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Characteristics of lead—zirconate—titanate (PZT) elements were studied by directly irradiating them with a 400 MeV/n Xe
beam. The elements were sensitive to 10* Xe ions and their output amplitudes were proportional to the beam intensity. An
ensemble of those output amplitudes displayed a Bragg-curve-like response towards the range of 400 MeV/n Xe ion. We
discuss the potential of PZT elements as a radiation detector and their application to high-intensity and high-energy

detectors. [DOI: 10.1143/JJAP.42.1456)

KEYWORDS: acoustic radiation detector, piezoelectric radiation detector, heavy ion detector, bias-free detector, PZT element

Thus far, detection principles of radiation have been based
on mainly ionization and excitation followed by light
emission. On the other hand, there have been a few
exceptions, one of which is the case that acoustic methods
have been reported to be based on both experimental’’ and
theoretical®™ aspects of measuring high-energy events in
deep marine environment. They dealt with the case that
acoustic waves were generated in water and detected by
hydrophones. For simplicity, a case that involves a signal-
transmitting part and a signal-receiving part that are
separated from each other is denoted as “‘indirect style”,
and the case wherein the both parts are confined within a
single detector itself is denoted as “direct style”.

We have been interested in piezoelectric material PZT
(PbZrxTij_x), because it has unique characteristics; in
particular, it can be operated without bias voltage. Thus
we discussed a potential of PZT elements as a radiation
detector. At first, the detector characteristics of a spherical
PZT detector were studied by bombarding a high-energy
electron beam™ into water by the indirect style. Subse-
quently, we aimed at detecting heavy ions in flat PZT
elements by indirect and direct styles: This note concerns the
first experiment, in which acoustic signals by an energetic
Xe beam were measured with PZT elements by the direct
style.

This experiment was carried out by using low-Q PZT
elements; each was 0.6 mm thick and 20mm in diameter.
Each was calibrated, to which hydraulic pressure was
applied in a water tank by a PZT transducer, and its
sensitivity was found to be almost sample-independent. The
fifteen elements were assembled into an array, in which each
was separated by Smm as shown schematically in Fig. 1.
The total thickness, 7.8 mm, of the elements was determined
to cover the range of 400 MeV/n Xe in PZT. In order to
reduce electromagnetic and mechanical noises, every ele-
ment was suspended by springs and the array was set in a
low-pressure vacuum metal chamber at 1072-10"! Torr.
Each output signal was treated by amplifiers and processed
on a digital oscilloscope. Thus we measured signals with a
timing counter, which was a 0.5-mm-thick plastic scintilla-
tion counter placed in front of the chamber. This counter

pl?s??!atioa low pressurized
solnti vacuum chamber
counter

beam |
PZT element

charge sensitive
amplifier

discriminator

Fig. 1. Experimental arrangement is shown schematically.

served also as an intensity monitor for Xe ions.

The Xe beam was supplied by the heavy-ion accelerator
of the National Institute for Radiological Sciences (HIMAC)
at an energy of 400 MeV/n with varying beam intensity from
10? to several 10° particles per spill (pps), (in total kinetic
energies, ~8 x 10> to ~8 x 10°nJ). The beam size was
adjusted to ~2 x 2mm? at the most upstream element.
Because it was ejected in the slow extraction mode, the
observed signal V(f) on the scope appeared like a ramp-up
form at time ¢, as in inset of Fig. 2. We regarded the output
voltage as the time-averaged form (V(1)) = [V(ndt/ [ dt,
where the variable was integrated over an ejected period of
about 0.5s. For every element, about fifteen samples of
(V(¢)) were summed up to obtain the averaged voltage (V)
and its deviation AV,

In Fig. 2, (V) and AV of each element are plotted in
order, from which (V) increased towards the end of the
range and showed a maximum. The observed data were
compared with the values calculated by the simple Bethe—
Bloch formula. A qualitative agreement between experi-
mental and numerical results is verified based on a solid
curve which is normalized in a flat region.

As for the intensity dependence, the averaged voltage (V)
at the maximum was plotted as a function of the number of
Xe ions in Fig. 3. It seems to be linearly increasing at a rate
of ~0.8uV/ion, which corresponds to a sensitivity of a
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single Xe ion of the maximum element by the present
experimental configuration.

