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Abstract

The quantum Zeno effect consists in the hindrance of the evolution of a quantum system that is very frequently monitored
and found to be in its initial state at every single measurement. On the basis of the correct formula for the survival
probability, i.e. the probability of finding the system in its initial state at every single measurement, we critically analyze a
recent proposal and experimental test that make use of an oscillating system.

PACS: 03.65.Bz; 42.50.—p

The seminal formulation of the quantum Zeno ef-
fect, due to Misra and Sudarshan [1], deals with the
probability of observing an unstable system in its ini-
tial state throughout a time interval 4 = [0,t]. The
purpose of this note is to point out that the quantum
Zeno effect has not been experimentally observed, yet,
in its original formulation. Indeed, we shall argue that
the interesting proposal by Cook [2], that makes use
of a two-level system undergoing Rabi oscillations, as
well as the beautiful experiment performed by Itano
et al. [3], investigate the probability of finding the
initial state at time ¢, regardless of the actual state of
the system in the time interval 4. As we shall see, in
general, if the temporal behavior of the system is os-
cillatory, this probability includes the possibility that
transitions of the type: initial state — other states —
initial state, actually take place. Of course, this remark
does not invalidate the soundness of the analysis in
Ref. [2] and of the experiment in Ref. [3].

The temporal behavior of quantum mechanical sys-

tems is a long-standing issue of investigation [4] (for
a review and a collection of recent developments, see
Ref. [51), and the curious features of the short-time
behavior of the so-called “survival” probability of a
quantum mechanical state, leading to what was to be
named “quantum Zeno paradox” [1], were already
known about 30 years ago {6]. However, renewed in-
terest in the above topic was motivated by Cook’s idea
[2] and its subsequent experimental verification [3].
The experiment by Itano et al. provoked a lively debate
[7-91], that has essentially focused on two aspects of
the problem. First, it has been shown, and it is now be-
coming a widespread viewpoint, that the experimental
results can be explained by making use of a unitary
dynamics [10,8]. Notice that an analogous point was
raised by Peres quite a few years ago [11]. Second,
it has been argued that the so-called limit of continu-
ous observation is in contradiction with Heisenberg’s
uncertainty principle and does not take into account
unavoidable quantum mechanical losses, and is there-
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fore to be considered unphysical [12].

Nowadays most physicists tend to view this phe-
nomenon as a purely dynamical process, in which von
Neumann’s projections can be substituted by spectral
decompositions [ 13,14], so that the phase correlation
among different branch waves is perfectly kept. For
this reason, one often speaks of quantum Zeno effect
(QZE) [7.8], rather than quantum Zeno paradox [1].

However, surprisingly, nobody seems to have real-
ized that, strictly speaking, Cook’s proposal and Itano
et al’s experiment are conceptually at variance with
the original formulation of the QZE. Misra and Su-
darshan, in their seminal paper [1], endeavoured to
define “the probability P(0,T; pp) that no decay is
found throughout the interval A4 = [0,T] when the
initial state of the system was known to be po”. (Ital-
ics in the original. Some symbols have been changed.)
The definition given in Ref. [1] is

P(0,T; po) = lim P (0,T; po), (n

where P¥)(0,T; po) is the probability of observing
the initial state po in a series of N observations, per-
formed at times t, = nT/N (n = 1,...,N), in order
to ascertain whether the system is still undecayed.

In order to facilitate comprehension of the following
analysis, it is worth stressing that the above-mentioned
“survival probability” of the initial state py is the prob-
ability of finding the system under investigation in pg
at every measurement, during the interval 4. This is a
subtle point, as we shall see.

For the sake of clarity, we shall first carefully ana-
lyze Itano et al.’s derivation of what they interpreted
as a realization of the QZE, and then scrutinize Cook’s
formulae. Consider a three-level atomic system, on
which an rf field of frequency w provokes Rabi oscil-
lations between levels 1 and 2. In the rotating wave
approximation and in absence of detuning, the equa-
tions of motion for the density matrix pij (i,j=1,2)
read

pi1=3iw(pa — pr2),  p12 = iw(pn — pu1),
P22 = Yiw(pi2 — pa1), (2)

where the dot denotes derivative with respect to time.

By applying a technique invented by Feynman, Ver-
non and Hellwarth [15], one can recast the above
equations of motion in a very simple form, in which

the use of rotating coordinates, introduced by Block
[16] and Rabi, Ramsey and Schwinger [17], turns
out to be particularly advantageous. Define

Ri=pu+pa. Ry=i(p;2-pn),
Ry=pn—push-P, (3)

where P; = p;; is the probability that the atom is in
level j (j=1,2). Since P, + P, = 1, one gets

Py=1(1+Ry). (4)

In terms of the quantities R = (R, Rz, R3) and w =
(w,0,0), Egs. (2) become

R=wx R (5)

The solution of the above equation, with initial con-
dition R(0) = (0,0,-1) (only level 1 is initially
populated) reads

R(t) = (0, sin wt, — cos wt). (6)

If the transition between the two levels is driven by an
on-resonant 7 pulse, of duration T = 7/w, one gets
R(T) = (0,0,1), so that pp = 1, p;; =0, and only
level 2 is populated at time 7.

The reasoning of Ref. [3] is the following. Assume
you perform a measurement at time 7 = /Nw = T/N,
by shining on the system a very short “measurement”
pulse, that provokes transitions from level 1 to level 3,
with subsequent spontaneous emission of a photon! .
The measurement pulse “projects” the atom into level
1 or 2 (“naive wave function collapse”). Because a
measurement “kills” the off-diagonal terms p;; and
P21 of the density matrix, while leaving unaltered its
diagonal terms p1; and p,, one obtains

R(m/Nw) = [0,sin(w/N), —cos(m/N)]
MR 10,0, — cos(w/N)] = RD, (7

Then the evolution restarts, according to Eq. (5), but
with the new initial condition R')). After N measure-
ments, at time T = N7 = 7/ w,

R(T) =[0,0, —~cos" (7/N)] = R"™. (8)

! We are not addressing the (delicate) point that a measurement
puise, however short, must have a certain finite time duration. As a
consequence, one must take into account the inevitable spread Aw
of the measurement pulse, and modify accordingly the following
formulae. This problem is a very subtle one and will be properly
addressed in a forthcoming paper {18].
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The probabilities that the atom is in level 2 or 1 at
time T, after the N measurements, are therefore given

by (see Eq. (4))

PYUT) = 31+ RYY) = 411 = cos¥ (/M)
©)

PM(T) =1 - P"(T) = 10 +cos¥(7/N) ],
(10)

respectively. Since Pz(N)(T) — 0 and PI(N)(T) — 1
as N — oo, this is interpreted as quantum Zeno ef-
fect?. The experimental result are in very good agree-
ment with the above formulae. However, this is not
the quantum Zeno effect 2 la Misra and Sudarshan:
Eq. (9) ((10)) expresses only the probability that
the atom is in level 2 (1) at time T, after N measure-
ments, independently of its past history. In particular,
Egs. (9), (10) take into account the possibility that
one level gets repopulated after the atom has made
transitions to the other level. In order to shed light on
this very important (and rather subtle) point, let us
look explicitly at the first two measurements.

After the first measurement, R! is given by Eq. (7)
and

R§”=-—cos-;-=P2(”—Pl(”, (11)

where Pj(” is the occupation probability of level j (j =
1,2) at time 7 = 7/Nw, after the first measurement
pulse:

(1 _ 1 (Dy _n2 7

P, =5(1+R;"’) =sin N (12)
1 2 T

P,()=1-P2()=c0522—ﬁ. (13)

After the second measurement, one obtains

R = ~cos’ T = P — P, (14)

where the occupation probabilities at time 2r =
27 /Nw read

PO =11 +RDy = 25in? T cos? T
2 2( + R3”’) =2sin 2Ncos N (15)

2The N — oo limit is in contradiction with the Heisenberg
uncertainty principle, and is therefore unphysical. It is possible to
set a physical limit on the maximum value that N can attain in a
certain experimental situation [12,18].

) : @
p2=0 P2= ? Cz P2=25202
2
82‘ (i} S>< (2)
P =1 c? Pi=c? s/ 2\ P =s*c*
t=0 t=n/N t=2n/N

Fig. 1. Transition probabilities after the first two measurements
(s =sin(w/2N) and ¢ = cos(7/2N)).

PP =1-p®@ =cos4§%+sin4§%. (16)
It is then obvious that PI(Z), in Eq. (16), is not the
survival probability of level 1, according to the semi-
nal definition (1). It is just the probability that level 1
is populated at time t = 27r/Nw, including the possi-
bility that the transition | — 2 — 1 took place, with
probability sin®(/2N) sin?(w/2N) = sin*(7r/2N).
By contrast, the survival probability, namely the
probability that the atom is found in level 1 both
in the first and second measurements, is given by
P{'"D = cos?(m/2N) cos?(m/2N) = cos*(m/2N).
Fig. 1 shows what happens during the first two mea-
surements in the experiment in Ref. [3]. ‘

In the general case, after N measurements, the prob-
ability that level 1 is populated at time T, indepen-
dently of its “history”, is given by .(10), and includes
the possibility that transitions to level 2 took place. As
a matter of fact, it is not difficult to realize that 9,
(10) conceal a binomial distribution,

3 (2’) SN - N § (2’) (s/c)?"

n even n even

- %Czw[i (2’) (s/c)™

n=0

M orN
()]

=31+ (/)Y + [1 = (s/0) 21"}
=11+ cos™(7/N)]
=PM(T) =1 - PI"(T), an

where 3 is a sum over all even values of n be-
tween 0 and N, s = sin(w/2N), ¢ = cos(w/2N) 3.

3Mensky [9] first noticed the occunﬁncc of a binomiai disf
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Therefore
PY(T) =1~ Z MY sin2 T cos2tV-m
2 n even n 2N 2N’
(18)
N T T
(N) = so2n 2N-m) "
PAT) Z <n ) sin N cos N
n even
(19)

which clearly shows that Egs. (9), (10) or (18), (19)
include all possible transitions between levels 1 and 2,
in such a way that at time T the system is, say, in level 1
after having made an even number (n=0,2,..., etc.)
of transitions between levels 1 and 2. It should be clear
now that the result (10) is conceptually very different
from Misra and Sudarshan’s survival probability (1).
The correct formula for the survival probability, in the
present case, is obtained by considering only the n = 0
term in (19),

PIM(T) = cos™ . (20)
Eq. (20) is just the “survival probability”, namely the
probability that level 1 is populated at every measure-
ment, at times nt =nT/N (n=1,...,N) *.

A comparison with the formulae of Ref. [3] is not
straightforward, due to the fact that the authors ana-
lyzed their results in terms of the quantity PZ(N N7,
rather than PI(N (T). At any rate, Eq. (20) implies

PIN(T) =1 —-cosz":,gv-. (21)
Eq. (21) can be compared to (9): Even though they
tend to the same limiting value O (in either case
sin(w/2N) — 0 as N — o0), they give different
results, in particular when N is small, as shown in
Table 1.

It must be emphasized that we are not criticizing
the soundness of the nice experiment in Ref. [3]. In-
deed, the experimental results obtained by Itano et
al. are in excellent agreement with Egs. (9) or (18).
We only claim that this experiment, although correctly

tribution in connection with the QZE for an oscillating system,
without however pointing out the discrepancy with Misra and Su-
darshan’s definition of survival probability. The result (17) is, to
our knowledge, new.

4Eq. (20) was first given in Section V of Ref. [10] (see in
particular footnote 21). .

Table 1

N 122 4 8 16 32 64

AM(T) 1 05 03750 02346 0.1334 00716 0.0371

PY(T) 1 075 04692 02668 0.1431 00742 0.0378
? N = | means that only a final measurement is performed, at
time T.

performed, is conceptually at variance with the orig-
inal idea of the QZE, as defined by Misra and Su-
darshan, because the right expression for the survival
probability, according to (1), is given by (20) and
not by (19).

Let us now look at Cook’s derivation of the QZE.
For the sake of clarity, we shall present his analysis
in a slightly simplified case. Starting from the set of
Egs. (2), Cook obtained the following rate equations,

P =k(P, - P), (22)
Py=k(P - Py), (23)

where k = w?7/2, T being the time interval between
measurement pulses. These equations yield, at time
T=7/w,

Py(T) = 1[1 — exp(~7?/2N)]. (24)

(A misprint in Ref. [2] has been corrected.) The
above formula is interpreted as a quantum Zeno ef-
fect. Once again, this is not correct in a strict sense:
The above equation expresses the occupation proba-
bility of level 2, independently of its history. Clearly,
the rate equations (22), (23) take into account the
possibility of transitions 1 — 2 — 1, and so on, and
therefore cannot be viewed as expressing “survival”
probabilities, as in Eq. (1). It should be stressed that
the conclusions drawn in this Letter hold true for all
those situations in which the temporal behavior of the
system under investigation is of the oscillatory type,
and no precautions are taken in order to prevent re-
population of the initial state.

Finally, it is worth briefly commenting on the
N — oo limit (continuous observation). It was shown
[12,18] that this limit is unphysical, for it is in contra-
diction with Heisenberg’s uncertainty principle, and
set a reasonable physical limit for the maximum value
that N can attain in an experimental test of the QZE
involving neutron spin. Venugopalan and Ghosh [19]
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criticized this result on the basis of an analysis whose
starting point was Eq. (24). However, as we have
seen, (24) is not related to the survival probability,
according to the definition (1), so that the calcula-
tion of Ref. [19], although mathematically correct, is
not physically relevant for our problem. Incidentally,
in the light of our analysis, it is not surprising that
the authors of Ref. [19], by applying the uncertainty
principle, obtained the limiting value P,(T) — 1/2,
in the large-N limit, from Eq. (24). Such a result is to
be expected, on the basis of Cook’s equations (22),
(23), but refers to a physically different situation, not
to the QZE.

