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| FZkeTE
MERKE WE B (RREAY - BIPHER - %38)

WEREE, (LS, 1%, SEERFOSIIIEND IFRBREORDIIIHBEOEESR
ROZEILY, FEIRD T = Lo TERNAD OB H D, Z0 L5 RBARITIBIBORIE
HHRTERRRE LTHEET /ML END Z L B3E . KISERTBRRRIC LT, avda—
ZIEBDV I ab—va 2R TTDE, XAF 10 AOEEEMND S, REEHIRE,
= DAL REDERE VI BEERBRISND. ThbORGITIEFICHEKENHDT
HDI b 6T, B4 BEOA D= XLAOEBOMERITHSTEZY., LER-T, 3
MIERBERREEEND D, EREMERACE 0L BT IO, ZhbORMA2HER
BN BT Z SRR R OMBE L L TR ICEERRETH 5.

ABEGE TIEREHER TR R & BE T 2 A M FRER OS] ICRBWTI, RISE
BETRNCALND, NF—RRED L D R —FEMICER L, ZHNRIESE
INRIEDREA D = A L LHEBR T IBEBEROB X ZERMICALPICT A Z 2 HIELE.
BRI - T DT

L MEBE 7 V— B HA 250§ 5 A (phase transition model)
II BEARFEET V—IERIBILR % £ 5 Lotka-Voltrra H 52
(Shigesada-Kawasaki-Teramoto model)
Th2d.

1. HHERBETI
NRE— R REOBE FRRTAEF L E L THEBRE T LRI A NEER O KIGE
PEESTEBAFREASSH S, ZR 1RTOEE, ¢ >0 28Nt e LT

{ Uy = €2Uge + u(l — u)(u — a(x)) for (z,t) € (0,1) x (0, 00), 1)

e (0,8) = ug (1, %) for t € (0, 0),

TR uw(z,0) =ug(z) for z€(0,1) DHETEZSD. ZZTa(z) ix C0,1) HDHE
BT ~1<alz) <l E2Hid. ORBCBNT =00k Xty =0,1 REELEHEET
HOHR, u=alz) ITREERFERTH A, FRPEIINEER L BEENS. 22T

u

F(z,u) = — o )f(:c,s) ds, flz,u) = u(l - u){u - a(z))

EBL L

1 if a(z) > 1/2,
#e) = { 0 if a(z) <1/2.

WIZ e R X —B e LT



#EEL, (1) Offu=u(z,t) ERATHEL

d

1
zi-zE(u(t)) = —/O uy(z, 1) dz <0

&%, LEEMR->T E(u) i (1) @ Lyapunov ¥ & 720, FEEFEBMBEOM u(z,t) I2DNT
WROFERBEIL TS -

(i) t — E(u(?)) ZHEFARSTHS.

(ii) t]i)rgxo uw(z,t) = o(z) (uniformly in z € [0,1]),
7L o ix

Egcpmw + (1 - ¢)(p —a(z)) =0, 02(0) = (1) =0 (2)
DIETH 5.

FTabb (1) O w() 1Tt &L biZ BE(u(t)) /S T5L 50882 Ry, Thdi?
Flz,u(z,t)) /NS THEIREEBELHZENTHENS. u=1bu=-1 BIEHEMRR
WIEBIIZEBRRETH D8, (5 Fz,u) OR/IMETH DM E WV IRIIT z & & btk
T5. ¢lz) LHIT

#(2) :{ 0 %f a(z) > 1/2,
1 if a(z) < 1/2.
LEHEL, ZI T u=¢*(z) ¥ “minimal state”, u = ¢*(z) % “non-minimal state” & FF
S EICTDH. EERME ) IIEERERAMu=0,1 bON, MIZLEEREFEMEFEFD
MDEI DM E 2D, EITHEXDIHFHEANRZFERIT a(z) ILERF FEABEZ LD
TERBDIZAIMN?

e > 0 BIEFIIHM/ N RBEIE, EOBE Q) KEBTAEFEMEFOZ LML T
5. ERIIE2ODRERFHER 0,1 ZFES, R ¥ —72REEBERE (transition layer)
RANA VRO R OFEF PR, HFRXOELEELZERT 5B o 1220 T
ROGMZRET S - ,

(A1) T:={z€(0,1); a(z) =1/2} HETRVWERELSGTHS.
(A2) A:={z€(0,1); d(z) =0} ITAREATH5.
(A3) TNA=0,

H—ONEERB L FOMIZ OV TIL, 1987 £ Angenent, Mallet-Paret, Peletier &M 2
N—TBEE T NOEEDR o* OFEFIZBNT o/ (z%)d (z1) < 0 BT L 9 hNHES
BEFHOEEM T, LPLEETHLDOFHBERL AWV CHERTIZ LIRS LE. Z
D%, Hale-Sakamoto(1988) 23#iDARER, v/ (z%)a'(z7) > 0 & Ao T ARLERMIZ OV THF
T BHRE, (1), (2 13%L OFREICI VRSN TE .

(2) DEFEBDIRNT, REVT I o KEBTDE o(z) —alz) DEAL o(z) OBRARE
TN R EILRN D Z L ICEET D, LEBRoT o) — alz) DEAOEREFIAL
T, nf@R20iE o2 n E— FBEMEREZ LICTS. nE— FEEIZDOWT, Ai, Chen, Hatings
DIN=T L e DT N—TIXENENWRILITIFR L, MO, ZEMR EIZOVWTHE
WCHELVWHEZRT Z LB LTS, BIZIEEERE ¢ & a OREY o* &7 5. JLEdR
e BIEFITHIWRGIE, alz*)~ 1/2 DL X o BBV Yy —TRNEBEREL b



b, TITH p(z) 28 o* AETIEFICEVKRETO & 1 ZHATVD 2 Bbrs. —F
alz®) B8 1/2 PHEERTWIUE, a(z*) > 1/2 D& EITE ¢ 13 2" OFEFITBNT 1 25—
R LFBASL T ED, a(z*) <1/2 DEEITIT @ Bt OFEFITENT 0 2N—R LT
BANRL P BB ERDND. IRLOEREEMERY =2 = 2 OLDITHIEMIET
CICEVRTZENTED.

PUF CIRIEEAR IS S WD n E— FREOBEICOWT, FFETHELNLERERE
HALLY. FTEBBRLANSS 7 OMBICEHLTROEREZRT I L TED.
FE1 o % (2) D n T FEETHLE, HEURE ¢ BN E VR DIZROERI Y
hyAeR
(i) PESERE (transition layer) 13 X O ROEHFITDOATND.
(il) A/%1 2 (spike) IE A DEDFEFHIZDAIL, LA*H non-minimal state Z~— AT 5.

KICHEE AV REICEREOBEBNERD L) KK TEHND T —2EE LD,
TOrIRBEBBOLEEY (H) % multi-layer & FESZ L IZT 5. multi-layer ZFFORRIC
SNT, BOFERRLBBE OB OV CROEEA LT .

FHE 2 oL (z-0,2+0) (z € 5,6 >0) i< multi-layer b5, e XM EVLRET D,
DL ERPEILT D ¢

(1) multi-layer (XA HEDOEBE P DALY L.

(i) multi-layer I¥ non-minimal state & non-minimal state ZHESARICERONS.

FE2 LY o2z €T OFFEICBNT multi-layer b0E &, a/(z) >0 7801, B
BIIF 5 L %, multi-layer 12 0 205 1 2RESRICBS Z LR35, #2120 0 &2
SEREITE IR O, multi-layer IXERNRV.

FREICHESBE D 21 7 RERD LIRS TNDY—RAEEXD. ZOLIRANAT
"% multi-spike & FES. multi-spike Z B OMEEE X H7DIZ A = {z € [0,1]|d'(z) = 0}
DGy HE !
A=ATUATUA°
EEZAH. JLIZL

At = {z € Aa(z) < 1/2,a"(z) <0}, (a DEBRR),
A~ = {z € Aa(z) > 1/2,a"(z) > 0}, (a DEHR),
A® = A\ (A+ U A7)
Thb. ULOWEHROT, WHBMRILTD.
FHE 3 ol (2—6,2+0) (z € £,§ > 0) IZ multi-spike Zb b, ¢ FHH/DESNERETS.
TDEERBELT S ¢
(i) 0 Z~_—2R &4 5% multi-spike 12 AT DRDEFHFIZOHBTND.
(i) 1 Z~3—2 &7 % multi-spike 13 A~ DRDEBHFIZOHTND.

EE1,2,3 D LV, FEBIEFHC Urano-Nakashima-Yamada; “Transition layers and



spikes for a bistable reaction-diffusion equation”, Advances in Mathematical Sciences and
Applications Vol.15 (2005), 683-707 IZEB W THREL T 5,
& HIZ n-mode MOLEHWIZOWTHRERNEDLND. (2) OfE o O (B BEMIT
B A ERE
2 Waz + fulz,0(x))w = Au, wo(0) = we(1) =0 (3)

DEFEOERIZL-THEENS., bbb, F1EHAEIMETHNE, ¢ TEHERE, F
1 EHENETCHNETRRETHS. & <IZ(3) PIEOBEFEOMEEIZIEB L ¢ © Morse 1§
¥ x

Ind(p)=(3) DIED BEAHEOELK
CEHETD. FKMRICE T Ind(p) REEMOFEERDESVERT LOTHS, B
—DONEEBBIZ- OV T minimal state & minimal state UL, ZERBBBTH Y,
non-minimal state & non-minimal state ##ENE, FEERBBB 2232 bbb,

FE 4 n-mode # @ IZTANSA I EFROLDLEE L, non-minimal state & non-minimal
state Z#ES mo AOBE—NEERE L £ EO multi-layer 285, FNENO multi-layer i
2m; — 1 (i =1,2,- - ) OBBENLRIMOERETH. D& EXOERMID
e
Ind{p)= Z m;.
=0

Z OFEFRITFR L Urano-Nakashima-Yamada; “Stability of a solution with transition layers
for a bistable reaction-diffusion equation” (FL 7Y k) L LTREBTETHSD.

728, FH1 -4 L ERRRERIT Ai-Chen-Hastings HIZ Lo ThHEx L IZRR B FETED
HLTEY, @ Ai-Chen-Hastings; “Layers and spikes in non-homogeneous bistable reaction-

diffusion equations”, Transactions of the American Mathematical Society Vol. 358, No. 7
(2006), 3169-3206, IZFE L < BHALTV S,

II. EEEEETIL
Fl—OAERBEBRICENTEFRSFZ T2 2BOEMOEL ST ERBTHET NV E LT,
1979 ££ Shigesada-Kawasaki-Teramoto & DEFEARERE D I )— 2L Y

up = A1+ au + Bv)u] +u(a; — bju —civ)  in Q x (0,00),

vy = A[(1 + yu + dv)v] + u(az — bau — cov) in Qx (0,c0), @
g%:B—Z:O on 90 x (0,00),

u(z,0) = ug, v(z,0) = vo(7) in Q,

DIE DFERICILE 1 5 RIS RERAZN BRI N (20T 1T SKT 504 L FFTHh
DIERDD) . T Tu,v TEFREETHEMOBEBREEE, o, 8,7,6 a:,b;,c (i =1,2)
SIERTEER, QITIELMNRER 00 252 RY OFEHTHS. LD 2T AMIBNDIERE
HERITBEDO I A T LIV LERSEEE L TRY, $EARSEMIT TAREN I8XsT
BRI KELSRDEMRIND, v Ca—FICLDEEY I 2 L—v g VORBE, BLHT
MENBHEI SN, TETAVOEEMENBERINTE TS, FEMITIT



(1) EEOHIECS LT (4) EREEEL © o0 2

(i) (4) ICRET 2 EEMBITERMICE—RT, BEREEREZLOD?
HREDRICAZD I ENEETHS. LL, ZTRHORMICH LTHOHR TE DHEN
BHONTRVOBEETHS.

AFETEE LTHE -0 SKT EF MIEET ZROTEOEFRETH S ¢

Alp(u,v)u]l +ula —u —cv) =0 in 0,
Al (u,v)v] + ulb+du —v) =0 in Q, (5)
u=v=0 on 6Q,

2T u,v EENEN prey, predatér DOEEBEETHD, a,bc,d REERTHD. RFE
ERBDIZ IO (5) DIEEEHEOFIESRYE, FEMOBECHERRETHD. ZOMELZH
BT 5 2 DI HHBI RO E

Av+wl@—w)=0 in Q, w=0 on 90, w>0 in Q,

%%2%. B Dirichlet EREHOHET —A OB 1EAMEZ N &T58, ZOMERK
a<\ TIZHEBMR w=0 DREFHEOR, a> )\ THHE—DIEMAE 0, 2FHOILPHMLNT
[ATSR

Nakashima-Yamada (1996) & (5) 28T

olu,v) =1+av, Pu,v)=1+Fu (6)

CBX, 9, FALTEEEREET A 00+ 0&EEE N, (6) DX 5 RILEIT cross
diffusion & FHTNTWVE. T OFEOHEEIZ W T p(u,v) = 1 + av X predator v DFFIED
FORERTBHEL LT LV ZETRENTHDEN, Yu,v) =1+ PuldEITHASD
722 predator v DILEAREE L T2 O X 2 2RI R BRIZEDILS 25, BRA T prey &
AN BAOHEODRE REMEZERL, ZOEMHD predator RIS EDHENE 2D
ZERHB., Yu,v) =14+ Fu iDL RRAEBELICET AV THD. (5) DIEMEMEITE
BARZOBATIIHEREL LTERKODLAMTHY, HEMICLEERETHDS ..

BB DBE (o(u,v) = 1,9(u,v) = 1) KITEEREIFET 572D OBREH5R4HRH
BRTWA. —F, cross-diffusion EREFEET A7 — ATk, WREIEHETR D Z L EIEMRE
Frinb b s, EEESFET H0ONEHSEEELRDD Z EFE LY. EERORE
Bix o ennil, MESOEELTERTHT-DITRIRIEE LT

cross-diffusion DFREL 8 MKRE L, a B/HhIW

FOBRRMEZEZL Y. ZOEE b,d/f M N WTEVWRLIE, a QAT A—F LHIRL
EEMRICET A OEE A YT LR ZENTE, S FROSEMBENRIND Z LAFREN
fo. TOZEFRTA—EDOLYFHILLY SMOEREFRPFETHZL2ERTD. &
T ENTNDOEMEEEROBALLERLICET 2MRERDDH I N TED. TRHDFL
VWS R IEER S Kuto-Yamada; “Multiple coexistence states for a prey-predator system with
cross-diffusion”, Journal of Differential Equations Vol. 197, No.2 (2004}, 315-348 8 LU
Kuto; “Stability of steady state solutions to a prey-pradator system with cross-diffusion”,
Journal of Differential Equations Vol. 197, No.2, (2004), 293-314 #Z R LTI L\,



RBHEOEE (5) I8N T

1
1+ Bu
CEE, FIEEREZAAL CEEESFEET SO0+ 500 EEME S OB O
EIT-oTEBY, BEEWVEEAELh 205, BRO—EIXH T Kadota-Kuto; “Positive
steady states for a prey-predator model with some nonlinear diffusion terms”, Journal of
Mathematical Analysis and Applications (FIRIF) [ZRFINL TS,

QD(U,U) =1+ av, ¢(U,”) = p+
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Abstract. This paper is concerned with a steady-state problem for
up = €2Ugg +u(l —u)(u —a(z)), (z,t) € (0,1) x (0, 00),

with u;(0,1) = uz(1,t) = 0, where a is a C?-function satisfying 0 < a(z) < 1. When
¢ is very small, the problem has various solutions. Among them, we are interested in
solutions with transition layers and spikes. Our main purpose is to study profiles of
such solutions and determine the location of transition layers and spikes. Moreover,
we will show some conditions under which one can observe multi-layers and multi-
spikes.

