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INFINITARY WORDS

KATSUYA EDA

1. WORDS

In this section we define infinitary words. In combinatorial group the-
ory we adopt generators as letters. On the other hand, when we treat
with free products, we adopt elements of groups as letters. Therefore,
there are two different treatments about free groups. Here we define
the both notions and make some distinctions.

First we define words over a set D. For each d € D we formally
define d* and d~ and call d* and d~ letters. Here we identify d* and
(d7)~ with d and so usually use d. A word W € W(D) is a map from a
linearly ordered set W to the set of letters {d* : d € D}U{d~ : d € D}
such that {a € W : W{(a) = d*} is finite for each d € D. We define
W~ by: W~ is the reversed ordering of W and W~ () = W (a)".

Next let G (i € I) be groups. We assume G; N G; = {e} for distinct
1,j € I. An element of | J{G; \ {e} : i € I} is called a letter. A word
W € W(G, : ¢ € I) is a map from a linearly ordered set W to the set
letters | J{G;\ {e} : i € I} such that {& € W : W(a) € G;} is finite for
each i € [. _

To make a distinction well we say a word in W(D) or a word in
W(G; : 4 € I), when a confusion possibly occurs. In the both case the
empty map is the empty word. The identification of words is given by
the following, For words U and V, U = V means the existence of an
order isomorphism ¢ : U — V such that U(a) = V(p(a)) for each
aeU.

For two words U and V' the concatenation UV is the word such that
UV is the disjoint union of U and V and UV (a) = U(a) if & € U and
UV(a) = V(a) otherwise. We remark that we may always suppose
that U and V are disjoint according to the identification =. Since
(UVYW = U(VW), we may write UVW. Moreover we can define an
infinite concatenation. Let U, (o € L) be words in W(D) for a linearly
ordered set L such that for each d € D, | J{a : Uy(B8) = d* for some § €

1991 Mathematics Subject Classification. 55Q20, 55Q70.
Key words and phrases. fundamental] group, infinitary word, Hawaiian earring.
1



2 ' KATSUYA EDA

[ } is finite. Then the 1nﬁn1te concatenation e U, is also a vvord in

W(D), i.e.

(1) aerUs = {(, B) : B € Us} where (ag, fo) < (a1, A1), if ap <
aq, or ap = a; and Gy < By;

(2) MaerUa(op, Bo) = Usy(Bo) for (cw, Bo) € NaerUa.

In case Uy (o € L) are words in W(G; : i € I) such that for each
i €1, J{o : Ua(B) € G for some B € U,} is finite, the word I,ezUs
is deﬁned by the same formula. We remark that in each case the word
HaerUy is in W(D) or WO(G, : i € I) respectively.

We call a word U a subword of a word V, if there exist words such
that V = XVY.

The set of words whose cardmahty is countable is expressed as W7 (D)
or W(G, : i € I) respectively, which is related to fundamental groups.
The set of words of finite length is expressed as W/ (D) or W/(G; : i &
I') respectively, which is more usual and familiar.

2. REDUCED WORDS AND BASIC RESULTS

We define reduced words and shall show that every word corresponds
to a unique reduced word. First we define an equivalence relation ~
for finitary words in the usual way, then we regard infinitary words an
expression of certain elements of the inverse limit of finitely generated
free groups or free products of finitely many factors.

For a definition precise definition of a reduction of a word of finite
length, we refer the reader to standard textbooks as [2, 4, 3].

We just explain a reduction process of a word of finite length and
state the definition of free groups and free products.

For a word W € W/(D), if there appears a subword of W the form
dd™ or d~d, we delete it. For a word W € W/(G; : i € I), if there
appears a subword of W of the form uv such that v and v belong to
the same group G;, we replace uv by the element w of G; with w = wv
if uv # e and we delete uv otherwise, i.e. uv = e. Then in each case,
in finite steps we get a word for which we cannot reduce it anymore.
That is a reduced word. We remark that for each word there exists a
unique reduced word which can be obtained by reduction procedures,
but there may be different procedures to obatain it.

Now two words U and V are said to be equivalent, written as U ~ V,
if the reduced words of U and V are the same. The free group over a set
D is defined as the quotient set W/ (D)/ ~ with the concatenation as
the multiplication. The free product *;c;G; is similarly defined as the
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quotient set W (G; : i € I)/ ~ with the concatenation as the multi-
plication. For a word W, [W] denotes the equivalence class containing

To introduce an equivalence to the set of infinitary words, we intro-
duce the unrestricted free product due to Higman [1]. For two finite
subsets. E/, F' of an index set I with £ C F, let ppr : %icrGi — *iepGi
be the projection. (We write £ € I, When Eisa ﬁmte subset of 1.
) The unrestricted free product is deﬁned as: llm( ienGi,per + B C
F el [l].- ForaglvenwordWGW(G-:zEI) and F' € I, let
Wr be a word obtained by the restriction of W to a € W such that
W(a) € U,ep Gi: Then, W is a word of finite length and so expresses
an element of the free product #;crG;. We extend the equivalence ~ on
W(G; :i € I) by: Ve ~ Wp for every F € 1. Since pgr([Wr)) = [Wig]
for ECFel,

. Hence VW € W(G; : 1 € I) express elements of Eg_l(*ieEGi,'pE'F :
ECFel)and V ~ W is equivalent to the fact that the expressed
element of V' and that of W are the same.

In case W(D), let Z4 be a copy of Z for each d € D. Then, we can
regard a word in W(D) as a word in W(Zy : d € D) and extend the
equivalence ~.

Definition 2.1. A word W € W(D) is reduced, if any W = UXV
implies [X] # e for any non-empty word X. A word W € W(G; :i € I )
is reduced, if any W = UXV implies [X] # e for any non-empty word
X and for any neighboring elements o and 8 of W, W () and W(8) do
not belong to the same G;. A word W € W(G; : i € I) is quasi-reduced,
if W ~ UXV with [X] = e implies Im(X) C G; and the existence of
e # g € G, for some i such that g is the right most letter of U or the left
most letter of V. In other words, W is quasi-reduced, if the reduced
word of W is obtained just multiplying contiguous elements belonging
to the same group.

The existence of reduced words is very important even in the case
of infinitary words. As we can see in the following examples, infinitar y
words are complicated sometimes. But if we start from a concatena-
tion of finitely many reduced words, we have finite steps of reduction
procedure due to [5, Corollary 1.7], which helps to Investigate group
theoretic properties of the free o- product for which we have introduced
infinitary words. '

The subgroup of the unrestricted free product 11m( *ie EGZ,pL p B C
F € I) consisting all elements expressed by words in W(Gi:i€el)is
called the free complete product and the countable version, i.e. that
consisting of all elements expressed by words in W7 (G, : i € I ) is called
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the free o-product. Of course, the one obtained by W/(G; : i € I) is
the free product.

Proposition 2.2. [7, Lemma 2.4] Any non-empty word W € W(D)
is equivalent to a reduced word V=XV such that XX is a non-empty
“reduced word. Any non-empty word W € W(G; : i € I) is equivalent
to a quasi-reduced word V=XV such that

(1) XV is reduced; '
(2) X is a single letter or XX is reduced.

For other results we refer the reader to [5, 7].

The first example shows that we have no reduction procedure as in
the case of words of finite length, even if we allow infinite steps of
reductions.

Example 2.3. A word W which is equivalent to the empty word but
does not contain a subword of the form V~V.

Let Seq(2) be the set of all finite sequences s = (sg,- - - , s,) of 0,1
with the lexicographical ordering and a,, be letters. The length of s €
Seq(2) is denoted by Ih(s). Define W = Seq(2) \ {{)} and W(s) = a,
if sim(sy =0 and W(s) = a7 if sps) =1

To show that W is equivalent to the empty word, let F ={a;:0<
i < n}. Then, in W, a, and a; are contigous and after aeletmg such
pairs we have Wr,_, and so on we conclude that Wy, is equivalent to
the empty word.

The reason of the non-existence of a subword of W of the form V-V
follows from the fact that in W every letter has an immediate successor,
but has no immediate predecessor.

The next example shows that we cannot reduce the notion of the
reducedness of W to those of Wpsfor F &l or F € D.

Example 2.4. A reduced word W such that Wy is not reduced for
any finite set F' € {a, : n < w}. ,

Define W Seq(2) \ {{ )} and W(s) = Gnay if sp) = 0 and

W(s) = a,;" if sp(s) = 1.

The fact that Wr is not reduced can be seen, if we consider the
largest n such that a, appears in F. Then there is a subword a,a,a,;
of Wr and hence Wr is not reduced. To see the reducedness of W by
contradiction suppose that a subword X of W stisfies X = e. Choose n
such that a, or a appears in X. Since X = e, there exists a subword
of X of the form anYa, or a;Ya, such that Y = e. In each case
the number of appearances of a, in Y is 2 but that of a, is 1, which

contradicts Y = e.
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I attach three papers [5], [7] and [17]. The first ones are published
ones and contain basic results, but also contain many misprints and so
here I offer fixed ones. The third one has been submitted some years

ago.

3. HISTORY OF INFINITARY WORDS

I introduced infinitary words for a presentation of the fundamental
group of the Hawaiian earring and related spaces in [5]. Actually I
started to study about this topic early in 1980’s and resilts of this
paper was obtained around 1985, but I submitted it in 1990. At that
time I thought no other person was interested in the fundamental group
of the Hawaiian earring, but Morgan and Morrison published a paper
of this subject, detecting an error of H. B. Griffiths’s paper and cor-
recting it. It seems that their interests to the Hawaiian earring was
related to Gromov’s research of limit spaces of hyperbolic spaces and
this stream started early in 1980’s. But I did not know such a stream
until 1998. Around the year some people who were interested in geo-
metric group theory, in the above stream, started writing papers about
the fundamental group of the Hawaiian earring. (See the references of
(16].) Then, Cannon and Conner [10] introduced infinitary words from
the point of view of geometric group theory. Particularly, free complete
products introduced in [5] was realized as big fundamental groups [11].

My interest to the Hawaiian earring started from its relationship to
the Specker phenomenon and so motivations are very different. But
after all the both interests are concentrated to fundamental groups of
wild spaces and so infinitary words and paths in one dimentional spaces
as its generalization are good weapons to attack this topic.
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FREE o-PRODUCTS AND NONCOMMUTATIVELY
SLENDER GROUPS

KATSUYA EDA

An infinitary version of the notion of free products has been intro-
duced and investigated by G. Higman [11]. Let G;(i € I) be groups and
*;cx G the free product of G;(1 € X) for X C I and pxy : *ieyGi —
*;cxG; the canonical homomorphism for X € Y C I. Then, the un-
restricted free product is the inverse limit lim. (%;exGi,pxy : X C
Y cc I), where Y CC I means that Y is a finite subset of I. In the
present paper we introduce a similar one to the unrestricted free prod-
uct, which is a subgroup of the unrestricted free product and equal to
the subgroup P in [11, Section 6] if G; ~ Z and I is countable. There
were also related investigations due to H. B. Griffiths [8, 9]. Free prod-
ucts are defined using words of finite length. Our infinitary version
of free products will be defined using words of infinite length instead
of finite one. The group x;¢;G; is called a free complete product and
is isomorphic to a subgroup of the unrestricted free product, that is,
Nrcey {ierGi * lim (% xGi, pxy : X CY CCI\F)}. Our interest will
be concentrated to free o-products, which are defined using words of
countable length and a subgroup of the free complete product. One rea-
son to do so is that free o-products are naturally related to fundamental
groups of certain spaces [9], as we shall explain and state applications
in the appendix. Another reason is that these behave well concerning
noncommutatively slender groups, which will be defined later, but we
have not found a slender property concerning free complete products.

In Section 1 we shall define free complete products and free o-
products and state some preliminary results. In Section 2 we shall
prove a noncommutative version of Chase’s lemma, that is, a theorem
about homomorphisms from free o-products to free products of infinite
components. In Section 3 we shall introduce a new notion “noncommu-
tatively slender groups”and investigate it. We remark that this notion
is strictly stronger than that of slender groups in the sense of [7]. In
Section 4 we shall investigate the abelianizations of free o-products and
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related ones. In the appendix we shall explain the relationship with
algebraic topology.

First, we state basic notations. For a subset X of a group G, (X) is
the subgroup generated by X. The direct product II;c;G; is the group
consisting of all functions = from the index set I such that z(i) €
Gy(i € I). The restricted direct product Il ;G; is the subgroup of
ierG; consisting of all z such that {¢ : z(s) # e} is finite. (The
symbol “e”is always used for the identity of a group in question. We use
“0”instead of “e”for an abelian group as usual.) The o-product I, ;G
is the subgroup of Il;c;G; consisting of all z such that {i : (i) # e}
is countable. In case G;(i € I) are isomorphic to a group G, [;c;G; is
denoted by II;G. The group of rational integers is denoted by Z and
the set of natural numbers is denoted by N.

1. FREE COMPLETE PRODUCTS AND FREE 0-PRODUCTS
First we introduce words of infinite length.

Definition 1.1. Let G;(: € I) be groups. We assume G; N G; = {e}
for distinct ¢,7 € I. Elements of (J,.; G; are called letters. W is a
word, if W is a function from a linearly ordered set W to Uier Gi
such that W~='(G;) is finite for each i. In case the cardinality of W is
countable, we say that W is a o-word. The class of all words is denoted
by W(G; : i € I) (abbreviated by W and the class of all o-words is
- denoted by W?(G : © € I) (abbreviated by W?).

If there exists an isomorphism 7 : U — V as linearly ordered sets and
Ula) = V(i(a)) for all @ € U, we say that U and V are isomorphic
and denote it by U ~ V. In this case we identify U and V. Since the
cardinality of W is less than or equal to Max{| I |, Ro} for a word W, W
becomes a set under this identification. For words of finite length, this
is the same as the usual definition. For the definition of free products
we refer the reader to [10] or [13]. For a word W € W(G; : i € I)
and a subset X C I, Wy is the word obtained by eliminating letters
not in (J.x Gy, that is, Wx € W(G; : i € X),Wx ={aecW:
W(a) € Uex Gi} and Wx(a) = W(a) for @ € Wx. For words U
and V, we say that U ~ V holds if Ur = Vj for every F cC [ , Where
we regard Up, Vp as elements of the free product #;.pG;. Then, ~
is an equivalence relation on W clearly. Denote the equivalence class
containing U by [U]. For U,V € W, let UV be the composition of I and
V, that is, UV = {(0,),(1,8) : « € U, 3 € V} where (0,a) < (1,5)
for o € U and 8 € V and (i,a) < (3,B) for @ < B andi = 0, 1;
UV((0,a)) = U(e) and UV((1,8)) = V(B). Let U~! be the word
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such that U~ = {(0,a) : @ € U} where (0,a) < (0,8) if @ > 8 and
U~(0,a)) = U(a)™t. Then, W/~ = {[W] : W € W} clearly becomes
a group with its operation [U][V] = [UV]. We define U° as the empty
word, Ul = UnU and U™} = U™U~! for n € N.

Definition 1.2. The free complete product x;c;G; is the group W(G; :
i € I)/ ~ . The free o-product x%;G, is the group W (G; :i € I)/ ~,
which is a subgroup of x;c;G;. In case every G is isomorphic to G, we
abbreviate x;c;G; by x;G and similarly for free o-products.

Restricting the length of words to be finite, we get the free product
*;e1Gi. Obviously, x;c1G; and x7.;G; are isomorphic to x;c;G;, if 1
is finite. . We define reduced words and shall show that every word
corresponds to a unique reduced word.

Definition 1.3. A word W is reduced, if W =~ UXV implies [X] #
e for any non-empty word X, where e is the identity, and for any
neighboring elements o and @3 of W it never occurs that W{a) and
W {B) belong to the same G;. A word W is quasi-reduced, if W ~ UXV
with [X] = e implies Im(X) C G; and the existence of e # g € G, for
some % such that ¢ is the right most letter of U or the left most letter
of V.

In other words, W is quasi-reduced if a reduced word is obtained by
multiplying all neighboring letters which belong to the same G;.

Theorem 1.4. For any word W, there exists a reduced word V such
‘that (W] = [V] and V' is unique up to isomorphism.

Proof. We define words W, for ordinals p by induction. Let Wy be
W. 1f there exists a non-empty word X such that W), is isomorphic to
UXV and [X] =¢e,let W, ., = {a € W, :i(a) € Uorila) € V} C
W and W,1(a) = W(a) for a € W,,1, where the ordering is the
restriction of that of W and i+ W, — UXV is the order isomorphism.
Otherwise, the procedure is completed. For a limit ordinal pu, let W,; =
N, <“W:-and.W,L(a) = W(a) for o € W,,. This procedure must stop
at some ordinal whose cardinality is at most Max{] I |,No} because
the cardinality of W is equal to or less than Max{| I |,No}. Let Wy
be the obtained word. By induction we can see that [W,] = [W]
and hence [W,] = [W]. There may be neighboring o, 3 € Wy, such
that Weo(a) and W (8) belong the same G;. Since such occasions
happen only finitely many times for each ¢, performing the calculation
in each G; we get the desired reduced word of W. Next, suppose that
[U] = [V] for reduced words U and V. We define ¢ : U — V in the
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following manner. For o € U there exists a unique ¢ € I such that
U(a) € G;. Then, there exist i € £ CC I, letters g1, - -, gm € G; and
Xl, v Xm+1 € W( 17 # ] € I) such th&t U~ X191X2 Xmngm—}-la
o corresponds to gk, UE ~ (X1)eq1(X2)E - - - (Xm)Egm(Xm+1)E and
[(X2)E], -~ -, [(Xm)E] # e. On the other hand there exist E C F CC I,
letters g1, -+, g, € Gy and Y4, - -, Y11 € W(G; : i # 5 € I) such that
VaYigiYs: Yag,Yorr, Vi 2 (V)rgi(Yo)r - - - (Ya)rgy,(Yas1)r and
[()r, - - [(Ya)r] # .

Since [Up| = [VF| by definition, m = n and g(I) = ¢'(l) for 1 <1 < m.
Let ¢(a) € V be the member corresponding to g, in V. Clearly ¢ is a
1-1 onto map and U(a) = V(p(e)). Taking large enough F CC I as
the above, we can see that ¢ preserves the order. Therefore, U and V
are isomorphic. O

From now on we regard a word as an element of x;c;G; in case no
confusion will occur. Hence, U = V means [U] = [V] for words U and

V.

Corollary 1.5. Let U and V be reduced words. If UV = e, then V is
isomorphic to U™L.

Corollary 1.6. Let U be a reduced word. There exists no nonempty
reduced word X such that U =UX or U = XU. IfU is nonempty and
U= U1, then there exist a reduced word X and a letter g such that U
is isomorphic to X 19X and g* = e.

Proof. The first proposition is clear. Sinc_e_ U-1 _is also reduced, U =
U™ implies U ~ U~! and hence let i : U — U1 be the order iso-
morphism. Under the notation before Definition 1.2, let X be the
maximal subset of U such that @ > # € X implies o € X and
iH0,@) ¢ X for any o € X, and let X(a) = U(a) for o € X. If
XUir{(0,0):a € X} = U then U = e. Hence U =~ X ~'gX for some
letter g # e by the maximality of X. Then, g2 =eby U~U"1. [
Considering the reduction in the proof of Theorem 1.4, we get
Corollary 1.7. Let U and V be reduced words. Then, there exist re-

duced words X,Y, Z such that U ~ XY,V ~Y~1Z and X7 is quasi-
reduced. . A

Next we show another presentation of X;c;G; as a subgroup of an
inverse limit.

Proposition 1. 8 The free complete product X;c1G; is isomorphic to
Nrcer ;e Gy * lim_ (xiex Gy, pxy : X CY CCI\F), which is a subgroup
thmé_(*lexGl,pr XCYCCI).
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Proof. Define @x : X;erGi — *iexGi for X CC T as px (W) = Wx for a
word W. Then, ¢x is a homomorphism by definition and pxy - ¢y =
wx for X CY cCI. Let ¢ : Xie1Gi — lim(xexGi, pxy : X CY ccl)
be the homomorphism induced by ¢x (X CC I). Then, ¢ is clearly
injective . Let © € (\pes *ierGi * im._(%iexGi, pxy : X CY CC I\F).
For each ¢ € I, let W; be the reduced word corresponding to z as a
member of G; * lim_ (%jexGj,pxy : X CY CC I\{3}). Let g(4,1), -
-, g(4, k;) be the sequence of letters in G; appearing in W; in this order.
Now let W = {(3,1), -+, (4, k;) : i € I'}. Consider the reduced word W, ;
corresponding to z as a member of G; * G; * im_ (*4exGr, pxy : X C
Y cc I\{3,j}), then we can see that g(¢,1),- - -, 9(%, k;) and g(j, 1), -
-, (i, k;) are appearing in W; ;. Define (i,p) < (4,q) if g(4,p) is left of
9(j,q) in the word W;;. Then, it is easy to see that this is a linear
ordering on W. Let W (i,p) = g(i,p), then W € W(G; : i € I) and

p(W) = z. :
For ¢ € Xic1Gi, the i-length of z (say li(z)) is the cardinality of
{ae W :W(a) € G}, where W is the reduced word of z. O

Xie1G; and X7 ;G; naturally admits infinite operations for certain
sequences as Il;e;G;. Namely,

Proposition 1.9. Let g\(A € A) be elements of % c1G; such that
{Ne A:l(gn) # e} are finite for all i € I and denote the element cor-
responding 1 of the A-th component of XsZ by 6. Then, there exists a
natural homomorphism ¢ @ X\Z — X;e1G; such that ¢(8y) = ga(A € A).
Consequently, in case A = N and g, € X7 ,;Gi(n € N), we get
@ : XnZ — ¥ Gy so that (,) = gn(n € N).

