WTsHE OS5I JICE&EDL
LGN BIETE /NS 41 LDIEE

(AR5 11680370)

TR 1145 ~ T 13 SRR B B &
(B8EFF5E (C)(2))
A

SR 154E3 A

W RE
EH A
(AR R T EER)

iU &IC

WATHB IO 7SI 7%, RESOTSILT RS54 LB RORNLEH#ET 57
HOFPEIEEZEAL, PATMHE (concurrency) FLilkD7/2dD TR T T I V7 - X5 F
ALELTbDTH AL, G THHERREORE L - TREAEFE GHC (Guarded
Horn Clauses) (&, EIRIHVICIEE ISR 2815 - FEIREL L5200, BREIC
AT AT 7O AROBE 7T ba L e BRICREBTELFHELHELD. 20
Ze5 GHCHR, gRaltftarYa -2 7ud e 7 POBFIHSEKLL ONR—R L L
THHRAI NI,
IhECTORTHREASFE L ZONBEROMFERA L, £& L THEREELZFOIL
FlstE# ECOEEET T HEIIT bW TE, #0—F, 20 ¥a—F 32y b7 —
7 OEEBER LI, LS HEIERE CRE T AMENTRELTHE T 7)) 7 —
TaVERGIBET L OO FEROMMSBEBE Lo T b, BFIEE L ILETE
BHERVWTALETREZEUHMETH D, BITUEEROL- DR RESEH T
LIZLXY, EEOEBEDIODT NG T A LDHEETEL LTINS, 2
TARZETIX
(1) SEHELFERET COESER US55 3 V7,
(2) BHBITHEA I ED K REBRIREASE Y 7 M7 = THEE,

DWE,P L, WITRE TS T I v VIO EBGEGEIED 0 OFMRE 2T o 7-.
AR Lo THRONTZFEERRBUTOR) TH 5.

1. Y= LLZEDEETREOEE — THWELFE/ — FLTEET 58ED KLI
SEMERE VY FEEBEUTEANICERT 572012, v MU -7 EBH LT
BGRBAY (SHE AT YA N) OBEWERHSL L UEEFATIRG LERLL.
F72, SEGREERICTT A ZRIMTIT & FOBREITLIA IV I —EARE
BL7 SHEBE—AAFYRINVEZ, §8BTUTII V7BV TRLHZEOE
BEFRZRETLILDOTH .

X512, FHBETARIURE 72 5 FIAVLEREO WATR B SFHLE R ~DEAE
eRET L, EEEITo7.

2. PHETREICSIZEEEES LI UCRELDERRE — HHOEKIZL 27—
y 3H % BN 5 72O OIRREMERR TH 5 HIEAR (linearity system) %
FEt, EEL/. S5, ITREBE IO ADEFTEFEROR NI OBErL &
LAEL, BMREEEIAEL IO T LD TALENE BT B EE
KR—7 A4 73) 7 1 45 (capability system)—% g&&F L7z, 7438 74 4655
i, BEOE- FMEREBEUERLE—BILLZBETRETAODTH 5.

F72, WATHRBEEEEORELI v SA VOBBRERLTE 57010, B 70t
ADEH e EwRNTEA V5 —T 2~ xommm@am7ﬁA%5K <574
Y8 =7 2= AT THATT U S T Lo BREF ARG T — FE A
W95 HEZREL.

3. A—FBZREFERTILODA 27 FBERN — SENBERICBIT 5HFE
O— FEEZERT L7201, treecode & N A 2 — FE %%, F/-
ZDA 5 7 5% Flat GHC OfF: RO AT WV TiRAE L7z, 512, Flat
GHC 7075 A0HEa— FEREZDA Y57 #%, b & Flat GHC 71
Fouk, BE - BAAKERICY o THEMTONE T EERLT.

INLOFEEBL T, IRBREEL N A CMAALESH T ST 3 YO
754 LEBET 20O ERERE, BRLREOWHEE ﬁ%rm@@#a5K5
ZEHTES
VTR 5.

iRt

ﬁf R&FEF: LH IR (RREKEE TEHER)

(FFget 1% @B FX (EMEAFETELIYT, BEIARER (K))

(WFEtH 038 e X (RMERFETEHBF, KERBETEHER))

(W NE: BK #h (RMERERERE TR, B[E B) Py A7 v 2))
(B IE: B B (RERERFRFEEIYMEN, BEELE (k)
(WrEmLE: Bl E (EMERERFRETSRHE, JE () BZ8E)))
(Wt % &K 0 (RREREKZREE T2)
(e D& B KL (RREH RS KERE T#R5eE))

MAEREE
(BALF-F)
EERE BEER e
11 EE 1,400 0 1400
TRI2EE 1,400 0 L 400
SR 13 4E 700 0 00
#E 3,500 0 3,500

ii

Kt

H
St

£

Ffe Ak
=REEF

(VS

b
i

m L

ik

i

[1] Kazunori Ueda, Concurrent Logic/Constraint Programming: The Next 10 Years.
In The Logic Programming Paradigm: A 25-Year Perspective, K. R. Apt, V. W.
Marek, M. Truszczynski, and D. S. Warren (eds.), Springer-Verlag, 1999, pp. 53—
71

(2] InEE ik, EH AR WTRERMSHEICB A RESERS Y roBB oo
W, BFHRIEEAREE . 7075 3 2, Vol 41, No. SIG 2 (PRO 6) (2000
#3 H), pp. 13-28.

[3] Kazunori Ueda, Linearity Analysis of Concurrent Logic Programs. In Proc. Inter-
national Workshop on Parallel and Distributed Computing for Symbolic and Ir-
regular Applications, Ito, T. and Yuasa, T. (eds.), World Scientific, 2000, pp. 253
270.

[4] Yasuhiro Ajiro and Kazunori Ueda, Kima — an Automated Error Correction
System for Concurrent Logic Programs. In Proc. Fourth International Workshop
on Automated Debugging (AADEBUG 2000), August 2000.
http://www.irisa.fr/lande/ducasse/aadebug2000/proceedings.html

5] M FR, LH AR Kima: $THE72 77 488MBER 2025V 7
b =7, Vol 18 No. 0 (2001), pp. 122-137.

6] A FEF], WE &R, LH L B85 KLICAER ETCoRFIEEDR#EL. 1%
BB SFHRIEE . 7 u s 5 3 v, Vol. 42, No. SIG 3 (PRO 10) (2001 4E 3 A),
pp. 1-13.

[7] BA #hsr, LM AL dklic: KL1 12X 208 KL SFEMERNDERE. $40 70
FIIVIBIPIWHD VAT LT AT — 2 v ay 7 (SPA2001), HARY 7 b
Tz TREFESR, 200143 A.
http://www.dcl.info.waseda.ac.jp/SPA2001/

(8] MmEk Ak, LH R ATHRE O ST L IBIT A BERETHSOME R,
FE3MMTUTIIVIBIUTRSSIVIERET -2 Y ay 7 (PPL2001), HAE
V7 by 7RSS, 2001 £ 3 A, pp. 2-13.

[9] Kazunori Ueda, Resource-Passing Concurrent Programming. In Proc. Fourth Int.
Symp. on Theoretical Aspects of Computer Software (TACS2001), Kobayashi, N.
and Pierce, B. (eds.), Lecture Notes in Computer Science 2215, Springer-Verlag,
Ocboter 2001, pp. 95-126.

[10] Yasuhiro Ajiro and Kazunori Ueda, Kima: an Automated Error Correction Sys-
tem for Concurrent Logic Programs. Automated Software Engineering, Vol. 9,
No. 1 (2002), pp. 67-94.

il

[11] Kazunori Ueda, A Pure Meta-Interpreter for Flat GHC, A Concurrent Constraint
Language. In Computational Logic: Logic Programming and Beyond (Essays in
Honour of Robert A. Kowalski, Part I), A.C. Kakas, F. Sadri (eds.), Lecture
Notes in Artificial Intelligence 2407, Springer-Verlag, 2002, pp. 138-161.

[12] Norio Kato and Kazunori Ueda, Sequentiality Analysis for Concurrent Logic Pro-
grams. In Proc. 6th World Multiconference on Systemics, Cybernetics and Infor-
matics (SCI 2002), Vol. 11, July 2002, pp. 329-336.

[13] Kazunori Ueda and Norio Kato, Programming with Logical Links: Design of the
LMNtal Language. In Proc. Third Asian Workshop on Programming Languages
and Systems (APLAS 2002), 2002, pp. 115-126.

(14] &K {4, M &k, EE AR KLICWHERICBIT % UNIX 70 £ A HPCAE
AR L-BISMAEOERE, E6ET TSI I BIURAOYAT LAICET S
77—z av 7 (SPA2003), HAY 7 bv = TR, 2003 #£3H.
http://spa.jssst.or.jp/2003/program/papers/03021. pdf

MRS

[15] Kazunori Ueda, A Close Look at Constraint-Based Concurrency (an invited tu-
torial). In Proc. 17th Int. Conf. on Logic Programming (ICLP’01), Codognet, P.
(ed.), Lecture Notes in Computer Science 2237, Springer-Verlag, November 2001,
p. 9.

[16] #AF AR, EHIAR | RAERIL A* FEZILLIDL-oEb 5 LT OT T ADOREN
iR, ANTEfezasE RS (8 17H) #HE, 1E3-02, 200246 A.

[17] _EEAIAE, MEERRE © Programming with Logical Links. HA&Y 7 k7 = 7RIS
%19 BIAR&RICE, 200249 A.

[18] MRk, LHAR € FHEIB OB —FEBIc L AT TmETR T 740
occurs-cheek AT, HAYV 7 b = TRFEAE 19 MAKRIE, 2002469 A.

[19] A8, B, BAMA, MLk, AL | 58S HEAER DKLIC ORAF &
£ BARV 7 by x 7REEE 19 BARRIE, 200249 A.

20] LEANE, AIAEASK | GHC 55 LMNtal ~. [EHLEES: 2002 £ ZO 707
~7- E \/7\‘:/‘/;—]-5:/“"7.&, 2002$9H'

HARY (RS

[21] Herbert Kuchen and Kazunori Ueda (eds.), Functional and Logic Programming—
5th International Symposiwm on Functional and Logic Programming, FLOPS
2001. Lecture Notes in Computer Science 2024, Springer-Verlag, March 2001.

iv

=

i

[22] bR A BAY 7 b o 7RES 10 BRS BEEHE, 2002 (EREH .
Programming with Logical Links).

* * *

RPEEDOLZEORE L HHICHYT. FENFTEDZZTRILIIHED L LHCT S0,
EAN L EHZEITRELBIT 5.

1 EE, AROERE 2o TRE TR ST IV IEROERLEZIIONT
HH LT3, AEONEFHBORIL (1] KESV TV .

EoBEMLDIONER, AMEICL > TEONERNERTSH L. BiTmEAE
EAEHOUETEICERAT A L ECEERREZET S I L1005 LHIRF SN D FHIE
WHERIZOWTHERTW A,

FFE 2B, SHEBCBOTRIIEEL 22 BE08YE (ZEFFERIEK
PORX) %I EHEOEUER L, HRRESICEDS (BB TEICOVWTHRLETW
5. AEBORRRHEORL B3] XEITVTVAS,

#3813, BHRE IO ILCBIT5 7L AMEELEEOR) L) OBAND
BETHRAL, AL 5 capability system &) BUKRIZDWTENTW 2. RE
OHEEFIBORL[9] (TACS01 BRE&HOFERR L) DUFRIIEI VTN L.

#4813, BITRBAEECER LTI 7oL A0RH, L BRETTREE T2 A2
TSNS vy — 7 = A EFIER S FEEZERLL, 6/ Y I -T2 —
NI EE SN THE T~ FEERTAFEZREL VD, AEONFRFEOR
X [12] L&DV TV A,

E5ENLDIONER, SHEITLEEBNICETAIMERROBATH L.

FFESETE, PARENSEOTHEELBVTRDEELFRRAETH L, W
WA (M—AF ¥ 3V) OSHEEIOVWTHLE TS, FEE-NAZRE, £
BT —%5FrFrkboRE) — FEOBEEYL, EBHNrOBVHIRE TERT 575,
FEBRICBV TS OMBICER L7z, KB, WL P19 2EORFELHTXT
X522 T ST LM EFMA TEPNTBHER QBRI (2003) IZEDVTWV L.

%63, DPEAERCBVTIRTRE % 2H/MLEBEORE L ERIIOVWTHRLE
TW2. BITRBASERRED 7UY I IV FERBLERICEL LD, FISMLEE
B L EE RSO BREVWIIERETH L. AEONEITRIIE ORI [14] [0F
DVTWn5, .

ErE, BEEHOD— FBEFERICERT 57200 HH I — FEX (treecode
X)) LEDA VT FRRFL TS, F72, BIRETSNS treecode DEE T, 1~
5 7)) 5 DRER - EAiA%A (unfold/fold) LI X o TP Flat GHC DV —A 7077
LAEEESIAFERBRLTWS. REOWRFIIRIHEOR [11] IZEDVW TV 5.

B X

LI

BRGGAEE . . . o
FRGERER . .

WETRFETR . .

B1E
11
1.2
1.3
1.4
15

1.6
1.7

B2E
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

EI3E
3.1
3.2

Y7 NI TEBOES & RE ‘
Grand Challenges
Two Approaches to Addressing Novel Applications
Logic Programming vs. Concurrent Logic Programming
An Application Domain: Parallel/Network Programming
Experiences with Guarded Horn Clauses and KL1
1.5.1 GHC as the Weakest Fragment of Concurrent Constraint Pro-
GRAIMING . .« v v v v o e e e e e e e e e e e
1.5.2 Logical Variables as Communication Channels
1.5.3 Evolution as Devolution,
Some Failures and Problems
Conclusions

WFTERIE T 0T 5 L ORRERRT

Introduction L
Concurrent Logic Languages and Linearity Analysis
Terminology L e
Linearity Annotation
Linearity Constraints it
Subject Reduction Theorem
Applications of Linearity Analysis
Implementation—klint v2
Related Work o
Conclusions and Future Work

BEZBOBADL SAHLUITHEE S 8E) 7 1 BER

Introduction — Constraint-Based Concurrency
The Essence of Constraint-Based Communication
3.21 TheLlanguage
3.2.2 Operational Semantics

vi

ii
ii

iii

B e

O N O

13
13
14
16

23
23
24
25
27
28
29
33
34
36
37

3.3

3.4

3.5

3.6
3.7
3.8
3.9
3.10

4.2

4.3

4.4

3.2.3 Relation to Name-Based Concurrency 44

3.24 Locality in Global Store L. 46
I/OMode Analysis 46
3.3.1 Motivation Lo 46
33.2 TheMode System 47
3.3.3 Mode Analysis L 48
3.34 Moding Principles oo 49
3.3.5 Properties of Well-Moded Programs 51
3.3.6 Mode Graphs and Principal Modes 52
Linearity Analysis 54
3.4.1 Motivation and Observation, 54
3.4.2 The Linearity System 55
From Linearity to Strict Linearity 57
3.5.1 Polarizing Constructors 57
3.5.2 Strict Linearity e 58
3.5.3 Void: The Zero-Capability Symbol 59
3.5.4 Constant-Time Property of Strictly Linear Programs 60
Allowing Concurrent Access within Strict Linearity 61
Operational Semantics with Capability Counting 63
The Capability System oL, 64
Related Work 0 . oo L 67
Conclusions and Future Work 63
LITHRIET 0T 5 L OB RN 75
Introduction e 75
411 Background L 75
4.1.2 The Proposed Framework 76
The Language o e 77
421 TheStore 77
422 Agents. e 79
4.2.3 The Transition System, 79
424 TheObservables 80
Interfaces L 80
4.3.1 Result of Local Choices 80
4.3.2 Upward-Closed Sets and Type Constructors 81
4.3.3 Formalization of Interfaces 81
The Interface Analysis L Lo Lo 82
4.4.1 Linear Interfaces oL 32
4.4.2 Bottom-up Analysis of Predicates 83
4.4.3 Bottom-up Analysis of Agents L. 33
4.4.4 Inferring Sequential Interfaces 85
445 Process Interleaving oL oo 86

vii

4.5 Code Generation o v v v i i e e e e 87
4.5.1 Definition of Intermediate Code R7
4.5.2 Code Generation Directed by Interface Analysis 89

4.6 Code Optimization o 90

477 Related Work o e e e e e e e e e e e 91

4.8 Conclusion and Future Work oo 93

F£5E KL12HER DKLIC OiEt & EE 95

5.1 IZU I . e . 95
511 BB 95
5.1.2 AITORERR . . . o e 96

5.2 FWATHIBIIZEEKLL . . o o o et e e 96
5.2.1 KLIOHEE . . . e 96
522 HrINTATTHLEFOFEFICONT oo 97

5.3 DKLICIZDWT Lottt ittt 98
5.31 DKLICOTTZSABI 98
532 DKLICOMBETASEERE 98
5.3.3 DKLIC DR o e 99

54 SEEBEHBEBOHEE 101
5.4.1 SEEETEEEL . . . e 101
5.4.2 FEREBERR e 103

5.5 SEGAEEEBIBOBE .. . 107
5.5.1 EEEEREREOMBES ... e 107
5.52 EEETULADER e 113

5.6 SOEEAEERBOERE . 113
5.6.1 IDS . o o o e e 114
5.6.2 OEGREEKTONIVAE .. 114
563 EBHEEFTIZM e 116

57 FA—3IVIUBOARREERE 127
571 Ay MT—=ZWH . . e 127
5.7.2 Fx RIVEESR 127
57.3 FHRVDIOKUP .« v v v v et e e e e e e 129
574 B/ —-FOR—IVFZT7ORAICEBEER 129

58 FA—3IVFBORITEERE .. 132
581 F—3IVZ7UADRRET. 132
582 IRZIIUREN T I =R L 135
583 FxAlDdelete e e 135

5.9 FEFFB . . . 135
5.1 BMWEICHLERIEE . .. 135
592 2/—FIZXADKLICT 7V r—ayOETH 136
593 3/—FIZXADKLICT7 7V —aryOFEFH 137

50 BEEEARZS 139

5.11

5.12

5.13

F6E
6.1
6.2

6.3

6.4

6.5

6.6
6.7
6.8

7.2
7.3

FEDOESBOEE ., 140

511.1 FE® . . . 140
5.11.2 AHOFE 140
FOTNTOTTA o 141
5121 =3I Y7 7O AMH .. 141
5.12.2 T = % e 141
5123 74T 142
VR s ATV DEEH .o 142
BISHRIEREIB DERET & B8 147
= 5 e 147
BIAMREBDESR 147
6.2.1 WATEREEIZEEKLL 148
622 MOBFEEOLEL. 148
6.2.3 PFISMVLEBEOTT IV . . 148
BISVLEREOBIfE 149
6.3.1 GFIAMLIEBEEOBE 149
6.3.2 FIAMLEREEOEX 149
6.3.3 BIMMLEBBOETOMI 150
UNIX 722 AKX AFHMLEE 150
6.41 UNIX 7UOBADER 150
642 TUOVAMBELREER. 151
6.43 TULABWREERE 152
BIMOEIREFEDHMA 152
6.5.1 waltDF¥ A I T 153
6.5.2 FEBOME 153
6.5.3 BEEROBSH 154
TRTITLE 154
T LD 155
SGRBOBE . e 155
6.8.1 BIAMLEBOMEE 155
682 TTFUF—a ryOBRE ... 156
Flat GHC Offi1 > 271 2 DiEEE 157
Introduction JE 157
7.1.1 Meta-Interpreter Technology 157
7.1.2 Concurrency and Logic Programming 158
7.1.3 Meta-Interpretation and Concurrency 159
714 Goalof ThisPaper U 159
Previous Work 160
The Problem Statement 163
7.3.1 Representationof Code 163

ix

7.4

7.5

7.6
7.7

7.3.2 Representation of Runtime Configuration 164

7.3.3 Primitives for Matching/Ask and Unification/Tell 164
A Treecode Representation 165
7.41 Treecode e 166
7.4.2 Treecode By Example 166
7.4.3 Representing and Managing Logical Variables 167
Structure of the Treecode Interpreter 168
7.5.1 Deterministic and Nondeterministic Choice 169
7.5.2 Interpreting Casecode 170
7.5.3 Imterpreting Bodycode 171
Th4 SUmmary e e e 173
Partial Evaluation oo 175
Conclusions v i i e e e e e e 179

F1E¥E UTHREIOITSICJEEORESE
R

Concurrent logic/constraint programming is a simple and elegant formalism of concur-
rency that can potentially address a lot of important future applications including paral-
lel, distributed, and intelligent systems. Its basic concept has been extremely stable and
has allowed efficient implementations. However, its uniqueness makes this paradigm
rather difficult to appreciate. Many people consider concurrent logic/constraint pro-
gramming to have rather little to do with the rest of logic programming. There is
certainly a fundamental difference in the view of computation, but careful study of the
differences will lead to the understanding and the enhancing of the whole logic pro-
gramming paradigm by an analytic approach. As a model of concurrency, concurrent
logic/constraint programming has its own challenges to share with other formalisms of
concurrency as well. They are: (1) a counterpart of A-calculus in the field of concur-
rency, (2) a common platform for various non-sequential forms of computing, and (3)
type systems that cover both logical and physical aspects of computation.

1.1 Grand Challenges

It seems that concurrent logic programming and its generalization, concurrent con-
straint programming, are subfields of logic programming that are quite different from
the other subfields and hence can confuse people both inside and outside the logic
programiming comimunity. '

While most subfields of logic programming are related to artificial intelligence in some
way or other—agents, learning, constraints, knowledge bases, automated deduction,
and so on—, concurrent logic/constraint programming is somewhat special in the sense
that its principal connection is to concurrency.

Concurrency is a ubiquitous phenomenon both inside and outside computer systems,
a phenomenon observed wherever there is more than one entity that may interact with
each other. It is important for many reasons. Firstly, the phenomenon is so ubiquitous
that we need a good theoretical and practical framework to deal with it. Secondly, it
is concerned with the infrastructure of computing (the environment in which computer
systems and programs interact with the rest of the world) as well as activities within
computer systems, and as such the framework scales up. In other words, it is concerned
with computing in the large, and accordingly, programming in the large. Thirdly, it

encompasses various important forms of non-sequential computing including parallel,
distributed, and mobile computing. |

Bearing this in mind, I'd like to propose the Grand Challenges of concurrent
logic/constraint programming.! The theoretical computer science community is strug-
gling to find killer applications, but I would claim that, as far as concurrency is con-
cerned, there are at least three important scientific challenges besides finding killer
applications.

1. A “\-calculus” in the field of concurrency. It is a real grand challenge to try to
have a model of concurrency and communication which is as stable as A-calculus
for sequential computation.

We have had many proposals of models of concurrency: Petri Nets [36], Actors
[2], Communicating Sequential Processes [24], and many formalisms named X-
calculus, X being Communicating Systems [29], 7 [30], Action [31], Join [17],
Gamma [4], Ambient [6], and so on.

Concurrent constraint programming [38] is another important model of concur-
rency, though, unfortunately, it is often overlooked in the concurrency community.
I proposed Guarded Horn Clauses (GHC) as a simple concurrent logic language,
but in its first paper I also claimed:

“We hope the simplicity of GHC will make it suitable for a parallel
computation model as well as a programming language. The flexibility
of GHC makes its efficient implementation difficult compared with CSP-
like languages. However, a flexible language could be appropriately
restricted in order to make simple programs run efficiently. On the
other hand, it would be very difficult to extend a fast but inflexible

language naturally.”
— [51] (1985)

One of the reasons why there are so many models is that there are various use-
ful patterns of interaction, some of which are useful for high-level concurrent
programming and others rather primitive. Here, a natural question arises as to
whether we can find a lowest possible layer for modeling concurrency. I am not
sure if people can agree upon a single common substrate, but still believe that
the effort to have a simple and primitive framework (or a few of them) is very
useful and will lead to higher respect of the field. Note that everybody respects
A-calculus but it still has a number of variants and some insist that it is not fully
primitive (see, for example, [1]).

1Concurrent constraint programming can be viewed both as a generalization of concurrent logic
programming and as a generalization of constraint logic programming. This article will focus on the
former view since the challenges of concurrent constraint programming from the latter view should be
more or less similar to those of constraint logic programming.

Needless to say, a stable calculus is a challenge but is not an ultimate goal. What
we need next is a high-level programming language fully supported by a stable
theory.

. Common platform for non-conventional computing. The next challenge is to see
if a common platform—the pair of a high-level concurrent language and an un-
derlying theory—can be the base of various forms of non-conventional computing
such as

e parallel computing,
e distributed /network computing,
e real-time computing, and

e mobile computing,.

Historically, they have been addressed by more or less different communities and
cultures, but all these areas share the following property: unlike conventional
sequential computing, programmers must be able to access and control the phys-
ical aspects of computation. At the same time, programmers don’t want to be
bothered by physical considerations in writing correct programs and porting them
to different computing environments. These two requirements are referred to as
awareness and transparency (of/from physical aspects).

The fact that all these areas have to do with physical aspects means that they
all have to do with concurrency. They all make sense in computing environments
participated in by more than one physical entity such as ‘sites’ and ‘devices’. This
is why it is interesting to try to establish a novel unified platform for these diverse
forms of non-conventional symbolic computing.

. Type systems and frameworks of analysis for both logical and physical properties.
The third grand challenge is a framework of static analysis to be built into con-
currency frameworks. The first thing to be designed is a type system. Here I
use the term “type system” in its broadest sense; that is, to have a type system
means to:

(a) design the notion of types, where the notion can be anything that is well-
defined and useful either for programmers or for implementations,

(b) define typing rules that connect the world of program text and the world of
types, and

(c) establish basic (and desirable) properties of well-typed programs such as
subject reduction and strong normalization.

So a type does not necessarily represent a set of possible values a syntactic con-
struct can denote in the standard semantics; for instance, a mode (directionality
of information flow) is thought of as a type in a broad sense.

As we know, types play extremely important roles in programming languages and
calculi. The fundamental difference between types and other formalisms of pro-
gram analysis (such as abstract interpretation) is that, although well-typedness
imposes certain constraints on allowable programs, the notion of types is exposed
to programmers. Accordingly, types should be accessible to programmers and
should help them understand and debug their programs better.

These features of type systems are expected to play key roles in concurrent pro-
gramming. A challenge here is to deal with physical as well as logical properties
of programs in a way accessible to programmers.

I believe addressing these scientific challenges is as essential as building killer ap-
plications because, only with such endeavor, declarative languages and theory-driven
approach can find their raisons d’étle.

1.2 Two Approaches to Addressing Novel Applications

It is natural to think that addressing novel applications requires a powerful pro-
gramming language with various features. A popular approach to making a logic pro-
gramming language more powerful is to generalize it or to integrate useful features
into it. Constraint logic programming, inductive logic programming, higher-order logic
programming, disjunctive logic programming, etc. are all such generalizations. Some
extensions are better thought of as integration rather than generalization; examples are
functional logic programming and multi-paradigm extensions such as Oz [46].

However, there is a totally different approach to a more powerful language, which
I call an analytic approach. In an analytic approach, one tries to identify smaller
fragments of logic programs (or of extensions of logic programs) with nice and useful
properties that may lead to efficient implementation.

Note that what I mean by “powerful” here is not in terms of expressive power. By
identifying possibly important fragments of a general framework and studying them
carefully, one may able to establish new concepts with which one can understand the
whole framework in more depth and detail. Also, one may find that some fragment
allows far more efficient implementation. (A popular example where simplicity is the
source of efficiency is the RISC architecture.) One may build programming tools that
take advantage of the properties of fragments. They are a source of power because
it may open up new application areas that could not be addressed by the general
framework.

The above claim could be understood also from the following analogy: having a notion
of Turing machines does not necessarily mean that we don’t have to study pushdown

4

or finite-state automata. They have their values in their own rights. Another example
is the relationship between untyped and typed A-calculi. Yet another obvious example
is the identification of Horn sentences from full first-order formulae, without which the
logic programming paradigm would not exist today. Examples of smaller fragments of
logic programming languages that have been studied in depth are Datalog (no function
symbols) and concurrent logic languages (no search in exchange of reactiveness).

The analytic approach is useful also when one attempts to generalize or integrate
features. Integration will succeed only after the features to be integrated have been
well understood and the interface between them has been carefully designed. A criterion
of success is whether one can give clean semantics to the whole integrated framework as
well as to each component. If the components interact only at the meta (or extralogical)
level, the whole framework is considerably more complicated (in terms of semantics)
than their components, which means the verification and manipulation of programs
become considerably harder. This issue will be discussed in the next section.

1.3 Logic Programming vs. Concurrent Logic Program-
ming

Concurrent logic programming was born from the study of concurrent execution of
logic programs. It turned out to enjoy a number of nice properties both as a formalism
and as a language for describing concurrency. In the logic programming community,
however, concurrent logic programming has always been a source of controversy. Un-
fortunately, the controversy was by and large not very technical and did not lead to
deeper understanding of the paradigms.

A typical view of concurrent logic programming has been:

Concurrent LP = LP 4+ committed choice

= LP — completeness

Although both the first and the second equations are not totally wrong, viewing com-
mitted choice simply as losing completeness is too superficial.

Committed choice or don’t-care nondeterminism is an essential construct in modeling
reactive computing and has been studied in depth in the concurrency community. It
is essential because one must be able to model a process or an agent that performs
arbitration. (For instance, a receptionist will serve whoever (s)he thinks comes first,
rather than whoever comes first.) Semantically, it is much more than just discarding
all but one of possible execution branches. All the subtleties lie in what events or in-
formation should be the basis of choice operations; in other words, the subtleties lie in
the semantics of guard rather than the choice itself. The presence or absence of nonde-
terminism makes fundamental difference to the denotational semantics of concurrency
(see [24] for example). When 1 was designing Guarded Horn Clauses, I believed don’t-

care nondeterminism was so essential that it was a bad idea to retain both don’t-care
nondeterminism and don’t-know nondeterminism in a single model of computation.

Nevertheless, we also found in our experiences with concurrent logic languages that
most of the predicates are deterministic and very few predicates perform arbitration—
even though they change the whole semantical framework. Thus the aspect of ar-
bitration is not to be overstated. A much more productive view of concurrent logic
programming will accordingly be:

Concurrent LP = LP + directionality of dataflow

= LP + embedded concurrency control

This is more productive because it emphasizes the aspect of dataflow synchronization,
an important construct also in logic programming without committed choice. Examples
where dataflow synchronization plays important roles include delaying, coroutining,
sound negation-as-failure, and the Andorra principle [37]. Dataflow-centered view of
the execution logic programs best captures the essence of concurrent logic/constraint
programs, as became clear from the ask + tell formulation advocated by Saraswat [38].

Another reason why the above view is more productive is that it addresses mode
systems that prescribe the directionality of dataflow. Mode systems are attracting
more interest in various subfields of logic programming because

e it shares with type systems many good properties from which both programmers
and implementations can benefit, and

e many (if not all) predicates we write have a single intended mode of use, and
there are a lot of situations where this fact can be exploited in interesting ways.

For example, Mercury [47] takes full advantage of strong moding to yield very efficient
code.? Inductive logic programming benefits from moding in reducing search space
[32]. Concurrent logic/constraint programming benefits enormously from strong mod-
ing both in implementation and programming [61, 63, 13, 3], and I strongly believe
that

Moded Concurrent LP = ask + tell + strong moding

is one of the most flexible realistic models of concurrency.

It is vital to see that ordinary logic programming and concurrent logic programming
are targeted at different scopes. What logic programming is concerned with include
knowledge representation, reasoning, search, etc., while concurrent logic programming
aims at a simple programming and theoretical model of concurrency and communica-
tion. Accordingly, concurrent logic languages should aim at general-purpose algorithmic

2Note, however, that the mode system of Mercury is very different from the mode system of Moded
Flat GHC discussed in this paper; the former deals with the change of instantiatedness, which is a
temporal property, while the latter deals with polarity, which is a non-temporal property [63].

languages which can potentially act as coordinators of more application-specific logic
languages.

Since the conception of concurrent logic programming, how to reconcile two essen-
tial features in parallel knowledge information systems, search and reactiveness, has
been one of the most difficult problems. The two paradigms could be integrated but
should be done with utmost care. The solution adopted in PARLOG [14] was to use
all-solutions predicates (& la findall in Prolog) to interface between the world of don’t-
know nondeterminism and the world of don’t-care nondeterminism. The key issue here
is how to gather multiple solutions obtained from different binding environments into
a single data structure. Whether the all-solutions construct can be given clean, declar-
ative meaning and whether it allows efficient implementation depend on the program
and the goal for which solutions are to be collected [33, 55]. Roughly speaking, the
requirement has to do with the proper treatment of logical variables. Existing all-
solutions predicates in Prolog involve the copying of solutions, exhibiting impedance
mismatch.’

Moding seems to play an important role here; we conjecture that all-solutions pred-
icates can be given simple, object-level semantics if the program and the goal are
well-moded under an appropriate mode system similar to the mode system for Moded
Flat GHC [61].

Another example where moding played an important role in essentially the same way
is the First Order Compiler [41], a compiler from a class of full first-order formulae into
definite clauses.

The issue of clean interfacing arises in constraint logic programming systems also. In
realistic applications of constraint satisfaction, it is often crucial that a constraint solver
can run concurrently with its caller so that the latter be able to observe and control
the behavior of the former incrementally. However, language constructs for doing so
are yet to be refined.

1.4 An Application Domain: Parallel/Network Program-
ming
Where should concurrent logic/constraint programming languages find promising

applications? I believe that the most important areas to address are parallel and
network applications for a number of reasons:

1. Even “modern” languages like Obliq and Java feature rather classical concurrency

30z features computation spaces (the pair of a local constraint store and a set of processes working
on the store) as first-class citizens, with which encapsulated search can be programmed as higher-
order combinators [45]. This approach is certainly cleaner in that a set of solutions is represented
using (procedures returning) computation spaces instead of copied terms. In an analytic approach,
however, we are interested in identifying a class of programs and goals for which a set of solutions can
be represented without using higher-order constructs.

constructs such as monitors and explicit locking. In more traditional languages
like C or Fortran, parallel/network programming is achieved with APIs such as
MPI, Unix sockets, and POSIX threads. These constructs are all low-level com-
pared with synchronization based on dataflow and arbitration based on choice,
and programming with APIs seems to be a step backwards from writing provably
correct programs even though verification is not impossible.

2. Parallel computing and distributed computing are considerably more difficult
than sequential computing. Good models and methodologies to build large ap-
plications quickly are desperately called for.

3. These areas are becoming increasingly popular in a strong trend towards large-
scale global computing environments both for high-performance distributed com-
puting [16] and for virtual network communities such as Virtual Places, Commu-
nity Places and Matrix.?

4. These areas give us a good opportunity to demonstrate the power of small and
yet “usable” languages with an appropriate level of abstraction. It seems essen-
tial to keep the languages simple enough—and much simpler than Java—to be
amenable to theoretical treatment and to make them as easy to learn as possible.
I anticipate that amenability to theoretical treatment, if well exploited, will be of
enormous practical importance in these areas.

From a language point of view, the last point is the most challenging. Consider writ-
ing secure network applications with mobile code. This involves various requirements:

¢ Specification of physical locations (sites) where computation should take place.

e Reasoning about resources, such as time, stack and heap, that the computation
may consume. Without it, downloaded code might make a so-called DoS (denial
of service) attack by monopolizing computation resources.

e Security at various levels. Some of the high-level properties such as consistency
of communication protocols can be guaranteed by typing and moding. Other
high-level security issues may require more sophisticated analysis and verification.
Low-level security could partly be left to Java’s bytecode verifier if we use Java
or Java bytecode as a target language.

e Transmission of various entities across possibly heterogeneous platforms. In ad-
dition to program code, linked data structures and symbols (usually given unique
IDs locally on each site) are the main points of consideration in symbolic lan-
guages.

“Interestingly, the designers of Grid [16], Virtual Flaces, Community Places and Matrix have all
worked actively on concurrent logic/constraint programming.

8

The requirements are so complicated and diverse that addressing them in an ad
hoc way would result in a theoretically intractable language. It is an interesting and
big challenge to obtain a language that allows and encourages formal reasoning about
physical and logical properties of programs.

It may be a good idea for declarative language communities to share a set of (more
concrete) challenges of the form “how can we program X in our formalisms?” to
facilitate comparison between different paradigms. Instances of X may be:

e dynamic data structures (e.g., cyclic graphs; most declarative languages just ig-
nore them, regrettably),

e live access counters of WWW pages,
¢ teleconferencing, and

e MUD (multi-user dungeon; text-based virtual reality).

1.5 Experiences with Guarded Horn Clauses and KL1

Although the progress has been admittedly slow, I am quite optimistic about the
future of concurrent logic/constraint programming. My optimism is based on 15 years
of our experiences with the paradigm since the initial stage of the Japanese Fifth Gen-
eration Computer Systems (FGCS) project. Figures 1-2 show the history of Guarded
Horn Clauses (GHC) and KL1 as well as related events. The role and the history of
the kernel language in the FGCS project are discussed in detail in my article in [44].

1.5.1 GHC as the Weakest Fragment of Concurrent Constraint Pro-
gramming '

After 13 years of research, heated discussions and programming experiences since the
proposal of GHC, it turned out that this simplest fragment of concurrent constraint
programming was surprisingly stable and versatile.

Let us see why it was so stable. GHC is thought of as the weakest Concurrent Con-
straint Language in the following senses: First, it features ask and eventual tell (i.e.,
publication of constraints after committed choice) but not atomic tell (publication upon
committed choice). Second, its computation domain is a set of finite trees. Neverthe-
less, GHC as well as its ancestors featured fundamental constructs for a concurrent
programming language from the very beginning:

e parallel composition,

e creation of local variables,

¢ nondeterministic (committed) choice,

1983 Concurrent Prolog [42] and initial version of PARLOG [14]

1983-84 Big controversy (inside ICOT) on LP vs. concurrent LP for parallel
knowledge information processing systems [44]

1985 First paper on GHC [51]

1985 GHC-to-Prolog compiler [52] used in our initial experiments

1985-86 GHC considered too general; subsetted to Flat GHC

1986 Prolog-to-GHC compiler performing exhaustive search [53]

1987 MRB (1-bit reference counting) scheme for Flat GHC [9]

1987 First parallel implementation of Flat GHC on Multi-PSI v1 (6 PEs) [25]
1987 ALPS [28] gave a logical interpretation of communication primitives

1987-1988 KL1 designed based on Flat GHC, the main extension being the
shoen construct [57]

1988 Parallel implementation of KL1 on Multi-PSI v2 (64 PEs) [34]
1988 Strand [15] (evolved later into PCN [7] and CC++ [8])

1988 PIMOS operating system [10]

1988 Unfold/fold transformation and transaction-based semantics [54]
1989 Concurrent Constraint Programming [38]

1989 Controversy on atomic vs. eventual tell (Kahn'’s article in [44])

1989 MGTP (Model Generation Theorem Prover in KL1) project [19]

Fig. 1.1: GHC, KL1, and related events (Part I)

10

1989 Message-oriented implementation of Flat GHC [58]

1990 Mode systems for Flat GHC [58]

1990 Structural operational semantics for Flat GHC [59]

1990 Janus [39]

1991 Denotational semantics of CCP [40]

1991 AKL [26] (later evolved into Oz, Oz2, and Oz3)

1992 Pa;rallel implementation of KL1 on PIM/m and PIM/p [48, 23]

1992 Various parallel applications written in KL1, including OS, biclogy, CAD,
legal reasoning, automated deduction, etc. [11, 22, 35]

1992 Message-oriented parallel implementation of Moded Flat GHC [60]
1992 KLIC (KL1-to-C compiler) designed [12]

1992 MGTP solved an open problem (IJCAT’93 award) [20]

1994 Proof system for CCP [5]

1994 Moded Flat GHC formulated in detail [61]

1994 ToonTalk, a visual CCP language [27]

1995 Constraint-based mode systems put into practice [63]

1996 klint, a mode analyzer for KL.1 programs

1996 Strong moding applied to constraint-based error diagnosis [13]
1997 kima, a diagnoser of ill-moded programs

1997 KLIEG, a visual version of KL1 and its programming environment [50]

1997 Strong moding applied to constraint-based error correction [3]

Fig. 1.2: GHC, KL1, and related events (Part IT)

11

e value passing, and

e data structures (trees, lists, etc.).

The last two points are in contrast with other models of concurrency such as CCS
and (theoretical) CSP that primarily focused on atomic events. GHC was proposed
primarily as a concurrent language, though it was intended to be a model as well
(Section 1.1).

Furthermore, GHC as well as its ancestors had the following features from the be-

ginning:

1. Reconfigurable process structures. Concurrent logic languages supported dynamic
reconfiguration of interprocess communication channels and dynamic creation of
processes. Most mathematical models of concurrency, on the other hand, did not
feature reconfigurable process structures until 7-calculus was proposed in late
1980°s.

2. Object (process) identity. This is represented by logical variables (occurring as
the arguments of processes) through which processes interact with each other.
Although objects themselves are not first-class in GHC, the variables identifying
processes can be passed around to change the logical configuration of processes.
Hence the processes were effectively mobile exactly in the sense of mobile processes

in m-calculus.

3. Input/output completely within the basic framework. The input/output primitives
of “declarative” languages had generally been provided as marginal constructs and
in a quite unsatisfactory manner. I thought the design of general-purpose lan-
guages should proceed in the opposite way by taking the semantics of input/output
constructs as a boundary condition of language design. Concurrent logic programs
are often thought of as less declarative than logic programs, but real-life concur-
rent logic programs projected to logic programs (by forgetting synchronization)
are much more declarative than real-life Prolog programs.

Later on, several important features were added:

1. KL1 [57] featured the notion of physical locations, though in a primitive form, to
allow programmers to describe load balancing of parallel computation.

2. The mode system [61] introduced the notion of (statically decidable) read/write
capabilities or polarities into each variable occurrence and each position of (pos-
sibly nested) data structures. In well-moded programs, a write capability can
be passed around but cannot be copied or discarded, while a read capability can
be copied and discarded. Well-modedness can be established by constraint-based
mode analysis which is essentially a unification problem over feature graphs.

12

3. Linearity analysis, which distinguishes between one-to-one and one-to-many com-
munication [64], enabled compile-time garbage collection and turned out to play

" a key role in parallel/distributed symbolic computation. For instance, parallel
operations on an array in shared memory can be done without any interference
by splitting the array into pieces in-place, letting parallel processes operate on
its own piece in-place, and then merging the resulting pieces in-place [62]. Both
mode analysis and and linearity analysis support resource-conscious programming
by being sensitive to the number of occurrences of variables.

1.5.2 Logical Variables as Communication Channels

Most of the outstanding features of concurrent logic/constraint languages come from
the power and the flexibility of logical variables as communication channels. Logical
variables support:

e data- and demand-driven communication,

e messages with reply boxes,

first-class channels (encoded as lists or difference lists),

replicable read-only data, and

implicit redirection across sites.

It is-surprising that all these features are supported by a single mechanism. This unifor-
mity gives tremendous benefits to theoretical foundations and programming systems,
since a single framework can cover all these features.

1.5.3 Evolution as Devolution

It is generally understood that concurrent logic programming evolved into concurrent
constraint programming by ALPS’s logical interpretation of communication primitives
[28] and Saraswat’s reformulation of concurrent logic programming as a framework
of concurrency [38]. However, I have an impression that the role of concurrent con-
straint programming as a generalization of concurrent logic programming has been a
bit different from the role of constraint logic programming as a generalization of logic
programming. While constraint logic programming has found several useful domains
and applications, the main contribution of concurrent constraint programming has been
in the understanding of the essence of the framework and the promotion of the study
of semantics. The set of useful general-purpose constraint systems (other than obvious
ones such as finite trees, integers and floating-point numbers) for concurrent constraint
programming is yet to be identified.

13

Indeed, the history of the practice of concurrent logic programming could be summa-
rized as “evolution by devolution” [49]. As conjectured in [51] (quoted in Section 1.1),
GHC as the weakest fragment of concurrent constraint programming (d)evolved first
by disallowing nested guards (Flat GHC) and then by featuring a mode system. Vir-
tually all programs now written in KL1 and run by KLIC [12] are well-moded, though
KLIC currently does not support mode analysis. On the other hand, there are only a
few constructs added to KL1: shoen (a Japanese word meaning ‘manor’) as a unit of
observing and controlling computation, the @node () construct for process migration,
and priorities.

Strong moding has degenerated unification (a case of constraint solving) to assign-
ment to a variable, but has made GHC a much securer concurrent language; that is,
it guarantees that constraints to be published to a shared store (binding environment)
are always consistent with the current store. Linearity analysis guarantees that some
class of programs (including most sorting programs, for instance) can run without gen-
erating garbage. Both analyses are useful not only for efficient implementation but also
for the precise analysis of computational cost, which is essential in real-time computing
and network programming with mobile code. In this way, degeneration may find new
applications which could not be addressed by more general languages.

Oz [46, 21] has taken a totally different approach from GHC. It has incorporated a
number of new constructs such as ports (a primitive for many-to-one communication),
cells (containeré of values that allow destructive update), computation space (encap-
sulated store, somewhat affected by nested guards of full GHC and KL1’s shoen),
higher-order, etc., and has moved from fine-grained to coarse-grained concurrency. It
still encompasses a concurrent constraint language, but is now better viewed as a multi-
paradigm language.

In contrast, I'd like to keep GHC a pure concurrent constraint language. (Moded
Flat) GHC is quite a small fragment but it is yet to be seen what additional constructs
are really necessary to make pure concurrent logic /constraint languages usable.

1.6 Some Failures and Problems

Although I'm optimistic about its future technically, concurrent logic/ constraint pro-
gramming has experienced a number of non-technical problems.

1. Misleading names of the paradigms. Concurrent logic languages are primarily
concurrent programming languages though they retain the nice properties of
logic programming wherever possible, such as soundness of proof procedures and
declarative reading.® Unfortunately, concurrency is so unpopular in the logic
programming community that concurrent logic programming often sounds like

50ne may argue that whether a concurrent language retains nice properties of logic programming is
not very important, but this is not true. This criterion worked as a strong guideline of language design
and resulted in many desirable properties as a concurrent language. ;

14

nothing more than an incomplete variant of logic programming. (An even worse
name once used was committed-choice languages.)

Concurrent constraint programming (languages) sounds better in this respect, but
it has another problem. The conception of concurrent constraint programming
is often said to date from ALPS, but this often results in the ignorance of its
pre-history, the era of concurrent logic programming. Concurrent logic languages
are, by definition, (instances of) concurrent constraint languages.’

2. Community problem. Although concurrent constraint programming is an elegant
formalism of concurrency, it was born from logic programming, a paradigm quite
unpopular in the concurrency community and the community of concurrent pro-
gramming. So, this important paradigm can very easily be forgotten by both the
logic programming community and the communities of concurrency theory and

concurrent programming!

3. Shortage of communication with neighboring communities. This is a very gen-
eral tendency and unfortunately applies to various communities related to con-
currency. There are many techniques independently invented in the functional
programming community, the (concurrent) object-oriented programming com-
munity and the (concurrent) logic programming community. Declarative arrays,
frameworks of program analysis, scheduling of fine-grained tasks, and distributed
memory management are all such examples.

A bit more technical reason why concurrent logic/constraint programming is still
unpopular in the concurrency community at large may be that its formulation
looks rather indirect—popular and mundane idioms of concurrent programming
such as objects, messages, and channels are all encoded entities.

4. Few research groups. Except for research groups on semantics, there are only
two active (virtual) groups working on languages and implementation; one is the
group working on Oz and the other working on GHC/KL1. Many key people
who founded the field “graduated” too early before the paradigm became well
understood and ready to find interesting applications. However, a good news
is that most of them are working on the potential applications of the paradigm
discussed earlier in this article. This leaves us a challenge to bridge the gap
between what the paradigm offers and what the applications require.

6 At an early stage, I had understood GHC computation in terms of the exchange of bindings between
processes rather than a restricted proof procedure:

[43

. it is quite natural to view a GHC program in terms of binding information and the
agents that observe and generate it.” “In general, a goal can be viewed as a process that
observes input bindings and generates output bindings according to them. Observation and
generation of bindings are the basis of computation and communication in our model.”

— [56] (1986)

Of course, it was definitely after the proposal of concurrent constraint programming that binding-
(constraint-) centered view became popular and the study of semantics made progress.

15

5. Texthooks. Good textbooks and tutorial materials are yet to be published. There
are some on concurrent logic programming, such as Shapiro’s survey [43], but
a tutorial introduction to the semantical foundations is still awaited. It’s time
to recast important concepts and results scattered over technical papers and re-
present them from the current perspective.

1.7 Conclusions

Concurrent logic/constraint programming has been a simple and extremely stable
formalism of concurrency, and at the same time it has been a full-fledged programming
language. It is unique among many other proposals of concurrency formalisms in that
information, communication and synchronization are modeled in terms of constraints,
a general and mathematically well-supported framework. It is unique also in that its
minimal framework (with ask, eventual tell, parallel composition, guarded choice and
scoping) is almost ready for practical programming. That is, there is little gap between
theory (computational model) and practice (programming language). The stability of
the core concurrent constraint programming with ask+ eventual tell indicates that the
logic programming community came up with something essential in early 1980’s and
noticed it in full in late 1980’s.