1 Introduction

In this paper we consider the following reaction-diffusion equation:

ur = €2Ugg + flz,u), 0<xz<1,t>0,
ug(0,t) = ug(1,8) =0, ¢>0, (1.1)
u(z,0) = up(z), O<z<l.

Here ¢ is a positive parameter and f(z,u) is given by

flz,u) =u(l — u)(u — a(z)), (1.2)



where a is a C?[0, 1]-function with the following properties :
(A1) 0<alz)<1 inl0,1],

(A2) if

Y:={z€(0,1); a(z) = 1/2}, (1.3)
then ¥ is a finite set and o/(z) # 0 at any z € %,
(A.3) if

A= {z € (0,1); d'(2) = 0}, (19)

then A is a finite set,

(A4) a'(0)=d (1) =0.

The above problem appears as a model which describes a phase transition phe-

nomenon in various fields. See the monograph of Fife [5] and the references therein.
We will mainly discuss the steady state problem associated with (1.1):

{ 2u" + f(x

,uy=0, 0<z<1,
u'(0) = u'(1)

frmmg »

(1.5)

where ‘ ’  denotes the derivative with respect to z. Angenent, Mallet-Paret and
Peletier [3] proved that, for sufficiently small e > 0, (1.5) admits a stable solution
ue which possesses a single transition layer near each zo € X with a'(zg) # 0
and that u.(z) is sufficiently close to 0 (resp. 1) for z in any compact subset of
{z € (0,1); a(z) > 1/2} (resp. {z € (0,1); a(z) < 1/2}).

The appearance of such a solution with transition layers is closely related to the
bistable property of reaction-term f(z,u). As an energy functional associated with
(1.1), one can find

E(u) = /01 {%E%x(z)z + W(m,u(m))} dz,

where

I . s)ds wi o) = 0 ifa(z) <1/2
W) = /q;o(x)f( »8)d th dola) {1 ifa(z)>1/2 9

Here W is called a bistable potential because W takes its local minimums at u = 0
and u = 1. It is well known that every solution of (1.1) converges to a solution of
(1.5) as t — oo and that E(u(-,t)) is decreasing with respect to t. Therefore, a
minimizer of F will be a stable solution of (1.5). We should note that the minimum
of W(z,-) is attained at u = 1 (resp. u = 0) when a(z) < 1/2 (resp. a(z) > 1/2).
Intuitively, this fact assures that F has a minimizer u, with a transition layer near
an zo € ¥ with ul(z¢)a'(zg) < 0. We also refer to a work of Hale and Sakamoto [6],
who proved that (1.5) admits an unstable solution u. with a single transition layer
near zo € ¥ and that it satisfies ul(zg)a'(z¢) > 0. Moreover, Dancer and Yan [4]
have shown the existence of a solution u, with multi-layers to (1.5). Here a multi-
layer means a part of u. where multiple transition layers appear as a cluster in
a neighborhood of a certain point. More precisely, it is proved that there exists a
solution which possesses a prescribed number of transition layers near a designated
point zg € ¥. (They have discussed such solutions in a ball of RN.) See also



Nakashima [7, 8], where a solution with multi-layers is studied in a balanced case
with f(z,u) = A(z)u(l —u)(u — 1/2). See also the work of Ai and Hastings [2].

Recently, Ai, Chen and Hastings [1] have obtained remarkable results on the
structure of solutions u, of (1.5) with transition layers and spikes. They give in-
teresting information on complicated patterns of transition layers and spikes. The
existence and stability (Morse index) of such solutions are also discussed. In order
to discuss patterns, they derived asymptotic results which describes how close u(()
approaches to 0 or 1 when ¢ is sufficiently small. Here, ¢ denotes a local maximum
or minimum point of u.. Using these results, they reduce the pattern determina-
tion problem to a certain kind of an algebraic system; patterns of transition layers
and spikes are determined by solving this algebraic system. This paper is greatly
motivated by their work. Our main purpose is to derive more precise results on
the profiles of solutions with transition layers and spikes. We will develop more
general results on the asymptotic behavior of uc(z) as ¢ — 0 (Theorems 3.3 and
3.6). Furthermore, we will discuss patterns by using different approach based on
our asymptotic results.

When we concentrate ourselves on a solution ue of (1.5) with oscillatory profiles
such as transition layers and spikes, it is useful to take account of the number of
intersecting points of the graphs of u. and a in (0,1). We introduce the notion of n-
mode solution ; u, is called an n-mode solution if the graph of u. has n intersecting
points with that of a in (0,1). Roughly speaking, for any n-mode solution u. of (1.5),
its graph is classified into the following three groups (see Lemmas 2.2 and 2.4):

(i) ue(z) is close to 0 or 1,

(i) wue(x) forms a transition layer connecting 0 and 1,

(iii) wue(z) forms a spike based on 0 or 1.

Here it should be noted that, if ue has a spike, then its peak is distant away from
u =0 and v = 1. In order to study patterns of solutions with transition layers, we
note that ue(z) is very close to 0 or 1 at one of end-points of any transition layer,
when ¢ is sufficiently small. The situation is similar when we discuss a spike; if u.
has a spike based on 1, then u.(z) is very close to 1 at both end-points of the spike.
Therefore, as is stated in the preceeding paragraph, it will be important to study the
asymptotic rate of 1 — uc(z) (resp. u-(x)) as € — 0 in a certain interval containing
one local maximum point (resp. local minimum point) of u.. The analysis to get
the asymptotic rate will be carried out by a kind of barrier method.

The content of this paper is as follows. In Section 2, we will give some funda-
mental properties of n-mode solutions of (1.5). In Section 3, asymptotic rates of
1 — ue(x) and ue(z) as e — 0 for z in a suitable interval will be discussed. The
asymptotic results are given by Theorems 3.3 and 3.6. These results enable us to
show that any transition layer (resp. spike) appears only in a neighborhood of a
point of & (resp. A) in Section 4. Finally, Section 5 is devoted to the study of
multi-layers and multi-spikes. It will be shown that each multi-layer consists of an
odd number of transition layers. Furthermore, we will show that multi-layers (resp.

multi-spikes) can appear only in a neighborhood of a point in a suitable subset of ¥
(resp. A).
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2 Transition layers and spikes for n-mode solutions

In this section we will give some basic properties of solutions of (1.5).

Lemma 2.1. Let u, be a solution of (1.5). Then
0<u(z)<1 forallze (0,1).
Furthermore, if u. £ 0 or 1, then
0<ue(z) <l forallze(01).
Proof. Assume that
ue(z9) = max{us(z); z € [0,1]} > 1 (2.1)

for some zg € [0,1]. It follows from u}(zg) < 0 that f(zo,ue(zo)) > 0. On the other
hand, (2.1) together with (1.2) implies f(zg,uc(xo)) < 0, which is a contradiction.
Hence u.(z) < 1. Similarly, it is easy to show u.(z) > 0.

To give the proof of the last assertion, assume u(z1) = max{u.(z); z € [0,1]} =
1 at some z; € [0,1]. Since u.(zg) = 0, we immediately get u. = 1 by the uniqueness
of solutions for the initial value problem of the second order differential equation.
Therefore, u.(z) < 1 in [0,1] unless u, = 1. Similarly, one can see that, if u # 0,
then u(z) > 0 in [0, 1]. This completes the proof. O

Let u, be a solution of (1.5). Recall that u, is called an n-mode solution of (1.5)
if u; — a has exactly n zero-points in (0,1). Denote by S, . the set of all n-mode
solutions and we fix arbitrary n € N. For u; € S, ¢, define

E={z€[0,1]; uc(z) = a(z)}. (2.2)

In what follows, we sometimes extend u, to a function over R by the standard
reflection. This is possible because u, satisfies u.(0) = u.(1) = 0; so that u. is
regarded as a periodic function with period 2. Similarly, by virtue of (A.4), f(z,u)
can be extended for (x,u) € R x R by the reflection with respect to z-variable. So
we may consider that u. satisfies (1.5) for all z € R.

Lemma 2.2. For n € N, it holds that

lim sup max |uc(z)(1 — u:(z)) l52u'5(nv)2 - W(m,ug(x))” =0, (2.3)
e—0 Ue ESn e IE[Oal] 2

where W{z,u) is defined by (1.6).

Proof. Although this lemma is given in [1, Lemma 2.1] we will give a proof for the
sake of completeness. Suppose that (2.3) is not true, then there exist {(ex, ug, zx)}
such that ug € Sy, zx € [0,1] and

1

() (1 up(a)) | Lo (an)? — W(xk,ukm))}

: > 6 (2.4)
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with some é > 0.
We use a change of variable x = z, + ¢xt and introduce a new function Uy by
Ui(t) = ug(zg + ext). Clearly, Uy satisfies

Uk: -+ f(SCk + ext, Uk) =0 in R, (2,5)

where ¢ *’ denotes the derivative of ¢.

We first prove the uniform boundedness of {Uy}, {Uy} and {Uj }. By Lemma 2.1,
sup{|Ui(t)|; t € R} < 1; so that it follows from (2.5) that sup{|Uk(t)|; t € R} =:
my < oo. To study Uy, we take any t € R. The mean value theorem assures that
there exists a number ¢y € (t,¢ -+ 1) such that

Ug(to) = Ukt + 1) = Ug(t);

then —1 < Uk(to) < 1 from Lemma 2.1. Hence it holds that

. . t .
U ()] = Uk(t0)+/ 0, (s) ds

to

< 1+m1.

These estimates implies that {Uy}, {Us}, {Ux} are uniformly bounded in R. There-
fore, it is easy to see that {Uy} and {Uy} are equi-continuous. Moreover, it also
follows from (2.5) that {Uy} is also equi-continuous.
On account of the above results, one can apply Ascoli-Arzeld’s theorem and use

a diagonal argument to show that {Uy} has a subsequence, which is still denoted by
{U}, such that

lim Uy =U  in C?.(R)

k00
with a suitable function U € C?(R). Here we recall that {z;} is bounded. Since one
can choose a convergent subsequence from {zj}, we may assume

lim zp = z* € [0,1].

k—o0

Then it is seen in the standard manner that U satisfies
U+ fz*,U)=0 inR (2.6)

Multiplying (2.6) by U and integrating the resulting expression with respect to
t we get

LU W U) =C inR (27)

with some constant C. If U = 0 or U = 1, then it is easy to derive a contradiction
to (2.4) from (2.7).

We will show C' = 0 in (2.7) in the case that U # 0 and U # 1. If C > 0, then we
see from the phase plane analysis that U is unbounded. This is impossible because
{Uy} is bounded. If C < 0, then the phase plane analysis tells us that U is a periodic
function. So the graph of U(t) has infinitely many intersecting points with that of
a(z*) and, therefore, the graph of Uy(t) also has infinitely many intersecting points
provided that k is sufficiently large. This fact implies that, if k is sufficiently large,
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then ug(z) — a(x) has many zero-points near z = z*. This result contradicts to the
definition of n-mode solutions. Thus we have proved C = 0 in (2.7).
Hence

= lim %Uk(O)Q - W(wk,Uk(O))l

. 1
lim |=ex?ul(zr)? — W (zg, uk(zk)) o

k—o0 |2
1

_ ‘-2.0(0)2 _ W U(O))l 0,

which contradicts to (2.4). Thus the proof is complete. O

Lemma 2.3. Foru; € Sp, set Z = {£1,&2,..., &} with0 <& <& < - <& <1
If € is sufficiently small, then u. has ezactly (n — 1) zero points {Ck}z;% in (0,1)
satisfying

0<&H <G << <p1<1 <<l

Proof. Let ¢ € = and take any small n > 0. Lemma 2.2 implies that, if ¢ is sufficiently
small, then

€)1~ (€) 20 - (e uele)|

<.

ol€)(1 - al6)) 30 - Wie.ale)]

Since a(£)(1 — a(¢)) > M with some e-independent M > 0, we get

IR SCW IR i/
T < Sl () - W(E,0(0)) < 1.
Observe that W (£, a(€)) > ¢1 > 0, where c; is a positive constant independent of e.
Hence, taking a sufficiently small € > 0 one can conclude

el (€)?2>cE >0

with some ¢ > 0. Thus
Cc2

(e > 2 (28
for sufficiently small €.

We study the case us(z) > a(z) in (&,&k+1)- By (2.8) and the boundedness of
a'(x), it is easy to see ul(£k) > 0 and ul(€x4+1) < 0. On the other hand, since (1.5)
implies u"(z) < 0 in (&, &k+1), ul has a unique zero point in (&, &k+1), which is
denoted by (;. Clearly u. attains its local maximum at z = (.

Since the proof is analogous for the case u.(z) < a(z) in (€, £k+1), it remains to
show the nonexistence of zero point of u. in (0,&1) U (€, 1). Assume u,(z) > a(z) in
(0,&1). Since u.(0) = 0 and u(z) < 0 in (0,&), it is clear that u(z) < 0 in (0, &)
The other cases can be discussed in the same way. O
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Lemma 2.4. For u, € S, let £¢ be any point in E and define Ug by Ug(t) =
ug(€° + et).  Then there exists a subsequence {ex} | 0 such that & = &% and
U = Ue, salisfy

lim & =¢* and lim Uy =6 in CL.(R),
k—o0 k—o0

where ¢ € C?(R) is a function satisfying one of the following properties.
(i) In the case a(&*) = 1/2, ¢ is a unique solution of the following problem:

¢+ f(E4,4) =0 in R,
$(—00) =0, (+00) =1 (resp. ¢(~00) =1, ¢(+00) = 0),
$(0) =1/2,

if $(0) > 0 (resp. $(0) < 0). Moreover, ¢(t) > 0 for t € R if ¢(0) > 0, while

é(t) <0 fort € R if ¢(0) <O0.
(ii) In the case a(€*) < 1/2, ¢ is a solution of the following problem:

{c5+f(§*,¢)=0 in R,
$(0) = a(€*), p(£o00) = 0.

Moreover, ¢ satisfies sup{¢(z); z € R} > a(&*).
(iii) In the case a(€*) > 1/2, ¢ is a solution of the following problem:

{q’é+f(f*,¢>=o in R,
$(0) = a(¢*), ¢(£o0) = 1.