Proof. Let W be the reduced word of gy for A € A. For W € W(Z, ) €
A), let W* = {(a,3) : « € W, 3 € W{ where W(a) = ady for a € Z}
and (o, B) < (¢/, ) ifand only if @ < &/, or a = o/ and § < §'. And let
W*((a, 8)) = W), where W () = ad. Finally let (W) = W™, It is
easy to check by Corollary 1.5 that ¢ is the desired homomorphism. [

2. A NONCOMMUTATIVE VERSION OF CHASE’S LEMMA

Roughly speaking, Chase’s lemma [1] says that any homomorphism
from an infinite direct product to an infinite direct sum maps a large
part to a small part. More precisely, let h : [I,enA, — EBJ.G ;Bj bea
homomorphism for abelian groups A,(n € N) and B;(j € J). Then,
there exist k,m € N and a finite subset F' of J such that

h(m - MpskAn) < @jep Bj + U(D,es By), where U(X) is the Ulm
subgroup of X, that is, (Npen nX. We prove the following,
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Theorem 2.1. (A noncommutative version of Chase’s lemma)

Let h : x7.;G; — *jesH; be a homomorphism for groups G;(i €
I) and H;(j € J). Then, there exist E CC I and F CC J such that
h( 161\130) < *jerHj. :

To show this some notion and lemmas are necessary. For g € *;e s Hj,
I(g) denotes the length of the reduced word corresponding to g. Let
W =~ Xg, where W, X are words and g is a letter. We say that g is
stable in W, if the reduced word corresponding to Xg is of form U g.
Similarly for W ~ ¢X.

Lemma 2.2. Let H;(j € J) be groups and U and X be reduced words.
If the left most letter g or the right most one g~! in XUX ! is not
stable in XUX ™1, then (XUX ™) <I(U) + 1.

Proof. Tt is enough to deal with the case that g~ is not stable. Let V
be the reduced word of XU. Then, (V) < I(X) +(U). Since the right
most letter g~ in VX1 is not stable, {((VX 1) < (V) — (X)) + 1.
Therefore, I(XUX 1) < [(U) + 1. O

Lemma 2.3. Let H;(j € J) be groups. Let m+n+2 < k form,n, k €

N and u,zy, 2 € % Hy(1 <0 < M). Ifl(u) < myu = 2,25 -« - 02"
and l{z;) < n for all 1 <4 < M, then z is a conjugate of a member

~of some H; or z = z™' fxy~lgy for some f € H; and g € Hj with
ff=g¢"=e

Proof. It is easy to see that there exist reduced words U/ and W
such that z = W~'UW and the both words UU and W-1UW are
quasi-reduced or UU = e. If [(U) > 2, we can take the above U and
W so that UU is reduced. If [(U) < 1, the proof is done. Hence,
we assume [(U) > 2 and so also assume that UU is reduced. Let
X; be the reduced word of z; for each 1 < 7 < M. Then, 212, - - -
Tz = XyWIURWX,W L - . WX, WURW. Suppoee that the
left most letter g and the rlght most one g~ of WX,W~1! are stable
in WX;W~'. Then, the reduced word of UW X,V 1U2 is of form
UY;U. On the other hand, if at least one of g and ¢! is not stable,
then I(WX, W) < I(X;) + 1 by Lemma 2.2. Let Z; be the reduced
word of WX;W~!. Let p be the least number so that 2p > n+ 1.
Then, the reduced Word of Z;UP*! is of form Y;U, where Y; ~ Y";V; and
Wy’ ) I(Z;) and U? ~ W,V; for some W;. Hence, the reduced word
of Up“Yi is of form UZ]. Suppose that the reduced word of UZ!U?
is of form UZ!'U. Since l(U’“) > 1(U) + 2(k — 1), the reduced form of
Xy W AURW XoW U - Xy WU is of form PLURU --- Py U™V,
where V = UW. This contradicts I(u) < m. Therefore, the reduced
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word of U Z!U? is not of form U Z;'U. Since UU is reduced, not only the.
right most letter of Y; is not stable in UPT2Y;, but also Z] must be of
form U74S; for some d and U ~ S;T; for some T;. By the assumption, S;
must disappear in the reduction of UUS;U? and hence S; =~ .57 1 By
Corollary 1.6, S; is empty or S; = 27! fz for some f € H; with fP=e.
If S; is empty, then UZ,U 2 jtself is reduced, which is a contradiction.
Hence, the latter holds. Since UU is reduced and (U) > 2, T; is not
empty. - Apply the same reasoning for S; to T, then we get that T; =
y gy for some g € Hy with g* =e. :

Lemma 2.4. Let h : xyZ — ;e H; be a homomorphism. Then, there
exists F CC J such that h(xyZ) < *jerHj;.

Proof. By Kurog’s theorem [13, Sec. 34 or 10, Ch.17], h(xNZ) is a free
product of copies of Z and conjugate groups of subgroups of some H;. If
the number of components of this free product is finite, then we get the
conclusion. Hence, it suffices to deduce a contradiction from h(xyZ) =
;e H; for infinite J. Let p; : xjesH; — Hj be the projection. First,
we inductively define k, € N, j, € J, T, € X M\{1,,n}Z and finite
subsets F, of J for n = 0,1, --. Let ko = 1 and take zo and finite

7 C J so that h(zo) € *jemHys Pja - M(@0) # € for 0 < o < 4 where the
j.s are distinct. Suppose that we have defined the (n — 1)-step. Since
h(Xq1,...nyZ) < *jepH; for some finite F and h is surjective, there exist
Ty € XM\(1, -nyZ and distinct jsnia € J\Fpn such that pj,., - h(z,) # e
for 0 < o < 4. Let ky = n+2+max{l(h(zx - Tn-1)) : 0 <k <n—1}
and F, be a finite subset of J such that Fj,_; C F;, and h(z,) € *jer, H;.
Then, let Seq be the set of all finite sequences of natural numbers and
denote the length of s € Seq by Ih(s). The empty sequence is denoted
by <> and generally s € Seq is denoted by (s1,- - -, 5n) where sy € N
(1 < k < n). For s,t € Seq, s < t if s(é) < t(i) for the minimal 4
with s(i) % t(i) or tlextends s. Let Dy = {s € Seq : 0 < Ih(s) <
n,1 < s(4) < k; for 1 < < n} and W,, = D,, with the ordering <
and W,(s) = z, where n = lh(s). Similarly, let DiM = {s € Seq :
0 < lh(s) <n,1 < s(i) < kpysfor 1 << n} and Wr(bm) = DI with
the ordering < and W,&m)(s) = Zpen for n = lh(s). Then, there exist
o-words W and W(m) (m € N) such that Wyy..ny = (Whn-1)11,-ny and
(W) ny = (Wéﬁ){l,.,.,n} for n € N. There exists E CC J such that
h(W) € *;epH;. Let m be a number such that ENFp_1 = ENU,en Fr
and [(A(W)) < m. Then, h(zx) € *jer,,, H; for 0 < k < m — 1. Since
h(W) = gy - R(WYem . gy - W M)Em ey h(Wm)km for some
ye with 1(ye) < ki — (M +2), Djsnsa * h(W(™) = e for at least three
a€{0,1,2,3,4} by Lemma 2.3. A similar argument for h(W(m“))karl
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and the fact W™ = g, - (Wm+DYem+1 imply that pj,, . h(zm) = e for
at least one a € {0,1,2, 3,4}, Wthh is a contradiction. U

Proof of Theorem 2.1. Suppose the negamon of the conclusion.
Then, we get z, € XzeI\D G;, B, cCc I and F,, cC J such that
E, C Eny1, B CFup, Tn € Xieu, 5, G, h(z,) ¢ *;jer, H; and h(z,) €
*jeF,.,H; (n € N). Finally, we get a contradiction by Lemma 2.4 and
Proposition'1.9. = | ‘ O

Corollary. 2.5. Let h : x7.;G; — *je;H; be a hemomorphism for
groups Gi(i € I) and H, (y E J). If every G; is finitely generated, then
there exist FFCC J such that h(x;G;) < *jerH;.

We remark that Theorem 2.1 for the unrestricted free product can
be shown similarly, if an index set I is countable.

3. NONCOMMUTATIVELY SLENDER GROUPS

We introduce a new notion “noncommutatively slender groups”, which
is a noncommutative version of slender abelian groups [6, Sec.94]. Re-
call that an abelian group A is slender if and only if for any homomor-
phism h : TINZ — A there ex1stb n € N such that h(Tly\q1,.. 0} Z) =

{0}.

Definition 3.1. A group G is noncommutatively slender, if for any
homomorphism h : xyZ — G there exists an n € N such that
h(Xm\(1,-n}Z) = {e}. We say “n-slender” instead of “noncommuta-
tively slender” for short.

This notion is equivalent to a seemingly weaker condition as in case
of slender abelian groups; which we show now. '

Proposition 3.2. If for any homomorphzsm h : xyZ — G the set
{neN: h( 0n) # e} is finite, then G.is n-slender.

Proof. Let ‘h 1 XxyZ — G be a homomorphism. Then, there exists n
such that h(8) = e for k > n. Suppose that h(XnA\ (1, n}Z) # {e}, and
takex € XN\{l myZ so that h(z) # e. Let W be a word corresponding
to z and zx = Wh\q1,..k} (K € N). Then, there exists a homomorphism
@ : XnZ — XnZ such that ¢(d;) = z(k € N) by Proposition 1.9. Now,
h- (b)) = h(:ck) h(z) # e for every k, which is a contradiction.

Clearly, XNZ is not n-slender.- However, xyZ is slender in the sense
of [7], which is a straightforward generahzatlon of slenderness of abelian
groups. To see this, let A be'an abelian subgroup of xxZ. Then, A is
1s0morph1c to Z or trivial by [11 Theorem 6]. Hence, xyZ is slender in
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the sense of [7] by Specker’s theorem [16, or 6]. On the other hand, it

easy to see that every n-slender group is slender in the sense of 7. O

Theorem 3.3. An abelian group A s n-slender, if and only if A is
slender.

Proof. Let o : xNyZ — IINZ be the canonical homomorphism. Let h :
IIxZ — A be a homomorphism for an n-slender group A. Then, there
exists n € N such that k- o (X q1,-n}Z) = {0}. Since o(xm\(1,-n}Z) =
(1,0} %, h(IIa(1,-m}Z) = {0}. Next, let h : xyZ — A be a ho-
momorphism for a slender abelian group A. Then, h((x ~NZ)) = {0},
where G/ denotes the commutator subgroup of G. By Corollary 4.8,
which we shall show in the next section, there exists no nonzero homo-
morphism from Ker(o)/(xnZ)' to any slender abelian group. Hence,
there exists a homomorphism & : IIyZ — A such that h = k-0 . Take
n so that R(IIa,.nyZ) = {0}, then we get h(xm\q,.nyZ) = {0}. O

Corollary 3.4. An n-slender group is torsion-free.

Proof. Suppose that G is not torsion-free. Then, there exists a non-
trivial finite cyclic subgroup C. Since C' is abelian but not slender, C
is not n-slender. Hence, G is not n-slender. (W

&

Proposition 3.5. Let S be an n-slender group and h : X¢c;G; — S be
a homomorphism. Then, there exist a finite subset F' and a homomor-
phism b : x;cpGy — S such that h = h - pgp, where pr(W) = Wkg.

Proof. First we show that h(G;) # {e} for almost all . Suppose the
contrary hols. Then there exist 4, € I(n € N) such that h(G;,) # {e}
for n € N and ip # in for m # n. Let g, € G;, so that h(g,) # e. We
can naturally define a homomorphism ¢ : XyZ — Xx{;G; such that
©(6,) = gn(n € N) by Proposition 1.9. Then, h-¢(d,) # e for every n €
N, which is a contradiction. Let F = {i € I : h(G;) # {e}}. Similarly
as the proof of Proposition 3.2, we can conclude h(x;enrGi) = {e}.
v Since Xic1Gi = *iepGi* (Xie I\FGi) naturally, we get the conclusion. [J

Theorem 3.6. Let G;(j € J) be n-slender groups. Then, both the
restricted direct product 17 ;G; and the free product *;c;G; are n-
slender.

“The next -corollary due to G. Higman [11, Theorem 1 with a remark
on p.80], is a fundamental result about n-slenderness.

Corollary 3.7. (Higman [10, Corbllary 3.7]) Every | free group is n-
slender.
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Proof of Theorem 3.6. Let h : x yZ — II7.;G; be a homomor-
phism and pr : Il ;G; — I;crG; the projection for F' CC J. Sup-
pose the negation of the conclusion. By the n-slenderness of of Gj,
we get 4, € N and finite subsets J, of J such that i, < in41, Jo C
Jnits I # Jnv1, B(6i,) # e, h(0) € e, Gj for 1 < k < 4, and
pa, - B(X mg1,3Z) = {e}. Let W, = N with the usual ordering
and Wy(k) = 6;,,, for kK € Nand n € NU{0}. Let n € N be
a number such that p; - h(Wy) = e for j € Uey Ji\Jn. By defini-
tion py, - h(W,) = e and p; - h(&;, - - - &;,) = e for j ¢ J,. There-
fore, p;.- h(Wy) = p;((&, - - - 6:,) ' Wo) = e for § € Upeny e\
and consequently p; - h(W,) = e for j € [Jyen Ji- By the same rea-
soning, p; - A(Wpy1) = e for j € Upen Jo- Then, p; - h{6;,.,)
pj - h(Wy - (Wyaa) ™) = e for § € Uyen Jr, Which is a contradiction.

Next, to show the n-slenderness of *;¢;G;, let h 1 XNZ — ;¢ G
be a homomorphism and o : *;c;G; — Il ;G; be the canonical ho-
momorphism. To the contrary, suppose that h(d;) # e for infinitely
many k. By n-slenderness of I} ;G;, there exists n € N such that
o h(Xm\q1,-n}Z) = {e}. Let ¢ : XxyZ — xyZ be a natural homo-
morphism such that ¢(dx) = 0,4k according to Proposition 1.9. Then,
o-h-p(z) = e, for x € xyZ. We claim h-p(d;,) = e for almost all k, which
implies the conclusion. By modifying ¢, we may assume h - ¢(d) # e
for all k and o - h - ¢ is trivial. Though we can deduce a contradiction
from these assumptions using Kuro$’s theorem and Higman’s theorem
(Corollary 3.7), we present a proof which is similar to the proof of
Theorem 2.1 for completeness. Remark that [(u) > 4 if u # e and
o(u) =e. Let ky = 1 and knyq = X2, 1(R(8;)) + ky +2. Then, k; < kjq1
clearly. Let D; = {s € Seq: 0 < lh(s) < j,1 <s(i) < k; for 1 <7 < 5}
and W; = D; with the ordering < and W;(s) = dins)+1 for s € D
Then, there exists a unique o-word W such that Wy, .. ;3 = W; for
J € N. Take m so that I(h - ¢(W)) < kn. As in the proof of The-
orem 2.1, we get U; and V; for s € D,, with [h(s) = m so that
Us = 64y -+ - 8;, where 0 < 43 < ++- < i < m and V, ~ Z¥n+1 where
Z ={s€ Seq:1=s(1),lh(s) > 1,1 < 8(i) < kp for i > 2} with <
and Z(s) = 6mings)- Now, b+ (W) = -« -h - p(us) - (h - p(Z))fm+1 ...
Since G;(j € J) are torsion-free, h - p(Z) is a conjugate of a member
of some G, by Lemma 2.3. Since o - h - ¢ is trivial, h - p(Z) = e.
By the same argument for k,,;o we can conclude h - p(Y) = e, where
Y = {s € Seqg:1=s5(1),lh(s) > 1,1 < 5(1) < kmy14s for i > 2}
with. < and Y (s) = Omy14in(s). Then, Z = py1 - Ykm+2 and hence
" h(6m+1) = e, which is a contradiction. O
We close this section by stating a question.
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Questionl*S.’S. Let h : %,,7Z — Z be a homomorphism such that
h(6y) = 0 for 0 < a < wi, where w; is the least uncountable ordinal.
Is A trivial? - - . ‘

CTtis équi\_ialenf to ask whether each homomorphism A : Cw; /( xulZ)”} -
Z is trivi‘a’l,‘ according to the notation in Section 4.

4. COMMUTATOR SUBGROUPS, ABELIANIZATIONS AND
0-ABELIANIZATIONS

Let C} be the subgroup of x;Z consisting of z such that p;(x) = 0 for
all © € I, where p; is the canonical projection to the i-th component.
The commutator subgroup G’ is the subgroup generated by all com-
mutators 'y 'zy (= [x,y]), that is, ([z,y] : 2,y € G). Then, G’ =
(h(Cs) : h € Bom(Z * Z,G)) = (h(CF): h € Hom(xpZ,G), FCC N).
Generalizing this in our scope, let G” = (h(Cy) : h € Hom(xnZ, G))
and G = (h(Cy) : h € Hom(x;Z,G) for some I). Clesrly, G and
G are-normal subgroups of G. Though G° also seems to be a natural
subgroup of &G, we have not found any interesting phenomenon about
it. Therefore, we deal only with G”. The abelianization of G, that is,

G/G', is denoted by Ab(G). Similarly we define Ab’ as G/G° and call
- Ab°(G) the o-abelianization of G. Ab’(G) is a homomorphic image of
Ab(G). To investigate Ab(G) and Ab(G), we recall some notions for
abelian groups.

An abelian group A is called complete modulo the Ulm subgroup
(abbreviated by ”complete mod-U”), if for any z, € A(n € N) with
n! | Zp41 — 2y, there exists z € A such that n! |z —z, foralln € N. It
is known that A is algebraically compact, if and only if UU(A) = U(A)
and A is complete mod-U [2]. A is cotorsion-free if A does not contain
nonzero cotorsion subgroup, that is, A is torsion-free, reduced and
contains no copy of the p-adic integer group J, for any prime p. It is
known that A is slender if and only if A is cotorsion-free and contains
no copy of Z". First we state some preliminary facts about this notion.
Since the proofs are straightforward, we omit them.

Proposition 4.1. Any homomorphic image of a group which is com-
plete mod-U is also complete mod-U. A direct product of groups which
are complete mod-U 1is also complete mod-U.

Proposition 4.2. Let A be an abelian group and H its pure subgroup.
If both H and A/H are complete mod-U, then A itself is complete mod-
7 - , .

Propositibn 4.3. If an abelian group A is complete mod-U, then
Hom(A, B) = {0} for any cotorsion-free abelian group B.



12 : KATSUYA EDA

Proof. Let h € Hom(A B). Since Im(k) becomes torsion-free, U2(Im(h)) =
U(Im(h)). Hence, Im(h) is algebraically compact by [2, Theorem 2.5].
The cotorsmn—freeness of B implies Im(h) = {0}. O

' Now we investigate G’ G"’ Ab(G), A’ (@) and so on.
Lemma 4.4. If G is an n- -slender group, then G” = G'.
Proof. Let h @ x NZ — G be a homomorphism. Then, there exist

FCcC N and h : *pZ — G such that h = h - pp by Proposition 2.4.
Hence, h(Cy) = h(Cr) < G’ and consequently G = G'. O

Theorem 4.5. Let G;(i € I) be n-slender groups. Then,

(%0;Gi)7 = {z € x%,;G; : pi(z) € G} for alli} and hence

A (x ¢, G;) ~ T, AW(G;) naturally. In case of o-products the
analogous facts hold, that is, (II%.;G;)” = {z € H,G; : z(i) €
G for alli}, and also Ab"(IIfE,G ) = 119 L Ab(G;) naturally.

Proof. Since p;((x7;G; )"’) < GY = G for each j by Lemma 3.4, the
one inclusion is obvious. Let p,,( ) € Gi(i € 1) for g € xXI,G; and W
be a word corresponding to g. Let gi1,- - +, gix, € G; so that the word
gi1 - ** Gik, 18 W{'l} for each 7 € I. Then, g;; - - - gir; € G}. There exist
m; € N, hi : 54,2 — G; and z;5(1 < j < k) such that hi(zij) = g5
and Ty - Ty € (32, Z) . Let L= {(4,5) : 1 € I,Im(W)N(G:\{e}) # ¢
and 1 < j < my;}. By Z(i,7), we mean the (4,7)-th component of
x .Z. Define h : xpZ — xJ.;G; naturally so that h(d;;) = h;(;) for
(4,7) € L according to Proposition 1.9, where §;; corresponds to 1 of
Z(1, 7). Joining all words corresponding to z;;’s under the corresponding
ordering of g;;’s in W, we get a word X € W(Z(4,5) : (i,5) € L) so
that h(X) = g. Since X{qj)1<j<k) € (¥4 Z) for each 4, X € Cy, and
hence g € (x7.;G;)?’. The second proposition follows immediately and
‘the case of o-products is proved analogously. O

Corollary 4.6. (xyZ)” = Cy.