There was. a problem about the observed signal itself,
whether it was actually produced via acoustic processes or
not. Thus, we carried out another experiment, in which two
of the 15 elements were replaced with other two elements;
one was an unpolarized element and the other was a
normally polarized 2-mm-thick element. Then the output
signals of the unpolarized element disappeared down to a
background level. As for the latter, the output amplitude was
almost unchanged between the original and replaced
elements. Consequently, the signal was determined to be
inherent in piezoelectricity and substantially thickness-
independent.

At present, we have no definite idea concerning the
thickness-independence. For a while, we consider a scenario
as follows. Although piezoelectricity is a bulk effect, the
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conversion of mechanical energy into electrical energy
would occur only in a portion near the surfaces, and
contributions from the remaining portion seem to be
cancelled out. Consequently, it seems apparent that the
voltage across the piezoelectric plates is proportional to the
relative displacements of the surfaces.” Accordingly the
observed signal is mediated by acoustic waves developed in
the PZT element.

As described previously, its sensitivity was ~0.8 uV/Xe
ion. Since a practical electronic circuit had a noise level of
mV, the threshold of the PZT element corresponded to the
order of 10° Xe ions, which was consistent with a detectable
number minimum in Fig. 3. As for the sensitivity in energy,
it was interesting to point out that a result by an impact of
hypervelocity microparticles,” whose energies ranged from
102 to 10° nJ corresponded to the energy loss of 10°~10* Xe
ions through each element.

The observed data seem to be consistent with those
obtained using the Bethe—Bloch formula except for an
absolute normalization. It is not clear yet that the Bragg-
curve-like charged particles are exactly reproduced by the
acoustic measurements.

In conclision, the PZT element was sensitive to 10* and
400MeV/n Xe ions, and whose output amplitude was
proportional to the beam intensity ranging from 10* to 2 x
10° pps. Thus, the PZT material can be used as a detector of
high-energy and high-intensity phenomena. The observed
data could be qualitatively explained by the Bethe—Bloch
formula. It is still undetermined whether a possible differ-
ence exists between the acoustic results and those obtained
by the Bethe—Bloch formula.

We thank Dr. T. Kambara for his interest in this work.
This study is carried out as'a part of “Grand-based Research
Announcement for Space Utilization” promoted by Japan
Space Forum, and partially supported by a Grant-in-Aid for
Scientific Research by JSPS.
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A lead-zirconate-titanate (PZT) element was studied by bombarding silver particles in the mass range from 1 to 100 pg, and
the velocity from 2 to 6 km/s. Output signals were uniquely identified on impact and characterized by Fourier analysis. It was
found that incident energies above 100 nJ were uniquely determined by a single PZT element. We discussed its potential as a
real-time detector for space dust and debris. [DOI: 10.1143/JJAP.42.1496]

KEYWORDS: space dust detector, real-time dust detector, PZT detector, hypervelocity microparticle detector, bias-free detector

Currently there is a demand to realize a real-time detector
for cosmic dust and/or space debris.”” To date, dust-hunting
detectors have been developed for exploring cometary dust
and microparticles in the solar system.” Based on the
concept of a “‘real-time detector in space”, it is considered
that the detector should be small in size, and operated for a
long time as reliably as possible. From the point of view of
making a detection system on a small scale, we were
interested in the use of piezoelectric ceramics, PZT
(PbZrxTi;_x), because it can be operated without bias
voltage. We carried out an experiment, in which a PZT
element was found to be sensitive to the microparticles
whose energy was reduced to 100nJ. Therefore, we report
exclusively a linear response between particle energies and
PZT output amplitudes in this note.

The detector element was made from low-Q PZT. It was
2mm in thickness and 20 mm in diameter. The element was
polarized in the direction of thickness. Then a thin silver
electrode was deposited on one surface as a collector. The
other surface was entirely covered by another electrode. Its
frequency response was measured as shown in Fig. 1, in
which there existed several resonance peaks below 3.3 MHz.
A dominant peak around 1.1 MHz was due to the thickness
expander mode. '

Experimental arrangement is schematically shown in

S 6000
3 4000
5
S 2000 |
= |
—E-' O ‘M' I
0 1 2 3 4 5 6
frequency (MHz)
Fig. 1. Frequency dependence of impedance of the PZT element.