Moreover, ¢ satisfies inf{¢(z); z € R} < a(&*).
Proof. Clearly, U.(t) satisfies

U+ f(6 +et,U) =0 and U.(0) = a(¢°).

As in the proof of Lemma 2.2, one can prove that {U.} is bounded in C?(R); so that
there exists a subsequence {ex} | 0 such that Uy = U, is convergent in C} (R);
ie., ‘
lim Uy =¢ in CA(R) (2.9)
k—o0

with some ¢ € C?(R). Moreover, since {£x} (& = £°*) is also bounded, we may
assume klim &k = & €]0,1]. Therefore, the limiting procedure yields
—00

$(t) + F(€5,¢(£)) =0  with ¢(0) = a(¢").
The same argument as in the proof of (2.7) with C = 0 also shows
SO0~ W(E,6() =0

for £ € R. Hence the phase plane analysis enables us to conclude that ¢ satisfies one
of (i)-(iii). O
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Lemma 2.5. For u; € Sne, let £,&5 be two successive points in =. Then one of
the following properties holds true:
(i) (& — &) /e is unbounded as € — 0,
(i) For sufficiently small € > 0, it holds that
& — &

M1<——E—<M2,

where My and My are positive constants independent of €.

Proof. We denotes the derivative with respect to t by * *’ and the derivative with
respect to z by ¢ ' °. Put U.(t) = uc (£ + et) ; then U(t) = eu (£ + et). Therefore,

{OA®=E%@9,
UL((¢5 - €9)/2) = eul(€5).

In view of (2.8) we see

U (0)U-((5 - £1) /) = e2up(€Duz(€5) < —c < 0. (2.10)

Suppose that {(£5 — £5)/e} is bounded. Then one can choose a subsequence {ex}
such that

Ek €k

0< M= lim 22— < 4o0.
k—o0 €k

Recalling the proof of Lemma 2.4 we may regard {U,} as a convergent sequence
satisfying (2.9). Setting ¢ = ¢ in (2.10) and letting k — oo we get

$(0)p(M) < —c§ < 0.

Hence it follows from Lemma 2.4 that M must be positive. Thus we have shown (ii)
when (i) does not hold. O

3 Asymptotic profiles of n-mode solutions

In this section we will derive some asymptotic behavior of u, or 1 —u; ase — 0
in a certain interval containing a local minimum or local maximum of u.. For this
purpose, we first prepare the following lemma.

Lemma 3.1. Let g(v) = v(l — v)(v — ao) with ag € (0,1). Then for any o € (0,1)
satisfying o > max{ag, (ag +1)/3} and M > 0, there exists a unique solution of

vy, +g(v) =0 in (—M,0),
v(=M) = o, v,(0) = 0, (3.1)
v>0o in (—M,0).

Moreover, there ezists a constant o* € ((ap + 1+ /a? — ao +1)/3,1) such that, if
o > 0", then
crexp(=RM) < 1 —v(0) < cgexp(—rM), (3.2)

where 7 = \/—g'(0), R = \/—¢'(1) and c1,¢2 (0 < ¢1 < ¢2) are positive constants

depending only on o.
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Proof. In order to solve (3.1), we employ the time-map method (see, e.g., Smoller
and Wasserman [9]). Take o € (0,1) with o > max{aq, (ao + 1)/3} and consider the
following initial value problem:
Ver +g(v) =0 for z > ~M, (3.3)
v(=M) =0, v,(-M) =p,
where p is a positive parameter. Let v(z;p) the solution of (3.3). Multiplying (3.3)
by v.(2z;p) and integrating the resulting expression over (—M, z) we get

1 1,

5vs(zp)" = Glu(zp)) = 577 (3.4)

where ;
Glv) = ——/ g(s)ds.

Since we look for p satisfying v,(0;p) = 0 and v,(z;p) > 0 for z € (~M,0), we have
to restrict the range of p. By the phase plane analysis, 0 < p < v/ —2G(1) =: p*
(note —G(1) > 0 because of o > ag).
For such p, define a(p) € (o,1) by p?/2 = —G(a(p)), and let T(p) be a time-map
defined by
T(p) =inf{z>-M;v(z) =a(p) } + M.

Then a(p) = max{v(z;p); z > —M} and T(p) denotes the distance from —M to
the first zero point of v,. If we can find a number pys satisfying T(par) = M, then
v(z;pu) gives a solution of (3.1). Hence the study of T'(p) is essential to show the
existence of a solution of (3.1).

As a first step, we will show that T'(p) is strictly monotone increasing for 0 <
p < p*. It follows from (3.4) that

1 dv
®_ 3
/GW) - Glalp) 4z

Integrating this equation over (=M, —M + T(p)) yields
o(p) dv
. VG - Gal)
From the definition, a(p) is a strictly increasing function of p satisfying a(p) — o

as p = 0 and «(p) — 1 as p — p*. So it is convenient to treat T(p) in (3.5) as a
function of « in place of p. Set

V2T (p) (3.5)

@ dv ! a—0o
S o) = =
() /g VG() - G(a) /o VG(s(a—o)+0) - G(a)

We will prove that S(c) is strictly monotone increasing for « € (o, 1). Differentiation
of S(«) with respect to « gives

ds.

, L2(AG) + (a—a)sg(s(a — o) + 0) — (a — 0)g(a)
! ARG " e
1 ¢ G(v) — O(a)d '
T o—/g 2(AGYE
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where
AG = G(v) — G(e) and 6(v) =2G(v) + (v — 0)g(v).

Note AG > 0 for 0 < v < . We will investigate 8 to show S'(c) > 0 for & € (0,1).
It is easy to see

0'(v) = —g(v) + (v — 0)¢'(v) and 6" (v) = (v = 0)g"(v).

Observe §'(c) = —g(o) < 0 for ag < o < 1. Moreover, 8”(v) < 0 in (o, ) by the
concavity of g(v). Therefore, §'(v) < 0 in (0,a). Since 6 is monotone decreasing
in (0,a), we see from (3.6) that S'(a) > 0 in (0,1). Therefore, S(a) is monotone
increasing in (o, 1) and so is T'(p) in (0, p*).

Furthermore, we will'show

lim T'(p) =0 (3.7)
p—0
and
lim T'(p) = +o0. (3.8)
p—p*
We use

> min{g(a), 9(0)}(a = v) for v € (0,a)

to prove (3.7). Hence it is easy to see li_r)n S(a) = 0, which implies (3.7). To prove
a—rg

(3.8), we note a(p) — 1 when p — p*. For a — 1, we see

Gv) - Gla) - —%g'(n(u 1240l —1)2) asv—s 1.

Therefore, lim1 S(a) = +o0, whence follows (3.8).
a—

We have shown that T'(p) is a strictly increasing function satisfying (3.7) and
(3.8). Hence it is easy to see that, for each M > 0, there exists a unique py € (0,p%)
such that T(pas) = M. Clearly, pys is strictly increasing and continuous with respect
to M and A}im pm = p*. Set vy = v(0;ppr); vm is also strictly increasing and

—00
continuous with respect to M and satisfies A}im vy = 1.
~500

We will prove that vy, satisfies (3.2). Recall

VoM = / " dv : (3.9)
o +/G)—-G(vm)
from (3.5). By the mean value theorem, there exists a constant 61 € (o,v) satis-
fying
Gv)-Guy) g6y _ _g(6) —g(1) (3.10)
(1-2v)2-(1-vpm)? 2(0; - 1) 2(6, — 1) '

Using the mean value theorem again, we see that the right-hand side of (3.10) is
equal to —¢'(62)/2 with some 6 € (61,1). Take o* € ((ao+1++/ag —ao +1)/3,1).
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It should be noted that g'(s) is decreasing and negative for s € (¢*,1). Then for
o€ (0*%,1)
2 91(92) R2

r
N S T il 11
2< 2<2 (3.11)

with 7 = \/—¢'(0) and R = /—¢'(1). With use of (3.10) and (3.11), it follows from
(3.9) that

LBy <M< 1By, (3.12)
R r

By = /:M = U)zdi) — = log (bM + 4/ b3, — 1) ,

with by = (1 — 0)/(1 —vpr). Since By € [log bas, log 2b], (3.12) yields

where

(1 —o)exp(—RM) < 1—vpy < 2(1 —0)exp(~rM).
Thus the proof is complete. ]
Replacing z by —z in the proof of Lemma 3.1, we can show the following lemma.

Lemma 3.2. Let g be the same function as in Lemma 8.1. Then for any o € (0,1)
satisfying o > max{ag, (ag + 1)/3} and M > 0, there exists a unique solution of

Vzz + g(v) =0 in (0, M),
v,(0) =0, v(M) = o,
v>0 in (0, M).

Furthermore, there ezists a constant o* € ((ap + 1+ /a3 — ap + 1)/3,1) such that,
if 0 > 04, then v satisfies (3.2).

In what follows, let £;,&2 be two successive points in = and let (§1,&2) be an
interval such that

ue(z) —a(z) >0 in (&, &) (3.13)

Let ¢ € (€1,£2) be a unique point satisfying uL(¢) = 0 and ul(z) > 0 in (£1,¢). The
existence of such ( is assured by Lemma 2.3.
We will study asymptotic behavior of u. in (£1,£2) as € | 0.

Theorem 3.3. For u; € Sy ., assume (3.13) and let ¢ € (£1,62) satisfy «'(¢) = 0.
If (C — €1)/e — +00 as € — 0, then there exist positive constants C1, Ca, 7, R with
Ci < C3 and r < R such that

Cresp (-HEZ8) 1w < Grem (-2 e

£ £

for z € [£1,(] and sufficiently small € > 0.
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Proof of Theorem 8.3. We begin with the proof of the right-hand side inequality of
(3.14). Let a* be a constant which satisfies a* > max{a(z); € [{1,(]} and take
§* € (a*,1) which is close to 1. By assumptions and Lemma 2.4 we can find a
point & € (&1,¢) such that uc(€;) = 6* and ue(x) > 6* in (€1,¢) provided that ¢ is
sufficiently small. Clearly, £é; — &, = O(e) as € — 03550 ¢ — £ > e

Now take any 2* € (1 +¢€,¢) and apply Lemma 3.1. Let v(z) be a solution of
(3.1) with a9 = a*, 0 = ¢* and M = (z* - £, —€)/e. We use a change of variable
z = (z — z*)/e and define V4 by Vi(z) = v((z — z*)/¢); then

EV/ + Vil - V)(Vi —a*) =0 in (& +¢,27),
Vi(é +¢) = 6%, V{(z*) =0, (3.15)
Wi > 6" in (€1 + ¢, 2%).

By virtue of Lemma 3.1, V) satisfies

crefexp (—M) <1-Vi(z*) < coe” exp (_M) , (3.16)

[

where c1, o, and R are positive constants depending only on a* and ¢*.
We will show

Vi(z) <ue(z) in (& +¢,2%). (3.17)
For this purpose, it is convenient to introduce the following auxiliary function
V; - a* ~
hi(z) = 1(z) —a in [&; +¢,2%],

ue(z) — a*
and show hi(z) < 1in [€1 + €,2*] by contradiction. Suppose that there exists an
z1 € [€1 + €, 2*] such that
~ 1
hl(ml) = max{hl(m); T e [61 +E,l‘*]} = "I’; > 1.

Then 5
{Vnm) <u(z) inff+e e,
Vn(ml) = ue(ml)a

where
Vy(z) = n(Vi(z) — a”) +a* (< Vi(z)).

We will prove
V' (21) < ul(2). (3.18)

Clearly, hy (£ +¢) < 1. Moreover, since u.(z*) > 0 and V{(z*) = 0 (by (3.15)), it is
easy to see h(z*) < 0. Therefore, z; must be an interior point in (£ +€,2"). So

Ri(z1) =0 and hj(z1) <0. (3.19)
From the definition of h1,

hi(z)(ue(z) — a*) = Vi(z) — a”.
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Differentiating the above identity two times with respect to z and setting z = z; we
get

ug (w1) + 2nug (21) Ry (21) + 0(ue(er) — a”)hi (1) = V' (z1) = V' (@1).  (3.20)

Then (3.19) and (3.20) imply (3.18).
We next use f(z,Vy) > nVi(1 - V1)(Vi — a*). Indeed, since Vi(z) > a* > a(x)
in (£ +¢,z*), a simple calculation yields

fz, V) = Va1 = V3) (Vg — a(2))
=n(V1 — a)Vp(1 = V) + (a” — a(2))V;(1 - Vp)
>n(Vi —a®)Vy(1 = Vp)
>Vl -W)(Vi-a

* 3

provided that &* is sufficiently close to 1. Hence it follows from (3.15) that
V) + f(z, Vi) = ne® V' + (=, V) > n{e® V' + Vi1 - ))(V1 = a")} = 0.
Therefore, using (3.18) we have
0= eu!(z1) + flzr,uc(z1)) > V) (z1) + f(z1, V(z1)) > 0,

which is a contradiction. Thus we have shown (3.17).
Now (3.16) and (3.17) imply

1 —u(z") <1-Vi(z*) < c2e” exp <—-M) .

€

Here we should note that c and r can be chosen independently of z*. Recalling
that z* is an arbitrary point in ({1 + ¢, (), one can conclude that

1 —ue(z) < cpe” exp (_T_@_—_éﬁ) (3.21)

£

is valid for z € (£, + €, ().
Moreover, since £; — £ < Ke with some K > 0, it follows from (3.21) that

1 —ue(z) < coe” exp <_f£x_;_§l).) exp ( r(é — . §1)>

< epemEHD exp (_7"(37 - 51))

€

(3.22)

for z € (€1 +¢,¢). On the other hand, we note that

exp(—r(K + 1)) < exp (J.EE_:_@)

£
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for z € (£1,& + €). Hence, we can choose a sufficiently large constant L > 0 such
that
1 —ue(z) <1-u(61) =1 -a(é1)

< Lexp(—r(K + 1)) < Lexp <_£(_a_:%_@)

(3.23)

for € (£1,€14€). Thus (3.22) and (3.23) enable us to extend (3.21) for all z € [£1, (]
with £, replaced by & (for © = (, it is sufficient to use the continuity of u, with
respect to x).

We will prove the left-hand side inequality of (3.14). Let a4, be a constant
satisfying a* < min{a(z); z € [£,(]} and take 8, € (a«, 1) which is close to 1.
In particular, we assume that 6, > max{1/2, max{a(z); z € [£1,¢]}}. Then there
exists a point &€ € (£1,¢) such that u.(£;) = &, and & — & = O(e).