Theorem 4.7. Let Gi(i € I) be n-slender groups. Then,
(XerG:)7 | (%1 Gi)' is complete modulo the Ulm subgroup.

Proof. Let E = {x € x%,;G; : z(:z:) € G, for all i}. By Theorem
3.5 it suffices to show that E/ ( %1Gi)' is complete mod-U. Since
the property in question depends on countably many members only
and each member is related to a U-WOI‘d we may assume | = N.
Let 0 : E = E/(XnenGr) be the canonical homomorphism and n! |
a(xn+1) o(z,)(n € N). We can take o-words V,(n € N) so that
Tnpi - Tyt € Vo (XnenGn) and Im(V;) NUp Gy = ¢. Let B =

{s € Seq : 8#<)1<sz§zfor1<z<lh()} Let Vo
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{(s;a) : s € B and a € Vip} where (s,a) < (t,8) if s < t or
s =t and o < [ as members of Vin(s) and Veo(s, @) = Vips) (). Since
V, € E(n € N), Vo € E. Let U, ={(s,a) € Vo : Ih(s) > n,s(i) =
Lfor 1 < i < n} and Up(s,o) = Vio(s,a) for (s,a) € U,. Then,
Voo € Un™ - Vot ™D Vi - (36enGh)'. Hence, Vo - 1 - 21 € UM -
Tp TRty Tpoy -y aTt g - L7 (XnenGn) = UM (%nenGr) and
consequently n! | 0(Voz1) — o(zy,) for all n € N. O

By Theorem 4.7 and Proposition 4.3, we get,

Corollary 4.8. Let A be a cotorsion-free abelian group. Then,
Hom(Cly, A) = {0}.

Corollary 4.9. Let G;(i € I) be n-slender groups. Then,
(e Gi)”' (7, Gs)' is complete modulo the Ulm subgroup.

Proof. Let ¢ : x%;G; — 117Gy and v : I%,,G; — Ab(T19,,G;) be the
canonical homomorphisms., Then, ((x%.;G;)*") = (IIZ,G;)*" by Theo-
rem 4.5. For z € (X}, G;)”, - p(z) = e if and only if p(p(z)(1)) (i € I)
are bounded. Hence, (I17;G;)”/(Ilg.,;G;)’ is a homomorphic image of
(%¢erGi)”' [ (%%, G;)'. Now, the conclusion follows from Theorem 4.7
and Proposition 4.1. 0

To get further information about Ab?, we need some definitions about
words.

Definition 4.10. A finite sequence of words Uy, - - -, U, is of n-form, if
Ui(1 <4 < p) are reduced and there exist a partition Ag,-- Ay, B of
{1, p} and i, jx(1 < k < m) such that {é, s : 1< k < m} = B,
Ui, is U]il as words for each k, U, = Up forany a,3 € A, and |A,| =n
(1 <+ < M). In addition if the word Ui --- U, is quasi-reduced, we
say that Uy,---,U, is of canonical n-form. In case n = 0, we say that
it is of commutator form and canonical commutator form respectively.

Sometimes we shall confuse a sequence of words Uy, -+, U, with a
word Uj - - - Uy, for simplicity of expression. -

Lemma 4.11. Let ¢ : xyZ —- Ab(XNZ) be the canonical homomor-
phism. Suppose that (z) is divided by n € N in Ab(xNZ) for x € xyZ.
Then, there exists a canonical n-form Ui, -+, Uy such that z = Uy --- U,

Proof. First we describe a transformation of commutator forms cor-
responding to ¢ € (xnZ)'. There exists a sequence of reduced words
Wi, -+, W of commutator form with ¢ = W - - - Wi. Let Uy, - - -, Uy, is
of commutator form and Ujy - - - Uy is quasi-reduced. If U;U 1+ Usy,
is not quasi-reduced, there exist reduced words X,V,W such that
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Uy~ VX, Uy Upyp = X IW and X~ 'W is quasi-reduced. Can-
celling X X ~! and arranging pairings, we get a sequence of commutator
forms of length equal to or less than 2(m + 1). Observe that the occa-
sion “U;Uj4; is not quasi-reduced” happens in the process, only when
W, = XU;, Wjiy--- W, = U;,1Y where both XU, and U;11Y are quasi-
reduced for some X and Y. Therefore, this transformation stops in
finite times and we get a canonical commutator form which is equal to
c. ,

Under the given condition, there exist y and ¢ € (xyxZ)’ such that
x = y"c and hence reduced words U and W such that z = U~'W"l¢
and U~'W™U is quasi-reduced. By a similar argument as above we get
the conclusion. O

Lemma 4.12. There exists a pure subgroup of Ab(XNZ) which is also
contained in Cn/(XNZ) and isomorphic to Z.

Proof. Let a = ey -+ -ep---eft el € xNZ where e is the
1 k 3

generator of the k-component Then, ¢(a) € p(Cy). Suppose that
p(a™) (m > 0) is divided by n in Ab(xnZ). Then, a™ is equal to a
word Uy - - - U, of canonical n-form in Definition 4.10 by Lemma 4.11.
Since the reduced word of a™ is well ordered from left to right, U, is
a finite word for every o € B. A word of form ey, - - for large enough
k must be a part of some U, where o € A,. Hence, n divides m. Now,
we have shown that < ¢(a) > is isomorphic to Z and a pure subgroup

of Ab(xyZ). O
Theorem 4.13. For a group G, AV’ (G) = G if and only if G is a
cotorsion-free abelian group.

Proof. If G is a cotorsion-free abelian group, h(Cy) = 0 for any h €
Hom(xyZ,G) by Proposition 4.3 and hence Ab°(G) = G. Now sup-
pose that Ab”(G) = G. Then, G is abelian. Let ¢ : Ab(x yZ) —
Ab(xnZ)/U(Ab(xnZ)) be the canonical homomorphism. Then, Lemma,
4.12 implies that there exists a pure subgroup of Ab(xyZ)/U (Ab(xNZ))
which is isomorphic to Z and contained in 1p(Cy). Since Pp(Chy) is
complete mod-U by Proposition 4.1, Y(Cy) contains Z that is, the
Z-adic completion of Z, as a subgroup. The subgroup 7 is pure in
Ab(x NZ)/U(Ab(x NZ)) by purity of Z in Ab(x yZ). Hence, Z is a
summand of Ab(xnZ)/U(Ab(xnZ)). Now, AV (G) = G 1mphes that
h(Z) = 0 for any h € Hom(Z, @). Hence, G is cotorsion-free. O

Theorem 4.14. Let G;(i € I) be groups where infinitely many of them
are nontrivial. Then, (X{c;G;i)” [(x{;G;) and hence Ab(xZ.,G;) in-
cludes a subgroup isomorphic to the direct sum of 2% -many copies of
the rational group Q.
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To prove Theorem 4.14, some notions and lemmas are necessary.

Definition 4.15. For ¢ € @, let p(c) = min{n : ¢ = [T1, 0] - - -
[T, Yn] for 2;, 4 € G}. For ¢ € X7 ;G;, p*(c) is the minimal number m

such that there exist Uy, - - -, Uy, of canonical commutator form with

C=U1"‘U2m.

If we consider the case G = X(0;G in the definition of p* a sequence
of words Uy, - - -, Usm, is a sequence of members of G. Therefore, p*(c)
for ¢ € G’ depends on representations of G, which is different from the
case of p. However, the following hold, where some G; may be trivial.

Lemma 4.16. Let G = x%;G;. Then, p(c) < p*(¢) — 1 and p*(c) <
6p(c) ~ 1 force G'. , ,

Proof. Observing the role of commutators, that is, zz 'yz[yz, z;l] =
zy, we can see p(c) < p*(c) — 1. The second equation follows from the
proof of Lemma 4.11. O

Lemma 4.17. Suppose that x € G and y € H satisfy 2> # e and
y? # e. Then, p([z,y]") > n/12 forn € N in G x H.

Proof. Suppose that p([z,y]") < n/12. Then, p*([z,9]") < n/2 — 1.
There exists a sequence of words Uy, - - -, Uy, of quasi-reduced commu-
tator form such that p < n/2 —1 and [z,y|” = Uy - - - Uy,. Then, one
of Uls is of form Vy~'zW so that V' and W are nonempty and hence
another one of U/s is of form W~z~1yV~1. On the other hand,

ey tzyz Tyl ay = Uy - Uy and Uy - - - Uy, is quasi-reduced
and each Uj; is reduced. Since z # ™! and y # y~!, it never occurs
that U; is of form W—1z~1yV ! with nonempty V and W. O

Proof of} Theorem 4.14. It suffices to deal with the case that I = N
and G,(n € N) are nontrivial groups. First we construct a subgroup
which is isomorphic to Q. Since XpenGn > Xpen(Gon-1 * Gapn), we
may assume the existence of g, € Gy such that g, # g;'. Let V,, be
the word g5~ 1 gom Gon—192n and next Voo and Un(n € N) the o-words
defined from V,(n € N) just in the same way as in the proof of Theo-
rem 4.7. Then, Voo € U™ - Vo 1™ 0 Vi (%0enGrn) € (XnenGn)”.
We claim {p(Va), o(Up®) 1 a € Zyn € N} (= H) is isomorphic to Q,
where ¢ : XpenGr — Ab(XpenGy) 18 the canonical homomorphism.
Since U," = U,_; - V.q ! € Un-1(XnenGy)', H is divisible and of
rank 1. It suffices to show that H is torsion-free and nonzero. Sup-
pose that Voo € (XnenGn)'. Then, Vo = [21,91] - - + [Zm, Ym) for some
Ti,Yi € XneNGhn, which implies P([g2n—r1,92n]m) = p(p{2n-1,2n}(voo)) <

m for every n. This contradicts Lemma 4.17 for large enough n. By
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a similar argument we can see that H is torsion-free. To get the con-
clusion of the theorem, we modify the above construction. There exist
Xo C N{a < 2™) such that each X, is infinite and X, N Xp is finite
for distinct o, 8. Let kyo(n € N) be an enumeration of X, without
repetition. Let Voo and Upng be the o-words obtained by replacing n by
kno in the above construction. Then, we get subgroups Hy(a < 2%) of
(XnenGn)”' [ (XnenGr)' which are linearly independent and isomorphic
to Q. ' d

Since a theorem analogous to Theorems 4.14 holds for o-products of
free products, we prove it in the remaining part of this section. We
need a lemma which is a version of Lemma 4.17. As is well-known, the
commutator subgroup of Zg x Zy , that is, the infinite dihedral group, is
consisting of all commutators, where Zy is the group of order 2. Except
this case we get the following,

Lemma 4.18. Let G and H be nontrivial groups at least one of which
is not isomorphic to Zy. Then, there exists ¢ € (G * H) such that
p*(c™) > (m ~1)/2 and consequently p(c™) > (m + 1)/12 for m € N.

Proof. We assume that G is not isomorphic to Zs.
Case 1. There exists g € G such that g # g~

Take h € H with h # e and let

¢ =g 'hghghghg™*h g7 'h~'gh~tg~1h~!. Then,

¢t = hghg—'hghgh g 'h~lg='h"1g~1h~1g. We only remark the
ordering of g and ¢g~! and the fact h, h~! £ e. Then, we can conclude
p*(c™) > (m—1)/2 by a similar reasoning to the proof of Lemma 4.17.
Hence p(c™) > (m +1)/12 by Lemma 4.16.

Case 2. Otherwise.

Then, g2 = e for every g € G. Take distinct 91,92 € G with g1,90 # €
and h € H with h # e and let ¢ = hg192hgi1hgah ™ g1goh ™ g1h ™ gs.
Since g1g> # g1 and g1g2 # go, we conclude that p*(c™) > (m — 1)/2
and p(c™) > (m +1)/12 as before. O

Theorem 4.19. Let G; and H; be nontrivial groups at least one of
which is not isomorphic to Zy and I an infinite index set, then (g, G;*
H) [(ge;Gi » H;)' and consequently Ab(TI,G; x H;) include a sub-
group isomorphic to the direct sum of 2% -many copies of the rational

group Q.

Proof. 1t is enough to prove this in case I = N. Let ¢ HpenG, *
H, — Ab(Il,enGh, * H,) be the canonical homomorphism. Take Cn €
(Gn* Hp)' (n € N) so that p(c,™) > (m+1)/12 for m € N by Lemma
4.18. Define x, € ll,enGp * Hy(m € N) by: zp(n) =eforn < m
and zp,(n) = ¢,™/™ for n > m. Let H = {¢(z,,®) : m € N,a € Z}.
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Then, H is isomorphic to Q. The rest of the proof is similar to that of
Theorem 4.14. v 0

We remark that (TIn(Zy*Zs,)) = TN (ZoxZs) and hence Ab(T1y (Zy
Zs)) =~ In(Zy ® Zsy) canonically.

Question 4.20. Are Ab(xnZ) and Ab(IIN(Z x Z)) torsion-free?

It is equivalent to ask whether (XyZ)”' /(xnZ)' and

(I (Z+Z2))" | (TIn(Z+Z)) are torsion-free or not. Especially, (T n(Zx
7)) [(In(Z+Z))' is not torsion-free, if and only if there exist m, M €
N such that sup{p(c) : c € (Z*Z), p(c™) < M} = oo. If the answers
to these questions are affirmative, Ab(xnZ) and Ab(Iln(Z x 7)) have
summands isomorphic to ZN and (Z & Z)N respectively by Theorem

4.7.

5. APPENDIX

Here, we state applications to algebraic topology, which are back
ground of the context. Topological spaces in this appendiz are always
Hausdorff. Undefined notions about algebraic topology are standard
and can be found in (12, 15]. Let (X, x;) be pointed spaces such that
XiNX; = ¢ fori# j. There are two typical way of attaching spaces
(Xi, z;) under the identification of all z;(= x*). The underlying set of
the two spaces \/; (X, z;) and ;o (Xi, z:) are {o*} U U;c, X\ {z:).
It suffices to define open neighborhood of x*. Let U be a subset of
{z"} Ul Xi\{2:} containing z*. U is open in \/,c;(Xi, i) if UN X,
is open in each X;, while U is open in \/,.,(X;,z;) of U is open in
Vier(Xs, z:) and (U\{z*}) N X; = X;\{=z;} for almost all i. If each
X; 18 locally simply connected at x; and also first countable ot x;, then
T (Ve r(Xi ) = #iermi(X;). Here, the first countability is essential
even if I is finite [3, 4]. On the other hand we have the following, which
was o theorem of H. B. Griffiths [9] and J. W. Morgan and I. Morrison
[14] have completed its proof.

Theorem 5.1. (H.B.Griffiths, J.W.Morgan and I. Morrison) Let X; be
locally simply connected at z; and also have countable basic neighbor-

hoods of x; for each i € I. Then, 7r1(\~/i€1(Xi,xi), x*) o X%y (X, ;).

T

Originally this was proved in case I is countable, but it is not hard
to see that this also holds for arbitrary I, which we shall explain in the
sequel. In the introduction of [14], they stated that the proof contains a
noneffective construction of a homotopy. Though we do not insist that
the following proof is effective, it seems that it is more direct. Since



18 e ' . KATSUYA EDA

the proof will clarify the meaning of equivalence of infinitary words, we
outline the proof and present a direct construction of @ homotopy.

For a pointed space (X, z) a loop f in (X,z) is a continuous map
from a closed wnterval [a, b] (where a < b) to a space with f(a) = f(b) =
x. Two l00ps [ and g in (X, z) with their domain [a,b] are briefly said
to be homatopac, if there exists a homotopy from f to g which is con-
stant wzth respect to a and b. When we do not mention the domain of
a loop, the domain is always [0, ]J For an interval I, I is the set of
end points of I. For a loop f in (\/,EI(Xz,arz, *)) there exist at most
countable pairwise dzsyomt open subintervals (an,bp)(n € M) of [0,1]
such that e ps(an, bn) = f 1(_\/161 (Xi, z:)\{z*}). Each loop f | [an, b
lies in some X; and for each i almost all loops f | [an,bn] n (X;, z;)
are homotopic to the constant map, since X; is locally simply con-
nected at x;. Hence, we can get a o-word WS € W(mi(X;,x;) : i € I)
naturally using the ordering of (ay,by)'s. If f is homotopic to the con-
stant map, it is easy to see that (W) = e for any F CC J. Hence,
we can define a natural homomorphism ¢ : m (Vo (Xs,z:),2*) —
X erm (X, zi) by: e - O([f]) = (W)p for F CC J, where [f] is
the member of m(\ ;o (X5, 2:)) corresponding to f. It is also easy to
see that 1 is surjective. To see the injectivity of 1, some notion is
necessary. A loop f wn (X,x) is proper, if f satisfies the follow-
mg: Let (an, b,)(n € M) be pairwise disjoint open intervals such that
Uneman, bn) = fTHX\{F(0)}). Then, if f | [an, bn] is homotopic to
the constant loop, f | (an, by itself is constant. The next lemma is the
only part where we use the first countability.

Lemma 5.2. (Essentially in [8, 1.2]) Let X be locally simply connected
at x which has countable neighborhood bases. Let f be a loop in (X, z)V
(Y,y),z*) such that f(a,) = f(by) = 2* forn € N, f(lan, b)) C X and
f | lan, bn] is homotopic to the constant loop, where (an,b,)(n € N)
are pairwise disjoint open subintervals of [0,1]. Then, there exists a
continuous map H : [0,1] x [0,1] — (X, x) V (Y, y) with the following:
(1) H(1,t) 1= f(¢) fort €]0,1];
(2) H(s,0) = H(s,1) = H(s,a,) = H(s,b,) = z for s € [0,1] and
n € N;
(3) (s t) € X forse|0,1] and t € U enl@n, bn);
(4) H(0,t) =z fort € U,cnlan, bul-

Since this is not so hard to prove if we use the two gwen local proper-
ties, we omit the proof. Since the image of any loop f in (V. (X;, x;), z*)

is included by VzeC(Xi’ x;) for some countable C C I, by iterating use
of this lemma we get,



FREE'J—PRODUCTS AND NONCOMMUTATIVELY SLENDER GROUPS 19

Lemma 5.3. ([14, ‘Lemma 4.2]) Under the same conditions as in The-
orem 5. 1 any loop f in (\/161('Xz-, x;), z*) 18 homotopic to some proper
loop. - : o

'Proof of} Theorem 5.1. . Let-f be a loop in (\ o (X, 7:), 2*) with
W = e: Since there exists a countable subset C' of I such that Im(f) C
VzEC(X'“ z;), it suffices to deal the case I = N. By Lemma A.3, we may
assume that f is a proper loop. Now, we construct a homotopy H from
f to the constant loop. In the k-th step, we define H on subrectangles
of [0,1] x [0,1] which makes loops in (X, x*) homotopic to the constant

loop expecting. loops n \/n>kX will be made homotopzc to the constant
loop in a suitable way in future.

(Step 1) Let H(t,1) = f(t) and H(t,0) = z* for 0 < t < 1. Let
Wi =W, W, where W, € W(G1) or Wi € W(G,, : n>2) for
I<i<m and W € W(G,) o and only if Wiyt € W(G 17 >2) for
1<i<n — 1. :
(Substep 1)  We can correspond a closed interval I; to each W; so that
Wi = Wi for1 <4 < ny, U2, L = [0,1] and the right end of I;
15 the left end of Iy for 1 < i < ny — 1. We claim that W; = ¢
for some 1 < 1 < ny. Suppose not. There exists F CC N such that
pr(W;) # e for every 1 < 4 < ny. Then, pr(W') # e, which is a
contradiction. We choose one W; with W; = e. Let H(s,t) = f(s) for
(s,8) € Ujer I; x [1/2,1].

In case W; € W(G1), f|1I, is homotopic to the constant loop in X;.
Let H|I; x [1/2,1} be a continuous map such that H(s,1/2) = 2* for
s € I, and H(s,t) = 2* for s € I; and t € [1/2,1]. In case W; €
W(Gy : n > 2) we do not define H on (I\I;) x (1/2,1) in this step,
but we -*lcfH’(s; 1/2) = zx for s € I,.. Next, we reform the word WY
to Wl' vV Wy by elimanating Wi, where Vo= W;_1W;,1. Then,
Wy Vo I/an = e and members of W(Gl} and )/V(Gn :n > 2) are
nezghbormg in Wy, - Ve oy Wy,

(Substep k + 1) In the substep k, H(s,1/2%)(s € [0,1]) have been
defined and there is a correapondmg word reformed from WY, By the
same reasoning as in the substep 1, one of the words equal e as member
of the group, of course. We perform the work as in the substep 1. The-
substeps would finish in at most ny-steps. If they finish. in the k-step,

then H(t;1/2%)(0° < t < 1) have been deﬁned and equal to x*.- Let
H([0,1]x[0,1/24)) =2* "

(Step k) . After the (k — 1) -step, there posszbly exist ﬁmtely many sub-

rectangles of [0,1] % [0, 1} on which H has not been defined. Their forms

are [a,b] x: (S s; /20 4+ 1/2™ 5 Ls, /20 +1/2™°1) where s; = 0 or 1



20 o KATSUYA EDA

and m < X¥_ n;. H has been defined on the upper side of a rectangle
and it is corresponding to a word in W(mp(Xn,z,) : n > k). H maps
the lower side to z*. In each rectangle, we work as in the step 1 as if
the rectangle were [0,1] x [0,1]. Note that the values of H which we

define in this step are in \/, 5, (Xn, To), because the loops in question

are i \/ 5, (Xn, Tn).