HIT

] ]
L
PZT detector
{> scope
-amplifier

Fig. 2. Schematic drawing of experimental configuration.

Fig. 2. Silver particles were accelerated by the Van de
Graaff accelerator of University of Tokyo (HIT). The
particle passed through a beam transport duct, along which
two electrostatic electrodes (T; and T;) were installed at a
distance of 1.3m. At 0.7m downstream of T,, the PZT
element was placed, onto which the incident particle hit at a
right angle. With this configuration, its velocity (v) was
given as v = [/t where ¢ and [ are the flight time and the
distance between T; and T,, respectively. Its charge (q) was
g = CV, where V is the induced voltage on T, and C is the
capacitance of 1pF, which was the loop capacitance of a
charge-sensitive amplifier connected to T,. Then particle
energy E was given as E = qU, with acceleration voltage U
(typically, 2-2.7MV). Thus, the particle mass (m) was
determined as m = 2qU/v*. The output signal was treated
with a fast amplifier of bandwidth ~400 MHz, and then
processed by a digital scope. As the result, we picked up
events, in which m and v ranged from 1 to 100 pg and from 2
to 6 km/s, respectively.

One of the observed signals is presented in Fig. 3(a), from
which a regular behavior in the first few cycles with a slight
attenuation was observed. Since we had no a priori
prescription of how to define output voltage, we regarded
the amplitude across the first peak-to-peak Vj, as the output
voltage. A comparison of kinetic energy with output voltage
is shown in a plot in Fig. 4(a). At a glance, there seem to
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Fig. 4. (a) Two-dimensional plot between output voltage Vy, and kinetic
energy E. A and B in the figure indicate samples belonging to the A and B
groups, respectively. (b) A group samples are sorted according to the rule
mentioned in the text.

coexist two groups of samples denoted as A and B groups;
samples tagged as the A group were more sensitive and
better proportioned to the kinetic energy, while those
belonging to the B group behaved almost independently of
the energy.

Each signal was subjected to Fourier analysis to obtain
frequency components, for example, the signal in Fig. 3(a)
corresponds to the spectrum shown in Fig. 3(b).- By
comparing the frequency components in Fig. 1 with those
in Fig. 3(b), contributions to the output signal from
frequency components below ~1 MHz were much less than
those above ~1MHz. This indicates that the thickness
expander mode was dominant. As for components above
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~1MHz, the component at ~3.3 MHz (A3) was enhanced
more than the component at ~1.1 MHz (A,).

Even though we had no criteria to justify the coexistence
of either A or B group, the samples belonging to the B group
were ruled out by a selection rule through the following
procedure. We sorted out the A group samples using a
simple condition for the frequency components: Az = kA,
where we determined k to be 0.9 in this report. Thus, the A
group samples are plotied as a function of Vj, vs E in Fig.
3(b). By assuming a linear relation between output ampli-
tude (Vpp) and kinetic energy (E), the kinetic energy was
determined as E (n]) = 9.8 Vj,, (mV) + 48 by a least-squares
fit. Consequently, the kinetic energies were uniquely
determined by a single PZT element.

The PZT element was sensitive to particles of their
energies above 100n]. This indicates that the PZT element
has a potential as a real-time detector. At least, it can be used
as a counter like the Geiger-Mueller counter. When the
output signal was analyzed in detail, we could extract
information on the kinetic energy above 100 nJ by means of
a single PZT element. That is, the PZT element can be
employed as an energy-measuring device. At present,
however, we have no clear explanation as to why k = 0.9
was valid, and why the component A; was so enhanced in
the A group samples. Since a discrimination based on the
frequency components seems simple but significant, it is
necessary to study the frequency analysis in detail.

It is emphasized that the experimental results for the
hypervelocity silver particles were consistent with those for
heavy ions in ref. 3. Indeed, the PZT element was sensitive
to a bunch of 10* Xe ions, whose total energy was estimated
to be of the order of 10° nJ.

In conclusion, the PZT element is sensitive to micro-
particles of energies greater than 100nJ. By separating out
the A group samples, we can determine the particle energy
uniquely. However, possible physical reasons why the
simple relations A = kA; and k = 0.9 hold, are yet to be
determined. The PZT element has potential as a real-time
detector to measure the energies of hypervelocity micro-
particles.