If £ is sufficiently small, then ¢ —€&; > ¢. We apply Lemma 3.1 by setting o = &,
ap = ax and M = (¢ — & +¢)/e and define v as the solution of (3.1). With use of
the change of variable z = (z — () /e, we see that Va(z) = v((z — {)/¢) satisfies

52V211+%(1‘V2)(V2“a*) =0 in (6_1'—574)5
Va(é —€) = bs, V3(¢) =0,

Vy > 6, in (& —¢,().
Lemma 3.1 gives .
creftexp (—E(f——gf—él—)> < 1=V,(0). (3.24)
We will prove i
Va(z) Z ue(z) in [& —&,(], (3.25)

which, together with (3.24), yields the assertion because u.(() is the maximum of
ue in [&1,¢] and & < & < ¢. To prove (3.25), we introduce the following function

i) = P in 6]

and will show hg(x) < 1 by contradiction. Assume that there exists zo € [£1, (] such
that

ho(z9) = max{ho(z); x € [&1,¢]} =7 > 1. (3.26)
By (3.26)
{%@S%@ in [£1,¢),
ue(z2) = Wy(z2),

where Wy(z) = n(V2(z) — ax) + a.. Since ha(€1) < 1, zo must satisfy & < z3 < (.
If 29 lies in (&1, ), then it is easy to see

ug (x2) < Wy (22). (3.27)

For the case o = (, note hi(z2) = hhH(¢) = 0. Therefore, (3.27) is also valid for
zo = (.
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As the next step, we will prove
f(x, Wﬂ) <nVa(l - VQ)(VQ — Q). (3.28)
As a function of 7, set P(n) = nVa(1 — Va)(Va — ax) — f(z, Wy). Then

P'(n) =Vo(1 = Vo) (Va — as) — (V2 — as) fu(z, Wn) = (V2 — a,)Q(n),

where
Qn) = Va(l = Vo) — fulz, Wy).
Observe that

Q' (1) = — fuulz, W) (Va — a.) = 2(Va — a){(Wy, — a(=)) + (W, — 1)}.

Recalling the definition of d. and n > 1, we can see that Wp(z) = Va(z) > 64 >
max{1/2, max{a(z); z € [¢1,¢]}} in (&1,¢); this implies Q'(n) > 0. Therefore,

Q(n) > Q1) = (Va —a(2))(2V2 — 1) > 0,
which leads to P'(n) > 0 for n > 1. Hence we get
P(n) > P(1) = Va(1 - Va)(a(z) — ax) > 0

and (3.28) is proved.
We finally combine (3.27) and (3.28) to get

0= ceull(z2) + f(m2, ue(x2)) < 2W)/(x2) + f (w2, Wi(w2))
< n{(e*Vy' (2) + Va(z2) (1 = V(22))(V(22) — as)} = 0.

Since this is a contradiction, we have shown (3.25) ; thus the proof is complete. [l

Remark 3.4. We should note that (3.14) depends on position z ; for any z € [&1,(],
1 — u.(x) is estimated in terms of the distance between z and &; when ( is a local
maximum point. Although similar results as Theorem 3.3 have been obtained by
Ai, Chen and Hastings [1, Lemma 2.3], their results are only concerned with the
order of 1 —u¢(¢). In this point of view, we believe that (3.14) gives us more precise
information on the profile of u.. Indeed, (3.14) helps us to study the e-dependence
of the width of each transition layer, spike, multi-layer and multi-spike in Sections 4
and 5.

Remark 3.5. In (3.14), we can choose 7 = v/1 — A*+0O(1) and R = /1 = 4, +0(1)
where A, = min{a(z); z € [&,(]} and A* = max{a(z); x € [£1,(]}. These facts
can be shown from the proof of Theorem 3.3 by taking account of the definition of
r and R in Lemma 3.1.

Using the same method as the proof of Theorem 3.3 one can prove the following
result from Lemma 3.2:
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Theorem 3.6. For u € Sy, ., assume (3.13) and let € (£1,&2) satisfy v'(¢) = 0.
If (§2 — ¢)/e — +o0, then for sufficiently small € > 0, there exist positive constants
C{,Cy, 7', R with C] < Cy and v’ < R' such that
RI 7
C] exp (__(f_zg__g)) (3.29)

<1-ul(o) < Gpesp (-E=2)

€

for z € [(, &a].

Remark 3.7. Theorems 3.3 and 3.6 deal with the case that ¢ € (£1,&2) is a local
maximum point of u, ; i.e., the case that u.({) is very close to 1. On the contrary,
assume that ¢ is a local minimum point of u. and (¢ —&;)/e = oo or ({2 —()/e = ©
as € — 0. Then we can derive similar estimates as (3.14) and (3.29) with 1 — u.(z)
replaced by u.(z).

4 Location of transition layers and spikes

We will study the location of transition layers and spikes of n-mode solution ue with
use of (1.3) and (1.4).

Theorem 4.1. Let ¢ be any point in =. Then £ lies in a neighborhood of a point
in LU A when € is sufficiently small. Moreover, if ue has a transition layer near a
point zg € SUA, then xg belongs to T, and if u. has a spike near a point zop € LUA,
then o belongs to A.

Remark 4.2. Theorem 4.1 has been obtained by Ai, Chen and Hastings [1, The-
orem 1]. In the proof, they have reduced the location problem to a certain kind of
algebraic system. We give a different proof; we will derive a contradiction to the
finiteness of = for u, by means of asymptotic properties developed in Section 3.

Proof. Define {&x}7_1, {Ck}’,;‘;% as in Lemma 2.3 and set {5 = 0, {, = 1. Let
Y= {z1,22,...,2m} With 0 < 21 < 22 < --- < 2 < 1. By Lemma 2.4 it can be
shown that, if ue € S, has a transition layer in a neighborhood of £° € =, then ¢*
must be very close to one of z; when ¢ is sufficiently small.

It is sufficient to show that if u. has a spike near £, then &° lies in a vicinity of
a point in A. For this purpose, let a(z) — 1/2 > 0 in (2;, zj41) and denote all points
of AN (25, 2j4+1) by y1,y2,-. -,y with z; <y1 <y2 < -+ <y < Zj41-

We will prove by contradiction that every spike lies near a point in A. Take any
small § > 0 and fix it. Assume that u, has a spike in an interval (z; + 6,y1 — 9).
Note a’(z) > 0 in this interval. By (iii) of Lemma 2.4, then there exist { and {x41
such that

2j+0 <& < &1 <y1—0, ul(é) <0 and u(&k41) >0,

if ¢ is sufficiently small. By Lemma 2.3 there exist (x—1, (g, (x+1 satisfying (x-1 <

&k < Gk < &kr1 < Cry1-
We will show

1 — ue(Cr—1) > K/ (4.1)
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with some x > 0, in the case that neither (t—; nor (41 belongs to (z;,41).

other cases can be discussed in the same way and the proof is easier.
We rewrite (1.5) as

eug + f (G ue) = ue(l — ue)(a(z) — a(lr))-

The

(4.2)

Multiplying (4.2) by u. and integrating the resulting expression over (Ct—1,Cx+1)

with respect to z we get

W (Cr, e (Cr—1)) = W (e ue(Crt1))

Cr1
= /C ue(7) (1 — ue(z)) (a(z) — a(Gr))ug(z)dz
_ ( /C ,j / y+ /y <k+> e (2)(1 = ue(2))(a() — a(C))ul(x)de
=T+ T+ 1IL

We will estimate I, IT and III.
We begin with the study of II. Since a is monotone increasing in (z;,y1),

> /< " (@)1 - (@) (a(e) - o)l (@)de

L tEe

> (a(Cr +€) — a(Ce)) /y1 ue () (1 — ue(z))uL(z)dz

(rte
ue( 1)

(oGt —al) [ s(l—s)ds

Us(gk+5)
Us(yl)
> K 1-—3)d

with a positive constant K. Moreover, Theorem 3.3 gives

1—uc(y1) < Cexp (..M) < Cexp (-%@) ’

[

(4.3)

and Lemma 2.4 implies u.((; +€) < A with some A € (0,1) provided that ¢ is

sufficiently small. Hence

ue (Y1) e (y1)
/ s(1—s)ds > / s(1 —s)ds > C*
ue((k+e) A

with a positive constant C* independent of € so
II > C*Ke.

We next estimate I;

15 [ Juelt - ue)(ale) - alGutlds

Ckm1

Z; Us((k—l)
< / ue (1 — ug)|ulldz = / s(1 — s)ds <1 —ug(2).
Cemz ue(2;)
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Theorem 3.6 implies

1 —uc(z) < Coexp <—£(€—k€:—z]—)> < Cyexp <—T£> )

Therefore, we get |I| = O(exp(—1/¢))). Similarly, one can also derive [III] =
O(exp(—1/€)). Thus we get

W(Ck:“s@k—l)) - W(Ck,ug((:kﬂ)) =1+ I+ 11> K% (45)

with some K* > 0.
On the other hand, we will estimate the left-hand side of (4.3). In the same way
as the proof of (3.10), one can see

W (G, te (Co—1)) = W (Cky ue (Crt1)) = —%fu(Cm@){(l — ue(Cr-1))? = (1 — ue(Cer1))?}

with some 6 € (ug(Cx_1),1). Since 8 is very close to 1, there exists a positive constant
M, which is independent of €, such that

W (Cy e (Co1)) = W (s tte (Chp1)) < M (1 = ue(Gr1) (4.6)

Hence (4.1) follows from (4.5) and (4.6).
We use (4.1) and Theorem 3.6 with = = (x—1 and & = & to get

Ky/E < ch exp (—M) (4.7)

£

with some ¢ > 0 and 7’ > 0. Here recall that u is periodic with period 2. So we
see that there exists ¢y, € Z such that uc(z) > a(x) for z € (€k—1,€k). Therefore,
Theorem 3.3 together with (4.1) implies

(4.8)

kvE <1 —ue(Ce—1) < Cexp (—w) )

€
Hence (4.7) and (4.8) imply ‘
Ep — &p—1 < KEl loge] (4.9)

with some positive constant K. This fact implies that £ _; belongs to the interval
(zj + 6,y1 — 9) if ¢ is sufficiently small.

When £_; lies in (z; + 8,31 — §), Lemma 2.4 tells us that there must be another
spike such that &x_o,&x—1 € E with z; + 6 < g2 < &k—1 < Y1 — § and ul(g—2) <
0, u.(¢k—1) > 0. Note that u. has a peak at ¢ = (g1 € (€x—2,Ek~1)- Repeating
this procedure, we see that the number of points of 2N (2; + &, y1 — d) increases in
each process. This is a contradiction to the definition of n-mode solutions; so that
ue has no spikes in (z; + 6,41 — 9).

The same argument is valid to show that uc has no spikes in (y; +6,yi+1 — 6) for
i=1,2,...,0 —1and (y, + §,zj+1 — 6). Thus the proof is complete. O

We will discuss the location of each single transition layer more carefully.
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Theorem 4.3. Let u; € Sy, possess a single transition layer near z € 3 for suffi-
ciently small e > 0. If 2N (2 — 8,2z + 8) = {¢} with some 6 > 0, then £ — z = O(g).

Proof. We only consider the case where a'(z) > 0, z < £ and u(§) > 0 for the sake
of simplicity. The other case can be shown in the same way as follows.

Choose critical points (o and (1 of ue such that u’(z) > 0 for z € ({o,¢1). Since u
has a single transition layer in (Cp, (1), there exists £* € Z such that £* > £ + o with
a positive constant o independent of € and ug(z) > a(z) for z € (£,£*). (Regarding
ue as a function defined for all z € R by reflection, we can take such £*. ) Since
(1 is distant from £ or €* independently of €, Theorem 3.3 or 3.6 enables us to get
1 — uc(¢1) = O(exp(—1/¢)). Similarly, we can also show u. (o) = O(exp(—1/¢)).

We introduce

W(ﬁf,u) == /u f(z,s)ds with (130(3;) = { 0 in (Co,8),

do(z) 1 in (&G

We use the following identity for z € ({g,£) U (&,¢(1):

d{%ﬁ%@f—ﬂma%u»}=&%ﬂm+fmm4wn¢mr4%mwaw)

dz
= a'(z)G (u(z)),
(4.10)
where,
~u(x)2/2+u(x)3/3 in (CO)&)’
Glu(z)) =
() {u~uufvz—u~uufwain@¢m
By Remark 3.7, we see
|0/ ()G (u(z))| < Cyexp (—’"(5 ; ‘”)> in (o, £)

with some positive constants Cy and r. Therefore, there exists a positive constant
K such that

/ ()G ulx))da| < Ke. (4.11)
Co ‘

On the other hand, integrating the left-hand side of (4.10) over ((p, &) yields that

£ . u(§) -
[ 5t = et e = et [ 116, )i+ Gl

Hence it follows from (4.10) and (4.11) that

(@ .
-;-g%;(gﬁ + /0 (€, 5)ds + W (Goy ue (Go)) < Ke. (4.12)

Repeating the same argument as above with ({o,£) replaced by (£,(1), one can
obtain that
1 N 1
-G W (Gue) + [ 1(E s < Kae (413)
u(§
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with some K; > 0. Therefore, (4.12) and (4.13) imply that

1
W (Cor ua(Co)) — W (C1, uel1)) + /0 £(6,8)ds = O(e).

Tt follows from W (Co,u(¢o)) = Ofexp(—1/¢)) and W (C1,ue(C1)) = Ofexp(—1/¢))
that

1
/0 7(€,5)ds = O(e).

Taking account of

1
[ 60y = —fate)+ 55 and a® = 5 +aEE - 2) + Ol =2,

we can conclude that £ — z = O(g). O

5 Multiplicity of transition layers and spikes

In this section we will discuss a cluster of multiple transition layers and spikes. By
Theorem 4.1, such a cluster of multiple transition layers appears in a neighborhood
of a point in ¥ if it exists, while a cluster of multiple spikes appears in a neighborhood
a point in A if it exists.

Definition 5.1 (multi-layer). Let u, be a solution of (1.5). If u has a cluster of
multiple transition layers in a neighborhood of a point in ¥, then such a cluster is
called a multi-layer.

Definition 5.2 (multi-spike). Let u. be a solution of (1.5). If ue has a cluster
of multiple spikes in a neighborhood of a point in A, then such a cluster is called a
multi-spike.

We introduce some notations to study multi-layers and multi-spikes.

St={z*en;d (") >0}, T ={z"€Z; a'(z*) < 0},
AT = {z* € A; a(z*) < 1/2 and a attains its local maximum at z = z*},

A™ = {z* € A; a(z*) > 1/2 and « attains its local minimum at z = z*}.

We begin with the study of multi-layers. We only discuss the case where u, has
a multi-layer in a neighborhood of z € Y+ because the analysis for the case z € ¥~
is almost the same.

By virtue of Lemma 2.4, there exists a one-to-one correspondence between a
transition layer and a point in E defined by (2.2).