Let H(t,u) = z*, if H(t,u) has not been defined in any step. Now,

the continuity of H is clear and the proof of Theorem 5.1 is complete.
O

Next we state a characterization of n-slender groups using mwi-groups.
Some preliminaries and definitions are necessary to state it.

A continuous map f : X — Y with f(z) = y naturally induces
a homomorphism f. : m(X,z) — m(Y,y). A homomorphism h :
mi(X,z) — m(Y,y) is spatial with respect to pointed spaces (X,x)
and (Y,y), if there exists a continuous map f: X — Y with f(z) =1y
such that f. = h. Denote the circle with a base point by (St,b) and let
(S}, bn) (n € N) be copies of it. Then, \/,,cn (S5, bn) (= (H, b)) is the
so-called the Hawaiian earring.

Theorem 5.4. For a group G the following are equivalent.

(1) G is n-slender;

(2) Let X;(¢ € I) be 2-simplicial complezes withx; € X;. If m(Y,y) ~ G
for an arbitrary pointed space (Y,y), then any homomorphism h :
1 (Vier(Xi, 23), %) — m1(Y, y) is spatial with respect to (\,.;(Xi, z:), z*)
and (V,y) ;

(3) If (Y, y) ~ G for a pointed space (Y,y), then any homomorphism
h:m(H,b*) — m1(Y,y) s spatial with respect to (H, b*) and (Y, 7).

Proof. Tt suffices to show the implications (1)—(2) and (3)—(1).

(1)—(2): By Theorem 5.1, m1 (Ve (Xi, 7:), 2%) ~ % ;m1 (X5, 7;) natu-
rally. Therefore, there exist E CC I and h : m(X;, 2;) — 7 (Y, y) such
that h = h- pg by Proposition 3.5. Since X;(i € I) are 2-simplicial
complexes, & standard method shows that any homomorphism from
71 (X;, 2;) to mi(Y,y) is spatial. Hence, there exist continuous maps
fo o Xi = Y (i € E) such that fi(z;) = y and (fi)s = hlm(Xy, z,).

Define a continuous map f : \/,.;(Xi,z;) = Y by: f|lX;=fifori€ E

(3)—(1): Let h : xyZ — G beé a homomorphism. There exists a
simplicial .complex Y with y such that m(Y,y) ~ G, for example,
the Eilenberg-Maclane complex K(1, G). Identify xyZ with m(H, b*),
then there exists a continuous map f : H — Y such that f(b*) =
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y and f. = h. Since Y is locally contractible, there exists n € N
such thatf(V/,,>,(Sy,, bm)) contained in some contractible neighbor-

hood of y. On the other hand H =/, (S}, bn) V \7m2n(85n, bmm) and
71 (H, 0*) & %macn1 (S, bm) * Xm>nT1(Sk, by) naturally. Therefore,
h(XN\{l,‘..,m}Z) = f*(x'mZnWl(Sr}m bm)) = {6} O

As is well-known, the first integral singular homology group H;(X)
is isomorphic to Ab(m1(X, z)) for a path-connected pointed space (X, z)
[14]. For certain spaces we can interpret Ab®(G) naturally. Let X;(i €
I) be simplicial complexes, or ANR’s more generally, such that m(X;, z;)(i €

I) are n-slender. Then, 7r1(\7i€I(Xi,a:i),x*) ~ %% mi (X, xi). As we

we have shown in Section 8, Hy(\/, (X, z;)) becomes a rather compli-
cated group for an infinite I, even if X;(i € I) are copies of St. On the
other hand the factor Hf(\N/iel(Xi, z;)) of Hl(\N/z.E[(Xi, z;)), introduced
in (5], is naturally isomorphic to 119, HY (X;) for path-connected spaces
(X, x;) by [5, Theorem 4.6]. Therefore, Hf(VieI(Xi, ;) 18 1somorphic
to Ab”(wl(viEI(Xi,xi),x*)). We ezplain the situation a little.

H1(V,e;(Xi, ;) consists of loops modulo the image of the boundary
map, Im(0y). A loop f with base point x* represents an element of

71 (Vier(Xi, 2i), %) if and only if f belongs to Im(8,). HT is defined

as Hy replacing Im(8;) by Im(3,), where the topological closure is taken
under the topology of a free topological abelian group. (See [5] for precise

definition.) Now, f represents an element of m1(\/;c;(Xi, %), z*)" if

and only if f belongs to Tm(d,). Hence, Im(3)/Im(dy) is complete
modulo the Ulm subgroup by Theorem 4.7 in such a case.
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FREE ¢-PRODUCTS AND FUNDAMENTAL GROUPS OF
SUBSPACES OF THE PLANE

KATSUYA EDA

ABSTRACT. Let H be the so-called Hawaiian earring, ie. H = {(z,y) : (z -
1/n)? +y? =1/n% 1 <n <w} and o = (0,0). We prove:

(1) If Y is a subspace of a line in the Euclidean plane R? and X its complement
R? \ Y with € X, then the fundamental group m1(X,z) is isomorphic to a
subgroup of 71 (H, 0).

(2) Let Y be a subspace of a line in the Euclidean plane R2. Then, m1(R2\Y,z)
for z € R2\Y is isomorphic to 7 (H, o), if and ouly if there exists infinitely many
connected components of Y which converge to a point outside of Y.

(3) Every homomorphism from 4 (H, o) to itself is conjugate to a homomorphism
induced from a continuous map.

1. INTRODUCTION AND SUMMARY

Let X be a subspace of the Euclidean plane R?. If X has topologically good
properties, the fundamental group 71 (X, z) becomes a free group whose generators
correspond to the holes of X in R?, ie. the bounded connected components of
R?\ X. On the other hand, without such conditions the fundamental groups be-
come complicated in general. For instance, consider the so-called Hawaiian earring,
ie. H={(z,y): (z—1/n)2+y* = 1/n?1 < n < w}. The fundamental group
m1(H, 0) is uncountable and not free [4, 5, 6, 2]. We introduced ‘free o-products’
in [2] and a modified notion ‘free m-products’ in [1]. They are fitted to present
fundamental groups of spaces which are not locally simply connected. In the first
section of the present paper, we investigate homomorphisms from free o-products
to free o-products of n-slender groups, which are introduced in [2]. We shall show
that any such homomorphism is conjugate to a standard homomorphism, defined
in Definition 2.2. The notion ‘standard homomorphism’ turns out to be a spatial
homomorphism under certain settings, where a homomorphism induced by a con-
tinuous map called spatial [3, 2]. In Section 3, we investigate fundamental groups of
subspaces of the Euclidean plane. One of theorems in the section is the following: If
Y is a subspace of a line in the Euclidean plane R? and X its complement R?\Y with
z € X, then the fundamental group 7 (X, z) is isomorphic to a subgroup of m (H, o).

1991 Mathematics Subject Classification. 55Q52, 20F99.
Key words and phrases. free o-product, o-word, Hawaiian earring, fundamental group, plane,
spatial homomorphism, standard homomorphism.
1



2 ' KATSUYA EDA

Since the Hawaiian earring H is homotopic to the space R*\ {(1/n,0) : 1 <n < w}
(Remark 3.12), we may consider H itself as one of the spaces X in the statement.
In Section 4, using a result in Section 3, we characterize a subspace Y of a line in
R? for which 1 (R2\ Y, z) with z € R?\Y is isomorphic to 71 (H, 0). We also discuss
the relation between a factor of singular homology [3] and the o-abelianization [2].

2. FREE 0-PRODUCTS AND STANDARD HOMOMORPHISMS

In this section we show that any homomorphism from a free o-product to a free
o-product of n-slender groups is a natural one. (See Theorem 2.3 below.) We
use notions of words of countable length (called o-words), free o-products and n-
slenderniess. For the definitions and basic facts, we refer the reader to [2]. The
merit of using o-words instead of inverse systems is the existence of reduced o-
words. According to it, we can investigate more precise properties like the case of
usual words of finite length.

We simply say ‘word’ instead of ‘o-word’. A word U is called a subword of V, if
UCV and V ~ XUY for some X,Y. The next notion was defined in [2, p.247) for
elements of a free o-product, under the identification of an element and a reduced
word. Here, we define it also for words.

Definition 2.1. Let G; (¢ € I) be groups. For a word W € W?(G; :i € ), the
i-length I;(W) is the number of elements of G; which appear in W. For an element z
in the free o-product x% G, l;(z) is §;(W) for the reduced word W of z [2, p.247].

A sequence (z; : j€J) of elements of X7 ;G is proper, if {j € J : li(x;) 0} is
finite for each ¢ € I. .

For a proper sequence (z; : j € J), we can naturally define the infinite multipli-
cation depending on an ordering of J, which is defined in [2, Proposition 1.9]. We
shall not distinguish a word W and an element [W] of a free o-product, since no
confusion will occur except the definition of /;. More precisely, when we are using
the notions ~ or W, the domain of W, we are interested in words. In other cases,
we are interested in elements of groups.

Definition 2.2. Let G; (i € I) and H; (j € J) be groups. A homomorphism A :
x¢. Gy — X9 H; is standard, if (h(g:) : 4 € I) is proper for any g; € G; (i € I) and
R(W) =V for a word W € W?(G; : i € I), where V is the word in We(H;:j€J)
defined as follows:

(1) V={(e,8): « € W, B € V,}, where V,, is the reduced word of h(W(a));

(2) The order (a, 3) < (¢/, ') is lexicographical, i.e. o < o, oro=a and f < [

(3) V(a, B) = Va(B) for (o, ) € V. -

The following is the main theorem of this section, which is a free o-product version
of a trivial fact about usual free products, i.e. every homomorphism h : *;c/G; —
*;jesH; 18 determined by all restrictions h [ G,;. We cannot assert the same result
for free o-products. See Remark 2.12.
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Theorem 2.3. Let G; (i € I) and H; (j € J) be groups. If each H; is n-slender,
every homomorphism h : x3.,G; — x5 Hj is conjugate to a standard homomor-
phism h, that is, there exist u € X0 7Hj such that h(z) = uw= h(z)u for v € xI_,G;.
In addition if the set {¢ € I : h(g) # e for some g € G;} is infinite, such u is
unique.

To prove this theorem, some lemmas are necessary. First we prove a lemma about
a presentation of an element.

Lemma 2.4. Fora € x{;G;, there exist reduced words V and W in W2 (G; : i € I)
such that

(1) a=W™VW and W=IVW is quasi-reduced;

(2) VW is reduced;

(3) IfV is a single letter, W™VW is reduced; otherwise V'V is reduced.

Proof. Let U be a reduced word for a and take a maximal subword W’ of U such
that W'~'V'W’ ~ U for some V. Then, V'W" is reduced. If V' is a single letter or
V'V’ is reduced, we have done. Otherwise, V' =~ ¢'V"g for some g, € G; \ {e} and
some non-empty word V”. Then, neither the left side letter of W' nor the both side
letters of V" belong to G;. Let W ~ gW’ and V =~ ¢"V", where ¢ = g¢’. Then,
g" # e and consequently V and W have the required properties. O

Lemma 2.5. Let H; (j € J) be n-slender groups and h, b’ : x%,;G; — XZe H; be
homomorphisms. Then, h | *;c;G; = b | %;c1G; implies h = /.

Proof. Suppose that h(z) # h'(z), that is, there exists a finite subset F of J such
that pgh(z) # pph/(z), where pg : X csH; — *jepH; is the projection. Since
*jepH; is n-slender by [2, Theorem 3.6], there exists a finite subset F' of I such
that pph(x{.p»Gi) = {e}, see the proof of [2, Proposition 2]. Since x,G; =
(%ierGa) * (X%p £Gi) and A | #ie1Gi = W | %iesGy, we have pph(z) = pph'(z),
which is a contradiction. : W

In the above lemma, assume that (h(g;) : ¢ € I) is proper for any g; € G; (i € I)
and let ' be a standard homomorphism defined by the restrictions b | G; (cf.
Definition 2.2). Then, we have h = I/, namely b is a standard homomorphism.

Lemma 2.6. Let H; (j € J) be n-slender groups and h : X,Z — x5 H; be a
homomorphism. If x, € X \nZ for n < w, sup{l;(h(z,)) : n < w} < co for each
JEJ

Proof. To the contrary, suppose sup{/;x(h(z,)) : n < w} = oo for some j* € J.
Since we can take a countable subset J' of J so that j* € J' and h(z,) € X7, ey Hj
and there is a projection from x¢ jesH; to X7 Hj, we may assume J = w. As in
the proof of Lemma 2.5, for each projection p,, : X7 Hi — *;cmH; there exists k,,
such that pyh [ Xk, Z is trivial.
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We define ng.= 0 and n;, m; by induction as follows. For given n; (j < i) and
my (§ < 1), choose m; > my_y such that L (h(zn, - Zn;)) = s (P, (T - - - Tn,)).-
Take Nip1 > ki, 50 that 2L (A(zn, - - - 2y z)) < e (h(2n,,,))-
Let W, be a reduced Word for xm Since (z,, : 1 < w) is a proper sequence,
Wo---m =W becomes a word naturally. Choose m; so that U (R(W)) =
L= (Dm,R{W)). Since M+1 - € xu,\an - xw\kMzZ S

L« (h(W)) = Uj» (pmzh(Wo Wi)) = L (h(Wo - - - W3))
< lj* (h(m’f WWz-H)) = l (p'ﬂlz—i—lh’(WO cr I/ViWi-l—l))
= L (P R(W)) = L= (R(W)),

which is a contradiction. ' O

To get an element u € xge yH; for the conjugate form in Theorem 2.3, we define
some notion.

Definition 2.7. For a sequence (W, : n < w) of words, W is a tail-limit of (W, :
1 < w), if the following hold:

(1) For each o € W and for all but finite 7 there exists a word X, such that W, ~
X,W*, where W* is defined by W2 = {3 € W : 8 > a} and W*(8) = W(8)
for 8 > «;

(2) W is maximal among words satisfying (1), i.e. if V satisfies (1), W ~ XV for
some word X.

Lemma 2.8. Let W, € W(G; : i € I) (n < w) be reduced words. If sup{l;(W,,) :
n <w} < oo for each i € I, there exists a unique tail-limit of (W, : n < w).

Proof. Since each W), is reduced, a tail-limit is also reduced if it exists. The unique-
ness follows from the max1ma,hty To see the existence, we consider tails of W,,. First,
take the maximal word Vj such that for any n there exists X,,o with X0V} o~ Wn.
Inductively, we extend Vj_1 to the maximal word V} such that for any n > k there
exists X, with X, Vi >~ W,.

Finally, let W = im{V, : n < w} and W(in(Q)) = V() for a € V,, where
in : Vp — W is the canonical map. If we can see W is a word, we easily see W is
the desired word. It suffices to see [;(W) < max{l;(V,) : n < w}{(< sup{l;(W,,) : n
w}) for each i € I. To the contrary, suppose that there exists 4 € I such that |{a E
W : W(a) € G;}| > max{};(V;) : n < w} and consequently there exists o* € W
such that W(a*) € G; and [{a € W : o* < o, W(a) € G;}| > max{l;(V,) : n < w}.
By the construction of W, there exists V, such that a* = i,(8) for some 8 € V,.
Then, li(Va) > {in(7) : B <7, Va(v) € G} = Ha € W : o < o, W () € G},
which is a contradiction. O

Let 6, € %,Z be the element corresponding 1 in the n-th copy of Z.
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Lemma 2.9. Let H; (j € J) be n-slender groups. Then, every hemomorphism
h : x, 7 — xJerHj is conjugate to a standard homomorphz’sm that is, there ezist

u € X9, H; and a standard homomorphism h : x,7 — xJ7crH; such that h(z) =

u~th(z)u for x € x,Z. In addztwn zf the set {n < w: h(b,) ¥ e} is infinite, such u
is unique. S

Proof. By Lemma 2.4, there is a presentation h(5 ) = WV, W, for each n < w,
where V;, and W, satlsfy the conditions in the lemma.

(Clalm 1) (Va1 n <w) is proper.

We can divide our argument into two cases when V,, are single words for all n < w
and when V,,V,, are reduced for all n < w. In the former case, let p; : Xl Hy — Hj
be the projection.. Then, p;(W,) 'p;(Vo)p;(Wy) = p;h{6,) = e for almost all n
by the n-slenderness of Hj, which implies p;(V,) = e and hence 1;(V,,) = 0 for
almost all n. To show the properness in the latter case by contradiction, suppose
that {n < w : l;(V,) # 0} is infinite for some j € J. Since h(6,") = W, 'V"W,
and I;(h(6,™)) > [;(V;}) = nl;(V,), we get a sequence (5," : n < w) forbidden by
Lemma 2.6. Now, we have shown Claim 1.

Let I = {n < w : h{6,) # e}. In case I is finite, h itself is a standard ho-
momorphism by Lemma 2.5. Hence, we deal with the case I is infinite. Since
LWa) < (W, 'VaWa)) for n < w and sup{l;([W;'VaW,)) : n < w} < oo by
Lemma 2.6, sup{l;(W,) : n < w} < oo for each j € J. By Lemma 2.8, there exists
a tail-limit W of (W, : n € I).

(Claim 2) (W,W~!:n € I) is proper.

Suppose the contrary. There is j € J such that L;([W,W™]) # 0 for infinitely
many 7. (Note that W, W ™! is not reduced in general.) Let o € W be the leftmost
element such that W{a) € H;. (If there is no o € W satisfying W(a) € H;, we
let W* to be an empty word in the following.) Take ng so that 1;(V,) = 0 for any
n > ng and there are reduced words X,, (n > > ng,n € I) satlsfymg Wy ~ X, We.
By the hypothesis, there are infinitely many n > nyp'such that [;(X,) # C. By the
maximality of W, for such n there exists m € I such that m > n aml L ([WnW,; 1) #
0. Let ¢ = h(6,)h(6m). We shall show that sup{l;(¢*) : k < w} = co. Remark that
somie letter g € Hj in X, remains in the reduced word of W,,W, 1, i.e. the head part
of W,, remains. Hence if the tail of W remains in the reduced word of Wntl,
it is easy to see sup{/; ( *): k < w} = oo in the following argument. In case w1
cancelled, we may let W = UW,,, where U is reduced and UW,, is qua51—recluced
'I\J'OW ; . .

A = W;lU“lanWmW,;lvmeW,;lU‘l"VnUWmW,;]-V;nWm
= WU WLUVLU VUV Wi

Since V, is a single letter or VinVin is reduced, at least one of UV,, and V;, U is
quasi-reduced. Since [;(Vi,) = 0 and V,, is non-empty, the right most appearance
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of members of H; in U and the left most one in U™" remain in a reduced word of
UV,,U™! and hence the tail and head of UV,,U~! remain in its reduced word and
lj([UVmU’l]) > 2. Hence, sup{l;(c*) : k < w} = oco. Now, using members of form
(6,0:m)%, we can easily get a sequence z, € X,\nZ (n < w) with sup{l;(h(z,)) : n <
w} = oo, which contradicts Lemma 2.6. Now, we have proved Claim 2.

By these claims, (WW;'V,W,W~! : n < w) is proper. Let h(z) = Wh(z)W ™
for z € %,7Z. Then, h is a standard homomorphism and we get the conclusion.

To show the uniqueness, it suffices to show u~'h(z)u is not standard for a stan-
dard homomorphism A, if u # e and {n < w : h(8,) # e} is infinite. Choose
j so that I;(u) # 0. There is m such that I;(h(d,)) = 0 for-any n > m by the
standardness of h. If 1;(h(8,)) = 0 and h(d,) # e, lj(u™ h(é,)u) # 0. Therefore, a

homomorphism u~*A(z)u is not standard. O

Proof of Theorem 2.3. In case {i € I : h(g) # e for some g € G;} = I' is finite,
h(x¢prGi) = {e} by Lemma 2.5. Hence, h itself is standard.

In the other case, we have g, € G;, (n < w) such that h(g,) # e and ip, # iy
if m s n. Take a standard homomorphim ¢ : x,Z — %% ;G; such that ¢(é,) =
gn (n < w). By Lemma 2.9, there exists u € xJ.;H; such that urhe(z)u is
standard. We claim (u™*h(g))u : i € I) is proper for any g, € G;. Otherwise, there
exist k, € I (n < w) such that kmy # ks, for m # n and (u™'A(g, Ju : n < w)
is not proper. Take a standard homomorphism v : X ,Z — %7,;G; such that
Y(0n) = gy, and P(dzn11) = gn. By Lemma 2.9, there exists v € X, H; such
that v~thiy(z)v is standard. Let £ : x,Z — X, Z be a standard homomorphism
such that £€(0,) = dany1. Then, ¢ = 1€ holds and both v hpé(z)v and u™he(z)u
are standard. Since hy(d,) = h)(dans1) # €, v = v by the uniqueness. Hence,
(w™th(gy, )u : n < w) is proper, which is a contradiction. O

The next notion ‘spatial homomorphism’ has been defined in [3] and [2], but
we restate it for reader’s convenience. Let (X, z) and (Y,y) be pointed spaces. A
homomorphism & : 71(X, z) — m(Y,y) is spatial, if there exists a continuous map
f: X — Y with f(z) = y such that f. = h, where f, : m(X,z) = m(Y,y) is a
homomorphism naturally induced from f.