There seems to be a feeling that concurrent logic/constraint programming has es-
tablished an independent scientific discipline outside the logic programming ’/paradigm.
There is certainly a fundamental difference in how computation is viewed—one is on
deduction while the other is on reactive agents. However, the fact that each paradigm
features what the other does not have and the fact that they still share a lot of techni-
calities at less fundamental levels strongly indicate that they should benefit from each
other. An interesting example of such bridging can be found in Constraint Handling
Rules [18], a concurrent constraint language specifically designed for programming con-
straint systems.

Since concurrent constraint languages aim at general-purpose languages, they can
benefit from static analysis more strongly than logic programming languages can. So
I'd like to conclude this article by claiming that constraint-based static analysis can
make concurrent constraint programming a simple, powerful, and safe language for

e parallel and high-performance computing,
e distributed and network computing, and
e real-time and mobile computing.

Its role in concurrent constraint programming is analogous to, but probably more than,
the role of type systems in A-calculus.

16

References

[1]

2]

[7]

[8]

[10]

[11]

[12]

Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J., Explicit substitutions. J.
Functional Programming, Vol. 1, No. 4 (1991), pp. 375-416.

Agha, G. A., Actors: A Model of Concurrent Computation in Distributed Systems.
The MIT Press, Cambridge, MA, 1986.

Ajiro, Y., Ueda, K. and Cho, K., Error-correcting Source Code. In Proc. Fourth
Int. Conf. on Principles and Practice of Constraint Programming (CP98), LNCS
1520, Springer-Verlag, Berlin, 1998, pp. 40--54.

Banétre, J.-P. and Le Métayer, D., The GAMMA Model and Its Discipline of
Programming. Science of Computer Programming, Vol. 15, No. 1 (1990), pp. 55~
77.

de Boer, F. S., Gabbrielli, M., Marchiori, E. and Palamidessi, C., Proving Concur-
rent Constraint Programs Correct. In Conf. Record of the 21st ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, ACM Press, 1994,
pp- 98-108.

Cardelli, L. and Gordon, A. D., Mobile Ambients. In Foundations of Software
Science and Computational Structures, Maurice Nivat (ed.), LNCS 1378, Springer-
Verlag, Berlin, 1998, pp. 140-155.

Chandy, K. M. and Taylor, S., An Introduction to Parallel Programming. Jones
and Bartlett, Boston, 1992.

Chandy, K. M. and Kesselman, C., CC++: A Declarative Concurrent Object-
Oriented Programming Notation. In Research Directions in Concurrent Object-
Oriented Programming, Agha, G., Wegner, P. and Yonezawa, A. (eds.), The MIT
Press, Cambridge, MA, 1993, pp. 281-313.

Chikayama, T. and Kimura, Y., Multiple Reference Management in Flat GHC.
In Proc. 4th Int. Conf. on Logic Programming (ICLP’87), The MIT Press, Cam-
bridge, MA, 1987, pp. 276-293.

Chikayama, T., Sato, H. and Miyazaki, T., Overview of the Parallel Inference
Machine Operating System (PIMOS). In Proc. Int. Conf. on Fifth Generation
Computer Systems 1988, ICOT, Tokyo, 1988, pp. 230-251.

Chikayama, T., Operating System PIMOS and Kernel Language KL1. In Proc.
Int. Conf. on Fifth Generation Computer Systems 1992, Ohmsha and IOS Press,
Tokyo, 1992, pp. 73-88.

Chikayama, T., Fujise, T. and Sekita, D., A Portable and Efficient Implementation
of KL1. In Proc. 6th Int. Symp. on Programming Language Implementation and

17

[14]

[15]

18]

[19]

[20]

[21]

[22]

[23]

[24]

Logic Programming (PLILP’94), LNCS 844, Springer-Verlag, Berlin, 1994, pp. 25~
39.

Cho, K. and Ueda, K., Diagnosing Non-Well-Moded Concurrent Logic Programs,
In Proc. 1996 Joint Int. Conf. and Symp. on Logic Programming (JICSLP’96),
The MIT Press, Cambridge, MA, 1996, pp. 215-229.

Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logic. ACM.
Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1-49.

Foster, I. and Taylor, S., Strand: a Practical Parallel Programming Tool. In Proc.
1989 North American Conf. on Logic Programming (NACLP’89), The MIT Press,
Cambridge, MA, 1989, pp. 497-512.

Foster, I. and Kesselman, C., The Grid: Blueprint for a New Computing Infras-
tructure. Morgan-Kaufmann, San Francisco, 1998.

Fournet, C., Gonthier, G. Lévy, J.-J., Maranget, L. and Rémy, D., A Calculus of
Mobile Agents. In Proc. 7th Int. Conf. on Concurrency Theory (CONCUR’96),
LNCS 1119, Springer-Verlag, Berlin, 1996, pp. 406-421.

Frithwirth, T., Theory and Practice of Constraint Handling Rules. J. Logic Pro-
gramming, Vol. 37, No. 1-3 (1998), pp. 95-138.

Fujita, H. and Hasegawa, R., A Model Generation Theorem Prover in KL1 Using
a Ramified-Stack Algorithm. In Proc. Eighth Int. Conf. on Logic Programming
(ICLP’91), The MIT Press, Cambridge, MA, 1991, pp. 535-548.

Fujita, M., Slaney, J. and Bennett, F., Automatic Generation of Some Results in
Finite Algebra. In Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI’93),
1993, pp. 52-57.

Haridi, S., Van Roy, P., Brand, P. and Schulte, C., Programming Languages
for Distributed Applications. New Generation Computing, Vol. 16, No. 3 (1998),
pp. 223-261.

Hasegawa, R. and Fujita, M., Parallel Theorem Provers and Their Applications. In
Proc. Int. Conf. on Fifth Generation Computer Systems 1992, Ohmsha and I0S
Press, Tokyo, 1992, pp. 132-154.

Hirata, K., Yamamoto, R., Imai, A., Kawal, H., Hirano, K., Takagi, T., Taki, K.,
Nakase, A. and Rokusawa, K., Parallel and Distributed Implementation of Concur-
rent Logic Programming Language KL1. In Proc. Int. Conf. on Fifth Generation
Computer Systems 1992, Ohmsha and I0S Press, Tokyo, 1992, pp. 436—459.

Hoare, C. A. R., Communicating Sequential Processes. Prentice-Hall International,
London, 1985.

18

[25]

[29]

[30]

(33]

[34]

Ichiyoshi N., Miyazaki T. and Taki, K., A Distributed Implementation of Flat
GHC on the Multi-PSI. In Proc. 4th Int. Conf. on Logic Programming (ICLP’87),
The MIT Press, Cambridge, MA, 1987, pp. 257-275.

Janson, S. and Haridi, S., Programming Paradigms of the Andorra Kernel Lan-
guage. In Proc. 1991 Int. Logic Programming Symp. (ILPS’91), The MIT Press,
Cambridge, MA, 1991, pp. 167-183.

Kahn, K. M., ToonTalk—An Animated Programming Environment for Children.
J. Visual Languages and Computing, Vol. 7, No. 2 (1996), pp. 197-217.

Maher, M. J., Logic Semantics for a Class of Committed-Choice Programs. In Proc.
Fourth Int. Conf. on Logic Programming (ICLP’87), The MIT Press, Cambridge,
MA, 1987, pp. 858-876.

Milner, R., Communication and Concurrency. Prentice-Hall International, Lon-
don, 1989,

Milner, R., Parrow, J. and Walker, D., A Calculus of Mobile Processes, I-+II.
Information and Computation, Vol. 100, No. 1 (1992), pp. 1-77.

Milner, R., Calculi for Interaction. Acta Informatica, Vol. 33, No. 8 (1996), pp. 707~
737. ;

Muggleton, S., Inverse Entailment and Progol. New Generation Computing, Vol. 13
(1995), pp. 245-286.

Naish, L. All Solutions Predicates in Prolog. In Proc. 1985 Symp. on Logic Pro-
gramming (SLP’85), IEEE, 1985, pp. 73-77.

Nakajima K., Inamura Y., Rokusawa K., Ichiyoshi N. and Chikayama, T., Dis-
tributed Implementation of KL1 on the Multi-PSI/V2. In Proc. Sizth Int. Conf.
on Logic Programming (ICLP’89), The MIT Press, Cambridge, MA, 1989, pp. 436~
451. :

Nit’ca, K., Taki, K. and Ichiyoshi, N., Experimental Parallel Inference Software. In
Proc. Int. Conf. on Fifth Generation Computer Systems 1992, Ohmsha and I0S
Press, Tokyo, 1992, pp. 166-190.

Petri, C.A., Fundamentals of a Theory of Asynchronous Information Flow. In Proc.
IFIP Congress 62, North-Holland Pub. Co., Amsterdam, 1962, pp.386-390.

Santos Costa V., Warren, D. H. D. and Yang, R., Andorra-I: A Parallel Pro-
log System that Transparently Exploits both And- and Or-Parallelism. In Proc.
Third ACM SIGPLAN Symp. on Principles & Practice of Parallel Programming
(PPoPP’91), SIGPLAN Notices, Vol. 26, No. 7 (1991), pp. 83-93.

19

[38]

[39]

[40]

(43]

[44]

Saraswat, V. A. and Rinard, M., Concurrent Constraint Programming (Extended
Abstract). In Conf. Record of the Seventeenth Annual ACM Symp. on Principles
of Programming Languages, ACM Press, 1990, pp. 232-245.

Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards Distributed Con-
straint Programming. In Proc. 1990 North American Conference on Logic Pro-
gramming (NACLP’90), The MIT Press, Cambridge, MA, 1990, pp. 431-446.

Saraswat, V. A., Rinard, M. C. and Panangaden, P., Semantic Foundations of
Concurrent Constraint Programming. In Conf. Record of the Eighteenth Annual
ACM Symp. on Principles of Programming Languages, ACM Press, 1991, pp. 333—
352.

Sato, T. and Tamaki, H., First Order Compiler: A Deterministic Logic Program
Synthesis Algorithm. J. Symbolic Computation, Vol. 8, No. 6 (1989), pp. 605-627.

Shapiro, E. Y., Concurrent Prolog: A Progress Report. IEEE Computer, Vol. 19,
No. 8 (1986), pp. 44-38.

Shapiro, E., The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys, Vol. 21, No. 3 (1989), pp. 413-510.

Shapiro, E. Y., Warren, D. H. D., Fuchi, K., Kowalski, R. A., Furukawa, K., Ueda,

- K., Kahn, K. M, Chikayama, T. and Tick, E., The Fifth Generation Project:

(4]

[48]

[49]

Personal Perspectives. Comm. ACM, Vol. 36, No. 3 (1993), pp- 46-103.

Schulte, C. and Smolka, G., Encapsulated Search for Higher-order Concurrent
Constraint Programming. In Proc. 1994 International Logic Programming Symp.
(ILPS’94), The MIT Press, Cambridge, MA, 1994, pp. 505-520.

Smolka, G., The Oz Programming Model. In Computer Science Today, van
Leeuwen, J. (ed.), LNCS 1000, Springer-Verlag, Berlin, 1995, pp. 324-343.

Somogyi, Z., Henderson, F. and Conway, T., The Execution Algorithm of Mercury,
An Efficient Purely Declarative Logic Programming Language. J. Logic Program-
ming, Vol. 29, No. 1-3 (1996), pp. 17-64.

Taki, K., Parallel Inference Machine PIM. In Proc. Int. Conf. on Fifth Generation
Computer Systems 1992, Ohmsha and I0S Press, Tokyo, 1992, pp. 50-72.

Tick, E. The Deevolution of Concurrent Logic Programming Languages. J. Logic
Programming, Vol. 23, No. 2 (1995), pp. 89-123.

Toyoda, M., Shizuki, B., Takahashi, S., Matsuoka, S. and Shibayama, E., Support-
ing Design Patterns in a Visual Parallel Data-flow Programming Environment. In
Proc. IEEE Symp. on Visual Languages, IEEE, 1997, pp. 76-83.

20

[51] Ueda, K., Guarded Horn Clauses. ICOT Tech. Report TR-103, ICOT, Tokyo,
1985. Also in Logic Programming ‘85, Wada, E. (ed.), LNCS 221, Springer-Verlag,
Berlin, 1986, pp. 168-179.

[62] Ueda, K. and Chikayama, T., Concurrent Prolog Compiler on Top of Prolog. In
Proc. 1985 Symp. on Logic Programming (SLP’85), IEEE, 1985, pp. 119-126.

[63] Ueda, K. Making Exhaustive Search Programs Deterministic. In Proc. Third Int.
Conf. on Logic Programming (ICLP’86), LNCS 225, Springer-Verlag, Berlin, 1986,
pp. 270-282. Revised version in New Generation Computing, Vol. 5, No. 1 (1987),
pp- 29-44.

[54] Ueda, K. and Furukawa, K., Transformation Rules for GHC Programs. In Proc.
Int. Conf. on Fifth Generation Computer Systems 1988, 1COT, Tokyo, 1988,
pp. 582-591.

[55] Ueda, K., Parallelism in Logic Programming. In Information Processing 89, Proc.
IFIP 11th World Computer Congress, North-Holland /IFIP, 1989, pp. 957-964.

[66] Ueda, K., Guarded Horn Clauses: A Paralle]l Logic Programming Language with
the Concept of a Guard. ICOT Tech. Report TR-208, ICOT, Tokyo, 1986. Also
in Programming of Future Generation Computers, Nivat, M. and Fuchi, K. (eds.),
North-Holland, Amsterdam, 1988, pp. 441-456.

[57] Ueda, K. and Chikayama, T. Design of the Kernel Language for the Parallel In-
ference Machine. The Computer Journal, Vol. 33, No. 6 (1990), pp. 494-500.

[58] Ueda, K. and Morita, M., A New Implementation Technique for Flat GHC. In Proc.
Seventh Int. Conf. on Logic Programming (ICLP’90), The MIT Press, Cambridge,
MA, 1990, pp. 3-17. Revised version in New Generation Computing [61].

[59] Ueda, K., Designing a Concurrent Programming Language. In Proc. InfoJapan’90,
Information Processing Society of Japan, Tokyo, 1990, pp. 87-94.

[60] Ueda, K. and Morita, M., Message-Oriented Parallel Implementation of Moded
Flat GHC. New Generation Computing, Vol. 11, No. 3—4 (1993), pp. 323-341.

[61] Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-
tation Technique. New Generation Computing, Vol. 13, No. 1 (1994), pp. 3-43.

[62] Ueda, K., Moded Flat GHC for Data-Parallel Programming. In Proc. FGCS’94
Workshop on Parallel Logic Programming, ICOT, Tokyo, 1994, pp. 27-35.

[63] Ueda, K., Experiences with Strong Moding in Concurrent Logic/Constraint Pro-
gramming. In Proc. Int. Workshop on Parallel Symbolic Languages and Systems
(PSLS’95), LNCS 1068, Springer-Verlag, Berlin, 1996, pp. 134-153.

21

[64] Ueda, K., Linearity Analysis of Concurrent Logic Programs. In Proc. International
Workshop on Parallel and Distributed Computing for Symbolic and Irregular Ap-
plications, Tto, T. and Yuasa, T. (eds.), World Scientific, 2000, pp. 253-270.

22

28 WITHIE T O T T L ORI

Automatic memory management and the hiding of the notion of pointers are the promi-
nent features of symbolic processing languages. They make programming easy and
guarantee the safety of memory references. For the memory management of linked data
structures, copying garbage collection is most widely used because of its simplicity and
desirable properties. However, if certain properties about runtime storage allocation
and the behavior of pointers can be obtaind by static analysis, a compiler may be able
to generate object code closer to that of procedural programs. In the fields of parallel,
distributed and real-time computation, it is highly desirable to be able to identify data
structures in a program that can be managed without using garbage collection. To
this end, this paper proposes a framework of linearity analysis for a concurrent logic
language Moded Flat GHC, and proves its basic property. The purpose of linearity
analysis is to distinguish between fragments of data structures that may be referenced
by two or more pointers and those that cannot be referenced by two or more pointers.
Data structures with only one reader are amenable to compile-time garbage collection
or local reuse. The proposed framework of linearity analysis is constraint-based and
involves both equality and implicational constraints. It has been implemented as part
of klint v2, a static analyzer for KL.1 programs.

2.1 Introduction

In whatever programming language, variables can be viewed as a means of commu-
nication as well as a means of storage. When viewed as a means of communication,

e assigning a value to a variable at some point in a time space amounts to sending,
and

e reading the value of a variable at another point in the time space amounts to
receiving.

A value once assigned is usually read at least once before it is altered by subsequent

1 The communication is one-to-one when the value is read exactly once,

assignments.
while it is one-to-many when the value is read more than once.
When the value to be communicated is non-atomic, it is usually created on a heap

and a variable holds a pointer to it rather than the value itself. The ‘final’ reader of

'In the case of single-assignment variables, the value once assigned will not be altered forever.

23

~ :
(Program) P ::= set of C (1) W

(Program Clause) C == A:-| B (2)

(Body) B == multiset of G (3)

(Goal) G u=T1 =T | A (4)

(Non-unification Goal) A =:= p(T1, ... ,Tn),

p is a predicate other than ‘=’ (5)

(Term) T == (as in first-order logic) (6)

(Goal Clause) Q == :- B (7
N _

Fig. 2.1: Syntax of a subset of GHC

a non-atomic value can free the storage occupied by the value or reuse it for other
purposes. In order to achieve recycling, however, the implementation must be able to
judge whether each read operation is the final one on the current value of the variable.
Since this is difficult in general, a heap is usually managed using runtime garbage
collection.

However, suppose a compiler guarantees, by static analysis, that some variable is used
only for one-to-one communication. Then the storage occupied by the value can be freed
or recycled immediately after it is read. In a concurrent setting, it is usually difficult
to identify the final read operation on a variable used for one-to-many communication,
but good news about one-to-one communication is that a read operation is always final.

This paper is concerned with concurrent logic programming in which logical (or
single-assignment) variables are used as communication channels, and proposes a theo-
retical framework, called linearity analysis, that distinguishes between one-to-one and
one-to-many communcation. We are particularly interested in Moded Flat GHC, [8] a
concurrent logic language with strong moding, because its mode system infers informa-
tion flow of logical variables and simplifies linearity analysis.

We have found, from concurrent logic programs written so far, that most logical
variables are used for one-to-one communication. [10] In particular, virtually all of the
variables with complex protocols such as incomplete messages and streams of streams
are one-to-one. This suggests that linearity analysis can provide fundamental informa-
tion for optimizing memory management.

2.2 Concurrent Logic Languages and Linearity Analysis

GHC (Guarded Horn Clauses) is a concurrent logic language whose syntax is shown
in Figure 2.1. For simplicity, we assume that program clauses contain no guard goals
(i.e., conditions of rewriting specified between “~? and ‘|’), but this restriction is not
essential for the theoretical framework developed in this paper.

24

The operational semantics of GHC models the concurrent reduction of goals starting
with an initial goal clause. Reduction of a current goal clause involves either of the
following:

e rewriting of a non-unification goal to (zero or more) goals, possibly after observing
a required substitution (ask), or

e execution of a unification goal, which may publish a substitution (tell).

We review one-step reduction from a goal clause @ to Q. For notational simplicity, we
identify a goal clause with the multiset of body goals in the goal clause.

o Reduction of a non-unification goal g € @ using a clause (renamed using fresh
variables) “h:-| B”: The synchronization rule of GHC tells that there must be
a substitution § such that g = hf, and Q' = Q\ {g} U Bf, where ‘\’ and ‘U’ are
multiset difference and union, respectively.

e Reduction of a unification goal (t1 =t2) € Q: Q' = (Q\(¢1 = t2))0, where 8 is the
most general unifier of ¢; and ty. We assume that the program is well-moded, [8]
in which case the unification does not fail except due to occur check.

In either case, reduction in general involves the rewriting of a variable (say v) to a
term ¢t (3 v). In the reduction of a non-unification goal, v must be a variable in the
(renamed) program clause, while in the reduction of a unification goal, v must be a
variable in the goal clause. When v has more than one input occurrence (occurrence
that is rewritten to ¢ as the result of reduction), or equivalently, when v is used for one-
to-many communication, the number of pointers from @’ to ¢ is increased. (Throughout
the paper, we assume that assignment of a structured value is done by sharing rather
than by copying.) The purpose of linearity analysis is to statically analyze exactly
where shared data structures may occur—in which predicates, in which arguments,
and in which part of the data structures taken by those arguments.

A data structure that has not been referenced by a variable for one-to-many commu-
nication is never shared by two or more readers. A compiler can know exactly when it is
read finally and becomes garbage, and generate object code that returns the structure
to a free list or recycles it locally.

2.3 Terminology

Definition. We say that an occurrence of a variable is a channel occurrence if it is the
leftmost occurrence in a clause head or an occurrence in a clause body.

A variable can be thought of as a communication channel for one-shot or repetitive
communication (the most typical of repetitive communication is stream communica-
tion), and a channel occurrence can be thought of as an endpoint of a channel. The

25

:— module main.
gsort(Xs,Ys) :- true | gsort(Xs,Ys,[]).

gsort([], Ys0,¥s) :- true | ¥Ys=Ys0.
gsort ([X|Xs],¥s0,Ys3) :- true |
part(X,Xs,S,L), gsort(S,¥s0,Ys1), ¥Ys1=[X|¥s2],
gsort(L,Y¥s2,Ys3).
part(_,[7, S, L) :- true | 8=[1, L=[].
part (A, [X|Xs],S0,L) :- A>=X | S0=[X|S], part(4,Xs,S,L).
part (A, [X|Xs],S, LO) :- A< X | LO=[X|L], part(4,Xs,S,L).

Fig. 2.2: A quicksort program

condition ‘leftmost’ is rather arbitrary; the motivation is that only one of the (possibly
many) occurrences of a variable can be called a channel occurrence. The condition does
not imply that the arguments in a clause head are processed from left to right.

Definition. A variable that has at most two channel occurrences in a program clause
or a goal clause is called a linear variable, and a variable that possibly has three or
more occurrences is called a nonlinear variable.

Thus it is always safe to say some variable is nonlinear, but the purpose of linearity
analysis is to detect as many linear variables as possible.

Example. In the quicksort program shown in Figure 2.2, all the variables except X in
the second clause of ternary gsort are linear.

Strong moding guarantees that each variable generated during program execution
has exactly one output occurrence, namely an occurrence that can determine its top-
level value. This means that a variable with exactly two channel occurrences is used
for one-to-one communication, and a variable with only one channel occurrence is used
for one-to-zero communication.

Definition. A path is a sequence of pairs, of the form (symbol,arg), of func-
tion/predicate symbols and argument positions. In this paper, we regard constant
symbols as nullary function symbols. Paths are used to specify occurrences of variables
or function symbols in a goal or a term. Let Pasom be the set of all paths for specifying
occurrences in goals, and Preqy, the set of all paths for specifying occurrences in terms.

For example, a function symbol b occurs in a goal p(£(a,b),C) at (p,1)(f,2) €
Patom. An empty sequence in Prerm specifies the principal function symbol of a term

in question.

26

2.4 Linearity Annotation

To distinguish between non-shared and shared data structures in a computational
model without the notion of pointers, we consider giving a linearity annotation 1 or
w to every occurrence of a function symbol f appearing in (initial or reduced) goal

2 The annotations appear as f! or f¥ in

clauses and body goals in program clauses.
the theoretical framework, though the purpose of linearity analysis is to reason about
the annotations and compile them away so that the program can be executed without
having to maintain linearity annotations at run time.

Intuitively, the principal function symbol of a structure possibly referenced by more
than one pointer must have the annotation w, while a structure always pointed to
by only one pointer in its lifetime can have the annotation 1. Another view of the
annotation is that it models a one-bit reference counter that is not decremented once
it reaches w.

The annotations must observe the following closure condition: If the principal func-
tion symbol of a term has the annotation w, all function symbols occuring in the term
must have the annotation w. In contrast, a term with the principal function symbol
annotated as 1 can contain a function symbol with either annotation, which means that
a subterm of a non-shared term may possibly be shared.

Given linearity annotations, the operational semantics is extended to handle them
so that they may remain consistent with the above intuitive meaning.

1. The annotations of function symbols in program clauses and initial goal clauses
are given according to how the structures they represent are implemented. For
instance, consider the following goal clause:

M p([1’2,3:4,5] 9X) > q([132’3,4,53 ’Y) .

If the implementation chooses to create a single instance of the list {1,2,3,4,5]
and let the two goals share them, the function symbols (there are 11 of them
including [1) must be given w. If two instances of the list are created and given
to p and q, either annotation is compatible with the implementation.

2. Suppose a substitution § = {v; « t1,...,v, < t,} is applied upon one-step
reduction from Q to Q'

(a) When v; is nonlinear, the substitution instantiates more than one occurrence
of v; to t; and makes t; shared. Accordingly, all data structures inside ;
(i.e., the subterms of ;) become shared as well. So, prior to rewriting the
occurrences of v; by t;, we change all the annotations of the function symbols
constituting t; to w.

(b) When v; is linear, § does not increase the number of references to ;. So we
rewrite v; by t; without changing the annotations in ;.

®The notation is after related work [4, 7] on different computational models.

27

(BFy) If a function symbol f“ occurs at the path p in B, then
A(p) = shared.

(LVy) If a linear variable occurs both at p; and pg, then
Vg € Prerm(m(p1g) = in A A(p1q) = shared = A(p2q) = shared)
(if p; is a head path);
Vg € Prerm(m(p19) = out A A(p1q) = shared = A(p2q) = shared)
‘ (if p; is a body path).

(NVy) If a nonlinear variable occurs at p, then
Vq € Prerm(m(pq) = out = A(pq) = shared) (if p is a head path);
Vq € Prerm(m(pq) = in = A(pq) = shared) (if p is a body path).

(BU)) For a unification body goal =,
Vge PTerm()\(<=k:7 1>C]) =)‘(<=k‘7 2>Q))'

Fig. 2.3: Linearity constraints imposed by a clause h:-| B

2.5 Linearity Constraints

The linearity of a well-moded program can be characterized using a linearity function.

Definition. A linearity function is a function from Paiom to the binary codomain
{nonshared, shared }.

In this paper, we write A to stand for a linearity function.

The motivation of a linearity function is to distinguish between those paths where
function symbols with w can appear and those where function symbols with w cannot
appear. Suppose we can prove that a function symbol with w cannot appear at p such
that A(p) = nonshared. Then the (sole) reader of the data structure at a nonshared
path can safely discard the top-level structure after accessing its elements. (There is
one subtle point in this optimization, which will be discussed in Section 2.7.)

The above property can be established by enforcing linearity constraints on the func-
tion \. Linearity constraints imposed by each program clause h:-| B or a goal clause
:- B are shown in Figure 2.3. The linearity constraints refer to the mode of a program
represented by a function m. The mode constraints [8] on a well-moding m are given in
Figure 2.4. Here, a submode m/p is defined as a function satisfying (m/p)(¢q) = m(pq).
The function m/p represents the part of m viewed at the path p. The functions IN
and OUT are constant functions that always return in and out, respectively. An over-

‘=’ inverts the polarity of a mode, a submode, or a mode value. We omit the

line
motivations of each mode constraints and properties they enjoy. [8]
To allow different unification goals to have different modes and/or linearities, which is

a limited form of polymorphism, each unification goal in program clauses and an initial

28

(HF) If a function symbol occurs at p in h, then m(p) = in.

(HV) If a variable occurring p in h occurs elsewhere in h, then
m/p=IN.

(BU) For a unification body goal =, m/(=¢, 1) = m/(=,2).

(BF) If a function symbol occurs at p in B, then m(p) = in.

(BV) Let a variable v occur n (> 1) times in h and B at py,...,pp, of which the

occurrences in h are at p1,...,pr (k> 0). Then
R({m/p1,...,m/ps}), k=0
R({m/plvm/pk+lv"'7m/pn})a k >0;

where R(S) is a ‘cooperativeness’ relation which states that, for all paths
g, 3s € S(s(q) = out A Vs' € S\{s} (s'(q) = in)) holds.

Fig. 2.4: Mode constraints imposed by a clause h:-] B

goal clause is given a unique serial number. In this paper, goals other than unification
are assumed to be monomorphic; that is, different goals with the same predicate symbol
have the same modes and linearities. This is for the sake of simplicity and it is possible
to incorporate mode polymorphism [2] and in the same way linearity polymorphism.

The function A satisfying the linearity constraints is computed statically using pro-
gram clauses and an initial goal clause. Linearity constraints in Figure 2.3 are trivially
satisfied by letting A(p) = shared for all p. However, the purpose of linearity analysis is
to compute the ‘smallest’ A satisfying linearity constraints, where the partial ordering
is defined as

M <A © VP E Parom(A1(p) = shared = Aa(p) = shared).

How to solve linearity constraints to compute the smallest A will be discussed in
Section 2.8.

2.6 Subject Reduction Theorem

This section gives a fundamental property that a lineari’cy: function enjoys.

Definition. Let v be a variable and ¢t a term. We say that the extended occur check
for unification between v and t fails if t is v or ¢ contains v.

Theorem 1 (subject reduction). Suppose) satisfies the linearity constraints of a
program P and a goal clause), and @ is reduced in one step to @', where the reduced

29

goal g€ Q is not a unification goal for which extended occur check fails. Then A satisfies
the linearity constraints of @ as well.

Proof. Based on extensive case analysis. The cases can be divided into two based on
whether the goal reduced is a non-unification goal or unification.

[Case 1] The reduction has rewritten a non-unification goal g using a (renamed) clause
C € P of the form “h:-| B”.

What we must consider are the constraints (V) and (NV,) imposed by the variables
occurring in g € @ and the constraints (BF) imposed by the occurrences of function
symbols brought into B (C Q') by 6 (these occurrences originate from the occurrences
of the function symbols in g). Constraints imposed by the other variables in Q' and
those imposed by other occurrences of functions, which were already in either Q\{g}
or B, need not be considered because they are exactly the same as those in Q. This
means it suffices to consider all the symbols in g.

1. A function symbol f* (k € {1,w}) occurs at the path p in g. Then, either

e the function f occurs at p in h, or

e there exist p € Pagwm and q € Prerm such that p = p’q and a variable (say
v) occurs at p in h.

In the former case, (BF)) is not applicable because the occurrence disappears
upon reduction. So it suffices to consider the latter case, which may introduce
new occurrences of f into Bf (C Q). Suppose v occurs n (> 0) times in B at
T1, ..., Tn, and let g; be the goal to which the jth occurrence belongs. Then '
occurs in the goal g;0 at r4q, for i = 1...,n, where ' = k if n <1 and K =wif
n > 1 by Rule 2a in Section 2.4. We must show that Q" enjoys (BF,).

(a) When n < 1 (v is linear): It suffices to consider the case n = 1. If kK =w,
A(riq) = shared must hold, but this can be derived as follows:

i. A(p) = shared, by (BF)) applied to f* in Q,
ii. m(p) = in, by (BF) applied to f“ in Q,
iii. A(p) = shared = A(riq) = shared, by 1(a)ii and (LV,) applied to v in
c,
iv. A(riq) = shared, by 1(a)i and 1(a)iii.
(b) When n > 1 (v is nonlinear): Since x' = w, we must show that Arig) =
shared holds.
i. m(p) = in, by (BF) applied to f* in Q,
ii. m(riq) = in, by 1(b)i and (BV) applied to v in C,
iti. A(riq) = shared, by 1(b)ii and (NV) applied to v in C.

30

2. A variable w occurs at p in g. Suppose w occurs [(> 1) times in g at p1(= p),
P2, ..., pp and m (> 0) times in Q\{g} at prr1, - - Ditm-
Because there exists 6 such that g = hf, for each p; (1 < ¢ <), there exists a
prefix p; € Pasom of p; such that a variable (say v;) occurs at pé in A, and a path
q; € Prerm such that p; = plg;. Suppose v; occurs n; (> 0) times in B at 741, ...,
Tin;- Then w is made to occur at r5;q; (1 <i<1,1<j<n;)in B3

When some v; is nonlinear, w in @ becomes nonlinear as well. We consider those

paths where w occurs, namely
o ri;q; (1 <i<l1,1<j<n;) (brought by §) and
® Dit1, ..., Pi+m (inherited from Q\{g})-

(a) For the occurrences brought by 6,
i. Vg € Prerm(m(rijq) = in = X(rijq) = shared), by (NV,) applied to v;
in C,
ii. Vq € Prerm(m(rijqiq) = in = A(r4jqiq) = shared), by 2(a)i,
so (NV)) is satisfied for the paths of w brought by 6.

(b) For the occurrences inherited from @\ {g}, if w is nonlinear in Q, (NV})
applied to @’ is immediate from (NV) applied to Q. If w is linear in Q, we
have m < 1 and now it suffices to consider the case where m = 1, namely the
case where w occurs at p(= p1) in ¢ and p, elsewhere. The goal is to show
Vq € Prerm(m(p2q) = in = A(pa2g) = shared), so we first assume m(paq) = in
for some ¢q. Then

i. m(pqg) = out, by assumption and (BV) applied to w in Q,

ii. A(pq) = shared, by 2(b)i and (NV,) applied to v; in C,

ili. A(pag) = shared, by 2(b)i, 2(b)ii and (LV}) applied to w in Q.
So (NV,) is satisfied for the occurrences of w inherited from Q\{g}.

When all the v;’s are linear, w is linear in Q' if it is linear in @, and nonlinear in
Q' otherwise. For each case, the linearity constraints to be satisfied by @’ can be

shown to hold with similar arguments.

[Case 2] The reduction has executed a unification goal t; = t3. By the assumption of
well-modedness, there exists an ¢ such that m({=, 1)) = out. Without loss of generality,
we can assume ¢ = 1, in which case unification degenerates to assignment to the left-
hand side variable. By the assumption of extended occur check, ¢5 is not identical to
the variable t; or a term containing ¢;. So @' is equal to (Q\{t1 =k t2}){t1 —t2}. Let
the variable ¢; occur n (> 0) times in Q\ {¢t; =¢ t2} at 1, ..., 7n. Then each symbol

3The variable w may occur less than 71 -+ - - - + n; times because the two occurrences of w in g may
be received by different occurrences of the same variable in A and brought to B8 not independently.

31

in t, is duplicated n times and occurs in Q'. It suffices to show that these occurrences
enjoy the linearity constraints (BF,), (LV)), and (NV,).

1. A function symbol f* occurs at (=j,2)q. The constraint (BF)) tells that it suffices
to consider the case kK = w.

(a) A((=g,2)q) = shared, by (BF)) applied to f* in Q,

(b) A((=x,1)q) = shared, by la and (BU,) applied to @,

(c) m({=g,2)q) = in, by (BF) applied to f“ in @,

(d) m({=¢,1)q) = out, by 1c and (BU) applied to @, -

(e) m(rig) = in (1 <i < n), by 1d and (BV) applied to ¢; in @,

(f) when t; is linear, \(r1q) = shared, by 1b, 1d and (LV,) applied to ¢; in Q,
(g) when ¢, is nonlinear, A(riq) = shared (1 < i < n), by le and (NV) applied

to t1 in Q.

By executing unification ¢ =y t2, f* is made to occur newly at r1g, ..., ™ng in Q.

However, as shown above, A satisfies (BF) imposed by those new occurrences.

9. A variable w (s t;) occurs at (=, 2)g. Suppose w occurs [(> 1) times in the goal
t1 =k to at (=¢,2)q1, (=k,2)q2, .., (=&, 2)q and m (> 0) times in Q\{t1 =k to} at
Pls1s - - -, Plem. BY executing t; = t2, w is made to occur newly at rig;, -- ., Tndi
(1 < <1). So it suffices to examine the linearity constraints of these paths.

When #; is nonlinear in @, w in Q' becomes nonlinear as well. However, by
(NV,) applied to ¢ in @, Vs € Prerm(m(r;js) = in = A(r;s) = shared) holds for
1 < j < n, which implies (NV) applied to the new occurrences of w in Q.

When #; and w are both linear in @, w remains linear in Q'. We consider the less
obvious case of I = 2 and m = 0, namely the case where the other occurrence of
w in @ is also in t3. (The other case where [=1 and m = 1 is easier and thus
omitted.) The goal is to show Yq € Prerm(m(rigiq) = out A A(riqiq) = shared =
M(r3-ig3—iq) = shared), for i = 1,2. Without loss of generality we can focus on
the case i = 1, so we first assume m(r;g1g) = out and A(r1g1q) = shared for some

g. Then

(a) A((=x,1)q1q) = shared, by (LV,) applied to ¢; in @,

(b) M{(=k,2)q1q) = shared, by 2a and (BU,),

(¢) m({=k,1)giq) # m(rigiq), by (BV) applied to t1,

(d) m({=k,1)g1q) = in, by the assumption and 2c,

(e) m({=x,2)q19) = out, by 2d and (BU),

(£) M{(=k,2)gaq) = shared, by 2b, 2¢ and (LV) applied to w in @,
(g) A((=k,1)q2q) = shared, by 2f and (BU,),

32

(h) m({=k,2)g2q) = in, by 2e and (BV) applied to w in Q,
(1) m({=k,1)g2q) = out, by 2h and (BU),
(G) A(reqaq) = shared, by 2g, 2i, and (LV,) applied to ¢; in Q.

When ¢; is linear in @ and w is nonlinear in @), w is in general nonlinear in Q’.
In this case also, (NV)) imposed by w in Q' can be derived in a similar manner
from the linearity constraints of Q). Q.E.D.

Thus we have established that data structures occurring at a nonshared path in a
goal in the course of computation are never shared.

2.7 Applications of Linearity Analysis

Linearity analysis provides fundamental information for the optimization of mem-
ory management that can potentially lead to novel applications of concurrent logic
languages.

1. Local reuse of data structures. The sole reader of a data structure can recycle
the structure it has read—for instance to create a new data structure. This
enables update-in-place of data structures in a language without the notion of
destructive assignments. Features like Lisp’s nconc and rplacd need not be
exposed to programmers any more.

Local reuse may not necessarily have an impact on the performance of list pro-
cessing on a single-processor machine, but it is essential in array processing in
single-assignment languages. Despite their importance, arrays tend to be ignored
in declarative languages. Since copying an array in each ‘update’ operation would
be prohibitive, multi-version structures were often adopted as reasonable imple-
mentation of mutable arrays. However, if array variables are guaranteed to be
linear, the implementation need not bother to create multi-version structures.
Thus static linearity analysis seems essential to make declarative languages com-
petitive with procedural languages in terms of performance. Linearity analysis
enables not only update-in-place but also in-place splitting and merging of arrays.
This opens up the possibility of parallel updating of a single array allocated on
shared memory. [9]

However, for concurrent logic programs, linearity analysis alone is not always
sufficient for the local reuse of data structures due to the flexibility of logical
variables. It is sufficient for the optimization of numeric or character arrays in
which only instantiated data can be stored. When a data structure is allowed to
contain uninstantiated logical variables and the writers of uninstantiated variables
point directly to the (empty) slots of the data structure, the structure cannot be
recycled until all the empty slots are filled and read. To enable local reuse in the

33

presence of partially instantiated data structures, analysis of instantiation states
should be used together with linearity analysis.

9. Distributed implementation. In distributed applications in which pointers across
sites can be limited to pointers to non-shared data, global garbage collection
becomes unnecessary and the management of global pointers such as exporting
and importing [5] can be greatly simplified. This opens up the possibility of using
declarative languages in network programming applications in which program
analysis and verification is still extremely difficult.

3. Real-time and embedded applications. In applications such as robot control, in
which (soft) real-time processing is essential, an alternative to stop-and-copy
garbage collection must be employed. A number of incremental and concurrent
garbage collection algorithms have been proposed, [3] but compile-time garbage
collection, where applicable, seems to be the most desirable solution to the prob-
lem. Linearity analysis is expected to play an important role in resource analysis
as well—particularly the analysis of the amount of storage needed to execute a
program. We believe that declarative programming with resource analysis will
be a realistic tool for embedded and hard real-time applications.

2.8 Implementation—klint v2

A static analyzer for KL1 programs called klint v2 [11] features both mode and
linearity analyses. This section outlines the implementation of klint v2.

Basically, mode and linearity analyses are constraint satisfaction problems that can be
solved using very similar techniques. In klint v2, a set of mode constraints is represented
using a feature graph called a mode graph, [8] and solving a set of mode constraints
means to merge (small feature graphs representing) new constraints into the ‘current’
mode graph, which is done mostly as unification over feature graphs. Non-binary
constraints, which cannot be solved by unification, are imposed only by non-linear
variables, and all the other constraints can be merged into the current mode graph
within almost linear time with respect to the size of the mode graph. [8] For non-
binary constraints, klint v2 first postpones them in the hope that they become unary
or binary by the information from other constraints. It turns out that many non-binary
constraints are simplified finally.

When some constraints remain non-binary after solving all unary or binary con-
straints, klint v2 assumes that nonlinear variables involved have simple, one-way
dataflow rather than bidirectional dataflow such as in message streams with reply boxes.
Thus, if a nonlinear variable occurs at p and m(p) is known to be in or out, klint v2
imposes a stronger constraint m/p = IN or m /p = OUT, respectively. This means that
a mode graph computed by klint v2 is not always most general, but the strengthening
of constraints reduces most non-binary constraints to unary ones. Our observation is

34

that virtually all nonlinear variables have been used for one-way communication and
the strengthening causes no problem in practice.

Following mode analysis, klint v2 creates another feature graph called a linearity
graph. Given the result of mode analysis, (BF)) and (NV,) are unary and (BU,) is
binary. However, (LV)) is still a implicational constraint of the form A(p1q) = shared =
A(p2q) = shared. Since most variables in a program are linear, it is unrealistic to
implement an implicational constraint using delaying.

If the implication can be strengthened to a bidirectional one as in

o (LVY) Yq € Prerm(M(p1q) = shared < X(paq) = shared),

the constraint can be solved using unification. Obviously (LV)) = (LV,) holds, and
this approximation works well in detecting linear paths for most programs. However,
consider a numeric array used as a shared look-up table. Such an array may well remain
non-shared during initialization and then becomes shared. The change of the sharing
property in the lifetime of a data structure is appropriately handled by (LV) using one-
way constraint propagation, but with the approximated version (LV}), the structure
is regarded as shared since its creation. This is undesirable because the initialization
phase may very well want to exploit the efficiency of update-in-place.

klint v2 circumvents this problem as follows. Since the data structures whose sharing
property changes in their lifetime have simple dataflow (i.e., no bidirectional communi-
cation), we employ the full version (LV)) only when m/p; and m/ps are known to be
IN or OUT, and the approximate version (LV’) otherwise. Suppose p; is a head path
and m/p; is known to be IN. Then the first constraint of (LV)) is simplified to

Vq,7 € Prerm(A(p1q) = shared = A(paqr) = shared).

It turns out that this constraint is easy to implement using the notion of a propagator;
that is, when A(p1q) is constrained to shared, it is propagated to the graph node
representing pp. A propagator is simply a graph edge (from p; to ps) representing a
‘null’ feature, in contrast with other edges that represent (symbol, arg) features. A
propagator is an essential tool for the eager evaluation of the constraint.

A graph node marked shared must express the closure condition Vp € PaomVg €
Prerm (Mp) = shared = A(pq) = shared), but this can be represented in much the same
way as the representation of constant submode functions IN and OUT.

As an example, we show the result of linearity analysis of the quicksort program
shown in Figure 2.2 (Section 2.3).

***x Linearity Graph **x*
node(0): (unconstrained)
<(main:qgsort)/2,1> ---> node(24)
<(main:gsort)/2,2> ---> node(16)
<(main:gsort)/3,1> ---> node(24)

35

<(main:gsort)/3,2> —---> node(16)
<(main:gsort)/3,3> ---> node(16)
<(main:part)/4,1> ---> SHARED
<(main:part)/4,2> ---> node(24)
<{(main:part)/4,3> -~-> node(24)
<(main:part)/4,4> ---> node(24)
node(24): (unconstrained)
<cons,2> ———> node(24)
node(16): (unconstrained)
<cons,1> ---> SHARED
<cons,2> —--> node(16)

This is a textual representation of the linearity graph of quicksort. The paths indi-
cated SHARED, namely

1. the first argument of part,
2. the elements of the list at the second argument of binary gsort, and
3. the elements of the lists at the second and the third arguments of ternary gsort

become shared no matter whether the input list from the first argument of binary gsort
is non-shared or shared. However, all these paths are known to have scalar (integer)
values by type analysis subsequently performed by klint v2. On the other hand, the list
skeletons returned by the quicksort program is guaranteed to be non-shared.

2.9 Related Work

Study of the memory management of concurrent logic languages has a long history.
A method that uses a one-bit reference counter called MRB (multiple reference bit) for
each pointer was designed for Flat GHC [1] and adopted in a KL1 implementation on
a Parallel Inference Machine. [5] Roughly speaking, linearity analysis proposed in this
paper tries to compile away MRBs and related operations by analyzing the value of
MRBs statically.

Janus [6] establishes the linearity property by allowing each variable to occur only
twice. Our technique allows both linear and nonlinear variables and distinguishes be-
tween them by static analysis.

Various techniques for the distributed implementation of concurrent logic languages
were proposed, [5] including import and export tables of pointers and weighted export
counting. We are not claiming that all these techniques become unnecessary, but the
management of data structures guaranteed to be non-shared by linearity analysis is
greatly simplified.

36

Kobayashi proposes a type system with linearity information for the m-calculus. [4]
In functional programming, Turner et al. introduce linearity annotation to the type
system. [7] All these pieces of work could be considered the application of ideas with
similar motivations to different computational models. In functional programming,
the difficulty lies in the variety of evaluation rules and higher-order functions, while in
concurrent logic programming, the difficulty lies in the treatment of arbitrarily complex
information flow expressed by logical variables. Note that the mode and the linearity
systems of Moded Flat GHC are essentially type systems in a broad sense.

2.10 Conclusions and Future Work

We have proposed a framework of linearity analysis for the concurrent lbgic language
Moded Flat GHC and studied its fundamental property. Linearity analysis can be used
with mode and type analyses to generate object code closer to that of procedural pro-
grams. Also, it opens up the possibility of writing distributed, embedded, and real-time
software in a very simple concurrent programming language such as Moded Flat GHC
and compiling them into safe and efficient code with systematic static analysis. Our
future plan is to apply concurrent logic languages to the above areas where compilation
into efficient code requires serious physical considerations.

References

[1] Chikayama, T. and Kimura, Y., Multiple Reference Management in Flat GHC.
In Logic Programming: Proc. of the Fourth Int. Conf (ICLP’87), The MIT Press,
1987, pp. 276-293.

[2] Cho, K. and Ueda, K., Diagnosing Non-Well-Moded Concurrent Logic Programs.
In Proc. 1996 Joint Int. Conf. and Symp. on Logic Programming (JICSLP’96),
The MIT Press, 1996, pp. 215-229.

[3] Jones, R. and Lins, R., Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley & Sons, Chichester, England, 1996.

[4] Kobayashi, N., Pierce, B. C. and Turner, D. N., Linearity and the Pi-calculus. In
Proc. 23rd ACM SIGACT-SIGPLAN Symp. on Principles of Programming Lan-
guages (POPL’96), ACM, 1996, pp. 358-371.

[5] Nakajima, K., Inamura, U., Ichiyoshi, N., Rokusawa, K. and Chikayama, T., Dis-
tributed Implementation of KL1 on the Multi-PSI/V2. In Proc. Sizth Int. Conf.
on Logic Programming, The MIT Press, 1989, pp. 436-451.

[6] Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards Distributed
Constraint Programming. In Proc. 1990 North American Conference on Logic

37

Programming, Debray, S. and Hermenegildo, M. (eds.), The MIT Press, 1990,
pp. 431-446.

Turner, D. N., Wadler, P. and Mossin, C., Once Upon a Type. In Proc. Sev-
enth Int. Conf. on Functional Programming Languages and Computer Architecture
(FPCA’95), ACM, 1995, pp. 1-11.

Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-
tation Technique. New Generation Computing, Vol. 13, No. 1 (1994), pp. 3-43.

Ueda, K., Moded Flat GHC for Data-Parallel Programming. In Proc. FGCS’94
Workshop on Parallel Logic Programming, ICOT, Tokyo, 1994, pp. 27-35.

Ueda, K., Experiences with Strong Moding in Concurrent Logic/Constraint Pro-
gramming. In Proc. Int. Workshop on Parallel Symbolic Languages and Systems,
LNCS 1068, Springer, 1996, pp. 134-153.

Ueda, K., klint — Static Analyzer for KL1 Programs. Available from
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-98-E.html, 1998.

38

FIE BEXBOEBAIPSAFUITETE &
FAINE) F 4 BIER

The use of types to deal with access capabilities of program entities is becoming in-
creasingly popular.

In concurrent logic programming, the first attempt was made in Moded Flat GHC
in 1990, which gave polarity structures (modes) to every variable occurrence and every
predicate argument. Strong moding turned out to play fundamental réles in program-
ming, implementation and the in-depth understanding of constraint-based concurrent
computation.

The moding principle guarantees that each variable is written only once and en-
courages capability-conscious programming. Furthermore, it gives less generic modes
to programs that discard or duplicate data, thus providing the view of “data as re-
sources.” A simple linearity system built upon the mode system distinguishes variables
read only once from those read possibly many times, enabling compile-time garbage
collection. Compared to linear types studied in other programming paradigms, the
primary issue in constraint-based concurrency has been to deal with logical variables
and highly non-strict data structures they induce.