In conclusion, we would like to put forward a few
remarks. The real problem related with Cook’s pro-
posal and Itano et al.’s experiment is that the state of
the atom is nor observed at intermediate times. As a
matter of fact, its observation would probably raise
difficult technical problems, for one should be able to
“select”, after each measurement pulse, which atoms
are in level 1 and discard those atoms that are in level
2.

The quantum theory of measurement [20,21] is still
full of pitfalls and conceptual difficulties. One has to
be extremely careful when applying von Neumann’s
projection postulate. A quantum measurement implies
the occurrence of decoherence, but the inverse is not
necessarily true, as we have seen: It may happen that
the system is practically incoherent, but one still does
not know, in practice, which state the atom is in.

Very promising candidates for an experimental ob-
servation of a genuine QZE seem to be those exper-
iments involving neutron spin [12] or photon polar-
ization [22]. There is certainly more to come, on this
fascinating subject.
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siglio Nazionale delle Ricerche, and by the Adminis-
tration Council of the University of Bari. S.P. thanks
the High Energy Physics Group of Waseda University
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kind hospitality at the Department of Physics, Univer-
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We analyze the quantum Langevin equation obtained for the Ford-Kac-Mazur and related models. We study
an explicit expression for the correlation function of the noise, obtained by making use of the normal-ordered
product of operators. Such an expression is divergence-free, does not require any frequency cutoff, and yields
the classical (Markoffian) case in the limit of vanishing . We also bring to light and discuss two different
regimes for the momentum autocorrelation. The high-temperature and weak-coupling limits are considered,
and the latter is shown to be related to van Hove's “\%7™" limit.

PACS number(s): 03.65.Bz, 05.40.+j, 05.70.Ln, 05.30.—d

The derivation of a dissipative equation from an underly-
ing Hamiltonian dynamics is a long-standing problem. Many
important contributions on this subject have been given dur-
ing the last decades. Even though we still lack a thorough
comprehension of dissipative and irreversible phenomena,
the essential features of a self-consistent physical framework
are now becoming more clear.

The analysis of solvable models provides very useful in-
sights into the above-mentioned issues. One of such models
was originally proposed by Ford, Kac, and Mazur (FKM) in
a pioneering paper [1]. This model consists of an ensemble
of coupled oscillators interacting via a quadratic Hamil-
tonian. The reduced dynamics of one of these oscillators
yields, in an appropriate macroscopic limit, a Langevin equa-
tion [2,3],

Several other examples of this sort have been proposed.
Among others, the “independent oscillator” model [4-7]
and a whole class of related models [8~10] have played an
important role in clarifying several aspects related to dissi-
pative phenomena [9-11]. The similarities and differences
among them have been discussed and clarified in Refs. [5,7].
In all the above-mentioned examples, the inﬂuencq of a
“heat bath,” composed of harmonic oscillators, on the equa-
tion of motion of the “Brownian particle” is described by a
phenomenological equation: The reduced description of the
system always turns out to be of the Langevin type.

The aim of the present paper is to discuss some features
of the Langevin equation in the quantum case. We shall con-
sider an explicit expression for the correlation function of the
noise in the quantum case. This expression, which was first
derived by Gardiner [12], is divergence-free and therefore
does not require any frequency cutoff. Moreover, by making
use of this result, it is possible to discuss some interesting
general features of the momentum autocorrelation, and bring
1o light the presence of two temporal regimes in the evolu-
tion of the quantum system. The deviations of the momen-
wm autocorrelation function from a purely exponential be-
havior were considered by Lee [13], and are very significant
M the context of dissipation in quantum mechanics. In the
!lght of a recent remark by Leggett [14], this issue may have
Interesting spinoffs on the quantum measurement problem
[15.16]. Finally, we shall put forward a curious analogy be-
tween the short-time behavior of the noise correlation, the

1050-2947/96/53(4)12033(5)/$10.00 53

momentum autocorrelation and the “survival probability” of
quantum-mechanical states (quantum Zeno effect) [17-19].

It should be emphasized that it is possible to adhere to a
different standpoint and postulate (rather than derive) an
equation of the Langevin type for some quantum-mechanical
operators, involving operator-valued random terms [20]. In
such a case, the Langevin equation is viewed as a phenom-
enological starting point. In the white-noise case, this ap-
proach can be put on a sound mathematical basis [21] and
brings to light other interesting aspects of dissipation, related
to van Hove’s “A2T” limit [22]. Interestingly, we shall see
that the above limit is related to one of the temporal regimes
to be considered in this paper.

In the FKM model [1] an ensemble of 2N+ 1 coupled
oscillators is described via the Hamiltonian

1 & pg 1 Y
Hes 2wt & et Vg, ()

where g; and p; are the coordinates and momenta of the
oscillators, m their (common) mass, V a potential acting on
the zeroth oscillator and the (2N+1)X (2N+ 1) interaction
matrix A;; is assumed to be symmetric, cyclic, and with non-
vanishing eigenvalues (the last condition is eventually re-
laxed in order to meet the requirement of Markoffianity). The
oscillators are taken to be identical (with the only exception
that the zeroth one is acted upon by an external force), and
one looks for an interaction matrix Aj;j such that the zeroth
oscillator (“Brownian particle”), follows a Langevin equa-
tion.

Ford, Lewis, and O'Connell {7] pointed out that the FKM
model is related, via a canonical coordinate transformation,
to the “independent-oscillator’ model

H—P2+VX+12 pf.+ 2 X)? (25
=5t V(X) 22 |m, wi(g;—vX)"|

where X and P are the coordinate and momentum of the
(Brownian) particle and q;,p; the coordinates and momenta
of the (bath) oscillators. (The constants 7; can either be
taken equal to one or alternatively proportional to wi'z .) For
this reason, the conclusions we shall draw in the present

2033 ' © 1996 The American Physical Society
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paper hold true also for the Hamiltonian (2). The indepen-
dent oscillator model frequently appears in the literature, al-
though in somewhat different forms [4—7]. Notice also [5]
that a class of similar models [8-10] can be brought into the
form (2).

Under certain conditions for the interaction matrix A ij
the Hamiltonian (1) yields the following equation of motion
in the N—oo limit:

Pot £+ V' (g0) = (1), ()

where £ is an effective friction constant and 7(r) an effective
“noise” term [2,3]. (For the independent oscillator model,
Po.qo are substituted by P,X in the above equation.) The
friction constant ¢ is closely related to the interaction, and is
therefore representative of the coupling between the Brown-
ian particle and the remaining oscillators. In some cases, it is
even possible to obtain an explicit expression for £. For ex-
ample, the independent oscillator model, with the ansatz
y,=y/w? [4] and the Debye approximation, yields

_ 9Ny

§= , )

27
where N is the total number of degrees of freedom of the
system of oscillators and wr a frequency cutoff. (A misprint
in Ref. [4] has been corrected.) The relation (4) is of more
general validity than one might think at first sight, and its
general features can also be derived within different schemes
than Zwanzig’s [6].

The Langevin equation (3) is obtained in both the classi-
cal and quantum case. The expectation value of the noise,
computed according to the canonical distribution, is zero in
both cases. The only important difference concerns the cor-
relation function of the noise. In the classical case

2f

(77(1)77(f+‘f))c1=‘;3‘

as we expect from the fluctuation-dissipation theorem
[B=(kT)"! is the inverse temperature of the bath and
( )a denotes a statistical (Boltzmann) average]. In the quan-
tum case the result depends on whether one chooses the sym-
metric or the normal-ordered product of operators. The first
case is the one usually considered in the literature: One gets

8(7), (5)

1
{n(D)n(t+D})= 7{n() n(e+ 1)+ n(e+ 1) 9(e))

= i)
= —é-:—f dohw cothB 2 coswr, (6)
mJo 2

( ) being the quantum-mechanical expectation value over the
thermal state of the oscillators. On the other hand, in the
second case one obtains

286 (= fw
(:77(:)7](t+r):)=~7-1;-j0 d“’;ﬁm’:‘f COSWT. )

Notice that the two definitions differ for the zero-point en-
ergy fluctuations of the heat bath. In the first case the energy
of each oscillator is taken to be

£k _hw hw _hw h,Bhw g
phO)= 5t gy =g o @)

while in the second case

EO(hw) = E y(ho)— 2= 1O )
A o 2 PR

Both E4(fw) and E‘,,O)(ﬁ w) yield the classical equipartition
energy k7 in the high-temperature limit.

As emphasized by FKM, there are many alternative defi-
nitions of correlation function, corresponding to different or-
derings and symmetrizations of the operators. Which of these
possible definitions correspond to a real quantum fluctuation
phenomenon must, in the last analysis, be determined by
experiment [1]. See Gardiner’s lucid discussion on this point
[12]. The usual definition of correlation function is taken to
be (6). The purpose of this paper is to show that the physical
results obtained by normal ordering of the operators are very

.appealing. Let us start by observing that the integral (6) is

divergent and requires a frequency cutoff. The normal-
ordered product (7) does not suffer from the same drawback.
Moreover, the integral (7) is solvable, as first noted in Ref.
[12]: By choosing the rectangle [0,00,00+2 7i/ Bh,27il Bh]
as integration contour, one gets after a straightforward, if
lengthy, calculation

F(B.&n) =) n(t+ 1))

_fﬁ 1 m?
T w |7 Pt apry 19

This function is shown in Fig. 1. It must be stressed that the
result (10) diverges only for 8= r=0. Notice that

+ g, fﬁ .nx §7T 11 -
fﬁ(o »§,7)~;_;__’7, . fﬁ(ﬂvgro )~'3__B‘27{ ( )

It is also worth emphasizing that (for 8#0) the correlation
function fj; has a vanishing derivative for 7=0. This is an
important point to which we shall come back later. It is in-
teresting to look at the very shape of f; in Fig. 1. Inciden-
tally, observe also that the integrand in Eq. (7) is not analytic
in 8=0, so that the naive high-temperature expansion

1 (hw)?

(12)

in (9) and in the integral (7) leads to a different (wrong)

result, after integration. ’
On the other hand, the classical correlation function (5) is.

obtained by (10) in the A—0 limit: To this end, observe that :

=y
i
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2§

e (B#0), (13)

[” artucp.eim-

a result that is independent of 7. [Since the function fx in
(10) is continuous for B+ 0, the integral (13) is computed in
Riemann’s sense without making use of Cauchy’s principal
value.] Equation (13) allows us to infer that

0

- 2§
fa(B.&7) — -5-5(7)=(77(I)77(t+7))d. (14)

in agreement with (5). This has interesting spinoffs: The
somewhat disturbing divergence of S in B=7=0 [see Eq.
(11)] turns out to be of classical, rather than of quantum-
mechanical origin.

One can also compute the power spectrum of the noise,
by observing that (7) is nothing but a Fourier cosine trans-
form. The final result is

24h| |
e W

F(w)Ef:d’ffh(ﬁ,§;‘f)e_im=—p?:r(jl— (15)

and vanishes in the T—0 limit. In this context, it is worth
noting that FKM stressed that the normal-ordered product is
“physically appropriate because it leads to a noise spectrum
that vanishes at absolute zero” {1].

It should be emphasized that also the correlation function
(6) yields the classical result (5) in the limit of vanishing
A. The advantage of (7), however, lies in the explicit expres-
sion of all the quantities considered. Moreover, as we shall
See, the above analysis will enable us to draw some other
8eneral conclusions.

Let us now look at the momentum autocorrelation func-
tion. If we normal-order the operators, we obtain (let
§'=¢/m and call it £ again) .

FIG. 1. Normal-ordered corre-
lation function f; vs r and B (ar-
bitrary units).

8a(B.&T)=po(t)pot+ 7))

_2m °°d Pho 3
= 7B, 0Ty P R Syl TE oswT

__2m md B 16
—-;T—E . wA(w)B(w)cosw, (16)

A and B being the first and second factors in the integral,
respectively. Let us first observe that, for all nonvanishing
(i.e., physical) values of the parameters %, 3, £, a short-time
expansion of the cosinus yields

gr=a—br, (17

where a and b are nonvanishing positive constants that de-
pend on the parameters i, B, &. This result is of general va-
lidity [13], and shows that g, [like S in Eq. (10)] always
has a vanishing derivative for r=0,

The functions A and B are bel] shaped, with their maxima
at the origin w=0. Moreover, A(w) has poles in
wa=27ni/Bh (integer n), while B(w) has poles- in
wp=*i£ This suggests the presence of two different re-
gimes, according to the value of the parameter £BA/2m: Let
us introduce the two relaxation times '

a=¢"Y, 1=k, (18)

which characterize, respectively, a classical and a quantum
regime. As previously emphasized, Ty is representative of
the bath-particle interaction. If

Efrh2mer,<ry, (19)

then the integral (16) can be approximated by the expression
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g,,~1§('r)=m,8"'e"ﬂ"—*—mﬁ''e_M/"cl (r>7,),
. (20)

where the tilde denotes the Fourier transform. Notice that the
above expression is only valid for 7> 7, - This is the classi-
cal regime [1], in which quantum effects are negligible and
the process is Markoffian: FKM remarked how this result,
together with (14), could be obtained in the limit of vanish-
ing A. Notice that, according to Eq. (19), the exponential
behavior (20) can also be obtained in the limits of high tem-
perature (S—0) and/or weak coupling (£—0). However,
the latter limits must be considered with great care: For ex-
ample, the naive high-temperature limit does not yield the
correct noise correlation function [see (12)], which can be
: obtained by letting A—0 [see (13) and (14)]. On the other
hand, if

EBhP 2w, 1y, (21)
then
/i( ) ﬁm{l 2 1
~AT)F o e i
&4 Em| ™ BTRIsinh(wriph)|
wfzm 1 i > -
T fm ?"(2Tq)zsinh2(,—/27q) (7>7). (22)

In this regime, quantum coherence effects are not negligible
and the process is not Markoffian. According to Eq. (21), this
behavior is obtained in the low-temperature and/or strong-
coupling limit.