Let {X;,x;) be pointed spaces such that X; N X; = ¢ for ¢ # j. We identify
all z;(= z*) and define a topology on | J,.; X; in the following way: the topclogy
on |J;o; Xi\{;} is induced from the topologies of the components; for an open
neighborhood U of z*, each U N'X; is not only open in X; but also X; € U for
almost all i. We denote this space by \/ZE I(X,, x,)

Proposition 2.10. Let (X;, z;) and (Y;,y;) be path- connected pointed spaces such
that X; andY; are locally simply connected at i ¢ and y; and also ﬁrst countable at-x;

and y; respectively. For a continuous map ¢ : \/ze I(Xz,xl) -V, ies(Y5,95), the in-
duced homomorphism ¢, : T (VzeI(X“xl) z*) — m (VJEJ(Y], ¥i),y*) is a standard
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homomeorphism under the natural identification 71'1(\/2E (X, ), %) = X7 1 (X5, 1)

7
and 7r1(\/]6;( i), y*) = X m1 (Y5, 45)-
In case X;’s are copies of the czrcle the converse also holds, i.e. any standard

homomorphism from X% mi (X, 2;) to X5 ymi(Yj, ;) s a spatial homomorphism.
Proof. Under the given condition, we can identify 7r1(\~/iG (X, 3), %) = > ymi (X, z4)
and Wl(V]EJ(Y],yj) y*) = % m1(Y;, ;) by [2, Theorem A.1]. Let u € mi (V¢ (Xi, ), ©
and jo € J. Then, u is expressed by a word W € W(m(X;,z;) : ¢ € I). Take a
neighborhood U of Yjo in Yj, so that any loop in U is homotopic to the constant
relative to the end points. For almost all i € I, o(X;) C {y*} U, Y5 UU. So

{a € W : 1;,(p.(W(a)) # 0} is finite. Now, the standardness of @, follows from the
definition of the word W¥f € W7 (m(Y;,y;) : 7 € J) in the proof of [2, Theorem
A.1] for a loop f in \N/ZE[(XI,a:z)

Suppose that X;’s are copies of the circle and h : XJ;m (X;, z;) — X7e 571(Y5,95)
is a standard homomorphism. Then each h(&;) is presented by a loop f; : [0,1] —

V,es(Y;, ;) such that £i(0) = f(1) = y*. Define ¢ : V;e/ (X, #:) = Ve (¥, 95) by
o | X;= f; for all i € I. Then, ¢, = h. O

vBy Theorem 2.3 and this proposition, we get the following corollary.

Corollary 2.11. Every homomorphism from the fundamental group of the Hawei-
ian earring H to itself is conjugate to a spatial homomorphism.

Remark 2.12. (1) We note that n-slenderness and conjugacy in Theorem 2.3 are
necessary. If H is not n-slender, there is a homomorphism h : %,Z — H such that
h(8,) # e for all n. Let Hj, = H. For any e # u € X Hj, ly(u™"h(6,)u) # 0.
This implies that A cannot be conjugate to a standard homomorphism. Next, take
u € %,Z with I,(u) % 0 for infinitely many n. Then, h(z) = v zu is not a standard
homomorphism.

(2) In Proposition 2.10, the condition ‘local simple connectivity and first count-
ability’ can be weakened to a certain notion (1) in [1, Proposition 3.5]. The second
statement of the proposition holds for 2-simplicial complexes X; as in [2, Theo-
rem A.4]. Consequently, in addition if 71(X;, z;) are n-slender, Corollary 2.11 holds
for such 2-simplicial complexes X;.

3. FUNDAMENTAL GROUPS OF SUBSETS OF THE PLANE

In this section we represent fundamental groups of certain subsets of the Eu-
clidean plane. To do this, we introduce some notion for words.

For a subset Y of R, D C Y is quasi-dense in Y, if (u,v) NY # ( implies
(u,v) N D # 0 for u,v € R\Y with u < v. Let Y C R and D be a countable
quasi-dense subset of Y. Any subset of R is endowed with the linear ordering of
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R. For a linearly ordered set L, L™! is the inversely ordered set of L consisting of
{-u:uwelL}
Let W(D) = W(Z4 : d € D) whereZdlsacopyon By de D and —d € D7,
we denote 1 in Zy = Z and —1 respectively. We define |d| = | — d| = d for d € D.
Let W € W(D) such that each W(a) is d or —d for some d € D. A word
V € W(D) is a component of W, if V is a maximal subword of W which satisfies
the following:-
(+) There exist u,v € R\ Y such that u <v and V: V — (u,v) N D is the order
isomorphism;
or
(—) There exist u,v € R\ 'Y such that u < v and V : V' — ((,v) N D)~ is the
order isomorphism. :

For any non-empty word W, the word W? is not contained in one component of any
word. This observation is important in the argument in the proof of Theorem 4.1.

Definition 3.1. U(D,Y") consists of W & W(D) which satisfies the following:
(1) Each W(a) is d or —d for some d € D;
(2) For any a € W, there exists a component V of W such that o € V;
(3) Let an € W (n < w) be an increasing or decreasing sequence. If a,’s belong
to different components V,,’s, i.e. o, € V,, with Vj, # V,, (m # n), there exists
z € R\ 'Y such that lim, .., |[W(a,)| = .
Now, we can state our main theorem of this section.

Theorem 3.2. LetY be a subset of R, D a countable quasi-dense subset of Y and
X = R*\Y x {0} with zy € X the base point. Then, the fundamental group
m1(X, xo) 4s isomorphic to the subgroup {{(W]: W € U(D,Y)} of xpZ.

The basic idea of the proof is the same as those in Theorem A.1 in [2] and
Theorem 3.9 in [1], but it’s more complicated. To prove this theorem we iutroduce
some auxiliary notions. A path f in X is a continuous map f : [a, b — X for
some a < b. For two paths f : [a,b] — X and g : [c,d] — X we define f = g as

t —
f(t) = gle+s Z(d—c)) fora<t<b Foramapf:Y — R2 define-fy, fo:Y — R
by (fi(y), fo(y)) = f(y) for y € Y. For distinct real numbers a and b, we denote the
open interval (min{a, b}, max{a, b}) by (a, b).

For a path f : [0,1] — X with f(0), (1) € R x {0}, we define a word W’ €
U(D,Y) C W(D) as follows:

Let UaeL(aaaba) = f_l(R X ("00,0))7 where (aa,ba) (a’ﬁabﬂ) = {} for
a # B.Let WS = {(a,u) : « 6 Lyu € DN (f(aa), f(ba)) if flaa) <
f(ba),u € (DN (f(ba), f(aq)))™" otherwise} and let (o, u) < (3,v), if
aa < ag, or a =  and u < v. Finally, let W¥(a,u) = u. |

To see W/ € U(D,Y), it suffices to check the third property of Definition 3. 1,
which follows from the continuity of the path.
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Definition 3.3. For u,v € R, we define S*(u,v), S (u,v) : [0,1] — R? as follows:
(1) S*(u,v)1(t) = S~ (u,v)1(t) =u+tlv—u) for0<t <1,

(2) St (u,v)s(t) = =5~ (u,v)2(t) = 21 li;él_ V| 1O/é<—i fgl/f

According to the definition, S%(u,u)(t) = (u, 0) and W5 @) is an empty word.

Definition 3.4. A path g: [a,b] — R? is canonical, if g(a), g(b) € R x {0} ard the
following hold: Let |J,_,(an, bn) = ¢"{(RZ\ R x {0}), where v < w and (a, bp) N
(@n, by) = 0 for m # n, and let C = {z : (z,0) € Im(g)}. Then

a an a _ J 5 (g1(an), 91(bn)) or
(1) g(an) # g(bn) and g [ [an, bs] = S (gu(an), 61(50));
(2) if g T [an, bn] = S™(g91(an), 91(bn)), then (g1(an), 91(bn)) NY # B;
(3) C is nowhere dense and Im(g) N C x R = C x {0}.

In short, a canonical path consists of paths similar to S*(u, v) and, for instance,
is a path in Figure 1. (In the figure, the path may go through lines more than
twice.)

(Figure 1)

N0 O

Lemma 3.5. Let YV be a subset of R and X = R?\ Y x {0}. Then, any path
f:10,1] = X with £(0), f(1) € R x {0} 4s homotopic to a canonical path g relative
to {0, 1} which satisfies W9 ~ W/,

Proof. Let U, < ,(an, bn) = f7 (R*\Rx{0}), where 41 < w and (am, bpn)N(an, by) = 0
form <n < p. -
Define H : [0,1] x [0,1] — R? as follows:

(1= ) £(8) +tS*(fi(an), fi n))(—aa") if fo(s) > 0 and ap < s < by;
H(s,t)z (1-t)f(s )+tS (f1(an), f1(by, ))( ann) if fo(s) <0 and a, < s < by;
f ‘(5 ) . otherwise.

It is easy to see that the image of H is in X. We check the continuity of H especially
in case that s is an accumulation point of a,’s. Since the diameters of the sets

{f(s) : an < s < bu}, Im(S*(f1(an), f1(bs))) and Im(S~(fi(ayr), f1(bs))) converge
to 0, the diameters of {H(s,t) : an < s < b,,0 <t <1} also converge to 0. Hence,
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the continuity of H for such an (s,t) follows from that of f. Let g(s) = H(s,1).
Then, W9 ~ W/ holds, because the values do not move through {(z,0) : z € R}. In
case fi(an) = f1(bn), 91(s) = f1(an) = f1(bn), and otherwise g1 (s) € (fi(an), f1(bn)),
for a, < s < b,.

Let B = {gi(s) : ga(s) = 0,0 < s < 1}, C = (B \ int(B)) U {g:(0), g1 (1)}
and U, (an,b,) = 17 (R \ C), where 1/ < w and (al,,¥,) N (a}, b)) = @ for
m < n < u'. We observe the following:

(1) C is nowhere dense;

(2) C is equal to the closure of the set {g:(a},), g1(b,) : n < 1'};

(3) if g1((an, bn))NB # 0, then g1((ar,, b)) C int(B) and hence gy ([ap, b,))NY = 0.
The first statement (1) is obvious. To see (2), it suffices to show that C is contained
in {g1(ap), g1(b,) : n < p'}. For ¢ € C, there is s € [0,1] with gi(s) = ¢. If s €
Un<s(ah, 87,)}, then s € {a],,¥, :n < 1/} and hence ¢ € {9:1(al), 1 (B,) : m < 'Y,
Otherwise, there are a*,b* € |, <,y(%>b%) such that a* < s < b* and (a*,b*) N
Un< (ar,8,) = 0. Since g ({a*, b*]) C C and O is nowhere dense, g,(a*) = g1(s) =
91(b*) and hence ¢ € {gi(a},), g1(b,) : n < p'}. To see (3), let gi(¢t) € B for some
¢t € (apn,by,). Then, g1(t) € int B holds. Take o* and b* so that a* < t < b*
91((a*,b%)) € B and (a*,b*) is such a maximal interval. Then, g;(a*) and g (b*) are
still in B. By the maximality, the both g;(a*) and g;(b*) belong to C' and hence
a* = a;, and b* = b, which imply g,((a},¥,)) C int(B).

Let I ={n <y : gi((a,b,)) N B = 0}, and define H' : [0,1] x [0,1] — X as
follows:

(

15" (61(0h), ) (=) + (L= t)gls) i T end ), <5 <,
or n € I,g5(s) > 0 and
H(s, 1) = 4 / T <8 S b
tS‘(g1(a;l),Ql(b;))(bz:zz) + (1‘—— t)g(s) if nel,gys) <0 and
a, <s<b;
.kt(gl(s), 0) + (1—1t)g(s) | otherwise.
Incasen € I, go(s) > Oforall s € (ay,B,) or go(s) < Oforall s € (), b,). Otherwise,

91([az, b,]) N'Y = 0. Therefore, the image of H' is in X. Observe that Hi(a,t) =
gl(a';z)le(b;wt) = gl(b;L)aH2(a';wt) = (1 “t)g2(a{n)’ and HZ(b;wt) = (1 - t)gl(ba)'
Then, we can check the continuity of H” as in case of H. Let ¢'(s) = H'(s, 1). Then,
C = {z : (z,0) € Im(¢')} holds and ¢'7"(R?\ R x {0}) = (J,.,(a},#,), where

n' - n

I'={n<y :n¢Iand g (a,)# g(¥,)}. Now, we can see that ¢' satisfies the first
and third properties of a canonical path and W9 ~ W9 ~ W/ holds.
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Finally, define H” : [0,1] x [0, 1] — R? as follows:
Hi(s,t) = g3(s);
Hro,) - J (- 2004(5) I gh(9) < 0,0, < 5 < b anl (g} (a0, g4(4)) (Y =0
B g5(s) otherwise.

When H”(s,t) (0 < t < 1) are not constant, H/(s,¢) € R\ Y. Therefore, the image
of H" is in X. Let ¢”(s) = H"(s,1). Then, W9 ~ W9 ~ W/ holds and ¢” is the
desired path. O

Lemma 3.6. Let f : [a,b] — X (a < b) be a canonical path and {fi(a), f1(b)} C
{u,v} = {z: (2,0) € Im(f)} withu <v. If W/ = e, there is a homotopy H (s, ) in
X such that

(1) H(s,1) = f(s), H(s,0) = S*(fi(a), f1(b)

= fla), H(b,t) = f(b); and
(3) Tm(H) € Im(S™ (u,v)) UIm((S~ (u,v)).

S—a
o)

Proof. If D N (u,v) = 0, Im(f) C Im(S*(u,v)) by the definition of a canonical
path. Therefore, f consists of similar maps to S*(u,v),S*(v,u) and constant
maps and the conclusion is obvious. Otherwise, f consists of similar maps to
S$*(u,v), S*(v,u), S~ (u,v), S~(v,u) and constant maps, the conclusion is also ob-
vious from W/ =e. O

Lemma 3.7. Let Y be a subset of R, X = R?2\'Y x {0} and f : [0,1] — X be a
path such that £(0), f(1) € R x {0} and f is homotopic to ST(#,(0), f1(1)) relative
to {0,1}. Then, W/ = e holds.

Proof. Let H : [0,1] x [0,1] — X be a homotopy from f to S*(f1(0), f1(1)), ie.

H(0,t) = f(¢ ),H( t) = 57(f1(0), f1(1))(t) and H(s,0) = £(0) = (/1(0),0), H(s,1) =
f1) = (A1 ),O) or 0 < s,t < 1. Tosee W/ = e, let F be a finite subset of D.
There exist ap < --- < a,, in R\ Y satisfying the followmg

(1) If there exists an z € Im(H;) such that d <z < d for d,d € F, then
d < a; < d' for some q;.

(2) For any d € F, ap < d < a, holds.

(3) f1(0) and f1(1) belong to {ag, - ,an}.

Let X, = U{Im(5+(&i,ai+1)) 0<i<n-—1}
U U{Im(S"(ai,aiH)) ra;<d< a4 for some d € F}.
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(Figure 2)

Since Im(H) is compact, by the properties (1) and (2) we have a subspace Y of
X containing Im(H) and a retraction r : Y — Xg with the following: 7,((z,y)) = z
holds for a; < x < a;41 where (a;,ai01) N F = §; r((z,)) = (ag,0) for z < ag and
r((z,9)) = (an,0) for > an; and r2((z,y)) > 0 or ry((z,y)) < 0 according toy > 0
or y < 0 for a member (z,y) in a bounded connected component of R2 \ X5 We
recall Wy is a word for a free product #4cpZg4 for a word W ¢ W(D). Then, by the
properties (1),(2) and (3) (W/)p = (W™f)p holds and moreover 7- S+ (£,(0), (1))
is a path in the upper half plane. Therefore, (W/)p = e in the free product *gcr g,
which implies W/ = e. O

Definition 3.8. For a word W € U(D,Y), UV is a regular decomposition of W, if
UV ~ W and any component of W is contained in U or V.

If UV is a regular decomposition of W € U(D,Y"), U and V also belong to U(D, V).
Especially, any component of W also belongs to (D, Y). By the third property of
Definition 3.1, it is straightforward to get the following:

Lemma 3.9. Suppose that UV is a regular decomposition of W € U(D,Y) and
U has no largest element. Then, there exists a unique u € R\'Y such that
UMy o0 [W(m)| = u for any unbounded increasing sequence v, € U (n < w).
The dual statement for V also holds.

Lemma 3.10. For any W € U(D,Y), there exists a path f : [0,1] — X with
f£(0), f(1) € R x {0} such that W/ ~W.

Proof. First we decompose W to components. There exist a countable linearly
ordered set L and components V, (a € L) of W such that W is isomorphic to
{(a,8) : a € L, B € V,} under the lexicographical ordering and W (e, B) = V,(B)
under the identification through this isomorphism. By the definition of components,
there exist us, v, € R\ Y such that u, < v, and V, : V, — (Ua, Vo) N D or
Vy : V, — ((4a, va) N D)™t is an order isomorphism. We choose such Ug, Vo SO
that u, = f(D N (ta, v,)) if inf(D N (g, v.)) € Y and v, = sup(D N (g, va)) if
sup(D n (u‘aava)) ¢ Y.
- Shrinking the complement of the Cantor ternary set, we can choose 0<a, <by, <
1 (a € L) so that by < ag for o < B and {[an, bs] : @ € L} is discrete in [0, 1]. Define
f:{0,1] — X as follows: Let f | [aa, ba] = S~ (ta, va) if Vi : Vo — (Ug, Vo) N D and
J 1 aa;ba] = 87 (va, ug) if Vy : Vo — ((tg, v4)ND) L. Note that f | U{laa, ba] : @ €
L} is continuous by the choice of ag, b,. For each a € [0,1]\ U{laa,ba) : @ € L},
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let = = sup{by : by < a} and a* = inf{as : a < a,}. We shall define fla™)
and f(a*). In case o~ = max{by : by < a} or a* = minfa, : a < ay}, the
value f(a™) or f(a™) has been defined respectively. In the following, we treat
the case f(a™) is not defined. Since a induces a regular decomposition UV of W
and U has no largest element, we get v € R\ Y in Lemma 3.9. Observe that
U={(e,B) 0 € Lby<a,feV,}. '

(Claim) liimnl_ﬁ><> Uq, = limn_,oo Vs, = u for any unbounded increasing sequence
(an:new)in{a€L:b, <a}.

To the contrary, suppose that there exist an unbounded sequence (v, : n € w)
and £ > 0 such that u,, <u—¢foralln < w or Va,, > u+e for all n < w. We only
deal with the former case. We observe the following fact:

For 3, € V,, (n < w), [Va(Bo)] € (tay, va,) N D and lim,,_,o, Vo (8n)| =
limy, ., |W (s, Bn)| = . : .
(Case 1): (u —&,u) N D = §. By the fact, (Ua,,u) ND = ( for almost all n. Take
n so that (ug,,u) N D = 0, then (ua,,v,) N D = (u,v,,) N D. Again by the fact,
u = inf(D N (g, Va,)) holds. Therefore, u,, = v for such Uq, by the choice of u,,,,
which contradicts u,, < u—e¢.
(Case 2): (u—¢e,u)N D # 0. Take d € (u— &,u) N D. Again by the fact, d < v,,
for almost all n, which implies I;(W) = co. But, this contradicts W € W(D).

According to this claim and its dual claim for V, there exist unique v and v
such that when we set f(a™) = v and f(a*) = v, f | {a~,a*} U Userla, bo]
becomes continuous at a~ and a*. Finally, let f | la=,a*t] = S*(u,v) for each
a € [0,1]\ U,er[@a; ba). Then, f is continuous and W/ ~ W. r

Proof of Theorem 3.2. We may assume that the bage point zo of a loop g : [0, 1] —
X is (0,1). Let a = min{¢t : go(t) = 0} and b = max{t : g2(t) = 0}. According
to Lemma 3.10, any word in U(D,Y) is realized by W9'®" for some loop ¢ in
X. Therefore, by Lemma 3.7 the map corresponding f to W/ induces a surjective
homomorphism from 7, (X, zo) to {[W]: W e U(D, Y)}. It suffices to show that a
path g I [a,b] is homotopic relative to {a,b} to a path which lies in the upper half
plane {(z,y) : y > 0} in case W94t = ¢, By Lemma 3.5, it also suffices to show
that W/ = e implies that f is homotopic to a path S*(u*, v*) relative to {G,1} for
& canonical path f with f(0) = (u*,0), f(1) = (v*,0).

Now, let f be a canonical path with £(0) = (u*,0), f(1) = (v*,0) and W/ = e. Let
C={z:(2,0) € Im(f)} and Un<u(tn, v) = (minIm(f1), max Im(f;)) \ C, where
(U Um) N (tn, vn) = 0 for m # n and g < w. We define parts of a homotopy H :
[0,1]x[0,1] — X by induction. First, let H(s, 1) = f(s), H(0,t) = (u*,0), H(1,t) =
(v*,0) and H(s,0) = S+ (u* v*)(s).