Lemma 5.1. For z € 51, let &1, & € (2—08,2+6) be successive points in E satisfying
wl (&) < 0 and ul(&) > 0 (resp. ul(€1) > 0 and ug(€2) < 0) with some § > 0. Then
there exitst another & € = such that z — 3§ < & < & (resp. & < € < z+6) and
ul(€) > 0 provided that € is sufficiently small.
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Proof. We give the proof in the case u;(£1) < 0 and ul(&2) > 0. By Lemma 2.3,
there exist critical points (p, (1 and (3 of u. with (o < & < (1 < & < (2. Since
a(z) > 0in (z — §,7 + §), the argument used in the proof of (4.1) is valid to show

1 — ue(Go) > Ve (5.1)

with some & > 0 independent of . Theorem 3.3 implies the existence of the other
successive point & € Z to & (with € < &) satisfying

1 —u: (o) < Cexp (——T—@-E:-Q> (5.2)

with some C,r > 0. As in the proof of (4.9), it follows from (5.1) and (5.2) that
€ € E satisfies £ < &, & — € < Ke|loge| and ul(€) > 0. Hence ¢ lies in (2 — 9, z+9)
if € is sufficiently small. O

Lemma 5.2. Let z € ST and assume that ue has a multi-layer in (z — 6,z + d)
with some § > 0. If € is sufficiently small, then 2N (z — §,z + ) consists of an odd
number of elements. Moreover, if

EN(z—82+08)={&,. - &m} (5.3)
with some |, m € N such that m — 1 is even, then ul(&) > 0 and u({m) > 0.

Proof. Define &, i =1,--- ,m, by (5.3). We will show this lemma by contradiction.
Assume that m — [ is odd. Then one of the following properties holds true:

ul (&) < 0,ul(&41) > 0 and ug(§m-1) < 0,u.(&m) > 0, (5.4)

W (&) > 0,ul (1) < 0 and ul(€n-1) > 0,uf(ém) < 0. (5.5)

Lemma 5.1 implies that there exists &1 € 2 (resp. {m+1 € E) such that z — d <
&1 < & (vesp. &m < &me1 < 7+ 6) when (5.4) (resp. (5.5)) is satisfied. This is a
contradiction to (5.3). Hence m — [ is even.

It is clear that either v/ (&) > 0 and u.(ém) > 0, or ug(§) < 0 and ul(ém) < 0.
However, in the latter case, Lemma 5.1 enables us to derive a contradiction in the
same way as above. So the proof is complete. O

Let ue possess a multi-layer in a neighborhood of z € Tt Set ZN(z— 4,2+
§) = {&,&+41,.--,&m} with some § > 0. By Lemma 2.3 u, has critical points
Cio1,Ciy- - Cmosuch that (1 <& <G < <€m < . Here we should note that
ue(¢i—1) is close to 0 and that ue((m) is close to 1. Such a multi-layer is called a
multi-layer from 0 to 1. A multi-layer from 1 to 0 is defined in a similar manner.

We can also show that, if there exists a multi-layer in a neighborhood of a point
in £, it must be a multi-layer from 1 to 0.

Summarizing these facts we have the following theorem.

Theorem 5.3. A multi-layer from 0 to 1 (resp. from 1 to 0) appears only in a
neighborhood of a point in LT (resp. ¥7).
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Next we will study multi-spikes. Note that for each spike there exist exactly two
points in Z. So if u, has a multi-spike in a neighborhood of some y € A, we can
denote ZN(y— 6,y +06) = {&, €141, ., &m} with some § > 0 and some I, m € N such
that m — 1 is odd. Moreover, by Lemmas 2.3 and 2.4, there exist critical points of u,
denoted by {{x}7,_, such that {3 <& < -+ ,€m < (m and both u.(¢;—1) and
ue(Cm) are sufficiently close to 0 or 1. If uc((;-1) and ue(Cm) are close to 1 (resp.
0), then such a multi-spike is called a multi-spike based on 1 (resp. 0).

Theorem 5.4. A multi-spike based on 1 (resp. 0) appears only in a neighborhood
of a point in A~ (resp. AT).

Proof. We only show that a multi-spike based on 1 appears in a neighborhood of a
point of A~. Since any spike based on 1 appears only in a neighborhood of a critical
point y of a with a(y) > 1/2, it sufficeis to show that, if a takes its local maximum
at y, then any multi-spike based on 1 can not appear in a neighnorhood of such y
in order to complete the proof.

We take a contradiction method. Let y be a local maximum point of a satisfying
a(y) > 1/2. Assume that u. has a multi-spike based on 1 in (y — 6,y -+ &) with some
§ > 0. Observe that, if there is a multi-spike in (y — d,y + d), then

Eﬂ(y—é,y—l—(s) Z{El’él—l—l""aé’m}

with some I,m € N such that m — [ is odd. By Lemma 2.3, we can choose
¢1-1,C, -+, Cm such that /() =0 for k =1-11...,m and (.1 < & < ¢ <
- < &m < (m. Moreover, Lemma 2.4 implies that {11 — & = O(e) for k =
[,1+2,1+4,...,m— 2; so that at least two points in = belong to either (y — d,y)
or (y,y + 9).
We will consider the case when &,&41 € (y — 6,y). Note that a/(z) > 0 in
(y — 8,y). For the sake of simplicity, we assume that ¢;— lies in (y — d,y). (If not,
see the argument developed in the proof of Theorem 4.1. ) Similarly to the proof
of (4.2) and (4.3) we have

Ci+1

W (Gt e (G1-1)) = WG, ue (1)) = /c ue(z) (1 — ue (@) (a(2) — a(Q))uc(z)dz.
-1
'1 (5‘6)
For the left-hand side of (5.6), observe that (4.6) is valid with & replaced by I. So it
is sufficient to consider the right-hand side of (5.6). Since a”(z) < 0in (y —4,y) by
(A.3), the right-hand side of (5.6) is bounded from below by

(—¢
/< e (2) (1 = us(@)) (a(Q)) — ala)) (—ul(2))de

-1

Gi—e
> / e (2)(1 — ue(@))(@(Q) — a(G — ) (—ul())dz
¢

-1

e ((i—1)
—(a(@) — oG- [ s(1 - s)as.
Us(Cl_E)
when ¢ is sufficiently small. By the Taylor expansion, we see that
al/(z)

a(G) —all —e) = — e{ly— Q)+ (y— G +e)}+ hot.

2
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We should note that Lemma 2.4 implies y — {; > &41 — ¢ > Ce with some positive
constant C independent of e. Thus there exists a positive constant C’ such that

a(Q) — a(G —€) > C'%

Moreover, the same argument as in the proof of (4.4) leads to

ue(C-1)
/ s(1 - s)ds > C*
us (1 —¢)

with some positive constant C*. Thus one can deduce
11— (1) > ke

with some x > 0 (cf. (4.1)). We repeat the argument developed in the proof of
Theorem 4.1 with use of Theorems 3.3 and 3.6. It is seen that there exists another
spike in (y—6,%) when ¢ is sufficiently small. This is a contradiction to the definition
of . Thus we complete the proof. ]

Finally, we will discuss e-dependence of the width and the location of multi-layer
and multi-spike. For this purpose, we will collect important properties of multi-layers
and multi-spikes.

By Lemma 5.2 any multi-layer consists of an odd number of transition layers. If
u. has a multi-layer in d-neighborhood of z € ¥ = Y+t U X~ with small § > 0, then
there exist m € N\ {1} and {&}2™7! C E satisfying

(2= 6,2+ 8) NE = {& 0 (5.7)

when ¢ is sufficiently small. Then from Lemma 2.3 we can choose a set of critical
points of u., which is denoted by {gk}ifgo‘l, satisfying o < &1 < (1 <+ < &m-1 <
Com—1. We should note that & — &—1 = Of(e|loge|) for any & = 1,2,...,2m — 1
by (4.9). It also should be noted that u((p) = O(exp(—1/¢)) and 1 — u((om-1) =
O(exp(—1/¢)) if z € ©F, while 1-u((o) = O(exp(—1/¢)) and u(Cam-1) = O(exp(—1/¢))
if 2 € ¥~ by the same reasoning as in the proof of Theorem 4.3.

Similarly, if u. has a multi-spike in a neighborhood of y € At UA™ C A, then

there exist [ € N\ {1}, {&}?L, C E and critical points {(x 2 of u, which satisfy

(y— 6,y +6) NE = {&}im (5.8)
and (o < & < (4 < --+ < &y < (. Observe that Lemma 2.4 implies that &9 —
Eop—1 = O(e) for any k = 1,2,...,1. Furthermore, by the same argument as in

the proof of Theorem 5.4, we obtain that &opy1 — &ox = Of(e|logel) for any k =
1,2,...,1 = 1. We also note that, if y € AT, then uc(¢o) = O(exp(~1/¢)) and
ue(Ca) = Olexp(—1/¢)), while if y € A™, then 1 — uc(Co) = O(exp(-1/¢)) and
1 — ue(Cu) = Ofexp(—1/¢)).

Theorem 5.5. Let u; € Sy possess a multi-layer satisfying (5.7) for sufficiently
small e > 0. Then & — z = O(ellogel|) for k=1,2,...,2m — 1.
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Proof. For the sake of simplicity, we only consider the case that m = 2 and z € &+.
In this case, there exist a set of critical points {(x}3_, of u. satisfying (o < &1 < (1 <
£2 < (2 < & < (3, and a constant C > 0 such that 3 — & < Ce|loge|. Therefore,
it suffices to consider the case z < & or €3 < z in order to complete the proof.

We will give the proof in the case &3 < z. It also should be noted that a multi-
layer near z € ¥ must be a multi-layer from 0 to 1. Rewrite (1.5) as

efuf + f(z,ue) = ue(1 - ug)(a(z) — 1/2). (5.9)

Multiplying (5.9) by u. and integrating the resulting expression over ((z, z) we get
£ g g

z

G = W (2 (2) 5 W (e, 0e(()) = [ ue@)(1 = o)) afo) - 1/ (@)

G2
(5.10)
We should note that both a and u, are monotone increasing in ({2,2). Hence the
right-hand side of (5.10) is negative; so that W(z,u.(2)) > W{(z,uc({2)). Taking
account of the profile of the graph of W(z,u), we get

Ue(C2) < 1 — ue(2). (5.11)
Applying Theorems 3.3, 3.6 and Remark 3.7 to (5.11), we can obtain

€

with some positive constants Cy, Cy,r and R. This implies that there is a constant
K > 0 such that

0<z—&<K(§— () <K(— &) < KCelloge]
when ¢ is sufficiently small. Thus the proof is complete. O

Theorem 5.6. Let u. € S, possess a multi-spike satisfying (5.8) for sufficiently
small e > 0. Then & —y = Ofe|logel) for k =1,2,...,2l.

Proof. For the sake of simplicity, we only consider the case m = 2 and y € A™.
Then there exists a set of critical points {{x}4_, of u. satisfying (o < & < (1 <
oo < €4 < (4. We should note that this multi-spike is based on 1. Then & — & =
O(e),& — & = O(e) and &3 — & = O(ellogel) ; so & — & = Ofellogel). Therefore,
it is sufficient to discuss the case y < &1 or &4 < y in order to complete the proof.
We only consider the latter case.

We rewrite (1.5) as

eful + f(Gue) = ue(1 — ue)(a(z) - a(C3)). (5.12)

Multiplying (5.12) by . and integrating the resulting expression over ((a,y) with
respect to x, we obtain

12/ Y

7€ up(y)? =W (Gay e (1) +W (G, ue (C2)) =/ ue (z)(1—ue(2)) (a(z) —a(G))ug (x)dz.
’ (5.13)
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Since a/(z) < 0in ((o, ), uL(z) > 0in (3, y) and ul(z) < 0in ({2, (3), the right-hand
side of (5.13) is negative. This fact implies W ((3, ue(¢2)) < W((3,uc(y)). Therefore,
1 —u.(¢(2) <1-u.(y). Applying Theorems 3.3 and 3.6 we can obtain

Cyexp (—M> < Cyexp (__iy;@)

£ £
with some positive constants C1,Cs,7 and R. Thus we can conclude that y — & <

€3 — (o < &4 — & = Ofe|logel). n
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1 Introduction

In this paper, we will consider the following reaction-diffusion problem:

ur = e2ugy + flz,u), 0<z<1,t>0,
uz(0,t) = ug(1,t) =0, t>0, (1.1)
u(z,0) = ug(z), 0<z <l

Here ¢ is a positive parameter and
flz,u) = u(l - u)(u - a(z)),

where a is a C?[0, 1]-function with the following properties:
(Al) O0<a(z) <1 in|[0,1],
(A2) if ¥ is defined by

Y:={z€(0,1); a(z) =1/2}, (1.2)

then X is a finite set and a/(x) # 0 at any z € &,
(A3) d/'(0) =d/(1) = 0.

It is well known that (1.1) describes phase transition phenomena in var-
ious fields, such as physics, chemistry and mathematical biology. This prob-
lem is a gradient system with the following energy functional:

Bu) = /01 {%EQ\%F + W(m,u)} dz,
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where

W(z,u) = - /Ou f(z, s)ds.

For every solution of (1.1), E(u(,t)) is decreasing with respect to ¢ and it
is well known that u(z,t) is convergent to a solution of the corresponding
steady-state problem as ¢ — oo. The graph of W has two local minimums at
u =0 and u = 1 so that we can regard both 4 = 0 and u = 1 as stable states
when ¢ is sufficiently small. Furthermore, the minimal energy state depends
on whether a(z) is greater than 1/2 or not, that is, if a(z) < 1/2, then W
attains its minimum at v = 1, while if a(z) > 1/2, then the minimum of
W is attained at u = 0. The interaction of the bistability and the spatial
inhomogeneity yields a complicated structure of solutions to (1.1).

In this point of view, one of the most important problems for (1.1) is to
know the structure of steady state solutions. So we will mainly consider the
following steady state problem associated with (1.1):

{ e*u” + f(z,u) =0 in (0,1), (1.3)

uw'(0) = /(1) = 0,

where ‘' 7 denotes the derivative with respect to z.

Above all solutions of (1.3), we are interested in a solution with tran-
sition layers, especially, it is interesting to know the locations of transition
layers. Here transition layer is a part of a solution u where u(z) drasti-
cally changes from 0 to 1 or 1 to 0 when x varies in a very small interval.
For (1.3), we can observe a cluster of transition layers. This is called a
multi-layer, while a single transition layer is called a single-layer. It is
known that any single- or multi-layer appears only in a vicinity of a point in
Y. These results are proved by Ai, Chen and Hastings [1] (see also Urano,
Nakashima and Yamada [7], whose method of the proof is different from
that of in [1]), and they are given in Theorems 2.6 and 2.7. It should be
noted that the existence of such solutions is also discussed in [1] by shoot-
ing method. Furthermore, they have also discussed the stability problem of
such solutions with use of Sturm’s comparison theorem (Proposition 3.1).
The study of stability properties of such solutions is also a great important
problem.

For (1.3), Angenent, Mallet-Paret and Peletier [3] proved that there exist
solutions with single-layers from minimal energy state to minimal energy
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state when ¢ is sufficiently small. They also showed all solutions with such
transition layers are stable. See also Hale and Sakamoto [4], who proved that
solutions with single-layers from nonminimal energy state to nonminimal
energy state; all of their solutions are unstable. In a special case that
fol f(z,u)du = 0, which is called a balanced case, Nakashima [5, 6] has
shown the existence of solutions with transition layers, especially, in [6],
she showed the existence of a solution with multi-layers and obtained its
stability property.

