(M)+ [O)F (M) + -+ f(O)F(M) <0, (30)
where
be®= {[aﬁ]ll‘x € [—h,O],ﬁ € [—h,O]} (31)
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and f; : R? — R is a continuous function of « and f§, and a symmetric matrix function F; depends
affinely on the unknown matrix M which consists of ¥;, i =0,1,...,/y and ZOI, i=0,1,...,1.
The parameter-dependent LMI condition (30) can be reduced to a ﬁmte number of LMI condi-
tions as follows.

Theorem 4.1 [1,2]. Let {p1,p2, ..., p,} be vertices of a convex polyhedron which includes the curved
surface T,

T = {[/1(6)/2() --- £:(6)]'0 € ©}. (32)
Assume that there exists M which satisfies the following LMI condition for all p; (i =1,2,...,9),
R(M) +pa (M) + - + pi (M) <0, (33)

where p; is the jth element of p;. Then M satisfies Eq. (30) for all 6 € ©.

The techniques to construct the convex polyhedron which includes the curved surface T are
proposed in Refs. [1,2,10]. Thus we can reduce the infinite-dimensional LMIs to a finite number of
LMIs without discretization of the infinite-dimensional LMIs.

Remark 4.2. It is a matter of course that the above procedure can be used to solve LMI-1. If the
system parameter Ag, is given in the following form,

Ao (B) = &) + ai(B)A) + ax(B)AT + -+ + @, (B)A]),
where @, : R — R is a continuous function of  and

A" € R (i=0,1,...,1)
and restrict solutions in the following forms,

R(B) =Ro +ri(B)R1 +ra(B)Ra + - - - + 1 (B)Ru,
S(a, B) = So + s1(a, B)S1 + s2(et, B)S2 4+ - - + 555(x, B) Sy,

where 7, : R — R is a continuous differentiable function of B, s; : R* — R is a continuous differ-
entiable function of « and f such that

S,'(OC, ﬁ) = Si(ﬁa OC)

and the unknown matrices R; and S; are assumed as

R[ € Rnx}z(i - 0, 1,. vy lR))
Sl‘ € Rnxn,Sl{ = S,', (l = O, 1, . .,ls)

then we obtain the condition again in the form of the parameter dependent LMI condition (30).

5. Illustrative example

Consider the following system with delay in the state,

x(t) = Aox(t) + A1x(¢t — h) + Bu(t), (34)
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where

00 1.0 03 06] . [00] ,_
Ao = {o.o o.o}’ A= {o.z 0.4]’ B= {1.0}’ h=03

and the initial function ¢(B) is given as follows

5(6) = [8;})], _h<B<0.

Note that the open loop system (u(¢) = 0) is unstable (see Fig. 1).

For the system (34), we construct the memory state feedback controller (2) by using the formula
of Theorem 3.4 and the technique presented in Section 4. In this example, we restrict solutions
Y(a, B), Zo1(B) in Theorem 3.4 as follows,

(o B) = Yo+ (a+ )Y + (& + B)D, (35)

Zo(B) = Z3' + BZ)' + B°Z3". (36)

Finally we obtain the following controller,
0

u(t) = Kox(£) + | Kor(B)x(z + B)dp, (37)

—h
Ko = [=3.74 x 10> = 5.31 x 10'],
Kot (B) = [~1.70 x 10 — 1.88 x 10'] + B[~1.29 x 10* = 2.00 x 10'] + F*[2.79 x 10? = 3.45 x 10'].

The simulation result is shown in Figs. 2 and 3. We can see that the state feedback controller (37)
stabilizes the time-delay system (34).

100 T T T T ¥
[ ———

sok
701
60
sot
40
30k 7'

20r L

1or ‘//
n 1 i L 1

0
4] 1 2 3 4 5 6 7 8
Time t (s]

Fig. 1. The state x,(¢) and x,(¢) of the open loop system.
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0.2 T T T T T T T

0.1 \
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! \\ /‘.\\ -
oF \ 7 T

x1 4

A 1 I

-
N
w
o
-
~
@®

4
Time t [s}

Fig. 2. The state x;(r) and x,(¢) of the closed loop system.

1 L 1 4 1
1 2 3 4 5 6 7 8
Time t {s] .

Fig. 3. The input u(¢).

6. Conclusion

In this paper, a memory state feedback controller synthesis problem for a system with delay in
the state has been discussed and the controllers have been characterized by infinite-dimensional
(parameter-dependent) LMI conditions. We have reduced the infinite-dimensional LMI condi-

._8’7_.