Remember that the short-time behavior of the function
8k is always given by Eq. (17): This yields a vanishing de-
rivative for +—0, in agreement with (22), but not with (20).
As a matter of fact, the exponential behavior is always the
result of approximations or limiting procedures of some sort.

RAFFAELLA BLASI AND SAVERIO PASCAZIO

This difference in the short-time domain is, in our opin- -

ion, of general significance. Indeed, it is well known that the
temporal evolution of the so-called “survival probability” of
a quantum system, under general conditions, is roughly char-
acterized by three distinct regions [17]: A Gaussian-like be-
havior at very short times, an (approximately) exponential
decay at intermediate times, and a power law at long times.
The asymptotic dominance of the exponential behavior is
representative of a purely stochastic evolution, in which all
quantum-mechanical phase correlations are lost, and this
suggests a close connection between dissipation, quantum
measurements, and exponential decay [14,18]. On the other
hand, the Gaussian short-time behavior [17] is essentially
ascribable to the persistence of quantum-mechanical phase
correlations, leading to the so-called quantum Zeno effect
[19]. The above conclusions are valid under very general
conditions for the “‘survival” probability of any quantum-
mechanical system (not necessarily unstable) [23].

Even though the above-mentioned issue and the analysis
of the present paper reflect somewhat different aspects of the
problem of dissipation, it is peculiar, in our opinion, that in
both cases the quantum properties of the system be reflected
in a vanishing derivative at very short times. This is true both
for the quantum Zeno effect and in Egs. (10), (16), (17), and
(22). The contrast with the classical regime (20) is striking,
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and reminds one of other macroscopic, weak-coupling limits
yielding exponential laws [22,18]. It is indeed possible to put
forward a curious link between the conditions of approxi-
mate validity of the exponential behavior (20) and van
Hove’s limit. In the latter case [22], one considers the weak-
coupling, macroscopic limit by keeping

N2T= finite, (23)
where T is time and A the coupling constant, and shows that
the temporal evolution of quantum-mechanical systems sat-
isfies a master equation for time scales of order \~2. Con-
sider now Eq. (4). In the macroscopic limit N, wr—, with
N/w;-—- finite, £ is simply proportional to the square of the
coupling constant

fxy. (24)
On the other hand, the approximate exponential law (20) is
valid in the weak-coupling limit for times of order
T~ 7= §"(>‘rq), which, by virtue of (24), implies

Y*7= finite. (25)
Equations (23) and (25) reflect the same physical approxima-
tions. Even though the latter equation is not derived in full
generality, we cannot escape the feeling that this result is of
broader significance. Incidentally, it is worth stressing that
van Hove’s limit (23) provokes also the disappearance of the
long-time power tail in quantum-mechanical temporal evolu-
tions [17,23]. Such a powerlike long-time behavior appears
also in the context of the momentum autocorrelation func-
tions [13,24].

One may wonder whether these curious features of the
quantum-mechanical case are of general significance or are
rather a “fluke of the special FKM model” [25]). This prob-
lem is a very subtle one. The results derived in the present
paper are obtained for a specific model of the system-
environment interaction, and the (approximate) validity of a
quantum Langevin equation in more general cases than a
simple array of harmonic oscillators is a very open problem.
Observe, for instance, that the product £B8%, which plays
such an important role in our analysis, is the only dimension-
less constant that can be constructed by starting from models
leading to Egs. (3) and (7). Nevertheless, it is difficult to
believe that the above-mentioned essential features of the
quantum temporal behavior be just casual. Rather, we feel
that the vanishing derivative at short times of some quantum-
mechanical expectation values reflects a deep, yet unclear,
property of “persistence” of the quantum-mechanical phase
correlation. Only when such a phase correlation is com-
pletely destroyed, for instance, by interacting, in an appro-
priate limit, with a dissipative environment (a “heat bath”)
can the quantum system relax towards a classical (Markof-
fian) behavior, characterized by approximately exponential
laws.

The authors thank P. Cea, Y.G. Lu, H. Nakazato, M.
Namiki, and in particular E. Sardella for their comments,
help, and criticisms.
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Abstract

We analyze a modified version of the Coleman-Hepp model, which is able to take into
account energy-exchange processes between the'incoming particle and the linear array made up
of N spin-} systems. We bring to light the presence of a Wiener dissipative process in the
weak-coupling, macroscopic (N — co) limit. In such a limit and a restricted portion of the total
Hilbert space, the particle undergoes a sort of Brownian motion, while the free Hamiltonian of
the spin array serves as a Wiener process. No partial trace is computed over the states of the
spin system (which plays the role of “reservoir™). The mechanism of appearance of the stochastic
process is discussed and contrasted to other noteworthy examples in the literature. The links
with van Hove’s “4*T” limits are emphasized.

PACS: 03.65.Bz; 05.70.‘Ln; 05.40.+ j; 05.30.-d
Keywords: Wiener process; Quantum statistical mechanics; Theory of quantum measurement

1. Introduction

The derivation of a dissipative dynamics in quantum mechanics and quantum field
theory is a long-standing problem. A very important contribution to this issue was
given by Van Hove [1], who clarified the main features of a quantum dissipative
dynamics and was able to derive a master equation from the Schrédinger equation, in
an appropriate limit (his famous “4>T ™ limit), via the so-called “diagonal singularity”.
It is important to stress that Van Hove’s ansatz replaced Pauli’s random-phase
assumption [2].

Dissipation in quantum mechanics can emerge as a result of the interaction between
a particle and a macroscopic “environment”. Many other important contributions
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have been given to this issue, in the attempt to set up a general physical
framework. However, unlike in Van Hove’s case, a dissipative dynamics is derived
under some assumptions for the energy spectrum of the environment system,
by computing the partial trace over the states of the latter. This is true for a
whole class of interesting models, in which the environment is schematized with
a collection of harmonic oscillators [3,4], and one derives dissipative equations
for the “object” particle. It is worth observing that the dissipation constant in
the Langevin-type equation is derived from the underlying dynamics under some
(reasonable) assumptions on the spectrum of the Hamiltonian of the environ-
ment system. Of course, the assumptions on the spectrum are integrating part
of the specifications of the model chosen. Yet, it would be somewhat preferable
and more consistent to start from a specific microscopic model, solve the dynamics
and find an appropriate limit in which the model realizes the desired continuous
spectrum. Notice also that a “quantum Langevin equation” has some well-
known peculiar properties, such as a non-markoffian random force [5] and colored
noise [6,7].

In this paper we shall analyze the so-called “AgBr” model [8,9], which has played
an important role in the quantum measurement problem. This model is relatively
simple, yet extremely interesting from the physical point of view. We shall base our
discussion on a modified version [10] of the above model, that is able to take into
account energy-exchange processes. The modified AgBr model provides an interesting
nontrivial example of realization of Van Hove’s diagonal singularity and displays the
occurrence of an exponential regime at all times in the weak-coupling, macroscopic
limit [11]. In this way,.a door is open to investigate the occurrence of a dissipative
dynamics and its link with a quantum measurement process. We shall solve the
equations of motion, take a weak-coupling, macroscopic limit, and obtain a Wiener
process in a restricted portion of the Hilbert space of the total system. This technique
is to be contrasted to the computation of a partial trace over the states of the
macroscopic system, and will represent the main difference between the present work
and other ones, based on partial tracing.

This work has interesting spinoffs for the quantum measurement problem [12].
It is commonly believed that a quantum measurement occurs via a dephasing
(decoherence) process [ 13-16]. Since “decoherence” is nothing but the disappearance
of the off-diagonal elements of the density matrix of the quantum system, and since
a system described by a diagonal density matrix exhibits a purely stochastic behavior
[17], one is led to expect a connection between dissipation, irreversibility and
a quantum measurement process [11,18,19]. In this paper, we shall concentrate on
a particular aspect of the above-mentioned issues. Our main purpose is to derive
a stochastic process from an underlying Hamiltonian dynamics and to clarify in which
sense it is possible to identify a Wiener process for a dynamical variable of the
microscopic system under investigation.

The plan of the paper is as follows. We review the main properties of the modified
AgBr Hamiltonian in Section 2, focusing on those characteristics that hint at the

13
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presence of a stochastic process. In Section 3 we obtain the operators in the Heisen-
berg picture. Finally, we bring to light the stochastic process in Section 4, where we
show that there is a Gaussian process of the Wiener type. All these results are exact.
Section 5 is devoted to conclusions and comments.

2. Review of the AgBr Hamiltonian

The modified AgBr Hamiltonian [10] describes the interaction between an ultra-
relativistic particle Q and a one-dimensional array (D-system), made up of N spin-}
objects. The array can be viewed as a caricature of a linear “photographic emulsion”
of AgBr molecules, if one identifies the down (ground) state of the spin with the
undivided molecule and the up state (whose excitation energy is hw) with the disso-
ciated molecule (Ag and Br atoms). The particle and each molecule interact via
a spin-flipping local potential. The total Hamiltonian for the Q + D system reads

H=H,+ H, Ho=Hgy + Hp, (2.1)

where Hy and H), the free Hamiltonians of the Q particle and H of the “detector” D,
respectively, and the interaction Hamiltonian H’ are written as

N

1
HQ?—-‘Cﬁ, HD=§ﬁwZ(1+ (") 3
n=1

}: V(t—x,) [a+ exp( - z? *c) +o" exp<+ z%%)] (2.2)

Here p is the momentum of the Q particle, £ its position, V a real potential,
X, (n=1, N) the positions of the scatterers in the array (x, > x, 1) and a("’ the
Pauli matrlces acting on the nth site. The above Hamiltonian has attracted
the attention of several researchers [20] due, in particular, to the presence of the
free Hamiltonian of the array Hp, which enables one to distinguish energetically
the up and down states and makes the energy- exchange processes between Q and
D physically meaningful. The original Hamiltonian [8] is reobtained in the w =0
limit.

Let us review the main results obtained from this model [10,11]. The evolution
operator in the interaction picture .

Up(t,t') = eiHlotthg = iH(E = CVh g~ iHot'/h . o = if. Hiy(e)de/h , 2.3)
where Hj(t) is the interaction Hamiltonian in the interaction picture, can be computed
exactly as

Ui(t) = Uy(t, 0) = eHlotrh g — iHtih

t

N .
=] exp[ - —;; fdt'V(x‘ + ct’ — x,)(cWe vt 4 h.c.):l , (2.4)
n=1

0

14
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and a straightforward calculation yields the S-matrix

N 1259,
SM = lim U, ¢) H Sm> S = exp[ —i——a"u |, (2.5)
L+ o ne= hC
- -
where u = [cos(wx/c), sin(wx/c),0] and V,Q = j“’ (x)dx < co. The above expres-

sion enables us to define the “spin-flip” probability, i.e. the probability of dissociating
one AgBr molecule:

Vo2 :
= sin?| 2=
q = sin [ v ] (2.6)
By defining
dt
. =4 )= V(X +ct' —x,) 2.7)
0
and )
O.(;)(:e) = a‘:'t"e Fiwi/c , (28)
which satisfy, together with ¢¥{’, the SU(2) algebra
(0¥, 6 P(D)] = £ 20,0 P (X),
[e(%), 6P (2 )] = — Smo¥’, 2.9)

we can return to the Schrodmger picture by inverting Eq. (2.4). We dlsentangle the
exponential in U; by making use of (2.9) and obtain

N
e iHth __ e~ tHot/h H —~itan(ax,)o'™2) e — Incos(a,)o e ~itan(a,,)c‘:’(.€)) . (210)
n=1

Let us concentrate our attention on the situation in which the Q particle is initially
located at x" < x,, where x, is the position of the first scatterer in the linear array, and
moves toward the array with speed c. The spin system is initially set in the ground
state [0)y of the free Hamiltonian H, (all spins down). The propagator is defined by

G(X, x’y t) = N<Os X ' e” th/hle, 0>N ’ (21 1)

where |x, 0Dy = |x) ® {0)y. If we place the spin array at the far right of the origin
{x; > 0) and consider the case in which the potential V has a compact support and the
Q particle is initially located at the origin x’ = 0, we obtain

N ,
G(x,0,8) = d(x — ct) [] cos &,(¢), & () = J%{— Vict —x,). (2.12)
n=1

15



R. Blasi et al. | Pivsica A 245 (1997) 189-211 193

Note that. due to the choice of the free Hamiltonian Hg, the Q wave packet does not
disperse and moves with constant speed ¢. In this paper we shall exclusively consider
the weak-coupling, macroscopic limit

V 2
N-x and qz<;Q> =O(N~1y, (2.13)
p

which is equivalent to the requirement that the total number of spin flips i = qN be
finite in the macroscopic limit N — cc. Notice that, if we set

X, =Xy + (n— 1)d, L=xy—x; =(N-Dhd, (2.14)

and let d/L -0 as N - oc, a summation over n can be replaced by a definite
integration according to

Xy

N

gy flx)—— fd.v . (2.15)

i
n=1 L

x, \

In this case, by making use of the Fermi-Yang approximation V(y) = V,Q0(y), (2.12)
becomes

ct

N VoQ2
G x exp( Y In |:COS de—o— d(x — ct)})
n=1 Ch

0
- exp( - ;Ij [ct — x,)0(xy — ct)f(ct — x) + LOB{ct — xN)]> R (2.16)

where the arrow will henceforth denote the weak-coupling, macroscopic limit (2.13),
(2.15). The system attains an exponential regime as soon as the interaction starts:
Indeed, if x; < ct < xy,

Gocexp<—ﬁ£ﬁ§£ﬂ2>. @2.17)

Notice the absence of the “Gaussian” regime, characterized by a vanishing derivative
at ¢t = 0 [21,22], and of the power law at long times [23]. This result is valid for the
propagator (2.11), which involves position eigenstates of the Q particle. If these
are substituted by (normalizable) wave packets, small deviations from the
exponential law appear at short times [19], in agreement with general mathematical
theorems [21].