In this paper, we put our resource-consciousness one step forward and consider a class
of ‘ecological’ programs which recycle or return all the resources given to them while
allowing concurrent reading of data structures via controlled aliasing. This completely
recyclic subset enforces us to think more about resources, but the resulting programs
enjoy high symmetry which we believe has more than aesthetic implications to our
programming practice in general.

The type system supporting recyclic concurrent programming gives a [—1,+1] ca-
pability to each occurrence of variable and function symbols (constructors), where
positive/negative values mean read/write capabilities, respectively, and fractions mean
non-exclusive read/write paths. The capabilities are intended to be statically checked
or reconstructed so that one can tell the polarity and exclusiveness of each piece of
information handled by concurrent processes. The capability type system refines and
integrates the mode system and the linearity system for Moded Flat GHC. Its arith-
metic formulation contributes to the simplicity.

The execution of a recyclic program proceeds so that every variable has zero-sum
capability and the resources (i.e., constructors weighted by their capabilities) a process
absorbs match the resources it emits. Constructors accessed by a process with an
exclusive read capability can be reused for other purposes.

39

The first half of this paper is devoted to a tutorial introduction to constraint-based
concurrency in the hope that it will encourage cross-fertilization of different concurrency
formalisms.

3.1 Introduction — Constraint-Based Concurrency

The raison d’étre and the challenge of symbolic languages are to construct highly
sophisticated software which would be too complicated or unmanageable if written in
other languages.

Concurrent logic programming was born in early 1980’s from the process interpre-
tation of logic programs [47] and forms one of many interesting subfields addressed by
the logic programming paradigm [45].

The prominent feature of concurrent logic programming is that it exploits the power
of logical, single-assignment variables and data structures — exactly those of first-order
logic — to achieve various forms of communication.

Essentially, a logical variable is a communication channel that can be used for output
at most once (hence single-assignment) and for non-destructive input zero or more
times. The two well-established operations, unification and matching (also called one-
way unification), are used for output and input. Thanks to the single-assignment
property, the set of all unification operations that have been performed determines the
current binding environment of the universe, which is called a (monotonic) store (of
equality constraints) in concurrent constraint programming (CCP) [28] that generalizes
concurrent logic programming. The store records what messages have been sent to what
channels and what channels has been fused together.

In CCP, variable bindings are generalized to constraints, unification is generalized to
the tell of a constraint to the store, and matching is generalized to the ask of a constraint
from the store. The ask operation checks if the current store logically entails certain
information on a variable. ‘

Constraint-based communication embodied by concurrent logic programming lan-
guages has the following characteristics:

1. Asynchronous. In most concurrent logic languages, tell is an independent pro-
cess that does not occur as a prefix of another process as in ask. This form of
tell is sometimes called eventual tell and is a standard mechanism of informa-
tion sending. (We do not discuss the other, prefixed form, atomic tell, in this
paper.) Since eventual tell simply adds a new constraint to the store, the store
can become inconsistent when an attempt is made to equate a variable to two
different values. This can be avoided by using a non-standard type system, called
a mode system [41], that controls the number of write capabilities of each variable
in the system. The advocation of eventual tell apparently motivated Honda and
Tokoro’s asynchronous n-calculus [15].

40

2. Polyadic. Concurrent logic programming incorporated (rather than devised) well-
understood built-in data structuring mechanisms and operations. Messages can
be polyadic at no extra cost on the formalism; it does not bother us to encode
numbers, tuples, lists, and so on, from scratch. The single-assignment property
of logical variables does not allow one to use it for repetitive communication, but
streams — which are just another name of lists in our setting — can readily be
used for representing a sequence of messages incrementally sent from a process
to another.

3. Mobile. A process! (say P) can dynamically create another process (say P') and
a fresh logical variable (say v) with which to communicate with P’. Although
process themselves are not first-class, logical variables are first-class and its occur-
rences (other than the one ‘plugged’ to P’) can be freely passed from P to other
processes using another channel. The logical variable connected to a process acts
as an object identity (or more precisely, channel identity because a process can
respond to more than one channel) and the language construct does not allow a
third process to forge the identity.

When P creates two occurrences of the variable v and sends one of them to
another process (say), v becomes a private channel between P’ and @ that
cannot be monitored by any other process unless P’ or @) passes it to somebody
else. This corresponds to scope extrusion in the m-calculus.

Another form of reconfiguration happens when a process fuses two logical vari-
ables connected to the outside. The fusion makes sense when one of the variables
can be read (input capability) and the other can be written (output capability), in
which case the effect of fusing is implicit delegation of messages. Again, the pro-
cess that fused two logical variables loses access to them unless it retains a copy
of them. As will be discussed later, our type systems have dealt with read/write
capabilities of logical variables and the number of access paths (occurrences) of
each variable. :

Although not as widely recognized as it used to be, Concurrent Prolog [30] de-
signed in early 1980s was the first simple high-level language that featured channel
mobility in the sense of the w-calculus. When the author proposed Guarded Horn
Clauses (GHC) [36] [37] as a simplification of Concurrent Prolog and PARLOG
[8], the principal design constraint was to retain channel mobility and evolving
process structures [32], because GHC was supposed to be the basis of KL1 [39],
a language in which to describe operating systems of the Parallel Inference Ma-
chines as well as various knowledge-based systems.

4. Non-strict. Logical variables provide us with the paradigm of computing with
partial information. Interesting programming idioms including short-circuits, dif-

"We regard a process as an entity that is implemented as a multiset S of goals and communicates
with other processes by generating and observing constraints on variables not local to S.

41

(program) P ::= set of R’s (1)

(program clause) R == A :-| B (2)

(body) B ::= multiset of G’s (3)

(goal) G =T =Ty, | A (4)

(non-unification atom) 4 = p(T1,...,Tn), p# ‘= (5)
(term) T ::= (as in first-order logic) (6)

(goal clause) @ ==:- B (7)

(program clause, alternative) R ::= V(A . B) v 2"
(goal clause, alternative) Q = B,P (7

Fig. 3.1: The simplified syntax of Flat GHC

ference lists and messages with reply boxes, as well as channel mobility, all exploit
the power of partially instantiated data structures.

Some historical remarks would be appropriate here.

Concurrent logic programming was a field of active research throughout the 1980’s,
when a number of concurrent logic languages were proposed and the language con-
structs were tested through a number of implementations and applications [31]. The
synchronization primitive, now known as ask based on logical entailment, was inspired
independently around 1984 by at least three research groups, which suggests the sta-
bility of the idea [32].

Although concurrent logic languages achieved their flexibility with an extremely small
number of language constructs, the fact that they were targeted to programming rather
than reasoning about concurrent systems lead to little cross-fertilization with later
research on mobile processes.

CCP was proposed in late 1980s as a unified theory underlying concurrent logic
languages. It helped high-level understanding of constraint-based concurrency, but the
study of constraint-based communication at a concrete level and the design of type
systems and static analyses call for a fixed constraint system — most typically that of
(concurrent) logic programming known as the Herbrand system — to work with.

3.2 The Essence of Constraint-Based Communication
3.2.1 The Language

To further investigate constraint-based communication, let us consider a concrete
language, a subset of Flat GHC [38] whose syntax is given in Fig. 3.1.

For simplicity, the syntax given in Fig. 3.1 omits guard goals from (2), which cor-
respond to conditions in conditional rewrite rules. We use the traditional rule-based

42

(B;,C, P) — (B}, C", P)
(ByU By, C,P) —s (B] U By, ", P)

({t1=ts},C, P) — (0,C U {t; =ts}, P) (i)

(5 = V(C = th(b=h))>
0 (iii)

and Vg N Vb

({6}, C,{h:-1 B}UP)
— (B,CU{b=h},{h:- |1 B}UP)

Fig. 3.2: The reduction semantics of GHC

syntax rather than the expression-based one because it facilitates our analysis. The
alternative syntax (2') (7’) indicates that a program clause, namely a rewrite rule of
goals, could be regarded as a replicated process that accepts a message A and spawns
B, where the universal closure V means that a variable either occurs in A and will be
connected to the outside or occurs only in B as local channels. In this formulation, the
program is made to reside in a goal clause.

3.2.2 Operational Semantics

The reduction semantics of GHC deals with the rewriting of goal clauses.

A configuration is a triple, (B, C, P), where B is a multiset of goals, C' a multiset
of equations (denoting equality constraints) that represents the store, and P a set of
program clauses. A computation under a program P starts with the initial configuration
(Bo, 0, P), where By is the body of the given goal clause.

We have three rules given in Fig. 3.2. In the rules, F' = G means that G is a logical
consequence of F. Vg denotes the set of all variables occurring in a syntactic entity
F. YVp(F) and JVp(F) are abbreviated to V(F) and 3(F), respectively. £ denotes
the standard syntactic equality theory over finite terms and atomic formulas defined
in Fig. 3.3. The second condition of Fig. 3.3, characterizing the finiteness of terms, is
known as the occur check.

In Fig. 3.2, Rule (i) expresses concurrent reduction of a multiset of goals. Rule (ii)
says that a unification goal simply publishes (or posts) a constraint to the current
store. Rule (iii) deals with the reduction of a non-unification goal b to B using a
clause h :- | B, which is enabled when the publication of b=h will not constrain the
variables in b. This means that the head unification is effectively restricted to matching.
The second side condition guarantees that the guarded clause has been renamed using
fresh variables. An immediate consequence of Rules (i)—(iii) is that the store grows
monotonically and the reduction of b using a clause h :~ | B remains enabled once it
becomes enabled.

43

L V(=(f(X1, .-, Xm)=g(Y1,...,Y,))), for all pairs f, g of distinct constructors (in-
cluding constants)

2. ¥(=(t=X)), for each term ¢ other than and containing X

3. V(X=X)

4. V(f(Xy, .o Xm)=f(Y1, ..., Y) = AL (X =Y;)), for each m-ary constructor f
5. VINZ (Zi=Ys) = f(Xy, ..., Xm)=f(Y1,...,Ym)), for each m-ary constructor f
6. V(X=Y = Y=X)

7. VX=YAY=Z = X=2)

Fig. 3.3: Clark’s equality theory &, in clausal form

Sometimes it’s more convenient to treat reduction in a traditional way as rewriting of
goal clauses. The goal clause corresponding to a configuration (B, C, P) is: - Bf, where
6 is the most general unifier (mgu) of the set C of constraints. This substitution-based
formulation is closer to actual implementation, but an advantage of the constraint-
based formulation is that it can represent inconsistent stores, while mgu’s can represent
consistent stores only.

Yet another formulation may omit the second component, C, of a configuration
together with Rule (ii) that simply moves an unguarded unification goal to the separate
store. In this case, the current store is understood to comprise all the unguarded
unification goals in B. However, we think it makes sense to distiﬁguish between the
three entities, namely definitions (code), processes, and the store. |

3.2.3 Relation to Name-Based Concurrency

How can the constraint-based concurrency defined above relates to name-based con-
currency?

First of all, predicate names can be thought of as global channel names if we regard
the reduction of a non-unification goal (predicate name followed by arguments) as
message sending to predicate definition. However, we don’t regard this as a crucially
important observation. We would rather forget this correspondence and focus on other
symbols, namely variables and constructors.

Variables are local names that can be used as communication channels. Instead of
sending a message along a channel, the the message is written to the channel itself
and the receiver can asynchronously read the channel’s value. For instance, let S
be shared by processes P and @ (but nobody else) and suppose P sends a message
S=[read(X) |S’]. The message sends two subchannels, one a reply box X for the request

44

read, and the other a continuation for subsequent communication. Then the goal in
@ that owns S, say q(8), can read the message using a clause head q([read(A) |B]),
identifying A with X and B with S’ at the same time.? Alternatively, the identification
of variables can be dispensed with by appropriately choosing an o-converted variant of
the clause. :

There is rather small difference between message passing of the asynchronous -
calculus and message passing by unification, as long as only one process holds a write ca-
pability and use it once. These conditions can be statically checked in well-moded con-
current logic programs [41] and in the 7-calculus with a linear type system [19]. When
two processes communicate repeatedly, constraint-based concurrency uses streams be-
cause one fresh logical variable must be prepared for each message passing, while in the
linear 7-calculus the same channel could be recycled as suggested in [19]. When two
client processes communicate with a single server in constraint-based concurrency, an
arbitration process should be explicitly created. A stream merger is a typical arbiter
for repetitive multi-client communication:

merge([],Y¥s,Zs) :~ | Zs=Ys.
merge(Xs,[],Zs) :- | Zs=Xs.
merge([AlXs],Ys,Zs0) :~ | Zs0=[AlZs], merge(Xs,Ys,Zs).
merge(Xs, [AlYs],Zs0) :~ | Zs0=[Al|Zs], merge(Xs,Ys,Zs).

In contrast, in name-based concurrency (without linearity), arbitration is built in the
communication rule

a(y)-Q | @b — Q{b/y}

which chooses one of available outputs (forming a multiset of messages) on the channel
a.

The difference in the semantics of input is much larger between the two formalisms.
While ask is an non-destructive input, input in name-based concurrency destructively
consumes a message, which is one of the sources of nondeterminism in the absence of
choice operators. In constraint-based concurrency, non-destructiveness of ask is used
to model one-way multicasting or data sharing naturally. At the same time, by using
a linearity system, we can guarantee that only one process holds a read capability of a
logical variable [46], in which case ask can destroy a message it has received, as will be
discussed in detail in this paper.

One feature of constraint-based concurrency included into name-based concurrency
only recently by the Fusion calculus [48] is that two channels can be fused into a single
channel.

%In the syntax advocated by CCP, one should first ask 34,B(q(S) =q([read(4) IB1)) (or equivalently,
34,B(S=[read(A) IB])) first and then tell q(S) =q([read(4)|BI).

45

3.2.4 Locality in Global Store

The notion of shared, global store provided by CCP must be understood with care.
Unlike conventional shared-memory multiprocessing, constraint store of CCP is highly
structured and localized. All channels in constraint-based concurrency are created as
local variables most of which are shared by two or a small community of processes, and
a process can access them only when they are explicitly passed as (part of) messages
or by fusing.

The only names understood globally are

1. predicate symbols used as the names of recursive programs, and

2. function symbols (constructors) for composing messages, streams, and data struc-
tures, and so on.

Although predicate symbols could be considered as channels, they are channels to
classes rather than to objects. Constructors are best considered as non-channel names.
They have various roles as above, but cannot be used for sending messages through
them. They can be examined by matching (ask) but cannot be equated with other
constructors under strong moding.

3.3 I/0 Mode Analysis
3.3.1 Motivation

By early 1990’s, hundreds of thousands of lines of GHC/KL1 code were written inside
and outside the Fifth Generation Computer Project [32]. The applications include an
operating system for the Parallel Inference Machine (PIMOS) [6], a parallel theorem
prover (MGTP) that discovered a new fact in finite algebra [12]. genetic information
processing, and so on.

People found the communication and synchronization mechanisms of GHC/KL1 very
natural. Bugs due to concurrency were rather infrequent® and people learned to model
their problems in an object-based manner using concurrent processes and streams. At
the same time, writing efficient parallel programs turned out to be a separate and much
harder issue than writing correct concurrent programs.

By late 1980’s, we had found that logical variables in concurrent logic languages
were normally used for cooperative rather than competitive communication. Because
the language and the model based on eventual tell provided no mechanism to cope with
the inconsistency of a store (except for exception handers of KL1) and an inconsistent
" store allows any constraint to be read out, it was the responsibility of the programmers
to keep the store consistent. Although shared logical variables were sometimes used

3Most bugs were due to higher-level design problems that often arose in, for example, programs
dealing with circular process structures concurrently.

46

for n-to-n signalling, in which two or more processes could write the same value to the
same variable, for most applications it seemed desirable to provide syntactic control of
interference so that the consistency of the store could be guaranteed statically. Obvi-
ously, a store remains consistent if only one process is allowed to have a write capability
of each variable, as long as-we ignore the occur check condition (Sect. 3.2.2).

The mode system* of Moded Flat GHC [41][43] was designed to establish this prop-
erty while retaining the flexibility of constraint-based communication as much as possi-
ble. Furthermore, we can benefit very much from strong moding, as we do from strong
typing in many other languages:

1. It helps programmers understand their programs better.

2. It detects a certain kind of program errors at compile-time. In fact, the Kima
system we have developed [2][3] goes two steps forward: it locates, and then
automatically corrects, simple program errors using constraint-based mode and
type analyses. The technique used in Kima is very general and could be deployed
in other typed languages as well.

3. It establishes some fundamental properties statically (Sect. 3.3.5):

(a) well-moded programs do not collapse the store.

(b) all variables are guaranteed to become ground terms upon termination.
4. It provides basic information for program optimization such as

(a) elimination of various runtime checks,
(b) (much) simpler distributed unification, and

(c) message-oriented implementation [41]][40].

3.3.2 The Mode System

The purpose of our mode system is to assign polarity structures (modes) to every
predicate argument and (accordingly) every variable occurrence in a configuration, so
that each part of data structures will be determined cooperatively, namely by ezactly
one process that owned a write capability. If more than one process owned a write
capability to determine some part a structure, the communication would be competitive
rather than cooperative. If no process owned a write capability, the communication
would be neither cooperative or competitive, because the readers would never get a
value.

Since variables may be bound to complex data structures in the course of computation
whose exact shapes are not known beforehand, a polarity structure reconstructed by

*Modes have sometimes been called directional types. In any case modes are (non-standard) types
that deal with read/write capabilities.

47

the mode system should tell the polarity structures of all possible data structures the
program may create and read. To this end, a mode is defined as a function from the
set of paths specifying positions in data structures occurring in goals, denoted Patom,
to the set {in, out }. Paths here are strings of (symbol, argument-position) pairs in order
to be able to specify positions in data structures that are yet to be formed.

Formally, the sets of paths for specifying positions in terms and atomic formulas are
defined, respectively, using disjoint union as:

PTerm:(Z Nf)*) PAtomz(Z Np>XPTeT~m s
fE€Fun pEPred

where Fun and Pred are the sets of constructors and predicate symbols, respectively,
and Ny and NV, are the sets of positive integers up to and including the arities of f and
p, respectively.

3.3.3 Mode Analysis

Mode analysis tries to find a mode m : Pagom — {in, out } under which every piece of
communication will be performed cooperatively. Such a mode is called a well-moding.
A well-moding is computed by constraint solving. Constructors in a program/goal
clause will impose constraints on the possible polarities of the paths at which they
occur. Variable symbols may constrain the polarities not only of the paths at which
they occur but of any positions below those paths. The set of all these mode constraints
syntactically imposed by the symbols or the symbol occurrences in a program does not
necessarily define a unique mode because the constraints are usually not strong enough
to define one. Instead it defines a ‘principal’ mode that can best be expressed as a
mode graph, as we will see in Section 3.3.6.

Mode constraints imposed by a clause h :- | B, where B are multisets of atomic
formulae, are summarized in Fig. 3.4. Here, Var denotes the set of variable symbols,
and @(p) denotes a symbol occurring at p in an atomic formula a. When p does not lead
to a symbol in a, @(p) returns L. A submode of m at p, denoted m /p, is a function (from
Presm to {in, out}) such that (m/p)(¢g) = m(pg). IN and OUT are constant submodes
that always return in or out, respectively. An overline, “«—7 inverts the polarity of a
mode, a submode, or a mode value.

For goal clauses, Rules (BU), (BF) and (BV) are applicable.

Note that Rule (BV) ignores the second and the subsequent occurrences of v in h.
The occurrences of v that are not ignored are called channel occurrences. Note also
that s can depend on g in the definition of R. Intuitively, Rule (BV) means that each
constructor occurring in a possible instance of v will be determined by exactly one of
the channel occurrences of v.

Unification body goals, dealt with by Rule (BU), are polymorphic in the sense that
different goals are allowed to have different modes. To deal with polymorphism, we

48

(HF) Vp € Pasom (h{p) € Fun = m(p) = in)
(if the symbol at p in A is a constructor, m(p) = in)

(HV) Vp € Patom(h(p) € Var A 3p'#p(h(p) = h(p))) = m/p = IN)
(if the symbol at p in h is a variable occurring elsewhere in h, then m/p = IN)

(BU) Vk > 0Vt ta € Term((t1 = t2) € B = m/(=, 1) = m/(=¢, 2))
(the two arguments of a unification body goal have complementary submodes)

(BF) Vp € PatomVa € B(a(p) € Fun = m(p) = in)
(if the symbol at p in a body goal is a constructor, m(p) = in)

(BV) Let ve Var occur n (> 1) times inh and B at p1, . . ., pn, of which the occurrences
in h are at p1,...,pr (k> 0). Then

{R({%v“wm/pn}% k=0;
R({m/plvm/pk—{-la o 7m/pn}>: k> O;

where R is a ‘cooperativeness’ relation:

R(S) ¥ Vg € Prerm 3s € S(s(q) = out A Vs’ € S\{s} (s'(q) = in))

Fig. 3.4: Mode constraints imposed by a clause h:~| B

give each unification body goal a unique number. Polymorphism can be incorporated
to other predicates as well [43], but we do not discuss it here.

3.3.4 Moding Principles

What are the principles behind these moding rules?

In concurrent logic programming, a process implemented by a multiset of goals can be
considered an information processing device with inlets and outlets of constraints that
we call terminals. A variable is a one-to-n (n > 0) communication channel connecting
its occurrences, and each occurrence of a variable is considered to be plugged into one
of the terminals of a goal.

We say that a variable is linear when it has exactly two occurrences in a goal clause.
Similarly, a variable in a program clause is said to be linear when it has exactly two
channel occurrences in the clause.

A variable occurring both in the head and in the body of a program clause is con-
sidered a channel that connects a goal (which the head matches) and its subgoals. A
constructor is considered an unconnected plug that acts as the source or the absorber
of atomic information, depending on whether it occurs in the body or the head. While
channels and terminals of electric devices usually have array structures, those in our

49

setting have nested structures. That is, a variable that connects the terminals at pi,

.., P, also connects the terminals at p1q, ..., ppg, for all ¢ € Preqy. Linear variables
are used as cables for one-to-one communication, while nonlinear variables are used as
hubs for one-to-many communication.

A terminal of a goal always has its counterpart. The counterpart of a terminal at p
on the caller side of a non-unification goal is the one at the same path on the callee
side, and the counterpart of a terminal at (=g, 1)¢ in the first argument of a unification
goal is the one at (=, 2)¢g in the second argument. Reduction of a goal is considered the
removal of the pairs of corresponding terminals whose connection has been established.

The mode constraints are concerned with the direction of information flow (1) in
channels and (2) at terminals. The two underlying principles are:

1. When a channel connects n terminals of which at most one is in the head, exactly
one of the terminals is the outlet of information and the others are inlets.

2. Of the two corresponding terminals of a goal, exactly one is the outlet of infor-
mation and the other is an inlet. .

Rule (BV) comes from Principle 1. An input (output) occurrence of a variable in the
head of a clause is considered an outlet (inlet) of information from inside the clause,
respectively, and this is why we invert the mode of the clause head in Rule (BV).
Rule (BV) takes into account only one of the occurrences of v in the head. Multiple
occurrences of the same variable in the head are for equality checking before reduction,
and the only thing that matters after reduction is whether the variable occurs also in
the body and conveys information to the body goals.

Rules (HF) and (HV) come from Principle 2. When some clause may examine the
value of the path p in a non-unification goal, m(p) should be constrained to in because
the examination is done at the outlet of information on the callee side of a goal. The
strong constraint imposed by Rule (HV) is due to the semantics of Flat GHC: when a
variable occurs twice or more in a clause head, these occurrences must receive identical
terms from the caller.

Rule (BU) is exactly the application of Principle 2 to unification body goals. Any
value fed through some path (=g, i)q in one of its arguments will come out through the
corresponding path (=, 3 — i)q in the other argument.

Rule (BF) also comes from Principle 2. A non-variable symbol on the caller side of a
goal must appear only at the inlet of information, because the information will go out
from the corresponding outlet.

The relation R enjoys the following properties:

R({s}) & s=0UT (3.1)
R({Sl, 82}) & 81 = 89 (32)
RUINIUS) o R(S) (3.3)

50

R{OUT}IUS) & Vs eS(s =IN) (3.4)
R{{s,s}US) & s=INAR(S) (3.5)
R({3,5}US) & Vs eS(s=IN) (3.6)

R{Z}USIH) AR({s}USs) = R(S51USs) (3.7

R(Ui<icnisi}) = R(Uici<nlsi/a})s € Prem (3.8)

Proofs are all straightforward. Property (3.7) is reminiscent of Robinson’s resolution
principle.

Properties (3.1) and (3.2) say that Rule (BV) becomes much simpler when the vari-
able v has at most two channel occurrences. When it has exactly two channel occur-
rences at p; and py. Rule (BV) is equivalent to m/p; = m/py or m/p; = m/py, de-
pending on whether one of the occurrences is in the head or the both occur in the body.
When v has only one channel occurrence at p, Rule (BV) is equivalent to m/p = IN or
m/p = OUT, depending on whether the occurrence is in the head or the body.

3.3.5 Properties of Well-Moded Programs

The three important properties of well-moding are as follows:

1. Let m be a well-moding of a clause R, and let ¢ =4 t2 be a unification (body)
goal in R. Then there exists an i such that (i) m((=¢,?)) = out and (ii) ¢; is a
variable.

This means a unification body goal is effectively assignment to an variable with
a write capability.

2. (Subject Reduction) Let m be a well-moding of a program P and a goal clause Q.
Suppose Q is reduced by one step into a goal clause @’ (in the substitution-based
formulation (Sect. 3.2.2)), where the reduced goal g € @ is not a unification goal
that unifies a variable with itself or a term containing the variable. Then m is a
well-moding of P and Q' as well.

As a corollary, well-moded programs keep store consistent as long as the reduc-
tions obey the above condition on the reduced goal, which is called the extended
occur-check condition.

3. (Groundness) Let m be a well-moding of a program P and a goal clause Q.
Assume @ has been reduced to an empty multiset of goals under the extended
occur-check condition. Then, in that execution, a unification goal of the form
v=kt such that m((=x, 1)) = out, or a unification goal of the form ¢ =; v such that
m((=k,2)) = out, must have been executed, for any variable v occurring in Q.

As a corollary, the product of all substitutions generated by unification body goals
maps all the variables in @ to ground (variable-free) terms.

51

Fig. 3.5: Mode graph of the merge program

3.3.6 Mode Graphs and Principal Modes

It turns out that most of the mode constraints are either of the six forms: (i) m(p) =
in, (ii) m(p) = out, (i) m/p = IN, (iv) m/p = OUT, (v) m/py = m/ps, or (vi)
m/p1 = m/py. We call (i)~(iv) unary constraints and (v)—(vi) binary constraints.

A set of binary and unary mode constraints can be represented as a feature graph
(feature structures with cycles), called a mode graph, in which

1. paths represent paths in Paiom,
2. nodes may have mode values determined by unary constraints,

3. arcs may have “negative signs” that invert the interpretation of the mode values
beyond those arcs, and

4. binary constraints are represented by the sharing of nodes.

Figure 3.5 is the mode graph of the merge program. An arc of a mode graph repre-
sents the pair of a predicate/constructor (abbreviated to its initial in the figures) and
an argument position. A dot “” stands for the list constructor. The pair exactly
corresponds to a feature of a feature graph. A sequence of features forms a path both
in the sense of our mode system and in the graph-theoretic sense.

A node is possibly labeled with a mode value (in shown as “|”, or out shown as “1”)
to which any paths p;, po, ... terminating with that node are constrained, or with a
constant submode (IN shown as “|” with a grounding sign (as in Fig. 3.7), or OUT)
to which the submodes m/p;, m/ps, ... are constrained.

An arc is either a negative arc (bulleted in the figures) or a positive arc. When a
path passes an odd number of negative arcs, that path is said to be inverted, and the
mode value of the path is understood to be inverted. Thus the number of bulleted arcs
on a path determines the polarity of the path.

A binary constraint of the form m/p; = m/ps or m/p; = W is represented by
a shared node with two (or more) incoming paths with possibly different polarities.

52

<p,1>| <p,2>

Fig. 3.6: Mode graph of the unify program

When the polarities of the two incoming paths are different, the shared node stands for
complementary submodes; otherwise the node stands for identical submodes.

Figure 3.5 has a node, under the arc labeled (., 1), that expresses no constraints at
all. It was created to express binary constraints, but all its parent nodes were later
merged into a single node by other constraints.

All these ideas have been implemented in the mode analyzer for KL1 program, klint
v2 [44], which can output a text version of the mode graph as in Fig. 3.5.

As another example, consider a program that simply unifies its arguments:

p(X:Y) i ‘ X = Y.

The program forms a mode graph shown in Fig. 3.6. This graph can be viewed as the
principal mode of the predicate p, which represents many possible particular modes
satisfying the constraint m/(p,1) = m/(p, 2). In general, the principal mode of a well-
moded program, represented as a mode graph, is uniquely determined, as long as all
“the mode constraints imposed by the program are unary or binary.

Constraints imposed by the rule (BV) may be non-binary. Non-binary constraints
are imposed by nonlinear variables, and cannot be represented as mode graphs by
themselves. However, by delaying them, most of them are reduced to unary/binary
ones by other constraints. In this case they can be represented in mode graphs, and
the programs that imposed them have unique principal modes (as long as they are
well-moded). Theoretically, some non-binary constraints may remain unreduced, whose
satisfiability must be checked eventually.

When some constraints remain non-binary after solving all unary or binary con-
straints, klint v2 assumes that nonlinear variables involved are used for one-way multi-
casting rather than bidirectional communication. Thus, if a nonlinear variable occurs
at p and m(p) is known to be in or out, klint v2 imposes a stronger constraint m/p = IN
or m/p = QUT, respectively. This means that a mode graph computed by klint v2 is
not always ‘principal’, but the strengthening of constraints reduces most non-binary
constraints to unary ones. Qur observation is that virtually all nonlinear variables
have been used for one-way multicasting and the strengthening causes no problem in
practice.

The union (i.e., conjunction) of two sets of constraints can be computed efficiently
as unification over feature graphs. For instance, adding a new constraint m/p; = m/ps
causes the subgraph rooted at p; and the subgraph rooted at py to be unified. A good

53

gsort ([1, Ys0,¥s) :- | Ys=Ys0.
gsort ([X|Xs],Y¥s0,¥s3) :- |

part(X,Xs,S,L), gsort(S,Y¥sO0, [X1Ys2]), gsort(L,¥s2,Ys3).
part(_, (], s, L) :- 1| s=[1, L=[].
part (A, [X1Xs],S0,L) :- A>=X | S0=[XI|S], part(A,Xs,S,L).
part (A, [X|Xs],S, LO) :- A< X | LO=[XIL], part(A,Xs,S,L).

<q,1>} <q,2>| <q,3> <p,1>| <p,2>| <p,3>
<p,4>

Fig. 3.7: A quicksort program and its mode graph

news is that an efficient unification algorithm for feature graphs has been established
1.

Figure 3.7 shows the mode graph of a quicksort program using difference lists. The
second and the third clause of part checks the principal constructor of A and X using
guard goals, so the moding rule of variables occurring in guard goals (not stated in this
paper) constrains m({part, 1)) and m({part,2)(.,1)) to in. The head and the tail of
a difference list, namely the second and the third arguments of gsort, are constrained
to have complementary submodes.

3.4 Linearity Analysis

3.4.1 Motivation and Observation

The mode system guarantees the uniqueness of write capability of each variable in
a runtime configuration. Furthermore, although it does not impose any constraint on
the number of read capabilities (occurrences), it imposes less generic, stronger mode
constraints on programs that may discard or duplicate data. The modes of the paths
where singleton variables (one-to-zero communication channels) may occur are con-
strained to IN or OUT, and paths of nonlinear variables (one-to-many communication
channels) may very well be constrained to IN or OUT. Thus the mode system effec-

54

tively prefers programs that do not discard or duplicate data by giving them weaker
mode constraints, providing the view of “data as resources” to some extent.

Our experiences with Prolog and concurrent logic programming show that surpris-
ingly many variables in Prolog and concurrent logic programs are linear. For instance,
all the variables in the merge program (Fig. 3.5) are linear, and all but one of the vari-
ables in gsort (Fig. 3.7) are linear. This indicates that the majority of communication
is one-to-one and deserves special attention.

As a non-toy example, we examined the mode constraint solver of klint v2, which
comprised 190 KL1 clauses [43]. Those clauses imposed 1392 constraints by Rule (BV),
one for each variable in the program, of which more than 90% were of the form m/p; =
m/pe (1074) or m/p; = m/py (183). Thus we can say that the clauses are highly
linear. Furthermore, all of the 42 non-binary constraints were reduced to unary or
binary constraints using other unary or binary constraints. Actually they were reduced
to 6 constraints of the form m/p; = m—/p; and 72 constraints of the form m/p = IN.
This means that nonlinear variables were all used under simple, one-way comrunication
protocols.

3.4.2 The Linearity System

The purpose of linearity analysis [46] is to statically analyze exactly where nonlin-
ear variables and shared data structures may occur — in which predicates, in which
arguments, and in which part of the data structures carried by those arguments. This
complements mode analysis in the sense that it is concerned with the number of read
capabilities.

To distinguish between non-shared and shared data structures in a reduction seman-
tics without the notion of pointers, we consider giving a linearity annotation 1 or w to
every occurrence of a constructor f appearing in (initial or reduced) goal clauses and
body goals in program clauses.® The annotations appear as f! or f* in the theoretical
framework, though the purpose of linearity analysis is to reason about the annota-
tions and compile them away so that the program can be execuited without having to
maintain linearity annotations at run time.

Intuitively, the principal constructor of a structure possibly referenced by more than
one pointer must have the annotation w, while a structure always pointed to by only
one pointer in its lifetime can have the annotation 1. Another view of the annotation
is that it models a one-bit reference counter that is not decremented once it reaches w.

The annotations must observe the following closure condition: If the principal con-
structor of a term has the annotation w, all constructors occurring in the term must
have the annotation w. In contrast, a term with the principal constructor annotated
as 1 can contain a constructor with either annotation, which means that a subterm of
a non-shared term may possibly be shared.

5The notation is after related work [19, 35] on different computational models.

55

Given linearity annotations, the operational semantics is extended to handle them
so that they may remain consistent with the above intuitive meaning.

1. The annotations of constructors in program clauses and initial goal clauses are
given according to how the structures they represent are implemented. For in-
stance, consider the following goal clause:

:- p([1,2,3,4,51,%X), q([1,2,3,4,51,X).

If the implementation chooses to create a single instance of the list [1,2,3,4,5]
and let the two goals share them, the constructors (there are 11 of them including
[1) must be given w. If two instances of the list are created and given to p and
q, either annotation is compatible with the implementation.

2. Suppose a substitution § = {v; « t1,...,v, < t,} is applied upon one-step
reduction from Q to Q’.

(a) When v; is nonlinear, the substitution instantiates more than one occurrence
of v; to t; and makes t; shared. Accordingly, all subterms of ¢; become shared
as well. So, prior to rewriting the occurrences of v; by t¢;, we change all the
annotations of the constructors constituting ¢; to w.

(b) When v; is linear, 6 does not increase the number of references to ;. So we
rewrite v; by t; without changing the annotations in ;.

As in mode analysis, the linearity of a (well-moded) program can be charac-
terized using a linearity function, a mapping from Py, to the binary codomain
{nonshared, shared }, which satisfies the closure condition

VD € PatomVq € Prerm (A(p) = shared = A(pq) = shared).

The purpose of linearity analysis is to reconstruct a linearity function (say A) that
satisfies all linearity constraints imposed by each program clause and a goal clause : - B,
which are shown in Fig. 3.8. The klint v2 system reconstructs linearity as well as mode
information.

As expected, the linearity system enjoys the subject reduction theorem:

e Suppose) satisfies the linearity constraints of a program P and a goal clause),
and Q is reduced in one step to @’ under the extended occur-check condition.
Then X satisfies the linearity constraints of Q' as well.

An immediate consequence of the subject reduction theorem is that a constructor
with w cannot appear at p such that A(p) = nonshared. The (sole) reader of the data
structure at a nonshared path can safely discard the top-level structure after accessing
its elements. One feature of our linearity system is that it can appropriately handle

56

(BF,) If a function symbol f“ occurs at the path p in B, then A(p) = shared.

(LVy) If a linear variable occurs both at p; and ps, then
Vq € Prerm(m(p1q) = in A A(p1q) = shared = X\(p2q) = shared)
(if py is a head path);
Vq € Preym(m(p1q) = out A A(p1q) = shared = \(paq) = shared)
(if p; is a body path).

(NV,) If a nonlinear variable occurs at p, then
Vq € Prerm(m(pq) = out = A(pq) = shared) (if p is a head path);
Yq € Prerm(m(pq) = in = A(pq) = shared) (if p is a body path).

(BU,) For a unification body goal =¢, Vg € Preym(A({=k, 1)q) = A({(=k, 2)q)).

Fig. 3.8: Linearity constraints imposed by a clause h:~ | B

data structures whose sharing properties change (from nonshared to shared) in their
lifetime, allowing update-in-place of not yet shared data structures.

There is one subtle point in this optimization. The optimization is completely safe
for built-in data types such as numeric or character arrays that allow only instantiated
data to be stored. However, when a structure is implemented so that its field may itself
represent an uninstantiated logical variable, the structure cannot be recycled until
the variable is instantiated (through an internal pointer to the variable) and read.
Most implementations of Prolog and concurrent logic languages (including KLIC [7])
represent structures this way for efficiency reasons, in which case local reuse requires
strictness analysis, namely the analysis of instantiation states of variables, in addition
to linearity analysis. The implementation of KL1 on the Parallel Inference Machine
disallowed internal pointers to feature local reuse based on the 1-bit reference counting
technique [5].

3.5 From Linearity to Strict Linearity

3.5.1 Polarizing Constructors

We already saw that most if not all variables in concurrent logic languages are linear
variables. To start another observation, consider the following insertion sort program:

sort([], S) :- | s=[].
sort ([XILO],S) :- | sort(L0,S0), insert(X,S0,S).
insert (X, [], R) :- | R=[X].

insert(X,[YIL], R) :- X=<Y | R=[X,Y|L].
insert(X,[YILO],R) :- X>Y | R=[Y|L], insert(X,LO,L).

o7

Here again, all the variables are linear (we do not count the occurrences in guard goals
when considering linearity). However, an even more striking fact is that, by slight
modification, all constructors (including constants) can be made to occur exactly twice

as well:
sort([], S) :- | s=[].
sort ([X]LO],S) :- | sort(l0,S0), insert([X[80],8).
insert ([X], R) :- | R=[X].

insert ([X,YIL], R) :- X=<Y | R=[X,YI|L].
insert ([X,Y|ILO],R) :- X>Y | R=[YIL], insert([XI|LO],L).

This suggests that the notion of linearity could be extended to cover constructors as
well. We call it strict linearity. A linear variable is a dipole with two occurrences with
opposite polarities. Likewise, a linear constructor is a dipole with two occurrences with
opposite polarities, one in the head and the other in the body of a clause. The two
occurrences of a linear constructor can be regarded as two polarized instances of the
same constructor. ,

If all the constructors are linear in program clauses as in the second version of sort,
all deallocated cells can be reused locally to allocate new cells without accessing a non-
local free list. That is, as long as the input list is not shared, the program can construct
the final result by reorganizing input cells and without generating any garbage cells or
allocating new cells from non-local storage.

3.5.2 Strict Linearity

We say that a program clause is strictly linear if all the variables have exactly two
channel occurrences in the clause and all the constructors have exactly two occurrences,
one in the head and the other in the body.

The above definition does not require that predicate symbols occur exactly twice. If
this is enforced, all body goals can inherit its goal record (that records the argument of
goals) from the parent and the program can run with a fixed space, but we must have a
means to terminate tail recursion, as will be discussed in Sect. 3.5.3. Although strictly
linear programs still require allocation and deallocation of goal records, goal records
are inherently non-shared and much more manageable than heap-allocated data. So
strict linearity is a significant step toward resource-conscious programming.

Let me give another example.

append([1, Y,Z2) :- | Z=Y.
append ([A|X],Y,20) :- | Z0=[A|Z], append(X,Y,Z).

The base case receives an empty list but does not use it. A short value such as []
could be regarded as a zero-resource value, but we prefer to consider n-ary constructors
to convey n + 1 units in general, in which case the program recovers strict linearity
using an extra argument:

58

append([], Y,z, U) :- | Z=Y, U=[].
append ([AlX],Y,Z0,U) :- | Z0=[A|Z], append(X,Y,Z,U).

Note that the first version of append can be thought of as a slice of the second version.

3.5.3 Void: The Zero-Capability Symbol

All the examples above are transformational processes. It is much less clear how one
can program reactive, server-type processes that respond to streams of requests in a
strictly linear setting. Consider the following stack server:

stack([], D) :- | true.
stack([push(X) |S],D) :- | stack(S,[XI|D]).
stack({pop(X)IS], [YID]) :- | X=Y, stack(S,D).

One way to recover the strict linearity of this program is:

stack([]1(2), D)
stack([push([X|*],Y)|8],D) :
stack([pop(X,2) 18], [YIDD)

| Z=[1(D).
| Y=[push(*,*)|*], stack(S, [XI|D]).
| X=[YI*], Z=[pop(*,*)|*], stack(S,D).

i

Note that an empty list, which can be regarded as an “end-of-transaction” message
to a process, has been changed to a unary constructor conveying a reply box, through
which the current “deposit” will be returned. Upon receiving a message, the server
immediately returns the resource used by the client to send the message. In a physical
mail metaphor, cons cells can be compared to envelopes and push and pop messages
can be compared to cover letters, which real-world servers often fail to find a nice way
of recycling.

Observe that we need to extend the language with a special symbol, *, to indicate
void positions of structures. A void position will be given zero capability so that no
read or write to the position will take place.

What is the resource aspect of variable occurrences and the void symbol? We as-
sume that each variable occurrence uses one unit and one void symbol uses one unit.
Furthermore, we assume that a non-variable term is always pointed to from a variable
occurrence and an argument of a non-variable term or a goal always points to a vari-
able occurrence. This canonical representation is not always space-optimal, but makes
resource counting simple and uniform.

It is not difficult to see that the strictly linear versions of append and stack do not
allocate or deallocate resources for variable occurrences and voids during tail-recursive
iteration.

An interesting aspect of the wvoid construct is that it could be used to recover the
linearity of predicate symbols by allowing multi-head clauses as in Constraint Handling
Rules [11]. For instance, sort in Sect. 3.5.1 could be rewritten as

59

sort ([], S) :- I 8=[], sort(*.x).
sort ([X]L0],8), insert(*,*) :—- | sort(L0,S0), imsert([X|S0],8).

where the goals with void arguments could be considered as free, inactive goals wait-
ing for habitants. The first clause makes the current goal inactive, while the sec-
ond clause explicitly says that it requires one free insert goal for the reduction of
sort ([X|L0],S). However, in this paper we assume that these free goals are implicit.

Some readers will enjoy the symmetry of strictly linear programs, while others may
find it cumbersome and want compilers to reconstruct strict linear versions of their
programs automatically. In any case, strictly linear programs are completely recyclic
and are a step towards small-footprint symbolic computation with highly predictable
behavior.

One natural question is how to write programs whose output size is essentially larger
than the input size. An obvious solution is to require the initial process to pass a
necessary number of cells obtained from the runtime library. This will work well as
long as the output size is predictable. Some programs may have the output size that
is essentially the same as the input size but may require more resource to represent
intermediate results. We have two solutions to this. One is to let the initial process
provide all necessary resource. The other is to require that the input size and the
output size be balanced for each process spawned during computation, but allow a
subprocess to use (and then return) more resource than that received from the parent
process. The notion of strict linearity has to be relaxed somewhat to enable the latter
alternative.

3.5.4 Constant-Time Property of Strictly Linear Programs

The cost of the primitive operations of strictly linear concurrent logic programs are
highly predictable despite their non-strict data structures.
The primitive operations of concurrent logic programs are:

1. spawning of new non-unification goals (including tail-recursive ones),
2. termination of a non-unification goal (upon reduction with a base-case clause),
3. ask or term matching, which may involve

(a) synchronization, namely suspension and resumption of the process, and

(b) pointer dereferencing, and

4. tell, namely execution of a unification body goal, which may involve pointer deref-
erencing.

On a single-processor environment, spawning and termination of a goal involves
(de)allocation of a fixed-size goal record and manipulation of a goal queue, which can
both be regarded as constant-time operations.

60

Synchronization involves the hooking and unhooking of goals on an uninstantiated
variable, but in a linear setting, the number of goals hooked on each variable is at most
one.

The cost of dereferencing reflects the length of the chain of pointers formed by uni-
fication. Due to the flexibility logical variables bring in the way of data structure
formation, even in sequential Prolog it is possible to create an arbitrarily long chain of
pointers between variables.

In a linear setting, however, every uninstantiated variable has exactly two occur-
rences. We can represent it using two cells that form a size-two cycle by pointing to
each other. Then the unification of two linear variables, say v; and vg, which consumes
one v; and one vy by the unification goal itself, can be implemented by letting the other
occurrence of v; and the other occurrence of vo point to each other. This keeps the
size-two property of uninstantiated linear variables unchanged. The writing to a linear
variable v, which consumes one occurrence of v, dereferences the pointer to reach the
other occurrence of v and instantiate it. The reader of v dereferences it exactly once
to access its value.

3.6 Allowing Concurrent Access within Strict Linearity

Strict linearity can be checked by slightly extending the mode and linearity systems
described earlier. However, rather than doing so, we consider extending the frame-
work to allow concurrent access to shared resource. There are two reasonable ways of
manipulating resource such as large arrays concurrently.

One is to give different processes exclusive (i.e., non-shared) read/write capabilities
to different parts of a data structure. This is easily achieved by (i) splitting a non-
shared structure, (ii) letting each process work on its own fragment and return results
by update-in-place, and (iii) joining the results into one. For instance, parallel quicksort
of an array has been implemented this way using optimized versions of KLIC’s vectors
[25]. Concurrent manipulation of this type fits nicely within the present framework of
mode and linearity systems because no part of an array becomes shared.

On the other hand, some applications require concurrent accesses with non-exclusive,
read capability to the whole of a data structure to allow concurrent table lookup and so
on. When the accesses can be sequentialized, the structure with an exclusive capability
can be returned finally either

1. by letting each process receive and return an exclusive capability one after another
or

2. by guaranteeing the sequentiality of accesses by other language constructs (let,
guard, etc.) as in [49] and [18].

However, these solutions cannot be used when we need to run the readers concurrently
or in parallel. Our goal is to allow some process (say P) to collect all released non-

61

exclusive capabilities so that P may restore an exclusive capability and update it in
place.

For this purpose, we refine the {in, out} capability domain of the mode system to
a continuous domain [—1,+1]. As in the mode system, the capability is attached to
all paths. Let & be the capability of the principal constructor of some occurrence of a
variable in a configuration. Then

1. k = —1 means ‘exclusive write’,

2. —1 < k < 0 means ‘non-exclusive write’,
3. k = 0 means no capability,

4. 0 < Kk < 1 means ‘non-exclusive read’, and
5. k = +1 means ‘exclusive read’.

This is a refinement of the mode system in the sense that out corresponds to —1 and
in corresponds to (0,+1]. This is also a refinement of the linearity system in the sense
that nonshared corresponds to +1 and shared corresponds to (0, +1].

Then, what meaning should we give to the (—1,0] cases? Suppose a read process
receives an exclusive read capability to access X0 and split the capability to two non-
exclusive capabilities using the following clause:

read(X0,X) :- | read1(X0,X1), read2(X0,X2), join(X1,X2,X).

The capability X0 conveys can be written as a function 1, a constant function such
that 1(p) = +1 for all p € Patom. We don’t care how much of the 1 capability goes
to readl but just require that the capabilities of the two X0’s sum up to 1. Different
paths in one of the split occurrences of X0 may convey different capabilities. Also, we
assume that the capabilities given to readl and read?2 are returned with the opposite
polarity through X1 and X2. Logically, X1 and X2 will become the same as X0. Then,
join process defined as

join(A,A,B) :- | B = A.

checks if the first two arguments are indeed aliases and then returns it through the third
argument. Note the interesting use of a nonlinear head. The capability constraint for
the join program is that the capabilities of the three arguments must sum up to a
constant function 0.

Now the X returned by join is guaranteed to convey the 1 (exclusive write) capability
that complements the capability received through XO0.

62

3.7 Operational Semantics with Capability Counting

In the linearity analysis described earlier, the operational semantics was augmented
with a linearity annotation 1 or w given to every occurrence of a constructor f appearing
in (initial or reduced) goal clauses. Here, we replace the annotation with a capability
annotation k£ (0 < k < 1). k = 1 (exclusive) corresponds to the 1 annotation meaning
‘non-shared’, while x < 1 (non-exclusive) refines (the reciprocal of) w. Again, the
annotations are to reason about capabilities statically and are to be compiled away.

The annotations must observe the following closure condition: If the principal con-
structor of a term has a non-exclusive capability, all constructors occurring in the term
must have non-exclusive capabilities as well. In contrast, a term with an exclusive
principal constructor can contain a constructor with any capability.