T. Azuma et al. | Computers and Electrical Engineering 28 (2002 ) 217-228 227

tions to a finite number of parameter independent LMI conditions without discretization of in-
finite-dimensional LMIs. A numerical example has been given to illustrate the result.
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Abstract

This article considers finite-dimensional charac-
terizations of the solutions to H> control for lin-
ear systems with multiple time-delays and show
that if the controlled output is chosen such that
it satisfies the "prediction condition” there exists
ann H> control problem for finite-dimensional lin-
ear systems, which is equivalent to an H* control
problem for the linear systems with multiple time-
delays.

1 Introduction

Recently control problems of linear systems
with time-delays attract attentions together with
progress of researches about networking, commu-
nication, networked control and so on[1}{10][11].
The main difficulty of control problems for lin-
ear systems with time-delays is the infinite-
dimensional characteristic, that makes controller
synthesis problems hard. To overcome this diffi-
culty, many techniques have been proposed.

One of these is the spectrum decomposition
and prediction approach which guarantees finite-
dimensional characterizations of the solutions to
control problems. In [13, 14] and [8], LQ con-
trol problems and H® control problems are dis-
cussed using such approach. On the other hand,
the memoryless feedback control synthesis via lin-
ear matrix inequalities(LMI) may be one of such
approaches [5][9][12]. We have recently proposed
the infinite-dimensional LMI characterization of
the solutions[3][4] and = finite-dimensional LMI

._.90__

algorithm[2]. Other finite-dimensional LMI al-
gorithm is discretization technique of Lyapunov
functional[6][7].

In this article, we discuss finite-dimensional char-
acterizations of the solutions to H®® control for
linear systems with multiple time-delays and show
that if the controlled output is chosen such that
it satisfies the ”prediction condition” there exists
an H control problem for finite-dimensional lin-
ear systems which is equivalent to an H control
problem for the linear systems with multiple time-
delays. '

2 System Description and Problem
Statement

In this paper, we deal with the following linear
systems with multiple time-delays in the control
input and the controlled output.

i(t) = Az(t) + Brw(t) + Bagu(t),

np

+ Z Bou(t — hi),
=1

2(t) = Cuoar(t) + Dyult) (1)
np 0

+Y [, CulBult+Bds,
y(t) = Coz(t) + Daw(t),

where z(t) is the internal variable, w(t) is the dis-
turbance, z(t) is the controlled output and y(t)
is the measurement output. h;(d = 1,-+ ,np) is
time-delay of this system and this system has np



time-delays. The initial conditions of this system
are given as
z(0) =0,
U(IB) =0, —hma <BL0,
where Amae = maz{hy, -, hn, }. The parameter
Cu(B)(i = 1,--- ,n4) is a matrix function whose
elements are bounded continuous functions and

another matrices, which have appropriate dimen-
sion, are constant.

H ™ control problem discussed in this article is to
find an admissible control u(t) which guarantees
that

1. the closed loop system is asymptotically sta-
ble,

2. the L? gain of the closed loop system is less
than 1, where the L? gain is defined as fol-
lows.

Grp= sup 12 2
we L2 w#£0 H w ”L2

where || f ||z2 is defined as
17 = ([ 1)

3 Prediction condition and
finite-dimensional characterization

Wl

, fel?

First we introduce a prediction condition and
show that the linear system with multiple time-
delays (1) can be described as finite-dimensional
linear system. For the controlled output, we con-
sider the following prediction condition,

Cui(B) = Croe™ BRI By, —h; <B <0, (2)

1=1,2,-- ,np.

Using this prediction condition (2), we have the
following result.

Lemma 3.1. Suppose thet the condition (2) is
satisfied. Then the system (1) is equivalent to the
following finite-dimensional system

p(t) = Ap(t) + Biw(t) + Bru(t),
2(t) = Ciop(t) + D1u(?), (3)
q(t) = Cap(t) + Daw(t),

- 91

where p(t) is the internal variable with p(0) =0,
q(t) is the measurement output and

Toh

Bh = BZO + Z €_Ah'i32.i.

2==1
Proof: Defining
np 0
z(t) = p(t) — Z / e~ ABTh) Bo,u(t + B)dB,
_hi

i=1
(4)
nh

0
y(t) = q(t) = C2 ) /h e~ A8+ Bojuu(t 4 B)d3,
j=1 Y T
(5)

and using (2), we can show from (3) that z(t) and
y(t) defined by (4) and (5) obey the linear system
with multiple time-delays (1).