The result (2.17) hints at the presence of a dissipative process of some sort, at least in
a restricted portion of the Hilbert space of the total (@ + D) system. Such a dissipative
process was brought to light in Ref. [24], where it was shown that a Wiener process
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appears in the weak-coupling, macroscopic limit (2.13), (2.15). In the following
sections we shall derive all results (including “border effects™) in full generality, discuss
their meaning and clarify in which sense and under which conditions it is possible to
identify the presence of a dissipative process. The important links with Van Hove’s
A*T limit [1] will also be properly emphasized.

3. Heisenberg operators

In order to bring to light the emergence of a dissipative process in the particle-
detector interaction, it is essential to study the temporal evolution of all the operators
involved in the interaction process. It is therefore convenient to work in the Heisen-
berg picture. First of all, notice that the total Hamiltonian of the system is constant in
time

. hew .
H(t) = cple) + = (1 + 05°(t)
n

)

+ Z V(‘G(t) _ .‘C,,) [a,(:)(t)e — jwi(t)/c + G'(f)([) eiwi(r)/c:]

= H(0), (3.1)

where H(0) = H is the total Hamiltonian of the system in the Schrédinger picture. Let
us focus our attention on the free Hamiltonian of the Q particle. From (3.1) we get

h
cplt) = cp(0) + -23 Y (o — ()

+ YV (& —x,) [0V e @ 4 he]

— V(%) — x,) [6D(e) €% 1+ hc]}, (3.2)

where ¢p(0) = cpand ¢! = ¢{"(0) (i = 3, +)are operators in the Schrédinger picture.

In order to solve Eq. (3.2), we need the explicit forms of the Heisenberg operators £(t),
o$(t) and a‘;’ (¢). To this end, we shall make use of disentanglement formula (2.10).
The calculation of the operator £(t) is straightforward and yields

R(t) = M ge HM = ¢ 4 ¢t (3.3)

On the other hand, the evaluation of a{"’i (¢) is more involved; let us first show in full

how to calculate the operator ¢{'(¢). With the help of (2.10) this operator can be
rewritten as
G(:)(t) = eth/h (T(:) e—iHot/h H Dm ,
m

Dm =" imn(a,,)ﬂ‘:"(:i)e —In cos(a,,)u‘,”"e — itan{a,)a™(X) . (34)
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By observing that
eilll,’ho.(:)e —iHth _ eilir h eimi,’ca(:)(:e)e —iHgt/h

o r iy N o . n), A
= Qi+ tl)/CelHl h ("’(‘c)e iHotih @il + et ele/he xflgl/hg(+ (X) ,

(3.5
Eq. (3.4) becomes

e,-w(x- + etyje e‘””’e“”'""" [0":’(.‘6)6’ - imn(z,,)a(:'()é)e —1In cos(a.,)a‘;'e - itan(z,)alfw(_é)] H Dm . (36)

m#n

We now evaluate the term in square brackets. By making use of the formulas

. . \ . b*
el e = e25Y, g Temt = 60 he( 4 = (= 26", (3.7

2!

we obtain

(")(‘C)e — itan(z)o! ‘(X)e - In cos(z,)n‘,"e — itan(x,)0(%)
=e- itan(x,)o' '(x)e ~in cos(a,)a‘_{"elln °°s"”’0'(f)(>€) e~ itan(x,)e ()

=g~ ilan(z.)a‘:‘(x‘)e - In cos(u.)a‘,"’e — itan(x,)o (%)} C082 a,

x (0P(£) — io tan o, — (i tana,)?o (%)) . (3.8)
By substituting (3.8) into Eq. (3.6), we get

(")([) = eiw(x‘ + cl)/ceth/he iHgt/h H e~ ztan(z,,)o-‘”"(v:)e Incos(az,,)a"‘" ~ itan(a)a ™5

m

x (a‘ﬁ’(‘c) cos?a, — -7: a3 sin 2a, + o (%) sin? a,,>
= glo¥+ "”‘(a‘i’ (%) cos? a,, — —2-0(3") sin 2¢, + 6™ (%)sin? oc,.) . . 39
The Hermitian conjugate of (3.9) yields
() = et + v"/c(a‘.".’(,e) cos?at, — -z-a‘;’ sin 2, + 6% (X) sin? a,,> (3.10)

and by using an analogous procedure, together with the formula

ebd(:)o_(n)e —ba'® __ ( (m 2b0'(:)) (31 1)

18
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and its Hermitian conjugate, we get

(m (n)

a3'(6) = 0§ cos 2a, — i(a\P(%) — o' (£))sin 22, . . (3.12)

The results (3.9), (3.10) and (3.12) and the relation
0,(;) (t)e F (X + ctyfe — U(;)e T ims/c = J(;)(.Q) , (3.13)

lead us to the final expression
cp(t) = cf(0) + hwz o sin a4, (%, 1) + z—-——Z[ MR — o™ () sin24,(%, 1)]
+ Y V(= x) =V(E+ et —x)](07(R) + a2(3). (3.14)

Il the above results are exact.

4. The stochastic process

Having found the explicit {and exact) expressions for the quantum operators of our
system in the Heisenberg picture, we search for the stochastic process that is at the
origin of the exponential decay (2.17) of the propagator (2.11).

-

4.1. Expectation value of the Q particle Hamiltonian

By making use of the explicit expression (3.14) for the momentum operator of the
Q particle in the Heisenberg picture, we can easily compute its expectation value in the
state

+

I!//,0>NElll’>®|0>~=det/f(X)IX>®I0>~, J dx|y()* =1. (4.1)

i)

The choice of such an uncorrelated initial state is physically consistent: Indeed,
we suppose that at initial time ¢ = 0 the particle Q is well outside the detector D
and moves toward it with constant speed c. It will be clear in the following that
the choice of the ground state |0)y (N spins down) as the initial D state is essential
in deriving a stochastic process. For convenience we choose ¥ to be symmetric-
ally distributed around the origin and with a compact support. Possible choices for
Y are

Y (x) = (2a)""20(a — | x|)e™*", (4.2)
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or a Gaussian wave packet

1

1/4 N
= — x%/4a* + ipox; .
o= (52) e , _‘ 3

truncated for, say, | x| > a. Notice again that, owing to (3.3}, the wave packet does not
disperse. We define

Cep(t)y = §0, ¥ [cp(O)Y, 0O n (4.4)
and, from Eq. (3.14) we obtain
<Cﬁ(t)> = N<Os l// lcpA(O)‘ '//s O>N + h(l) N<09 l// ! Z 0,(;') Sinz “n('ey t)[ '//’ 0>N

4152 01T (019 - () sin 22, (2,1 O

+ a0 YILIV (R = x) = V(& + et = )] (6(2) + (), 0Dy .
4.5)

It is easy to see that the last two terms in (4.5) give vanishing contributions. Let us now
compute the contributions of the first and the second terms. The evaluation of the first
term is straightforward: It is nothing but the initial energy of the Q particle

LY

N O PO, 0dn = Y [ch(O) YD = Jdp'@ﬁlp’) <p'leply

T o= fdp’lﬁ(p')lz cp’ = cpo. (4.6)

On the other hand, the calculation of the second term
ho n<0, Y| Y 05 sin? 0, (£, 01, 00y = — A (Y| Y sin® a,(£, £)| )

¢

= —ho J‘dxll//(x)l2 Y sin? [;11- Jdt’ Vix +ct — x,,):] (%))

0

is more involved: We can use, without loss of generality (see the appendix), the
Fermi-Yang approximation V (y) = V,£4(y), and obtain
x+ct-x,
. V
_hwjdxhl/(x)]ZZsmzl: cohg J‘ dy&(y)]

= — hw J.dxlill(x)!ZZsinz [VC"hQ O(x + ct — x,)0(x, — x)} . (4.8)
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If we require
a <x1 and a<L=.‘<N—x1 s (4'9)

we easily get

—hwfd‘ch// 12 [——-Owa )} (4.10)

since every spin is located at the far right of the initial wave packet ¥(x), whose
finite support is [ —a,a], so that the inequality x( < a) < x, holds for the integra-
tion variable x. In the weak-coupling, macroscopic limit (2.13), the summation over
n can be replaced with an integration as in (2.15) and the above quantity is further
reduced to

x+ct—x,

— ho— fdtlx/x(‘c)lz J dz 8(z)

X+t - xy v
= — ha)L jd\clz// X)* [(x + ¢t — x1)0(x + ¢t — x;)0(xy — ct — X)

+{xy — x)0(x + ct — xx)] . 4.11)

Thus, if we restrict our attention to the situation in which Q is still inside D, i.e.
ct < xy, we finally obtain -

th<O,x//lZa(3"’sm % (X, ), 0Dy — — ha)%—(ct — Xx;) + be. 4.12)

The shorthand notation “b.e.” stands for “border effects”, namely terms appear-
ing only when |ct — x|, |ct — xy| < a, whose explicit expression is easily com-
puted to be

(4.13)

i f(ct —xy + a)*/4a if xy —a<c
L <

— hw— x .
—(xy+a—ct)*/da if xy—a
corresponding, respectively, to the situations in which Q is entering D and Q is going
out of D.

Having obtained the explicit expressions (4.6) and (4.12) for the first and the second
terms in {cp(t)> [see (4.5)], we reach the following exact expression:

CeB(e)y = n<O, W IO, 03y — cpo — hw—g(ct —x,) +be. 4.14)
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In conclusion, the energy of the Q particle (when Q is inside D) decreases linearly
with respect to ¢. It is worth mentioning that what is seen here is an energy-dissipative

process: If w were set equal to zero (as in the original AgBr model [8,97), we could not
have found such a process. "

4.2. Correlation functions of the spin-array Hamiltonian
In order to clarify the stochastic nature of the system, let us calculate the correlation
functions of the spin-array Hamiltonian H .

Consider the operator AHp(t) = Hp(t) — Hp, which represents the energy stored in
the detector between time 0 and r. By using Egs. (3.12), one obtains

AHp(t) = Zf‘—z‘i’ @) — o)

;
= - [Z oo sin2a,(%,0) + ¥ i% (60(%) — 0™ () sin 20,(%, :)] .
(4.15)

It is easy to see that when the Q particle is inside D, by making use of (4.12), the
expectation value of this operator reads

CAdHp(t)) = {0, WJAHu(t)W,O)N - ha)g(ct - X;) + be., 4.16)

in agreement with Eq. (4.14): The energy lost by Q is stored in D.
Next we turn our attention to the two-time correlation function, defined by

{4Hp(t,)4Hp(t,)) = §<O, Y | AHp(t,) AHp(t;)|¢,0)y . (4.17)
Its explicit form, by Eq. (4.15), is

{4Hp(t,)dHp(t;))

m

= N <O, w! (Z hwog') sin? Ay (xAy tl)) <Z hwag’n) sin? Ol (f’ t2)> Illla O>N
hw\? ", a ™) an A
. (z 7) W <O, [Z(m () = o (9 sin 2an(x,t1)]

X [Z (%) — ¢ (£)) sin 20, (%, tz)] [¥,0>y + vanishing terms.  (4.18)
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The first term yields

w0, 1 (Z hwo sin? 2, (%, 1, )(Z hwoi sin? a, (%, t; >]n// 0>y

4

= (hw)? jd\clx// (0))? [Zsm <1 Jdt Vix+ct— \c,,)>jl

0

X [Z sin? (% ~j‘dt’ Vix +ct — x,,,))] , 4.19)
" 0

which is written, in the Fermi~-Yang approximation V{x) = VQ4J(x), as

(hw)? de] w(x))? [Z sin® (%;9 O(x + ¢ty — x)0(x, — x))]

1:2 sin (—Q B(x + cty — Xpm)0(x, — x))} . {4.20)

The weak-coupling, macroscopic limit (2.13), together with the continuum ansatz
(2.15), reduce this quantity to

( ‘>2 Jd‘(‘l// )P [(x + ¢ty — x,)0(x + cty — x,)0(xy — cty — X)

+ LO(x + ct; — xy)]

x[(x + ¢ty —x1)6(x +cty — x1)0(xy — ct; — x) + LO(x +ct; — x5)].
4.21)

Finally, by focusing our attention on the situation in which the Q particle is inside D,
we obtain

=\ 2
<hw%) [ty o e+ ety = xa)tx - cts = x0)

=\ 2
= (ha)%) {cty —xy1)(ct; —xy) +be. (for x; <ct; 2 <xy). (4.22)

Let us now calculate the second term in Eq. (4.18), the nonvanishing term of which
reads

ho \? RS .
(—-2——) J dx |y (x)|* Y sin 20,(x, t,)sin 2a,(x, t5) . 4.23)

n

23



R. Blasi et al. [ Physica A 245 (1997) 189-211 201

In the usual weak-coupling, macroscopic limit (2.13), we obtain, after a short manip-
ulation,

Xy

(hw)? de!l//(x)lzg jdy@(x +cty — yO(x + ety — y)

= (hw)zg [emin(ty,1,) — x,] + bee. (for x, < ctya < Xp). (4.24)

In conclusion, we are led to the following expression for the two-time correlation
function:

=\ 2
C4Hp(t)AdHp(t,)) a(hw%) (cty — xy)(cty — xy)

n (hwf’z’ [emin(t,.t;) — x,] + bee. (4.25)

which is valid when the Q particle is inside D. The border effects will be discussed in
the appendix.