The main purpose of this paper is to study stability properties of a
solution u. of (1.3) which possesses transition layers. For this purpose, we
consider the following linearized problem :

{ —%¢" — fu(z,uc)p = Ap in (0,1), (1.4

¢'(0) =¢'(1) = 0.

We will show that all solutions with transition layers are non-degenerate.
We also study the stability property of u. in terms of Morse index. The
notion of non-degeneracy and Morse index are defined as follows :

Definition 1.1 (Non-degeneracy). Let u. be a solution of (1.3). If (1.4)
does not admit zero eigenvalue, then Ue 1s said to be non-degenerate.

Definition 1.2 (Morse index). Let u, be a solution of (1.3). The Morse
index of u, is defined by the number of negative eigenvalues of (1.4).

In general, the stability property of a solution has a close relationship
to its profiles. In particular, the results of Angenent, Mallet-Paret and
Peletier [3] and Hale and Sakamoto [4] (Proposition 4.1) tell us that the
stability properties of solutions with single-layers are greatly influenced by
the direction of each transition layer. Therefore we can expect that such
facts are valid for solutions with multi-layers. Indeed, we can show that
the Morse index of a solution with multi-layers is equal to the number of
transition layers from nonminimal energy state to nonminimal energy state
(Theorem 4.2). Our method of proof is based on the Courant min-max
principle and is different from that of Ai, Chen and Hastings [1].

The content of this paper is as follows : In Section 2, we will collect some
information on profiles of solutions with transition layers . In Section 3 we
will recall the theory of Sturm-Liouville type eigenvalue problem. Finally,
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Section 4 is devoted to the stability analysis for solutions with transition
layers.

2 Profiles of steady-state solutions with transition
layers

In this section, we will give some important properties concerning to the
profiles of solutions with transition layers. Such oscillating solutions have
at most a finite number of intersecting points with a in (0,1). So, we take
account of the number of these points. Let u. be a solution of (1.3) and set

Zi={z € (0,1); ues(z) = a(z)}. (2.1)
We now introduce the notion of n-mode solutions.

Definition 2.1. Let u, be a solution of (1.3) and set E by (2.1). If #Z = n,
then u, is called an n-mode solution.

In what follows, we denote the set of all of n-mode solutions by S, .. We
collect some properties of solutions in S, .. By the maximum principle, one
can easily see that any u, € S, satisfies 0 < us(z) < 1in (0,1).

Lemma 2.2. For uc € Sp¢, assume E = {{}7_, with0 < & <& < - <
&n < 1. Then there exist exactly n—1 critical points {(k}ggi of ue satisfying

0<&H <G << <Gp1 <én <1,

provided that € s sufficiently small.
Lemma 2.3. For u. € S, ., let £ be any point in = and define U, by
Ue(t) = uc(E° + €t). Then there exists a subsequence {ex} | O such that
&k = &% and Uy, = Uy, satisfy

lim & =¢* and lim Uy =U in C2.(R),

k—ro0 k—o0
with some £* € [0,1] and U € C?(R). Furthermore, if & € & and U(£*) > 0
(resp. U(€*) < 0), then U is a unique solution of the following problem:

U+UQ-U)U-1/2)=0 in R,
U>0 (resp. U< 0) in R,
U(-o0) =0, U(o) =1 (resp. U(—o0) =1, U(co) = 0),

U ) =1/2,
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where ‘"’ denotes the derivative with respect to t.

Theorem 2.4. For u, € Sp¢, let £1,&2 be successive points in E satisfying
&1 <& and (&2 —&1)/e = 00 as e — 0 and let ¢ € (&1, &2) be a critical point
of ug. Furthermore, set

d _{x“§1 & <z <,
(z) =
-z if ( <z <&

Then one of the following assertions holds true:
(2) If ue attains its local mazimum at , then there exist positive constants
C1,Cq,r, R with Cy < Cy and r < R such that

Cy exp (—%(O) < 1—wu.(x) < Chexp (——CC—%EZ) in [&,8).  (2.2)

(i) If ue attains its local minimum at (, then there exist positive constants
Ci,Chr' R with C] < C} and v’ < R’ such that

C1 exp (—ﬂg(q> < ug(z) < Chexp <—

rlde(x)> in [€1,&) (2.3)

Remark 2.5. Theorem 2.4 tells us that u.(z) and 1 — u.(z) are very small
when z does not lie in an O(e)-neighborhood of a point in Z. On the
contrary, one can see that u, has a sharp transition in a small neighborhood
of a point in Z.

Theorem 2.6. For u. € Sy, define E by (2.1) and assume that u. forms
a transition layer near & € E. Then there exists a positive number gg such
that, for any € € (0,¢0), &€ — 2z = O(e|logel|) with some z € L.

We also give a result on multi-layers. For this purpose, we decompose ¥
into the following subsets:

St={ze;d() >0}, " ={zeX;d(z)<0}.

Theorem 2.7. For u; € Sy ¢, assume that u. has a multi-layer near z € ¥
when € is sufficiently small. Then there exists a positive number K such
that #(=2 N (2 — Kellogel, z + Ke|loge|)) = 2m — 1 with some m € N.
Furthermore, if the multi-layer is a multi-layer from 0 to 1 (resp. from 1 to
0), then z € &7 (resp. z € 7).
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Remark 2.8. Theorem 2.7 gives us more precise information on the profile
of ue. Set 2N (z— Ke|logel, 2+ Ke|loge|) = {&}2m with &) < & < -+ <
€om—1 and let {{k}ig)" ! be a set of critical points of u, satisfying (g < & <
¢1 <+ < &m—1 < (2m—1. Then, by Theorem 2.7, there exists a positive
constant M such that (zy1 — (x < Me|loge| for each k =1,2,...,2m — 3.

The proofs of Lemmas and Theorems in this section can be found in [7].

3 Basic theory for Sturm-Liouville eigenvalue prob-
lem

In this section, we recall the Sturm-Liouville theory for (1.4).

Proposition 3.1. There exist infinitely number of eigenvalues of (1.4) and
all of them are real and simple. Furthermore, if A; denotes the j-th eigen-
value of (1.4), then it holds that

—00 <A < A< <A< 00 as j = 00
and the eigenfunction corresponding to \; has ezactly j — 1 zeros in (0,1).

The following results is well known as the Courant min-max principle :

Proposition 3.2. Let \; be the j-th eigenvalue of (1.4). Then \; is char-
acterized by

N H#(9)
1~ m e

pH (0,\{0} [|61172( 1)

Aj = sup inf —-—{2;—(—@—— fori=2,3,..., (3.1)

Y1yeeythj 1 €L2(0,1) PEX W18y -1] H¢”L2(0,1)
where .
#(8) = [ {8 @ - Sl (@) lp(a)? i

and

X[wlw' -7¢j—1] = {¢ € Hl(()) 1)\{0}7 (¢> ¢i)L2(O,1) = O(Z =1,2,-- 7.7'—1)}
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Remark 3.3. If ¢; is the eigenfunction corresponding to the i-th eigenvalue
A; of (1.4) for every ¢ = 1,2,...,5 ~ 1 in (3.1), then Aj is characterized by

/\J = inf ——'%;(i)‘_'
PEX (Y1, 9j—1] ”¢”L2(0,1)

It is possible to prove the following result from Proposition 3.2:

Proposition 3.4. Let \; be the j-th eigenvalue of (1.4) and let Xj be the
J-th eigenvalue of the following eigenvalue problem:

{ —2%¢" — fulz,ue)p +p(e)p = A¢ in (0,1),
¢'(0) = ¢'(1) =0,
where p € C([0, 1]). If p(z) > 0(resp. p(z) < 0) and p(z) # 0 in (0,1),

then Aj > Aj (resp. Aj < \j).

4 Stability of solutions with transition layers

We will study stability properties of solutions with transition layers. In
order to study a solution with transition layers, assume that a solution wu,
of (1.3) does not have any oscilation in (0,1). For such u., we can choose a
positive constant M and a subset {z;}:_; of ¥ satisfying

=N (z; — Me|logel, 2z + Me|loge|) # 0 (4.1)
and
#(ZN (2, — Me|logel|, z; + Me|loge])) = 2m; — 1 (4.2)
with some m; € N for each i = 1,2,...,1, and
!
=E=ZnN U(zi—Ms[loga[,zi+Mallogel), (4.3)

gl

I

provided that ¢ is sufficiently small. We should note that, if m; = 1, then
ue forms a single-layer near z;, while, if m; > 2, then u, forms a multi-layer
near z;.

In the case that m; = 1 for eachi = 1,2,...,1, the stability or instability
of u. has been established by Angenent, Mallet-Paret and Peletier [3] and
Hale and Sakamoto [4].

39



Proposition 4.1 ([3], [4]). Let u. be a solution of (1.3) satisfying (4.1),
(4.2) and (4.3) with m; = 1 for every i = 1,2,...1. Then the following
statements hold true:

(9) If ul(zi)a'(z) < O for all i, then uc is stable.

(49) If ul(zi)a'(zi) > 0 for all i, then u. is unstable. Furthermore,

the Morse index of u. = [.

We will discuss stability properties of a solution u. in the case where
m; > 1. The stability property of such u. is described as follows:

Theorem 4.2. Let u. be a solution of (1.3). Assume that there exist a pos-
itive constant M and a subset {z}._, of T, which satisfy (4.1), (4.2) and
(4.3). Then the following assertions hold true:

(%) If mi = 1 and ul(z)d'(z) <0 for alli=1,2,...,1, then u. is stable.
(%) If there exists an ¢ € {1,2,...,1} which satisfies either m; > 2 or
m; = 1 with ul(z;)a'(z;) > 0, then u. is unstable. Furthermore, u. is non-
degenerated and

the Morse index of u, = Z m;,
i€{1,2,.I\F

where
SIo={1e{1,2,...,1}; mi =1 and ul(z)a'(z;) <0} .

Remark 4.3. Proposition 4.1 is a special case of Theorem 4.2; so Theo-
rem 4.2 is generalization of Proposition 4.1.

Remark 4.4. The same result as Theorem 4.2 has been obtained by Ali,
Chen and Hastings [1] with use of Sturm’s comparison theorem (Proposition 3.1).
In this paper, we will show a different approach based on the Courant min-
max principle (Proposition 3.2).

We will discuss the simplest case, I = 1, in Theorem 4.2. We should
note that m; = 1 implies that u, has only one single-layer, while m; > 2
implies that u. has only one multi-layer in (0, 1). We will prove the following
theorem in place of Theorem 4.2:

Theorem 4.5. Under the same assumptions as in Theorem 4.2 with l = 1
and m1 = m > 2, u. is non-degenerate and unstable. Furthermore, the
Morse indez of ug is exactly m.
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In what follows, we denote the j-th eigenvalue of (1.4) by A;. By virtue
of Proposition 3.1, it is sufficient to show the following two lemmas to prove
Theorem 4.5:

Lemma 4.6. Under the same assumptions as in Theorem 4.5, it holds that
Am < 0.
Lemma 4.7. Under the same assumptions as in Theorem 4.5, it holds that
Am+1 > 0.

We will give the essential idea of proofs of Lemmas 4.6 and 4.7. For
details, see [9].

Proof of Lemma 4.6. We will consider the case that a’(z1) > 0. It follows
from Theorem 2.7 that u. forms a multi-layer from 0 to 1 near z;. Since u.

and a have 2m — 1 intersecting points in (z; — Me|loge|, z1 + Me|logel), we

can denote these points by {§k}2’2{1 with0 <& <& < <€om-1 < 1.

In this case, there exist critical points {¢;}15" of u. satisfying

O0=C0 <& <G < <&ma1 <Cm-1=1

Define {wy}[2, by

wi(x)

_ {Ué(l') in (Cok—2, Cok—1)s

0 in (0,1) \ (Cok~2, C2k-1)-
Then {wi}{*, is a family of linearly independent functions in H'(0,1) and
(wj, we)p2(0,1) = 0 for j # k. Note that wy satisfy

Ezwg + ful@, ue)wi + fo(z,ue) =0 in (Cog—2,Cok—1)- (4.4)

Taking L?(Cax_2, Cor—_1)-inner product of (4.4) with wy, we get

Cak—1
c%ww:—/ & (2)ue(2)(1 ~ e (@)l (2)dz.

Gok—2

Since a is monotone increasing in (z; — Me|logel, 21 + Me|loge|), it is easy
to see
H(wg) <0 (4.5)
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fork=2...,m-—1.

It should be noted that a’(z) is not necessarily positive in (¢p, (1) and
(C2m—2,Com—1). However, we can show that both F(w1) and S (wy,) are
negative without the monotonicity condition of a. For the proofs, see [9].

Thus 2 (wy) < 0 for every k = 1,2, ... ;m. This fact together with
Proposition 3.2 implies \,, < 0. 0]

We now show Lemma 4.7. For this purpose, we will introduce auxiliary
eigenvalue problems as follows :

{“€2¢" —fulz,ue)p = A in I = (Cop_a, Copr), (4.6)

¢/(C2k~1) :¢,(C2k) :O’ k= 1727"'am,

{—52¢’/ — fulm,ue)p =A@ in J = (Cop1, Cor), 47)
¢'(Cok—1) = ¢/ (o) = 0 k=1,2,....,m—1.

It should be noted that u! is positive in Jk , while u/ is negative in J, - We
denote the j-th eigenvalue of (4.6) (resp. (4.7)) by A, (J*) fork=1,2,...,m
(resp. \j(J,) for k=1,2,...,m — 1).

For (4.6) and (4.7), we can show the following two lemmas:

Lemma 4.8. For each k =1,2,.. .,m, it holds that
MITH) <0< Ao (7).
Lemma 4.9. For each k=1,2,...,m — 1, it holds that
Ar(J) > 0.

Before giving proofs of Lemmas 4.8 and 4. 9, we will prove Lemma, 4.7,
which is essential in our analysis.

Proof of Lemma 4.7. Let gbfk be the first eigenfunction of (4.6) and set

A2 = [ PP - fulw, @) o) i

k

Foreach k= 1,2,...,m, take any w;, € HY(JH)\ {0} satisfying

| w@st @ =0
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Then, it follows from Lemma 4.8 that

) [ tonte) s < A ).

k

We extend ¢, to ¢ € L?(0,1) by

oo it
T ’ 4.
V() {o in (0,1)\ J7. (48)

For any w € X[4h1, v, ..., 9], it follows from (4.8) that

W#MmunZL w(e) 7, ()dz = 0.

k

Hence we have

A w) 2 X) [ furto)de >0

k

On the other hand, Lemma 4.9 yields

0<>\1J)/ o) 2 dz < 2 (w),

for k=1,2,....,m— 1. Therefore, one can see that

+Z%ﬂ

/ |2d$+ Z A(J / lw(z)|?dx
zAArm>mm

IV

where
A* := min {k min  Ay(J7), min /\1(,],;)} > 0.