Conversely defining

Thh

0
p(t) ==z(t) + ) / . e~ AWBHR) Bou(t + B)dB,
i=1" T
(6)
np 0
o) =90+ Co [ e By 5)d
i=1Y T
(7)

and using (2), e can show from (1) that p(t)
and q(t) defined by (6) and (7) obey the finite-
dimensional linear system (3). O

From lemma 3.1, the linear systems with multi-
ple time-delays (1) can be converted to the finite-
dimensional linear system (3). Based on this re-
sult, we have the next theorem for the output feed-
back H™ control problem defined in section 2.

Theorem 3.2. Suppose thet the condition (2) is
satisied. Then the output feedback H™ con-
trol problem for the linear systems with multiple
time-delays described in section 2 is equivalent to
the output feedback H> control problem for the
finite-dimensional linear system (3).

Proof: Let

’LL(t) = F(t7 Q(')a ’LL),

be a solution to the H™ control problem for the
finite-dimensional linear system (3).



From lemma 1, defining

nh

-2 [, °

np
y(t) = q(t) ~ C2 > | / A s+ ),
j==] Y T

z(t) = —AWG+R) Bou(t + B)df,

the finite-dimensional linear system (3) is equiv-
alent to the linear systems with multiple time-

delays (1). Thus

u(t) =
np

C6u() + G2 / e~ AB+R) Booa(- 4 B)df, ),

is a solution to the H° control problem described
in section 2.

Conversely, let

u(t) = A<t7 y(-), ),

be a solution to the H® control problem for
the linear systems with multiple time-delays (1).
From lemma 3.1, defining

o
p(t) =2(t) + 3 / B (e 4 )5,
i=1 7 —hi

nh 0
q(t) = y(t) + Ca Z /h e~ ABFR) By (it + B)dB,
i=1 7 ~hi

the linear systems with multiple time-delays (1) is
equivalent to the finite-dimensional linear system

(3). Thus
u(t) =

Alt,q(- A(B+hi) ) B, u(- + B)dB, )

CQZ/

is a solution to the H® control problem for the
finite-dimensional linear system(3).

O

Controlled output are chosen correspondingly to
purposes of control design. Finally we give some
brief comments.

Remark 3.3. If it is required to control the pre-
dictive value of the internal variable, the predic-
tion condition will be satisfied automatically. In
the previous work[8], the authors proved the same
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equivalence as in Theorem 3 under the assumption
that the condition

Cu(B)=0, —h<B<L0,

Lo T (8)
CloAle—O,'L-O,1,2,~'

and showed that the framework of H™ con-
trol problems for input delayed systems satisfy-
ing (8) includes for the robust stabilization prob-
lems against additive or multiplicative perturba-
tions(including uncertain delay case). This re-
sult is single time-delay case and can be easily
extended to multiple time-delay case as follows.

Cll(/j) = 07 _hma.r .<_ /3 .<_. O>
C1o4? By = 0, (9)
i:172a"'7nh7j2071727'“

where

hmaz = maz{hy, -, hn, }

It is easy to verify that the condition (9) is a suf-
ficient condition for the prediction condition (2)
and therefore see that such robust stabilization
problems discussed in [8] can be handled also in
the framework of this article. To clarity more gen-
eral meanings of the prediction condition from the
view point of control design is still open interest-
ing problem. ‘

4 conclusion

In this article, we discussed finite-dimensional
characterizations of the solutions to H* control
for linear systems with multiple time-delays. We
showed that a linear systems with multiple time-
delays is equivalent to a finite-dimensional linear
system if the controlled output is chosen such that
it satisfies the ”prediction condition”. And we
showed that there exists an H* control problem
for finite-dimensional linear system which is equiv-
alent to an H ™ control problem for the linear sys-
tem with multiple time-delays.
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On Input Delay and Measurement Delay
in H® Control Problems

Kenko Uchida

Department of Electrical, Electronics and Computer Engineering, Waseda University,
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Abstract. Focusing on information delays in input and oufput, we discuss finite horizon
H® control problems for systems with delays in control input and in measurement output.
Clarifying a relationship between two H= control problems in input delay case and in
measurement delay case, we derive a solution in input delay case based on the known result
for the H™ control problem in measurement delay case, and show that the solution has the
same predictor-observer structure as the solution in measurement delay case has.