The operational semantics is extended to handle annotations so that they may remain
consistent with the above intuitive meaning. However, before doing so, let us consider
how we can start computation within a strictly linear framework. The goal clause

:- sort([3,1,4,1,5,9]1,X).

is not an ideal form to work with because variables and constructors are monopoles.
Instead, we consider a strictly linear version of the goal clause

main([3,1,4,1,5,9]1,X) :- | sort([3,1,4,1,5,9],X).

in which the head complements the resources in the body. The head declares the
resources necessary to initiate computation and the resources to be returned to the
environment. The reduction semantics works on the body goal as before, except that
- the unification goal to instantiate X remains intact. Then the above clause will be
reduced to

main([3,1,4,1,5,9]1,X) :- | X = [1,1,3,4,5,9].

which can be thought of as a normal form in our polarized setting.
Hereafter, we assume that an initial goal clause is complemented by a head to make
it strictly linear.

1. All the constructors in the body of an initial goal clause are given the annotation
1. This could be relaxed as we did in giving the linearity annotations (Sect. 3.4)
to represent initially shared data, but without loss of generality we can assume
that initial data are non-shared.

2. Suppose a substitution § = {v; < t1,...,v, «— t,} is applied upon one-step
reduction from Q to Q’.

(a) When v; is nonlinear,® the substitution instantiates more than one occur-
rence of v; to t; and makes t; shared. Accordingly, all the subterms of ¢;

5The term ‘sublinear’ might be more appropriate than nonlinear here.

63

become shared as well. So, prior to rewriting the occurrences of v; by %;,
we change all the annotations of the constructors constituting ¢; as follows:
Let f* be a constructor in ¢; and ¢; is about to be copied to m places (this
happens when v; occurs m + 1 times in the goal clause). Then « is split into
Ki,---,Km, Where k1 + ...+ km = Kk, k; > 0 (1 < j < m), and the k;’s are
mutually different and not used previously as capabilities.

(b) When v; is linear, 6 does not increase the number of references to ¢;. So we
rewrite v; by t; without changing the annotations in ¢;.

Furthermore, to deal with capability polymorphism described later, we index the
predicate symbols of the goals in an initial goal clause with 1, 2, and so on. The
indices are in fact singleton sequences of natural numbers which will be extended in
each reduction. That is, when reducing a non-unification goal b, (s being the index) to
spawn b',...,b" using Rule (iii) of Fig. 3.2, the new goals are indexed as bl , ..., b%,.

3.8 The Capability System

Our capability system generalizes the mode system. As suggested earlier, the capa-
bility type (say c) of a program or its fragment is a function

¢: Patom — [—1,+1].

The framework is necessarily polymorphic with respect to non-exclusive capabilities
because a non-exclusive capability may be split into two or more capabilities. This is
why different goals created at runtime should be distinguished using indices.

The following closure conditions of a capability function represent the uniformity of
non-exclusive capabilities:

1. 0<¢(p) <1=VYq(0 < clpg) < 1)
2. =1 <c(p) <0=Vg(—1< c(pg) <0)

Our capability constraints, shown in Fig. 3.9, generalizes mode constraints (Fig. 3.4)
without complicating it. Here we have inherited all the notational conventions from
the mode system (see Sect. 3.3.3) and modified them appropriately.

As an example, consider the following program.

P (X,Y,...) = | re1(X,¥1,...), po(X,¥2,...), join, 3(Y1,Y2,Y).
pS(X,Y,.--) = X=51Y.
join (A,A,B) :- | B=414A.

Then the capability constraints they impose include:

64

(BU,) V¥sVti,to € Term((t1=5t2) € B = c/{=4,1) + ¢/(=5,2) = 0)
(the arguments of a unification body goal have complementary capabilities)

(BV,.) LetveVaroccur n (> 1) timesin h and B at py, ..., pn, of which the occurrences
in h are at p1,...,pr (K > 0). Then

L. —¢/pr—...—¢c/pk +¢/Pr+1+ ...+ ¢/pn =0 (Kirchhoff’s Current Law)
2. if k=0 and n > 2 then R({¢/p1,.-.,¢/pn})
3. if k> 1 and n—k > 2 then R({c¢/p1,¢/Pkt1s---,¢/Pr})

where R is a ‘cooperativeness’ relation:

R(S) ¥ 3s€5(s <0 A Vs € S\{s}(s' > 0))

(HV.) Vp € Patom(h(p) € Var A 3p' #p(h(p) = h(p)) = ¢/p > 0)
(if the symbol at p in h is a variable occurring elsewhere in h, then ¢/p > 0)

(HF.) Vp € Patom (?L(p) € Fun= (c(p) >0

A 3lq € Pasom3a € B(a(q) = h(p) A c(p) = clg) A (c(p) < 1= ¢/p=c/q))))
(if the symbol at p in h is a constructor, ¢(p) > 0 and there’s exactly one partner

in B at g such that c¢(p) = ¢(q) (and ¢/p = ¢/q if non-exclusive))

(BFc) Vp € PatomVa € B(a(p) € Fun= (c(p) >0

A 3lq € Parom(h(g) = @(p) A cp) = c(g) A (c(p) < 1= ¢/p = ¢/q))))
(if the symbol at p in B is a constructor, ¢(p) > 0 and there’s exactly one
partner at ¢ in h such that ¢(p) = ¢(q) (and ¢/p = ¢/q if non-exclusive))

(Ze) ¥p € Pasom¥a € B((h(p) = * V(p) = *) = ¢/p = 0)
(a void path has a zero capability)

(NZ¢) ¥p € PasomVa € B((h(p) € PunU VarV a(p) € FunU Var) = c(p) #0)
(a non-void path has a non-zero capability)

Fig. 3.9: Capability constraints imposed by a clause h:- | B

65

1. From the first clause of p:

(a) —c/(p, 1) +¢/{xs1,1) +¢/(Pge,1) =0 (by (BV.) applied to X)
(b) ¢/(rs1,2) +¢/(joings,1) =0 (by (BV,.) applied to Y1)
(e) ¢/(ps2,2) +¢/(joing3,2) =0 (by (BV.) applied to Y2)
(d) —c/{ps2) +c/(joing5,3) =0 (by (BV,.) applied to Y)
2. From the second clause of p:

(a) —¢/(ps1) +¢/(=5,1)=0 (by (BV.) applied to X)
(b) —c/{ps2) +¢/(=5,2)=0 (by (BV.) applied to Y)
(€ ¢/(=s;1) +¢/(=5,2)=0 (by (BU.))

3. From join:

(a) ¢/(join,, 1) >0 by (HV,) applied to A

(by ()
(b) ¢/{(join,,2) >0 (by (HV.) applied to A)
(¢) —c¢/{join,, 1) —¢/(join,,2) + ¢/(=s,2) =0 (by (BV.) applied to 4)
(d) —¢/(join,,3) +c/(=51)=0 (by (BV.) applied to B)
(e) ¢/(=s1)+¢c/(=52)=0 (by (BU,))

In each constraint, the index s is universally quantified. These constraints are satisfiable
if (and only if) ¢/(rs1,1) + ¢/{xs1,2) = 0. Suppose this can be derived from other
constraints. Suppose also that ¢/(ps,, 1) = 1 holds, that is, p is initially called with
a non-shared, read-only first argument. Then the above set of constraints guarantees
¢/{psy,2) = 1, which means that the references to X distributed to the r’s will be fully
collected as long as all the r’s eventually return the references they have received.

Note that the above constraints (1(a) and several others) and Rule (NZ.) entail
0 <c/{rs1,1) <1and 0 < ¢/(psq,1) < 1. That is, these paths are constrained to be
non-exclusive paths. It is easy to see that a set of constraints cannot entail a constraint
of the form 0 < ¢/p < 1 unless some variable is nonlinear.

We have not yet worked out on theoretical results, but conjecture that the following
properties hold (possibly with minor modification):

1. The three properties shown in Sect. 3.3.5, namely (i) degeneration of unification
to assignment, (ii) subject reduction, and (ili) groundness.

2. (Conservation of Constructors) A reduction does not gain or lose any constructor
in the goal clause, with its capability taken into account as its weight.

The Rules (HF.) and (BF.) can be relaxed so that the name of the constructor
examined in the head can be changed when it is recycled in the body, as long as the
constructor comes with an exclusive capability and its arity does not change. When
this modification is done, the Conservation of Constructors property should be modified
accordingly to allow the changes of names.

This modification is important when computation involves a lot of constants such
as numbers. Indeed, some relaxation will be necessary to accommodate arithmetics in
our framework in a reasonable way. For instance, to perform local computation such as

66

Y:=X+2, it would be unrealistic to obtain constructors + and 2 from the parent process
and let them escape through Y. Rather, we want to allocate and garbage-collect them
locally and let Y emit an integer constant.”

3.9 Related Work

Relating the family of m-calculi and the CCP formalism has been done as propos-
als of calculi such as the 7-calculus [33], the p-calculus [24] and the Fusion calculus
[48], all of which incorporate constraints (or name equation) in some form. The ~-
calculus is unique in that it uses procedures with encapsulated states to model concur-
rency and communication rather than the other way around. The p-calculus introduces
constraints into name-based concurrency, while constraint-based concurrency aims to
demonstrate that constraints alone are adequate for modeling and programming con-
currency. The Fusion calculus simplifies the binding operators of the m-calculus using
the unification of names. A lesson learned from Constraint Logic Programming [17] is
that, even when general constraint satisfaction is not intended, formulation in terms of
constraints can be more elegant and less error-prone. The simplicity of constraint-based
concurrency and the existence of working implementations suggest that encoding all
these calculi in constraint-based concurrency would be worthwhile.

In addition to p and Fusion, various calculi based on the r-calculus have been pro-
posed, which include L (Local 7) [22], the Join calculus [10] and #I (Internal =)
[26]. They are aimed at nicer semantical properties and/or better correspondence to
programming constructs. Some of the motivations of these calculi are in common —
at least at a conceptual level — with the design of constraint-based concurrency with
strong moding. For instance, 71 restricts communicated data to local names in order
to control name scope, and L7 restricts communicated data to those with output capa-
bilities in order to allow names to act as object identities. Both objectives have been
achieved in constraint-based concurrency. L7 abolished name matching based on the
observation that it would be too strong a capability. The counterpart of name match-
ing in constraint-based concurrency is matching with a nonlinear head, which imposes
a strong mode constraint that bans the comparison of channels used for bidirectional
communication.

In concurrent, logic, and/or functional languages and calculi, a number of type sys-
tems to deal with polarities and linearities have been proposed.

In 7-calculi and functional languages, Kobayashi proposes a linear type system for
the 7-calculus [19], which seems to make the calculus close to constraint-based con-
currency with linear, moded variables because both linear channels and linear logic
variables disallow more than one write access and more than one read access. Turner
et al. introduce linearity annotation to a type system for call-by-need lambda calculus

"In actual implementations, + and 2 will be embedded in compiled code and can be considered
zero-resource values.

67

[35]. All these pieces of work could be considered the application of ideas with similar
motivations to different computational models. In concurrent logic programming, the
difficulty lies in the treatment of arbitrarily complex information flow expressed using
logical variables. Walker discusses types supporting more explicit memory managemeht
[50]. Session types [13] shares the same objective with our mode system.

Languages that feature linearity can be found in various programming paradigms.
Linear Lisp [4] and Lilac [20] are two examples outside logic programming, while a
survey of linear logic programming languages can be found in [23].

There is a lot of work on compile-time garbage collection other than that based
on typing. In logic programming, most of the previous work is based on abstract
interpretation [14]. Mercury [34] is a logic programming language known for its high-
performance and enables compile-time garbage collection using mode and uniqueness
declarations [21]. However, the key difference between Mercury and GHC is that the
former does not allow non-strict data structures while the latter is highly non-strict.

Message-oriented implementation of Moded Flat GHC, which compiles stream com-
munication into tight control flow between communicating processes, can be thought
of as a form of compile-time garbage collection [41][40]. Another technique related to
compile-time garbage collection is process fusion by unfold/fold transformation [38],
which should have some relationship with deforestation of functional programs.

Janus [27] establishes the linearity property by allowing each variable to occur only
twice. In Janus, a reserved unary constructor is used to give a variable occurrence
an output capability. Our technique allows both linear and nonlinear variables and
distinguishes between them by static analysis, and allows output capabilities to be
inferred rather than specified.

Concurrent read accesses under linear typing was motivated by the study on par-
allel array processing in Moded Flat GHC [42] [25], which again has an independent
counterpart in functional programming [29].

3.10 Conclusions and Future Work

This is the first report on the ongoing project on garbage-free symbolic computation
based on constraint-based concurrency.

The sublanguage we propose, namely a strictly linear subset of Guarded Horn
Clauses, retains most of the power of the cooperative use of logical variables, and also
allows resource sharing without giving up the linguistic-level control over the resource
handled by the program.

The capability type system integrates and generalizes the mode system and the linear-
ity system developed and used for Flat GHC. Thanks to its arithmetic and constraint-
based formulation, the type system is kept quite simple. We plan to build a constraint-
based type reconstructor in the near future. A challenging issue from the theoretical
point of view is the static analysis of the extended occur-check condition. However, we

68

have already been successful in detecting the (useless) unification of identical nonlin-
ear variable as erroneous; if X is unified with itself when it has the third occurrence
elsewhere, the third occurrence is constrained to have zero capability, which contra-
dicts Rule (NZ.). Another important direction related to resource-consciousness is to
deal with time as well as space bounds. We need to see how type systems developed
in different settings to deal with resource bounds [16][9] can relate to our concurrent
setting.

Undoubtedly, the primary concern is the ease of programming. Does resource-
conscious programming help programmers write correct programs enjoying better prop-
erties, or is it simply burdensome? We believe the answer to the former is at least partly
affirmative, but to a varying degree depending on the applications. One of the grand
challenges of concurrent languages and their underlying theories is to provide a common
platform for various forms of non-conventional computing including parallel computing,
distributed /network computing, real-time computing, and mobile computing [45]. All
these areas are strongly concerned with physical aspects and we hope that a flexible
framework with the notion of resources will be a promising starting point towards a
common platform.

References

[1] Ait-Kaci, H. and Nasr, R., LOGIN: A Logic Programming Language with Built-In
Inheritance. J. Logic Programming, Vol. 3, No. 3 (1986), pp. 185-215.

[2] Ajiro, Y., Ueda, K. and Cho, K., Error-Correcting Source Code. In Proc. Fourth
Int. Conf. on Principles and Practice of Constraint Programming (CP’98), LNCS
1520, Springer-Verlag, 1998, pp. 40-54.

[3] Ajiro, Y. and Ueda, K., Kima: an Automated Error Correction System for Con-
current Logic Programs. To appear in Automated Software Engineering, 2001.

[4] Baker, H. G., Lively Linear Lisp—‘Look Ma, No Garbage!’ Sigplan Notices,
Vol. 27, No. § (1992), pp. 89-98.

[5] Chikayama, T. and Kimura, Y., Multiple Reference Management in Flat GHC. In
Logic Programming: Proc. of the Fourth Int. Conf. (ICLP’87), The MIT Press,
1987, pp. 276-293.

[6] Chikayama, T., Operating System PIMOS and Kernel Language KL1. In Proc.
Int. Conf. on Fifth Generation Computer Systems 1992 (FGCS’92), Ohmsha and
I0S Press, Tokyo, 1992, pp. 73-88.

[7] Chikayama, T., Fujise, T. and Sekita, D., A Portable and Efficient Implementation
of KL1. In Proc. 6th Int. Symp. on Programming Language Implementation and
Logic Programming (PLILP’94), LNCS 844, Springer-Verlag, 1994, pp. 25-39.

69

(8]

[11]

[12]

Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logic. ACM.
Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1-49.

Crary, K. and Weirich, S., Resource Bound Certification. In Proc. 27th ACM Symp.
on Principles of Programming Languages (POPL’00), 2000, pp. 184-198.

Fournet, C., Gonthier, G. Lévy, J.-J., Maranget, L. and Rémy, D., A Calculus of
Mobile Agents. In Proc. 7th Int. Conf. on Concurrency Theory (CONCUR’96),
LNCS 1119, Springer-Verlag, 1996, pp. 406-421.

Frithwirth, T., Theory and Practice of Constraint Handling Rules. J. Logic Pro-
gramming, Vol. 37, No. 1-3 (1998), pp. 95-138.

Fujita, H. and Hasegawa, R., A Model Generation Theorem Prover in KL1 Using
a Ramified-Stack Algorithm. In Proc. Eighth Int. Conf. on Logic Programming
(ICLP’91), The MIT Press, Cambridge, MA, 1991, pp. 535-548.

Gay, S. and Hole, M., Types and Subtypes for Client-Server Interactions. In Proc.
European Symp. on Programming (ESOP’99), LNCS 1576, Springer-Verlag, 1999,
pp- 74-90.

Gudjonsson, G. and Winsborough, W. H., Compile-time Memory Reuse in Logic
Programming Languages Through Update in Place. ACM Trans. Prog. Lang. Syst,
Vol. 21, No. 3 (1999), pp. 430-501.

Honda, K. and Tokoro, M., An Object Calculus for Asynchronous Communication.
In Proc. Fifth Conf. on Object-Oriented Programming (ECOOP’91), LNCS 512,
Springer-Verlag, 1991, pp. 133-147.

Hughes, J. and Pareto, L., Recursion and Dynamic Data-structures in Bounded
Space: Towards Embedded ML Programming. In Proc. Fourth ACM SIGPLAN
Int. Conf. on Functional Programming (ICFP’99), 1999, pp. 70-81.

Jaffar, J. and Maher, M. J., Constraint‘ Logic Programming: A Survey. J. Logic
Programming, Vol. 19-20 (1994), pp. 503-582.

Kobayashi, N., Quasi-Linear Types In Proc. 26th ACM Symp. on Principles of
Programming Languages (POPL’99), ACM, 1999, pp. 29-42.

Kobayashi, N., Pierce, B. and Turner, D., Linearity and the Pi-Calculus. ACM
Trans. Prog. Lang. Syst., Vol. 21, No. 5 (1999), pp. 914-947.

Mackie, I, Lilac: A Functional Programming Language Based on Linear Logic. J.
Functional Programming, Vol. 4, No. 4 (1994), pp. 1-39.

Mazur, N., Janssens, G. and Bruynooghe, M., A Module Based Analysis for Mem-
ory Reuse in Mercury. In Proc. Int. Conf. on Computational Logic (CL2000),
LNCS 1861, Springer-Verlag, 2000, pp. 1255-1269.

70

[22] Merro, M., Locality in the m-calculus and Applications to Distributed Objects.
PhD Thesis, Ecol des Mines de Paris, 2000.

[23] Miller, D., A Survey on Linear Logic Programming. The Newsletter of the European
Network in Computational Logic, Vol. 2, No. 2 (1995), pp.63-67.

[24] Niehren, J. and Miiller, M., Constraints for Free in Concurrent Computation. In
Proc. Asian Computing Science Conf. (ACSC’95), LNCS 1023, Springer-Verlag,
1995, pp. 171-186.

[25] Sakamoto, K., Matsumiya, S. and Ueda, K., Optimizing Array Processing of Par-
allel KLIC. In IPSJ Trans. on Programming, Vol. 42, No. SIG 3(PRO 10) (2001),
pp. 1-13 (in Japanese).

[26] Sangiorgi, D., m-Calculus, Internal Mobility and Agent-Passing Calculi. Theoretical
Computer Science, Vol. 167, No. 1-2 (1996), pp. 235-274.

[27] Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards Distributed Con-
straint Programming. In Proc. 1990 North American Conf. on Logic Programming
(NACLP’90), The MIT Press, Cambridge, MA, 1990, pp. 431-446.

[28] Saraswat, V. A. and Rinard, M., Concurrent Constraint Programming (Extended
Abstract). In Proc. 17th Annual ACM Symp. on Principles of Programming Lan-
guages (POPL’90), ACM, 1990, pp. 232-245.

[29] Sastry, A. V. S. and Clinger, W., Parallel Destructive Updating in Strict Functional
Languages. In Proc. 1994 ACM Conf. on LISP and Functional Programming, 1994,
pp- 263-272.

[30] Shapiro, E. Y., Concurrent Prolog: A Progress Report. IEEE Computer, Vol. 19,
No. 8 (1986), pp. 44-58.

[31] Shapiro, E., The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys, Vol. 21, No. 3 (1989), pp. 413-510.

[32] Shapiro, E. Y., Warren, D. H. D., Fuchi, K., Kowalski, R. A., Furukawa, K., Ueda,
K., Kahn, K. M., Chikayama, T. and Tick, E., The Fifth Generation Project:
Personal Perspectives. Comm. ACM, Vol. 36, No. 3 (1993), pp. 46-103.

[33] Smolka, G., A Foundation for Higher-order Concurrent Constraint Programming.
In Proc. First Int. Conf. on Constraints in Computational Logics, LNCS 845,
Springer-Verlag, 1994, pp. 50-72.

[34] Somogyi, Z., Henderson, F. and Conway, T., The Execution Algorithm of Mercury,
An Efficient Purely Declarative Logic Programming Language. J. Logic Program-
ming, Vol. 29, No. 1-3 (1996), pp. 17-64.

71

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[48]

Turner, D. N., Wadler, P. and Mossin, C., Once Upon a Type. In Proc. Sev-
enth Int. Conf. on Functional Programming Languages and Computer Architecture
(FPCA’95), ACM, 1995, pp. 1-11.

Ueda, K., Guarded Horn Clauses. ICOT Tech. Report TR-103, ICOT, Tokyo,
1985. Also in Logic Programming 85, Wada, E. (ed.), LNCS 221, Springer-Verlag,
1986, pp. 168-179.

Ueda, K., Guarded Horn Clauses. D. Eng. Thesis, Univ. of Tokyo, 1986.

Ueda, K. and Furukawa, K., Transformation Rules for GHC Programs. In Proc.
Int. Conf. on Fifth Generation Computer Systems 1988 (FGCS’88), ICOT, Tokyo,
1988, pp. 582-591.

Ueda, K. and Chikayama, T. Design of the Kernel Language for the Parallel In-
ference Machine. The Computer Journal, Vol. 33, No. 6 (1990), pp. 494-500.

Ueda, K. and Morita, M., Message-Oriented Parallel Implementation of Moded
Flat GHC. New Generation Computing, Vol. 11, No. 3-4 (1993), pp. 323-341.

Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-
tation Technique. New Generation Computing, Vol. 13, No. 1 (1994), pp. 3—43.

Ueda, K., Moded Flat GHC for Data-Parallel Programming. In Proc. FGCS’94
Workshop on Parallel Logic Programming, ICOT, Tokyo, 1994, pp. 27-35.

Ueda, K., Experiences with Strong Moding in Concurrent Logic/Constraint Pro-
gramming. In Proc. Int. Workshop on Parallel Symbolic Languages and Systems
(PSLS’95), LNCS 1068, Springer-Verlag, 1996, pp. 134-153.

Ueda, K., klint — Static Analyzer for KL1 Programs. Available from http://
www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-98-E.html, 1998.

Ueda, K., Concurrent Logic/Constraint Programming: The Next 10 Years. In The
Logic Programming Paradigm: A 25-Year Perspective, Apt, K. R., Marek, V. W_,
Truszczynski M., and Warren D. S. (eds.), Springer-Verlag, 1999, pp. 53-71.

Ueda, K., Linearity Analysis of Concurrent Logic Programs. In Proc. Int. Work-
shop on Parallel and Distributed Computing for Symbolic and Irregular Applica-
tions, Tto, T. and Yuasa, T. (eds.), World Scientific, 2000, pp. 253-270.

van Emden, M. H. and de Lucena Filho, G. J., Predicate Logic as a Language for
Parallel Programming. In Logic Programming, Clark, K. L. and Térnlund, S. -A.
(eds.), Academic Press, London, 1982, pp. 189-198.

Victor, B., The Fusion Calculus: Expressiveness and Symmetry in Mobile Pro-
cesses, PhD Thesis, Uppsala Univ., 1998.

72

[49] Wadler, P., Linear Types Can Change the World! In Prof. IFIP TC2 Working
Conf. on Programming Concepts and Methods, Broy, M. and Jones, C. (eds.),
North-Holland, 1990, pp. 347-359.

[50] Walker, D. P., Typed Memory Management. PhD thesis, Cornell Univ., 2001.

73

-~

BAE UFRIETOYTS LOFERMEREN

We present a bottom-up method of extracting those fragments of concurrent logic pro-
grams that can be executed sequentially, and we also propose a framework of optimizing
compilation of concurrent logic programs that uses sequential intermediate code gen-
erated with the method. The method is directed by the inference of certain properties
on sequentiality, called interfaces, of concurrent processes. We formalize them in terms
of the operational semantics, which enables us to formally justify the inference laws on
interfaces used in the analysis.

The specialization of concurrent processes is critical for an optimizing compiler, for
it can reduce the runtime overhead of process management and of data manipulation
substantially. The inference laws on interfaces ensure the compositional generation of
the sequential specialized code that enables such optimization. Moreover, a formal def-
inition of the intermediate code will prove the correctness of some implementation-level
optimization techniques, including tag elimination and update-in-place optimization,
that cannot be formally proved by source-level analysis.

Although the formalism of interfaces exploits the constraint-based communication
feature of the language, our method can be applied, in principle, to the extraction of
sequentiality in other fine-grained concurrent languages.

4.1 Introduction

4.1.1 Background

Fine-grained concurrent languages such as concurrent logic programming languages
[9] allow us to describe parallel computation in a natural fashion. In general, a run-
time system for these languages that should deal with nondeterminacy of the program
tends to suffer from the overhead of context switching and runtime data manipulation.
However, because of physical limitations some fragments of a program can be executed
more efficiently by compiling them into sequential code, and compilation into sequential
code enables various low-level optimization techniques that reduce runtime overhead
substantially.

As an example, suppose we can infer from Figure 4.1 that intlist and sum can be
reduced alternately. Then an optimizing compiler can perform elimination of suspension
check (as well as suspension itself), tag elimination (or unboxing), and less heap usage
for local communication.

75

stair(N,X0,X) :- true | intlist(1,N,S), sum(S,X0,X).
intlist(X0,N,S) :- KO >=N | 8=[].

intlist(XO,N,S) :- KO < N | S=[K0|S1], K:=KO+1, intlist(K,N,S1).
sum([], X0,X) :- true | X=X0.

sun([E[S],X0,X) :- true | X1:=X0+E, sum(S,X1,X).

Fig. 4.1: A Concurrent Logic Program.

In principle, such optimization can be achieved by dataflow analysis that decides
whether a process can be executed without suspension under a given input constraint.
Previous work on such optimization includes dependence analysis between goals (7],
abstract interpretation [2], and demand transformation analysis [6]. But they all
suffer from nondeterminism in the program and cannot always analyze the sequen-
tiality for the sequentializing optimization purposes. For instance, because the goal
stair(0,X0,X) tells X0=X, stair does not depend on its second argument. Thus code
not specialized for the case where it has integer must incur the suspension overhead
and may well lose opportunities for tag elimination.

4.1.2 The Proposed Framework

Our challenge is to formalize the sequentialization process, and apply it to the con-
struction of an optimizing compiler whose correctness is formally justified. In this
paper, we propose a framework for constructing an optimizing compiler for concurrent
languages that

1. extracts sequentiality by the sequentiality analysis,

2. generates sequential intermediate code that is specialized for the extracted se-
quential usage, and

3. performs various code optimization including tag elimination and update-in-place
optimization.

Our sequentiality analysis is directed by the inference of interfaces of a process.
Roughly speaking, an interface tells us a property of a process that under a class
of input constraints what class of constraints it can tell without suspension and as
what agent the residual process behaves. The basic idea is to regard sequentializing
specialization of a process as the selection of an interface of the process.

We have chosen concurrent logic languages to explain our framework, for it features
constraint-based communication, which enables us to formalize our analysis in a con-
cise way. However, our framework can be applied to the optimizing compilation of
other fine-grained concurrent languages, such as pi-calculus, to achieve sequentializing
specialization to some extent.

76

The rest of this paper is organized as follows. Section 4.2 defines a concurrent logic
language and its operational semantics we will work on. Section 4.3 formalizes an inter-
face in terms of the operational semantics. Sections 4.4 and 4.5 explain our framework
of optimizing compilation that generates intermediate code directed by the bottom-
up analysis using interfaces. Section 4.6 mentions the optimization of the generated
intermediate code. Section 4.7 shows some related work, and Section 4.8 concludes.

4.2 The Language

This section defines a concurrent logic language we will work on. In concurrent
logic programming, computation is essentially a series of asks and tells of constraints
with a shared constraint store that is strengthened monotonically. We borrow the
formalization of CCP (concurrent constraint programming) [8] to represent the behavior
of a process in a modular way.

4.2.1 The Store

Let (Con, <) be a lattice with the bottom element ¢rue and the top element false.
We call an element of Con a constraint. We assume that the sets of variables and terms
of first-order logic are given and that every constraint can be represented as a term.
For ¢, d € Con, let the least upper bound c U d represent their conjunction. In other
words, ¢ < d means that d implies c. A store can be represented as a constraint. For
example, the store c is strengthened to ¢ U d by a tell of d.

For every variable X and positive integer i, we assume there exists a variable, denoted
by X, that is intended to represent the i-th argument of the term unified to X.

A variable X is said to capture the term ¢t if there exists a variable X -4;-...-4, that
syntactically occurs in ¢ with some n > 0. We say a variable is a root variable if no
other variable captures it. We assume that for every variable Y there exists exactly one
root variable that captures Y. We also assume that there exists an infinite number of

stair :: intlist(1,a-1,S) | sum(S,a-2,a-3)
intlist :: ask(a-1>=a-2) — tell(a-3 = [1)
+ ask(a-1<a-2)
— (tell(a-3 = [@-118]) ||add(a-1,1,K) || intlist (K,a-2,8))
sum :: ask(func(a-1,[1,0)) — tell(a-3 = a-2)
+ ask(func(a-1,.,2)) — (add(a-2,a-1-1,X) | sum(a-1-2,X,a-3))

Fig. 4.4: A Program Translated from Figure 4.1.

77

X1) Ixe<c

c<d = dxc<3Ixd

dxdye = dydxc

Ex(c [de> = dycUdxd

dxc=c¢ if X doesn’t capture c

dx(X =Y) = true

dxfunc (X, f,n) = true

(X =X) < true

(X=Y)< (Y =X)

/X <cl(X=Y)

(X-i=Y19) < (X=Y)

c,d=clld

3) func(X, f,m)Ufunc(X,g,n) = false if f/m % g/n
where X and Y are variables, ¢ € Con,

and [Y/X] syntactically substitutes every X by Y.

R i R AR A

Extended Axioms.
(U4) (X =fCi,.stn)) = (f1,..st0) = X)
= func (X, f,n) UL (X i=1t)
(UB) f(s15---580) = ft1,...,tn) = q(si=t;)
(U6) f(S15---38m) =g(t1,...,tn) = false if f/m & g/n

where X is a variable, and s; and ¢; are terms.

Fig. 4.2: Axioms for the Store.

root variables, among which is « that is used as the formal parameter in the language.

For any variables X and Y, we assume the constraint X =Y in Con representing the
unification between them.

For any variable X and (function) symbol f and non-negative integer n, we assume
that there exists the constraint func (X, f,n) in Con representing that the variable X
is bound to a functor ‘f/n’.

We also assume that for each variable X there exists the hiding operator Ix : Con —
Con that is meant to map any constraint to its partial constraint on the variables that
are not captured by X. For example, we have 3x(Y = £(X,X-4)) = func(Y,£,2) LI (Y-
1-4 =Y-2) if X does not capture Y.

Figure 4.2 summarizes the properties the store and certain constraints must enjoy.
The semantics of the unification between terms is also defined there.

78

Syntax.
Agents A == tell(c) | i ask(c)— A4
| AJlA | stop | 3X(4,0) | p(X)
where ¢ € Con, n>1, p € Pred
and X is a root variable other than «.
Transition Axioms.
(R1) (tell(c),d) — (stop,cLid)
(RZ) < ?zlask(ci) —>Ai, d> e (Aj, d) if Cj < d
(R3) (p(X),d) — (Ja(3aProg(p), o = X),d)
(A, cU3xd) — (A,)
(3X (A, c),dy — (X (A,), dUIx)
(A, d) — (A, d)
(Al B,d) — (4| B,d)
(B,d) — (B',d')
(A||B,d) —(A| B, d)

(R4)

(R5)

(R5)

Fig. 4.3: The Operational Semantics.

4.2.2 Agents

Given the set Pred of predicate symbols, we define the syntactic class of agents as in
Figure 4.3.

The agent tell(c) adds constraint ¢ to the store, while > i ask(¢;) — A; nondeter-
ministically waits for the store to entail some ¢; and then behaves as A;. Aj || Ay is
parallel composition while stop is the terminated agent. 3X (A, ¢) is the agent A with
an internal store c that holds local information on X. p(X) is a predicate call to p.

We abbreviate X (A, true) to 3XA. We denote by Vars(A) the set of root vari-
ables that capture some term contained in A, and abbreviate 3X;...3X,A to 3XA4
if {X1,...,X,} = Vars(4)\ {X}. For a root variable X that does not capture terms
t1,. .- tm, we term-abbreviate X (tell(X = a(t1,...,tn)) || p(X)) to p(t1,...,tn).

4.2.3 The Transition System

We define a program as a mapping Prog : Pred — Agents. The code in Figure 4.1
can be thought of as a concrete representation of the program in Figure 4.4.

Given a program Prog, we define the operational semantics as the smallest set — C
(Agents x Con)? that enjoys the axioms in Figure 4.3.

(R3) expresses the commencement of a goal p(X) with a new store deployed. (R4)
refreshes internal store as well as shared store for each reduction of the subagent.

79

4.2.4 The Observables

One can justify a compiler by showing that the object code it generates behaves as
specified by the program. We will define the observables of a process by the phenomena
we want to regard as its whole behavior. ’

The behavior of an agent A can only be observed through computations beginning
with (A, true) under a given program Prog. We therefore define for Prog the observables
ofA]

Prog Of A as follows:

OlAllprog % {¢-L (A, true) —* (4',c), ¢ <c}
U {c-dd| (A, true) —* (A’ ¢) -, A’ & Stop}
U {c-tt | (A, true) —* (4',¢c) -/, A’ € Stop}
U {c- oo {4, true) —* (A, ¢) — =} (4.1)

where (A, ¢) — *® means the existence of an infinite computation beginning with (A, ¢
(said (A, c) diverges) and Stop is the set of agents containing no asks, tells, or calls.
The ¢ - L represents the possibility that the agent A may cause the store to entail c.
On the other hand, ¢- dd, c¢- tt, and c- oo represent the possibility that A may suspend,
terminate, and diverge, respectively, if store reaches c.
It is known that collecting observables O[C[A]] p,,, for all contexts C[] generates a
compositional denotational semantics of the agent A under the program Prog [3, 8.

4.3 Interfaces

In this section we introduce interfaces of a process with which we formalize the
behavior of a process under some class of input. Using interfaces, we can guarantee the
correctness of intermediate code we generate.

Before formalization, we introduce some preliminaries.

4.3.1 Result of Local Choices

A compiler is allowed to resolve local choices statically, which exist within an agent as
nondeterministic branches. We define a relation on agents to formalize such resolving.

Given a program Prog, we define that A’ is a result of local choices of A if, for any
context C[-], O[C[A]]] pog 2 OlC[A]] prog holds, in which case we will write A = A’

Note that the relation ask(c) — A = ask(c) — A’ means that A can be compiled
into A’ under the store c¢. Thus, > can formalize the specialization of processes with

nondeterminacy on scheduling as well as on local choices.

80

4.3.2 Upward-Closed Sets and Type Constructors

We say a set S is an upward-closed set if Ve € SVd > c¢(d € S) holds. We will use
an upward-closed set of constraints as an abstract store in the analysis. We typically
use G, J: ... to denote upward-closed sets of constraints.

Let us introduce a type constructor, an operator that maps a variable to an upward-
closed set of constraints. For instance, assuming that int(X) is a constraint represent-
ing X is bound to an integer, we define the type constructor i by i(X) f Tint(X)
where Tc & {d € Con|d > c}. Likewise, we define n(X) L 1 func (X, [1,0) for nil,
and ¢(X) def Tfunc(X,.,2) for cons.

We extend the hiding operator Ix to an upward-closed set in a natural way:

Ix(Uier Tei) 4 Uier T3xci (4.2)

For example, we have 3x(i(X-1) Ne(a-2)) = c(a-2).
For root variables X and Y, we define the operator {X — Y} on upward-closed sets
as follows:

User Te) {X = Y} € Uper 1(Cxe) Y/ X)) (4.3)

where Jx(c) = 3x, ...3x,(c) and {Xi,...,X,} is the set of variables syntactically
occurring in ¢ and not captured by X. This operator is used to represent the variable
renaming on a predicate call. For example, we have (i(X-1)Nc(e2)) {X — a} = i(a-1).

4.3.3 Formalization of Interfaces

We formalize an interface of agents in terms of operational semantics as in Figure
4.5. Firstly, we define the syntactic class of interfaces.

The interface € — d > E represents the property that for any input store ¢ € ¢ the
agent can make the store evolve into d € d without suspension and then behave as
unless the agent diverges. In general, & — 3X;...3X; Z??__l(d; > E;) represents the
property that for any input store ¢ € ¢ there exists some j such that after declaring
new variables X3, ..., X} the agent can make the store evolve into some d € d_;' without
suspension and then behave as E; unless the agent diverges.

The interface A represents the property that the agent can behave as the agent A.
Ey A E, represents the property that the agent can behave as Fy and can behave as Fs.
E || E5 represents the property that the agent can behave as the parallel composition
of the two agents each of which behaves as F; and Es, respectively.

We then define the relation > as in Figure 4.5. The definition (I5) makes > a relation
on interfaces that satisfies reflexive and transitive laws, which enables us to infer the
properties of an interface, rather than of an agents.

81

Syntax.

Interface FE : — 33X ... 33X 20 (G > Ej)

| E|E
where k > 0, m > 1, X is a root variable, A an agent,
and € is an upward-closed set of constraints.
Inductive Definition.

> C Agents x Interface ::

(I1) A>B if A- B

(12) A>E\NE, ifA>Ey, A> Ey

(I3) A> E;| Ey iff 3B, By € Agents (
A (B1| B2), B1>FE1, B> Es)

(14) A>¢— 3X;...3X, Y (d; > E;) iff vee & (

(A,c)— ® or 3j3d € d; 3B > E; (ask(c)— A

= ask(c)—3X;...3X,(tell(d) || B)))

> C (Interface\ Agents) x Interface ::

(I5) E>E iff VA€ Agents(A>E = A>E')

Fig. 4.5: Formal Definition of Interfaces.

4.4 The Interface Analysis

In this section, we explain our bottom-up method of analyzing sequentiality that uses
a call graph of predicates. The analysis is formulated as the inference of interfaces.

In the analysis, we must analyze interfaces not of a goal but of the predicate itself.
So, we abbreviate JaProg(p) to p and analyze this agent. We assume that any variable
X -4 that syntactically occurs in such an agent is guarded by some ask(c) such that
func(X, f,n) < ¢ with some f and n > i if X # «. It is also assumed that any goal
occurs in a term-abbreviated form with ‘sufficient’ arity.

4.4.1 Linear Interfaces

‘We call an interface of the form:

Nier(& = 3Xo... XY je s (dij > 1,5(X0))) (4.4)

with & > 0 a linear interface. The union |J;¢; & is called its input assumption.
We assume Prog(halt) = stop in order to express the termination, and we will
abbreviate 3Xo(d > halt(Xp)) to d. We call an interface of the form & — d a sequential

82

stair

Cjntli'S/t \sum
N

add

Fig. 4.6: A Call Graph.

interface. These two forms of interfaces are used in the bottom-up inference of those
interfaces themselves.

Most of built-in predicates have their own sequential interfaces. For instance, add
that performs integer addition enjoys add > i(a-1) Ni(a-2) — i(a-3).

The ¢;;(Xo) is called a tail call. In reality, we must keep the original, term-
abbreviated form for each tail call to perform the analysis.

4.4.2 Bottom-up Analysis of Predicates

The bottom-up interface analysis is performed in the following steps:

1. Build a call graph, namely, a directed graph whose nodes are predicates and
whose arcs represent the caller-callee relationship between predicates.

2. Choose a node without outgoing arcs, remove it from the graph and try to find a
linear interface of the corresponding predicate. This step is repeated until every
node has outgoing arcs.

3. Choose a strongly connected component, which represents (mutually) recursive
predicates, remove it from the graph and try to find their linear interfaces. Go
back to step 2 if any node remains. ’

If interfaces of already removed predicates cannot be applied in the analysis either
for inability of the analyzer or for deadlock of the program, we abandon the analysis
and optimization of the predicate and of any predicate that may eventually call it. For
these predicates, we will generate ‘general’ code that may spawn many goals.

Example 1 The call graph of the program in Figure 4.4 is shown in Figure 4.6. We
first remove the node add without any outgoing arcs. Since add is a built-in predicate,
its interface is known prior to the analysis. We try to find interfaces of intlist and of
sum, and then of stair.

4.4.3 Bottom-up Analysis of Agents

We describe how to compute a linear interface of an agent in a bottom-up manner.
The analysis directs intermediate code generation that is explained in Section 4.5.

83

Inferring interfaces relies on abstract interpretation. We use an upward-closed set of
constraints as an abstract store that represents (1) dynamic type information and (2)
alias (variable-variable unification) information. The analysis requires linear interfaces,
and therefore the dynamic type information including recursive data types as well, to
be manipulated as data structures in a compiler, whose design is out of the scope of
this paper.

Receiving a pair of an agent and its initial input assumption d@, the analysis recursively
computes a linear interface for each subagent. The analysis may fail, which takes place
in recursive calls (it becomes a tail call candidate) and other cases such as deadlocks.
For parallel composition agents, the static scheduling information is also computed.
The analysis is performed as follows:

p(X): If a linear interface A;c;(& — 3Xo...3X ZjeJ(i)(cfi,j > ¢;,;(X0))) has been
computed for p where X # X, return A\;c (G {a— X} — 3Xo ... IXed jci0)
3a(3x, - dx,dij N Ta=X)) > qi,j(Xg))). Otherwise, we fail.

tell(c): Same as built-in predicate calls explained above.

3X(A,c): We first compute a linear interface A;c (& — EXQ..-BXijeJ(i)((i—;,' >
gi.;(X0))) of A with initial input assumption Jxd. If 3x& = ¢; holds for each 1,
return Ajer(éG — 3Xo... 3Xp3X ZjEJ(i)(d:',j > ¢; ;(Xo))). Otherwise, we fail.

S herask(by)— Ap: If Thy 2 @ holds for some h € H, let H' = {h} so as to eliminate
the local choice. Otherwise, let H' = {h € H|@N by # | false}. Next, for each
h € H' we compute a linear interface A;cyp)(Ch; — 3Xo - - SXijeJ(h,i)(Jh,i,j >
gn,i,j(Xo))) of Ap with initial input assumption @M Tbp. Then return their con-
junction (use A). We fail if H' = {}.

A1l ... || An: We use abstract interpretation based on dynamic type information to
schedule subagents.

The scheduling proceeds in the following steps:

1. Let the initial state of the abstract store be the initial input assumption d.

2. For each subagent, try to find a linear interface and then a sequential inter-
face.

3. Choose an agent with a sequential interface whose input assumption is en-
tailed by the current abstract store. ‘An interface that contains no alias
information has the advantage. Remove the agent from the composition,
and strengthen the abstract store by consulting the interface. This step is
repeated as many times as applicable.

4. If no agent can be removed under the current abstract store, re-compute
linear interfaces of the remaining agents with the current abstract store
being initial input assumption.

84

5. If we have more than one agent with linear interfaces, we try to interleave
them by the method explained later. If successful, we have an interleaved
agent with a linear interface.

6. If we have exactly one agent with linear interfaces, try to find a sequential
interface of it. If successful, remove the agent from the composition. The
difference d of its input assumption dN ¢ from the current abstract store €Na
is lifted up to the input assumption of the whole parallel composition being
analyzed. After this, the current abstract store is updated.

7. If exactly one term-abbreviated goal remains, choose it as the tail call. Oth-
erwise, we fail.

Most agents without recursion or with a single tail-recursive call can be sequen-
tialized with this algorithm. To deal with other forms of recursive predicates,
other techniques such as conversion to tail-recursive forms should be used in con-
junction [1].

Some subagents return alias information in output. By applying it to the remain-
ing subagents, some variables may be represented by means of «, thus possibly
eliminating the number of variables used.

It should be straightforward to prove that every agent has the respective interface
that is returned by the method.

Example 2 We show the analysis for the agent
L = tell(@-3=[a-118]) ||add(-1,1,K) ||intlist(K,a-2,S)

found in intlist with initial input assumption ¢(e-1) Ni(a-2). Let us find an interface
of add(a-1,1,K), namely 3G(tell(G = a(a-1,1,K)) | add(G)). We infer add(G) > (G-
1) Ni(G-2) — i(G-3) from the interface of add. Since tell(G=a(a-1,1,K)) > i(a-1) —
i(G-1) Ni(G-2) N 1(G-3 =), we have (tell(G = a(a-1,1,K)) [|add(G)) > i(a-1) — i(K)
Ni(G-1)Ni(G2)NT(G-3 =K), thus add(a-1,1,K) > i(al) — i(K). Seeing add(a-1,1,K)
can be sequentially executed and contains no alias information, we schedule this first;
and then tell{a-3 = [a-1181), which has i(a-1) — c(a-3)Ni(a-3-1)NT(S = a-3-2). The
abstract store is strengthened to i(a-1) Ni(a-2) Ne(a-3) Ni(a-3-1)Ni(K) N T (S = a-3-2)
and the alias information is applied to the tail call. Now, it is easy to infer the relation
L > i(a-1)Ni(e-2) — 36 c(a-3) Ni(e-3-1) Ni(K) Ni(G-1)Ni(G-2)NT(S=a-3-2) N
7(G-3=0-3-2) > intlist(G)).

4.4.4 Inferring Sequential Interfaces

We mention how to infer sequential interfaces from linear interfaces. Essentially, it
consists of two steps:

85

1.

2.

find an input sufficient to execute the process without suspension, and

compute an output it can perform on termination.

These procedures are performed by computing fixed points on dynamic type information

for each strongly connected component removed from the call graph.

4.4.5 Process Interleaving

We must also consider a method of interleaving parallel composition, and here is how

to utilize the interface information to interleave producer and consumer processes. The
method is basically unfold/fold transformation [11] but is directed by the interfaces of

the two processes, which enables us to justify sequentializing specialization. We explain

only the simplest case, but it gives us a good insight into our analysis.

1.

Let P and @ be processes to be interleaved which have tail calls to p and g,
respectively. We assume the given linear interface of p (and ¢, respectively) has a
single tail call to p (and ¢) which was P’ (and Q') in the original, term-abbreviated
form.

. Build a list that enumerates the variables occurring in the recursive calls P’ and

Q'

. For each shared variable between P and @, unite the elements of the list that

correspond to the paths within which the shared variable is passed.

Introduce new predicates p’ and ¢’ such that their formal arguments are specified
by the above list and that P’ and @’ can be represented as calls to p’ and ¢/,
respectively.

Introduce a new predicate 7 = p' || ¢’ and confirm that P || @ can be represented
as a call to r.

. Compute linear interfaces of p’ and ¢’ from those of p and ¢, and then try to find

a linear interface of r, using the definition of to obtain a tail call to r.

Example 3 Let us interleave the two predicate calls in

intlist(1,a-1,8) ||sum(S,a-2,a-3)

in stair.

Since S is a shared variable, the third argument of intlist and the first argument

of sum are unified. Accordingly, we introduce intlist’ = intlist(e-l,a:2,:3),

sum’ = sum(a-3,a-4,0-5) and r = intlist’| sum’. We can infer that

intlist(1,a-1,8) ||sum(S,a-2,a-3) »r(1,0-1,8,a-2,0-3).

86

Thus, we go on to find a linear interface of r from the linear interfaces of intlist and
sum:

r > i(a-1) Ni(a-2) Ni(a-4) — 3G6(
(n(a-3) Ni(a-5) > halt(G))
+ (e(a-3) Ni(a-3-1) Ni(G-1) Ni(G-2) Ni(G-4)
N1(6-3=a32N1G5=a5) >r@))) (4.5)

4.5 Code Generation

In this section, we define an intermediate language and explain the code generation
in our framework.

4.5.1 Definition of Intermediate Code

Figure 4.7 summarizes our low-level, sequential intermediate code. This subsection
can be skipped in the first reading, for it is not the subject of the paper.

The code explicitly manipulates memory through variables, and the memory consists
of cells. For explanation, we assume a pointer-tag implementation, that is, each cell
is tagged with one of FUNC, FUNCREF, or REF. Each variable is implemented by a
cell, and is a path. The path X-i refers to the cell containing the i-th element (offset
i + 1) of the structure referenced by the path X.

1

The instruction “var X” acquires a new cell that has a reference to itself with REF
tag, and assigns it to the location specified by X. The instruction “alloc X ,n”
acquires n + 1 contiguous, uninitialized cells and assigns the reference to its first cell
with FUNCREF tag to the location specified by X.

The instruction “copy X ,Y” assigns the content of the location specified by Y to the
location specified by X. The instruction “func X, f,n” assigns the atomic value ‘f/n’
with FUNC tag to the location specified by X. The “atom Path, Atom” is shorthand
for “func Path, Atom,0”. The instruction modifier t+ means that the consistency of
the output with the current content of the destination path is recursively checked. The
recursive case happens only in tcopy, which exactly performs general unification.