4.3. The Wiener process

The results we have obtained so far, (4.16) and (4.25), look quite interesting:
Introduce the operator )

()= AHp(1) — CAHp (1)), (4.26)

where the expectation value is to be evaluated on the state spanned by
[¥,0>y = ¥)> ®|0)y. Then, by Egs. (4.16) and (4.25), we easily show the following
properties

(E@)> =0, (4.27)

<f(f1)f(t2)> = (4Hp(t)AHp(t;)) — (AHp(ty)) {4Hp(t3)>
- (hw)zglcmin(tl,tz) —Xx;] + be, (4.28)

valid in the restricted state space spanned by |¥,0>x. These properties remind us of
the characteristics of a Wiener stochastic process [17], i.e., a Gaussian process with
a variance proportional to min(t, ), since the second relation (4.28) can be rewritten as

) E(t,)) - (hw)sz'—i min(ty,1,) + be, (4.29)
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in terms of an “interaction time” 1, 2 = .2 — x,/c. As a matter of fact, we can prove
that the operator £(¢) really serves as a Wiener process in the restricted Hilbert space
spanned by |,0), in the weak-coupling, macroscopic limit. To this end, we must
show that the process is Gaussian, namely we must prove that the correlation
functions of any order can be written as a sum of products of two-time correlation
functions over all possible combinations. This will be done in Section 4.4.

4.4. Characteristic functional

In order to demonstrate in full generality the Gaussian property of the process, let
us consider the characteristic functional

S[B] = (HPOE0y 4.30)

which is subject to the normalization condition

$[0] = (1> = v 0¥ 1,00y =1. (4.31)

Y

We know that the characteristic functional is the generating functional of correlation
functions

E)ity) - Sty = 3 B(M[ﬁ ] (4.32)

ty) - 0B(tn)

B=0

and that Gaussian processes are characterized by Gaussian characteristic functionals.
By making use of (4.26) together with (4.15) and (4.16), we find
)
N

¢ = Jdt BUNAH ) , (4.33)

MM=JMWWH<O

2
N

H o™ hwfdt ByLo¥sin 2,(x, ) + Ha'P'(x) — a™(x))sin 2%,(x, 8)]
n

Let us now focus our attention on the factor
e~ hewfdt BO)[osin? mufx, 1) + Ho'P(x) — a®W(x))sin 20,0, )] — g% [ba¥ + (6P (x) — ¢(x))]
= f(ap, bu) » 4.34)
where we have introduced the quantities a,, b,eR:

— ﬁzg dt B(t)sin 2at,(x, t) , (4.35)

it

an

abs= — hw Jdt B(t)sin? o, (x, 1) . (4.36)
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We try a disentanglement of fin the following form:
f(a, b) — eiX(a. b)o . {x) ey(a,b)a, e~ iX{a, b)o_(x) , (437)

where, for the moment, the index n has been suppressed for the sake of simplicity and
the functions X(a, b), Y(a, b)e R are to be determined later. The determination of
X and Y is straightforward but somewhat involved. Differentiation of £, in (4.34), w.r.t.
a yields

cf (a, b
TCD) — thoy + i (9 - o- (N1 (@ b, 438)

while the disentangled form of f in (4.37) implies that the same quantity is to be
equated with

l:i_a_‘(_‘{o.+ (‘() + a_Yex’Xa,(x)ase— iXo.{x) __ ii)_(ei,\’a.(x)e)’u,a.__ (x)e - Ya_,e —-iXa.(x)]f(a’ b) .

da da da
(4.39)

The calculation of the terms in square brackets is simple: The second term is
calculated to be

eXNgye =00 = g, — i X[63,0.(x)] = 03 — 2iX0,(x), , (4.40)
while the third term becomes

eiXa‘(x)eYo,o.— (x)e - Ya,e —iXa.(x) =g~ ZYeiXa.(x)o.__ (x)e — X6, (x)

] =e " (o_(x) + iXo3 + X0, (x)). (4.41)

Therefore, we have the equality

bas +i(o.+(x) — 0-(x))

0 X
= ifj—)—(a,,(x) + éz(ag —iX20.(x)) —iz—e ¥ (o_(x) + iXo3 + X?0,(X)),
Oa da da
(4.42)
from which we obtain the following set of differential equations: '
b=<7_Y+X_5_{e—zy, (4.43)
da da
oY oY 20X oy
0X oy
= . 4.45
! da ¢ (443
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We can easily solve these equations since they are equivalent to the following two
equations: ‘

X i
o+ 2bX - X2, (4.46)
ca

—;Z =b—X. (4.47)
oa

Under the initial condition X (0, b) = 0, the solution of (4.46} is readily obtained

eZu\hJJrl_l

(Wb + 1 +b) + (/b + 1 = e+t

X(a,b) = (4.48)

Then the function Y is calculated, either from (4.47) or (4.45), to be

2
Y(a,b):a./b2+1+1n[ 2V + 1 } (4.49)

(VBT + L+ b) + ((Jb® + 1 — b+

By plugging the solutions (4.48)-(4.49) into disentanglement formula (4.34) we can
evaluate the characteristic functional
)
N

= dei Y(x)2e” L. V{an b) g = fdt BOICAHD(0) (4.50)

H eiX(a,., h,)a‘i"(x)eY{a,‘, h,,)o‘j“e — X (ay, ba)o'™(x)

$(p) = f dx1w<x)|2N<o

n
-

« ¢~ [dt BN p(0)

Consider now the weak-coupling, macroscopic limit (2.13), together with (2.15).
Obviously a,, b, ~ 0(1/\/1TJ) — 0 and keeping only terms up to order 1/N in Y (a,, b,),
we obtain

Y (a,, ba)
2
(4
+ ln[ S 21+ BbE)2) ]
(1 + b, +b2/2) + (1 — by + b2/2)(1 + 2a,(1 + b2/2) + (2a,)*/2!)
ap
> ——+ anby,. 4.51)
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Notice that in this limit, the above qualities are expressed as

at - [fza) f de B(t)a(x, z)] [hw Jdt' B(t)an(x, t')] , (4.52)

ab, — — hwfdtﬁ(t)af(x, t). (4.53)

Putting these results together and neglecting all border effects, we finally arrive at the
explicit expression of the characteristic functional

¢ [ﬂ] - jdxl w(x)ll e((hw)z,"l)andt dr’ Blt)yaa(x, t)aa(x, !’)ﬂ(!’)ehwznj'dtﬂ(t)x,f(x, t)

xe™ {dt piyhoti/Litet - x,)
N e(l/Z)(hw)z(ﬁ/L)jdt dr' iy {e mingt, t') — x.]/}(l’)ejdt By hwtia/L)ct ~ x,)
xe~ {dt BYheti/L)et — x,)

- e(I/Z)(ha))z (cA/L) [ dedr’ B(eymin(z, v') () , (454)

where the interaction time t = t — x,/c has been introduced as before. The charac-
teristic functional turns out to be Gaussian, which proves that the stochastic
process under consideration is Gaussian. We understand from the appearance of
min(z, ') in the exponent, which represents the variance of a Gaussian process, that
this process is nothing but a Wiener process. We stress again that this conclusion is
only valid in the restricted state space spanned by |¢,0)y, in the weak-coupling,
macroscopic limit.

5. Comments and outlook

We have analyzed the modified Coleman-Hepp model and brought to light
a Wiener process in a restricted portion of the total Hilbert space. The operator £(z)
becomes a sort of “noise operator” in the N = oo limit (2.13), in the sense of Egs. (4.27)
and (4.28). We also proved the Gaussian white noise properties by starting from the
characteristic functional (4.30).

Although the appearance of a stochastic process of some sort could probably be
expected on the basis of the stochastic behavior of the propagator (2.17), the emerg-
ence of the Gaussian white noise is remarkable, for such a nontrivial Hamiltonian like
(2.2). We stressed in [24] that the exponential decay form (2.17) of the propagator is
independent of w and therefore the presence of an energy-exchange process is essential
for the derivation of the Wiener process, through which the energy of the system is
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dissipated. We understand that the weak-coupling, macroscopic limit (2.13)-(2.15),
that is closely related to Van Hove's limit, plays a crucial role in this respect: It
corresponds to a kind of coarse graining and scale-change procedures, some details of
which are discussed in the appendix. )

It is useful, in this context, to briefly comment on a remark by Leggett [18] that
summarizes a widespread opinion among physicists working on these topics. By
discussing the role of the environment in connection with the collapse of the wave
function, Leggett stressed the central relevance of the problem of dissipation to
the quantum measurement theory, and argued that “it is only genuinely dissi-
pative processes, in which the interaction leads to an irreversible exchange of energy
between system and environment, which can guarantee that interference is gone
beyond the possibility of recovery. Thus, we see that it is not interaction with the
environment as such, but specifically dissipation, which is responsible for genuine
“decoherence”, hence the central relevance of the problem of dissipation to quantum
measurement theory”. We believe that our analysis contributes to clarify and sharpen
the above remark: The behavior just derived, yielding a Wiener process, is cer-
tainly related to dephasing (“decoherence™) effects of the same kind of those en-
countered in quantum measurements. The exchange of energy between the particle
and the “environment” {our spin system) can be considered practically irreversible.
However, the role played by w is much more subtle, because w directly contributes to
construct the stochastic process, as could be seen in Section 4. These remarkable
features are manifest in the model here presented and could not be guessed, in our
opinion, without an explicit solution. Another important fact, not to be dismissed, is
that we have exclusively considered the dynamics within a restricted state space
spanned by [, 0>y. We emphasize, once again, that the stochastic process is derived
without tracing over the states of the macroscopic system D. This is to be contrasted to
other work. .

We also stress that the link between a dissipative dynamics and a quantum
measurement process is not obvious. This point is delicate and somewhat unclear and
deserves discussion. In which sense can we talk of “quantum measurement” in the
AgBr model? This issue has been analyzed in Refs. [10,11]. One sets up a double-slit
experiment, by splitting an incoming Q wave function into two branch waves, only
one of which interacts with D. It is possibly to compute exactly several interesting
physical quantities, such as the energy “stored” in D after the interaction with Q, as
well as the visibility of the interface pattern:

{Hp)r =gqN hw - fihw , (5.1)
A (1 - q)le - e—-ri/Z =g (Hp§/2hw , (52)

where the sandwich is computed over the final state of the Q + D system after
the Q particle has gone through D, g is the “spin-flip” probability (2.6) and the
arrow denotes, as usual, the weak-coupling, macroscopic limit N — o0, gN =
A = finite.
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Clearly, the visibility of the interference pattern decreases as 7 increases, so that
interference gradually disappears as the average number 7 of spin flips (dissociated
molecules) or, equivalently, the energy exchanged between Q and D increases. How-
ever, this is not enough to state that we are actually facing a genuine dephasing
(decoherence) process, leading to a quantum measurement: Technically, “dephasing”
consists in the elimination of the off-diagonal elements of the density matrix of the
total (Q + D) system. By contrast, here we are simply observing a dynamical process
in which the wave functions of the total system do not completely overlap anymore: In
order to shed light on the above point, look at the scalar product between the vectors

(0> =™y, 05y and  [Yo(t)) = e~ "y, 05y, (5.3)

obtained by letting [ /.0y, in Eq. (4.1), evolve under the action of the total Hamil-
tonian H and the free Hamiltonian H,, respectively. We obtain, in the limit of narrow
wave packet [19],

CHoO (0> = v, 01U |4, 0) y — exp( - ,;‘f%ifﬁ) (5.4)
where U, (t) is the same operator defined in (2.4). This result is nothing but Eq. (2.17);
the above quantity extracts the net effect of the interaction.

One clearly sees that, in principle, the quantum coherence can be recovered: Strictly
speaking, the underlying dynamics is unitary and there is no irreversible effect.
However, the results obtained in the present paper make us understand that an
irreversible process of some sort is present, in the AgBr model. How can we reconcile
these two apparently contradictory points of view?

In our opinion, what really provokes the appearance of the Wiener process in the
present model is the N — oc limit, via Van Hove's diagonal singularity. This practic-
ally yields a coarse graining procedure over a certain characteristic time, and discards
all effects stemming from fine oscillations over small time periods. In such a limit,
the AgBr chain of spins makes a transition from the ordinary unitary representation
to a unitary-inequivalent one. Such a phenomenon is characteristic of the many-
Hillbert-space theory [14] and yields decoherence effects. Admittedly, we are entering
a domain of speculation that should be corroborated by more clear-cut arguments.
We feel entitled to put forward the above qualitative comments because the mecha-
nisms at the origin of the stochastic process and the very transition to
the unitary inequivalent representation in the present model are not completely clear
to us.

We would also like to emphasize that it is not entirely trivial to bring to light the
dissipative dynamical processes constituting a quantum measurement: In general,
a thermal irreversible process is a probabilistic one, described by master equations,
that characterize the approach to thermal equilibrium. On the other hand, in a quan-
tum measurement process, the evolution leads to the so-called collapse of the wave
function. The final density matrix, that does not contain off-diagonal terms, depends
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on the measured observable, on the way one performs the spectral decomposition and
on the very measuring apparatus [14,15]. The description of the loss of quantum
mechanical coherence in terms of dissipative equations, governing the evolution
toward an equilibrium situation of some sort, is therefore a delicate problem, that
deserves further investigation.