1. Introduction

In control system designs, information delay appears rather often and is considered as a small
but cumbersome obstacle. This paper is concerned itself with general state space solutions
to H® control problems for linear systems with delays in control input and in measurement
output. For systems with delay, the H® control problem was actively investigated in
parallel with development of H® control theory. On the other hand, the fact that the state
space of systems with delay is infinite-dimensional leads generally to infinite-dimensional
characterizations for analysis and synthesis in systems with delay. Actually, the standard
H® control problem for linear systems with delay was solved, as a special case of H”
control problems for distributed parameter (inﬁnite-dimensional) systems, in the state space
form based on two Riccati operator (infinite-dimensional) equations (see, e.g. van Keulen,
1994). Later, more explicit and feasible solutions, which are based on two algebraic Riccati
equations and a transcendential equation (Kojima and Ishijima, 1994) or differential equation
(Tadmor, 1995), were presented by focusing the cases with delays in control input. For the
case with delays in measurement output, the explicit solutions were given in Basar and
Bernhard (1991) and Nagpal and Ravy (1997). A particular (predictor-observer) structure of
the solutions for the input delay case has been recently been pointed out by Mirkin (2000).
We can find detailed reviews of this area in (Tadmor, 2000, Mirkin, 2000) and the references
insides. In this paper, we revisit the H © control problem for systems with input delays in
the framework of finite horizon. The objective is to discuss further the predictor-observer
structure of the solution, which is pointed out by Mirkin (2000), from a novel viewpoint.
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Being suggested by the existing solution for the case with measurement delay, we also try to
develop an elementary approach to the problem, which is completely different from the
abstract approach based on evolution equations taken in (Kojima and Ishijima, 1994, Tadmor,
1995).

More specifically, the content of this paper is stated and organized as follows. In Section 2,
we formulate the H® control problem for systems with input delays together with two
related H® control problems. In Section 3, we first clarify a relationship between our
problem and an H” control problem for systems with measurement delays. Next, we derive

a solution based on the known result for the H™ control problem in measurement delay case,
and show that the solution has the same predictor-observer structure as the solution in
measurement delay case has.

Notations: L*(a,b;R*) is the space of square integrable functions of & -dimension defined
on the time interval [a,b]. When a=¢, and b=1, the ?-norm of f in I’(a,b;R")
is denoted as |f Hz . || denotes the Euclidean norm of x in R*. For symmetric
matrices X and Y, X =Y (X>Y) implies that X —Y is positive semidefinite (positive
definite). [ is the identity matrix of appropriate dimension. () denotes the transpose of
vector or matrix. p(X) denotes the spectral radius of matrix X.

2. Finite Horizon H” Control Problem

Consider the linear time-varying system with the time-delay A>0 in the control input,
which is defined on the time interval [#,,7] and described by

g;x(t) = A()x(t) + B(t)u(t — k) + D(E)(2) ,

() = C(t)x(t) + w(t), (1)
n=|*® -F
B0\ o HO=FOO

where x(f) the n-dimensional internal-variable; w(¢) is the »-dimensional control input;
y() is the m -dimensional measurement output; g(¢) is the (g +7) -dimensional
controlled output; d(f)= () ,w()")' is the (p+m)-dimensional disturbance; the initial
condition (x(t,),%,) in R" x [*}(~h,0;R") , where u, = {u(t + B),-h<PB <0}, is given by

a constant matrix N >0 andan n-dimensional parameter £ as
x(t,)=Ng, u, =0. @

A(t), B(t), C(t), D(t) and F(t) are matrices of appropriate dimensions whose elements are
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continuous functions of time. For the system (1) with the initial condition (2), the
admissible control u(f) = @ (¢, y) is given by 2 causal function of the measurement data

specifically to be the form

u(®) =@t {(s),ty =5 t}), fySESL— h. (3)

Problem ID (H” Control Problem with Input Delay): Given the system described by (1
and (2) and a constant number y >0, the problem is to find an admissible control (3) which

satisfies the inequality
lell <v>dal; +&' N8 (, =0) (ID)

forall d=('"wY) in I(t,, 13 RP™) andall & in R" such that d,8)=0.

The H® control problem for systems with input delays was solved by Kojima and Ishijima
(1994), the parameterization of all the solutions was given by Tadmor (1995), and a particular
(predictor-observer) structure of the solutions has been recently been pointed out by Mirkin
(2000). Problem ID is an extension of the problem discussed in these literatures in the
points that the system with a finite horizon is time varying and the criterion includes a
terminal penalty, and could be solved by extending the arguments of (Kojima and Ishijima,
1994, Tadmor, 1995). In this paper, instead of pursuing this line, we will develop another
approach and provide a new characterization of the solutions, which is inspired by the
observation in (Mirkin, 2000).