A label p_Encode(@) describes the entry point of the predicate p with the input
assumption @, which must be entailed by the store when the code led by the label
is executed. We assume Encode generates an Info that describes the dynamic type
information on a. For example, the code implementing the built-in predicate add can
have the input assumption i(a-1) Ni(a-2) and is led by the label add_i1i2. In this
paper, we assume that the input assumption specified in the label argument of an
instruction is statically guaranteed to be entailed. The definition details of Label are
not the subject of the paper.

The variable A is used as the actual argument register throughout the code and always

87

Path = RootVariable | Path-Integer
Label Atom|-Info|_Info]]
Info == (Tycon Integer+)+
Tycon == [d|x](cle|f]iln|ulw | (1|v)Tycon
| z Atom Integer)

Term == Path | Atom(Termy,..., Termy)
Entry w= Label: newline Inst

Inst Inst newline Inst
mtest Term [Instyy 1 Instox
*| Path, Term
*| Path, Patherc

mprim |
[

mfunc [*|Path, Atom, Integer
[
[

mcopy

*|Path, Atom

matom [*]

*| Path
]
]

1
|
!
l
l
| var
| Dbox [
| unbox [*|Path
| alloc [*|Path, Integer
| [x]arg [*|Path, Paths, Termosst
| deref Path, Pathe
| call Label, Path
| spawn Label, Path
| goto Label
| fail

| halt

| hook Paths, Label

m x|t

Fig. 4.7: An Intermediate Language.

replaces a. The content of A is assumed to be a reference to a non-shared structure (i.e.,
referenced by only one cell) with sufficient arity for executing the code. Any object
referenced by A-i may be shared unless the corresponding path has the type modifier
d in the label. The scopes of variables other than A are confined between two labels.

The intermediate code is executed sequentially until it reaches one of goto, halt,
fail, or hook instructions. “spawn [,G” enqueues to the process pool a new goal
goal(l,G) whose entry point is [and whose argument is G. “hook PathList,l” hooks
goal(l,A) to the set of paths in PathList. Every tell involving some path in PathList
causes the hooked goal to be spawned to the process pool. “goto !” jumps to the label
. “call [,G” is a non-suspending built-in call to the label [.

The test instruction tests entailment of the specified constraint. If the entailment

88

is not yet observed, the alternative code specified in the argument is executed.

The “arg X,Y ,K” assigns the reference to the K-th argument of the structure
pointed to by Y to the location specified by X. The deref fully dereferences a chain
of REF pointers. The * that prefixes a destination path specifies that the destination
path is dereferenced by one level. These enable the uninitialized variable optimization.

The instructions “unbox X” and “box X7 convert the content of X to its unboxed
and boxed value, respectively. Once unboxed, any arg, copy, prim and test instruc-
tions must be prefixed with the instruction modifier x, and the type modifier x must
be used in the corresponding path.

The formal semantics of the code, which is required to justify code optimization
formally, is omitted in the paper.

4.5.2 Code Generation Directed by Interface Analysis

Let @ be the input assumption of the given linear interface. The code generation is
performed as follows:

p(X): If we have found a sequential interface of p whose input assumption is entailed
by @, the code is inline expanded. Built-in predicates fall under this case. It is
desired to choose an interface with more assumption and more output. Return
the code with A replaced by X and other variable names replaced by fresh variable
names. Inline expansion may cause code explosion, but in most cases each copied
code would be compacted through specialization.

If we have found no such interfaces, return spawn p_FEncode(@{X — a}),X. If
the goal is a tail call, it may be immediately rewritten to copy A, X followed by
goto p_Encode(d{X — a}).

tell(c): Same as built-in predicate calls explained above.

For tell(X = Y) where Tfunc(Y,f,0) D &, return tatom Lookup(X),f. For
tell(X =Y) of other cases, return tcopy Lookup(X), Lookup(Y').

For tell(X = f(t1,...,t,)), return alloc W,n; func W-0,f,n; code for
tell(W-1 = t1); ...; code for tel(W-n = t,); and tcopy X ,W where W is a
fresh root variable.

We assume Lookup translates any variable to a path.
3X(A,c): For ¢ # true, return the code for the agent IX (tell(c) || A, true). For ¢ =

true, firstly build the code for A preceeded by new X. Then return the code with
all X replaced by a fresh variable name.

> heqiask(cp)— Ap: Choose an h according to the interface. Return a test instruction
that performs entailment check of ¢j, (a part of which may be statically done using
@) followed by the code for A,. It contains the code for the remaining branches

89

intlist_i1i2: intlist_iliZ2:

var S test il1t(A-1,A-2) [
var K tatom A-3,[]
test ilt(A-1,A-2) [halt

tatom A-3,[]]

halt alloc G,2
] func G-0,.,2
tprim K,iadd(4-1,1) copy G-1,A-1
alloc G,2 var G-2
func G-0,.,2 tcopy A-3,G
copy G-1,A-1 prim A-1,iadd(A-1,1)
var G-2 copy A-3,A-3-2
tcopy A-3,G goto intlist_1i1i2
alloc H,3
copy H-1,K
copy H-2,A-2
copy H-3,A-3-2
copy A.H
goto intlist_ili2

(a) Before Optimization (b) After Optimization

Fig. 4.8: Generated Intermediate Code.

as its alternative code argument. If the check is found to pass always, the test
instruction (as well as the code for the rest of branches) may be omitted.

A1l ... || An: Return the code for the subagents concatenated in the scheduled order.

For efficiency reasons, we should, in fact, use a list of unconstrained variables in code
generation.
Figure 4.8 (a) shows the generated code of intlist.

4.6 Code Optimization

We will briefly mention the optimization on the sequential intermediate code though
it is not the subject of this paper.

Optimization in our framework consists of two stages: one is to generate sequential in-
termediate code, and the other is to optimize the generated code. The former is primar-
ily concerned with process scheduling (and local choice elimination) for the avoidance
of suspension and process interleaving, and is directed by the sequentiality analysis.
The latter relates to both the code level optimization such as copy propagation, and
the implementation-level details including tag elimination and update-in-place. Our
framework can straightforwardly justify the safety of such low-level optimization based
on the intermediate language.

90

We should mention that other analysis frameworks that justify particular optimiza-
tion techniques can be peacefully incorporated into our framework to build a more
powerful and efficient compiler. For instance, the linearity analysis [10] can be incor-
porated so as to statically guarantee the safety of update-in-place optimization applied
to global data, and mode analysis [12] can statically determine which interface to be
used for each unification.

Example 4 Figure 4.8 (a) is optimized into Figure 4.8 (b). Figure 4.9 (b) shows the
optimized code of stair, while its general (i.e., unspecialized) code can be like Figure
4.9 (a). We can see that the sequentializing specialization has significant importance.
Further low-level optimization, such as tag elimination, can be applied but is not shown
because it is out of the scope of this paper.

4.7 Related Work

P. Van Roy [13] demonstrates an optimizing compilation framework for Prolog that
uses low-level intermediate language, rather than WAM (Warren’s Abstract Machine),
to make code specialization more effective. The optimization techniques explained
there can be systematically applied to concurrent logic programs only if sequentiality is
extracted from the code. Our sequentiality analysis contributes to the sequentialization
phase in the optimizing compilation framework for concurrent logic languages (and
other fine-grained concurrent languages to some extent).

Related work on optimizing compilers for fine-grained concurrent languages include
4, 5].

Debray [4] describes a sequentializing compiler for the concurrent constraint language
Janus. It shares many concepts with this paper including the extraction of sequentiality
using modular boundness analysis. However, their compiler uses Prolog as the sequen-
tial intermediate code, and memory management optimization is completely delegated
to that of the underlying Prolog compiler. It means that the implementation tech-
niques unique to fine-grained concurrent language that require for instance the analysis
of interleaving cannot be achieved.

Debray et al. [5] explain top-down non-suspension analysis and its application to an
optimizing compiler for Janus that uses C as its sequential intermediate code. Fixed
point dataflow analysis, however, becomes complicated in the presence of complex
message flow, which is the raison d’étre of concurrent logic programming. We believe
that bottom-up analysis will do the job with better precision and modularity, and will
smoothly connect the extracted sequentiality to the runtime system.

91

stair:
alloc G,3
var G-1
copy G-2,A-2
copy G-3,A-3
spawn sum,G
copy A-2,A-1
copy A-3,G-1
atom A-1,1
goto intlist
sum:

test wait(A-1) [
hook [A-1],sum

]

test func(A-1,.,2)[
test func(A-1,[1,0)[

fail

]

tcopy A-3,A-2

halt
]
alloc G,3
copy G-1,A-1-2
var G-2
copy G-3,A-3
spawn sum,G
copy Al1i,A-1-1
copy A-1,A-2
copy A-2,Al11
copy A-3,G-2
goto add

(a) General Code

stair_ili2:
2

~-4,A-2
-2,A-1
-5,A-3

atom A-1,1
goto r_i1i2i4

r_il1i2i4:
test ilt(A-1,A-2) [
tatom A-3,[]
tcopy A-5,A-4
halt
]
prim A-4,iadd(A-4,A-1)
var A-3
prim A-1,iadd(A-1,1)
goto r_il1i2i4

(b) Specialized Code

Fig. 4.9: General Code vs. Specialized Code.‘

92

4.8 Conclusion and Future Work

We have presented a framework for extracting sequentiality in concurrent logic pro-
grams and for generating its sequential intermediate code. The proposed framework is
based on bottom-up analysis using interfaces that formalize certain sequential proper-
ties of a process, and hence can justify the intermediate code it generates.

Future work includes a definition of the formal semantics of the intermediate lan-
guage, which enables us to guarantee the correctness of code optimization. It is also
important to implement and evaluate an optimizing compiler for concurrent logic pro-
grams written in Flat GHC.

References
[1] A. W. Appel, Compiling with Continuations, Cambridge University Press, 1992.

[2] M. Codish, M. Falaschi and K. Marriot, “Suspension Analyses for Concurrent Logic
Programs”, ACM TOPLAS, Vol. 16, No. 3, 1994, pp. 649-686.

[3] F.S. de Boer and C. Palamidessi, “On the Semantics of Concurrent Constraint Pro-
gramming”, Proc. ALPUK 92, Workshops in Computing, Springer-Verlag, 1992,
pp- 145-173.

[4] S. Debray, “QD-Janus: A Sequential Implementation of Janus in Prolog”, Software
Practice and Experience, Vol. 23, No. 12, 1993, pp. 1337-1360.

[5] S. Debray, D. Gudeman and P. Bigot, “Detection and Optimization of Suspension-
Free Logic Programs”, J. of Logic Programming, Vol. 29, Nos. 1-3, 1996, pp. 171~
194.

[6] M. Falaschi, P. Hicks and W. Winsborough, “Demand Transformation Analysis for
Concurrent Constraint Programs”, Proc. 1996 Joint Int. Conf. and Symp. on Logic
Programming (JICSLP’96), The MIT Press, 1996, pp. 333-347.

[7] A. King and P. Soper, “Schedule analysis of concurrent logic programs” Joint Int.
Conf. and Symp. on Logic Programming, The MIT Press, 1992, pp. 478-492.

[8] V. A. Saraswat, M. C. Rinard and P. Panangaden, “Semantic Foundations of Con-
current Constraint Programming”, Proc. of POPL’91, ACM Press, 1991, pp. 333-
352.

[9] K. Ueda, “Concurrent Logic/Constraint Programming: The Next 10 Years”, The
Logic Programming Paradigm: A 25-Year Perspective, K. R. Apt, V. W. Marek,
M. Truszczynski, and D. S. Warren (eds.), Springer-Verlag, 1999, pp. 53-71.

93

[10] K. Ueda, “Linearity Analysis of Concurrent Logic Programs”, Proc. Int. Workshop
on Parallel and Distributed Computing for Symbolic and Irregular Applications, Ito,
T. and Yuasa, T. (eds.), World Scientific, 2000, pp. 253-270.

[11] K. Ueda and K. Furukawa, “Transformation Rules for GHC Programs”, Proc. Int.
Conf. on Fifth Generation Computer Systems 1988, ICOT, 1988, pp. 582-591.

[12] K. Ueda and M. Morita, “Moded Flat GHC and Its Message Oriented Implemen-
tation Technique”, New Generation Computing, Vol. 11, No. 34, 1993, pp. 3-43.

[13] P. Van Roy, Can Logic Programming Execute as Fast as Imperative Program-
ming?, Ph. D. thesis, University of California, 1990. Available as Report No.
UCB/CSD 90/600.

94

1 PELIER DKLIC MDEsET &

-

FHE

n
pid

A

S DG TOATSLTIE, TT)r—2a v OFRERD LS, 58ALD 72010 E L
ARG EONVF IO AT AMER, B A Y FT — 7 ISR A 72O DM
DFEIBIZE L DH % HEE L T\v:7z. —F T GHC (Guarded Horn Clauses) (2#D < i
ITRBAISFEKLL O, BEAHEEREFE-CEAL, AL ERICRET4s I L
WTE5. _

AREFFETIE, 2O KL OMBERKLIC 2k L, S ELBEEREZELHICT A A — IV
FH—Y R - FBX, SO ABE EREEFHZ EOBELRETE 2 MER
DKLIC mFEHELYHIEL/z. 207012, mBEERKIC L 28EKE TCP V7 v M THEE
L, 20EBID/zO0T T F a VO LM R EREITo 2. TNITIZ, 728G
HERIITT 55— IV THREER Peer to Peer N— A TEETALILT, *v PT—7
ERGBEORM BN DKLIC T 7y —aviy b — 7 HBEEZTERIC L. #
RN, FET TV =Y a YEBREKBICEEALT 2 L) REBSB T 0TI VTR
EORMEIIHEII L 7.

51 EFU®IC
511 &S

SLDOFET 7) r—a v i, JAVAR C++ L2 EOFRERSHEIC Lo THESN
TEZ LAL, bED EBERMBEZFRIMES N0 VT Tt AREBEDTIR
G EDPBEG T otz TNERRT DI BRIEESETO ST IV IRERRMT S
72O ISR EEE KL DG EULE RIS (1] &N, Java 2 X o TEE S KLL
UEER KL13[1) &, [2, 3, 4 2 LI FEEN S £ 9 % Unix L0 KL1 MEATH % KLIC
Z KLl & CEREIC Lo TR L 2B R E V) 2 RMAEFE L2, BEDOREDOL
HRTIR, BEFRELEHTEHTEAKLIOESRE2 TCPO Vv M LICEETLI L
TEKELZ2ERETH L TEHMmELERTER L T, 72, BED/ — FH7 Fkv
JIEBRTAIIBDRT TV =300, Ay V) — 7 ERLEERIRET S
F=IVITED 2N 6 bRESNTV Lo L, PHGEEREY 2 - Vida#
WEERICL Ay VT =7 OBERR L BB TE T, BERORELEHETL I L
BTELhol. F72, 7= I V7 EVa— VIZERRR BB L T2, SichEs
BEVa—VERMY L TEESN TV ICARICEEROREILZIT2 2T,
72, B Ay N — s BREILRT AERES R o 72,

KR T, TS OMI L7 KLIC GHILRETY 2 — V2 i S 72872 7% KL1 &

95

ﬁ@@%DKHC%%ﬁL,$—\/7%/;~nfﬁﬁw7mb:wwaﬁt%@~%

EEL, FOEEZICEOOTIHBGRELE T BEEE L. TNIZLY, Peer to Peer
R—ZADBEGR Y NPT — 2 OREEE Ay VT — s EREEEGETR ST IV IREY
EFL7. Tz, INE TR L ERREEITE 3], T- Ve 7 U ADBR([T] Lo
7 BRI OREBE DB DT R BRET L 72,

5.1.2 ZAERXDE

KL, TP 528 TR KL I2DoW TR 5. 5.3 8Tl DKLIC DAk & BETIZD
wTL«AIMMCiki# smﬂfﬁﬁkx~~/7ﬁngﬁﬁféé54
THUGRLEE DT BRS. 5.5 B COMRBERE DRI OWTIENRS.

B CIEESEIHT o TRIEE L 2 5 72 KLIC OB EEOFHIT oW T wa
5.6 i CHOMBEENBOHRS L EEIIOVWTHRNS., FFHIBWTHLPIZLHE
ZORPREICEDVTV A, BTEHTIE A — I Vv 7B Ok & 3EETH waﬁsﬁf%~

IVIBILOWTHRS. 5.9 TEE L TOS T LDV TOFEE L, 5.10 HiTH

BRSOV TR, HAIC5ILHTE LD LA BOBEICOV TR LS.

5.2 WiITHRIBAEEZEKL1

COEHTIIKLL 2oV TOBMEL R, HELZBETTC7U s T4 EZDETORK
FIZOWTHBEICHAT 5.

521 KL1DO#HE

KL1 13 Flat GHC I2E DWW 5 0E 2 BB T 2 -0 OmBEERETH L. H
fEDEE L L TId Concurrent Prolog, Parlog, Fleng 2 E4¥& 4.

KLl JEZXMIRASETHY, 207075 03 UTO L) 2EXOH (V—V) D
ELHLEV - VOEEICL > THYIL> Tk,

h:-G | B.

h, G, Bid~y K, F—F, F74 LI, &T T—VEITH A, 72720, hidBE—T—
VTHEREINE, T—VIIU T X) 2B TH 5.

WEE (3[;&1 6[?&2)

KL1 707 5 5ADEFFIX, Prolog s EOEEX I RSHEWRECRLD. T, &
X2 ABOT— VN AT v 7 Cldnd T FAIMYBEL T-VESTHLIRE, B
ﬁ@j—w T AEERBRZ AW R A ETH L. T, EXWIOL SITFIENIE

BAAL L CWBLEDS R, 72750, ANy FEDTy FOMIH— FICESHR &M
%'ﬁ‘naf g % uﬂ%@#‘]‘& »l ’)szg'JL}E%gﬁ(—f* -ual_.'§—5 &75“(% % Oi b
T VEASBO T VRBF 7O R E RS, BHROT-VECEETHERIEATT
ObrAEOBERLRZES.

96

:-module main.
main:- intlist(1,10,List),
sum(List,0,Res).

sum(List,Sm,Resj:— List=[] | Res = Sm.
sum(List,Sm,Res):- List=[X|List2] |

Sm2 := X + Sm, sum(List2,Sm2,Res).
intlist(N,Max,List):- N > Max | List = [].
intlist(N,Max,List):~ N =<Max |

List = [N|List2], N1 :=N + 1,

intlist (N1,Max,List2).

B 5.1: KLl o7a 75 L6

==l

tist 1, 10, List)

intlist)5 23,3 .

fintist 2. 10, Listo) |

10(C75 D Eindistld
R +EEL THER

JLLETTY 3 "

592 T— V7 —VOER

5.2.2 HLTNTOTSLEFOERICONT

SIHFKLIDF Y IN7ulrSu8Thy, b2 B EDFEFTEFOIT -V T—NVD
BMAEMTHhL. TTUEARY nain VI PP TV E TV T VIZTEATHI LT
FEATVEBT A, £, main T—)Vid, intlist(1,10,List) & sum(List,Res) &\
T—VIZEEHWZONE, INOLD T VIREZ LSS RV OFRICEIRZS
NTWL 72070 RAEFE R 5. intlist 7L A, 1205 10 T TOEHTEH List
IZUVAMERELURAICEMSEL TV, sum 70 AT intlist 70+ AP ERfL
LTW DA MEZRZLETMELTVE, YA M RInE Tiitr L £ Res ICHERT B
AL S, 72720, sum TOERRABIOY A MEEMLE NS T TREXMZ #7106
DD RFELEDLERER 2 VU ABORBEEEWEICT S, T/, BiE Tl
R E), B List DL R 200 T U AR CRETIBEEMKLA) -4 T
O ABOBERERLE, FILF v ANV ERERI LD B.

D& HITKL PIEFULE, vV F 7ot AE#EECHIAME L KR BERICEETE

97

(N
/% intlist/3 FRHLEl **/

:-module main.

main :- ns:register([name(intlist_3)],Ls),
Ls = [listen(normal(S)],
S = (4,B,C),

intlist(A,B,C).
intlist(N,Max,List):- N > Max | List = [J.
intlist(N,Max,List):~ N =<Max |
List = [NiList2], N1 :=0N + 1,
intlist(N1,Max,List2).

/** intlist/3 FIFHE *x/

:-module main.

main :- ns:lookup([name(intlist_3)],normal(S)),
S = (1,10,List),
sum(List,0,Res).

sum(List,Sm,Res) :— List=[] | Res = Sm.

sum(List,Sm,Res) :— List=[X|List2] |
Sm2 := X + Sm, sum(List2,Sm2,Res).

& 5.3: DKLIC D71 75 4601

22 Lh s, AR CIRAELEES I KL 23R L, #0O0H% DKLIC 0ZEX* HiE
L7z, DBEOH CIE 2 O DKLIC 22D W TR~ Tw L,

5.3 DKLICICDWT

5.3.1 DKLIC®H7O7 35 LA

DKLIC # i\ /27027 5 461 %K 5.3 \RY. ZHUd 528D 5.1 % DKLIC THW
7B AETHD. HBEEERTIECRAULEN, SNLIRTCP V7 y PRV =N
54T N TRT T Ao TWA, TOFITIE intlist/3 MIZEEREICLL LI %

CTRELRW, =N FA TV M RDT 7T r—2avild 5% 51, intlist/3 i
#H54 DXH)ITTRITI.

5.3.2 DKLIC OIBET 3 HERIE

DKLIC 2YBET A 5HBE L 13, IP 7 FL A% FFo/o3 v ¥ (RA b EIER) FFEHHIIC
BRL, KA NDT —FF 7 F ¥ BAE—ThH5D L) LHREELHET. 22, HSFA
FCEATTEE R I — FAMR R P CETHARES &) PEPO RV E) 2RETHS. I

98

:-module main.
main :- ns:register([name(intlist_3)],Ls),
Ls = [listen(Res)|Ls2],
server (Res,Ls2).
server (Res,Ls) :- Res=normal(8) | S = (4,B,0),
intlist(A,B,C), % intlist FFOVH LESD
Ls = [listen(Res2)|Ls2],
server (Res2,Ls2).
intlist(N,Max,List):- N > Max | List = [].
intlist(N,Max,List):- N =<Max |
List = [N|List2], N1 := N + 1,
intlist(N1,Max,List2).

X 5.4: DKLIC ® 7075 L%l 2

72, HEHRAMIERODKLICT 7Y r—ay (/- K202 &8 TE5. /- i
WORY P =IO ESNE»TFETES, Fileh/ — FPERL T A2 TFRT
Ewv. - FLFEBTHA. T/, BED/ — FIZT 7 AWEE» &9 EHRICMS
ZLIETER N,

5.3.3 DKLIC DRk
DKLIC ®FEEE % [5.5 [IR$. AL T3 DKLIC 2 7845 % FE L1z

PEEGRETHE v M2 E02 - FEICE P2 mEEY (SEGEER) iR
4%, KL1 DF ¥ #F VISR ERE S W2BZT T RERER G UEY BMHMET
5ZEPTE A, DKLIC TIZ Z 088 b S EGRERICE ¥ TwA, $/2, RELHh
B % PR B BER ORBEIEL 0. WE30F ¥ 770y 7 A8V TR
ZHLs T b v 7L bmBARDP THHRHEERTH 5.

A=IVIBIN EOT T r—Ya v i, SHGHEEREOERERNT A L,
CERB. L2 L, AT %I21ZK 5.3 D ns:lookup %X ns:register &\ olzh—3I ¥
JBDAPI #BER L TRESL RV, Wiz bEk Ih50 APLIOFIHIZENLRE
RERBER (RUZhE by 7LV ET 5 &) RRBEY) POMREERTHS.

D) REET 257201, 2 — IV IRBOEREIIR - P T4 Ay FyORE T
Bze 5720 Th5. BERERBEEETIEIZIFIA T N TOFILTHoTH TCP D
vy b bind Lk TEZ SV, O/ — FA5RR b PIZELEL L CHERRRICF —

X—=3I2J8 DKLICTI, #—3IVF/BILL-oThy VNI — 7 EBLREIEMET 5.
PREFEIIET A — I V7 LI EEREE RIS T A &R E FOREEERL TV EY,

99

DKLIC7 77U —2 3>

| DKLICALEE R

KLICHLIE %

K 5.5: DKLIC D¢ K

BH—NADF ¥ A NEF— AL TEATT2ERELZGET - EARBL VIR
BRIZb R 5.

BEELAE, A IVIBOEETHHF— IV TUERE, FBO L) IR T
AR FXTEHLDT, 1L RAMILTOLAETEE L W RIF I EL2VETH
.37, TOT UL AREMIMBOR - I VT REANERL, BROA-I VT T
DX AFBALTF ¥ ANVOGERITRBREEZTR). ThCLoTA—I Y7 THEA
X P2P R—AD DKLIC » v N7 — 7 2 HEET 5.

56 F530% Y 7V 705 T L L TWw5DKLIC & v b 7—27O—fT
»%.DKLICAY 7= 23 3—3IV /B LOBBPORLET I v 7Ry 7 AL
ZoTWh, HE—FEDPZDIL, intlist/3 R sun/3 ZEDDKLICT 7)) 7 —va3a¥yd
BRED, 20T TV r—2 a VHEBHOTWARA FHOR—I V7T UL ATHL LW
ST ERTTHA.

O— RB¥ IO T VEECEREETESLELTABTH L. T VDOBEL
T, ZOT—VOM—VHIHEELZVEEICAVO D, - FEld, APFREENFTE
L%, KL1DTRZ I LX) avy ahEa— FEET.

F—WB% FLI-—Vz b REDOTTSIVI—varERBTELIILELELD,
T VEBREL, BEETETTRICRS &) ICHEFT 5. [7] TR, FEa—- FLLT[g]
ARALZI— FBRLRIIT-VBRTEEL TR, Flla— F 03 23, 7%
CIIREETHS.

BERENRE JVE—F UV r—a—VER3IZRAETH L. TOBLEDLZI-F
BESD LOBIRFI—I VOB ET A, DT, I FBEY -/, T-VEBET —

100

NP: Naming Process

register,

intlist/3 , N

5.6: DKLIC # v b7 —7%

ON, EBRFEIPH A — N\ EEIRE. CHIZE o T/ — RPEETORBETFOLEN
Y, BEIRLTAY VT =2 LR —NE2RBETLHIETES.
REDPOARF L TEEL-DEGREBEEEE LA - IV IBIZOWTIHRRAS.

5.4 DEGREZIE DL

ZORBITRD LN AR, SEGRELEROER, BRML, BEL VI T THA 2N
DEBL 3EDETHEELALBEICELLTHELHRT2HETH L. RETIIIN
LERBRTA0FGREER T b EmHEER T T P aVOBREHI DWW THERS.

5.4.1 SHEGREEX

SEGREAERT T h 2)Wid 4] TREINTW LA, PR 70 2 VOB ICLE LR
ALOE: i a8

SHEGREERIZIZ 2/ — FEOKLICERZR—HT57:00ID 2EHh HTH. &Y
A4 FTIZZDID & KLIC ZEH O eELEHRT H KLl 70 X (BRI LR LI
F)REL. &/ - FORE:GHGHEEROER, BM4L, BEL VoA XY MIID
FHOVTERSN,) —HD/ — FANEBEER, MEERL. ANV, ARV ML
B, ROID OFHE*ITV, 70 a3 VziRT.

DEERIEEHD A N b
THEREEBOIREBENIZE b %) A XY IOV THENE.

101

CER ERER, B0 HREEEER S BRI ID) LT EbRc L R
R A, EILET o/ — i, 39 —FHD/ — FANID £ flvTopen A v £— VI
Lo TRET A, Ay e—VREMTIE, ID BT 2 KLIC EREFHHICERT S, 4
REDER A v £ —VORTILTHRHRFERAOD 2H I LTS, Ll ERAYE—-D
DIFL AL, BREA y - VHICERNICE IR L EFTRTHS.

BiME SUHGHEEROBMLEERT 5. SEEGEERIIHIT 57— 7 V7 KLIC
BEROBRLERM L7255, ID L B LIEO LY b2 b —HD/ — F~bind X v
=TIk o TRAT A, BAMLEICOHGHEERSEIND 26, £o b ID TERHA
T5. AvE—YZERATIRID BT B KLIC £#% %E L - BHR{LEIC X o TEK
ftF5. 22 TRADID PEITN TV 5HBICKLIC EHZERT 5. A Hid
DR ERRA v E2—TTH 5.

BRE SUGELROBEEZERTS. THRKLL TRZOMBERICGCEEKETLIL
ZRHRE LTVWA. o TIDEERA Y £— VL 20N, TEGEABIZBITAID
MO GC THB. =0 ID 2/ GC DRIk T 5.

KLl BRI E—RAZ R R 720, AEROEGREEH L T EMEB Ao BL T
EHRT S, BEAvE—VLEMKLA v - VICEERNICEEINS. LL, EBOTT
b IV, PR T T P VICB W TEICEET S F CEMUBEEZRE L2 (TR
5w, close & closed X v £ — VT X o TEELIT).

ID

ID ik, BEGHBEERORELBODO/-OICLELBHID L, 2EFBELNOD%
Fa—NVIZENTAODaRs Y a vy IDEOEy NTERET S, 2473 1D
IR DO 72O TR ETH SH. 2T, BRID ORI OWTOARERS., T
NATHETR D ID ZROFED BV GC D7D DR TH 5.

FROBEEA vy ¥ — TV L FORERIZL > T GC IITEEZDS, BETLIWEEHT S
ID %4352 T7O FaV—BHERTELZEFH S, ID EZHFTPR TR
L/ —FB®»5open(ID) A v =TI WL Hb LNEVDT, /— FALDLbind XV
t—VDEHIC open(ID) A vt —TYEREL I LIFTE W (H5.T).

LaL, FAPAPBERDOL EICHWSIDZMEFA N BOIDZHEFFO%E (K
58). KA FBHFFNID TEEA Y -V EHEoTI VI EPRIESN TS,
RANAZEMEA v - VRELRBICFOID 2EHT A EHFTES. £2T, 2
AAMBTTCP 247 Y a v 2BRESZ L AP Cur BT 2BEOID EZHEZRDL,
EEANEF 1 0LHEEAHFROID Zf eI L L L.

SEEGREEHR IO MO

FROA N M, AT bEM IDZEEE 7O PINVICE LD S,

102

lnodeA‘[nodeB] hodeAl hodeBl
open(iD) open(ID_inspaceA)
—— e
bind(IDx,term) bind(ID_inspaceA,term)
0 ID) open(ID_inspaceA)
D
nodeB# 5 nodeBA» 5
open(ID)X v =2 1& open(ID_inspaceA)
kaprHLhBEV Ay—JEIhHW
5.7: ID ZRSDEI L 2 Wi & 5.8: ID ZEH &l L7356

1. TCP 242 v a v BHRER LA YO bisE 2EKID 2L, HRE
KENANL, 1 20T 2FHID ZMEFFD.

2. RIT, AR L72EAS by 7L XV O EEREERD open A v L=V EFETT 5. L

B, bind A v —VICKRFEHDID 2R L72% 5, open X vt — VHEEEIC
EINTWBLERBRT L.

3. SHERBAES L —FIZ X o TEMLE NS, ID L BAMUIEZ 5 #IZ L Thind
Ay k=Y hEETH. FEMILIDISTET 5 KLIC EHz BHILT 5.

4. BEEA v b=V OREEB (FA T A) B OGEGHEDERETLH L5, +
A+ AT I OGS EEGREAR T BEST THFHIRRE (closing) IZL, #iF (KA } B)
PO DEESTT (closed) A v t—VIlL o TEETS.

RA N ADPERETRVEEIE, AN ABIZEEETHFLIREICL, X B
PODREEZT AV -V %o, BETA.

5. b5 DHGREEREPRETLEEIL, TOTCP 227 a VICBWTREELRS
ER B AR e o7 b (BHA—F —THOND), BERT A v -T2
B35 MEPLIET Ay -V OBRILENHo72%b, TCPAXI Y a vz
L5,

5307075 MBI B S EEREEROBFREER 59 ITRL.

5.4.2 FR#kEERR

DEGHREEE 7O P a VI 2EBETEITOTHEP, 3EBED L SITHET HHHK
EEBERTAIENTELRW. H5100 X912, /— FBTHmBELEEX, Y v B—1t

103

sumfil ‘ intlist{i

GErAZeL } open(0) > (0BHLEHEN)
LR =

1B LM AL |bind(O, [integer(1)|variable(1)])

1B LT BER

. 0BEETTHD
O0BREEZT TS closed(0) . <
. closed(0) 0FRERE

4 .

2EHUZHA R |bind(1, [integer(2)|variable(3)])

DEMLEMER
UBRERTHS

‘ closed(1) R
|EEE
L B

5.9: TEGREEL T T b avoith

X=Y
X Y g x'l, \\?K
Crode®>
HrRkBRRR T R BEER TR

5.10: HikE OHERR

L, 72/ —FBIBWTIEKRX, Y 2EKIILEE L (ZREL2Y) 25, /- FB
3, —F OSUGREERD B ETA L U, M OSBEREERICEFIT 2721 OF
WEERDL, ZDXI R - FOFRLR, F—1N—~y FetFa U TF1IlBITL)RS
#PES . FCT, PkEER T Pa v ERRE L.

hikdERR 700 b DL

KLIC O3tA 2 VI X 2HHIEREICHE VT RO PR [9) T2 bN TR 5
25, [9] 1%, EEEVHEE I LT, TECEBLLAZEROT AL Z %57 % one-way
message 70 M IV TH5S. KEFFTH, WEIRERERY A UEER RO L EE
BL7Z-70FaLThs. RETIXIOTT b I VoW THR5. M [10] 12 b B~
TWaBY, PHGREEREOER IS > TEETDHA.

104

Host B Host C . Host D

X=Y TREZEE »D

X YNDBRBE DT T 2 AH
. T AU R B AE

Host A

Y EWASiE#E LHost B&
[L B R DR 4

: . stop(iDy) :
s e

'
¢
'
]
'
'
Pl s
1
-

-

. s el
.
[g oo]
! suspend(A) E;/W
: T
ST A ! ! h »o
PREREBIELR 'OHREHERRSE T ¥ Tsuspend
connect(IDz, IDy) T : >
- z D)
X&Z% B~k ' Y&zZ% Bk

) Host B
T ERERERAEEL(X,X1,X2,Y) & Bl B

4———{ closed([iDx, IDx1, IDx2]) ! '
Host AEl ' .
SEGREEHXX1,X2) closed({IDy]) -
ZHIBRLT

- Host CHIl®
PRI T SHREEHY)EHRLT
PRI

.............

Host A Host C ,Host D
TR R R % PG

1
t

1

t

t

1

f

)

)

!

)

!

)

\

t ll
L3 Ll
close(IDx) v , close(lDy))
f

'

)

B

B

1

1

B

.

L}

|

\

|

\

\

|

R Rt preee. i stop(iDz) :
-

5.11: WH#kEERR 70 b VK

hifEERc O b

hRkEER Y ER TS 70 2 ViR 511 ICRT. BB T P arvoiiici, i
DFEA POHHHREFEPEILZFELERELVESIITETE 2.

1. stop Avt—Tid, RAMA LKA CICEEENS. 5IEINETHIGREER
EEDGEGRBEER D O IRET B T EEGRBEERO BRI A v -V DEEE T T Y
7 EED (MOEHII 7Oy 7 L) Avt—YUThs. ZELABIIESDL T

Oy 755,
PBETIERAMNAERAPNCIZHLCHEUEEZITRZIDNT, FA M AIZDONWT
DRFEIT 5.

2. KA M Adstop Avt—VEZEL, FEEFLLEFET TS L ok Ay -7
ZFRA T BISRET 5.

105

RAFB T, #MEL7zstop A vb— TV EFTEEWVICstop LTI TOEHDE
FALA v E—= VW ERA N ADPLESNTL BEETFDHL. ZOEMMLBEICHHAD
SERBAMSEINTWEE, 2hd stopT5. ZD72OI, FA B T,
stop A v b=V ERBEERDPS ok AvE—VERETLITIRELL, FHHDOHG
MG BEAEROID #50BLTHL. SITRELAZID &, RICHEGEEHTHIR
THEE(5) WCHHT . A CREETTHLBREIL, Cony 77 ICREES
NTWBIRETLH 5.

3. RAPAEKRZAFCHH ok XY k*?%"fi‘%@'ék\ reconnect A vt —T%
FHRDFRAD (ZOBEIIEZ M A)ICEET 5o

4. reconnect A v E—VHZELLARA N AR, BEINAFA R (KA FC) ITH
LTHLWTCP 227 v a r 28 (EREAZOIZZNEHAVE). 61T, 3
LWOBGHTEER z 24 L, FA P CIT L COEGREER Y L z 28—y
HEIICERETLHAYE— connect ¥ EET S

5. &RA b Ald connect 2% o072 H, HHHERHREHKD b v TV NVORE (Z D
B X) EFBRER LT,z LRET 5. ZHICKD, dRkERT T a3
BIMAERICHA P BICEELTLE o CWAZBMMEA v -V ZFA L CITxL
THREETAIENTESL. 8512, "A FBITH L TER X OBREEF A v
¥ (close) ZREET 5.

AA M Cldconnect ZELNTH, Y & Z RBE—bT4. EHLITRAMBITHL
TERY ODBEEZEFA Y E— (close) Z#£ET 5.

6. close X v t—VERELZZFA L (KA B) I, 5IHGRTTEGmELRLZZ
POIRE LD HGREER A RET L. BERIC, BELTIGEEROID %
closed A v t—T L LTHRETA. D closed A v -V, TiGnBEER 0
FINIZBIT S closed AV E—TVERLELARAVDRA Yy =T THD (BREILDIZ
BIZY R Mo TV A).

7. closed A vt —VEZELALFA N (KA MA, FA L C) DS, §5IEIVRT 5 EGw L
ERzHIBR L7720, PBFRRIIHR T L2 5.

RIT, HROBEDLHED, BN REIEZ RO LB TET,

X=Y |2X D& A b B AR S, BB Y=W IS X D RA P CHPHBEER S NG &
&, RA } BC Bl % FIRIC stop G FREZRBEND ZEPDHB. ZOHE, EVILERE
HMESPHPERSINE Z LT, BERIBEEINLZ EILES.

FEBOWEEZ Co0I10id, PHERET) AR PCERBENEZOTALENDH S,
FTRTHOTCP 247 ¥ 3 »I2id, connect L7zHRA M & accept L7k A + D 2 FHHA
BETA. ZOBAE, BCHEax7a i, A P B 2 connect L7zbDET 5,

1. ICTCP 2% 7 ¥ a YiZxt L Tstop A v =V d7 3K 723551213, connect
L7zl (R A T B) Ok 2 BT 5 2 & TEEBOREZR <.
b L, BHEPEBRASEST L MREE (ok A v E—VOZELK) Tstop Avk—T%
T o 72356113, ETRORREERZ BT T 5.

106

2. *ﬁ%@%@%bfﬁ5fx%Bzﬁ@ﬁﬂ@%ﬁofXFC”ﬂbfzwwmm
Ay t—T%%EETH. suspend A v E—TVIFFIRITIIFRA N ADERIE SR 5.
I, PEEER A ORR b (A b C) i, BEIAICIEAR P BCD BT R <,
FAMACD B2 & B2 1T % Y LEPSH L7120 THAH. FA B PLH K
AN CNOHERAX Y-V, KA M ABC BT 2 HHIERET KA F C 8K
HMTAHIETHD.

3. suspend A vt —TVEFZIE oA A M, F L WOEGRELE (B 2) o ID 2°
BARILL, BR A F ORRBREEBRSRT E TR R EILET 5. PR BH
THEEE, HLOWEAAD (FAMA) ICHEDTstop A v E—VEREET S,

5.5 SOBEGRETHEDHET

SECGREEBBOEEREHFE IO LA LR, FHESIUMRKIC X 2 PP & fEb &
WEEIFNHFELL. iSO GREEE 7T FaVE IOEETHLNLTW/ T E b
INE—HMEBELLODTHS. LeL, EBICBW T, FHEERTEATLZ LT
KOLOMENE L. KE T, TOMBEL Z2OBIEIIODVTHRL, ENEITICH
LERETOLADREEITR .

5.5.1 R EEDMES

5.4.2 THR7z25, FREBERR T 5 7201243, (1) HGREERFE L= 71 r - a v
L7-Z ExBEL, (i) #nbiza— %#%@ﬁﬁ#&w;k%%abﬁ<fi&%&w
UL, ZOZ2IEFKLIC EOKLL 7077 ATIREET A Z ERTE L. S 51T (1)
PR ORI IR OB ICE T 5 ID ZE 2D 72010, ThH DR e #E T 5 7
DX T a v IDBESIVEIICESL. IS 3ODOMBEDOREFEIZOWTIERD.

PEGREZ AT OB —{RA

PITICRTH T, check(X,X) £V T—VThoTh, 255A7E bIIH G BAML
LBRWERDYF 7 arydniwvy, OO KLL 7UY T 400 0GREBEERFELO
H— AP TE L.

check(A,A) :- true | true.

H DT
check(A,B) :- A=B | true.

Z 2 CHHmBERR LT OB~z AT 2 HEF 2BV EZ LN —DId [4] TR
ENTSHRBEERY Vo h =947V PCEELCERICL 2B LB B
—(bDF A I TIT v 2T BHE

%7 —ORPHGREEHO CERVIVOR—BREIZL - T, BRICE—AF D -

ZERBMBTLHETHD.

107

HFREATE 2 EHBL, %E I KLLIC X BRI TR, C SRBEET
DFELBEBTETH L WG h oz, UTICEHEEEICLY CEERBTOSEGHEE
BRLOR-MREZRA L B8R ZHR5.

Generator # 72 1 7 ML 3ERDNE

KLIC TRERBEIFHLII3EEDO T 24 v 74+ 7Y 27 + (Data, Consumer, Gen-
erator D 3&) &L\) BRIZ ERAFTRE T, LESECEEE CEHETEETITI V. &
o DRI KLIC EATHICFUH S NG,

ME— Generator 4 73 = 7 M2, B— LB E&EEETH AH. TOEEHT, B
— AL DOMEPIHEGRHEER TH A0 MAENTE L. M5.121F, KLICT ¥4 LAV A
F LD Generator 7V = 7 P OBE—ALBEOMNHEEHSTH 5.

7 v % 4 L% Generator 7 7V = 7 b EREFREE (H 5\ Generator 77V 2 7 b
F+) ODB—{bD & ZIZ, + 7V 227 MO generate BEA I L, AR S N7-BEAIHTH
—LHEFz EMMET 5. L L, COSEGHEERY 7Y 2 7 MIEEROE—{tE kA
T5720I2, BAETIRZ BB %KY generate M EETLLEFHSH. £ 2
A5, K512 %25 L Generator & 77 = 7 FESEBEEZE LGSR, BEL= 74
F—2arrFfT LT ERV-TERERT A L5007 o T OEREIFHAT
ERWVWIZENFHEL IR 0T

PEGREEBRTOR—HRE

KLIC OWE T — % FHTIZ, KLICEHIZEA > ¥ Th D, 2 00 KLIC EHDFE—%
RS VORI HICBEESHIONE. 22T, AERETRLETCOGTEGRELR &R
TARBEATV 2 P (Datat 7V M) REEL, LA IV TEHEHTORL
RA VI EEFODHGRBEHIHERET L0 2MET 5 CEEMET 7Yy 7 $40F%%
BHL/. '

CZTHRIBLA—OSEmEERII ISR F 2y 71080, SBIBEN L4
FLZET, IDOHETERLTKLL 7075 A~EH L, PRkEER 7 O b 2 VB |IZF
H¥2%2. COMBERTET S A IV 732~ FBRF 20 7 OFEIEKFEL TV D720,
KLICOGC DA I VT THAH. F#FELLITRTHRS,

1-HYERBF vy
A—-YEBF v TOHE

DEGREEB DL —FSE L, DKLIC ¥ A 7 L LUHND T— WiZ X B 5 EGREER
NOBBOZETHAE. FTT, FTEREF 7V =27 VPBEHET S KLICEH D T~
VWHRoDEREF Ly 7T H5HEICODNTHENS.

KLIC ZEHICISREBRI L V. L2 > T, SBOFEZHERNL HFEIHFEL
B, T VI A DMIFEARLME—DOFER, F oy ZWREZHN KLIC ® GC (2 ¥~ GC)
ERICHIBESL S OEBICHFET S THE T4 HETH 5.

108

/

generator_unify(gsxz, sy, allocp)
/*
sx is a suspension structure
and y is hook or gemerator
*/
{
[skskok ok kokok ok 8 B ok sk Kok ok Kk kK ok
} else {
/* x and y are both generator,
but both failed. */

struct generator_object *gobjx =
untag_generator_susp(gsx->u.o);

/*¥xxxx generate XV v FEIERAS,
Z® Generator 7V x 7 MIBEFEET . skkxknx/

q tmpx = generic_generate(gobjx, allocp);

switch((long)tmpx) {
case (long)makeref(0): /#kkkskkx ZHE wxkkrrk/
case (long)makecons(0): /akkxxxx ZHBE soxxxskkx/
default:
allocp = heapp;
gsx—->backpt = tmpx;
if(isref (tmpx) && tmpx == derefone(tmpx)) {
derefone(sy->backpt) = tmpx;
} else {
/*¥xx% Z O Generator 7V x 7 PDBA T ZIIHKD wrxx/

[x*kxx 2O do_unify FEOH L3, EENICECELI KT
generator_unify (RREH) ORUHLELS.
o TERBN—T LD *xx/

return do_unify(allocp, tmpx, sy->backpt);
¥

JFFwksk kAR Rk 8 Bk skokok ok sk ok ok /

5.12: Generator + 7Y = 7 b & & U3E D KLIC OB — LB BIZL (unify.c)

109

| BFlge_hookic B8k X h 7= BARL % -5 '1\

hE B R
IReadyﬁ'r:Lw ZRoott v b & Lf:CopyingGC‘ O S €5

v

8 5lafier_gc_hook!Z B4 & M7z B % T4

5.13: KLIC ® GC Dt 1

ZDI¥— GC It Ready ¥ 2—% Root v b & LTWA. Z070d b RENHH
WICHET 5 2 213, ZOEMA Ready ¥ 2 — D T— A0 SEETRETSH), TOFER
BEOT—UHBRBLTWEILEEERTS.

¥ 72, Bk DKLIC ¥ A 7 A D T— b &%, FEEREEROBRUERT 2T -V T
Hb ZOT— VG ELTF =y ZNRERE PRRERERE LTRITT 2. 372,
HFERERIC T v 7 Lo T — Vi, BHICFOT— v (ERICIRFEEFEL~D
KA H)RBHTES. fEo T, 2—FEHEFENZL DOYEFEER, DT XD
2722 5.

1. KLIC @ Copying GC # T L72ERIZ,
2. Fxv W RERSIHEBIHFEL, 2
3. FRTEEZERIIZ > TWDH A,

4. 7y 7 LTWAIT— VS EALEH T— IV L 7R\,

ZOHERITR D BEIE, GCOFIBRO KLIC I X287 v 7 2 AVTEET L L
BN, FEHTELRWIEFHLMIRS, L2L, 2OBET v 7 LMD F ETH
Wt B72%, T2 T, KLIC ® GC o (M5.13) & KLIC Vv — A (H 5.14) 7R
after_gc_hook % gc_hook V3T v 7 TH 5.

SR T — L OHFER

EHET T £ ADEETI, B2 Ready ¥ 2 —IZHFET S &9 % T— Vi b7 EmHE
EHAPEEREFEOLTERL TRV EPHLPTH L. T2, 7Y 75 AhIT—
NTHoTOHEBNMZHPBBEPIELTH 5.

CHCERETO R, JE— FARA PPOELNTERMEA v E—VIEoT
Bk X PO KLIC B % BT 5. —RICHBEHEBMPET S5 L) 2T—1i3, 13
YA B Ready ¥ 2 —BICHEAET 5%, 220U D T—VThDE. THIZFBENSK
PAR B Th D T LA BT 5. 22T, Data 7Y =7 MCRBILET L DY
LhEETRALL.

110

/

static struct goalrec *collect_garbage(qgp)
struct goalrec *qgp;

/% FEBE xx/

/***x* Ready ¥ 2 — % Root £ v ; &9 5 Copying GC ***x*/

for(; pg->prio >= 0; pqg = pg->next) {
pqQ->q = copy_one_queue(pg->q,allocp,ntop,otop,nsize,osize);
allocp = heapp;

}

gp = copy._one_queue(qp, allocp, ntop, otop, nsize, osize);
/xx HRE %%/

[Hxkrkx Z DETNZBEIEOR A ¥ 2L AT 5 API i
alloc.c 7 7 A WIZRFAENTNVE xkkxx*/
for (k=0; k<num_after_gc_hooks; k++) {
heapp = after_gc_hook_table[k] (heapp);
}

/% HEE %%/

5.14: KLIC 7 v % 4 52® GC B% (in ge.c)

111

[85gc_hooklz BiR 5 M- EIES |

v - <~
|Ready>”* a2 —%Roott v b & L 72CopyingGC I 33%’%;}15\ ﬂl]/??é%

\ 4

[BFbefore_peheckic B4t & M7 BIEL A IES |,

AW T VOEFEEF = v 7 fatal error

[E5atier_oc hookiz ik = N 7= BB IE.5% |

5.15: KLIC ® GC Djih 2

GC DB T v 7 DHFR

SEEHTERO GCEBOI ¥ — %otk) A RMEIC R 5. Bild X) 2 Ready
Fa—DLNIAY DL THBETRVE, BRF 2y 7 2fTRAGV. 2OF A Y
71t after_gc_hook THAH LI IR R 5.