(Step 0) We are given canonical paths f and S*(u*,v*). There exist a division
0=ap<a; < - <ap, < a1 =1 such that

(*) (1) fi(a;) € {uo,vo} for 1 < 4 < ug;
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(2)
(3)

(4) f1

Let f* = f | [as,a:41] for 0 < i < ng to simplify the notation. We observe the
following: ’ ,

(f1 | [ai,ais1]) is cbntéined in the only one of (—o00,ug), [to, vo) and
, 00); ’

(f1 T [as, aig1]) and Im(fr | [a1+1,ai+2]) are contained in different ones
of (—00, ug], [uo, vo] and [vg, 00);

[

[as, a1+1] is not constant for0 <4< no

Im
[vo
Im

(1) Im(f}) € [uo,vo] for an alternate 1. :
(2) If Im(fi7") UTIm(fi*) C [uo, vo], fi(a:) = fi(ai1) = uo or fi(a:) = filain) =
Vo holds according to Im(f}) C (—o0,uo] or Im(ft) C [vg, 00).
(3) If Im(fiY) U Im(fi*!) C (—o0, ug), then fi(a;) = fi(ai1) = uo. ¥ Im(ff 1)U
Im(fi™!) C [vo, 0), then fi(a;) = fi(0i+1) = vo.

(Substep 0) ~ Since W/° .- - W™ ~ W7 belongs to the free product Xpn(—cou)Z*
X DA\(uo, vO)Z * X Dn(vo,00) Ly We have W = e for some i. If there exists f* such that
fia;) = faiy1) (equivalently fi(a;) = fi(ai+1)) in addition to W = e, we pick
such an fi. Otherwise, ng < 2 holds and W = e for each 0 < i < ng and we pick
fi arbitrarily.

In case W € W(D N (ug, v0)), we define H(s,t) for a; < s < ai41,1/2 <t < 1by
using Lemma 3.6 so that H(s,1/2) = S*(fi(a:), fr(ai+1))((s— al)/(azH a;)) and let
H(s,t) = f(t) for s < a; or a4y < sand 1/2 <t < 1. In case W ¢ W(DN(uo, ),
we just let H(s,1/2) = S*¥(fi(a;), fi(air1))((s — as)/(air1 — a;)) and also H(s,t) =

f(t) for s < a; or ;41 < sand 1/2 <t < 1, but do not define for (@i, Giy1) X
(1/2,1). Let g(s) = H(s,1/2). Then, W9 =~ Wf0 WITWIT L W =e In
case f(a;) = f(aszy1) for 2 <4 < ng—2, g [ [a;,ai41] is constant and moreover
Im(g; | [@i_1,0i41]) is contained in one of (—o0, o), [to, o] and [vg, o). Unless

Im(ff) € fuo, vo], Im(f}) C (—00,uo] or Im(f}) < [vo, 00).

- (Substep k) . We have defined H(s,1/2%)(= ( )) so that ¢ is a canonical path
dnd W9 = e. There exist a division 0 = by < by < «++ < by, < by, 41 = 1 which is
an amalgamation of 0 = ap < a1 < * =+ < @ny < A1 = 1 and has the property (x)
“for g. We work in [0,1] x [1/2F+1 1/2k] as in Substep 0 using g instead of f and
bo, b1y - : , bn,+1 instead of ag, a1, -+, Ang41-

The substeps will finish in at most ng-step, say k step. Then, we have defined
H (s 1/ 2’“‘1) = g(s) and W9 is an empty word. Since the image of g is in the upper
half plane, ie. {(z, y) y > 0}, we define

- H(s, £) = 2k+1ig(s) + 2FF1(1/2541 — )5t (u*, v¥)

for 0< s < 1,0 << 1/28
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(0,1) (1,1)
U
5 1l Z
(Step O) / ‘ same ’as
| [[] B
IHHIHHHIUMI

L Lo U | undefined

(0,0) L A, )

(Step k)  After the (k —1)-step, there possibly exist finitely many subrectangles
of [0,1] x [0,1] on which H has not been defined. Their forms are

le,d] x (7 ts;/28 + 1/2m 517 s /28 + 1/2™71), where s; = 0 or 1.
H has been defined on all the sides of these rectangles. In this step we work in each
rectangle as in Step 0 replacing (ug, vo) by (ug, vk), as if the rectangle is [0, 1] x [0, 1.

If the above procedure finishes in finite steps, we have done. Otherwise, after
all the steps H(so,tp) may not be defined. We consider such (so,%). In each k-
step, there exists an rectangle Ry which contains (so,to). On their sides, i.e. ORy,
H(s,t) is defined and Im(H | ORy) is contained in one of closed components of
[minIm(f;), maxIm(f;)) \ US oo (usvy), say [wo, wi]. Then, Im(H | ORy) is contained
in {{z,y) : wo < z < wy,ly] < (w1 —~ wp)/2}. Since U, (un,vs) is dense in
[min Im(f;), maxIm(f1)], Im(H; [ ORy) converge to some ¢ € C' and consequently
Im(H | ORy) converge to (c,0). Let H(sg,t0) = (c,0). Now, the continuity of H is
clear by definition and the proof has been finished. a

After Theorem 3.2 the following natural question occurs, which we canunoct answer
so far. '

Question 3.11. Is the fundamental group of any subspace of the plane isomorphic
to a subgroup of that of the Hawaiian earring? More specifically, is the fundamental
group of the Sierpinski gasket (or carpet) isomorphic to a subgroup of that of the
Hawaiian earring?

Remark 3.12. (1) First, we remark that the Hawaiian earring H is homotopic to
the space R? \ {p, : n < w} where p, (n < w) converge to ¢ ¢ {p, : n < w}. Since
R2\{pn : n < w} is homeomorphic to R2\{(3/2",0) : 1 < n < w}, it suffices to show
that H is homotopic to X = |, ., {(z,¥) : (z —3/2")* +y? = 1/2*"} U {(0,0)}.
Making {(z,y) : ¥ > 0} N X as one point, we get a space homeomorphic to H.
Let ¢ : X — H be the map through this quotient. Next, let 1 : H — X be
a continuous map satisfying the following: Let %(0,0) = (0,0), ¥(1/n,1/n) =
Y(1/n,—1/n) = (1/2"71,0), ¥(:(cosd + 1), 1sinf) € R x [0,00) (7/2 < 8 < 37/2)
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and (2 (cosf + 1), Lsinf) = (2 + L cos 20, 3= 8in20) (—m/2 < 0 < 7/2). Then,
it is easy to see that both ¢ and ¢ are homotopic to the identities on H and X
respectively. ‘ » ,

(2) As mentioned in the introduction of this paper, the fundamental groups of
subspaces of the plane are related to the numbers of holes of the subspaces in the
plane. However, in the cases treated in Theorem 3.2 this correspondence is not
clear. Here, we offer some examples which clarify this correspondence.

Let Y be a subset of R and X = R?\ 'Y x [0, 1]. Take ag € R\ ¥ Then, 7, (X, z)
becomes a free group whose generator is the set {Y N (a,aq), Y N (ag, b) : a,b €
R\Y,a < ay < b}. This holds, since any loop in X cannot go and back between
{{(z,y) : y < 1} and {(z,y) : y < 0} infinitely many times, which is very different
from the case of Theorem 3.2, i.e. {(z,y):y > 0} and {(z,y) : y < 0} instead.
Consider the two cases when Y are the set of rationals and that of irrationals. The
generators of the free groups are uncountable and countable respectively according
toY =QandY =R\ Q. (Not the converse!) Hence, the correspondence is not
between generators and holes, but between generators and paths medulo homotopy
by definition after all. ‘

4. HoMoMORPHISMS FROM 71 (H, (1,1)) AND 0-ABELIANIZATION

In this section we investigate homomorphisms from 7 (H, (1,1)) to the funda-
mental groups appearing in Theorem 3.2. Using this we shall discuss relationship
between the ‘-abelianization’ [2] and a ‘canonical factor’ of singular homology [3].
The next theorem generalizes Corollary 2.11.

Theorem 4.1. Let X andY be as in Theorem 8.2 and o = (0,1). Then, every ho-
momorphism h : w1 (H, (1,1)) — 71 (X, 7o) is conjugate to a spatial homomorphism,
i.e. there exist a continuous map f: H — X with f((1,1)) = 2o and u € m(X, To)
such that h(z) = u=1f,(z)u.

To prove this theorem, we need some lemmas. In the following, let X,Y and D
be as in Theorem 3.2.

Lemma 4.2. Let h : x,Z — {[W]: W € U(D,Y)} — xpZ be a standard
homomorphism. If h(6,) # e for infinitely many n < w, there ezists o unique
c € R\Y such that lim,_.. supp h(8,) = ¢, where suppu = {d € D : la(u) # 0} for
u € XpZ and the limit is taken over for n with h(8,) # e.

Proof. Let u, = h(é,). First, we show the uniqueness of an accumulation point. To
the contrary, suppose that O and P are open subsets of R such that ONP = f} and
both {n : suppu,NO % 0} and {n : supp u, NP 5 0} are infinite. Since (un 1 n < w)
is a proper sequence by Definition 2.2, we can take a subsequence (u,, : & < w)
and di, € D (k < w) so that dy, € supp Ungy, N O, dog11 € SUPP Un,y, , N P and dy, ¢
supp un; for any j > k. Then, inductively choose m;, so large that I, (u;’? eyl ) o

.

0. A reduced word W for Une « - Upk -+ becomes of form Wy --- Wy --- such that
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dy € supp Wy, but dk ¢ supp W; for j > k, since the right most appearance d; in the
- reduced word for uy'* remains in W. There exists W' € U(D,Y) such that W’ = W.
Then, I;, (W") #0 for all k. By Lemma 3.10, there exists a path f : [0,1] — X with

£(0), £(1) € R x {0} such that W/ ~ W’ Since the values of f; cannot be taken
alternately in O and P infinitely many times, we get a contradiction.

Next, we show that the sequence supp u, (n <w)is bounded in R. Suppose the
contrary. We take an increasing sequerice (n; : k < w) and an unbounded sequence
(de + £ < w) in D such that dy € supp un,, di & SUPP Uy, for any j < k and
di ¢ supp(uy;) for any j > k+ 1. Then, a reduced word W for h(dn,0n, Oy )

contains-all letters di (k < w), since dy, in the reduced word for u,, remains in
W. On the other hand, by the properties (2) and (3) of Definition 3.1, supp[W] is
bounded for any W € U(D,Y). Now, a contradiction occurs.

‘Finally, we show ¢ = limy, . SUpp uy, does not belong to Y. Suppose the contrary.
We get a subsequence Up, and dp € supp Uy, such that hmk_,oo di = cand dy ¢
SUPP Uq, for any j > k. Then, similarly as in the proof of uniqueness we inductively
choose my, so large that one of d and —d; appears at least twice in the reduced
word for u remains in the reduced word for u™ . - ~upk. Since dy ¢ supp un; for

10

any j > k, these &=d;, appear in the reduced word W for uj® .- -7 .- . Then, W
is of form Wy« - Wy --- where +d; appears at least twice in Wj. Note that two
appearances of a letter in W belong to different components of W. Then, for k # £’
there are appearances of +dj and +dj, which belong to different components of W.
Take a path f sothat W/ ~ W by By Lemma 3.10. Then, Im(f)N{dy, d) x {0} 5 0.

a

This implies (c,0) € Im f, which is a contradiction.

To investigate U(D,Y) more, we need a notion ‘g-reduced’, an abbreviation of
‘generator-wise reduced.” Since arguments involving the difference between the re-
ducedness and g-reducedness are tedious, we explain the intention of introducing
the g-reducedness here. Let W='VW be a presentation according toc Lemma 2.4
with [4(V) # 0 for d € D. If the length of V is greater than or equal to 2,
L({(W=VW)™M]) = [4([W~1V™V]) increases according to the increase of m. How-
ever, ([(W=1dW)™]) = [4(]Wtd™W]) = I4([W~1dW]) for any m. In the proof
of Theorem 4.1, we need to make a distinction between W=1d™W and W=*dW as
forms of words. Hence, we do not want to treat d™ as a single letter, but want to
treat as the m-letters d - - - d.

Definition 4.3. A word W € W(D) is g-reduced, if W(a) = d or —d (d € D) for
each o € W and U # e for any nonempty U with XUY ~ W.

For instance, the word ddd is g-reduced and quasi-reduced but not reduced, and
d(~d)d is quasi-reduced but not g-reduced. For any word W € W(D), there exists
a unique g-reduced word of W, as in case of a reduced word [2, Theorem 1.4]. The
proof is its easy corollary and so we omit it. The difference of the reduced word
W' of W and the g-reduced word W” of W is such that a letter d" or (—d)™ in W’
corresponds to d- - -d or {—d) - - - (—d) in W” respectively. Therefore, the g-reduced
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word of a word in U(D,Y) also belongs to U(D,Y") and a reduced word in U(D,Y)
itself is g-reduced.

Lemma 4.4. Let U € U(D,Y) be a g-reduced word. Then, there exist unique g-
reduced words V,W € U(D,Y) such that W 'VW ~U and V'V is g-reduced.

Proof. As in the proof of Lemma 2.4, just looking at U from the right hand side, we
get a maximal W so that U >~ W™'VW. Then, V,W and V'V are g-reduced. Since
V'V is not g-reduced unless W is maximal, the uniqueness is clear. We show that
W € U(D,Y), which implies W~ € I (D, Y'). Since a similar proof can be done for
V, we omit the proof for V.

Fach o € W belongs to U’ for some component U’ of U. Let U’ be an order-
isomorphism from U” to (u,v) N D or ((u,v) N D)~ with u,v € R\ Y. We only deal
with the case of (u, v)N.D. Take the maximal W' C W such that U’ ~ SW’ for some
S. If we can take w € R\'Y so that W’ : W’ — (w,v) N D is an order-isomorphism,
W' becomes a component of W and we have done. Otherwise, there exists a unique
w €Y such that W'.: W — (w,v)ND is an order-isomorphism, w = inf((w, v)ND)
and (w — e,w]N D # ( for any € > 0, because D is quasi-dense in Y. Hence, the
tail of S contains a subword corresponding to (w — &,w]N D for some € > 0. Then,
W'=1in W~V is also not a component of U and there is a part ((w—¢',w]N D)~?
neighboring to the right of W'~ for some & > 0, which contradicts the maximality
of W. O

The next lemma is easy to see and we omit its proof.

Lemma 4.5. Suppose that W=VW = W' 'W'W' holds, where the left side and
the right side of the equation are the presentations according to Lemma 2.4 and
4.4 respectively and V,W, V! W' € W(D). Let W" be a reduced word of W'. Then,
W" ~ W holds, or there exist d € D and non-zero integer n such that d"W" ~ W.

Lemma 4.6. Let h: X,Z — xpZ be a homomorphism and h(8,) = W,," 'V, W, =
W)= 1V’ W), where the second term and third one are presentations according to
Lemm@s 2. 4 and 4.4 respectively. Let W and W' be the tail-limits of (Wy, : n < w)
and (W), : n' < w) respectively. T hen W = W' holds.

Proof. In thlS proof, we denote the g- reduced word of Uby U* for U € W(D). Asin
the proof of Lemma 2.8, the tail-limit W is taken as a direct limit of Uy C U, C -+ -,
where each U, is the maximal word such that there exist Yy, (k > n) with Wy, ~
YokUn. If (Uy 1 n < w) is not eventually constant, the tail-limit of (U : n < w) is
equal to W/, where U}, is a g-reduced word of U, and consequently W = W* ~ W'
holds. Next we deal with the case that (U, : n < w) is eventually constant, i.e.
U, =~ W for n > ng. Let Y, = Y. Since VW, = V, Y, W is reduced, V;;*Y,:‘I/V* is
g-reduced. Therefore, the tail-limit W’ of (W, : n < w) is a subword of the tail-limit
of (Y;W* : n < w). We claim that the tail-limit of (YW* : n < w) is W*. To the
contrary, suppose the existence of a non-empty word X such that XW* is a subword
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of YyW* for almost all n < w. This contradicts the fact (Y, 'V,Y, : n < w) is a
proper sequence (cf. the proof of Lemma 2.9). Therefore, W’ is a subword of W*. To
see W’ ~ W* by contradiction, suppose that W* ~ XW' for some non-empty word
X. If Yy, is non-empty, W, contains W* ~ XW" in tail by Lemma 4.5. Therefore,
in case almost all ¥, W are non-empty, almost all W, contain XW’ in tail, which
contradicts the maximality of W’. In case infinitely many Y, are empty, infinitely
many X ~'V;* are not g-reduced, otherwise almost all W contain W* ~ XW' in
tail. This contradicts that (V,, : n < w) is proper (cf. the proof of Lemma 2.9).
Now, W* ~ W' and hence W = W' holds. O

Lemma 4.7. Let U, (n < w) be g-reduced words such that U, is a subword of U,,,
with Up11 ~ X, Uy, for some X,. Then, {J,__ U, is a g-reduced word.

Proof. Suppose not. There exists a non-empty subword U of | J,_, U, such that
U = e. U is not contained in any U,. Choose d so that [4(U) # 0. Then, U is of
form U'V' where [4(U’') = 0, U’ and V' are non-empty and the left most letter of
V' belongs to Z. Consider U as a word of the free product Zg * (Xp\(q37Z). Then,
V' contains a non-empty subword V” with V” = e. Since V' is contained in some
U.,, a contradiction occurs. O

Proof of Theorem 4.1. By Theorem 3.2, we can identify 71 (X, zo) = {[W]: W €
U(D,Y)} C xpZ. We also identify m (H, (1,1)) = %,Z [2, Theorem A.1]. In case
h(8,) = e for almost all n < w, it is straightforward to see that h itself is spatial.
Hence, we assume that the set I = {n < w: h(8,) # e} is infinite. By Theorem 2.3,
there exist w € XpZ and a standard homomorphism A : 7; (H, (1,1)) — xpZ such
that h(z) = wh(z)w.

(Claim) w € {[W]: W e U(D,Y)}.

First we prove the theorem by assuming this claim. By the claim, the image of
h is a subgroup of {[W] : W € U(D,Y)}. By Lemma 4.2 there exists a unique
¢ € R\ 'Y such that lim, . supp A(d,) = ¢. For each 1 < n < w we choose a loop
fn 1 [0,1] — X so that f,(0) = f,(1) = (c,0), W' = h(5,) and lim, ., Im(f,) =
(c,0). Finally, we define ¢ : H — X as follows:.

(1) e(L(cosf+1),Lsin0) = fo(E(@+7)) for2<n<w, -7 <f<m,

(2) @(cosf +1,sin0) = f1(£(0 + 7)) for —m < 8 <0, p(cosd + 1,sin6) = ((1 -
26/m)c,20/m) for 0 < 0 < x/2, and p(cos§+1,sin 6) = ((20/7 —1)c, 2 —28/7)
for m/2 <0 <.

Then, ¢ is continuous, p((1,1)) = xo(= (0, 1)) and ¢, = h.

In the remaining part, we prove the claim. Recall that w was given by the tail-
limit of (W, : n € I), where h(8,) = W, 'V, W, (n € I) are of form in Lemma 2.4.
By lemma 4.6, we may assume W, 'V,,W,, (n € I) are of form in Lemma 4.4. Hence,
W = U, Ui, holds, where I = {i, : n < w}, n < iny1, Uy C U, C --- and each
Ui, is the maximal word such that there exist Ynx (n > k) with W, ~ Y, Uj.
Using the maximality of U;, and reasoning as in the proof of Lemma 4.4, we can

n<w
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see Uy, € U(D,Y). Therefore, in case W =~ Uy, for some n, W € U(D,Y) holds.
In case W # U, for any n, let (j, : n < w) be the subsequence of (i, : n < w)
such that jm < in < Jmy1 implies U;, = U;, ... Then, U;,, & Ujpppr for m < w
and Uj,, 1s a maximal subword of U;, ., such that a g-reduced word for h(;,)
is of form Uj;lX Uj,, for some X. For the simplicity of notation, let n denote j,,.
Then, W = |, _, Un, where W is g-reduced by Lemma 4.7. LetX,,, and X, are
g-reduced words such that X, = U,U ! for m > n and X,, = U, W', Then,
X, X' = Xpum bolds. By induction we choose ng < ny < ngy1 < w,di € D so that
la, (V) # 0 and Iy, (h(z)) = O for any o € X,5p, +1Z. Next, we choose large encugh
my by induction so that mg > 214, (W) + 2 and my, > Iy, (Th—1) + 214, (W) + 2 for
k > 1, where T_; is the g-reduced word for A(6y, ). Let U be a g-reduced word
for h(épe - - ~bpk - - - )and denote Y, =Y}, for simplicity. Now, it holds that

Ry = WWtVmmw,wt
- WU Y, VYU, Wt
X,V X,.

i

i

Observe the follo,wing:

(1) A is a standard homomorphism;
(2) (Vim :n < w) and (Y, X, : n < w) are proper sequences;
(3) V™ and Y, X, are g-reduced.