=1,2,....,m k=1,2,...m—1
Thus we can conclude by Proposition 3.2 that
A (w)

Am41 = sup inf — > X* > 0.
" "/’1, :¢m weX[’lpl, ?,‘/)m “’U}”LZ O 1
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We next discuss Lemmas 4.8 and 4.9. However, their proofs require
quite lengthly argument. So we will only give the outline of proofs. For the
complete proofs, see [9].

Outline of the proof of Lemma 4.8. By virtue of Propositions 3.1, 3.2 and
3.4, it suffices to show the existence of a pair of functions A € C(J;) and
w e CQ(JIQL) with the following properties :
(i) 4 and w satisfy the following equation :

—e*w" + A(z)w =0 in (Cox—2, Cok—1),
W' (Cap—2) = w'(Co—1) = 0, (4.9)
—fulz,ue) > A(x) in (Cog—2, Cok—1),

(ii) w has only one zero point in (Cok—2,Cok—1)-
Take a small number § > 0 and let g be a smooth function satisfying

1 for |z| <4,
) =
0 for |z| > 24,

and [g(z)| < 1 for any z € R. We introduce a cut-off function p by

plz):=g (t?ﬂ) in J;F.

Furthermore, let ¢ be a C%-function which satisfying

—&3¢" — (1/2 - a(z) + 2a(z)ue — ul)p
+(u? — ue + 1/2)(1/2 = a(z)) =0 in (2951 — 2e0, zop—1 + 2¢6),
o(z9p_1 — 2e6) = o(zok_1 + 2e0) =0,
sup{|p(z)]; © € (2251 — 266, 2951 + 2¢6)} = O(]logel).
(4.10)
We should note that such ¢ can be constructed by super and subsolution
method.
We are ready to define w and A by

w(z) i=w(2) - £ +epla)p(a)

and




Then one can prove by direct calculations that A and w fulfill properties (i)
and (ii). O

Outline of the proof of Lemma 4.9. For each k = 1,2,...,m~1, we consider
the following eigenvalue problem.

—1/e
8 = ful@u)g+ g =pé in Jp, w11)
¢'(Cak-1) = ¢'(Car) =0,
where 1 is a C?-function satisfying
2" + fule,u)p —e Ve =0 in I,
¥ (Cak-1) = %' (Gar) = 0, (4.12)

P <0 in J,_ .

The existence of such v is not trivial. However, if (4.12) has a solution
1, then ¢ is an eigenfunction corresponding to zero eigenvalue of (4.11).
Clearly, 0 is the first eigenvalue of (4.11) because ¥ does not change its sign
in J;~. Furthermore, the third term of the first equation of (4.12) is negative.
Hence, Proposition 3.4 enables us to derive A1(Jg ) > 0. Therefore, we have
only to show the existence of a solution of (4.12).

We will take a super and subsolution method to solve (4.12). Set

P(x):=0 in J_;

clearly ¢ is a supersolution of (4.12).

We will construct a subsolution of (4.12). We only discuss for z > Eop,
because the argument for z < &y, is essentially the same. It should be noted
that there exists a positive constants k and P such that

ful(z, Ue(x)) < =P in (& + ke, Cor) (4-13)

when € is sufficiently small. We set 8(z) = ¢(z)e* with q(z) = 2%/(2* +1)
and introduce

0 in (&ax, Eok + Ke),

n() = cKig (K2(1' - ?k - NE)) in (€or, + ke, Cop)-

(4.14)
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Here, K is a sufficiently large positive number and K- 2 1S a positive constant
satisfying (14 v)KZ < P with small v > 0. We define

Y(z) =ul(z) —n(z) in (£, (ol
and
z* = inf{z € [€or, (o) 5 ¥/ (z) = 0},

If 2* < (o, then it is easy to show that % is a subsolution of (4.12) by direct
calculation. On the other hand, if 2* > (y, the argument is somewhat
complicated. For details, see [9]

Finally, it is obvious that

P < P in J.
Thus there exists a solution 1 of (4.12) satisfying Y <P <Pin Ji |
We are ready to show Theorem 4.2.

Proof of Theorem 4.2. From the proof of Theorem 4.5, it is sufficient to sum
up the number of layers at each multi-layer. Thus the proof is complete. [J
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Abstract. This paper discusses a prey-predator system with cross-diffusion. We
can prove that the set of coexistence steady-states of this system contains an § or
D-shaped branch with respect to a bifurcation parameter in a large cross-diffusion
case. We give also some criteria on the stability of these positive steady-states.
Furthermore, we find the Hopf bifurcation point on the steady-state solution branch
in a certain case.

1. Introduction. This paper is concerned with the following Lotka-Volterra, prey-
predator interaction model with cross-diffusion ;

ur = Au+ula —u — cv) in £ x (0, 00),
P) ove = A[(1 + fu)v] +v(b+du—v) in Qx (0, 00),
u=v=_0 on 99 x (0, 00),

U(-,O):’LLOZO, 7]('70):‘1}020 in Q>

where {1 is a bounded domain in RV (N > 1) with smooth boundary dQ; o, a, b, c,
d are positive constants and B > 0isthe cross-diffusion coefficient. In (P), unknown
functions v and v represent the population densities of prey and predator species,
respectively, which are interacting and migrating in the same habitat . This
system is concerned with an ecological situation such that the population pressure
due to the high density of prey induces the diffusion of the form SA(uv) in the
second equation. See also the monograph of Okubo and Levin [16] for the ecological
background. The time local solvability of (P) has been established by Amann 1],
where a wide class of quasilinear parabolic systems is discussed. According to his
result, (P) has a unique local solution (u,v) provided (ug,vo) € WyP () x WaP ()
for p > N. Recently, Le Dung [5] has found the global attractor for a class of
triangular cross diffusion systems involving (P).

System (P) originates from the competition population model with cross-diffusion
proposed by Shigesada, Kawasaki and Teramoto [19]. Since their pioneer work,
many mathematicians have discussed such cross-diffusion systems. We refer to
(3],[5],16] and references therein for a recent progress on the global solvability of time-
depending solutions. See e.g., (7],(12],(13],[14],[15],[18] about steady-state problems.
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Despite all their works concerning cross-diffusion systems, many problems still re-
main open. In particular, it is very difficult to know the complete structure of the
steady-state solution set (e.g., the number, the stability or the shape of steady-
states) to cross-diffusion systems such as (P).

We are interested in the global bifurcation structure of positive steady-state
solutions to (P). Regarding a as a bifurcation parameter, we set

S = {(u,v,a) : (u,v) is a positive steady-state solution of (P)}.

Among other things, we will prove that when (8,b,¢,d) belongs to a certain range,
S contains a bounded S or D-shaped curve with respect to a. So (P) admits two
or three positive steady-state solutions if a belongs to suitable ranges. This result
implies a great contrast to the linear diffusion case (8 = 0), where the uniqueness
of positive steady-states is obtained by Lépez-Gémez and Pardo [11] if the spatial
dimension is one. Our method of analysis uses the idea developed by Du and Lou [4]
and is based on bifurcation theory and the Lyapunov-Schmidt reduction procedure.
If B is large and both of b—X; and \; —d /3 are small positive numbers, this reduction
enables us to find an approximate limiting problem in a suitable finite dimensional
space. Further, we can get the exact solution set of the limiting problem. Making
use of the perturbation theory developed in [4], we will depict an S or D-shaped
curve of § near the limiting solution set.

In Section 2. we will discuss such multiple existence of steady-state solutions. In
Section 3, we will give some criteria on the stability of the positive steady-states.
Furthermore, we will find a Hopf bifurcation point on the S or D-shaped solution
set if o is sufficiently large. Throughout the paper, the usual norms of the spaces
LP(Q) for p € [1,00) and C(Q2) are defined by

1/p
Il = ([ )P o) and o i mau(o)
Q e
In particular, we simply write |ju| instead of lull2. Furthermore, we will denote by
& a unique positive solution of
—AP=M\P in Q, $=0 on 69, 18] = 1,
where A; is the least eigenvalue of —A with the homogeneous Dirichlet boundary

condition on 5.

2. Bifurcation branch of positive steady-states.

2.1. Main Result. It is well known that the following elliptic boundary value
problem

Autula~u)=01in ©Q, u=0 on 80

has a unique positive solution 4, if a > A; moreover, @ € [A1,00) — 8, € C(Q)
is continuous and strictly increasing function. It is easily verified that (P) has two
semitrivial steady-state solutions

(u,v) = (64,0) for a>X; and {(u,v) = (0,6,) for b> A
in addition to the trivial solution (u,v) = (0, 0).

Theorem 2.1. Suppose that b > BX\; > d. For any ¢ > 0, there exist a large
number M and an open set

O=0(c)c{(B,b,d): 6>M,0< ) —d/B,b— XA < MY}
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such that if (8,b,d) € O, then S contains a bounded smooth curve
I'= {(u(r),v(r),a(r)) € CHR) x cHO) x (A1,00),7 € (0,C)},
which possesses the Jollowing properties,
(1) (u(0),v(0)) = (0,6,), a(0) > Ay, a’{0)>0;
(i) (w(C),v(C)) = (bac),0), a(C) > Ar;
(il) a(r) attains a strict local mazimum in (0,C). Additionally, there exists an

open set O' C O such that, if (8,b,d) € O, then a(r) attains a strict local
minimum in (0, C).

Our result asserts that S contains a bounded S or D-shaped branch, which con-
nects the above two semitrivial solutions, in & certain case. We can also find an
unbounded S-shaped branch of &, under another coefficient assumption [10, Theo-
rem 1.2].

2.2. Outline of the proof of Theorem 2.1. In (P), we employ the following
change of variables

a=A1+ear, b= A+eby, d/f = \j—er, B = v/e, u=cew, (1+fu)v = ez. (2.1)

Here ay,b;,7 are positive constants. Furthermore, ¢ is a small positive constant,
thus v is also a positive constant. In what follows, we will mainly discuss the case
when 8 is large and both of b— A; and A1 —d/3 are small positives. We note that a1
plays a role of a bifurcation parameter. By (2.1), a pair of new unknown functions
(w, z) satisfies

we = Aw + \w + e f(w, 2,a1) in £ x (0, 0),
143 2t _ .
(PP) g [ mwt + W] = AZ+/\12+EQ(’U),Z) in Qx (0,00),
w=z=0 on 90 x (0, 00),
w(-,0) = ug/e, 2(+,0) = (1 + Bug)vg/e in 9,
where

flw,z,01) i=w{a; —w— —= , glw,z) = i by — Tyw — z .
1+ ~yw 1+ yw 14+ ~yw

The steady-state problem associated with (PP) is reduced to the following semilinear
elliptic equations;

Aw+/\1w+6f(w,z,a1):0 in €,
Az+ Mz +eg(w,z) =0 in Q, (2.2)
w=z=0_ on ON.
By virtue of (2.1), it is easy to see that (2.2) has two semitrivial solutions
(w,2) = (7401, 40y, 0),  (w,2) = (0,6710x, 4e1,)
in addition to the trivial solution. For the Lyapunov-Schmidt reduction, we will

give a similar framework to that of Du and Lou [4]. For p > N, we prepare two
Banach spaces

X = [WAP(Q) N Wy P(Q)] x [W2P(Q) N WeP(Q)], Y = LP(Q) x LP(Q).

We note that X ¢ CY(Q2) x CY(f) by the Sobolev embedding theorem. Define
mappingsH:X—»YandB:X><R->Yby

H(w,z) := (Aw + Ayw, Az + Ay z), B(w,z,a1) := (f(w, 2,a1), g(w, 2)). (2.3)
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Then (2.2) is equivalent to the following equation
H(w, z) + eB{w, z,a;) = 0. (2.4)

Let X; and Y] be the L2-orthogonal complements of span {($,0),(0,¢)}in X and Y,
respectively. Let P: X — X; and @ : Y — Y; represent L?-orthogonal projections.
Thus a pair of unknown functions (w,z) € X is decomposed as

(w,2) = (r,s)®+u, u=Pw,z).
Since H((r,s)®) = 0 and (I — Q)H(X1) = 0, (2.4) is consequently reduced to
QH(u) +eQB((r,s) P+ u,a,) =0 (2.5)
and
(I =Q)B((r,s)® + u,a;) = 0.
The Lyapunov-Schmidt reduction procedure leads us to the next lemma :
Lemma 2.1. For any C > 0, there exist a neighborhood N, of the set
{(w,2,a01,6) = (rd,58,a1,0) € X x R?: ||, Isl, la1] < C}
and a positive constant ey such that all solutions of (2.5) in Ny are given by
{((r,8) 2 +eU(r,s,a1,¢),a1,¢€) : 7], |s],|ar] < C + g, |e| < €0}
with a smooth X -valued function U. Then
(w,2,01,€) = ((r,s)® + eU(r, s,a1,€), a1,¢€)
becomes a solution of (2.4), or equivalently (2.2), in Ny if and only of
Fo(r,s,a1)9 = (I — Q)B((r, )8 + U (r, 5,a1,¢),a1) = 0.
See [10] for the proof of Lemma 2.1. Since (I ~ Q)(u,v) = (Jo udbdz, [, vPdz)d,
it follows from (2.3) that

For,s,a1) = </ﬂ frd, s@,al)@,/ng(rsﬁ, 345)45)

' r <a1 ~r|®[3 ‘@ZS/Q 1 +¢jrq5) " . =0
3{61 "(61+T)'Y7'/S; 1+ 1o “S/QW}

Thus Ker FV is a union of the following four sets ;
Lo={(0,0,a1) : a1 € R}, L1 ={(a1/l|¢1]3,0,a1) : a1 € R},
Ly ={(0,61/161113,01) : a1 € R}, L, = {(r,0(vr),%(r)) : r € R},

where
‘P(T’) = [bl - (b1 + 7')7"/5;. 1 fzéJ (/ﬂ (1 _*_@;45)2) 1’ (2.7)
w0r) = vl + ot [ =L

We note that £, ﬁff’ Is identical with the limiting set of positive solutions of (2.2)
as € — 0. Indeed the following proposition holds true:
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Proposition 2.1. For a sufficiently large Ay > 0, there emist g0 > 0 and o family
of smooth curves
{(T(f,S),S(é-, 5),@1(5, 6)) € RE’;— : (675) € (chs) X (0150)}
such that for each fized € € (0,e0], all positive solutions of (2.2) with ay € (0, Ay ]
can be parameterized as
Ire= {(w(é,s),z(g,s),al(f,E)) = ((T? 8)@ +6U(T,s,a1,€),a1) :
(rs,a1) = (r(€,€),8(6,¢),a1(6,¢)) for &€ (0,C.)}
and (r(€,0),5(£,0),a1(8,0)) = (£ 0(¥€),9%(€)), r(0,6) = 0. Here C. > 0 depends
continuously on € € [0,¢o]. Furthermore, w(Ce,€) > 0 in Q and 2(Ce,e) = 0.