—HT, VR v s 47V NIESHEEFED L) LI E-ENDPERMAIE
HTEL720, FHTAIERFKLICO GCIL X THFILa¥—SNH I Ld RV, 1t
L BETAERII7 v /AT VEFT TV P IE-LRITHIER bR\, 2
Ve Lhwe, BT 5 T VPEELBZVERICT v 7 LTWS (KA L Tw5)
RN, MERPERERTT 5.

SITYL YL . [5.15 KA T ViR b FER L7 GC DN TH
%. after_gc_hook THEL/BICTIE - L TR>ZL2WA, £2T4 ¥—45L
AR T— VR ICEICEb RV,

72T, KLIC %8 LCH 7210 5.15 1R T & 9 ZAARB T —VF = 7 DEH,
Copying GC DHEBICEBFTR LETH 25 L) ITL.

x93 ID DOFKE

PERD PP BEDHEEE L EECROUGHELERICIERID 28) HTTw.
L L, RkHER BT 9 BRICIE, “RA M A L OEHED 0FEL AR B LOERD 0F
2B 72 B EHDSE—LENTVE?, WA ZEERALRLTEERLRY. &I, Y
F—FRAIPLOTCP 24723 ViRIP L 13 1MET 545, T—AVEAPDPD
BEIERD D, IP (3055 localhost) TIXFBITE BV, 22T, 22272 ID W,
TR a v OFBO) - FOIP T FLVARTTIZERL, O—ANFA ML ORI
BEHE-BICEIDSTHEI L E LT

112

1 A —— KLIA MY —A
7m§:wak~9

| ey S
4 I _
KL1 71+ 2 EHE
77 b
Ty
BARA E?Eﬂ%\)\‘ b= pointerZ g

LN N KLIEH SR

B 5.16: Z2E T2 OB

5.5.2 EHXRIOEINOLE
CNFTIHRSEZERTEDLEUTOLI IR .
o DEGHEEEHFE OB LI, KA V¥ OR—HEREICL > THRET 5.

o T—FHEAMEZ & 1E, KLIC @ Copying GC BRI Z DEEAIRERICH Y, A
DEDEBIZIE DKLIC YV AFLADT—= VL7 v 7 LTwWirw, 2L THIT 2
CAUIFHTHRIER L 72 before_pcheck 7 v 7 TIT% 9.

o SHGRHEARD BFLEER T— VUM T, ZHE T I A0 T - VG HEGHEEHK
BT L0 EITL7DICDatat 7TV PR EET .
o L—HFEBHBOFELZF 2y 7T H7-0DEBPFTHRLY A I V7%V TKLIC
CH A T RBENTA.
e IRx 7 arvIDIX, ARZ Y aVDOWMHEND /) — FDIP 7 FLAZTICERL, 0 —
HIVKANDPLD IR Y Vg VI3 —EZICEHY Y TS,
Ihefizl, SOREERBRHIITHLDIE, ERETOERAZ (&7 baloRy
Y- URREETE O S % KLL T, (i) 7 HHmEBERE~ DAL IREL EHT 585
ZDatad 7Y 27 FTERET L. 2720, BFEERT-LVZITIIKL TRdT5. &
BB 5.16 D X S HEARICR B,

5.6 NEGRIEBETHEOEE

AE T, ID OESE, 7o b a VAEZITS 9 KLL & 2, 7EGREEREERTLE
BEA T 27 POEREIZDWTIHERS.

113

5.6.1 IDs
DEUTD LD 2RNT L.
(B, 2273 v ID)

2% 27 33 ID it localhost & DEH TIIEH T —FICH Y 4T, BEFFA &L OER
T, MEDIP 7 FLARXFFE LTEKL, T2 7 PAICEBRLZDDOEHNS
Bl Z1F, 123.456.789.000 & 456.000.123.789 &\ 3 IP ##>o / — FEO I A7 ¥ a v iz
51X, 123_456_789_000_456_000_123_789 L\ ID 274 5. XFEF D F F TIIEHE
FTV 7 NOEEPEHCLL7DICT PAICERL. 2, €U F FIIETOR R

FTHY, Vv MBEICBYTparse ICRKMTHDT, 7 ¥ —nN"—1IE# L.

5.6.2 AEGERIEZEHT O H2IL0E
70t VIS U T O L 9 2 KLL 7 e 2 A0 X o TR L7z,
o AJPRFET T L A (in)
o HWIMHE 74X (out)
o BRERA TV MREETU LA (vart)
o HHGREAHEN 7T X (observe)
K70t ADOBRRER 51T IR,

in7OtX

ZOTAEREZ, VI FPOHEARARA Y-V ELETLETULATHDE. FT
fF17 %5 2 v & — 14, open, close, closed, finish, bind TH 5.

open(ID) TCP I3 7 a VIR ENLBIRMCELN TS Ay E—Y. Zh
2Bl o725 vart 72 £ A% L C new_connection X v =T EFITL, FHHROE
mErEET .

close(ID) ID CRISHGREEROBEELYEF T LA vV, IR ITHo756
vart 7O A LT, set_state(ID,closing) #* set_state(ID,closed) X vt —
FATT 5. L5 BP0, FHGEERTT P IV TRET 2.

closed(ID) ID TR THGHBEEROBEES T A vt—7. T ZTHo7/2b vart 7
Ut 25t LT, set_state(ID,closed) # v t— T %5479 5. [IKFIC channels X v

t—VEFITL, 20X T a VRIIERET A0 HGREEROBREEE L. ZORED
Yuiztid, out 7O ACKH LT finish X v =T % %5, TOAvE—T3ZDZE
F,)E-bF/—FNEHELND.

114

lookup_id,
r_bound,
set_state,
channels}

I
{ bmd close, closed

M 5.17: SEGelEE 7 u b o VILE

finish(ID) Y %— /= FACHEGEERORES LU THL I L ZERL TV S
Zﬂ’i’rﬁ‘ﬁﬂléc‘: vart 70t A28 LT channels X v — Y% HEITL, u%%@’(%

SEEEBAEROBBE AL, CORENEEULLIE, ok s a Y PRT LI ZE
e b, F—3Ivr7utRlnairrva v ThiThUE (localhost EDIAF T T a
b)), ZOERT T 5.

bind(ID,Term) ID TRTHEGREEHDBMKIEA v - ThEZTR-726, F
¥t X unwrap/4 X FUHT. £—5/#1213 unwrap Lf’\ﬂI}E:, % 5133 unwrap DI
AHRY, EEFHICREOPIRETN TV SEGREERID D) A P TERA. FNGIHK
1t unwrap PET L-EEZLOT.

CZCEID U A M, add_with_ids/4 FHEXICE SN, ID 14T 5 KLICEHK
PR 5. ZOBF vart 7Ot A2 lookup_var X v 'k“‘/ﬁ‘ﬂﬁé N, BEHERN
i add_with_id X v £ — Y THRICID 2 EH L TKLICEEK2F 2%

unwrap L7-3E® ID 132 2 TR/ KLIC ZHIZEHR I N, vart 7L A LT
bind(ID, UnwrapedTerm) X vt—Y & #iZE SN 5. TDbind X v £ — VA vart 7
O ATRBEATHOTIO/ — FO KLIC ERICEMMEA KB ENS.

115

out 70X

ZOTTEAE, Vi hAOBEOEEALETL) TOLATHE. TOT LA
in 7Ot AH5 finish %, observe 77U A M D bound X VHA.

finish DAV =V, F0FFTUE—F/— FIIEETA.

bound(ID,Term) ID 757K ¥ S EGHEEH D EMHMAHE X v -7, BRI, in
SOt AN vart (2% o7 bind A v — VDR, b LLRT T —va YHFEME
L0V ENRLTHS. 5, b5 %00% vart 7H AR LT r_bound(ID,R)
Lk > THRD. R true Thol2BLRZED/F —THY, false BHRETH 5.
HEOBEAIL, VE— b/ — FTRMKLENZ0EH/ — FTRBELZZZT2OT, A=
NaVichEo T, vart 7R AIIH L T set_state(closed) »* set_state(closing)
DVuFhr k5 ﬁ?é
#EOWEIE, VE— 1/ — NIl bind(ID,wrapedTerm) X v -T2k, BARLE
iﬁﬁ:@“é ¥4 Term % wrap/4 Twrap 3 5. DB wrap (¥, KLIC 25eft 3 % wrap
ITALTH L. 12751, BEDSE TN CTOEE, FOEHD) A M FE=FIEISES.
_0)‘) Z MiEFE X add_vith_vars [CHEE N, WiES A ID ICEHREI NS, Z O vart
70+t 121 lookup_id X v £ — VHRATE N, ID 2B b N2 NIL, add_with_var
Ay =TIl o THRICOEGRBERFERENID RO N5.

vart 70t X

CTOTURAREREF TV VERETAR—DTOLATHE. Ay tE—TVk
WA E, FORX Y E— vbﬂfﬁ%ﬁ7/m7%@f//h%ﬁ&tff%é

observe 7Ot X

T DT RGN PRTEREERE LTy 7 LT T, BRMLIC L o TR
X, out 7RI LT, bound(ID, Term) X v £t — Y% FETT 5. 2D Term 7y
7 LT BB B L L2 TH 5.

5.6.3 TEXRAT7 b

EREL T s AT OMEE%#7- T Datat 7V 27 FThHDH. TITIHAPIL
Py REEDOFEA LY. KLICOY 232 v 747V FERIIETA FFaxy
FARELTWADT, 513HICEREFECELTHEL TS

1. SHRBERDL—FBRTF =y 7 T2) BREZERT 2.

9. ZOME% KLIC ® GC OF7-1TBN%ESE L7 before_pcheck &) ¥4I ¥ 7
TIENS X HIBHTS.

116

3.

4.

DEGREER T BRI L720 REBLZREFT 5.
ID EfH = EHT 5.

ST APL L T — ¥ EEICDOWTHBA LRSS 3, 410200 THBET A, 20T, Pk
BRoSEE 5 L) 2Bt CRYOTF—FiEE L 1,2 %2727 CEROMBOIHEIT

.

APIs

BI5.18, UTFDX) Z—EDA Yy FIFUH L (—#@) LIZRS W) DDA 7V«
7 P KLIC k- 7HEEBOTF— ¥y BEXTHE. INESEICLEFL, LIED APIO
HELTHATE LW,

1.

new (NewObj,Report)
BREF T2 PRERT 5.

new.connection(NodeA,Server,NewQObj)

Subtable IEERIERK S 5.

lookup_var(@(0,nodeA) ,X,Result0O,NewObj)
TV FRIZELIE RV

. add_with_id(@(0,nodeA) ,X,NewObj)

F ¥ 2V X % Channel EED X X bigEN L. REZRT A /30 OPEN
ik h.

lookup.id(Y,noded,ID,Result,NewObj)
FT7TV 7 PRIZEIE R

add_with_var(Y,nodeA,ID,New0bj)
F ¥ VY %% Channel fEEEKRD A NP LIFEINBIKEERT A 230 OPEN (2
5.

APIDIFUHI LI, T SR$ API DS IBOBICEDIIE 7V 27 FEFES 22T
NIz 67\, Flz21Z, channels/2 & o725, generic:channel (Obj,CID,NewObj)
EFUH SR TR ZLR2V. 7927 VEEEZEKTADIZKLIC v =27 VO
WEIZL D o TnAEZDTHAD.

DFIRAPID—ETH 5. APl DFHBITOHT, 51512 NewObj & HTE 723413 £
Vo FOVEEBRDA T 27 PHSRABERTH Y, ST EKL TV 5.

e new/2

e new_connection/3

e lookup.id/5

e add_with_var/4

117

/ subtable_list NULL |relayChannelSet_list

Subtableffi& &
NULL next
atom_nodeA | host
atom_server | side
256 len
num
1 free
-1 used
/ chans
Channel & AAELF
NULL | NULL NULL | listed
false false false | is_rbound
/ / CLOSED]| var
()(’EN OfEN CLOSED; state report
KLICk — 7483
X Y Report

518 BHEEF TV bOTF—FHEEL

e lookup-var/4
e add_with_id/3
e is_rbound/2

e bind/4

e set_state/3

e get_state/2

e channels/2

e equal/3

e close_connection/2

new/2 —NewObj —Report

EREF TV NRERTS. 2047V ME1/ - FiZ12TEY
HiE % & %\ (2 EL EOERIIEFE L T). Report iR EEEE 7T b
DML BER S HEEERO ID A2 U LDy FHEMEEN T 2

118

HEEARLA B — L TH) #igld v, EXEUTIORT.
Report = [[@(IntID, ConnectionID) |IDs] | Report2]

372, before_pcheck ¥ 4 X ¥ 7 CIII¥ 5% % before_pcheck FAELR
1 5 EFIAAT 5.

new_connection/3 +ConnectionID +Side —NewObj

a4 7 v avID %%TElo T, Subtable iEARE{ES. Sideid, 2047V x
JMNPHEET S — FPaxr v a YEFRE (client) 2HFKA (server)
%IRRT . Subtable EEERIILT DL 5 X VN EEFD.

- ~
next Subtable fEXEKT) 2 F KD Subtable &4

host 24227 a v ID 2 HET5
side Side # 7 5

len ZOF—T7VPERTSIDZEDEKES*2 (chans DI
& % Channel EEAROE L), ID Z/iL, side 4% client
ZLEUDLIEE ABE. server O 1 LT AF
#. chans TWW A ID ZHICEEMN O W20 8GR
BHEEPALOT, B3I 245,

free EHTHIDEHOEFE (EH) D) b, KREHD L DDEK
/M.

used M HDID ZEOEZDH O, FEHFD L DDORKAE.
chans T O ID ZRICEEERT & - o EGEE I ST

% Channel HEEEKETI~DKRAL V¥,)
-

lookup_id/5 +Chan +ConnectionID —ID —Result —NewObj

Chan ZZIJHY, £2OF v A NMIZEETHID ZRT. Z4TLH L, EH
$ 5% £ T® Channel H&EAD) L, Chan & [U KLIC Z# % var A ¥/
CROBEREA LY. 3T ID 13, £ Channel #4785 Subtable D
host X Y /NDE &, 4@ Channel HEEROEFIIBIT A4V TFv 7 ZADHD
ZET,

©(host ,index)
TET. ZD X9 % Channel BEKD RO 5 2 WAL, Result I false
TIRT (BRROD o251 true). false THAREIDITKERTH 5.
Channel BEMERIZLLT O ck 3% A UINEED,

119

listed RelayChannelSet BiEE~NDKRA >~ 5.

is.rbound Z @ Channel ##EKD var X 730 bind AV Y
12&D %@Mt’éﬂf’ﬁ‘ﬁ true 7 false CTHRIFINT
Vb, true DPEIIFZYT L IHRBERS Y - b

J - F“C“;%ﬁﬁftéﬂﬁ_u ERERTS.

var = O Channel 5B ETHEEGRELEHICE ST 5 KLIC
BEHANDEL V5.

state = Channel B &N E T 0 BGREEROKEZ REF
F2 XIS, TD A 3H CLOSED OHE IR, var &
is_rbound A ¥/ NIZERIRETH . FFIC var X NI
B SN RA VI RFRD LT AT aryTF

VM A REHEAE W
\ J

add_with_var/4 +Chan +ConnectionID —ID —NewObj

— 12 lookup_id ASHEE L7 8AI, Fi o EGREAR T EY YTHTZ
HIZIEIEID. host A /37 ConnectionID T& 5 & 9 7% Subtable #&EF
DEFTHID ZEEDZEEXID 25 YK TAH. T host & free X ¥ /3D
#TH%. 72, Channel H7EMHET|D free FH ? Channel HERD var
X Y NIZ Chan ~DHE AL ¥ ¥ LA L, state X ¥/¥% OPENIZT 5. &i%
\2, used ¥ free A YNFIELWHEICEXRZ, nun A X N2 V7Y X
MY 5.

lookup_var/4 +ID —Chan —Result —NewOb}

D I23%% ¥ % Channel H7EARD var X ¥ 3058 KLIC Z£# % Chan 13&
L, Result 213 true %383 . #® X 9 % Channel #EEAD 2V 15, state A
73798 CLOSED 1272 5 T\ 725, Result I false %387 . false DHEId
Chan BREBOKLICEBOTETH 5.

add_with_id/3 +ID —Chan —NewOb]

12 ALY DB4E lookup_var TEHMLZ5EIZ, ID TETHEGRHELERICH
W47 KLIC B & 1ED 72V ﬁﬁlDuMé?%C@M@%L%@Vﬂ
2 N% Chan 1B L, state A /%% OPEN 2 5. & 512, Subtable i#
FERD nun A Y NEA LTI AY TS,

is.rbound/2 +ID —Result

1255244 5 Channel #1580 is_rbound A > 737 Result (2 5.

120

bind/4 +ID +Chan +Term —NewObj

CDFTV 20 "PEETLETDH var A VXD T KLICEHKD S & T,
Chan & [/ U KLIC %% Term TEMA&(LT 4. ZORF, ID 1285249 4 Channel
FEERD is_rbound A V3% true 125 5.

set_state/3 +ID +State —NewObj

D iZ3%%7 % Channel #5EE D state A /32 State X A3 5. State iZ
7 FNATRITIIER SR\,
F 72, closed IS FH ENTWT set_state(ID,closed) &5 5 &, %
D ID TERI N EGRHEDBEE L EIE L, Subtable &K D num 2 //\75:
771 A2 L, Channel #ERED listed X Y /XDIETH% free T 5.

get_state/2 +ID —State

D 2% 9 5 Channel IBEKD state X /3% State TR T .

channels/2 +Connection]D —Num

ConnectionID {28243 % Subtable #EAD num £ > 73% Num (238 .

equal/3 +Chanl +Chan2 —Result

Chanl & Chan2 »3F U KLICE#TH 5 P2 AN, &R % true, false T
Result {238 . CEELVANNVDOFRA » FETHET 5.

close_connection/2 +Connection]D —NewObj

ConnectionID (Z5%249 % Subtable #i&k® Channel EEAKESTI O TOE
RERMEHAREBIZT . 72721, #FHKEE 572 Channel 35 KD var £
NOET KLICERIZZ) A FTEMETH. COREZALFREIRE L
L LNV, FRIELENBORF I AL A2EZRAAERELZOTERL
TEEAD.

RIEERRICRT ARBE T -2 BE

518 TX & Y PFE—fpa#2 %, KLIC @ GC 2%#2 & T, before_pcheck # 1 3
Y7 OERDORESN 519 TH 5. 1%FH & 2% HD Channel #EFIZF U KLIC &
HEzRLTWARIEPSHNE. 22T, RS2 oS HGRHER BRI T 5B
(detect_report_copy) ZMMHEIN L. LIERBEEOB &z 707 T 4 L KITHEH L T L.

MBEZDOEBY, K%< detect 7z — X, report 7 = — X, copy 7 = — 7(0) 37 —X

ZaTohs.

121

/ subtable_list / relayChannelSet_list
Subtablef# &
NULL n NULL
atom_nodeA | hos
atom_server side N
256 len
n \ 2
1 Tee N ™ NULL
-1 us A
/ /| offans 0 1
/ / Channelf& & AL
/ / NULL | list
false false false is_Abound
/ / CLOSED| far
QPEN | OfEN | ... |CLOSED) state |report
KLICt — 78I
Xet—s| Y Report

5.19: EEEF TV 27 bOF— ¥ EE2
detect 71— X

%4, 4T Subtable ##%{k " Channel FEERELY] 2 F, U KLICER%#ELT
w13 Channel EEEKFET 72— X THhH5b. RO o743, RelayChannelSet s
HEEY, B L72 BRSNS 5 RelayChannel HEAEEY RLIZORITTNL. 2D
RelayChannelSet ##Efkd VA P22 LTHY, KD report 7 = — A TS B, T O
HTEIEFEDRS5.181F, M5190 K)Il%-oTwa. T2 LRI E—LL TV 50,
A3 EEULLE % 5 RelayChannel #7512 3 HEF L L1045,

F72, 2O detect 7 x— X Th) & OEELR I, KLIC A BT AR ICIERIL
% VT_deref B2 (M5.21 ¥ BWE L) TH 5. T, KLICT—7 Nt —7 LTk
AR, BRI TS IEE5200 L) ko Twh. ERILT S ¥ VT_deref @
%:mﬁutﬁﬁ%wtkw%%?:am&é.:nu%ﬁ%%ﬁﬁiwi~ﬁﬁ@%
X TEL Y IBO—BRBEYEL L CRHERSE LIl TS 5 72O TH 5.
1) A kR, &7 — & @ bit £ LIV Tid Inside KLIC [11] PR L.

122

FipREREE PHRREEHR

?<Z i XY Z__(_)

DENEP G
) VvV

+ | _

'rl “““““ Elﬂﬁﬁﬂﬁﬁ':i}——jv]

| = . X AN

l VAN AWAME 1 | T VB

i XYZ
XYZ i > o

=fuhc(atom)
(or Yk=func(atom)
or Z'Ffunc(atom)

v L7
T— VEE

Y

5.20: KLIC & — 7 D&+ 1

report 71— X

detect 7 = — A CERL L 7 RelayChannelSet f&E4 1) X MIZBIT L N2 EBICKLICE
B1—-VSBOFELX T v 7 5. 5 RelayChannelSet HEEARD var A 2232 DWT
I—FBEP Lo 72% 5, FOEARIZEL 5 RelayChannel ICE PN 72[E#H % TTITID
Z1ER L, KLICZ$ Report IZID Ot v M & B $ 5. BAR{LL 725 RelayChannelSet
WEE 7% &id free L, Channel ## KD listed A /%% REPORTED & § 4. RXED
detect_report_copy BEIFIREHCIIHRE L 2 VLI LT EH72OTHS. b LI —Fh
LOSEEH L, M TICRENFHEBICENF 2y 795, API® set_state TdH
7225, 35§ % Channel #7EAD state A% close 2% 2726, TNHDY A b free
5.

52213, #E LRI LT E 2 —FBREF 2y 7 THEKTHS. BREATVEL
WA F O RET. FEBICIE -3 TWwEE 2% KL, observe (BARILEEH 1
YU 7 v 7 LTWwh E 1 %238, ZIZICHTL % susprec HBERL 57— 78D
KAV, [5.20 THTE 72 HHHEE~DO XA ¥ ¥ Ths. dowhile THTIRT v 7
L7 — VEEIZ observe T— VP D T— LSV AT v 2 LT\ 5,

123

/

static int VT_deref(q var, gq *derefered)

{

q term = var;
if (! isref(term)){
*derefered = term;
return 1;
}
for(;;){
q tmp = derefone(term);
if (isref (tmp)){
if (term==tmp){
*derefered = term;
return O;
}else if (term==derefone(tmp)){
*derefered = term;
return 0;

H

Yelse term
Yelse{
*derefered

tmp;

term;
return 1;

B 5.21: KL1 HOIEH LB

124

/

static int VT_refcheck(q var)
{
declare_globals;
if (VT_WITHIN_NEW_SPACE(var)) return 1;
if (isref (var)){
q tmp = derefone(var);
if(isref (tmp) && var == derefone(tmp)){
struct susprec *s = suspp(tmp);
if(! is_generator_susp(s->u)){
struct hook *second_hook = s->u.first_hook.next;
struct hook *h = second_hook;
struct hook dummy;
struct hook *last = &dummy;
do{
if (h->u.g->pred != &predicate_dklic4_xobserve_3)
return 2;
h = h->next;
}while(h != second_hook);

}

return 0O;

X 5.22: 2—¥BF v 7B

125

Ri

'/ |subtable list NULL |relayChannelSet_list
Subtable## & {4
NULL next
atom_nodeA | host
atom_server side
256 len
0 num
1 free
-1 used
Y chans
Channeli& & A ECH
FPORTED |[REPORTED ... NULL | listed
false false false | is_rbound
/] CLOSED] var
C)PEN OfEN ... |CLOSED; state \ report
ICt — 7' HH I
x > Y [@(0, nodeA), @(1, nodeA]]
Report2

Report = [[@(0,nodeA), @(1,nodeB)] | Report2]

5.23: BEELF TV Y OTF—FREES

126

copy 71 —X

ZD7 2 —ATE, TEREERICH 2RI, ZNICT7y 7 LTwp T
BErlat¥—75. KLICHRM L T3 copy_one_term % 5% IFATER Y5 2
BT THAE. 1272, HHOEEANDORA v ¥ ZHMLEEDT FLAZRESRLT
W75 v,

5.7 X—IVTRBOMAREEE

F=IVIRBTR, SHGREAE~OBHTIT 21749, 22 TEF Y AVOEHFL W
IV HZTH. GRFTTD, BEOT - ECA2RET 25— ~DOF v FANVDEFE R
ELDPLTHE. FRICEAI TR, = MR ERABRI B LTS, T2, ¥
INHEFRIZ & B F v £V lookup DIFEHROATR I WS, BE/ — FOR— I V770t A58
LTHRTAZELIEETH L. ZoHERIL, P2P DWW T KR v 77 DKLIC & v
b= BT BRES R7-T.

KETIE, DKLIC v b7 — 27 DK, F ¥ FIVDEEE, F ¥ 3 VD lookup, lookup
BEA—I V77O AL BBIRIZOVTHRNRS,

571 Xy hT7—UFEK

F=3I VT TOERAEZE) — FIZ—2UTHNTWEY, TRhHDF—3I v FTut A
3, BEIFICIP YV FF YA ML o T, BFOFELZELETS. IV FF v A PEEIT
WoltBEEADA—I VT TOLR (A= V7 A) L, TVFF X A PDOREET (h—
IVIB)IINL, TCP a4 7Y a Y ORZREERT L. HEEIE, A — I v 7 AR
FIAMIA—IVIBEMZ, EHICA-IVIBINLTA—IVIA (HD) 2
BBV A MIBEFTLE)ILERET L. COBECL o THEWIZHFLRRT L. M5.24
(i

5.7.2 FvRIEGH
F ¥ R2IVDBFIILULT O API % W 5.
register (Spec, Channel)

ZZTSpec LIZBEHL L) LTV —NOARELEKRT . B, LT L) 2EH
BETTVIILE L, BIMEFOBULEDELTEEIRT 7V 2D ALTHS.
Tr v BEEBRELTCELRLWL, 5B 1ETRL TR2G W, TR L
BULNDRBYE attribute (3, attribute(*) ZHELZEREGT. *LiZ&TOfEIITy F
THRETH.

[name (http_daemon/3), http_version(1.0),...]
BEIZEIT % & Channel i3 normal(S) IZEMAfbEN S, 2D STt listen X v & —
VEEMMEL T, 53R 5.4 2SR L), REFTHERSED57 54 7~ bD lookup

127

NamingProcess NamingProcess

A B

%18
-,
b &<V FFxAb

<:::jmm$7yay%%i:::>

ﬁ&iillliliiij‘éCtabzggﬁg

5.24: 2 —3I V7 7UL ADKEE)

FRIZF— NHOF—3I VT TOERACED SRS, =/ listen X v L=V EBHE
k55 E, ZO5IEN 7 TAT ¥ MTESNS.

itﬂ&ﬁ@W%TUT@I5KE/—F@%*EVVTUhXKr%mmrXVk—
THEFEoSTWS, A—3I VT 7O AL, TO)AMeREFT 5.

register(Spec, Channel) :-
dklicio(H, [connect(localhost,Port,
normal ([register ([channel (Channel) |Specl,_)1))1).

F o 2 JILD delete

Jini % DNS 72 £13, BEEAL Y b HPREI % o - 5E XHRIHIRY 2 L8
H57%, DKLIC KB 53— 3 V7 CRBHLAFT v A VERICHLL1ZT TV, o
BLFyRIVPHLLEF-I VTP ENREREL, Y PHIBRT A, IRITT—
INHH — U ADIRMAE F DB I LD, Fr R VAH U TT—VE (DKLIC & v 7 —7)
LY NI NLEV) KLLOEI Y FA 7 ALAERTHS L ZERT 5.

128

5.7.3 F+ %JLD lookup
F % A% lookup T AITIZLLT D API & Fiv: 5

lookup (Spec, Result)

Spec TIRTHRRIZEH T B2 —WHBEROD B L FDH —NNDF ¥ F U
normal (Channel) TiR5S. H2o75H 7%\ & abnormal A% %. Spec [IFIEID register
DFBMEFMLEENTH 5.

lookup A TLUTDOLICE = FOAX—-I 77012 AIC lookup A v &—7
k%o T\W5h. Address i lookup 2 FIT L7227 547V) —FOT7T FLATH 5.
lookup ZHE/ — FCTER/RL THRTLZBIETTOT FLAPLELLRL72:0TH
5. Hop BT, B/ —FOFA =3I v 77O A95EZR LTI D lookup % kT 5
£ &I, lookup A v —VREEL TV, COEEOKO LBELZED L. HAER, 21—
THEET 7 A VP LBRET DRI LR > T 2.

lookup(Spec,Result) :-
dklicio(H, [connect(localhost ,Port,
normal ([lookup (Address,Hop, Spec,Result)]))]).

574 #BE/ —-FOx—-3I2770tXIC&5E R

T lookup 2T 7270t A5, BHOEHRNTIZR 25 2WIEEIZIE, B
TCP a7 arzRBELTWAEA—I VT UL AL TIT lookup ZHEET 5. Z &
TEHLTWA. ZOBERD 7 — FT lookup 2SI L7ZBEIL, EDOF ¥ 2 vz Hw
AUEIRL 2L TIz bz,

5.3 XK 5.4 % A % & discovery ® adopted & \Wo/zX vt —TUNH B,

discovery ¥4 —3I ¥ /70X Lo TEMMEEIN B Ay £ — T T lookup #°HY)
" L7zZ R ERT S, adopted & lookup D7 T AT Vb (A—3I T TUEATIEL
W) AL D lookup DFEREZBMMICHRALAZ L2 BHTAHAA Y E—TTHB. £ — 3
YT REZ, 74T Y Ml S adopted & — VD listen BRI Z2ERICE
Ay e—TOFBOF ¥ A NVEL L ER (B—1b) T5.

ZO—EDORN EYEFIIRY. 52513204y T -7 OEFRRLTHE. 22T
7‘?%%’*%7147‘ NI, 7547 D lookup L7z Spec i l—HTHHDETH. [X5.26 1

—FADA—IV 77Ut AN, RO HNTIC lookup ik L7k FThH D, / —
FB bROITOENRGAS, Ky T EREA012% 5T A DT, Channel? 2id abnormal
ZiRT. =/ - FCTRY—-N2HERTEX/-DT, discovered X vt —T %K.

M527i3, 27547, /= FADR—IVF7OLA /- FCHORXA—-IV 70
YA, BIUTF—NDPRDLT Ay -V OKFTH5S. [5.271F, /— FBTH lookup
ﬁ‘iﬂi%bf’% THb. Bz, BALGP o2 F vy a2 L TWwWAETH 5.
RE - FADA—I 7 7H €A lookup 75‘?)071 BlE, TOF vy v asfE).
Z DAL, discovered BELNTBPLD—ED T NI VHPIEE L. T2, o7
Fry T 3ET.

129

'. ""‘;reglster(Spec,
o Channel_srv)

éi% X :
lookup(nodeA, Ohop, > X\

Spec, Channel2) de C
noae

5.26: lookup DFR & B8Rk 2

130

] Client l]] NamingProcess @ node.tﬂ lNamin gProcess @node(ﬂ] Server[

’ .
i Channel_srv)
lookup(nodeA, Channel_cli) register(.
r--> —

|
]
lookup(nodeA, Channel3) Channel_srv = [listen(Res_srv
, _ [(Res_stv) |_]

l <Discovered! !}

|

Channel3 = discovered(R) |

Channel_cli = discovered(R) l |
|

|

|
R= adopted(Res__cli]

|

5 >

i | (<Bstablished!1}
|

|

Res_cli = normal(S) Res_srv = normal(S)
; st

f 3

1 1

| l

5.27: lookup I DB

l Client l l l NamingProcess @ nodezﬂ l NamingProcess @no de¢

1
lookup(nodeA, Channel_cli) i
lookup(nodeA, Channel2)

Channel2 = discover) AEEIR2AS
i KA
iy

.

t

.

| N
—

!

.

!

.

Channel_cli = discovdrd

' | NamingProcess@node¢

R2 = adopted(R 4
M ZOF ¥ FVIE
| NamingProcess @nodeA T
Fyrviadhb

5.28: L Fyy o

131

filticast Message

Multicast Message

. !
daemon_multicast /'
Multica%t Message
y !
"o {register_merge} .
e, S send_multica Multicast Message

|

EEEIC—EST {
I NFEYAITD |
|

!
re, ‘{register__na}ming}

!
!

|
b_connectian

{register,
lookup,

{connect}
register_merge} /# g ‘

{register,
: lookup,
‘register_merg

[register_merg
forward}

o

Cache Table Data Table Connection Table

529: *— I v/ 7ut ADEEM

58 X—3ICITBOREIEER
581 F—3I I 7TOtELIANEES

AV IBOEETHLI—I YT OEAR, M52 DX) ICREER L. T
TaLADOEEEHAL, DEEF -7 S EARBEOB X, 7 v A VERPF ¥
FNVEEREOE X 2oV THERTW L,

dklicio 7Rt X

AR RBEDERETH S dklic TV 2 —IV~D A M —LAREETATEER. R
BTV L, AL TWwEREITTH 2. LTH Ry bT— 7 ~OEFIT T D dklic
EUa—EBEL TR > TV A, discovery b I %@L T2 P HAEMILE S D
THBEL TS

daemon_multicast

TN FEXA ML DAY L=V RFFIRY, ZORETT FLAETIML/ — FeD
TCP 247 ¥ a VN R,

132

TIFXF v X POELE

RO KLICIZIZ= NV FF v A MIET ARSI LRI o720TEMLZ. APLIZLT
DIDOTH A,

send_mcast +inet(G,P) —Res
GEBMTAIPINVFXIYAIM V—TERTIPT FLATHAD. TOIP 7 FL R,
224.0.0.1 ~ 239.255.255.255 DEHEM T2 T X% b %\, DKLIC T 239.137.194.111
RS, T2, PidR— 1 EETH) 8ISL BT A LI,

send_mcast Tl connect T WA Z L& L7z, 2IHATAHIETIDV Y MR
LAV =TT IEDBTEL70, KLl 70775 DMBEAEBV. Res I2IZZ D
connect 235E) L 72356 normal (S) #%E D, KELDEEIL abnormal #%&%. S 1213 put/1
AvE—UFW|TIENTES. put DFIBICIIERZT 2525 LHFTES.

bind_mcast +inet(G,P) —Res

send_mcast THi72& 912, IP 7 FL & 239.137.194.111, R~ F&FEF 8181 {2,814 ' F
T 5. Res (ZIE/31 ¥ AT 5 & normal(S) A5V, L3 5 & abnormal A%K 5.
St get/2 AvE—V%WTIEHFTEL. F—51, put X v v — VI LI-EEK
FEMELL, BI5IBICIEZZDN Ty PR RABLIEETDOIP 7 FLAPEKIT 5.

daemon

TCPIZX 22323 avixTA270tA BEOTUERA (A—I VT 7TutR,
F=NTOLR 7IAT VTR POEDF Y INVES, Ty ANVEEZEDRX Y
- (T2 573 EBEE L) % ~v— Y L, th.cache T L RITFET.

tb_cache
V= VLR E 5T4AH TR Fry Va2 F YA NVORICRERE TS 70 R,
register, lookup, register_merge, cache A vt — T % FITHA. register,

register_merge X v t— VI H €I tb.data T L AIZHET.

cache(Spec,Channel) Spec |Z/R & L724 — VAR & Channel #EIZEHFKT 5 (5.7.4
xS X). BT 582, Spec & Channel D ID (5.6.1 i % B¢ L) O£ THF—
DIV PYDFBICERIHFEAELLS, BF LRV,

lookup(Spec,Res) Spec iZRIHi Tk 7= X) ¥ — 1 EFRTH 5. tb_cache (T Spec
B FTALY MN)IRFELTOARAIHFETNE Res ICEDF ¥ ANV ERL, TV
F)EHIBRT A, ZOF ¥ AVIE 5 TAR TRz & D 1T discovered BFEOLNTZHED T
OB HIEDS.

133

tb_data

F—NTOEAPBEHFLLFrr Ve - NEROFICETRET 2 7 LA,
register_merge, register, lookup X vt — V% FITH 5. register_merge (17
b €312 tb_connection IZ¥ET.

register(Spec,Res) Spec |I/R SN2 — N EZRFFT 5. register A v =V D
Spec 1344 1 channel B % &% 7% ¢ Tid% 574\, Res 121 registered (BH5ET)
DB SRR, Spec & Channel ® ID DETHF—D LY MY PEEICERBICFEELZL, B
$%49°12, already_registered (BEIZEEE) & .

lookup(Spec,Res) =TT EAPEFLIzF v AV LTy PTH. &y b
#%id listen A v b — UHHENTHES L TH- T, listen A v £—IHDF ¥ £)V % Res
35BS, 72, 6y b LD o72384813 lookup A v E— % forward X v £ — VIZHH
L T tb_connection 2. Z#id tb_connection SRFL TVWAHETOM/ — FD
=37 70E I lookup REERET S Z & % EWRT 5. tb_connection IHEE L v
FLTH IERDF v RV LB LTI W,

tb_connection

) —FOR—I 77O AP EF Y AIVERETSHTET LA, forward,
register_merge, register_naming % %I} %. register_naming i3 H 54 EATY
Ay =T ThH5b.

forward tb_data 75 DF ¥ R VEUE A v £— ¥ (lookup) DEEREERTH L. RIFT
B — FEDF ¥ 32NV EETHWT lookup # vt — TV %EmkT 5. ZDRR, BHO
Fx FANVETEBTEEAIE, 1 D72 R, flild tb_cache ~“F vy V2 EFA v —
¥ (cache) ¥ FITT 5. % T AFFITIE lookup X vt —VHDAy T ER/NT A =5
2RO LTERT S, 72720, kv TENFT0ODRA v £ —TI3EE LRV,

ftb/ — KEDAy - UFEBE

TCP I2 & % conecct t& dklicio YU ADARI TR Z B, £T7 UL REEDAFRY
ey FICERSNAF v 2V (DEGEER) L > THEN 7O LA 2 A S TICHH
Al — FO7 O AL BET A HIEE L2 Tk bhv, (MIR7EH, TCP 247
Ta v EED) — FLOBICF Y A VEREOZ LIZTERW)

T, @530 DX, FARNMIHLTF ¥y AV EUETEMLLGEH%
BEBISBERONIIRESNLIIEICLE, ZOBRZETHFPIEEDTVL LTLER
DTERT S, FECBEBRISETNTVEIBERIINI) RGHALLERBL 2 ITE
2 H v,

134

AlEYA2]) X
Al

530 Fy A LEL Ay -

5.8.2 AxXT7a iiI7i—X

HECTERAaR 7 a VOBYIE, 237702 X ETIER5.31 © X) I25E
5. ZEM(/ — FA) D daemon_multicast 7HE A IDTLVFF ¥ X MDOREE
(/= FB) I LCdklicio 2% 7 ¥ 3> (TCP 24273 3) #B%L, /—FA®
Connection Table (2%} L T register_naming %% Y, / — F B ® Connection Table 12
LT register_merge A v t— T %%, /- FABBEOIA 7 v a V2 MEILE
G5 5.

register_merge XA v t—TYDF|KIZIZ/ - FA (B DT FLARE, F¥4A0 X
EFXRANY OMEET. ZDOY Fr ANt/ — F A ® Connection Table (225
register_naming X v £— Y DF|EICEINS.

5.8.3 F v XILDdelete

BIES Tl F v RV BB delete 12, KX v —TVMBOBIZE) X I) 0%
Fry 7 L, BRI LEET S lazy 2 GC & LTEEI L. GC Ol
PEETAZLEZEHITL-OTHA.

59 =170l
5.9.1 BENMEICQELRE
AEZEIUTOLI 77 A VR E B o7z
e naming k(A — I Y7 ETV 2 —))
e dklicio.kl1 (dklicio ® KL1 #54%)

e vart.c vart.h (dklicio DY =% v 7 47T 27 })

135

nodeA

U

Muiticast Message

tb connec’;;on

nodeA)

5.31: 2 — 3 770tk AMEREORMEN

T 72, TS DM Klic-3.004-extio-shared (RD KLIC % 4 Y A b=V B LENDH 5.
T i klic-3.003-extio-shared BIZ /N7 7 4 7 ARSHEERE L2V F F v A MERER
GCIBIAHBEOBE 7y 7 b2 BMLIN—Va vy Thsb.

59.2 2/—RICLB3DKLICT7 U4y -3 DETH

CITIE, 2/ - FDR=I VTR APERT AT EHR TS, CITHWAD
i3 5.12.1 #5, 5.12.2 8, 5.12.38ZR L7272 75 A Th 5. B 21T intlist.k11, sum.kll
DEILBF—NIIAT I T TV r—2arz5.32 DX ICHEBSE-WEEE,
rigotte & soleil @ dklic.conf % &4 LT D & 5 12EFE &AL,
nodeA @ dklic.conf

port(8181).
host_address("soleil.xxx.yyy.zzz").
group_address("239.137.194.111").

136

A “register(Spec,
: Channel_srv)

intlist_server

5.32: 2./ — FIZ X A%

nodeA @ dklic.conf

port(8181).
host_address("rigotte.xxx.yyy.zzz").
group_address("239.137.194.111").

FLTUTFOI) A =3I v Tavx 2 a3 V§ 5.
F—3IFTORLAOIT N,

rigotte % klic -o ns ns.kll naming.kl1l dklicio.kll vart.c
soleil % klic -o ns ns.k1l1 naming.kl1l dklicio.kli vart.c

SO, 7T r—ar7urssatarNI VT 5.
DKLICT 7Y —varnar;x{

rigotte % klic -o srv intlist.kll naming.k1l1l dklicio.kll vart.c
soleil % klic -o cli sum.kll naming.kll dklicio.kll vart.c

INLEFETTAIIE, K/~ FTA—I VI 7uL A2 b L ITALERH L. X5.33
i, A =37 TR RAE A (7 4% soleil) TRE) L 77412, £l (3~ 4 rigotte)
THEE) L7+ T 5. (import/export A v t—Jd, V7 v MEENDY VI ThH5)

Z ZTsoleil T intlist ¥ —NEHET /54T F2RETH L, HAF v AVER
BTE 2D intlist ¥ — /3% rigotte TRE) LB TIZEUSFTE % (K5.34). Thi
Lo TA—I VI TUEAPFEELTWALILPHIOONS, Tz =P LR
AMPHEAIZEHRIELLTWBEZ L 5D 5.

593 3/—KRIZLBDKLICT U4 —2 3 DEFH
TR, Ry VaEHHERLTWA I EEHRT L. [M5.35 N TH 5.

Sl L EFERRIZ7 Y brie @ dklic.conf #XET 5. 2/ — FTOEFTHLLH] KW T,

137

tte:™,
nsw"iﬁgﬁgt{gﬁ%%ﬁgﬁost(m_sgw 50),chamneL (1€} 1, 200))
xport

import (omnectmnm(133_9_237 50, 1))

export (closed (Q(7 33 8 237 50_133 9 237_43)))

import {bind{(@(7,133_8_237_50_133_8_237. ' 43) , aton(registered)))
9 237 _50_133 8 237 49)))

ﬁmpor-t(closed(@(l 133

5.33: F—

I

~ ~

7 7u v ADELT

i ryo@soleils "/namng/solexls i

i exmtgcm:ectim?(lﬁ 8.237 50,1))

B ieport(protoco. _

i import (open(@(1,133_8_237_50_133_9_237_49))) i

E rs‘()?;ﬁé%?‘ ng%%[par‘t(&m) Jhost{133_8_237_49) ,ns_chennel(, (_46C
3)

export (bind(@(7,133_8_237_50_133_9_237. 49) aton(reg:.stered))) :
export{closed(8(1,133_9_257_50_ 133 s 237 9))

H ipport (bind(@(1,133_8_237_53_133.9 49), list([fmctmérs(?uncto :

H r(register_mer e(hst([functor(pu“t(mteger‘(8181)))Ihs’t [functor(

i st(atcm(lKS 9 237 49)))!113&([fmctor-(ns channel (functor(, (vama

H ble(8(3,133 8 133_8_237_49)),variable(@(5,133 8 237 50 133 &

} 9 237 49))))))])])]) > varlable(@(7,133_9.237_50.133.8_237_483NHN1 B

ﬁiport (closed(R(7,133_8_237_50_133_9_237_49)))

ruodrigotte:™/naning/rigottes ./sry
ium't(comectimm(lB 8_237_43,1))
export (pmtucnl 1)
Wt(apen(
N¢le(@3,1)))) [List([functor(
r‘(tue(integer(loo)))])])]) variahle(@(S,1)))

{8(3,1), lxst([fumtm(llsten(va"lahle(IO 1NN iveriabl
a(@(S 1))])))
e:mt(clused(@(s i3}
inport (bind(@(5, 1) ,aton(registered)))
inport{closed(@(1,1)))
nport (closed(@(3, 1333

e)m‘t(closed(ﬁ(E)))
import (bind (8¢ 1) fmcta*(mrnal(vaﬂ&lﬁ(@(ﬂ }83332)]
export(closed(&(

port (bind (8(0, 1) furctor((integer (1}, functor(, (integer(10),vari
dJle(@(Q 1))))))))
export (bind(@(9,1), List([functor (listen(variable(@(1,1)))) lvarisbl
e(@(3,1)1)))

expcr-t(bu‘d(@(z 1),1list mteeerél)[vamahle(@(ﬁ 1))% 3
expor‘t(bind(&(S 1), list([integer(2) ivariable(Q(7,1331))}
export (bind(8(7, 1), list ([integer(3) jvariab, e(@(li))')13))
expor*t(buﬂ(&(li 1), list([integer(4) | veriable{@(13,1)));
export (bird(€(13,1), List ([integer (5) |variable(@(15,1) 1)
export (bind(@(15,1}, List{[integer (6) | variable{@(17,1)) 1))}
export (bind{8(17,1), List{[integer (7) |variable{@(18,1)) D))
expart (bind{€(18,1), List{[integer(8) |variable(@(21,1) D))
export (bind(@(21,1), list(mteger*(‘a)lvamdsle(@(ﬁ 1));)))
mt(bind(@(ﬁ , List{[integer{10} jvarisble{8(25,1)))))
export (bind(€(25,1), (1))

inpu"t(closed(ﬂ(g DY

import (closed{(@(2, 1;))

import (closed{@(5,1)))

mpcrt(closad(@(?,l)))

importiclosed(@(11,1)))

import (closed(€(13,1)))

inport(closed(@(lﬁ,l)%)

irport{closed(€(17,1)))

import (closed(8(19,1)))

inport (closed(€(21,1)))

import (closed{@(23 ,1333

inport {closed(R(25,1

5.34: A —3

~Y-Yo)

ind(@(1, xmm [fmctar(r’egxster(list([*Func‘tm(dqarrel(va :
ne(atcm(mthst 3 liist{{functo

8 i mport (bind(R(3,2), atou(danor‘mel)))

i ryo@soleils "‘/namng/so eils ,/cli

M isport (comnectionID(133_8 237 50,3))

ww’{g rotocol 1;))

§ mﬁt(ﬁﬁ(@u 3, list{[functor {lookup(aton(133_9_237_50), integer F5
f (1), List([# uv:tor(name(atnm(inthst 3)))Il.\st([fmctor‘(hoge(aton(x
)11, veriable(@(3,3))10))

i Cloesi(e 203

: wmrt(gu\d§@(0 3 fumctor (adonted (variable (€(1,3))))

b inport (bind(€43,3), fwttu*(dxscovered(va*ldsle(@(o NN

j incort (closed(@(0,3)))

| export (bind (€0, 33, functor (, (integer(1), functor , (integer{10),vari
RN ”
i‘gt(gﬁ(@u,si,fum(mrml(vmme(a(o DY)

oot Cioseaioc 3

B Sonort (ind(0(3, 39, List ([integer (1) lvarishle(@(0,3))1)))

B t (closed(@{0,3
: %iiﬁiﬁggo(g)ggt([mteger(2) [varisble(@(2,3)) 1))
o002 55 mt (Linteger (3 [varisble(@(4,3))1)))

H t(closed(@(4,3
f exmtgg,\g;(@gd(z»),Hgt([mteger(ll) {variable{@(0,3))1)))

m}:Eglﬁ?ggg(g)?ﬁ;t([mteger(& {variable(@(6,3))10))
z;%%%éﬁ?ggéi%gt([mww(6) Ivaniable(@(Z,5) 1))
;m(cgg?é)éiﬁt([mteger(?) jvariable(€(8,3)3D1
H inport (bind(@(8,3), list ([integer(8) |variable(@(4,3))1)))

H 1 (closed
L et 3 1t Lintegen (@) |varisble(2(10,3) 1))

s export (closed(@(10,3
%Mtgglﬁ(@gié 33, iiét([mteger(lo)lvamable(@(o by

g mt(cloiedgﬂ(o 30

: t(bind(@(o 3,01
gt
& r:gggnlexl ~/raning/soleils {1

77 R DEdE

138

intlist_server t

register(Spec,
’Channel__srv)

rigotte

“register(Spec,
Channel_srv)

N

5.35: 3./ — FiZ X 5 EFT

brie THA—3 Y770t XL intlist ¥ — N2 REIT5. BUsoleil T/ 747 %2
FETTHL2D00H—NPHIELTTE. I —FEIIA TV P 2FETTHERFDOY —
NLDPRIGL 2V, ZHUEEIRIO 7 74 7 ¥ MREEFRIZA DY —/3F v £)V soleil D
A—=I VTR ATFYY V2 EINTWETEERLTWVS.