Then, we get
"}{(5230..,5%,..)

i

X;olyn—olv;zﬂ:oyno ng """ X—ly—lvmkynkxnk °

L T (7

~1y ~1y,mg e -1 -1y, mp o
Xno Yn() Vno YnoXTlomYm ' Xnk»lnkYnk V:n;, Ynanknk+1

Since Yy, or Y- may be empty, the word Vark Y, Xn Y1 Vst may not

ERh41 gy ) k1
be g-reduced. We observe the appearances of edn, and ed,,,, for ¢ = =1, ie.

ldk (Vkmk) 2 Mg, ldk+l(Ynk) < ldk+1 (Tk)v ldkr(Y_l V"TZﬁ1> =0, ldk (Xnknk+1) < ldk (Wf)

T RN
and lg, , (Xngnyr) < lg: (W). Then, we can see a g-reduced word of this word is
of form

Vit By Vet
for some g-reduced word Z,, where
my, > g (Te—1) + 1g, (W) +2  and Mppr > g (W) +2 - (o).
Now, '
U = h(fro.-6me...)
= W—lﬁ((sg;o O AW .
= WX Y VY Xnom Yo Xk Y VY X oo W,

Mg 1Ng " NE g
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According to (xx), we can see each V,> remains in the g-reduced word U and con-
sequently W remains in its tail. Therefore, U is of form

m, ml M Mt
Zov OZ1V t ‘/n,;c Zk+1Vnk+1 o VV,

where my, ' > 2. Since Vnkk does not belong to the same component, the decomposi-

tion of U into ZOVnO Zle Vnk Zk+1Vnk i¥t... and W is a regular decomposi-
tion. Hence, W € U(D,Y) holds and we have shown the claim. O

Corollary 4.8. Let X be a subset of R? such that X = R2\Y x {0} for some
Y C R and zy = (0,1). Then, m(X,z0) =~ X Z if and only if Y has countably
infinite connected components which converge to a point in R\ 'Y.

Proof. We remark that a bounded connected component of Y is an interval and
a connected component of Y may be unbounded. First we show the necessity of
the condition. An isomorphism from 7 (H, (1,1)) to m1(X, zo) is conjugate to a
spatial homomorphism by Theorem 4.1. Then, the spatial homemorphism itself is
an isomorphism from m;(H, (1,1)) to m1(X,zo). Let ¢ : H — X be a continuous
map which induces the isomorphism. Note that Y has infinitely many connected
components, because, otherwise, m (X, zo) is a finitely generated free group. There-
fore, there exist accumulation points of the family of connected components or there
exists a family of connected components which diverges to co or —oo. Suppose that
y €Y is an accumulation point of the family of connected components of Y. Since
H is compact, there exists a neighborhood U of (y,0) such that Im(p) N U = {.
There is a circle in UNX which divides UN(Y x {0}) into two parts. Take a loop in
X corresponding to a winding of this circle. Then, the homotopy class of the loop
does not belong to the image of ,, which contradmts that ¢, is an isomorphism
Similarly, we can see no family of connected components diverges to co nor —co
Hence, the accumulation points are in R\ Y. Suppose that there are two accumula-
tion points. At least one of them is not equal to ¢(0)1, say p # ¢(0);. We only deal
with the case p < p(0)1, but the other case is proved similarly. There exists zo € R
such that (z0,0) € X, p < zy < (0); and there are infinitely many connected
components of Y in (—o0, 2p). Let Xo =X N (—00,z0] x R and 7 : X — X be the
retraction. Then, (r - ¢). : m(H, 0) — m(Xo, (20,0)) is surjective. On the other
hand, since {¢(z,y) : (z—1/n)?+y? =1/n2}N X, = @ for almost all 1 < n < w, the
image of (r - @), is finitely generated, which contradicts that there infinitely many
holes in Xy. Since the existence of uncountable many connected components implies
the existence of infinitely many accumulation points, these show the necessity.
Conversely, suppose that Y has countably infinite connected components which
converge to a point in R\ Y. Then, X is homotopic to the space Z = R*\ |J,,,, D,
where {D,, : n < w} is a pair-wise disjoint family of open disks whose centers are
on the line R and which converge to a point. As we have shown in Remark 3.12, Z
is homotopic to H and we obtain the conclusion. (I
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We recall the o-abelianization from [2, p.252] and a canonical factor of singular
homology from [3]. We refer a reader to [2] and [3] for undefined notion. As we
mentioned in the last remark in [2, p.262], under the condition in Proposition 2.10

a canonical factor of singular homology group HY (\N/ie (X4, %)) is isomorphic to

the o-abelianization Ab?(my(\,c;(Xi, x:), z*)). We state it more precisely. There
is a canonical surjection from Hy(X) to HT(X). Let ®x : m(X,z) — HT(X)
be & homomorphism obtained by the composition of the Hurewicz homomorphism
from 71 (X, ) to Hi(X) and this surjection. In case X is path-connected, &y is
surjective. In the case of Corollary 4.8 with 71 (X, z) =~ %,7Z, Ker &x = m,(X,z)*’
and consequently Hy (X) ~ Ab’(m, (X, )). Here, we show that this correspondence
does not hold for spaces in Theorem 3.2 in general.

Proposition 4.9. There exists X C R? with x € X such that Ker ®x is not equal
to m(X, )", where X =R?2\Y x {0} for someY C R.

Proof. Let Y C [0,1] be the complement of the Cantor ternary set, i.e. ¥ =
U{(Zr5tes /3t + 1/3” Si1ei/38 +2/8") s g = 0or 2, n < w}, and D be a quasi-
dense subset {Zre/31+1/(2:3" ) :gs=00r2, n< w} of Y. First, we claim the
existence of a loop foin X such that Wfo ~...—qy...—y-- g - .- Where u<v
and u,v € D. Since the loop S~(a,b)- St (b, a) corresponds toaword -+ u---v---
it suffices to construct a path g : [0,1] — X such that g(0) = (0,0), q(l) (1 0) emd
W9 .—u---—v.-. whereu <v.Put a=X]Tle;/8+1/3", b= XZle; /31 +2/3"
and let 9 P a,b] = S+(a b) - S7(b,a) - ST(a,b) and g(t) = (¢,0) for t € [0,1] \
U{[Zr /3" +1/3", 202 e /8" +2/3%] : &, = Oor 2, n < w}. Then, it is easy to
see that g is contmuous and W9 o .- — g+ —v-.. where u < v. Next, we show
that [fo] € Ker @x but [fo] ¢ m1(X, z)?, where [fy] is the homotopy class of f;.

By [3, Theorem 5.1], HI(X) ~ C(Y,Z) and the isomorphism is given in the
following way: For a loop f in X, the winding numbers of f at y € Y form
a continuous map from Y to Z. Therefore, ®x([fo]) = 0. Toward the contra-
diction, suppose [fo] € m1(X,z)”. According to Theorem 4.1, there exist spa-
tial homomorphisms h; : w1 (H, (1,1)) — m1(X,(0,1)), v; € m(X,(0,1)) ard o-
commutators ¢;, (ie. ¢ € C, < x,Z =~ m(H,(1,1)) [2, p. 252]), such that
[fo] = ugtholco)uo - - - u; hy(cy)uy. Since each h; is spatial, there is a continuous
map ¢; : H — X such that ;. = h;. Choose an accumulation point z* € X of
D x {0} and a closed disk C so that z* is an interior point of C, the boundary 8C
is in X and ¢;(0) ¢ C for any 0 < ¢ < n similarly as in the proof of Corollary 4.8.
Let r : X — C\'Y x {0} be a retraction and D' = {d € D : (d,0) € C} and
Yo € C'\ 'Y x {0}. Remark the following fact:

Let h : %,Z — %,Z. If h(d,) = e for almost all n < w, then h(c) belongs
the commutator subgroup of x,Z for ¢ € C,,.

Then, since each r, - h; is a standard homomorphism and k;(4,) = e for almost all n,
7o (ug ho(co)to - - Unha (Cn Yt belongs to the commutator subgroup of m;(C'\ Y x
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{0}, 40) < xprZ. A reduced word for r.([fo]) is of form -+ - —u---—v-- V-
where 4 < v and u,v € D’. According to the fact in the proof of [2, Lemma 4.11],
it should be of canonical commutator form [2, Definition 4.10], that is, r.([fo]) =
By -+ By, such that each B; is reduced, B --- By, is quasi-reduced and there are
{i,dr : 1 < k <n} = {1,---,2n} with B;, ~ (By,)"". Since D’ is infinite, there
appears a word u---v for u < v in some B; and consequently (—v)---(—u) in
some other B;. However, this cannot be occur from the form of a reduced word for

r+([fo])- O

Remark 4.10. Even if Y = D in the proof of Proposition 4.9, we get the same
conclusion. Therefore, the difference between Ker ®x and (X, z)?" for X = R?\
Y x {0} occurs even when Y is discrete.

Acknowledgement. The author thanks the referee for detecting gaps in argu-
ments, careful reading and suitable suggestions."
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ATOMIC PROPERTY OF THE FUNDAMENTAL
GROUPS OF THE HAWAIIAN EARRING AND WILD
PEANO CONTINUA

KATSUYA EDA

ABSTRACT. We strengthen previous results on the fundamental
groups of the Hawaiian earring and the wild Peano continua. If
the fundamental group of a wild Peano continuum, i.e. a Peano
contimuum which is not locally semi-simplyconnected at any point,
is a subgroup of a free product *;csHj, it is contained in a conju-
gate subgroup to some H;.

1. INTRODUCTION

Until recently the Hawaiian earring had been only a typical exam-
ple of a non-locally simply connected space [10], [15, p. 59], but the
_ fundamental group of the Hawaiian earring has gotten attentions of
several authurs now [1, 8, 9, 16]. We call the fundamental group of the
Hawaiian earring as the Hawaiian earring group for short, following
[1]. Particularly the Hawaiian earring group played a central role in
[8], where we can detect a point from the endomorphic images of the
Hawaiian earring group in the fundamental group of one-dimensional
wild Peano continua. There we see the reflection of the following result
about quasi-atomness. , '

We call a group G quasi-atomic, if for each homomorphism A : G —
A * B there exists a finitely generated subgroup A’ of A or B’ of B such
- that Im(h) is contained in A’ * B or A * B'.

By definition, finitely generated groups and abelian groups are quasi-
atomic, but free products of infinitely generated groups are not quasi-
atomic. Every homomorphic image of a quasi-atomic group is also
quasi-atomic. o

Theorem 1.1. [3, Theorem 4.1] (See also [2].)

Let G; be a finitely generated group for each i € I. Then x%_,G;
is quasi-atomic. Consequently the Hawaiian earring group is quasi-
atomic. ‘ :

A similar result is
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Theorem 1.2. [4, Theorem 1.5] Let X be a Peano continuum which
s not semi-locally simply connected at any point. For an injective
homomorphism h : (X, zo) — Ax B, there exists a finitely generated
subgroup Ay of A such that Im(h) < Ag * B or there exists a finitely
yenerated subgroup By of B such that Im(h) < A x By.

In the present paper we strengthen the above results as follows:

Theorem 1.3. Let G; (¢ € I) and H; (j € J) be groups and h :

lGIG — *je7H; be a homomorphism to the free product of groups
H;’s. Then there ezists a finite subset F' of I such that h(xZ, nrGi) is
contained in a conjugate subgroup to some H;.

Theorem 1.4. Let X be a path-connected, locally path-connected, first
countable space which is not semi-locally simply connected at any point
and h : m (X, 2o) — *jesH; be an injective homomorphism. Then the
image of h is contained in a conjugate subgroup to some H;.

Corollary 1.5. Let X be a Peano continuum which is not semi- locally
simply connected at any point and h : (X, 29) — *jegH; be an injec-
tive homomorphism. Then the zmage of h is contained in a conjugate
subgroup to some H;.

We do not define the atomic property of a group in the title, because
it does not seem to be suitable to call some particular property so far.
However the consequences in Theorems 1.1 and 1.2 play impotant roles
in [8] and [3], where groups in question are hard to be taken apart into
free products in essential ways. We sum up these properties as atomic
property.

A weaker form of Theorem 1.3 for the fundamental group of the
Hawaiian earring, i.e. Theorem 3.1, will be applied in our forth coming

paper [5].

2. WORD THEORETIC ARGUMENTS

Since our argument requires of results in [7] in detail, we review
and reprove some parts and lemmmas of [7] and [2] for the reader’s
covenience.

For given groups G; (¢ € I) with G; N G; = {e} for distinct i and
J, a letter is a non-identity element of | J, iel G Two letters are of the
same kind, if they belong to the same G;.

For a word W let W~ be a word defined by the following: W~
consists &~’s, where o~ is a formal symbol related to each o € W; and
o~ < 7 if and only if 8 < o; and W—(a™) = W(a)™!. For words
we use the notation “=” When two words are the same as words, i.e.
there exists an order preservmg isomorphism ¢ : U — V with I/ (o) =
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V(p(a)), and use the notation “=”, when two words present the same
element in the inverse limit proj lim(x;epGi, pppr : F C F' € I). Here
F" & I implies' F" is a finite subset of T and PrF ¥/ Gy — % pGy s
the projection.

The notion “reduced” and “quasi-reduced” for words was defined
in [7]. The reducedness of words is defined so that it coincideds with
the usual one [12, 14] for words of finite length. A word W is quasi-
reduced, if the reduced word of W is obtained by multiplying contiguous
elements belonging to the same groups without cancellation. A word W
is cyclically reduced, if W is empty, a single letter, or WW is reduced.

We define W™ for an interger n as follows: W0 is an empty word and
WnH 2 WrW and W~ o W-rW~ for a nonnegative integer n:

For a word W and a letter g, let aw (g) be the number of appearances
of g in W, i.e. the cardinality of the set {& € W : W{a) = g}.

For a € *;c7H;, I(a) denotes the length of the reduced word which
expresses a. Hence (W) means the length of the reduced word of W,
but not the length of W itself in general.

Let W = g X, where W, X are words and g is a letter. The head of W
is g denoted by gX. Similarly the tail of W is g denoted by Xg & W.
We say that an appearence of a letter g is stable in X gY’, if the reduced
word of XgY is of the form X'gY’ where X’ and Y” are the reduced
words of X and Y respectively. We simply say that the head of W

is stable, instead of “stable in W”, and similarly for the tail. (In the
present paper we use the notions “head” and “tail” only for non-empty
words of finite length and so they always exist.)

The following lemma was stated for infinitary words, but here we
only use them for words of finite length.

Lemma 2.1. [7, Corollary 1.6] Let U be a non-empty reduced word
such that U = U~. Then there ezist a letter u and a word W such that
w=¢and U= W-ulW.

Lemma 2.2. Let U be a non- empty word such that UU = XU-Y for
some words X andY . Then there exist Uy and U; such that U = = UpUn,
Up=Uy and Uy 2 UT.

Proof. We have U, and U; such that UyUy = U~ by the assumption.
This implies Uy = Uy and Uy & U7 L

Lemma 2.3. Let H;(j € J) be groups and U and X be reduced words.
If the head g or the tail g7 wn XUX ™ is not stable, then I(XUX™) <
WUy +1.

Proof. Tt suffices to deal with the case that the tail g~! is not stable.
Let V be the reduced word of XU. Then, I(V) < I(X)+I(U). Since the
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tail =1 in VX~ is not stable (VX7) <UV)—1(X7)+ 1. Therefore,
(XUX") < I(U) +1. N O

Lemma 2.4. [7, Lemma 2.3] Let Hj (7 € J) be groups. Let m +
n 42 Sk'fo?*mn k e N and u,y;, 2z € *jesH; (1 <2 < M), If
Wu) <m,u=y12F - - yy2* and I(y;) < n for all 1 <1< M, then one
of the followmg holds
(1) zisa conjugate to an element of some H;; :
(2) 2= fzy gy for some f € H; andgGH/thhf =g’=ce,
-and some x,y € *;egH; such that Yy =2z 1fa: ory; =y~ nyﬂ
for- some 1 and 7.

Proof. 1t is easy to see that‘there exist reduced words U and W such
that z = W~UW and the both words UU and W~UW. are quasi-
reduced or UU =e. If [(U) > 2, we can take the above U and W so
that UU is reduced. If [(U) < 1, the proof is done. Hence, we assume
I(U) > 2 and so also assume that UU is reduced. Let Y; be the reduced
word for y; for each 1 < i < M. Then,

uw=Y\W UWY,W™ .. . WYy, W UW.

Since M = 1 implies the contradiction, we assume M > 2. Suppose
that the head and tail of WY,W ™ are stable for all 4 > 2. Then, the
head and tail of UWY;W~U are also stable, which implie [(u) > 2(k —
2) > 2(m + n). The last inequality contradicts I(u) < m. Therefore at
least one of the head and the tail of WY;W ™ is not stable. It implies
(WY W) <I(Y;)+1<n+1by Lemma 2.3. Let Z; be the reduced
word of WY;W ™ for 2 < ¢ < M. Let p be the least number so that
2p > n+ 1. (Since this p is used again later, it is taken a little larger
than it is necessary here.) We remark that W-U* is reduced and
I( Yl) < n. .Whether the tail of ;W™ are stable or not, the reduced
Word of Y} % k is of the form Z,UP+2. Now we have

U= ZIU”“Z Uk...U*Z, UW.

We are concerned with the reduced word of UP+2Z;U/P+2, The reduced
word of Z,UP*? is of form Z/X!U%*?, where ¢ > 0, X;X! ~ U and
(Z') < 1(Z,). If the head and the tail of UPt2Z/X!U%*? are stable,
then [(u) > 2k — 2p > n, which is a contradiction. Hence, at least one
of the head and the tail of UP+2Z!X!1U9%2 is not stable.

(Case 1):The tail of UP*2Z! XU 42 {5 riot stable.

We observe the cancellatlons in the rightmost U2 Then there are
S;, T; such that ST = U and S, ~ S and T; = T;". Since UU is
reduced nelther S, nor T} is® empty. Bv Lemma 2.1, S; = z5' fxo
andT-—yO gyoforsomef € H; andgGH w1thf2:92=e
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and Zo,yo € *jesH;. Let £ = W-zoW and y = W-yW. Then
z =z~ fzy~'gy. Moreover WY,W~UP~4 = Z!X! = U~IT; for some j.
Hence ' '

% =Yi = W UDTU W = W (BSY T(TiS)W.

Now the last term is equal to 2#~9 7~z 1fy if p — g > j and y; =
y~gy2=P+9 otherwise, i.e. p—q < j.
(Case 2): The head of UP2Z!X!U9*? is not stable.

We observe the cancellations in the left most U2, Since I(Z!) < 2p <
[(U?P), we conclude the existence of S;, T} similarly as the above and get
the conclusion. ~ (]

Let A and B be groups, and let C; and C, be subsets of A% B defined
by: Ci={s7'uz:wc AUB,z € A+ B} and Cp = {zy : 7,y € Ci}.

Since Cj is closed under conjugacy, that is, u~lzu € Cy iff x € Oy,
we consider cyclically reduced forms of words of elments in (. A word
U is cyclically equivalent to a word V, if U is equivalent tc X~V X for
some X, i.e. U presents a conjugate to the element presented by V.
Now we easily have: ‘

Lemma 2.5. A word W for an element of Co(C A x B) is cyclically
equivalent to a word of one of the following forms:

(1) empty;

(2) uo where ug € AU B;

(3) Vi uoVovo where ug,vo € AU B and Vj is reduced words.

We remark the following: if W € C; \ C; for a cyclically reduced
word W, then W is of the form Wy woWoW w;W. In the remaining
part of this section A and B are groups. We prove lemmas which have
word theoretic characters and will be used in the proof of Theorem 3.1
in the next section. » : ‘
Lemma 2.6. Suppose that every element of A has its order 2. Let
ai,as € A (a7 # a3) and b € B be nontrivial elements be o non-
trivial element. - Then u™ayuv™ bvuLaguv = bvu (a1as)uv~bv does
not-belong to Cy for any u,v € A* B.

Pfooﬁ Let a3 = ajay. Since

vu”  ayu T bou T aun ™ ou " (ag a0 Juv bue
= Aw"lalwbw—1a2wbw"1a2wbw—'1a3wb

where w = uv™!, we may assume v = e and moreover that

U~a UbU~ apUbU ™ (a1a2)Ub s cyclically reduced for the reduced word
U for u. Let V = U~a,UbU " aUbU~asUb. We remark-az # a; and
az # ay. Then ay(o1), ay(as) and ay(as) are odd, because each letter
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a; appearing in U again appears in U~. That is, we have three distinct
letters g for which ay(g) is odd and ¢%2 = e

Since V' is cyclically reduced, V does not belong to C; and conse-
quently V is of the form Wy woWoW; w; W if V belongs to C5. But
in such a case we have at most two distinct letters g for which ay (g)
is odd and ¢g? = e. Hence we conclude V ¢ C,. il

Lemma 2.7. Let a € A be an element satisfying a® # e andb € B be a
non-trivial element. Then v lauv ™ bvulauv bvu~tauv= by does not
belong to Cy for every u,v € A x B.

Proof. As in the preceding proof, we may assume v = e and that
U=aUbU~aUbU~aUb is cyclically reduced for the reduced word U for
u. Let V. = U™aUbU~aUbU~aUb, then V is cyclically reduced and
does not belong to C;. We see av(a) — av( 1 = 3, but if V is of
the form Wy woWoWr wiWh, av(g) — av(g7!) < 2 for every letter g.
Hence we conclude V ¢ C,. O

Lemma 2.8. Let H be a subgroup of Ax B containing (W~aW) x (V),
wherea € AUB, W~aW s a reduced word and 'V is a cyclically reduced
word with [(V') > 2. Then there exist u € H such thai u ¢ Cy.