There are other interesting open problems. For instance, it is well known that the
reduced dynamics of a (sub)system in interaction with a larger system (playing the role
of reservoir) is well described in terms of quantum dynamical semigroups [25], so that
one should be able to derive a master (or Langevin) equal [26] for some dynamical
variables of the subsystem (such as the energy-momentum of the Q particle). The
derivation of a master or a Langevin equation in the present model would open a door
to thoroughly investigate a possible link between a quantum measurement and
a genuine dissipative process.

Appendix

In this appendix we shall consider the more realistic situation in which the potential
V(x) has a finite width. We shall consider, for simplicity, a square wave packet and
potential (actually, the requirement of compact support for  and V would suffice)

{ .
x) = Ba — x)0(x + a)e®xt (A.D
W T )
Q
Vix)=V,0 g——x fix+—=). {A.2)
2 2
In this case the expression (2.7) for «, becomes ‘
X+t —x,
_ _ Vol dy (Q Q
Ty = (1) = >~ f o 6<2 y>9<y + 2)
_Vaf . (2 _) . .2
=g [mm(z,x + ct x,,) max(x Xps 2)] (A.3)

The expectation value of the operator 4Hp(t) in (4.15), relative to the initial state
|y, 0)>y reads

{4Hp(t)) = hw fdx{u/z(x)[z Y sin? a,(x, 1)

—»hwﬁ dXNdZ ian-!-ct—-z ma z—-g ’
L)2a)@|™\7 U277

(A4)
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where, in the last step. we have considered the weak-coupling, macroscopic limit
(2.13). We consider now the case ¢t > Q and focus our attention on the situation in
which the wave packet is fully inside the potential. This means that

Q Q
x,+—2—+a<ct<xly—§——a. (A.5)

By using (A.5) and since x; > @, a, (A.4) simply becomes

a x+ct—42;2 x+ct+Q/2
i [ dx dz _, dz Q 2
hwzj‘“j;l: J‘ EQ + f ?<X+Ct+§‘—2)}
—a Xy x+ct—Q/2
A (dx Q i Q
—hwz JZ(.V+ct—g——x1>=hwz<ct—€—-x1>. (A.6)

-a

Notice that there is no effect due to the wave packet width, since it is considered
entirely inside the detector, but the finite width Q of the potential appears in the above
formula, in contrast with (4.16). By following a procedure similar to the previous one,
we can compute the second-order correlation function of the operator 4Hp(t) and, by
making use of the definition (4.26) of £(t) we finally obtain

Wy =0,
(2(63) £(62)) — () 7[00 ~ Q) et; — x1)

+ 0(41)0(Q/c — A1) {ct; — Q — x; — h(—4t,Q)}
+ 0(—=40)0(Q/c +4t) {ct; — Q2 — x; — h(—41,Q)}
+ 0(— 4t — Q/c)(ct; — x,)], (A7)

where 4t =t, — t; and

h(t,Q) = —6%27(“ + Q)((ct + Q)% — 6Q7). (A.8)
From the previous two equations we can observe that, in contrast with (4.27) and
(4.28), when the finite width of the potential is taken in account, £(t) is not a Wiener
process anymore, unless Q — 0 (6-potential limit). Incidentally, if the time scale is
changed like ¢t = At (where t and  can be regarded as a microscopic and a macroscopic
time respectively) and if we define W (f' ) = £(¢), then

W)y =0 (A9)
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H(0) W (02)) = (ho)?

[0(4t — Qlic)(ct;, — Xy)

o~ =

+ 0(40)0(Q/dc — AT ) {cty — QJ4 — %, — h(— AT, Q/A)}
+ 0(— ADYO(AT + Qfic) {cf, — Qfi — %, — h(T,Q/N)
+ 0(— AT — Q/A0)(cFy — %1)], (A.10)

where X| = x;/4and L = L/4. In this case, only when |, — ;| > Q/ic (or A = co with
%,,L,t < oc, which is equivalent to a time scale transformation), we reobtain a proper
Wiener process. In other words, the d-potential limit can be regarded as a realization of
the macroscopic time-scale transformation.

The above considerations bring to light the close link with Van Hove’s 42T limit, as
discussed in [11]. This can be easily evinced by observing that g, in Eq. (2.13), is
nothing but the square of a coupling constant (Van Hove’s 1), and that N( cc L) can be
considered proportional to the total interaction time T. Notice also that the “lattice
spacing” d, the inverse of which corresponds to a density in our one-dimensional
model, can be kept finite in the limit. Obviously, in such a case, we have to express
everything in terms of scaled variables such as t = t/4, X = x/4i and { = a/L, where ais
the size of the wave packet.
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We analyze the effects of inelastic scattering on the tunneling time theoretically, using generalized Nelson’s
quantum mechanics. This generalization enables us to describe a quantum system with optical potential and
channel couplings in a real-time stochastic approach, which seems to give us a new insight into quantum
mechanics beyond Copenhagen interpretation. [S1050-2947(97)01408-X]

PACS number(s): 03.65.Bz

I. INTRODUCTION

An issue of the tunneling time, i.e., the time associated
with the passage of a particle through a tunneling barrier, has
been discussed in many theoretical studies [1-17], and is not
settled yet. This difficulty arises mainly from the fact that
time is not an observable represented by a self-adjoint opera-
tor, but is just a parameter in quantum mechanics.

In our previous paper [20], we proposed a method to
evaluate the tunneling time, using Nelson’s approach of
quantum-mechanics [18]. Our aim then was to treat tunnel-
ing effects in a detailed time-dependent and fully quantum-
mechanical way, as any theoretical expression of the tunnel-
ing time must be tested by experiments which are feasible at
present and in the near future.

As discussed in Ref. [20], Nelson’s approach to quantum
mechanics has several advantages to study the tunneling
time, a few of which are listed below. First of all, this ap-
proach, using the real-time stochastic process, enables us to
describe individual experimental runs of a quantum system
in terminology of the ‘‘analog’’ of classical mechanics. This
is true even in the tunnel region where a classical path is
forbidden. From sample paths generated by the stochastic
process, we obtain information on the time parameter, in
particular, the tunneling time.

As a matter of course, the whole ensemble of sample
paths gives us the same results as quantum mechanics in the
ordinary approach, e.g., expectation values of the observable,
transmission and reflection probabilities in scattering prob-
lem, and so on. It is important for us to note that in scattering
phenomena (those without bound states) the transmission
and reflection ensembles are defined unambiguously, that is,
each sample path is classified distinctively into either a trans-
mission ensemble or reflection one.

We need to accumulate a sufficient number of sample
paths in numerical simulations. In thick or/and high potential

*Electronic address: imafuku@mn.waseda.ac.jp
Electronic address: ochba@mn.waseda.ac.jp
Electronic address: yamanaka@mn.waseda.ac.jp

1050-2947/97/56(2)/1142(12)/$10.00
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cases the transmission probability is low, and consequently
we have the difficulty that a number of sample paths belong-
ing to the transmission ensemble are also low when each
sample path is followed in the forward time direction. How-
ever, in Nelson’s approach there is not only the forward
Langevin equation but also the backward Langevin equation
[see Eq. (2) below], both being equivalent to each other in
physical results. The difficulty above is avoided when the
backward Langevin equation is employed.

Taking account of these advantages, we developed a the-
oretical of time-dependent description of tunneling phenom-
ena based on Nelson’s stochastic approach in Ref. [20]. Nu-
merical simulations for a one-dimensional square-well
potential barrier model were demonstrated. An important re-
sult about the tunneling time then is that there are three char-
acteristic times, i.e., the passing time and the hesitating time,
and their sum, the interacting time. The probability distribu-
tion of these three times were calculated numerically.

Our previous study treated only a quantum system of a
single particle under a simple potential. But realistic experi-
mental situations are more complicated. Naturally we are
tempted to extend our previous formulation to more general
scattering phenomena. In this paper we consider cases in
which transition processes into other channels or absorptive
processes takes place during scattering processes, and look
into these effects on the tunneling time.

Processes of transition into other channels and absorption
are described by channel coupling and optical potential
(complex potential), respectively, in ordinary quantum me-
chanics using the Schrodinger equation. So far it is known
that Nelson’s formulation is equivalent to the Schrodinger
equation only for a one-body problem with a single channel
and a real potential. The purpose of this paper is to gener-
alize Nelson’s stochastic quantization so that it can deal with
multichannel coupling and/or optical potential problems. As
will be shown below, one can construct such generalized
formulations of Nelson's approach with additional stochastic
jumping processes. These theoretical formulations allow us
to perform numerical simulations of stochastic processes as
before [20]. This way we can investigate the effects of tran-
sition into other channels, or absorption on the tunneling
time.

1142 © 1997 The American Physical Society
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The paper is organized as follows: In Sec. II the original
Nelson’s quantum mechanics is reviewed briefly for later
relevance. We propose a formulation of the Nelson’s ap-
" proach, generalized to a quantum system with channel cou-
pling, in Sec. IIl. The formulation of Sec. III hints at how to
develop a formulation for optical potential, which is shown
in Sec. IV. In Sec. V a numerical simulation for a square-
well potential model, using the formulations in Secs. 1l and
IV, are demonstrated, and physical implications of these re-
sults are analyzed. Section VI is devoted to summary and
some comiments.

11. BRIEF REVIEW OF NELSON'S QUANTUM
MECHANICS

We start with a brief review of the original Nelson's
quantum mechanics, which consists of two basic conditions,
i.e., the kinematical condition and the dynamical one. The
kinematical condition is given by the Ito-type stochastic dif-
ferential equation: There are two ways to express it, depend-
ing on the forward or backward time direction. Explicitly we
have, for forward time evolution,

dx(1)y=b(x(0),0)dt+dw(1), oy
and, for backward time evolution,
dx(t)=b,(x(1),0)dt +dw (1). (2)

The dw(t) is the Gaussian white noise (representing the
quantum fluctuation) with the statistical properties of

{(dw(1))=0 and (dw(t)dw(t))':’%dt, (3)

and the same properties for dw(r) as in Eq. (3). Here ()
means a sample average. It is easy to show that for these two
Langevin equations hold the following Fokker-Planck equa-
tions for the distribution function P(x,t) of the random vari-
ables x(1),

IP(x,t) APV ho p forward i
=" {x,1) T 2 (x,t) (forwardint),
(4)
0 [0 Ao »
Fra LSNP e LAY

(backward in ¢). (5)

Thus a pair of equations (1) and (2) is mathematically
equivalent to a pair of equations (4) and (5). We obtain an
osmotic velocity # from the sum of Egs. (4) and (5) as

b—b, h 14P 6
T T ImPoax ©

under the boundary condition of
P(x—oc,1)—0. (7)

Subtraction of Eq. (5) from Eq. (4) gives
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P J
Frar e UL R (8)
where v is a current velocity,
b+b,
V= 9)

The elimination of P(x,t) from Eqs. (6) and (8) leads to an
equation called the kinematical equation,

Ju
ar

(10)

The dynamical condition is expressed through the ‘‘mean
time derivatives’’ introduced as follows: The ‘‘mean forward
time derivative’” Df(t) is defined as

<f(t+Ar)—f(t)

Df(H)= lim N

Ar—+0

f(s)(ssrt) ﬁxed>,
(11)

and the “‘mean backward time derivative”” D f(¢) is defined
as

Dy f(t)= lim

Ar—+0

S)=f(1—Ar)
At

If(s)(s?t) ﬁxed>.
(12)

The “*mean balanced acceleration’’ is introduced through the
definitions of Eqgs. (11) and (12) as

DD, +D,D
a(x(e),n)= ——2-——x(t). (13)
Note that this definition can be rewritten as
h 62u+16 , 2+au (1)
)=ty )

at

from Eqgs. (1) and (2) with Egs. (6) and (9). The dynamical
condition is nothing but the classical Newton equation to this
“‘mean balanced acceleration’’ a(x(#),t), that is,

%
ma(x,t)=—+—, (15)
dx
from which we derive the ‘‘Newton-Nelson equation”
v h PFu v L 01V 16)
at 2m dx? v(?x u&x m dx

because of Eq. (14).

Next we summarize the mathematical structure of Nel-
son’s quantum mechanics. The two basic equations, Eq. (10)
from the kinematical condition, and Eq. (16} from the dy-
namical condition, form a set of simultaneous equations for
two unknown functions u(x,t) and v(x,t), or equivalently,
b(x,t) and b _(x,r). Then we can determine the ensemble of
sample paths or the distribution function P(x,r). Although it
is practically very difficult to solve these equations directly
due to their nonlinearity, one can easily show the equiva-
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lence between this approach and the ordinary approach of the
Schrodinger equation. This fact tells us that one can solve the
problem by means of the wave function much more easily.
The equation

d

o =0 (17

R T/ U AT W lv
w2 T

m .(,[7 x> m
follows from the combination of Eq. (10) and the imaginary
version of Eq. (16), where

il gy
utiv=—— v

Y o (18)

Equation (17) clearly shows the relationship between ' and
the wave function ¢ as the solution of Schrodinger equation

_ay ht 9
ih—-=\ =5 - V)l//, (19)
that is,
Wix,t)= xp'(x,t)exp< - %f’n(s)ds), (20)

with an arbitrary function of ¢, 7(¢), which has no physical
relevance. It is easily seen from this proof of the equivalence
that one has expressions for b(x,t), b,(x,1), and P(x,f) in
terms of (x,1),

i)
b(x,t)=;(Im-{»Re)%lm//(x,t), 21
h d
b*(x,t)=;;(Im—Re)—{;;lm//(x,t), (22)
P(x,0)=[y(x,0)]*. (23)

L. STOCHASTIC FORMULATION FOR QUANTUM
SYSTEM WITH CHANNEL COUPLING

We now generalize the above Nelson’s approach to a sys-
tem with a channel coupling. For simplicity, consider the
two-channel Schrodinger equations ({i,j}={1,2})

h? 92

J
ih —di(x,0)={ = Im ol

+ V,‘,‘(X,f) ’//i(xvt)

+Vii(x, ) (1), (24)

with

V=Vi. (25)
Here and below the dummy index does not imply taking a
sum. As will be seen, the generalization of the formulation in
this section to the N-channel case (N>2) is straightforward.