We first consider an auxiliary problem to Problem ID. The system is defined on [t,,,] and
described by

%x(t) = A(f)x(t) + B(tyu(t —h) + D(@)v(t) ,

y(t) = C(8)x(1) + W), 4
o= 2 -F
c( )"‘ u(t—h) 4 Z(t)— (t)X(t)

with the initial condition
x(t,) = Ng, )]

and the admissible control u(f) =@ p(t,y) 18 given by a causal function of the
measurement data specifically to be the form

) = {@w(t, {y(s), 8, S s <)), t,<t<t,—h ©)

@0, t,—h<t<t,.
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Problem AID (Auxiliary H” Control Problem with Input Delay): Given the system
described by (4) and (5) and a constant number vy >0, the problem is to find an admissible

control (6) which satisfies the inequality
el <v* (el +&'Ve) (AID)

forall d=(",w'") in I*(ty,t,;R”™) andall & in R" suchthat (d,£)#0.

The difference between Problem ID and Problem AID is found only in the role of
u, = {u(t, + B),—h < p <0}, that is, u, 1is fixed (to be zero function) as a part of the initial

condition in Problem ID, while », is a part of the control input to be determined in Problem

AID. Although Problem AID itself is an H® control problem applicable to some control

designs, we will use Problem AID to bridge a gap between Problem ID and another H”
control problem introduced in the following.

We consider next an H” problem which does not have input delays but has measurement
delays. The system is defined on [t,,¢,] and described by

g{x(t) = A(Dx(t) + B(t)u(t) + D(OV(1),

y(1) = C(O)x(t) + w(1), (7
n=|"" =F
g(t)= ) z(t) = F(1)x(?)

with the initial condition
x(ty) = NE , ®

and the admissible control u(f)=®,5(t,y) is given by a causal function of the delayed
measurement data specifically to be the form

()= {%D(t, ()t SSSE—hY),  to+hStSy o

@, ), t,<t<ty+h

Problem MD (H” Control Problem with Measurement Delay): Given the system described
by (7) and (8) and a constant number y > 0, the problem is to find an admissible control (9)

which satisfies the inequality

lel; <v*dal; &' Ne) (MD)
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forall d=('",w) in Lz(to,tl;RP”") andall & in R such that (d,€)#0.

The H® control problem for systems with measurement delays was also solved completely
in (Basar and Bernhard, 1991, Nagpal and Ravy, 1997), and, as is expected from existence of
information delays in constructing control inputs, the solution has a natural predictor-observer
structure.

Our approach to Problem ID, which we will take in the following sections, is summarized as
follows. We establish first some relationships between Problem ID and Problem MD via
Problem AID, and try to solve Problem ID based on the relationships and the solution of
Problem MD, so that the solution of Problem ID has the same predictor-observer structure as
the solution of Problem MD has.

3. Result

To find relations among three Problems ID, AID and MD, we only observe the detail of the
term of the controlled output in the left hand sides of the criteria (ID), (AID) and (MD). The
following result is an immediate conclusion from the descriptions of three Problems (ID),
(AID) and (MD) and the above observation.

Proposition 1. 8) If u(t)=®5ty) defined by (3) is a solution to Problem ID, the
control u(t) =@ (t,») together with u, = 0 is a solution to Problem AID. Conversely,
if a control u(t) =@ (%)) defined by (6) is a solution to Problem AID and satisfies
u, =0, the control u(f) = @ p(t,y) 182 solution to Problem ID.

b) If a control u(t) = ® . (t,y) given by (6) is a solution to Problem AID, the delayed
control u(t) =@ p(t—h, y) is a solution to Problem MD. Conversely, if u(t)=@,pt,»)
defined by (9) is a solution to Problem MD, the advanced control u(t) =@ w(t+hy) isa
solution to Problem AID.

) If u(t)=20 w(6Y) defined by (9) is a solution to Problem MD and satisfies #, ., = 0,
the advanced control u(f)=® p(t+hy) s a solution to Problem ID. Conversely, if
u(t) = @p(t,y) given by (3) is a solution to Problem ID, the delayed control
u(t) = ©p(t—h,y) together with u, ., =0 is a solution to Problem MD.