Proof. Since V is cyclically reduced and I(V) > 2, one of W—aWV
and VW~aW is reduced. Since the argument will go symmetrically,
we assume that VW~aW is reduced. Choose k so that k- I(V) >
I(W~aW). Then the head of VIW~aW is stable in VW - aWV*+, To
show this by contradiction, suppose the negation of the conclusion.
Considering the cancellation of the left most V in VW‘aWVk‘H, we
have V; and V; such that VoV =V, Vo Vo, V7 2V)and WaW =
Vo (V) for some I > 0. This implies (W-aW V)2 = (V)2
(V1)? = e by Lemma 2.1, which contradicts that (W~aW) and { V)
have no relation.

By the preceding argument we conclude that for the rednced word
Wy of VIW=aWV*+1 the word VW,V is reduced. Since we worked in
Ax B, the reduction of VW ~aWV**1 stops when the mutiplication in
A or B occurs. We have a non-negative integer [, letters ug, u of the
same kind and Words U, Ul, X such that UpuelU; =V, Wy = Xul;V?,
and u # uy.

Let U be the reduced word of

VW= aW VEY 42y = g YR+ 1y S8y = gy k1 1418
Le. WoVHH2W, VoW, V1%+18 To show U ¢ C, by contradiction,

suppose the negation. Since U is cyclically reduced, U does not belong
to C1 and hence is of the form X zoXo X 71 X;. Remark that ! (Wo) <
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(2k +2)I(V). Then z; is located in V4+18 Tf the right most W,V is
located in X7 z;X), it is located in X because the length of V14k+17
is larger than that of WV 21/, V+81}/) V. Since X, is a subword of
V14k+18 we have Vp and V; such that VoVi 2V, Vi~ 22V, Vi & V; and
WoV = XulU, V'V & YV VoV, for some word Y. This implies
XuUy 2YVoV) 2 YV, which contradicts u # uqg.

Otherwise, i.e. the right most W,V is not located in X z1X;, the
leftmost W,V and the middle WyV' are located in X, because the
length of V7 ig larger than WoV2**2W,V. Since [(VH#+2) > (W),
the length of the word between the leftmost Wy and the middle Wy,
is greater than the length of the rightmost Wy, we can argue similarly
for at least one of the leftmost WV and the middle WV as in the
case when the right most W,V is located in X . Thus we deduce a
contradiction.

O

Lemma 2.9. Let H be a subgroup of A * B such that

(1) H contains a non-trivial element which is conjugate to an ele-
ment in A or B; and

(2) H is not contained in any conjugate subgroup to A nor B; and

(3) H is not contained in any subgroup of the form (ug) * (u1) with
w=ul=e.

Then, H contains an element u ¢ C,.

Proof. By the Kurosh subgroup theorem [13], H is of the form ;¢ ;™ Hyu+
e ij”l(V}-)vj, where H;’s are subgroups of A or B and V}’s are cycli-
cally reduced words and I(V;) > 2. Under the given condition H con-
tains '

(a) asubgroup u~{a)uxv~1(b)v for some non-trivial elements a, b €
AU B with a® # ¢; or

(b) a subgroup (wlaw) * (v"Vv), wherea € AUB and V is a
non-empty cyclically reduced word with (V) > 2.

When (a) holds, Lemma 2.7 implies the conclusion. When () holds,
vHv™! contains a subgroup ((wv™!)"lawv=!) % (V). Let W be the
reduced word for wv™t. If' W~1laW is a reduced word, we can apply
Lemma 2.8 to vHv™!. Otherwise, W 2 ;W and a and ao belong
to the same group A or B. Let a; = ag'aay. Then, a;2 = e and
Wy a1 Wy is a reduced word. Hence we can apply Lemma 2.8 to v Hv L.
Therefore in the both cases we have u € vHv™! satisfying u ¢ Cy. We
have v™'uv € H and v~luv ¢ C,. in
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Lemma 2.10. Let z ¢ Cy. Then z™ ¢ C, for every integer m > 4.
For given-xy,--- ,x,, there exists a positive integer m > 4 such that
z;x™ ¢ Cy for every 1 < i < n.

Proof. Let V be the reduced word for z. First we assume that V is
cyclically reduced and (V) > 2. To show the first preposition by
contradiction, suppose that V™ € Cy. Then we have letters wy, w; and
words Wy, W1 such that V™ 2 W5 weWoWy wiWy. Since [(Wo) < I(V)
or [(W1) < I(V), V is a subword of W or W;. By Lemma 2.2 we have
Vo, Vi such that VoVi =2 V, V2 Vy and Vi & V™ and consequently
V € (y, which is a contradiction. ,

Next we show the second proposition. Let mg be a natural number
such that I{z;) < mol(V) for every 1 < i < n and m = mg + 3. To
show z;V™ ¢ C) by contradiction, suppose that z;V™ ¢ C,. Then the
reduced word for z;V™ is of the form XV**+3 where [(X) < I(V*). By
a similar argument as above we conclude V € C,, which is a contra-
diction.

When V is not cyclically reduced, we have u such that the reduced
word for u™'zu is cyclically reduced. Since C, is closed under conju-
gacy, we have the first proposition for z from the corresponding state-
ment for u~'zu. To show the second proposition, we choose m for
u'ziu (1 <4< n)so that u~lzu(u~tzu)™ ¢ C, for every 1 < 4 < n,
which implies z;2™ ¢ C;. O

Lemma 2.11. Let H be a non-trivial subgroup of {(a) * (b) where a? =
¥ =e.

If H is not conjugate to (a) nor (b), then H contains an element of
the form (ab)* for some k > 0.

Proof. Every non-empty reduced word of even length is of the form
(ab)* or (ba)¥ for some k > 0 and every reduced word of odd length is
of the form W~aW or W~bW for some word W. The reduced word
of the concatenation of two words of odd length is of even length and
(ba)* is the inverse of (ab)*. Hence, if (ab)* does not belong to H for
any k > 0 and H is trivial, then H is a conjugate to (a) or (b). O

Lemma 2.12. Let u,wo € *jesH;. If e # u™ wy  hwou € wy Hyywy,
then u € wy Hj,wo.

Proof. Under the assumption (wouwg!) *hwouwy?! € Hj, and hence
wouwy * € Hjy, that is, u € wyHj wp. 0
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3. PROOFS OF THEOREMS 1.3 AND 1.4

The following theorem strengthens a part of [3, Theorem 4.1] (sce
also [2]) and is a special case of Theorem 1.3.

Theorem 3.1. Let A, B be arbitrary groups and h : X<, Z, — A* B
be a homomorphism. Then there exist m < w and u € Ax B such that
h(Xn>mZpn) < uAu or h(%y>mZy) < u'Bu.

This section is devoted to the proof of this theorem and those of
Theorems 1.3 and 1.4. The first lemma is a very restricted case of
Theorem 3.1,

Lemma 3.2. Theorem 3.1 holds, if A= B =7Z/2Z.

Proof. Let a and b be a generators of A and B respectively. To show the
conclusion by contradiction we suppose the negation of the conculsion.
We construct z,, € X,>mZy, and positive integers k,, by induction. The
subgroup h(Xn>0Zn) contains an element of the form A(zo) = (ab)ke
with ko > 0 by Lemma 2.11. For m, we choose z,, and even k,, so that
h(zm) = (ab)*™ and k, > T k;.

The following construction of a certain element in x,.,Z, is similar
to that in the proof of Theorem 3.1 and is a modification of that in the
proofs of [7, Theorem 2.1 and etc.], [6, Theorem 1.1], [3, Theorem 4.1]
and [4, Thereom 1.5]. For this purpose we recall the notions for the
construction.

Let Seq be the set of all finite sequences of natural numbers and
denote the length of s € Seg by [h(s). An element s € Seq is denoted
by {s0,+ -+ ,8n—1) where sy, € N (0 < k < n). For s,¢t € Seq, s < t if
s(1) < t(4) for the minimal ¢ with s(i) # (i) or ¢ extends s.

Let W, € W(Zy, : n < w) be the reduced word for z,,,i.e. Wi, = z,,.
Let V = {(s,p) : s € Seq,0 < s(3) < k; for 0 < i < Ih(s),p € W;}
with the lexicographical ordering and V (s, p) = Wins)(p). (We remark
h(Wins)) = h(zin(s)) = (ab)k).) Then V is a word in W(Z,, : n < w).
Let Vip =V N {s:lh(s) >m,s,=0for 0<i<m}and V,, =V | V.
We remark that V' = Vj = (WoV1)* and Vi, & (W, Ving1 )" generally.

We consider h(V') € (a) * (b) and take m > 0 so that the length of
the reduced word for h(V') is less than m. If the length of the reduced
word for A(Wy11Vimie) is odd, then A(Wiy1Vini2)? = e and hence
hMVii1) = B((Wimi1Vimga)Pm+1) = e. Therefore h(V) = (ab)*, where
k= X2okiIli_ok; > Ky, which contradicts m > I(R(V)).

Otherwise, h(Wn11Vini2) = (ab)? for some p > 0 or (ba)P for some
p > 0. The former case is similar to the preceding case and we deduce a
contradiction similarly. In the latter case, we have h(V) = (ba)*, where
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k = pkm I ok — S okills _oks > (Pkmi1— XL oki) ITLok; > m, which
is a contradiction. Now we have shown the lemma. g

Proof of Theorem 3.1. Let h : X,«,Z, — A * B be a homomor-
phism. We consider the subgroups h(X,>mZy) for m < w and recall
the Kurosh subgroup theorem, i.e a subgroup A x B is of the form
ey - Hyug *je']v.;1<‘/}>'vj, where H;’s are subgroups of A or B and
V;’s are cyclically reduced and [(V;) > 2. We remark that v; YVi)uy's
are freesubgroups.

If there exists m < w such that h{x,>mZy) is contained in a free
subgroup, we have mgo > m such that A(X,>meZ,) is trivial by the
Higman theorem [11] (see also [7, Corollary 3.7]). Therefore, every
h{(Xp>moZn) has a free factor u~!Hu for some non-trivial subgroup H
of A or B. On the other hand, if there exists m < w, ug,u; € AUB
and wo, w; € A % B such that u2 = u? = e, h(Xn>mZn) < wy* {(ue)wy *
wi N u;)wy, then we get the conclusion for wy*(ug)wo * wi ™t (u1)wy by
Lemma 3.2, which implies the conlusion for A %= B. Therefore, in the
following argument we assume that A(X,>mZy) is not a subgroup of
wy H(ug)wo* wi ™ (ug)w; for any m < w, ug,us € AUB withud =u? =e
and wy, w; € A x B. '

We prove the theorem similarly as the proof of Lemma 3.2. Hence we
suppose the negation of the conculsion. Then by the above assumption
and Lemma 2.9 we have Z,, € Xp>moZy such that h(z,) ¢ Cs. Then
we choose natural numbers k,,’s by induction. Let kg = 1 and k,, be a
natural number which satisfies the following two requirements:

(1) ky > 4 and max{i(h(z® - 2f" ) 0<i<m—1}+m+2<

m—1
(2) h(z¥ - - 2Fm D h(z,)k™ ¢ O for every 0 < i < m—1.

i m—1

The existence of k,, and also h(z¥r) ¢ C; are assured by Lemma 2.10.
Now we modify the proof of Lemma 3.2. Let W,,, € W(Z,, : n < w)
be a reduced word such that W,,, = z¥m for each m. Let

V ={(s,p) : s € Seq,0 < 5(i) < k; for 0 < i < Ih(s),p € W;}
with the lexicographical ordering and V' (s, p) = Wiy (p). (We remark
h(Winge) = h(z)-) And also let

Vi ={(s,p) : s € Seq, lh(s) >m,s(i) =0for 0 <i<m,

0 < s(3) < k; for m <4 < lh(s),p € W;}

and V,, is the restriction of V to V,,. We remark V,, = gk Vmi1,
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Finally choose m so that I(h{V)) < m and apply Lemma 2.4 for
n = max{l(h(z% - i) 0 < i <m-1}, 2= Vi, k =k and each

y; is h(a:?" .+~ gim=1) for some 0 < j < m.

When (2) of Lemma 2.4 holds, y; € C; for some j, but according to
our construction h(:v?’ .+ z"m=1) does not belong to C; for any 0 < j <
m. Therefore, (1) of Lemma 2.4 holds, i.e. Vi, € Ch.

We apply the above argument to m + 1, then we have Vi1 € O
and consequently h(zk=) = Vi, ,,_Lf’l"“ € Oy, which contradicts our
construction by Lemma 2.10. [

Now we recall

Lemma 3.3. [7, Theorem 2.1] Let G; (i € I) and H; (j € J) be groups
and h : x;G; — *jcsH; be a homomorphism to the free product of
groups H;’s. Then there exist finite subsets F' of I and E of J such
that h(x.p pGi) is contained in *jepH;.

Apparently Theorem 1.3 strengthens this result.

Proof of Theorem 1.3. The proof is an application of Theorem 3.1,
which is a special case of Theorem 1.3. First we show Theorem 1.3 in
case J = {0,1}. Let Hy= A and H; = B.

To show by contradiction suppose that the conclusion does not hold.
We claim that for each finite subset F' of I there exists z € X{.p p(s
such that h(z) = w™law or w™tbw for some a € A, b € Band w € AxB.
This follows from the Kuro$ subgroup Theorem and {7, Proposition 3.5]
by the same argument in the first half of the proof of Theorem 3.1. Now
we construct &, € X% ;Gi,wm € A* B, um € AU B and finite subsets
F,,, of I by induction so that the following hold:

(1) zm € Xgelf\FmGi where I* = {J,,c, Fm and Fy, C© Finiy;

(2) h(zm) = W UmWe, With U, # €;

(3) if the both u,, and %y,+1 belong to A or B, then wp, # Wm1,
in the other words, if Wy, = Wpy1, then uy, € A and Uy € B

are equivalent.

Apart from I* and Fy,’s we can choose Ty, Uy, and wy, by the assump-
tions. For the care for I*, before choosing zm4+1 we let. Ky, to be a
countable subset of I such that z,, € x{cx _G; and enumerate K,, so
that {p(m,n) : n < w}. Then apply the standard book-keeping method
to {p(k,n): n < w,k <m} to define Fry; C U<y Ki and we can get
the desired ones.

Now we have a homomorphism ¢ : Xp<wZn — X% ;G; such that
h(6m) = T for m < w by [7, Propostion 1.9], where &, is the generator
of Zn. By Theorem 3.1 we have ng < w such that h o ¢(Xp>neZy) is
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contained in a conjugate subgroup to A or B, which contradicts the
construction of z,,’s. Now we have shown the case that J = {0, 1}.

For a general case let h : X% ;G; — *;csH; be a homomorphism.
By Lemma 3.3 there exist finite subsets F' of I and E of J such that
h(x¢ppGi) is contained in *jepHj.

Now the restriction of h to x;’eI\FGi maps into *;epH;. Since
u (%jem Hj)u = *jep(u" Hju) for E' C I, by succesive use of the
case of J = {0, 1} we have the conclusion. O

Next we prove Theorem 1.4. We recall some notions about loops. For
apath f:[0,1] — X, f~ denotes the path defined by: f~(s) = f(1~s)
for 0 < s < 1. For paths f : [0,1] — X and ¢ : [0,1] — X with f(1) =
3(0) we denote the concatenation of the paths f and g by fg. The
Hawaiian earring is the plane compactum H = {(z,y) : (z+1)®+y* =
1/n2,1< n < w} and each simple closed curve of the Hawaiian earring
H is parametrized as follows: e,(t) = ((cos2nt — 1)/n,sin2xt/n) for
1<n<w0<t<1. (Here, e, refers to the n-th earring, that is the
n-th simple closed curve.)

Lemma 3.4. Let X be a path-connected, locally path-connected space
which is not semi-locally simply connected at any point and h : w1 (X, o)
*;crH; be an injective homomorphism. For each point € X and o
path p, from x to xy there exists a path-connected open neighborhood
U of x satisfying: there exist w, € *;esH; and j(z) € I such that for
every loop | in U with base point x, h([p; Ip.]) € wy Hjmyw,. Moreover
j(x) does not depend on the choice of a path p,.

Proof. To show this by contradiction suppose that such a neighbor-
hood does not exist for a point = and a path p,. Let {U, : n < w}
be a neighrhood base of z consisting of path-connected open sets. We
construct loops I, in U, with base point z as follows. If there exists
an essential loop ! in U, with base point 2 such that h([p;lp,]) does
not belong to a conjugate subgroup to some H;, then we let I, be such
a loop. Otherwise, but if n = 0 or h(p;l,—1p,) does not belong to a
conjugate subgroup to some H;, we let I, be an arbitrary essential loop
in U, with base point z. Otherwise, and if h(p;l,-1p,) belongs to a
conjugate subgroup to some H;, we let Wit Uy 1 Wno1 = AP lu1Dy)
where u,_; belong to some H;. By our construction, for each essential
loop ! in U, with base point z, h([p; Ip,]) belongs to a conjugate sub-
group to some H;. By the assumption we can choose an essential loop
ln, in U, with base point z so that h(p; lnps) = wy, Yupwy, u, € Hj for
some j, but w, # w,_; or u, does not belong to the same H; to which
Un,_1 belongs.
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We define a continous'map f : H — X so that f((0,0)) = z and
foe, =1, Then f, is a forbidden homomorphism by Theorem 1.3
and the contradiction occurs.

To see the additional property, let g, be another path from z to zo.
Then the conclusion follows from an equation [g; lq,] = [¢; PP IPePy WPy d=) =

[p7 4=) [P Ipe] [z?; 0z).

Proof of Theorem 1.4. By Lemma 3.4 for each point z € X we have
a path-connected open neighborhood U(x) of z and j(z) € J such that
for any path p from z to z and loop [ in U, with base point z h{[p~ip})
is contained in a conjugate subgroup to Hjy. We have wg € *;e i
such that for any loop I in U(z,) with base point zo h([l]) is contained
in wg ' Hjzgywo. We'll show j(z) = j(zo) for all z and a conjugator wo
does not change under taking different paths to the base point.

Let p be an arbitrary path from z to zy. Considering open in-
tervals contained in p~(U(y))’s, we have 0 = t, < --- < tp = 1
and z1, - ,Zn—1 € X such that p(0) = z,-1 = 2z, p(1) = z¢, and
p([tis1, t:]) € U(ys). Let p; and pj be the restricted paths of p to [t;, 1]
and [t;,t;—1] for 0 <4 <n—1and 1 <4 < n— 1 respectively. Since
each U(z;) is path-connected, we choose a path ¢; in U(z;) from z; to
p(t;) for 1 < i < n—2 and we let go and gn—1 to be the constant paths.

We show that for any loop I in U(z;) with base point z; k([(g:p:) " lgipi])
is contained in wy ' Hj(m)wo by induction on i. The case ¢ = 0 is cur
assumption. Suppose that this holds for ¢—1. We have an essential
loop I; in U(x;) N U(z;-1) with base point p(t;). Now

[pi—lpi] = [pi_—lqi_—lqi—lp/i_lp;q;—1Qi~1pi—1]
= [(¢-1pi-1) " (Pigi_1) " U(Pigi 1) (gi-1pi-1)] and
prlp) = [piai aile; aips] = [(@spi)~ aila; (@imi)]-

We remark that (pig; ;)" l(pig;_,) and g;lg; are loops in U{z;_,) and
U(z;) with base points z;—; and z; respectively. By induction hypoth-
esis we have h([p;lp;]) € w; Hjzowo and by the choice of U(x;) we
have the desired property for 7. At the final step, i.e. the n—1-th step,
we have [p,_1lpn—1] = [P, PP, pa] = [p™(pnlpl, " )p] and prlp, " pn is
a loop in U(z) with base point . We conclude that for any loop ! in
U(z) with base point = h([p~Ip]) € wy ' Hij(zeyw, holds.

Now we apply this fact to tha case x = zy and | be an essential
loop in U(z) with base peint zo and consequently p is an arbitrary
loop. Then we have h([p])~*A([[)R([p]) = A([p~1p]) € Wy Hj(meywo and
also A([l]) € wy " Hj(ze)wo by the assumption. Now Lemma 2.12 implies
h([p)) € wy" Hyoywo. H
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Remark 3.5. (1) The injectivity of a homomorphism in Theorem 1.4
is essential, which is shown in [4, Remark 4.6]. On the other hand
the injectivity can be weakened as follows. For a non-empty open set
U and a path from a point p(0) in U to zo, let Hy; be a subgroup of
m1(X, xo) consisting all [p~lp]’s for loops I in U with base point p(0).
The injectivity can be weakened to: h(HE,) is non-trivial for an arbitrary
non-empty open set U and a path from a point p(0) in U to zo.

(2) The free o-product X ;G; is realized as the fundamental group of
the one point union of spaces whose fundamental groups are isomorphic
to G;’s. More precisely, let X; be a space locally strongly contractible
at z; with piy(X;, ;) = G; and identify all z;’s as one point x. Let
Vier(Xi, z;) be the space with this base set. The topology of each X \
{x;} is the same as in X;. A neighborhood of x is of the form Uier Os
where each O; is a neiborhood of z; and all but finite many C;’s are
the whole spaces X;. Then (Ve (Xi, i) is isomorphic to X7 G; [T,
Theorem A.1].
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