Consider the Fokker-Planck equations in the stochastic
formulation, corresponding to Eq. (24). First we require a
natural extension of Eq. (23) to the present case,

Pi(x,0)=|p(x.0)|* (26)

37
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The diagonal parts (the kinetic energy and V; terms) in Eq.
{24) are expected to be dealt with as in Sec. II. The Schro-
dinger equations (24) and their complex conjugates suggest
the following equations for P;(x,t):

AP (x,1) d ho&
T: *abi(x’t)+.21—ni5§—w(i'*j)(x’t) P,’(.x,t)
(forward in time), (27)

aP(x,t) |4 o9
T ézb*i('x7t)+§_;n_i'a_;_2—+w(i~—>j)(‘x’t) Pi(x,1)

(backward in time)  (28)

as P(x,t) increases or decreases, due to the potential V;;
causing transitions between i and j, at the rate of the abso-
lute value of

2
WiimjyPi= =W Py=gImg Vi 29)

Although the sum of Eq. (27) and (28) leads to Eq. (6) with
the index i,

b,'—b*,' h 1 0')P, 30
T T 2m; P; dx (30)
their difference provides us with
AP, 9
—r = 5 WiP) = Wi pPi (31)
instead of Eq. (8), where
bi+b,;
v,~=—'—-2——*—. (32)

As a result, eliminating P;(x,#) from Egs. (30) and (31), one
derives the kinematical equation

instead of Eq. (10).

Here arises a natural question what are the stochastic dif-
ferential equations corresponding to the Fokker-Planck equa-
tions in Egs. (27) and (28), just as Egs. (1) and (2) corre-
spond to Egs. (4) and (5). Apparently we need two random
variables x;(t) (i=1 and 2), which are assumed to be subject
to the stochastic differential equations, similar to Eqs. (1)
and (2),

dx;(t)=b(x(2),t)dt+dw;(¢t) (forward in time},
(34)

(backward in time),
(35)

dxi()y=b,;(x;(1),1)dt+dw (1)

with the properties for dw(1) and dw (¢),



i
(dwi(1))=0, (dw(D)dw(1))=— 5y,
‘ (36)

h
(dw,i(1))=0, (dw o (D)dw  (1))= ;;5,«de.

As is easily seen, a naive interpretation of these independent
stochastic differential equations leads only to the Fokker-
Planck equations in Egs. (27) and (28) without the terms
proportional to W;_ ;. An additional mechanism to take
account of the quantum jump between i and j represented by
the terms involving W;_, ;) is necessary. For this purpose we
supplement Eqgs. (34) and (35) with a stochastic jumping
process between i and j. Thus below we attempt the formu-
lation of two random variables x (1), subject to the stochastic
differential equations (34) and (35) combined with a stochas-
tic jumping process in the following way.

The ‘‘dynamical” rule to determine how each sample
path x;(#) changes its index (i=1-—2, or vice versa) during
passage of time is described by the following random jump-
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FIG. 1. Schematical illustration of the ‘‘dynamical’’ rule for the
stochastic jumping process between two channels.

ing process (Fig. 1): At each time a dice is cast, indepen-
dently of the stochastic equations (34) and (35), and each
sample path either keeps or changes its index at a certain
rate. For the forward time direction, we have the rule in case
of Wi;_»>0 (i#)),

xj(t+dt)  with the probability W,_. ;) (x,(1),0)d!,
xi(t)— x(t+dr)  with the probability of 1 = W_, ,(x,(1),1)dt, 7
xj(t)—x;(t+dt) with the probability I,
and the rule in case of Wii—j<O0,
x;(t+dr)  with the probability — Wiy (x;(2),0)dt,
xj(t)ﬂ{xj(ﬂrdt) with the probability 1 +W,_;)(x;(1),1)dt, (38)
xi(t)—x,(t+dt) with the probability 1.
Likewise, the rules for backward time direction state that, in the case of Wi, j)>(),
x;(t—dt)  with the probability Wiy (x;(e),t)dt,
xj(l)“—){x [1=dt)  with the probability 1~ W_.;(x;(r).t)dt, 39)
x{(1)—x;(t—dt) with the probability 1,
and, in the case of W(‘_,j)<0,
x;(¢t—dt) with the probability — W;_, ;,(x;(1),1)dt,
x"(t)ﬁ{x,»(t—-dt) with the probability 1+ W,_,;(x;(1),0)dt, (40)

According to the rules of the random jumping process
above, the behavior of each sample path is illustrated as fol-
lows: For the forward time direction, a sample path starts
from x;(¢;), develops according to Eq. (34) with i for a
while, and, when a chance comes, it changes its index from
i to j and follows Eq. (34) with j until the next jumping
process takes place. The jumping process from x; to x; is

38

with the probability 1.

allowed, and the reverse process is forbidden, where
W(i.»>0, and vice versa where W;_;,<0. The jumping
processes may be repeated or may not occur, depending on
the sign and magnitude of W, ;. Sample paths show a
similar behavior for the backward time direction.

It is remarked that x,(¢) is generally a functional of both
dw(s) and dw,(s) (s<t) [or dw,(s) or dw,y(s)
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(s>1)], as it may repeat jumps between i=1 and 2 in the
past (in the future). Due to changes in the index for each
sample path, there are several types of averages which are
distinguished from each other carefully. It is convenient to
introduce notations for conditional averages. The simple av-
erage ( ) should be taken over both of dw(s) and dw,(s)
(s<<t). To represent a physical average of the i state at ¢, we
introduce a notation of

<<f(x([))>>(.ri(1)}

where the average on the left-hand side implies a conditional
average only over sample paths, labeled by i at t. This aver-
age should be expressed in terms of the probability distribu-
tion P(x,t) as

=(f(xi(0)), (41)

((f(x(t))>>{xi(,)}=f dx f(x)P{x,1). (42)

The notation ((f(x(2)))).

thnS

[(0}Uxy(n} has trivial interpreta-

(LM ey 1101ty = (D)) (43)
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Furthermore, conditional averages with different times such
as ((f(x(t)))){xi(,w,)m{xj(,)} can be introduced: This ex-
ample represents the average only over sample paths which
have the index j at r and i at ¢+ d:.

Let us now evaluate the time derivative of the physical
average {{f (x(t)))){x,_(,)} . For the forward time direction, us-

ing appropriate conditional averages, we write
d
27 GO o
1
= LG+ s v any = (PG (0]

l
= E[((f(x(ﬁ‘ dt))"f(x(f)))){x,.(wd;))n{xi(;)}

<<f(x(t+dt))>>x(t+dl) X0}
~(SEEOM s e+ e ]- (44)

The three terms here are manipulated as

)

d I d=flx
(fOle+dn)=FON) (e vany j(X) dx(r)+ 2 df ‘ (dx(1))*+o(dt*?) >>
x=x(1) r=x(t) {x{r+dO}inix, (0}
d?
d*f(x) #h >>
= bx(1),t)dt + ——5— ——dt
<< dx CdxT 2m, {xt+dn}n{x, (1)}
[ ]df) d*f(x) # )
—<<——-—-dx bi(x(1),0)dt+ ——— R udt>>{x,(,)}+0(dt )
x) 1*f(x) *
:dtf dx( J;(r bix,t)+ ‘ (j;;) 2:1 )P (x,0)+o(dt?)
oo
=er dx f(x)( bi(x.t)+ T )P(x 1)+o(dt?), (45)
<<'f(x(t+dt)))){,ri(l+d!)}ﬂ(.x‘j(t)}: f dx f(X)W (i—j) (Y t)P (x,1)6(— W 1«])(x7t'))+0(dt2)’ (46)

and

(SO e 0+ anyngxoon

:‘d’f dx flX)W_;(x,0) Pi(x,0) (W, ;)(x,1))
+o(dr?), (47)

respectively, from Eqs. (34), (36), (37), (38), and (42). Col-
lecting Eqgs. (44)—(47), we obtain the correct time evolution
of Eq. (27). This shows the equivalence between Eq. (27)
and the stochastic equation (34) supplemented with the sto-
chastic jumping processes (37) and (38). Likewise one can

39

show the equivalence between Eq. (28) and the stochastic
equation (35) supplemented with the stochastic jumping pro-
cesses (39) and (40).

We need some careful treatment on the dynamical condi-
tion in the present case. For the equivalence between Nel-
son’s and Schrodinger approaches, the dynamical condition
should have the form

v, fi o’lzu (9U,~+ du; 1 (7V,, 48)
ot 2m, 7 Vitox ia’?x m; ox

Here we introduce a ‘‘quantum potential’” ¥, which is to
include the effect of channel coupling as well as the usual
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potential V;;. The simplest way to achieve this equation is to
define the ‘‘mean balanced acceleration’” a; through the
“mean (forward and backward) time derivative’” as usual,
but for the stochastic process without any jumping process.
We simply consider a stochastic process governed by Eg.
(34) all the time, and denote X; instead of x; to distinguish
them from each other. There is no mixing of dw; and dw; in
X;, contrary to x;. For each X,(t) we define the ‘‘mean
balanced acceleration’” a;(X;(1),?), and the *“‘Newton’’ equa-
tions

d
ma(X;(1),n)=— —

9X; (9)

becomes Eq. (48).
The combination of equations (33)+i(48) derives

al & 1 ay 1ﬁ21a2¢/ 1{_ th
ox|'m Wyl ot m; (// gx* om0 2 TU=D
=0, (50)
where the relation
i1yl
Ay ——— ——
utiv; =~ T o (51)
is used. If we shift the function ¢/ to
im;
Yi(x,1) = (x,t)exp *-;L‘ U(Y)dv , (52)
choose the ‘‘quantum potential’’ as
— YV,
V'iz V,‘i+Re—"""‘, 53
‘ lwil? 3
and use the relation
2 l//*V.,l/'J
Wi 54
TR Tl 59

we can reproduce the Schrodinger equations (24). By the use
of Egs. (51) and (52), the relations

h
bix,t)= ;(Im-!-Re)—a%lm//i(x,t), (55)

f
byix,t)= ;(lm-—Re)aixlm//i(x,t), (56)

and Eq. (26) are established again.

IV. STOCHASTIC FORMULATION FOR QUANTUM
SYSTEM OF OPTICAL POTENTIAL

In this section, let us formulate Nelson’s stochastic ap-
proach to a system of a single degree of freedom described
by an optical potential. Then the Schrodinger equation with
an imaginary part of the potential, denoted by iU (a physi-
cally relevant situation, i.e., an absorptive process corre-
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U<

FIG. 2. Schematical illustration of the ‘‘dynamical’’ rule for the
stochastic jumping process between physical and unphysical sector.

sponds to U<0), is written as

Y(x,1) n? g
P ~ 53 —2-+V(x N+ilU(x,t)

it

)w(x t).
(57)

The formulation in Sec. III suggests a method to establish
a stochastic formulation for this Schrodinger equation. The
analogy between the channel-coupling model and the present
model becomes apparent when we attempt the Fokker-
Planck equation corresponding to Eq. (57) in the forms

IP(x,1) ab+ f 32+ » ; i
s | T am e TR | (forwarding),
(58)
aP(x,1) [d N AL 2UP
Fra Pl et S L))

(backward in ¢). (59)

Equations (58) and (59) are compared with Egs. (27) and
(28); both are quite similar to each other with the correspon-
dence between 2U/fi and —W,_, ;.

While the sum of Egs. (58) and (59) is given by Eq. (6),
their difference leads to ,

(60)

instead of Eq. (8). From Egs. (6) and (60) follows the kine-
matical equation

)
2m Jx

du
ot

i + L2 U (61)
- E—x-(uv) mdx "’
instead of Eq. (10).