Using the fact ¢) in Proposition 1 and a solution to Problem MD, we will derive a solution of
Problem ID. Now we present the solution to Problem MD, which is a slight modification of
the result given by Basar and Bernhard (1991). We need to introduce the following four
conditions.
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(C1) There exists a solution M(?), t,<t<t, tothe Riccati differential equation

':‘f‘; M) = M(2) A(t) + Aty M(2)+ F(t) F(2)

(10)
_ M(1)(B(H)B(Y—y *D)D@&)M(D),  M(1)=0.
(C2) There exists a solution P(f), t,<t<t —h tothe Riccati differential equation
d , :
7 P(f) = A(t) P(t) + P(t) A(?) +D(t)D(t) (1)

_ P(1)(C(t) C(O) —y PF (@) F@O)P(),  P(ty)=N.

(C3) There exists a solution Q(t +PB), —h<P=<0 to the Riccati differential equation for
each ¢ in [t,+5,t]

—a%Q(t +B) = At + B)O(t + B) + Ot + B)A(t + B)+D(t + B)D(¢ + ) (12)

+y 20(t + B)F(t + BY F(t + YO +B), ot —h)y=P(t—h).
(C4) p(M@E+B)QU+B)<Y?, fthst<h, —h<B<O

Proposition 2:  Assume that the conditions (C1)-(C4) are satisfied. Then, a solution to
Problem MD is given by

_[-B@®) S(H)x(¢), f,+h<t<y
u(t)*{o, ty<t<ty+h (13)
where S(¢) is defined by
S(t+B)= M(t+PB)I -y O+ )M+ B)~", -h<p<0, (14)
and %(f) is predicted with the “predictor”
%X(HBF(A(f+B)+Y‘2Q(f+l3)F(t+B)'F(Hﬁ) (15)
_B(t+PB)B(t+B)StPHE(+B),  —h<P=0
from the estimate ¥(¢ —h) = £(¢ —h) whichis estimated with the “observer”
d o _ -2 1 _ ' ~
-c-l;x(t) = (A(t) +y 2P(t)F(£) F(£) - B(t)B(2) S(NX(?) (16)

+ P(HC() (y(@) - COX()),  2(t) =0
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From b) in Proposition 1 and Proposition 2, a solution to Problem AID is given by

—B(t+h)'S(t+m)x(t+h), t,<t<t, —h
0, t,—h<t<t,
which is the advanced form of the control (13). Moreover, since the solution (13) satisfies

u, ., =0, it follows from c) in Proposition 1 and Proposition 2 that the advanced version of

(13) given as
u(f)=—B(t +h) St +m)X({+ h), t,<t<t —h (18)

is a solution to Problem ID. Here note that the solutions (17) and (18) have the same

predictor-observer structure. That is, in constructing the controls (17) and (18), the estimate
£(f) is estimated with the observer (16) based on the data {(s),t, <s<t},and X(t+ h)is
predicted with the predictor (15) from the estimate x(t) =%(). It is also noted that the
conditions (C1)-(C4) form the same sufficient condition for existence of solutions to
Problems AID and ID. We can summarize these facts, together with necessity of the
conditions (C1)-(C4), in the following form. The proof can be given by using an elementary
argument based only on completion of squares (Uchida and Fujita, 1990), and the detail is
found in (Uchida et al., 2001).

Theorem: a) There exists a solution to Problem ID if and only if the conditions (C1)-(C4)
are satisfied. If the conditions (C1)-(C4) are satisfied, the control (18) is a solution to
Problem ID.

b) There exists a solution to Problem AID if and only if the conditions (C1)-(C4) are
satisfied. If the conditions (C1)-(C4) are satisfied, the control (17) is a solution to Problem
AID.

¢) There exists a solution to Problem MD if and only if the conditions (C1)~(C4) are
satisfied. If the conditions (C1)-(C4) are satisfied, the control (13) is a solution to Problem
MD.

5. Conclusion

We discussed a finite horizon H” control problem for systems with input delays. We

derived a solution based on the known result for the H® control problem in measurement
delay case, and showed that the solution has the same predictor-observer structure as the
solution in measurement delay case has.
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Reachable Set Analysis of Linear Time-Delay Systems and Application to Constrained H

Controller Synthesis
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In this paper, a new notion of reachable set for linear time-delay systems is introduced and a method to
evaluate the reachable set is proposed. The evaluation method is given in linear matrix inequality form. An
important application of reachable set analisys is constrained controller synthesis. We also propose synthesis

method of constrained H® controllers for time-delay systems.
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