The above proposition implies that if € > 0 is sufficiently small, then I forms
a positive solution branch near the curve {(r&, o(yr)®,%(r)) : 0 < r < C}. So
it is important to study the profile of £,. By virtue of (2.7), (0, 0(0),%(0) =
(0,51//1®13, cby) € L2. It is easy to find a positive constant ro = ro(7/b1) such that
@(r) >0 for 7 € [0,79) and o(r) < 0 for r € (rg, 00). Thus it follows that

(ro/7,0(ro),y(ro/7)) = (ro/7, 0,70l BlI3/7) € L1

We note that C. stated in Proposition 2.1 satisfies Cy = rg /7. Additionally the
next lemma gives profiles of ¢(r) in the interval of {r > 0 : o(yr) > 0} if 7 is
sufficiently small and v is sufficiently large.

Lemma 2.2. There exist positive constants ¥ = 7(c,b1) and 5 = F(c, b1) such that if
(1,7) € (0, 7] x [7,00), then ¢/'(0) > 0 and (r) achieves a strict local mazimum in
(0,70/7). Furthermore, there exists a continuous function 4(7) in (0, 7] satisfying

¥ <A(r) forall 7€ (0,7] and lig)l’)/(T) =00
T
and that, if v € [%,4(7)) for T € (0,7, then 1(r) attains a strict local minimum in
(01 7'0/7) .
From Proposition 2.1 and Lemma 2.2, one can see the following proposition.

Proposition 2.2. Suppose that (r,7) € (0,7] x [7,00) and that € > 0 is small
enough. Then the positive solution set of (2.2) contains a bounded smooth curve

I = {(w(§),2(€),a1(€)) e X x R : £ € (0,CL)},
which possesses the following properties;

(1) (w(0),2(0)) = (0,67 0x,4¢5,), a1(0) >0, a4 (0) > 0;
(11) (’UJ(CE),Z(CE)) - (€~19/\1+5a1*’0), A1x = QI(CE) > O;
(ili) a1(§) attains a strict local mazimum in (0,C.). In particular, if v € [,4(7))
for 7 € (0,7], then a1(€) attains a strict local minimum in 0,C.).

With use of (2.1), Theorem 2.1 immediately follows from Proposition 2.2. Actu-
ally, for small € > 0, open sets stated in Theorem 2.1 are given as

0 = {(B,6.d) = (v/e, 1 + by, (A + er)/e) : (1) € (0,7) x (3,00)}
O/ = {(ﬁvbv d) = (7/57/\1 +5b17(/\1 +5T)7/€) : (7—7’7) € (07%) X (5’7%(7))}
We refer to [10] for the complete proofs.
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3. Stability analysis.

3.1. Main results. In this section, we will discuss the stability of steady-state
solutions on I" obtained in Theorem 2.1. Before stating our stability results, we
need to divide I" at every turning point with respect to a. In case (8,b,d) € O, let

O<ri<rm< - <rp_1<C

be all strict local maximum or minimum points of a(r). Because of a/(0) > 0

(see Theorem 2.1), r;_1 (j = 1,2,...,[k/2]) are strict local maximum points, and
T2 (J = 1,2,...,[(k — 1)/2]) are strict local minimum points. For each 1 <i<k,
we set

= {(u(r),v(r),a(r)) € I': 7 € (ri_1,m)},
where g := 0 and r, := C.

We are ready to state stability results. In a case when o is sufficiently small,
we can deduce that the stability of steady-states on I” changes only at the turning
points, and moreover, we can know whether each solution on I} is asymptotically
stable or not:

Theorem 3.1. For almost every (8, b, d) € O, there ezists a small positive constant
6 such that if o < 6, then all steady-state solutions on Iy (G =1,2,...,[(k+1)/2))
are asymplotically stable in the topology of X, while all steady-state solutions on
Iy (5=1,2,...,[k/2]) are unstable.

In the above case, we remark that (u(0),v(0)) = (0,6,) and (u(C),v(C)) =
(#a(cy,0) by Theorem 2.1. So Theorem 3.1 implies that stable positive steady-
states bifurcate from the semitrivial solution (0,64), the stability on I" changes at
every turning point with respect to @, and moreover I" connects the other semitrivial
solution (f,(¢y,0). On the other hand, when ¢ becomes large enough, we can find
a Hopf bifurcation point on I'j; so that, time-periodic solutions of (P) appear from
the point:

Theorem 3.2. For any (8,b,d) € O, there ezists a large positive D such that if
o > D, then the Hopf bifurcation occurs at some point (u(r*), v(r*),a(r*)) € I7. In
this case, there exists a periodic solution of (P) if a lies in a neighborhood of a(r*)
with a > a(r*).

3.2. Outline of the proofs of Theorems 3.1 and 3.2. By virtue of the regu-
larity of (2.1), the stability of a steady-state (u*,v*) of (P} coincides with that of
the steady-state (w*,z*) = (u*/e, (1 + fu*)z*/e) of (PP). So we will concentrate
on the stability analysis for the steady-states on I'¢ given in Proposition 2.2. By
virtue of Proposition 2.1, all positive steady-states of (PP) with a; € (0, A1) can be
parameterized as I'® = {(w(¢,¢), z(,¢€),a1(£,€)) : € € (0,C.))} when £ > 0 is suf-
ficiently small. For each (w(¢,¢), 2(¢,¢),a1(,¢)) € I'¢, we define a linear operator
L{¢e): X —Y by

see) (3 )=t (1) - eBmtuicer e nmee ( © ).

where H, B are mappings defined by (2.3) and By, denotes the Fréchet derivative
of B with respect to (w, z). Furthermore, in view of the left hand side of (PP), we
set .
1 0
J(&e):=| __ ovz(§e) o
(L+w(§e)?  1+7w(é,e)

53



542 KOUSUKE KUTO AND YOSHIO YAMADA

Then the linearized eigenvalue problem associated with (w(€,e),2z(¢,¢€)) is given by

vee (4 ) =miea( ). CRY

In this subsection, we study the linearized stability of steady-states on I'® by the
spectral analysis for (3.1). Put
p(€,e) := {p € C : (3.1) has no solution except for h = k = 0}.

We begin with the following lemma.

Lemma 3.1. Suppose that ¢ > 0 is sufficiently small. Then there exist posi-
tive constants k1, w independent of (€,€) such that —p(€,€) D {z e C |z >
k1 and |argz| < 7/2 + w}. On the other hand, all eigenvalues {u:(€, )32,
(counting multiplicity) of (3.1) satisfy

lim 11 €, ) = gfguz(é,ﬁ) =0 (3:2)

and Repi(€,e) > k2 for alli > 3 and ¢ € (0,C;) for some positive constant ks
independent of (€,¢€).

The proof of Lemma 3.1 can be established by employing a limiting eigenvalue
problem as € | 0 in (3.1), and making use of the perturbation theory by T. Kato 8,
Chapter 8]. See [9] for details.

We note that all eigenvalues {11;(¢£,)} form a symmetric set with respect to the
real axis in the complex space C. Then u; (€, ¢) and u2(€, €) (with (3.2)) satisfy the
following properties (i) or (ii);

(1) both of p1(¢,¢) and pa(€,€) are real numbers;

(i) p1(&,¢€) is a complex conjugate of uy(€, €).
In what follows, we assume that ui(€,e) < pa(€,€) in case (i), and Imps(£,e) >
Impa(€,€) in case (ii).

Definition 3.1. A steady-state (w(¢,¢), 2(¢,¢)) of (PP) is called linearly stable if
Repi(&e) > 0. If Repy(€,¢) < 0, then it is called linearly unstable.

We define matrices K(r) and M(r) by
1 0

K(r)= &3 @2 ,
—0’)’(,0(7?)/0 (1 +~rd)? U/Q 14+ yrd (3.3)

M(r) = —K(r)" FG ) (r, p(yr), (r))

for the mapping F® defined by (2.6). To determine the sign of Rep;(€,€), the
following lemma plays an important role.

Lemma 3.2. Let v1(r) and vy(r) be eigenvalues of M(r) and satisfy Revy(r) <
Revy(r), Imwi(r) > Imuy(r). Then for any r € (0,C%), it holds true that

,U«i(f,&‘) .
[adACTEY =12 3.4
(Ee)=(r0) € vilr) for i 54

Lemma 3.2 can be proved by taking L?-inner product of (3.1) with & and letting
€ — 0. See [9] for details.

Lemma 3.3. Suppose that € > 0 is sufficiently small. Suppose further that ¢ €
(0,Cc). Thus all zeros of p1(€,€) coincide with all zeros of Ocai (€, €).
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The above lemma asserts that the degeneracy of steady-states on I'* is equivalent
to the criticality of a1(¢, &) with respect to £. We refer the proof of Lemma 3.3 to
the perturbation theory for the Fredholm operator developed by Du and Lou [,
Theorem 3.13 and Appendix]

Since 1 is analytic, ¥/ possesses at most a finite number of zeros in (0,Cy).
Furthermore, by virtue of (2.7), any zero of 9’ must be a strictly critical point of
Y for almost every (7,7) € (0,7] x [, 00). For such (7,7) € (0,7] x [4,00) and
sufficiently small € > 0, all zeros of Oga1(€,€) are denoted by

0< 51(8) < &2(5) < e <L fk_l(&‘) < C..
That is,
(wir 25, 01) 1= (w(&i(e), €), 2(&i(e), €), ar(Es(e)e) € IF (i=1,2,... k- 1)
are all turning points on I'® with respect to a;. Here we remark that l'lrgl ar(-, &) =1
£
in C*([0,Cq ) by Proposition 2.1 (see also the proof of (10, Lemma 5.3]). Addition-
ally, for each 1 < i < k we set

‘Z—;ZE = {((w(€55)’z(§78)7a1(£1 6)) : § € (Ei—-l(s)yé-i(e))}v
where §o(¢) := 0 and & (e) = C,. This implies @1 Ie=1o¢)\ kgll{(wz, z,a8)}.

Lemma 3.4. For almost every (1,v) € (0,7] x [#,00), there exist small positive
constants 8,9 such that if 0 < § and e < €o, then all steady-state solutions on
I G =12,...,[(k+1)/2) are linearly stable, while all steady-state solutions
onI3; (j=1,2,...,[k/2]) are linearly unstable.

Proof. Taking the trace of M(r), one can see

n(r) + va(r) = S”(ZT) [/n § f;@)? (/9 1 ﬁré) - mr/o m%ﬁ}

+rlio)3 + cvw(v’”)/ﬂ 1 fjr@ /a (1 jj;’@z </Q ' fjr@)(;;

We set y1(r) := [ r®*/(1+r®)2. Since y1(0) = 0 and yi(r) = O(r™ 1) (r — o0),
y1(*) = supy;(r) for some # > 0. Then by (3.5),
>0

3
() +1afr) > 220 UQ ar fcquV —oan® } +rils

for all 7 € [0,Cy]. Therefore, it follows from w(yr) > 0 (r € [0,Ch)) that, if

o< ! / >
2ey1(f) Jo (1+7Co®)?’
then v1(r) + vo(r) > 0 for all 7 € [0,Cy]. Thus we can see by Lemma 3.2 that for
sufficiently small € > 0,

p1(€,€) + pa(é,e) >0 forall €€ [0,C.]. (3.6)

Hence (3.6) also implies Re pip(€,€) > 0 for all ¢ € [0,Cc]. On the other hand, in
view of (3.3), (2.6) and (2.7), direct calculations enable us to obtain

P / r 3 2 -1
vi(r)ve(r) = det M(r) = ‘p”’zw( )/n(l quj)z (/Qlffyr@) . (37
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So it holds that sign vy (r)us(r) = sign Y'(r) for all 7 € (0,Cy). Let ro € (0, Cp) be
any fixed point. If ¢'(rp) > 0, then Lemma 3.2 implies p1(& e)ua(€,e) > 0if (€,¢) is
sufficiently near (ro,0). Furthermore, together with (3.6), we obtain Re pni(€,€) > 0.
Similarly if ¢'(ro) < 0 and (¢, €) is close to (rg, 0), then Re p1 (¢, ¢) < 0. Additionally
it follows from Lemma 3.3 that p1(£,¢) = 0 if and only if ¢ = &i(e) for some
1 < i < k—1 provided that € > 0 is sufficiently small. Since Re na(€,€) > 0 for
all £ € [0,C¢ ], consequently Re u1(€,¢) = 0 holds if and only if £ = () for some
1 <4< k—1. We now remark ¢/(0) > 0 if (,7) € (0,7] x [%,00) (see [10, Lemma
4.1}). Therefore we obtain

Rep1(€,€) >0 if (w(ge),2(6,€),a1(6,¢)) € T,
Reul(éve) <0 if (w(€7 s),z(f,s),al(ﬁ,s)) € ng

Thus the proof of Lemma 3.4 is complete. 0

By virtue of (2.1), we can complete the proof of Theorem 3.1 from Lemma 3.4. It

should be noted that we use the linearized stability theory developed by Potier-Ferry
[17]. See [9] for details.

Proposition 3.1. For any (7,7v) € (0,7] x [7, 00), there exist a large D > 0 and a
small &g > 0 such that if 6 > D and £ < o, then the Hopf bifurcation occurs at a
certain point on I'5.

Proof. To accomplish the proof, it suffices to find small positive numbers £* and ¢
such that p1(€%,¢€), pg(€%, €) form a pure imaginary pair and satisfy 0:Rep;(£*,¢) <
0 for i =1,2. We refer to Amann [2] for the abstract Hopf bifurcation theorem for
strongly coupled parabolic equations.

Take (7,7) € (0,7] x [¥,00). Let v1(r) and v5(r) be eigenvalues of M{(r) defined
by (3.3). We first remark that by (3.7) and %/(0) > 0,

vi(r)va(r) > 0 for all r € (0,7)) (3.8)

with some ry > 0. If we set

va(r) = /n 1 +i4r95)2 "/Q 1 iré /Q § +€r¢)2 </n 1 j;@) - 07”5(”37")

then, (3.5) is rewritten as

Vi(F) + va(r) = W(Zr), {/Q . Jjﬁ;@)g </ﬂ 1+@;(p> -1 ~ C,C'yry2(r)J :

Thus direct calculations imply

n(0)+120) = 2, KO +40) =L (C-oem©)  @9)

with some constant C' independent of o. By virtue of Schwarz’ inequality and
18]l = 1, we see |2 > [|||S. Thus it turns out that y2(0) = [|2)] — 19§ -
(2(13(cbry)~t > 0 if  is large enough. It follows from (3.9) that if o is sufficiently
large, we can find a small positive number ry € (0,71) such that

vi(r)+va(r) >0 in (0,70), vi(ro)+va(ro) =0 and v}(ro)+v4(ro) < 0. (3.10)

We can find a certain (£*,¢) near (rg,0), such that eigenvalues pi(€* ), pal€*,e)
are pure imaginary pair and satisfy d¢Rep;(£*,€) < 0 (¢ = 1,2). In this part of the
proof, we make use of Lemma 3.4 and Lyapunov-Schmidt reduction technique (see
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[9]). Therefore the Hopf bifurcation occurs at (w(¢r, e), 2(€*, &), ai1(€*,€)), which
belongs to I'f because £* is sufficiently small. 0

By virtue of (2.1}, Proposition 3.1 immediately yields Theorem 3.2.
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