The additional term in Eq. (58) simply describes produc-
tion (absorption) effects for U>0 (U<0), which one may
put in such a way that the production (absorption) process is
a transition from an ‘‘unphysical’’ sector to a ‘‘physical’’
one (from a *‘physical” sector to an ‘‘unphysical’’ one). At
this point the analogy between Sec. III and this section is
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helpful to find stochastic processes equivalent to the Fokker-
Planck equations in Egs. (58) and (59): We consider the two
random variables x,(#) and x,(¢) for “*physical’’ and ‘“‘un-
physical’’ sectors, respectively, and stochastic jumping be-
tween them occurs according to certain rules, which will be
specified below. In contrast with the channel-coupling case
with the index i, the stochastic differential equations for both
of xp(2) and x,(1) can be common. Introducing a notation of
a random variable x(r) standing for both of xp(t) and
x,(t), we require the same form of stochastic differential
equations for this x(¢) as Egs. (1) and (2) all the time,

dx(t)=b(x(t),1)dt+dw(t) forward in time , (62)

dx(t)=b,(x(t),t)dt+dw (1) backward in time,

(63)

with the same properties for dw(t) as in Eq. (3), and so on.
Each sample path is described by x(¢) as a whole, but has to
be classified into either x,(t) or x,(t) at each t. Typically a
sample path changes as, for example, xp(ty)—x,(t)
— -+ —x,(1,) as a result of repeated jumping processes. A

x,(t+dt)
xp(
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sample path is said to be physically relevant at ¢ if the
sample is represented by xp(t), while it is not so if it is
represented by x, (7). In other words, the physical average at
1 is given by the average over ensemble of not all sample
paths but only physically relevant sample paths at z. The
notation ((f(x(t)))){xp(,)} is introduced to represent this con-
ditional average for f(x(1)). Similarly the notations of other
conditional  averages such as ((f(x(t)))){xu(,)} and

((f(x(t)))){xp(,)}u{xu(,)} are clear, in particular

<<f(x(t))>>{xp(l)}U{xu(l)}:<f(x(t))>- (64)

Again, conditional averages related to many times can be
introduced, e.g., ((f(x(t))))(xp(,+d,)}n{xu(,)} is supposed to
represent the average over all the sample paths which are
described by x, at ¢ and X, att+dt,

Let us summarize the ‘‘dynamical’’ rule for stochastic
Jjumping processes between p and u. The rules are given as
follows (Fig. 2): (i) For the forward time direction, in the
case of U<Q,

with the probability =2U(x,(1),0)/f dt

- x,(t+dt)  with the probability 1+2U(x,(2),0)/% dt, 65)
x,(t)—x,(t+dt) with the probability 1,
and, in the case of U>0,
x,(t+dt)  with the probability 2U (x,(1),0)/% dt
*ult)— x,(r+dt)  with the probability 1—2U(x,(1),0)/h dt, (66)
x,(t)—x,(t+dr)  with the probability 1.
(ii) For the backward time direction, in the case of U< 0,
x,(t—dt)  with the probability —2U(x,(),1)/% dt
t
*ult)— x,(t—dt)  with the probability 1 +2U(x,(1),)/% dt, 67)
x,(t)—x,(t—dt) with the probability 1,
and, in the case of U>0,
x,(t—=dt) with the probability 2U(xp(2), 1)1 dt
x,(1)— . : —
x,(t—dt)  with the probability 1 2Ux (1), dt, 68)

xu(t)—x,(t=dt)

Note that for the forward time direction a jumping process
from x,, to x,, is allowed, and the reverse process is forbidden
where U< 0, and vice versa where U >0, and that when U is
nonpositive everywhere, the number of sample paths de-
scribed x () decreases, and that in x,(t) increases as ¢ goes,
the total number being conserved. Regardless of the indices

with the probability 1.

of p and u, each sample path is a stochastic process de-
scribed by Eq. (62) [or Eq. (63)].

To prove the equivalence between the Fokker-Planck
equation (58) and the stochastic differential equation (62)
with the jumping rules (65) and (66), we calculate, for ex-
ample,
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— = G+ vany

~((FEON e o]

=;il;[<<f(x(t+dt))

SN o+ dpgs, 0}

H({ G+ dON)x 1+aninis, )

(GO e i+ anynx 03], 69)
with

((f(x(t+dt))‘f(x(t)))){xp(r+dr)}n(xp(z)}
3 Ao
=dtJ dx f(x)( - (—azb(x,t)-i- T P(x,t)

+o(dt?), (70)
<<f(x(t+dt))>>{_rp(l+dt)}ﬂ{xu(l)}
=dtf dx f(x)w;lx’t)P(x,t)o(U(x,z))+o(dt2),
(71
and
<<f(x(t))>>{xu(l+dt)}ﬂ{xp(l)}
= —d:f dx f(x)w(x’t) P(x,1)0(=U(x,t))+o(dr?).

(72)

These equations (69)-(72) follow Eq. (58). The equivalence
between the Fokker-Planck approach and the approach of the
stochastic differential equation (62) with the stochastic jump-
ing processes (65) and (66) has been shown for the forward
direction. Similarly the equivalence between the two ap-
proaches can be proven for the backward time direction.

As for the dynamical condition, we do not modify the
original Nelson’s formulation. When the mean time deriva-
tives Df(r) and D, f(¢) are concerned, there may be some
ambiguity with respect to the taking expectation. Here we
will follow the argument given above, Eq. (49). We define
the ‘‘mean balanced acceleration’’ through the ‘‘mean time
derivatives’” as usual, but for the stochastic process without
any jumping process. We simply consider a stochastic pro-
cess governed by Egs. (62) and (63) at all times. This leads
to the ‘‘Newton-Nelson equation’” in Eq. (16) in the present
case.

The combination of the equations (61)+i(16) leads to

o1 a¢'+1 w\21 9%y
"my ot 2\m| ¥ 9%

J
ax

—;l—(V+iU)]==O,
(73)

where relation (18) is used. Again the relation between ¢’
and the solution of Eq. (57) ¢ is given as
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pre-tunnel region
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1I 111
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FIG. 3. Schematical illustration of one-dimensional optical bar-
rier tunneling.

im (!
Y= ¢'exp< - ';l“f U(S)dS) (74)
and

h d
b(x,t)= ;;(Im+Re)3;1m//(x,t), (75)

f 3
b (x,t)= ;n—(Im—Re):glm//(x,t), (76)
P(x,0)=|(x, )} (7

are satisfied.

V. NUMERICAL ANALYSIS

Now we can perform a numerical analysis of the effects
of the optical potential and channel coupling on the tunneling
time, using above generalized Nelson’s approach. First, we
discuss one-dimensional system with a static square-well op-
tical potential,

0 inl (x<0)
0 inlll (d<x)

(Fig. 3). We set the solution of the Schrodinger equation,

.

ad 2 9°
iﬁ‘—?-t-(/l(x,t)=[—'2—n-;3?+‘/(x) x//(x,t), (79)
as
Ylx,t)= F A(k)g(x)e  EMN gy, (80)

with a coefficient function A(k) and E=#/2%%12m. It is well '
known that @,(x) is written as

in1
inlI

eik.r+Rke—ikx
Ckexx+Dke~Kx

Tee™ inlI,

Pil(x)= 81

where
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FIG. 4. (a) and (b) Three typical sample paths in the optical
potential case. (b) is an enlarged version of (a) (m=%=1).

_N2m(Vy=iUy—E)

K 7 =wp—ik; (x>0), (82)
N2m(Vy—iUy—E,) ‘
Ko= P2 =Kro~ikp (K>0)).
(83)
and Ry, Ty, Cy, and D, are given as
R, —i(«*+k?)sinhkd
Tk ZkKe*ikd
c [ B kxtik)e (84)
D, k(k—ik)e*d
B= : 85
" 2kk coshid +i(k2—k2)sinhxd (85)
We take a Gaussian form with its center at k=k, or
(ko—k)?
A(k)=Ak0(k)=C exp ““—4"(;-2—— s (86)

with a normalization constant C. Here we put o= k,/100 and
Vo=S5Ey=(fiky/2m)*. Using this solution, we numerically
calculate Eqgs. (62), (63) and (65)—(68) .

Figure 4 shows the three typical sample paths calculated
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path through
}
0.6 | ¢ !
°I d=l1/ko t
1 e Vo/Eo=I
02t + Vo/Eo=10

0 0.5 1 1.5 2
( units of W/B)

0.8

s i

time ( units of l/kg)

FIG. 5. The mean value of 7, v8 Uy/Ey (thin potential cases).

by Egs. (62), (65), and (66). There is a sample path x(r)
which changes its property from *‘physical’” to “‘unphysi-
cal’” in the tunnel region.

Figures 5 and 6 show the parameter U, /E, vs the average
of passing time 7, calculated by Eqs. (63), (67), and (68).
Sce the details of this ‘*backward time evolution method’’ in
our previous work [20]. Generally, 7, decrease as Uy/E,
becon}e larger. Let us estimate 7, analytically on the WKB-
like approximation. If we can write the wave function in the
tunnel region Il as

Plx.t)~ ()~ C'exp(— xox) = exp{ — (kgo— ik )X},

(87)
the drift of Eq. (63) becomes
! 0 Ko 2| Ko
TED e e _._...+ —
by m(K’O+KR0) m [l+ Ko ¢ (KRQ) ’
VZm(Vy,—E
o= (Vo—Ey) (88)

fi

from Eq. (76). In these cases, the ‘‘backward’’ time evolu-
tion of the distribution function P(x,t), which has an *‘ini-
tial”” distribution &(x—d), is written as

25
S 20 + d=10/k,
= * Vo/Eo=I
2 } t -
E 1)) S 4 path throug
Q
= ¢ .
R A 3 + 1
O A
0 0.5 1 1.5 2

(units of W/B)

FIG. 6. The mean value of 7, vs Uy /Ey (thick potential cases).
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AP (x,1) o ko\ld o 3
at m Kpo/ dx  2m dx
"'"‘TL'UO PT(X,[), (89)
and we can obtain the solution of Eq. (89) easily:
2
_ K
ﬁ K()( I+ "‘—[2)
x—d+ “Ro
p _(2mm 12 ’ m
: T(X’t)_ —tit (28% kit
2m
2U
- —ﬁ—"t (t<0). (90)

There are two characteristic time intervals in this solution.
One is the diffusion time t,~md*/# for which the distribu-
tion sizes up to the potential width d. The other is the current
time

md

md/
i\

K10

m)
Kro

for which the peak of the distribution moves from x=d to
x=0. Of course, the approximation of Eq. (87) is justified

t.~

¢

» o1
E—
KRro

)

when xod is much larger than 1, and this leads us to the
relation
L2t 92)
and the time interval ¢. becomes the passing time in this
extreme case. Note that this ¢, has the tendency of decreasing
as Uy/E, becomes larger.
Second, we discuss a one-dimensional system with a

static square-well potential and two-channel coupling, or the
case of the Schrodinger equation for this problem written as

L7 +V U
Al 2m dx? ¥
A J* )
2 U 2
2m dx*
(93)
V and U are supposed to be
0 inl (x<0)
Vix)=4{ Vo inll (0<x<d) (94)
0 inlll (d<x)

and
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FIG. 7. Schematical illustration of one-dimensional scattering
with channel coupling.

0 inl (x<0)
Ux)={ Uy inll (0<x<d) (95)
0 inll (d<ux).

)

Figure 7 shows the schematical illustration of our simulation.
We can diagonalize Eq. (93) as

d s
1:97 W
(?2
-+ V+ 0
B 2m ox? v+u [l//;r}
B 1 8 g
0 e -
2m dx* v-u
(96)
where

| 1
1//+:~\/,-2:(l//|+l/12) and (//_2"'\/:2:((,0]"'(//2), (97)

and write down the time-dependent solution of ., and ¢_
easily as the same as Eq. (80), or

z//t(x,t)=j A(k)(p:k(x)e“”""”'”dk, (98)
with a Gaussian coefficient function A(k) and
E=1%k*2m. @.,(x) is Eq. (81), substituting x with

N2m(VyaEtUyg—E
Ki= 02U E) (99)

13

Figure 8 shows the same typical sample paths calculated by
Egs. (34), {37), and (38). There is a path which changes its
index from 1 to 2 in the passage through the tunneling re-
gion, t;-, . Figures 9 and 10 are the averages of the passing
times over the sample paths which belong to {x,(1)} at
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FIG. 8. Three typical sample paths with channel coupling.

t—o. We can see in Fig. 10 that there is a critical parameter
value of (Vy— Uy)/Ey=1 in the behavior of ¢; and t,. This
is  understood as following: In the case of
(Vo—Ug)/ Ey>1, the *“—" channel, which is dominant in
the tunnel region II in comparison with ““+°’ one, is not the
tunneling channel, and it describes a particle which goes
over the potential. Regardless of x;(¢) and x,(t), the time
spent in the ‘‘potential region’’ is expected to agree with the
one which is expected from classical mechanics or

md here & _N2m(Ey= Vot Ug)
kg where k_¢= 7 .

(100)

This is also seen in Fig. 9. On the other hand, in the case of
(Vo—Ug)/Eg<l, we can approximate the wave functions
Y, and ¢_ in the thick tunnel region

M P
) TlC exp(— kg 1)) (101
and ¢, and ¢, as
[1/’1} 1 { C_exp(—K_q x) 0
b Al-Coep-ko 0] 1P
5
451

Eo/Vo =5 d=1/ko {0 £

35 * b

md

time ( units of 1/k<2))

0 2 4 6 8 10
(units of b/B)

FIG. 9. The mean values of t; and t; vs U, /E, (thin potential
cases).

40
o 35 EoVo=5 d=10/ky
% 30} ¢ L1
w251} md () {+ t2
o hk}
] 20}
o
2 15
2 0 ... path through
- 5
0 .
0 2 4 6 8 10
( units of b/B)

FIG. 10. The mean values of ¢, and 1, vs U /E (thick potential
cases).

where

B V2m(Vo~ U~ E,)

7 (103)

K-o

So we can estimate *‘passing time”” of both channels (1 and
2) at

md

Ak g (104)

and likewise Eq. (91).

V1. SUMMARY AND COMMENTS

In this paper, we have analyzed the effects of inelastic
scattering on the tunneling time theoretically, using general-
ized Nelson’s quantum mechanics. This generalization en-
abled us to describe quantum system with optical potential
and channel couplings in a real-time stochastic approach. In
this formalism, the space-time development of dynamical
variable, e.g., the coordinate of the particle, is described by a
definite path determined stochastically. Each sample path has
a definite form of trajectory in the space-time diagram, while
a physical quantity averaged over the ensemble of these
sample paths recovers the effect of quantum coherence. This
is true even in Young’s double slits interference experiment.
Nelson’s quantum mechanics gives each definite trajectory,
and the ensemble of it, but it does not predict which path is
selected when one wants to measure the position of a par-
ticle. In this sense, this ‘‘real-time stochastic process ap-
proach’ seems to give us a new insight into quantum me-
chanics beyond the Copenhagen interpretation. On the other
hand, the effects of more general cases (many-body systems,
environment, temperature, and so on) are subjects for the
future, and this work would be the first step to such a study.
Recent experimental data of tunneling time using the neutron
spin-echo shift through the magnetic films [19] seem to agree
with the simulation based on our approach [21], and this
study will be reported in near future.
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