5.10 FEEEMRE

FUBTF & LT, Mozart[12, 13], Jxta[14], Jini[15] 2 EPET 5N 5.

Mozart 1%, HATHIBICE T NVF NG T AL LERETHD Oz DDWEETH 5.
Mozart CTid, 70t X B#EEIBEEAKIL Y A b (Stream) ZHW2 0, B—LALERK
PHETHHEZETKLL ERLTE Y, Stream U2, HE/ — FNDOT7 7 L AHUG & 72
%5E, DKLIC LR U TH5H. Lo L, Mozart Tid Stream Tld 7% Stream ~DZEH
(URL (2L 72F30) 2 %M/ — FIZHEL TWwWA 720, BIICELT 2 5 8ERBICB W T Z
OEBPAR TR R EBHEENICHEL L { TE% L%y, DKLIC Tid Stream (5
EGRTRAR) ZUEL, Stream AR E Ko BE (Vv M U2 IXEIERICZE
YAMITHEIETHRIBTELANFRELS.

IJxta i3, P2P % v N7 — 27 LOSHEBBORBERL T 7 A FEr ERER L/ 70 b
INTHY, Java IZ X BESE [16] HEAET 5. %10 Pipe (BER) 2 EELRL2L, B
1% (advertisement) L 721, advertisement (XML |2 & 530#) (2 & o THRERDO—In%
lookup T % 4, DEGREBEEH BT 5. advertisement (2B RIHEARR % 5% 1T EHHIIC
HEHTAZETHEMELENICEEL TV, DKLIC TR IO L) R EHEHO-HD
KBS 74y 7 RFEELRY. LL, 17 %R5 L%y M7 —2 L® FireWall %
NAT % E~OMEHFTFIRE SN TE Y, BREOZRPMEFRITIKE L 2w URN
FRTEHRENDL E% L34S HE DKLIC TS EIL L T RETH 5.

Jini i, = NEEEKOBHE, FNOLPRMT LY - EADOKRE, F—- Y ADBE AT

139

%9 . Javat TV MDRA=I VT F TV M, - FBEOHMELER S,
£ DA — IV IEMICHBIED, - EAABFORBIFEH TI-T 1 X IENE. Z
I — NOIRE L ORGN L TEEEZ FHT 5. DKLIC i, ¥ — CAAROTEBFEC
BHENTEREZHAVACEREEL L TWwA. Uy 54 (RIEBHIEI VNI T)I2E-
TH—ERARRE Y —NOREF L DO—HPMRIESNSL TAAKRECELS. Lo L, DKLIC
BT A 70 A%, I- FBEOEEDSEIIRLLEZOLONS.

511 T E&HESHEOERE
511.1 &8

KL T, KLIC OFHIER TH 5 L FEFICA v M7 — 7 BARRORM 58T 7
V=3 a VICLERERETIRET 2 £ O % KL1 S8R DKLIC 218 L. VI
b RICEEO KL mBEERE IS M o8GR EEREEE L. TRICXVGRT 7
Dr—a il BIFARLANVEY 7y MREDERZIT TR, TCP VT v M8
BLETT UL AMBEROMBERAL BETLIEPTRIIE272. Thid, B—7
QX RAEBKLIT 7 Uy —2arv et 7 7 r—3a v b OMEF LR ALY
EWHRLTW5,

F72, CODEGRBEERICHT 2T EBREITR IR I VST AR EEL
2., = MERRICE o TRIVWE DR L Z LT, = NTUEANT 7 AT ST
DOBER (DEHREER) 2 PR TE2HMAZTERE LI LEEKRT L. &6, F—
IvrsTubARLTOHEEERT EEL, BEA - I V7O AEE L TRAETFRR
2ATRIET, F—I V77U AL B PP Ay U — KL BBERY ER L.
CNIZE YRR MR/ — FEDEMICHET AR — 2 8RE LICAy PT — 2728
7O I VIRERRMET A LTI L.

5.11.2 SHEOEE

thikERe D ER BEE L CHBEER 7O F oV OEESBEITONL. IR EETH
CET, FIBEEA - IV TR AL A BRI o TRET 2P HEZBRT S
ZERERTED.

&2.?

it

BHLERXRY NIV LTOEIE IPYLVFF XA MCLAMBOARA—I VT TOLRAED
HEIERT EE L2, IPVF XX A M FireWall, NAT 2 D%k v b7 — 7 BR %
BZoNBn/oll, 79y ety M7= ECTLPEMEL 2. Jxta[l7] & ETI
Randevous Peer V2 2w T — 2R TV —F 4 V7 %% /) — FEREL T 5.
DKLICIZb ZD &) AP LELEZEZILNS.

KL1 ZETETFVOZLEHHEE ERBFETE, 7YoL 2AB%, 0— FBEOEED

BIFoNab. ThOR2FEETLE SHMLEET VT —VE—DDKERIT— VT =)V
CRZTIENTRICE Y, KL DEFTEFVOSFBREF~OTLEERETERTEX 5.

140

DFEY, TOEARNV—VHBGEEREEICHLIE) FNSA DD KLl THEATH 5
POLIIRZD.

MEBERFIRICE 270 b IUREL KL BRI 2 A€ — FFAT 18] i,
ABHE— FHEF TR, $B5TOTTLICE D 7O APMEARERBETT b,
HUHEL XYy FEEEICBITTE 5. BMERT A — IV 700 - HRICAHV S
ZET,) ERGABEERZATREICTE 5. ,

—FC, R CERE Lo EGRBEERIC L), B0 —Nr 547V Mi#—0
KL17U 77 h1L& A7 Ut ATHLLERREL LR/ 2D, 2547 L
F—NOBRREZHE L, BRINCTFEILR VP2 RBINT 2 L0 BS ko 72, EF
BRBEDOARERTLIET, 23— I V7 7O0LANTU P I VICEL CORE ZHIEY
5T ENERIZRA.

BISIEDEA BAED KLIC X KL1 LRV TOFSMLE % R — L Twi v, &3fE
BEZEDIT -3 L CHIITH 5. KLIC FIAMVLE [19] (BT 2L AIAT 22 &
THRTEZEEZOND. T2, ALl KLICUEANT CORIVLEL B a5
VEFH 5.

512 Ho 770495 A
5121 X—3> 770t XFH

:~ module main.

main :- truel ns:nameserver.

512.2 Y-\

:-module main.

main :- true |
ns:register([name(intlist_3)],R),
server (R)@lower _priority.

server(Ls) :-
Ls = [listen(Res)|Ls2],
server2(Res,Ls2).

server2(Res,Ls) :- Res=normal((4,B,C)) |
intlist(A,B,C), % intlist MFOVHS LR
Ls = [listen(Res2)|Ls2],
server2(Res2,Ls?2).

intlist(N,Max,List):- N > Max | List = [].

141

intlist(N,Max,List):- N =<Max |
List = [N|List2],
Ni := N + 1,
intlist(N1,Max,List2).

5.12.3 77472 b

:~ module main.

main :- true |
ns:lookup([name(intlist_3)],R),
proxy(R) .
proxy(R) :- R = abnormal | builtin:print(not_found).

proxy(R) :- R = normal(S) |
= (1,10,List),

sum(List,0,Res),

io:outstream([print (Res),nll).
sum(List,Sm,Res):- List=[] | Res = Sm.
sum(List,Sm,Res) :~ List=[XIList2] |

Sm2 := X + Sm,

sum(List2,Sm2,Res) .

513 J1xxVwIFTox 7 bNDEZH

VAU w ATV s Mg, DTOBMALR 2T NI 2. HEOBKELE
TIEBVTHEDLLRVI(C IV, RS NRITIUD), ZOMIZ IO LB) DIEET
e 6 v,

/ sk ok sk sk ok sk s ks ok ok ok o ook sk Kok ok sk kKRR ok K Rk koK o o ks kR Rk kKK
Z it datalbject DA, generator, consumer DFE LHEEI LT 7 1V
ZmARERITNITZ L 2.
sk sk sk oo ko stk sk ok ook ok ook sk ok ok ok ok ok koK ok ok ok Kok K SRk sk KK sk koK ks ko sk ko ko ok ok /
#include <klic/gdobject.h>
#include <klic/gd_macro.h>

ok sk sk sk ok ok sk o ok oK Sk o ok 3ok o K S o K ok o oK o K o o ok o o oK ok ok o ko o sk ok ok sk ok ok ok ok ok ok o K ok ok ok ok
HOoOWETEST 535 . method_table TN ENZ TIZR bRV,
CHBEO XA YN ROREIE, JIIRBRTIELV.
sk sk s ks ook o ok kol ok ok sk ok ok oK oK o s ok K o R oK ok ok Kok ok ok o sk ok sk ok sk ok Rk Kok kK ok koK /
GD_OBJ_TYPE {
struct data_object_method_table* method_table;
+;

142

/3% 3k e e sk ok ok ok 3k 3 K o 3 K 3K 3 ok sk s ok ok Sk 3k K ok ok ok ok 3k oK 3K 3ok sk 3k ok sk ok 3 ok K ok ook K ok ke sk sk ok ok sk sk sk ok o ok ks o sk ok ok
MERAEOEE. 7L, ERZKLICYZung i, AV FEETY
DZRENB I EE->Tw5b . FlziE g allocp(BE—TE Y FHFEAL 2 1)
RETH L. (o THENZFIHZBESIBIIRITHFRIINTR 42w,

FEMIE gd_macro.h %R 2 & L. BIHOEIZER BT O R E
THbH. 72, declare_globals IZ & o> TKLIC DRIBEKZFHTE S,
**/

static functionl(g* g_allocp, q argl, int i){}

/**
AV y FEER. ' ORIGFIBEHELYEL . KL1 7075 A TO5 [HERK
PH1ELFIVEEEL. AV Y PRI DO PHHLL 0 TIAr—7,
a_b(0bj,A,B) 5L, a__b_2 &% 5. 2V vy Fiddsd GD_RETURNIZ X o
TUF—2 L% Tid%E 5%, G_STD_DECL I & » THi4 2 KIERS
AV R(=z7u) 2fF)EPFTES.

**/

GDDEF _METHOD (methodA_2){

G_STD_DECL;
[k BE xx/
GD_RETURN;

}

GDDEF_METHOD (methodB_5) {2}

GDDEF_METHOD (methodC_1){}

/**
MEXAYV Y F#%E# T 5% 5 GDUSE_MY_GENERIC %, MEHGC X EXRT A% H
GDUSE_MY_GC 2+ L2 TiE& b\,

**/

#define GDUSE_MY_GENERIC

#define GDUSE_MY_GC

/**

GC 13443, GD_RETURN_FROM_GC(newself) 12L& > TV & —» L2ITNE

7 572\, newself 3FHEBICO Y —EN-HTEE~NDKA V5 ThH5.

FreES~ D 2 ¥ —, GDSET_NEWOBJ_IN_NEWGEN(newself) (Lo T#H 5.
**/
GDDEF_GC(){

G_STD_DECL;

GD_OBJ_TYPE *newself;

GDSET_NEWOBJ_IN_NEWGEN (newself);

143

GD_RETURN_FROM_GC (newself);
}

/**
B ERE L BET NS .
***/
GDDEF_GENERIC()
{
G_STD_DECL;
GD_SWITCH_ON_METHOD{
GD_METHOD_CASE (methodA_2);
GD_METHOD_CASE (methodB_5) ;
GD_METHOD_CASE (methodC_1);
GD_METHOD_CASE_DEFAULT;
¥
GD_RETURN;
¥

/**
F7V 27 FDnew AV F. 4T, GD_RETURN_FROM_NEW (newself) (T
FoTU &=y LTI 5%\, newself X,
GDSET_NEWOBJ_FOR_NEW(newself ,GD_0BJ_SIZE(newself)) (Z XoTiH5.
GD_STD_DECL_FOR_NEW (&, G_STD_DECL & FIHTH 5.

***/

#include <klic/gd_methtab.h>

GDDEF _NEW() {

GD_STD_DECL_FOR_NEW;
GD_OBJ_TYPE* newself;
GDSET_NEWOBJ_FOR_NEW (newself,GD_0BJ _SIZE(newself));
[** BE wx/
GD_RETURN_FROM_NEW (newself);
}

generator % consumer F 7Y = 7 b DEBLIEED A Yy FEEHELZTLERD 7\
L hH D (Bl AL generate AV v FA &)W, & ZTIdEN V.

SE XK

0] FHEE KL SEAEAORE & K, FERY, PREAFRLEMENR
25} (1999).

144

2] B . ATRERSFEKLL 12X 558 KL SFELEROEE F¥m, REH
REHTHIMERFF (2001).

3] WA I KL1IZ X 508X KL1 SIELERAD S FER L, FREHKFETLES
THEFER (2000).

[4] BAHA 1 DKLIC BRI 81T 2 S EGEERO SRS, 5137, BREAS
KB TR (2002).

5] A& | EATREESHE KL O EdRDO -0 0ER / — FEEOESR, BERL,
FRaHARFHE THEERFER (2001).

[6] #)1IR% DKLIC LHERICBIT 2 0 EFEOMEBER, R, FMERERT
FEBHRFEF (2002).

7 HREE: A5 425 7)) 7 ICED TR TREBEASHELER, B8, FHE
KERFRETEHER (2001).

[8] Ueda, K.: A Pure Meta-interpreter for Flat GHC, a Concurrent Constraint Lan-

guage, in Lecture Notes in Computer Science, Vol. 2407 of LNAI pp. 138-161,
Springer-Verlag (2002).

[9] Nakashima, H. and Inamura, Y. : An Efficient Messaage Transfer Mechanism By
passing Transit Processors, in Proc. Joint Symposium on Parallel Processing,
pp. 123-130, FHMUEF % (1992).

[10] SIIE, AT E, @A, kLK, LHARL | 28 SR0E% DKLIC OREF & %E
¥, BAY 7 by 2 THERE 19 BIREwITE (2002).
[11] BAHKE . Inside KLIC Version 1.0, KLIC Task Group AITEC/JIPDEC (1998).

[12] Roy, P. V., Haridi, S., Brand, P., Smolka, G., Mehl, M. and Scheidhauer, R.:
Mobile Objects in Distributed Oz, ACM Transactions on Programming Languages
and Systems, Vol. 19, No. 5, pp. 804-851 (1997).

[13] Haridi, S., Roy, P. V., Brand, P. and Schulte, C.: Programming Languages for
Distributed Applications, New Generation Computing, Vol. 16, No. 3, pp. 223-261
(1998).

[14] Verbeke, J., Nadgir, N., Ruetsch, G. and Sharapov, I.: Framework for Peer-to-Peer
Distributed Computing in a Heterogeneous, Decentralized Environment, in Grid
Computing - GRID 2002, Third International Workshop, Baltimore, MD, USA,
Vol. 2536 of Lecture Notes in Computer Science, Springer (2002).

[15] Sun microsystems, Inc: Jini 7 — % 7 7 F ¥ DLk (1999).

[16] Sun microsystems, Inc: Technical Shell Overview (2001).

145

[17] Traversat, B., Abdelaziz, M., Duigou, M., Hugly, J.-C., Pouyoul, E. and Yeager, B.:
Project JXTA Virtual Network, Sun microsystems, Inc (2002).

[18] Ueda, K. and Morita, M.: Moded Flat GHC and Its Message Oriented Implemen-
tation Technique, New Generation Computing, Vol. 11, pp. 3-34 (1993).

[19] @A, IRk, LHFR | KLIC ERICBIT 5 UNIX 71+ X [H#1E «F A
L7zBIisMLEOESRE BRYV 7 by 2 THRERECR 7077 I Y FBIUHHAD
VAFAIZET ST -2 a3y 7 (SPA2003) (2003).

146

H6E FISMLERIBORET & EE

WATRE A E7E KL1 1Z GHC (Gaurded Horn Clauses) (2220w 72 7075 3 V7 5iE
T, BAARBICLEL2EE L FAELHELL T2 LI Frsd s, bbb,
KL1 \&Z¥EFlEm~ >~ (PIM) HOSREZS, KL1 727 7 4% CERHRICI V34 VL,
NHOFERE, 2F) UNIXEBRELETHENETE S X) I LADAP KLICRHER (1, 2, 3]
Th b,

KL1 DR TH %, MHLEOBEMLIRBATREZZT TR 2 THLELZ LIV EH
ThHb, LAL, BHEDKLIC MERIIZFEIVMLEEESEW 2D, KBEBEL2S8T 7
Vr—2a v aBETLHEOICRERANEIS A2V, RIFFE T UNIX 70+ X % F
A LT, KLIC ERICHSLERER EE Lz, JHITE) 5HERE TORI LR
B, 74—V I M VVRAREER LT T r—2 a3 070D PV o 7 OB
PHIEEA LIk o7,

6.1 FU®IC

ARFRIZEATIRBEAISEE KL1 OMIER KLIC ICBI/ VLB 2 ERET 22 L2 B L
T 5,

BAED KLIC LR iE. UNIX ¥ 7 7V 0FE) iAA % KL1 BEA OB GKAHRT, T
VEITORMY, B—bOEM) 2 EFRIA L KLICT V7 4 2EHEPERTLTLE W,
FNEEETLFRIEFAEINL TRV, 22T, A% T KLIC LB R 2 UNIX 7
U 2RI LTRSS R L, PSR, BETAZ LICEIL, Th
X oT, TEERETCORIWLEERER, 7+ -V NN LV RAEERLLT T 7 —
YalDlOOI PV T ORBRENFBREL LI IR o7,

AR LRAGHZ2EOTCIH TR EIN TV S, 6.2 TlE. FISLEOERIZOWVTHE
b, 6.3HDPH 6.5 HITPT Td, REMLERBORE L EXOFEME B, 6.6 &
EARBSLERED T U 7T L6 E, 6TEHITIEE LD, 2L T6.8H CTIRRAHBDOEEIC
O\/‘Tﬁ"{éo

6.2 BGISHIEDER

ZITIR, BTHREMNEEKLL OSEEEZEZ LB OERIZOVWTEET S,
EIOWTEZ A Z LT, WML ONRER LY O RET A0 W) BED FERIC
HEATVD, 7, RICTATHBEMEFEKLLICOWTHEIZHMNL S,

147

6.2.1 WITHRIEAEEKLL

WATREISFE KL i3 GHC IXED W~ EREO T S II VB TH 5,
FOTAT T LADFETRMOFHRIBEFELIIRE(Bo-TWT, HEEZRIEHRTSH
% Prolog 1Z5E vy,

KL1 70275513, F— FOZHOEEPLL A, W= FOEHLEATROL I 2
L Twh,

h:-G 1| B.

2T, hEHDOAY F, GEH—F, BEKRF1 w9,

KL1 7927501k, T—V7T—VHOT—- VOEXREZ Z) RT I L TETIED,
T=VidNy FIZwy 535K, F74 THRESIN T VHIIEERIONG, T—
FMﬁwﬁ%%ﬁT&%oﬁ%f%éﬁﬁﬂwj—wuﬁ%&%éii’&5if%x
RYFS D, T=NVT =PRI EFETEIRT T4, T IVELITFREERIC
THEfE L CpdiEifE L T 5,

6.2.2 fHOEFEEDLEE

A LERIZ, #F < 1X BASIC OEE R SHFEL T T, BET iLM%%iLb<
% DB ZOWEEL FD, BASIC OFISMLIER 2 IEBELBISLE L Vb, 1T
@5&»&5?%%%&%@%@%%@watoﬁﬁ@lmm%ﬂ%&fﬁﬁ%Lf
W5 try-catch B CIBELFISVLE L b, BEOERAZ 70753 Y IliEIcZ-
72H DI > TW5,

LaL. KLITIR7O 7S48V — A EOT— VONBEREETEERZT -2 BE
B2\ 7z80, JAVA, BASIC 7% EOBINLE OER D & 5 2SN 5§ 217 BAL T
ETAHIEIITEL N,

Prolog SLERDFIIE, KM EDFNRI B 54 I VI THRFEENL TV %
BET 2PN BRESHARAINTHE DD 5,

6.2.3 fBINNEEED T TV

REFFEDFSVAEDE 7V id, EFHER~ T~ PIM L KL LFER [4] ITEE ST
WRHEEEY 2 - VESEIILT0E, HRIZKLL 707 7 20FETOH L5 (EE
Py TRV DT=Ve, ZOT-VHoRE LFFHRIT—VE) ZARICE OZHTDH
bo £z, HEOPIZE-HREESL L TE, AR RICKEEL 25, HEEE
EATHIE ., EREH., FITMAEORBEE T X Tz, RBITVLERIEL EET 5 1lHzo
THEROEX, BISMLEORERE L L2 BZICL T2,

DT HEROENEZRT,

shoen:execute(Code, ArgV,M0, M1, Exc, C, Rep)

Code \IERTHERD by 7L RVDT— VDWBFEL T ArgV i F D T—)V D5 %L,
Eoc 3T BHNERERD DT AT NS — Y EHET b0 £ LT Rep FETRED
HETHHNOHEILZ Z RIS, MOTIBITEAMETESRL VO TEHET 5,

148

FEEIT-VERETLHZI LT, FORBEOEHEHZ 20T~ VR LRET 5 T%
T—NVEEETIZL TS, KEVLEZRTD 6.3 28 THRRALLHIZ, FEEFEUEES
ETHINS SERETIRET A Z LI10T 5,

6.3 GISMLIEEBEDENE

6.3.1 Gl NIEREEOBE

BAED KLICLERIZ, —0D T VOETRENT V¥4 bERKERTSETLE
Vo TNEREBET LDIRBISLBEED—DDOKEXLZEETH 5, AHFE TIE UNIX
TULAEFIHETAILICLY) COMEZEET S, KLICAEREERIIKE(FEzW
NAEFELD 7205 BIEOEFEKII 2 -O0RMETR I VEENES R HEER
ATWE, Lo CKLICMBRICTEALEITFEVNLEWVE) ICEET S LA~
ODEY Y —kEoTWh,

¥72, UNIX 70t 2 ZFHETHIEICEIY)KLIC T Y ¥4 LEEPETLAVWED
2T 2DTIE %L, FINERELTCKLICT Y74 AR TT5E0)RINEEICFIH
THI LKL, ML, 6.4ETHENRS,

Z OHIFVEBEAE D IR 2 E 2 HIE, SIS RO T VEEE IO UNIX 71+
ADKLIC S 3 4 L ETETERBILICE T, BIWMLENSR T VEL ZDMD
T— Vo BLTLEI LIS D, LzdT> T, BISMLESS RO I— VBB
ZRELT, FOKLICT YA AR TLTH, 20T V%55 KLICT >~ ¥
A DZERT 5o '

/2, TORNTRERZTHEVIFHEEILL T, T7REAPETTLRHOKT
I — FIZBISMEREZ R T & V) HETHNORBIRERETER L TWD, ML, 655
Tk 5,

6.3.2 Gl IEEBDER

ABISVLTARE DR S B BFEZ HIIMAEE D 2 — VLIRS, FISMLEE Y 2 — Vi
- BEEORFEEFTHTOLAL L) TSNS, EXNELTIORT,

exception:execute (GOAL, EXCEPTION)

5% GOAL \Z1% Module: Predicate(Arg,...) £\) EXTHNHRIIT RE T VEED
My TLRVDT—-V2ET S, 2D, TDT—VRLRET LFHIT - VEHIE
THSMLEDERICASL Z L Il% 5,

T VORI ESLENDE FH (E—F) 25 Y ., 6.538TEHL (BB LI,
BITVLEERS [BER Z B U 5720 IR EHDE— FERPLEII LS, 22T, Z0fF)
FHUREEE D 2 — VOHIER A » TIT CREBRBEICI + &, MORZRERRICE - %
BIRESIZAT 1T B0 EBRITIZE— FAEI) B SO AFIREICH T ITR Y,

518 EXCEPTION 13614V B R ERH ORHELL T, err(N,C,M,P) L) HTE
wiLah, DToBREH®ET 5,

149

e N: normal 7%* abnormal 75E%, YU AR OHEEMICL ABENEFIET L
T2 E 9

o C: T —a— N, EHE
o M: T7—kvt—, LFH EHEHT %5 NORMAL 7558 %
o P /Ut AN ID, ¥HiE -
DFIERB 2R,
exception:execute(main:test(+(4),-(B)),E)

ZOBITIE, test/2 FIFUHT TV L FDT— VL IRET 5 T— VEZ BISMLED
B ELTETT Do test/2 N EHICKT, FRANEREL TRT T2 L TOHE
B EIZEMMEEN S,

6.3.3 fISLIEEAEDETORN
UTIZBVLEEE DO ETOWRNE R T,
1. SR E %A T VEBIBICLFIMLEE Y 2 —VSIRHIN S,

2. BHNTOEADIE—=THAHBD UNIX 7HLA (F7EEA) % fork ICL 2T
ER L, KLICS ¥ %4 A%RET 5,

3. BEEIN:T—NVEFOT—APORETAFHRI-NVELZZOF 7O LA LD
KLIC 9 > # 4 L ETERT 5,

4. F7U LA LT VERTEERTLLIL, AINREELRETRERTLALLZD
R E T+ AIET,

5. BERTICLoTRIERI SN T— VEOBERELRIHT 5, BEEMNIIHEE
BEE U2 (BEENORERERT BMKLTE) L IZL DARAFHZRIT 2
EDEEZR <o

6.4 UNIX A+t X2 & 3 Hl44 018
6.4.1 UNIX 7Ot XD&ER

FHLWUNIX 7Ot A% &R LKLIC T ¥ %4 4% Z0 L TEES ¥ 572912, KLIC
DHAHBEETH B fork_with_pipes # AT 2, T DRFFIE, MERT fork ZEMHL
TWT, BHD 702 AN I¥—%F|0 UNIX 7H X A LIERT 2 2 LA TE 2, £
D7D, KLICT Yy 74 A ZETHRACI—ESNEDT, KLICT V¥4 L% H R
TEFTHLETRL, 20T fork_with_pipes DR VETT T T T L2 FIET 5
ZET,BTULA, FIULALTENREFNROBEL E¥HT P TE S,

150

parent(A,B) :- exception:execute(child(A,B),E)

main program] - AN
!

/ /

parent(A,B child(A,B)

/
/ /
exception } / fork (exception
1

\

\

handler - '}" R - handler]
variable table # »\| variable table !
/ Unix domain \ /

socket connection /
\ /
/ \ /
/" exception stream 7
s/ .

E = errN.C.M.P) s KLIC runtime syStem

7/
KLIC runtime sy§teff1
on PARENT LINIX process

—

——— e =T

—
P

X 6.1: BIAMVLE Y X 7 4 HEY

CIT, —ODMEFPEL S, B L72X) ICHSD 2 -2 R T 5720, 2=
BEARICHARY FEhRzvFa—SNTd—Vid MUK, F72 A THH ARy
REZBIVFa—3NRKEICR>TWh, KROBETIE, F7 11X Tldflsbat
BOIT-WVPNIFET SR BVOT, INLORFTR T-VEHIERTLILEND S,

T THIMLEE Y 2 — VT RENE LT CICF T AR L, TV 7= VA
DB R TV EETTHMBIILELR T VER(F ARV N, Z0Fa—-L
TVAEETHOIT— Ve T LT -V 56HBRT5,

6.4.2 TOtXMEREECHRELTH

KL1 3 T— VR DHBEERIC L 2 8EICX > TIHRBWEL 2250 EAT05E T, A
SRR CIRBFINLE SO T— LV E FZD T — VL RET A FRIT—VEEE . Fi5t
MEEY 2 —VHME-7: UNIX JU LA L (F7 LR TETT S, 2L T, FlyMLE
ET 2 VERTHELTWAIHRETO LR EFNLENSROT 7Ot A&EDETIE, #
FEOH—~70v A L TOEFTERUERCE L2TNEE L2, 2F), F7aE 2,
BFTILRAE NI OO UNIX 7Ot A O T— VEICHRBEERICL 2 BERLELD
BB b,

Z 2T, KL1 D45 #MLEER DKLIC[5]| D5tk 2 FIF§ %, DKLIC i35 EGe A
RE2ERKOV Ty VEFBLTERL) — FRICOBGREERZREL, Ay T -7
BB TOr IV lBMTEI NV 2T TH L, RKFFE TR DOSEGHESE
BERA T 70 ABRBEENEYEE L, 70 ARREEERIIOWVWTIZ64.35

Vv b TCP TiED L 20K VEFEEPIFF IR L L, 22 TY T v ME
F—TrDEELREEBSHICEBITL72OUNIX KA DOV y PEERT A, UNIX F
A A TIE “eXi” BI D “eXo” LWV I XFIHNIF 72 ADPID zfMmL7zb 0z

151

B35, BlziE, “eXi0031335” & “eXi0031335” T#H 5, PID iZF L UNIX k%56 7
Ot AZ—DDFEBFTHEDT, FORAAVEPEE L LWE) IIERTLLENE
{2 b,

6.4.3 70t XAERIETRER

70t A MFREEFRIE DKLIC O BRBEERRO—HICH L TBEZMA b0
Thb, BEREFIBNTHHOTRFLTIIMN LV, I TRTH L AHREL
BEOTI % o TV B G EGRHERRIIOWTHMERZ B85,

PATRERMEEKLL OZBITE—RATH), RERREBLFOREER TH S, I—
VEBEICRED SRAICEKEENL X MSRB SRS Z DSV, L L, KLIC
MBRICIEEL L~ FETHORBEERICI > GRETEXLLII LR IA T TV ITEER
nNTnwizhoiz,

#ZC. DKLICWE%5 /- FEICV Ty FEED., SEGHEEHELZ N L TREE
BICXABEZEHT L, 230, /J—FA L/ —FBYVRBEEX ICL2BELT
5E5BH, £/ — FATHREEE X PHEGHEERERICID LHITEHEINL, £9
TEHE)— FBAZOBFIRESREEN /- FBTHID L HIIBHFINE, LT,
EHRZZOEBR X DBMMMEEFERLTWT, 3L/ —FATX FEKLENZLS
J—=FBRFDOER X FEBMMLanzZ tabw, ID EBREEEDL, 29T 5L,
J—=FBTHEBRX VBRI NE I Lilh b,

PEo X i coiGaBERERE. /- FETRESNAHELEOID 2EHL., 20
EHOBERILEERT S,

6.5 GINOEIREHENTHEA

AREIFVLTERERE T, UNIX 7O Y A 2/ER LF DO L THO KLIC 5~ % 4 AT EET
HZEDEIY, FOTIALLEDOFHNIMBO KLIC T 74 L EIZdH AT VEILE
BERIZTOERCMIC, SIS TR, RETAHILOTRIZL T,

fork 2 L CTER SN/ F 70 A2, wait EVI)BEBEERTTE S, 2D wait
EVIHIDIF, FTOEADKT ZH T 0L APR/RIZY, Fo/o) ThlR EIERESN
bo IO wait BEICIRE S ICFORTREZELBENDH Y. T2, exit DFIHL 72
I3 UNIX ¥ 7 F VOfE % wait 3ZTE 2, D). wait #ETTHILICE-T, &
5F7OL R ETEFENTWAZKLIC 7 ¥ 5 A LD TIREBZMA Z LT TE D,

UNIX ¥ 7 F VEAEIZE > TKLIC 7 ¥ 7 4 203 T LTV A5EITIE. TOF F wait
BMAY 7T VESEZITMB ZENTES, L, KLICHHDAANH% L Of]
SHE, YT F VBB TRIITE 2w, ZOE T TRANOBELHIT I LT
S\

2T, exit BEOFIEZFIA L CKLL EEOBNEHGITH, 2F h., HIZITKA
R (T VAL ABEVICHBERIC X 2BERHE LRI Ty ¥y 2 2RI TIRE)
PHREZ D & XTI, KARBERAL KLIC 7> 5 4 L 2T 8¢ L) &9 2HH5D
5FHHNT, KLIC T ¥ ¥ 4 LDZFDEFEBEL T, exit BHICL > THRT T2

152

L. EHICEDOFIH “&L%mﬂ%ﬁ@%ﬁ%tékaoé EREIZIZY S
FTNEEDHOBINED 5 —DDBHTMRBEEINTWEDT, I ICFNOEELEYK
WEBRLZZDDOEFIHBICE X, exit BEERITT A L) RIBIEEZNZ 5,

PlED X512 LT, KLIC BHOHIT exit DB EIZL > T, UNIX ¥ 75 vid
FrMAA T E% L wait BEICE » THEERS LI ICL,

COFROFEE LT —FIBINEERTEDL I LDBEIT NS, ABHLIEREE
i, exit BOBIBICEZLFFPZOTTHETLHLIHIICL TS, Lz > T, 4l
AMLEEN CREEEN L T A T— V% exit BETERT TS L9I1ICL., 205 BICE L LB
EEIANTZOTEZORFEONGEL L TRITEBEIENTE S,

6.5.1 waitDOEA13I>Y

wait BT EARNICTFOETIRT T4 F T, wait BEZFOHR L2707 T LDE
T2 799755, REVVLEEBEOSA. 7077 ADOKRBSFSMLENR T— VO
RTEFEOZELIL D, 20720, F7ORAFZERL T I wait 2FITT4 &, #
DELATHOEHEIELT AN Tt AMGHEELEHELLEEF->TLIEWN, ZOEN
TFT/OLASBEFLRECLVETLELZYFY Fuy 7 2RI,
FITEDIA I VT Twait EBTTHNEV) &, BB LZL) ITHET T AP
FoTHRADIZ T AMGREEMESIEEL 2L 25 PHTHEHDT, %ﬂ@#T%
BoTRBITTAZ LT A, B, TOBETLF7aL AEIBEIED o 721212
AV—TFTBE) %77 T LTIIAAL wait() THZ L% oTLE Of{kﬁgf)""é&@“
B0, FNETUTIROBFEICENPE D, COMBEIE, ¥4 47T MEREMAIT. B
LEEEPEOEF T UL AT BERT 2 T5E V) FETHBETE A5, HEITEEL
Tz,

6.5.2 IHIEEOWLIE

KL1 38 EB O TV iShBEHE A L7 BE I L o THREEL TEFTPEATIT
ETHD, PINDPRELTCHLT-NVOEFTVIETF > TLE) EHREFDOT -V EDE
FEHED ETF-TLE), Lo T, bLBANEREELTHATLE 2T -5
DBEZF-TVBII BT APVE L, KARLEDIT—VITETEHRTTH I &I
Y, RARORREICZ->TLE),

BIZIE, 620X Hic, T—=VA, B, CHdH) FNO I mBEKIC L 5 BER (chan-
nel) IZ& o THREIEN TV AR, FISLEY AT A LD T—V CHBS 2 RAELET L
TLEIRREZER S, 70t X CRHFHNLEI AT LETRTTEDT, T—IVA,
T—VBIEELET S, LL, T—VADFT—VC 25L0BREEZITH - TEEL
TWVAEAEIZRAAKLFOREX®T—VAREFE-TLETIT LIRS, INTIE, Fi4
MBI SRENIMETETH, FOMOT-VIZEEEZRIZLTLE).

L7250 T, 20X) RRBLEBOBERIIV L TRALPONE LT 5 LERD
Be ST, TODHEREZOND, —2lF, T—NVCEEHLTIT—VADLLDRE
BHRLEBERSELZLETHE, b)—2id, ZOBEREHLLILVIFETHL, &

153

/

e r—————- . \
GOAL A , & o ‘
- \ Z \ /,
channel 7
AN 7
/‘vAannel v S _-

excepzio—n Tandler
GOAL B

X 6.2: =—)V EEE & KA R

ZOFRTIEHR, ML > TRERPHA LI L TV APBML, Thilxy
LA TWAZ ENET NG,
BINRET—NVOEIFIZ, AF v Tyav b z2EDIICEsh BLUOTIT-VEFD
BEWR EOEELIIEEEATYS 20, REANMLERBETIIT-VOERIZL-T
BEBROBMELYTH I LIz, Lo T, T VOEFELTRE B+
IZERAHI LT B,

6.5.3 BIEIRDEAH

CCTRBEEKICIABERE LI R THLEAPICDOW TIN5,

REVLIEEE OB A ., MEL 25 T— VEOBEICIR 70 & A BREERE; M
LT3, 230, FOT— VETEMEL TR WREERIE V0 AREERE
PEBELTWBEDT, BINDFHE L2 0BBEY ZORERERE LA LPOE (FIZE
exception) TEML L TLERITZFDOBEBRHIIFAL LI LIk 5,

L L, ETORERERZEMET T I VDT TIIR L, LIS 25T
TCREFHEILZ>TWADTEFOBRERZTEH LA, FICA-TRLIBERFZHAL
I3 se, HOT—V250BMKILEBFHEIRE T AT L HEIE—LEKRDH
HEEZILTLE),

WA OBEDHINIBIICHT 2 2 EHFATE LV T, BIRTIZ6.3.2H THR
72X CRBREROBEOHH. 2F D E— FEREZHOP LD TERREY 2 —
MIZHSEDL X HITLTWwA,

6.6 7055 LA
DT I ABIS VB 2 R L7 70 75 AR R,

main :-
B=[divide(3,1),divide(1,0),divide(8,2)],
calc(B).

calc([]).

154

calc([A(B]) :-
io:outstream([print(R),nl]),
exception:execute(main:div(+(4),-(R)),E),
calc(B).

div(divide(X,Y) ,R) :-
R:=X/Y.

IOTOT T NIEMICHE Y S8, FFREED T NS T LTH D, cale/112divide(X,Y)
EVI)IEFREYANTERDE XEDY %5 5, div/2 WEEL LERTETHFET,
INEBIMLEI R ET 5,

ARE7% D divide(1,0) EV I HHFIE1E508%0, YuBRELZDOTHNEREEL T
KLIC 7 ¥ % 4 A BHEIT L, 20%0 divide(8,2) WEFSNEV, Lo L, &B
SHLEBISHEE EROTT YT 3 Y IR0 LS IS LTRAT 5 &L BEORS AR, %
DEDIE divide(8,2) ZHATT H I ENTE B,

DT ICEERE 2 25T 5,

e klic-3.003-extio-shared
http://www.ueda.info.waseda.ac.jp/ takagi/kl1l/

e fork_with_pipes Z{# 4 4 72% I runtime/gunix.kll DL
o KLIC FA DBIFMEHR = 15 5 72 ® T runtime/trace.c DUZE

6.7 FT&H

AT CIIFATREBA SEE KL1 OAER KLIC AL » 3 Lo, AL
HARE, B2 % UNIX 70 X ICBIVLES SR E b T VEEX IREET 5 2 & T, #i4t
BEZIAEENRZFZOMO T—VIZREZ L #FnE, #L T, UNIX 7+ Vg
hAHR2 KL EA OB Gk, T—VEfTOEKK, B—(LDkMZz L) 2L, £
DPNERETHIENTEL LT Lz, INICK D TRERE TORIMLEERE R,
Ta—VI S VVAREBERE L2775 —2arvnizonI FV7 27 OEEIERE
5 Lol

6.8 SHNDEE
6.8.1 SRR DNIE

6.5 BT H 7245, FIMMLEHZOMEIZOVWTRELZER ENLBDIR o TVRY,
ASHZT-VOBERZI-FIZEIPE, TLT-VPERLTWAEERCELTHH
LBEn) HETHRE Lz, 2OFTFTLI-HFIBEOABTTHM->TVT, 351
BEEZINVESET L L) 2B CIHETHEL., 20EER0EE T - VOFEREZ &°
TEAEIETUTFIIVITHIENTELTHA HDS, TE AL LEIVVLIEEEH
TEDEIZLDEFEEL, 2 —HF—ZEENEEBLETIRM L2,

155

6.8.2 FTTUH— 3 DR

AFFFEIE, KLIC IR IS - B VLIRS 2 522 L, ISt iR, S 946 2
ERTEBLEICL, Ll REERZT U r—3a v, IAMLEFSEIER &
NLEELREICEIEET A 0ORIFIZE X Th b, T7. FORRFILEERE LR
BOBENLDTH DD, FEABEAOEHIIHZ) 2bDTHEDOh% EDOMAER £
SHOBETH b,

SE XA

[1] BHKE, Inside KLIC Version 1.0. KLIC Task Grbup, AITEC/JIPDEC, 1998.
[2] http://www.klic.org/

[3] #EAIE R, 5T v € a— 5 OEFLE. bit FIHE, 7 HAR, 1993.

[4] ICOT PIMOS B% 7V — 7, PIMOS %= 27V (% 3.0 i), 1991.

[5] AT B, @10 &, BA $hid, i ok, B A4, dilic: KL1 12X 508 KL1 57
HAOEE BHEAY 7 by 7THEESE 19 BFECE, 2002.

156

FHT7E Flat GHC DA > 2 7 1) 2 DIEEE

This paper discusses the construction of a meta-interpreter of Flat GHC, one of the
simplest and earliest concurrent constraint languages.

Meta-interpretation has a long history in logic programming, and has been applied
extensively to building programming systems, adding functionalities, modifying opera-
tional semantics and evaluation strategies, and so on. Our objective, in contrast, is to
design the pair of (i) a representation of programs suitable for code mobility and (ii) a
pure interpreter (or virtual machine) of the represented code, bearing networked appli-
cations of concurrent constraint programming in mind. This is more challenging than it
might seem; indeed, meta-interpreters of many programming languages achieved their
objectives by adding small primitives into the languages and exploiting their function-
alities. A meta-interpreter in a pure, simple concurrent language is useful because it is
fully amenable to theoretical support including partial evaluation.

After a number of trials and errors, we have arrived at treecode, a ground-term
representation of Flat GHC programs that can be easily interpreted, transmitted over
the network, and converted back to the original syntax. The paper describes how
the interpreter works, where the subtleties lie, and what its design implies. It also
describes how the interpreter, given the treecode of a program, is partially evaluated
to the original program by the unfold/fold transformation system for Flat GHC.

7.1 Introduction

7.1.1 Meta-Interpreter Technology

Meta-interpreter technology has enjoyed excellent affinity to logic programming since
the seminal work by Bowen and Kowalski [5]. It provides us with a concise way of
building programming systems on top of another. This is particularly useful for Al
applications in which flexibility in designing and modifying inference mechanisms is of
crucial importance. Interactive programming environments such as debuggers or visu-
alizers are another example in which interpreters can play important roles. Extensive
survey of meta-interpretation in logic programming can be found in [11], Chapter 8.

Critics complain of performance degradation incurred by the interpreter technology,
but the speed of system prototyping with interpreters and symbolic languages cannot
be matched by any other methodologies. Hardwiring all design choices into a lower-
level language such as C may be done, but at the latest possible stage and to the least

157

extent. Indeed, due to Java and scripting languages, interpreter technologies — including
bytecode interpreters and its optimization techniques such as just-in-time compilers —
are now quite ubiquitous outside the world of symbolic languages. Java demonstrated
that poor initial performance of non-optimized interpreters was acceptable once people
believed that the language and the system design as a whole were the right way to go.

7.1.2 Concurrency and Logic Programming

The raison d’étre and the challenge of symbolic languages are to construct highly
sophisticated software which would be too complicated or unmanageable if written in
other languages. Logic programming has found and addressed a number of such fields
[4]. While many of those fields such as databases, constraints, machine learning, natural
languages, etc., are more or less related to Artificial Intelligence, concurrency seems
special in the sense that, although somewhat related to AI through agent technologies,
its principal connection is to distributed and parallel computing.

Distributed and parallel computing is becoming extremely important because virtu-
ally all computers in the world are going to be interconnected. However, we have not yet
agreed upon a standard formalism or a standard language to deal with concurrency.
Due to the lack of appropriate tools with which to develop networked applications,
computers communicate and cooperate much more poorly than they possibly can.

Concurrent logic programming was born in early 1980’s from the process interpre-
tation of logic programs [34]. Relational Language [7], the first concrete proposal of a
concurrent logic language, was followed by a succession of proposals, namely Concur-
rent Prolog [20], PARLOG [8] and Guarded Horn Clauses (GHC) [27]. KL1 [29], the
Kernel Language of the Fifth Generation Computer Systems (FGCS) project [22], was
designed based on GHC by featuring (among others) mapping constructs for concur-
rent processes. To be precise, KL1 is based on Flat GHC [28], a subset of GHC that
restricts guard goals to calls to test predicates.

The mathematical theory of these languages came later in the generalized setting of
concurrent constraint programming (CCP) [18] based on Maher’s logical interpretation
of synchronization [12]. Grand challenges of concurrent logic/constraint programming
are proposed in [32].

Although not as widely recognized as it used to be, Concurrent Prolog was the
first simple high-level language that featured channel mobility exactly in the sense
of m-calculus [15]. When the author proposed GHC as an alternative to Concurrent
Prolog and PARLOG, the principal design guideline was to retain channel mobility and
evolving process structures [22], because GHC was supposed to be the basis of KL1,
a language in which to describe operating systems of Parallel Inference Machines as
well as various knowledge-based systems. The readers are referred to [22] for various
researchers’ personal perspectives of the FGCS project.

158

7.1.3 Meta-Interpretation and Concurrency

Another guideline of the design of GHC was the ability to describe its own meta-
interpreter. Use of simple meta-interpreters as a core technology of system development
was inspired by [5], and early work on Concurrent Prolog pursued this idea in building
logic-based operating systems [21].

A key technology accompanying meta-interpretation turned out to be partial evalu-
ation. Partial evaluation of a meta-interpreter with an additional “flavor” with respect
to a user program will result in a user program with the additional “flavor” that runs
almost as efficiently as the original user program [24].

This idea, though very elegant, has not become as popular as we had expected.

One reason is that before the booming of the Internet, a program ran either on a
single processor or on parallel processors with a more or less uniform structure, where
a hardwired approach was manageable and worked. However, software for distributed
computing environments is much harder to build, configure and reconfigure, and run
persistently. Such software would not be manageable without a coherent solution to
the difficulties incurred by heterogeneous architectures, process and code mobility, and
persistence.

Another reason is that the languages and the underlying theories were not mature
enough to allow full development of the idea. Meta-interpreters of many programming
languages achieved their objectives by adding small primitives into the language and
exploiting their functionalities. Those primitives were often beyond the basic computa-
tional models of the languages. We believe that pure symbolic languages are the right
way to go in the long run, because only with theoretical support we can expect a real
breakthrough.

7.1.4 Goal of This Paper

In this paper, we discuss how we can construct a meta-interpreter of Flat GHC, one
of the simplest and earliest concurrent constraint languages. Our objective is to design
the pair of

1. a representation of programs suitable for code mobility and interpretation, and

2. a pure, simple interpreter of the represented code.

One of the motivations of the work is to use concurrent logic/constraint programming as
a concise tool for networked applications. There are strong reasons to choose concurrent
logic/constraint programming as a framework of distributed computing.

First, it features channel mobility, evolving process structures, and incomplete mes-
sages (messages with reply boxes), all essential for object-based concurrent program-
ming.

Second, it is unlike most other concurrency frameworks in that data structures (lists,
trees, arrays, etc.) come from the very beginning. This means that there is little gap

159

between a theoretical model and a practical language. Actually, a lot of applications
have been written in concurrent logic/constraint languages, notably in KL1 and Oz
[23].

Third, it has been extremely stable for more than 15 years. After GHC was pro-
posed, the main variation was whether to feature atomic tell (publication of bindings
upon commitment) or eventual tell (publication after commitment). However, by now
both concurrent logic programming and concurrent constraint programming seem to
converge on eventual tell, the simpler alternative [22][26]. Indeed, concurrent constraint
programming with ask and eventual tell can be thought of as an abstract model of Flat
GHC.

Last, as opposed to other parallel programming languages, it achieves clear separation
of concurrency (concerned with logical aspects of programs) and parallelism (concerned
with physical mapping of processes). We regard this separation of concerns as the
most important achievement of KL1 and its parallel implementation [29]. In other
words, by using logical variables as communication channels we had achieved 100%
network transparency within system-area networks (SAN). The fact that programs
developed and tested on sequential machines ran at least correctly on parallel machines
has benefited us enormously in the development of parallel software. We believe that
this feature should be explored in distributed software as well.

Addressing networked applications using interpreters as a core technology is promis-
ing because flexibility to cope with heterogeneity is more important than performance.
However, it is not obvious whether we can write a reasonably simple interpreter in a
pure concurrent logic/constraint language such as Flat GHC. A meta-interpreter in a
pure, simple concurrent language is fully amenable to theoretical support including par-
tial evaluation and verification. Also, it can help analytic approach to language design
[32], because meta-interpretation is considered an acid test of the expressive power of
the language. The réle of an interpreter technology in networked applications should
be clear since an interpreter is just another name of a virtual machine.

7.2 Previous Work

Meta-interpreters of symbolic languages date back to a Lisp interpreter in Lisp around
1960 [13]. Prolog interpreters in Prolog were available and widely used in 1970’s; an
example is the interpreter of the de facto standard DEC-10 Prolog.

Meta-interpreters of Concurrent Prolog can be found in various papers. Figure 1
shows two versions, the first one in [20] and the second in [17].

Program (a) is very similar to a Prolog interpreter in Prolog, but it relies on the
“large” built-in primitive, clause/2 (clause with two arguments), that performs syn-
chronization, evaluation of clause guards, and committed choice. The only thing reified
by the interpreter is parallel conjunction. Program (b) takes both a program and a
goal as arguments, and reifies the unification of the goal with clause heads and the

160

reduce(true).
reduce((A,B)) :- reduce(A?), reduce(B7?).
reduce(4) :- A\=true, A\=(_,_) | clause(A?,B), reduce(B?).

(a) Without a program argument

reduce (Program,true) .
reduce (Program, (A,B)) :-
reduce(Program?, A?), reduce(Program?, B?7).
reduce(Program,Goal) :-
Goal\=true, Goal\=(A,B),
clause(Goal?,Program?,Body) |
reduce(Program?,Body?) .
clause(Goal, [C|Cs],B) :-
new_copy(C?,(H,G,B)), Goal=H, G | true.
clause(Goal, [C|Cs],B) :-
clause(Goal,Cs?,B) | true.

(b) With an explicit program argument

Fig. 7.1: Meta-Interpreters of Concurrent Prolog

evaluation of guards. Note, however, that most of the important operations are called
from and performed in clause guards. In particular, clause/3 calls itself recursively
from within a clause guard, forming a nested (or deep) guard.

While Concurrent Prolog employed read-only annotations as a synchronization prim-
itive, GHC replaced it with the rule that no bindings (constraints) can be published
from the guard (including the head) of a clause to the caller of the clause.

Figure 2 shows a GHC interpreter in GHC in [27]. Here it is assumed that a built-in
predicate clauses/2 returns in a frozen form [16] a list of all clauses whose heads are
potentially unifiable with the given goal. Each frozen clause is a ground term in which
original variables are indicated by special constant symbols, and it is melted in the guard
of the first clause of resolve/3 by melt_new/2. The goal melt_new(C, (A :- G|B2))
creates a new term (say T') from a frozen term C by giving a new variable for each
frozen variable in C, and tries to unify T with (A :- G|B2). However, this unification
cannot instantiate A because it occurs in the head of resolve/3.

The predicate resolve/3 tests the candidate clauses and returns the body of arbi-
trary one of the clauses whose guards have been successfully solved. This many-to-one
arbitration is realized by the multi-level binary clause selection using the nested guard
of the predicate resolve/3. It is essential that each candidate clause is melted after
it has been brought into the guard of the first clause of resolve/3. If it were melted
before passed into the guard, all variables in it would be protected against instantia-

161

call(true) :- true | true.

call((A, B)) :- true | call(d), call(B).

call(A) :- clauses(A, Clauses) |
resolve(A, Clauses, Body), call(Body).

resolve(A, [C|Cs], B) :- melt_new(C, (A :- G|B2)), call(G) | B=B2.
resolve(A, [ClCs], B) :- resolve(A, Cs, B2) | B=B2.

Fig. 7.2: Meta-Interpreter of GHC

tion from the guard. We must protect variables accessible from outside but allow local
variables to be instantiated.

Again, this GHC meta-interpreter calls resolve/3 from within a guard recursively.
However, our lesson is that, except for meta-interpreters, we can dispense with general
nested guards. To put it more precisely, we can dispense with guard goals that may
instantiate local variables; restricting guard goals to calls to test predicates is a more
realistic choice. Test predicates are predicates defined in terms of clauses with no
body goals. A nice property of test predicates is that they deterministically succeed
or fail depending on their arguments. They are regarded as specifying conditions, as
opposed to predicates for specifying concurrent processes. Test predicates defined using
guarded clauses may call themselves recursively from guards, but unlike general nested
guards, there is no need to maintain multiple layers of variable protection to implement
synchronization. In this sense, languages with restriction to test predicates have been
called flat languages. In most implementations of flat languages, test predicates are
further restricted to predefined ones.

Later development of concurrent logic languages can be phrased as devolution as
evolution [26][32] in the sense that it focused on high-performance, compiler-based
implementation of flat languages. Strand [9], KL1 and Janus [19] all belong to this
category. Accordingly, there was less work on meta-interpreters for the last 10 years.
Huntbach [11] shows a meta-interpreter that implements ask using match/2, a special
primitive discussed in detail in Sect. 7.3.3. Although using match/2 to implement ask
is a natural idea, match/2 turns out to have properties not enjoyed by other goals
definable in concurrent logic languages. This motivated us to design a meta-interpreter
that does not use match/2.

Distributed computing based on concurrent constraint programming is not a new
idea. The Oz group has done a lot of work in this direction [10]. However, code mo-
bility in Oz is based on bytecode technology, and Oz has added to CCP a number of
new constructs including ports (for many-to-one communication), cells (value contain-
ers that allow destructive update), computation space (encapsulated store, somewhat
affected by nested guards of full GHC and KL1’s shoen), and higher-order. This is in
sharp contrast with the minimalist approach taken in this paper.

162

7.3 The Problem Statement

Now let us state the goal and the constraints of our problem precisely. Our goal is
to design a binary Flat GHC predicate, say exec, that

o takes

1. a multiset G of goals (represented as a list) to be executed and

2. a ground representation of the program P to execute G, and

e behaves exactly like G running under the ordinary compiled code for P.

The predicate exec/2 is sometimes called a universal predicate because it can be
tailored, at run time, to whatever predicate you like.

The only built-in primitives the exec/2 program is allowed to use are those definable
using (a possible infinite number of) guarded clauses. Other primitives are considered
extralogical and are ruled out. Observing this constraint will enable the resulting
interpreter to run on KLIC [6], which is in our context considered as a (Flat) GHC-to-
C compiler and its runtime system. Flat GHC and KLIC carefully rule out extralogical
built-in primitives because they can potentially hamper efficient implementation and
theoretical support.

A solution to the problem is not obvious because Flat GHC and KLIC do not have
general nested guards, on which the interpreter of full GHC in Sect. 7.2 depends in a
fundamental way.

Some remarks and discussions on our requirements are in order, which are (1) rep-
resentation of code, (2) representation of runtime configuration, and (3) primitives for
ask (matching) and tell (unification).

7.3.1 Representation of Code

Meta-interpreters vary in the representation of programs. Some retrieve programs
from the internal database using primitives like clause/2. This is not suited to our
goal of code mobility and persistence. Some use a list of clauses in which variables
are represented using variables at the level of the interpreters. This is considered
misuse of variables, as criticized by later work on meta-programming, because those
variables are improperly scoped and awkward to handle. One solution is to use a
higher-order construct as in Lambda Prolog [14], and another solution is to come up
with a ground representation of variables. Although the higher-order approach gives
us the most natural solution, the difference between the two solutions is not large when
the programs to be represented have no nested scope, which is the case with Prolog
and Flat GHC.

As we will see later, we have chosen to represent a variable in terms of a reserved
unary constructor with an integer argument. This could be viewed as a de Bruijn
notation as well.

163

7.3.2 Representation of Runtime Configuration

In a rule-based language where programs (rewrite rules) are given separately from
expressions (goals), how to represent runtime configurations and how to represent the
programs are independent issues. The two alternatives for the representation of runtime
configurations are

1. to reify logical variables and substitutions and handle them explicitly, and
2. not to reify them but use those at the interpreter level.
We adopt the latter, because

e an interpreted process must be open-ended, that is, it must be able to communi-

cate with other native processes running in parallel with the interpreter,

e the reification approach would therefore require ‘up’ and ‘down’ predicates to
move between the two levels of representation and (accordingly) a full-fledged
meta-programming framework in the language, and

e explicit representation can cause performance degradation unless elaborate opti-
mization is made.

7.3.3 Primitives for Matching/Ask and Unification/Tell

In the CCP terminology, Prolog and constraint logic languages in their basic forms
are tell-only languages because unification or constraint solving is the attempt to pub-
lish bindings (constraints) to the binding environment (constraint store). In contrast,
concurrent logic/constraint languages are ask-+ tell languages which additionally feature
matching (in algebraic terms) or the asking of whether a given constraint is entailed (in
logical terms) by the current store. So how to implement ask and tell in an interpreter
is a key design issue.

The Prolog and GHC versions of tell are unification over finite trees and can be
written as unify(G, H) or G=H. This has the following properties:

1. Immediate — It either succeeds or fails and does not suspend.

2. Monotonic — Its success/failure can depend on the current store; that is,
unify(G, H) that succeeds under some store can fail under a store augmented
with additional constraints. However, if we consider failure as a over-constrained
store, unify(G, H) can be thought of as an operator that monotonically augments

the current store.

3. Deterministic — The conjunction of all tells generated in the course of program
execution deterministically defines the current store.

164

Now we consider the properties of ask, which appears in concurrent logic languages
as matching between a goal and a clause head. Let o be the current store under which
the ask is performed. We suppose match(G, H)

e succeeds when there exists a substitution 6 such that Go = H of,
e suspends when there is no such 6 but Go and Ho are unifiable, and
e fails when Go and Ho are non-unifiable.

Clearly, match(G, H) is not immediate. Furthermore, it is neither monotonic nor
deterministic with respect to suspension behavior:

e match(X,Y) will succeed when Y is uninstantiated but may suspend when Y is
instantiated. This behavior is opposite to that of ordinary CCP processes which
can never be suspended by providing more constraints.

e match(X,Y) Amatch(3,Y) under the empty store succeeds if executed from left to
right but suspends if executed from right to left.

When simulating matching between a goal G and a clause head H using match/2,
H must have been renamed using fresh variables, and H is therefore immune to o. If
this convention is enforced, match/2 enjoys monotonicity, that is, if match/2 succeeds
under o, it succeeds under oo’ for any o’. The convention guarantees determinism as
well.

The lesson here is that the scope of the variables in H, the second argument of
match/2, should be handled properly for match/2 to enjoy reasonable properties. As
suggested by [12], the proper semantics of match(G, H) would be whether ¢ interpreted
as an equality theory implies G = 3H. Thus the second argument should specify an
existential closure 3H rather than H. However, then, the second argument would lose
the capability to receive matching terms from G. For instance, the recursive clause of
append/3 in GHC is

append ([A|X],Y,Z0) :- true | 20=[A|Z], append(X,Y,Z).
while the CCP version of the above clause would be less structured:

append(X0,Y,Z0) :- ask(3A,X(X0=[A]X])) |
tell(X0=[A|X]), tell(Z0=[A|Z]), append(X,Y,Z).

"To summarize, while implementing tell in an interpreter is straightforward, implement-
ing ask without introducing new primitives is a major design issue.

7.4 A Treecode Representation

In this section, we discuss the design of our treecode representation of Flat GHC
programs, which is interpreted by the treecode interpreter described in the Sect. 7.5.

165

7.4.1 'Treecode

Treecode is intermediate code in the form of a first-order ground term which is quite
close to the original source code. It is more abstract and “structured” than ordinary
bytecode sequences that use forward branching to represent if ...then...else. ITrees
are much more versatile than sequences and are much easier to represent and handle
than directed graphs. Indeed, the booming of XML tells us that standard representation
of tagged trees has been long-awaited by a great number of applications, and XML trees
are little more than first-order ground terms.

Of course, the control flow of a program forms a directed graph in general and
we must represent it somehow. Directed graphs could be created rather easily by
unification over rational terms, but we chose to dispense with circular structures by
representing recursive calls (that form circularity) using explicit predicate names. When
the interpreter encounters a predicate call, it obtains the code for the predicate using
an appropriate lookup method. An optimizing interpreter may create a directed graph
by “instantiating” each predicate call to its code before starting interpretation.

An alternative representation closer to source code is a set of rewrite rules. How-
ever, it turns out that a set (represented as a list) of rewrite rules is less suitable for
interpretation. This is because GHC “bundles” predicate calls, synchronization and
choice in a single construct, namely guarded clauses. While this bundling simplifies
the syntax and the semantics of Flat GHC and captures the essence of concurrent logic
programming, guards — even flat guards — can specify arbitrary complex conditions that
may involve both conjunctive and disjunctive sets of multiple synchronization points.
Programmers also find it sometimes cumbersome to describe everything using guarded
clauses exactly for the reason why Prolog programmers find that the (P -> Q@ ; R)
construct sometimes shortens their programs considerably.

As we will see soon, treecode still looks like a set of clauses, but the major difference
from a set of clauses is that the former breaks a set of guards down to a tree of one-
at-a-time conditional branching. In this sense, treecode can be regarded as structured
intermediate code.

7.4.2 Treecode By Example

Now we are in a position to explain how treecode looks like. Throughout this section
we use append/3 as an example. The treecode for append/3 is:

treecode (6,
[c(1=[], b([<(2)= <(3]1,01)),
ci=>@I1>(®1,
- b([<(3)=[<(4)1>(6)1], [append(5,2,6)1))1)

The first argument, 6, stands for the number of variables used in the treecode, and the
second argument is the main part of the treecode.

166

(treecode (casecode) | (bodycode)

)
(casecode) = list of (choice)’s
(choice) == c({ask), (treecode))
(ask) = (reg) = (term) | (reg)(relop)term)
(bodycode) = b({tells), (goals))
(tells) == list of (tell)’s
(tell) == (annotatedreg) = (term) | (annotatedreg) := (term)
(goals) u= list of (goal)’s
(goal) == (pred)((reg),...)
(annotatedreg) = [{annotation)](reg)
(annotation) = <|<<|>
(reg) u= 1]2]3]...
(term) == (functor)({annotatedreg), ...)
(relop) >[<f>=]=<]==]=\=

Fig. 7.3: Syntax of Treecode

The readers may be able to guess what it does basically, since it is quite similar to
the original source code:

append(X, Y,Z) :- X=[1 | Y=Z.
append(X0,Y,Z0) :- XO0=[A|X] | Z0=[A|Z], append(X,Y,Z).

In this simple example, the treecode still looks like a list of clauses, with heads (with
mutually disjoint variables) omitted and variables represented by positive integers.
The constructor ¢/2 forms a case branch by taking an ask and another treecode as
arguments. The list of case branches forms a casecode.

The constructor b/2 forms a bodycode by taking a list of tells and a list of calls to
user-defined predicates. The former is understood by the interpreter, while the latter
involves code lookup.

A treecode is either a casecode or a bodycode. Figure 7.3 shows the syntax of treecode.

7.4.3 Representing and Managing Logical Variables

The unary constructors ‘<’ and ‘>’ have two purposes. First, they distinguish integer
representation of variables from integer constants in the program to be interpreted.
Second, they tell whether a variable has occurred before and whether it will occur
later. Initial mode, denoted, ‘>’, means the creation of a new variable, while final
mode, denoted ‘<’, means the final access to an already created variable. In append/3,
each variable occurs exactly twice, which means that all accesses are either initial or
final accesses. For variables that are read more than once, we use another reserved

167

unary constructor, ‘<<’, to indicate that they are accessed in intermediate mode, that
is, they are neither the first nor the last occurrences.

The first occurrence of a variable in each case branch (1 in the case of append/3) and
the arguments of user-defined predicates are supposed to be final-mode. These are the
only places where mode annotations are omitted for ease of interpretation.

Representing variables by positive integers suggests the use of arrays to represent
them. We use a constructor g/n to represent goal records, where n is the number of
variables in the treecode that works on the goal. The structure g/n can be regarded as
a register vector as well.

Let a be the arity of the predicate represented by the treecode. The first ath argu-
ments of g/n are the arguments of the original goal, while the remaining arguments
are local variables of the original goal. Thus this structure can be regarded both (i)
as a concretization of goals that makes housekeeping explicit and (ii) as an abstrac-
tion of implementation-level goal records. When the structure is created, the first ath
arguments are initialized to the arguments of the original goal, while the remaining
arguments are initialized to the constant 0. The value of a is not recorded in the
treecode itself. It is the responsibility of the predicate try/3 to “apply” treecode to a
goal record, as will be described in Sect. 7.5.

The distinction between initial, intermediate and final modes not only makes inter-
pretation easier but also allows the reuse of the same register for different variables.
For example, the code for append/3 could be written alternatively as:

[e(t=0], b(I<(2)= <(3)]1,0)),
c(i=D>)I1>W1,
b([<(3)=[<(4)1>(3)1], [append(1,2,3)]1))]

because

e Variable 1 in the second branch, holding the first argument of the caller, will not
be accessed after its principal constructor has been known, and

e Variable 3 in the second branch, holding the third argument of the caller, will not
be accessed after it has been instantiated to an non-empty list.

This is register allocation optimization which is optional in our treecode. Without it,
different numbers represent different single-assignment variables and the code is more
declarative. With it, the size of goal records can be reduced.

7.5 Structure of the Treecode Interpreter

This section describes, step by step, how our treecode interpreter works on a goal
record. We focus on basic ask and tell operations. The actual interpreter handles
arithmetic built-in predicates for comparison (guard) and assignment (body), but it is
straightforward to include them.

168

The two main predicates of the interpreter are exec/2 and try/3. The predicate
exec/2 takes a multiset G of goals and a program £ for executing them. We call the
program an environment because it associates each predicate name with its treecode.
The goal exec(G, E) resolves predicate names in G into their corresponding treecode,
and invokes try/3 for each goal in G after preparing a goal record for the goal. The
predicate try/3 takes a goal record, a treecode and an environment, and applies the
treecode to the goal record. The more interesting aspects of the interpreter lie in try/3.

7.5.1 Deterministic and Nondeterministic Choice

When the treecode given to try/3 is casecode, it deterministically chooses one branch
as follows: It picks up the first case branch of the form c(Ask, Treecode), where Ask
is of the form n=T. This causes the interpreter to wait for the principal constructor
of the nth argument, and when it is available, it is matched against the constructor
of T. The n’s in each case branch must be identical; thus casecode has exactly one
synchronization point for all its top-level asks and is therefore deterministic.

When some guard involves the asking of more than one symbol, it is compiled into
nested casecode. For instance, the program

part(_,[], S, L) :- true | S=[1, L=[].
part(4,[X|Xs],S80,L) :~ A>=X | SO0=[X[S], part(4,Xs,S,L).
part(A,[X|Xs],S, LO) :- A< X | LO=[XIL], part(4,Xs,S,L).

can be compiled into:

[c(2=[1, b([<(3)=[1,<@®=011,01)N,

c(2=[>(5)>(2)]1,
[c(1>= <<(B), b([<(3)=[<(B)I>(3)]], [part(1,2,3,4)1)),
c(1< <<(5), b([<(d)=[<(8)1>(4)1], [part(1,2,3,4)1))1)]

Note that the matching of the second argument with [X]|Xs] has been factored, as
would be done by an optimizing compiler.

Nested casecode is still deterministic because it has at most one synchronization
point (i.e., the variable on whose value the interpreter suspends) at any time. Qur
experience with Flat GHC/KL1 programming has shown that the majority of predicates
are deterministic.

Nondeterministic predicates are those which contain disjunctive wait, namely wait
for the instantiation of one of several variables. Some of the predicates people write
are nondeterministic, but most of them involve binary choice only. For instance, the
following stream merging program

merge([],Ys,Zs) :- true | Zs=Vs.
merge(Xs,[],Zs) :- true | Zs=Xs.
merge([X|Xs],Y¥s,Zs0) :~ true | Zs0=[X|Zs], merge(Xs,Ys,Zs).
merge(Xs, [Y|Ys],Zs0) :~ true | ZsO=[Y|Zs], merge(Xs,Ys,Zs).

169

has two disjunctive synchronization points, namely the principal constructor of the first
argument and the principal constructor of the second argument.

In this paper we focus on binary nondeterministic choice, which is simpler to imple-
ment than general multiway choice. It can be expressed in terms of two nondetermin-
istic branches in the interpreter. By extending our treecode in Fig. 7.3, the treecode
for merge/3 can be written as follows:

treecode(4,
(1->[c(1=[1, p([<(2)= <(3)]1,[1)),
c(1=0[>(4) 1>(1)71, b([<(3)=[<(4)|>(3)]], [merge(1,2,3)101)
+ (2=>[c(2=0], b(x()=<®1,00N,
c(2=[>(4) 1>, b([<(B)=[<(4)|>(3)]], [merge(1,2,3)1)11))

The extended syntax of treecode is:

(treecode) = (casecode) | (bodycode) | (nondeterministiccode)
(nondeterministiccode) == ((reg) -> (treecode)) + ({reg) => (treecode))

where the form (n; — treecode;)+ (na — treecodes) causes the goal to wait disjunctively
upon variables n; and no.

7.5.2 Interpreting Casecode

The ask part of a casecode of the form n=T, where T is a non-variable term whose
arguments are all annotatedregs, is interpreted by the following piece of code:

try_one(AO0,Rn=T,B,Cs,Env) :- true |
setarg(Rn,A0,AORn,ARn,A), functor (AORn, AORnF,AORnN) ,
functor (T,TF,TN), test_pf(AORnF,AORnN,TF,TN,Res),
try_match(Res,T,AORn,ARn,A,B,Cs,Env).

test_pf(F1,A1,F2,A2,Res) :- F1=F2, Al=:=A2 | Res=yes(Al).
otherwise.
test_pf(F1,A1,F2,A2,Res) :- true | Res=no.

try_match(yes(N),T,AORn,ARn,AO,B,Cs,Env) i~ true |
ARn=0, getargs(1,N,T,AORn,A0,A), try(A,B,Env).

try_match(no, T,AORn,ARn,A, B,Cs,Env) :- true |
ARn=AORn, try(4,Cs,Env).

getargs(K,N,T,AORn,A0,A) :- K> N | AO=A.

getargs (K,N,T,AORn,A0,A) :- K=<N |
arg(K,T,Tk), setarg(K,AORn,AORnk,0,AORn1),
getputreg(Tk,A0,AORnk,Al),

170

K1:=K+1, getargs(X1,N,T,AORni1,Al1,A).

getputreg(<(Rk), AO,ARk,A) :- true | setarg(Rk,A0,ARk,0,A).
getputreg(<<(Rk) ,A0,ARk,A) :- true | setarg(Rk,A0,ARk,ARk,A).
getputreg(>(Rk), AO,ARk,A) :- true | setarg(Rk,AO0,_,ARk,A).

This is almost a Prolog program with a cut in every clause. KL1’s built-in predicate,
setarg(l,T, X, X', T"), is like Prolog’s arg(l, T, X) except that T” is bound to T with
its Ith element replaced by X’. This is a declarative array update primitive and used
extensively in the interpreter to read data from, and write data to, goal records.

The try_one/5 program first retrieves the Rnth variable in the goal record A0, binding
it to AORn. Then it checks if AORn is instantiated and its principal constructor matches
that of T, using functor/3 and test_pf/5. If the matching succeeds, the first clause of
try_match/8 stores (by using getargs/6) the top-level arguments of AORn to the goal
record AO according to the prescription template T. Then it executes the bodycode B
under the updated goal record A and the environment Env. The first goal AR0O=0 binds
the Rnth element in A to 0; this is to explicitly discharge a pointer from the goal record
to the top-level structure that has just been asked. The interpreter uses the constant
0 as a filler when some element of a goal record does not contain a meaningful value,
that is, before a meaningful value is loaded or after a meaningful value is taken away.

7.5.3 Interpreting Bodycode

Bodycode performs tells and the spawning of user-defined body .goals:
try(AO,b(BU,BN) ,Env) :- true | tell(A0,BU,A), spawn(A,BN,Env).

The tells are not only to instantiate variables passed from the caller; it is also used to
prepare non-variable terms to be passed to user-defined body goals, and to unify two
variables to create a shared variable between two body goals. How tell/3 manipulates
data is quite similar to how getargs/6 gets data from a non-variable goal argument.
A tell of the form n = T manipulates the nth element of the goal record according to
the template T

tell (A0, [(Rn=T) |BU], A) :- true |
getputreg(Rn,A0,AORn, A1), tell_one(T,AORn,A1,BU,A).
tell (A0, [], A) :- true | A=AOQ.

tell_one(<(Rk), AORn,A1,BU,A) :- true |
getputreg(<(Rk),A1,AORn,A2), tell(A2,BU,A). /* load Rk */
tell_one(>(Rk), AORn,A1,BU,A) :- true |
getputreg(>(Rk),A1,AORn,A2), tell(A2,BU,A). /* store Rk */
tell_one(T, AORn,A1,BU,A) :- integer(T) |

171

AORn=T, +tell(Al1,BU,A).

otherwise.

tell_one(T, AORn,A1,BU,A) :- true |
functor(T,F,N), new_functor (AORnO,F,N),
putargs(1,N,T,AORnO,AORn,A1,A2), tell(A2,BU,A).

putargs(K,N,T,AORnO,AORn,AQ,A) :~ K> N | AORnO=AORn, AO=A.
putargs(K,N,T,AORnO,AORn,AOQ,A) :- K=<N |
arg(K,T,Tk), setarg(K,AORnO,_,AORnk,AORnl),
getputreg(Tk,A0,AORnk, A1),
K1:=K+1, putargs(K1,N,T,AORnl1,AORn,A1,A).

Note that the two functionalities of Prolog’s functor/3 are provided by different
KL1 built-ins, functor/3 and new_functor/3. While functor/3 suspends on the first
argument and examines its principal constructor, new_functor/3 creates a new struc-
ture with a constructor specified by the second and the third arguments. The major
difference between new_functor/3 and its Prolog counterpart is that the arguments of
the structure are initialized to O rather than fresh, distinct variables. This is because
we have found that initializing its elements to a filler constant and replacing them using
setarg/5 shows much better affinity with a static mode system that plays various im-
portant réles [30] in concurrent logic programming. As discussed in [31], strong moding
is deeply concerned with the number of access paths (or references) to each variable
(or its value). It prefers variables with exactly two occurrences to those with three
or more occurrences by giving the former more generic, less-constrained modes. Our
setarg/5 does not copy or discard the (direct or indirect) access paths to the elements
of an array, including the element to be removed and the element with which to fill in
the blank.

Linearity analysis [33] for Mode Flat GHC is more directly concerned with the number
of access paths. Under reasonable conditions, it enables us to implement setarg/5 as
destructive update as long as the original structure is not shared.

Both mode and linearity systems encourage resource-conscious programiming.
Resource-conscious programming means to pay attention to the number of occurrences
of each variable and to prefer variables with exactly two occurrences. This is not so
restrictive as it might seem, and our static analyzer klint [33] and an automated de-
bugger kima [2][3] support it by detecting — and even correcting — inadvertently too
many or too few occurrences of the variables. Resource-conscious programs are easier
to execute on a distributed platform because they can benefit more from compile-time
garbage collection.

Finally, we show the definition of spawn/3 for spawning body goals according to the
bodycode and the current goal record:

spawn(4, [] ,Env) :- true | true.
spawn (A0, [BO|BN] ,Env) :- true |

172

functor(BO,F,N), setargs(1,N,B0,A0,B,A),
exec_one(B,Env), spawn(A,BN,Env).

/* registers once read are cleared */

setargs(K,N,B0O,A0,B,A) :- K> N | B=B0O, A=AO.

setargs (K,N,B0O,A0,B,A) :- K=<N |
setarg(K,B0,Bk,ABk,B1), setarg(Bk,A0,ABk,0,A1),
Ki := K+1, setargs(Ki,N,B1,A1,B,A).

Note that concurrent execution of body goals is realized by the concurrent execution
of exec_one’s.

7.5.4 Summary

Now we have almost finished the description of our interpreter. To be self-contained,
here we show all the remaining predicates.

/* The interpreter’s top-level */

exec([],Env) i~ true | true.
exec([G|Gs] ,Env) :- true | exec_one(G,Env), exec(Gs,Env).
exec_one(G,Env) :- true |

retrieve(G,Env,TC), prepare_goalrec_body(G,TC,A,B),
try(A,B,Env) .

retrieve(G,Env,TC) :- true |
functor(G,P,N), retrieve(P,N,Env,TC).
retrieve(P,N, [P/N-TCO|_],TC) :~ true | TC=TCO.
otherwise.
retrieve(P,N,[_|Env],TC) :- true | retrieve(P,N,Env,TC).

prepare_goalrec_body(GO,treecode(N,B0) ,A,B) :- true |
B=BO,
functor(GO,_,Ng), new_functor(AO,g,N),
transfer_args(1,Ng,G0,A0,_,A).

transfer_args(I,N,G0,A0,G,A) :- I> N | G=GO, A=AO.
transfer_args(I,N,GO0,A0,G,A) :- I=<N |
setarg(I,G0,Gi,0,G1), setarg(I,A0,_,Gi,Al),
I1 := I+1, transfer_args(I1,N,G1,A1,G,A).

/* Simply a case branch based on the syntax of treecode */

173

try (A, [c(G,B) |Cs],Env) :— true |
try_one(4,G,B,Cs,Env).

try (4, (Rn1->Cs1)+(Rn2->Cs2) ,Env) :~ true |
try_two(A,Rn1,Csi,Rn2,Cs2,Env).

try(AO,b(BU,BN) ,Env) :— true |
tell(AO,BU,A), spawn(4,BN,Env).

/* Binary disjunctive wait */

try_two(AO,Rn1,Cs1,Rn2,Cs2,Env) :- true |
setarg(Rn1,A0,AORn1,ARn1,A1), setarg(Rn2,A1,AORn2,ARn2,4),
try_two(A,AORn1,ARnl,AORn2,ARn2,Cs1,Cs2,Env).

try_two(A,AORn1,ARn1,AORn2,ARn2,Cs1,Cs2,Env) :- wait(AORnl) |
ARn1=AORn1, ARn2=AORn2, append(Cs1,Cs2,Cs), try(A,Cs,Env).
try_two(A,AORn1,ARn1,AORn2,ARn2,Cs1,Cs2,Env) :- wait(AORn2) |
ARn1=AO0Rn1, ARn2=AORn2, append(Cs2,Cs1,Cs), try(A,Cs,Env).

append([]l, Y,Z) :- true | Y=Z.
append([A1X],Y,20) :- true | Z0=[A|Z], append(X,Y,Z).

The restrictions of the above interpreter and possible solutions to them are as follows:

1. Three unary constructors, ‘<’, >’ and ‘<<’, are reserved. This can be easily
circumvented by wrapping non-variable as well as variable symbols by some con-
structors, but we did not do so for the readability of treecode.

2. Currently, the only built-in predicates provided (but not shown above) are those
for arithmetics. However, other built-ins such as those used in the interpreter
itself can be easily provided.

3. A nonlinear clause head, namely a head with repeated occurrences of a variable,
cannot be compiled into treecode. Extending the interpreter to deal with non-
linear heads is straightforward and left as an exercise. However, the use of a
nonlinear clause head to check the equality of arguments is discouraged, because
it is the only construct that may take unbounded execution time by comparing
two terms of arbitrarily large sizes. For distributed and real-time applications,

it is desirable that the execution time of every primitive language construct is
bounded.

4. The only construct whose support requires non-straightforward hacking on the
interpreter is non-binary disjunctive wait. Since n-ary disjunctive wait is essen-
tially n-ary arbitration, this could be supported by implementing an n-ary arbiter
which observes variables z1, ..., 2, and returns an arbitrary k such that x; has
been instantiated.

174

The interpreter is not self-applicable in its present form, but the discussions above
indicate that we are quite close to a self-applicable meta-interpreter. Note that the
otherwise construct to specify default cases can be expressed implicitly using casecode
because the ask parts of its branches are tested both deterministically and sequentially.

7.6 Partial Evaluation

How can one be assured that interpreted treecode behaves exactly the same as its
original code?

Instead of showing a translator from Flat GHC to treecode and its correctness, here
we illustrate how the treecode for append/3 applied to our interpreter can be partially
evaluated to its original Flat GHC code.

The role of partial evaluation in our framework is twofold. First, the receiver of
treecode can figure out what Flat GHC code it represents. Second, although the inter-
preter itself is not directly amenable to static analysis because its behavior depends on
the treecode given, the original code restored by partial evaluation is amenable to static
analysis. In this way we can attach various kinds of type information (including mode
and linearity) to the arguments of a goal whose behavior is determined by treecode.

For partial evaluation, we use unfold/fold transformation rules described in [28]. The
rules consist of the following:

1. Normalization — executes unification goals in a guard and a body so that each
clause reaches its unique normal form. A normal form should have no unification
goals in guards, and all residual unification body goals should be to instantiate
head variables of the clause.

2. Immediate Execution -—— deals with the unfolding of a non-unification body goal
which does not involve synchronization. That is, the rule is applicable only when,
for each clause C in the program and each goal ¢ to be unfolded, either ¢ is
reducible using C or, for all o, go is irreducible using C.

3. Case Splitting — deals with the unfolding of non-unification body goals of a clause
C which may promote asks from the guards of clauses used for the unfolding to
the guard of C. The clause C' must not have unification body goals.

To see how the Case Splitting of C works, consider a goal g that is about to be
reduced using C. For g to generate some output, at least one more reduction (of
one of the body goals of C) is necessary because C has no unification body goals.
Case splitting enumerates all the possibilities of the first such reduction.

4. Folding — which is essentially the same as the Tamaki-Sato folding rule [25].

The major difference from the Tamaki-Sato rule set is that unfolding is split into two
incomparable rules, Immediate Ezecution and Case Splitting, to deal with synchroniza-
tion.

175

Let £ be the treecode for append/3:

[append/3-treecode (6,
lc(1=[], b([<(2)= <(3)],01),
c(1=0>(@) 1>(D], b([<(3)=[<(4)[>(3)]1], [append(1,2,3)1))1)]

To show that exec_one (append(X,Y,Z),&) behaves the same as append (X,Y,Z) under
its standard definition, let us start with a clause

append(X,Y,Z) :- true | exec_one(append(X,Y,2),&).

and start applying Immediate Execution to its body goal. Using exec_one/2 shown in
Sect. 7.5.4, we obtain

append(X,Y,Z) :- true |
retrieve(append(X,Y,2),£,TC),
prepare_goalrec_body(append(X,Y,Z),TC,A,B), try(4,B,E).

With two more applications of Immediate Ezecution, first to the goal retrieve/3 and
the second to the primitive functor/3, we obtain

append(X,Y,Z2) :- true |
=append, N=3, retrieve(P,N,£,TC),
prepare_goalrec_body(append(X,Y,Z),TC,A,B), try(4,B,&).

which can be normalized to

append(X,Y,Z) :- true |
retrieve(append,3,£,TC),
prepare_goalrec_body(append(X,Y,Z),TC,A,B), try(4,B,E).

With several steps of Immediate Ezecution and Normalization, we arrive at

append(X,Y,Z) :- true |
transfer_args(1,3,append(X,Y,2),g(0,0,0,0,0,0),_,4),
try (4, [e(1=[]1,b([<(2)= <(3)]1,[1)),
c(1=[>@@) I>(1D],b([<(3)=[<(4) 1>(3)]], [append(1,2,3)1))]1,&).

where transfer_args/6 “loads” the arguments X, Y, Z to the goal record and returns
the result to A. Further steps of Immediate Ezecution and Normalization lead us to

append(X,Y,Z) :- true |
functor (X,AORnF,AORnN),
test_pf (AORnF,AORnN, [],0,Res),
try_match(Res, [J,X,ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)],[]1),
c(1=>(4) 1>(1)],p([<(3)=[<(4) 1>(3)]1], [append(1,2,3)1)),&) .

This is the first point at which we can’t apply Immediate Ezecution or Normalization.
We regard the primitive functor/3 as comprising clauses such as:

176

functor({], F,N) :- true | F=[], ©N=0.
functor([_{_],F,N) :- true | F=?.7, N=2.
functor(£(_), F,N) :- true | F=f, N=1.

There is one such clause for each constructor available, but without loss of generality
we can focus on the above three clauses, of which the third one is meant to be a
representative of all constructors irrelevant to the current example.

Now we apply Case Splitting and obtain the following:

append([1,Y,2) :- true |
AORnF={], AORnN=0,
test_pf (AORnF,AORnN, [1,0,Res),
try_match(Res, [1, [],ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)1,[1),
c(1=[>(4) I>(1],b([<(3)=[<(4) |>(3)]], [append(1,2,3)1)),E) .
append ([HIT],Y,Z) :- true |
AORnF=’.’, AORnN=2,
test_pf (AORnF,AORnN, [],0,Res),
try_match(Res, [1, [H|T],ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)],[1),
c(1=0>() I>(1)],b([<(3)=[<(4) 1>(3)]1], [append(1,2,3)1)),E) .
append(f(X),Y,Z) :- true |
AORnF=£f, AORnN=1,
test_pf (AORnF,AORnN, [1,0,Res),
try_match(Res, [1,£(X),ARn,g(ARn,Y,Z,0,0,0) ,b([<(2)= <(3)],[1),
c(1=>@D >(D]1,p([<(3)=[<(4) I>(3)]], [append(1,2,3)1)),&).

That is, we unfold functor/3 and promote its asks to the guards of append/3. The
Case Splitting rule dictates that we should unfold test_pf/5 and try_match/7 as
well; however, unfolding test_pf/5 using its first clause, for instance, would promote
two asks, AORnF=[] and AORnN=:=0, which can never be satisfied because the two
variables don’t occur in the head of append/3. Clauses with unsatisfiable asks are
deleted finally. Note that clauses below the otherwise directive (such as the second
clause of test_pf/5) implicitly perform all asks in the clauses above the otherwise.

Now we come back to applying Normalization and Immediate Execution, which leads
us via

append([],Y,2) :- true |
try_match(yes(0),[],[],ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)1,[1),
c(1=>4) I>(1)1,b([<(3)=[<(4)1>(3)]], [append(1,2,3)1)),&) .
append([HIT],Y,Z) :- true |
try_match(no, [1, [HIT],ARn,g(ARn,Y,Z,0,0,0),b([<(2)= <(3)1,[1),
c(1=0>(4) I>(1)],b([<(3)=[<(4) I>(3)]], [append(1,2,3)1)),&) .
append(£(X),Y,Z) :- true |
try_match(no, [1,f(X),ARn,g(ARn,Y,Z,0,0,0) ,b([<(2)= <(3)],(1),
c(1=[>(4) I>(1)],b([<(3)=[<(4) |>(3)]], [append(1,2,3)1)),E).

177

to the following:

append([],Y,2) :- true |
getargs(1,0,[1,[1,g(0,Y,2,0,0,0),4),
try(4,b([<(2)= <(3)],[1),&).
append([HIT],Y,Z) :- true |
getargs(1,2,[>(4)1>(1)],[HIT],g(0,Y,2,0,0,0),4),
try (A, b([<(3)=[<(4) >(3)]], [append(1,2,3)1),&).
append (f(X),Y,2) :- true | try(g(£(X),Y¥,Z,0,0,0),[1,&).

Here, the rules as stated in [28] do not allow Immediate Ezecution of the third clause
because we cannot form any unfolded clause to replace it. However, a close look at the
reason why assures us that this clause can indeed be removed. The removal of a clause
C whose body goal can never proceed changes the behavior of a goal g when there is
another clause C’ that can reduce g. However, the three clauses of append/3 above
don’t overlap with one another; that is, any goal that can be reduced using the third
clause and then gets stuck will get stuck without it.

By steps of Immediate Ezecution, we can “load” necessary values to registers:

append([],Y,Z) :- true |
try(g(0,Y,2,0,0,0) ,b([<(2)= <(3)1,[1),&).

append([HIT],Y,Z) :- true |
try(g(T,Y,Z2,H,0,0),b([<(3)=[<(4)[>(3)]], [append(1,2,3)]),5).

Now we have restored the guards of the original append/3, which is much more than
halfway to our goal. It remains to restore the bodies, and this can be done by repetitive
application of Immediate Ezxecution and Normalization:

append([1,Y,Z) :- true | Y=Z.
append ([HIT],Y,Z) :- true |
Z=[H|AORn], exec_one(append(T,Y,A0Rn),£).

Finally, we fold the body goal of the second clause using the clause we coined initially,
and obtain the following:

append([], Y,Z) :- true | Y=Z.
append([HIT],Y,Z) :- true | Z=[H|AORn], append(T,Y,AORn).

‘We anticipate that the significance of partial evaluation in our context is it enables us
to use available tools for “just-in-time” static analysis. For faster execution, designing
an optimizing compiler from treecode to machine code would be more appropriate than
going back from treecode to Flat GHC source code.

178

7.7 Conclusions

We have described an interpreter of Flat GHC treecode in Flat GHC. The interpreter
uses only pure built-in primitives, that is, those whose behavior can be defined using
a set of guarded clauses (e.g., functor/3, setarg/5, etc.) or by simple source-to-
source transformation (otherwise). The interpreter is only 39 clauses long (without
arithmetics), and runs directly on KLIC.

Treecode is very close to source code but is designed so that it can be easily inter-
preted, transmitted over the network, and stored in files. The major differences from
most bytecode representations are that it is more structured and, more importantly,
that it is inherently concurrent.

The design of an interpreter involves decisions as to what are reified and what are
not. To allow interpreted processes to freely communicate with non-interpreted, native
processes, we made the following design choices:

e Reified: code, reduction, concurrency and nondeterminism; goal records, argu-
ment registers and temporary registers; control structures

e Not reified: logical variables and substitutions (constraints); heaps; representa-
tion of terms.

Although our initial objective was to have an 100% pure interpreter of Flat GHC,
the outcome can be viewed also as a virtual machine working on register vectors. The
three annotations, ‘>’, ‘<’, and ‘<<’, are reminiscent of the distinction between put and
get instructions in the Warren Abstract Machine [1]. ’

Translation from source code to treecode is straightforward for most cases. For de-
terministic programs, its essence is to build a decision tree for clause selection. Some
complication arises only when a predicate has both conjunctive and disjunctive syn-
chronization points. The paper did not show a concrete translation algorithm, but
instead illustrated how a treecode could be translated back to its source code using
partial evaluation. Note that the source code could be restored because the interpreter
was a meta-interpreter. Partial evaluation thus ensures the applicability of program
analysis to interpreted code. Type analysis is important for an interpreted process to
communicate with a native process running with no runtime type information. It is
also important in building a stub and a skeleton of a (marshaled) logical stream laid
between remote sites.

Our primary future work is to deploy those technologies to demonstrate that con-
current logic/constraint programming can act, possibly with minimal extensions, as a
high-level and concise formalism for distributed programming. Another important di-
rection is, starting with treecode, to develop an appropriate intermediate code represen-
tation for optimizing compilers. This is important for another application of concurrent

languages, namely high-performance parallel computation.

179

References

[1]

2]

Ait-Kaci, H., Warren’s Abstract Machine: A Tutorial Reconstruction. The MIT
Press, Cambridge, MA, 1991.

Ajiro, Y., Ueda, K. and Cho, K., Error-Correcting Source Code. In Proc. Fourth
Int. Conf. on Principles and Practice of Constraint Programming (CP’98), LNCS
1520, Springer-Verlag, Berlin, 1998, pp. 40-54.

Ajiro, Y. and Ueda, K., Kima — an Automated Error Correction System for Con-
current Logic Programs. In Proc. Fourth Int. Workshop on Automated Debugging
(AADEBUG 2000), Ducassé, M. (ed.), 2000.

http://www.irisa.fr /lande/ducasse/aadebug2000/proceedings.html

Apt, K. R., Marek, V. W., Truszczynski M., and Warren D. S. (eds.), The Logic
Programming Paradigm: A 25-Year Perspective. Springer-Verlag, Berlin, 1999.

Bowen, K. A. and Kowalski, R. A.; Amalgamating Language and Meta-Language
in Logic Programming. In Logic Programming, Clark, K. L. and Téarnlund, S. A.
(eds.), Academic Press, London, pp. 153-172, 1982.

Chikayama, T., Fujise, T. and Sekita, D., A Portable and Efficient Implementation
of KL1. In Proc. 6th Int. Symp. on Programming Language Implementation and
Logic Programming (PLILP’94), LNCS 844, Springer-Verlag, Berlin, 1994, pp. 25—
39.

Clark, K. L. and Gregory, S., A Relational Language for Parallel Programming.
In Proc. ACM Conf. on Functional Programming Languages and Computer Archi-
tecture (FPCA’81), ACM, 1981, pp. 171-178.

Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logic. ACM.
Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1-49.

Foster, I. and Taylor, S., Strand: a Practical Parallel Programming Tool. In Proc.
1989 North American Conf. on Logic Programming (NACLP’89), The MIT Press,
Cambridge, MA, 1989, pp. 497-512.

Haridi, S., Van Roy, P., Brand, P. and Schulte, C., Programming Languages
for Distributed Applications. New Generation Computing, Vol. 16, No. 3 (1998),
PP 223-261.

Huntbach, M. M., Ringwood, G. A., Agent-Oriented Programming: From Prolog
to Guarded Definite Clauses. LNCS 1630, Springer-Verlag, Berlin, 1999.

Maher, M. J., Logic Semantics for a Class of Committed-Choice Programs. In Proc.
Fourth Int. Conf. on Logic Programming (ICLP’87), The MIT Press, Cambridge,
MA, 1987, pp. 858-876.

180

[13]

[14]

[17]

18]

[19]

[23]

[24]

[25]

[26]

McCarthy, J., Lisp 1.5 Programmer’s Manual. MIT Press Cambridge, MA, 1962.

Miller, D. and Nadathur, G., Higher-order Logic Programming. In Proc. Third
Int. Conf. on Logic Programming (ICLP’86), LNCS 225, Springer-Verlag, Berlin,
1986, pp. 448-462.

Milner, R. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1999.

Nakashima, H., Ueda, K. and Tomura, S., What Is a Variable in Prolog? In Proc.
Int. Conf. on Fifth Generation Computer Systems 1984 (FGCS’84), ICOT, Tokyo,
1984, pp. 327-332.

Safra, M. and Shapiro, E. Y., Meta Interpreters for Real, In Information Processing
86, Kugler, H.-J. (ed.), North-Holland, Amsterdam, pp. 271-278, 1986.

Saraswat, V. A. and Rinard, M., Concurrent Constraint Programming (Extended
Abstract). In Conf. Record of the Seventeenth Annual ACM Symp. on Principles
of Programming Languages (POPL’90), ACM Press, 1990, pp. 232-245.

Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards Distributed Con-
straint Programming. In Proc. 1990 North American Conference on Logic Pro-
gramming (NACLP’90), The MIT Press, Cambridge, MA, 1990, pp. 431-446.

Shapiro, E. Y., Concurrent Prolog: A Progress Report. IEEE Computer, Vol. 19,
No. 8 (1986), pp. 44-58.

Shapiro, E. Y. (ed.), Concurrent Prolog: Collected Papers, Volumes I+II. The MIT
Press, Cambridge, MA, 1987.

Shapiro, E. Y., Warren, D. H. D., Fuchi, K., Kowalski, R. A., Furukawa, K., Ueda,
K., Kahn, K. M., Chikayama, T. and Tick, E., The Fifth Generation Project:
Personal Perspectives. Comm. ACM, Vol. 36, No. 3 (1993), pp. 46-103.

Smolka, G., The Oz Programming Model. In Computer Science Today, van
Leeuwen, J. (ed.), LNCS 1000, Springer-Verlag, Berlin, 1995, pp. 324-343.

Takeuchi, A. and Furukawa, K., Partial Evaluation of Prolog Programs and Its
Application to Meta Programming. In Information Processing 86, Kugler, H.-J.
(ed.), North-Holland, Amsterdam, 1986, pp. 415-420.

Tamaki, H. and Sato, T., Unfold/Fold Transformation of Logic Programs. In Proc.
Second Int. Logic Programming Conf. (ICLP’84), Uppsala Univ., Sweden, 1984,
pp. 127-138.

Tick, E. The Deevolution of Concurrent Logic Programming Languages. J. Logic
Programming, Vol. 23, No. 2 (1995), pp. 89-123.

181

[27] Ueda, K., Guarded Horn Clauses. ICOT Tech. Report TR-103, ICOT, Tokyo,
1985. Also in Logic Programming '85, Wada, E. (ed.), LNCS 221, Springer-Verlag,
Berlin, 1986, pp. 168-179.

[28] Ueda, K. and Furukawa, K., Transformation Rules for GHC Programs. In Proc.
Int. Conf. on Fifth Generation Computer Systems 1988 (FGCS’88), ICOT, Tokyo,
1988, pp. 582-591.

[29] Ueda, K. and Chikayama, T. Design of the Kernel Language for the Parallel In-
ference Machine. The Computer Journal, Vol. 33, No. 6 (1990), pp. 494-500.

[30] Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-
tation Technique. New Generation Computing, Vol. 13, No. 1 (1994), pp. 3-43.

[31] Ueda, K., Experiences with Strong Moding in Concurrent Logic/Constraint Pro-
gramming. In Proc. Int. Workshop on Parallel Symbolic Languages and Systems
(PSLS’95), LNCS 1068, Springer-Verlag, Berlin, 1996, pp. 134-153.

[32] Ueda, K., Concurrent Logic/Constraint Programming: The Next 10 Years. In [4],
1999, pp. 53-71.

[33] Ueda, K., Linearity Analysis of Concurrent Logic Programs. In Proc. Int. Work-
shop on Parallel and Distributed Computing for Symbolic and Irreqular Applica-
tions, Ito, T. and Yuasa, T. (eds.), World Scientific, Singapore, 2000, pp. 253-270.

[34] van Emden, M. H. and de Lucena Filho, G. J., Predicate Logic as a Language for
Parallel Programming. In Logic Programming, Clark, K. L. and Térnlund, S. -A.
(eds.), Academic Press, London, 1982, pp. 189-198.

182