The authors thank Mr. T. Omata for his help in preparing
the experimental setup and in operating the accelerator. This
study is carried out as a part of a “Grand-based Research
Announcement for Space Utilization” promoted by Japan
Space Forum, and is partially supported by a Grant-in-Aid
for Scientific Research from JSPS.
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ABSTRACT

Piezoelectric lead-21rconate-t1tanate was studied by bombarding with silver particles in the mass
range from 2 to 100 pg, and the velocity range from 2 to 8km/s. Output signals were uniquely
identified on impact. It was found that incident energies above 100 nJ were measured
unambiguously by a single lead-zirconate-titanate element. The detector characteristics were
studied with respect to incident particle energy, angu]ar dependence and size effects. Even
though we have still unknown processes inherent in this detection method, the piezoelectric
element has a potential as a real-time detector, if it is well calibrated.

INTRODUCTION

The present project was aimed at realizing a real-time detector to detect cosmic dust and/or
space debris. According to a report (Kibe, 1999), it is recommended to develop detecting
techniques for space debris and micro-meteoroids. We are interested in particles, whose size is
one micron or less and velocity greater than 2km/s. So far dust detectors have been developed
for exploring cometary dust and microparticles (Auer et al., 2001. A number of references are
listed.). Because of lack of resources in space, such a detector should be designed with a simple
structure, reliable, for long-time operation and low power consumption. Thus, the piezoelectric
elements have been used ultimately as a counter (McDonnell, 1987). On the other hand,
parameters such as mass and velocity have not been determined by the piezoelectric element.

A lead-zirconate-titanate (PZT, an efficient piezoelectric material) element was studied as a
low-sensitive radiation detector (Miyachi et al. 2003a) The PZT output voltage is propomonal
to the number of Xe ions. In terms of the energy loss in the element, it corresponds to 10* to 10*
nJ. That is, this energy range overlaps with that of the kinetic energy of hypervelocity particles
under consideration. Hence we employed the piezoelectric PZT as an energy-sensitive detector
material, because this- material is operated without bias voltage due to its piezoelectricity.
Recently, piezoelectric PZT and LiNbO; crystals have been reported as dust detectors (Manning
et al., 2002).



We  have studied the  detector
characteristics by bombarding hypervelocity
microparticles. Indeed, it was possible to
study the detector characteristics fairly
precisely in the impact energy region from
100 to 1000 nJ, whenever the particles were
well collimated and hit the element in the
right place. Since some of the results were
reported elsewhere (Miyachi et al., 2003b),
this paper is concerned with (1) energy
dependence, (2) angular dependence and (3)
size effects, using silver particles.

EXPERIMENT

The detector was made of a PZT disk,
whose soft mechanical quality factor was
around 75. A standard size detector (S) was
2mm thick and 20mm in diameter as shown
in Figure 1. For determining the dependence
of the signals on the dimensions of the
detector element, we made other types; A
(0.6mm thick, 20mm in diameter), C(2,30),
and D(3,20), respectively. The detector was
mounted on a frame which was suspended by
springs to prevent mechanical disturbances.

The  experimental arrangement  is
schematically shown in Figure 2. The
particles are accelerated by the Van de Graaff
accelerator of the High Fluence Irradiation
Facility, of the University of Tokyo (HIT).
The particle passes through a beam transport
duct, along which two electrostatic electrodes
(T; and T,) are installed at a distance (L)
1.3m apart. At 0.7m downstream from T, the
PZT element was placed, onto which the
incident particle hit at an angle 0, defined
between the particle flight direction and the
normal to the detector surface. A beam
diameter at the element is collimated ~10mm
by an aluminum screen placed in front of the
detector. By this configuration, the flight time
(t) between T, and T, determines the velocity
v=L/, and its charge q is given by q=CV,
where V is the induced voltage on T, and C
the feedback capacitance of the electrode of
1pF. Then the particle energy E is given by
E=qU, with acceleration voltage U.
Consequently, the particle mass m was
determined as m=2qU/A’. Throughout the
experiment, the acceleration voltage U was
varied over 2~2.7MeV. The light flash on
impact was viewed by a photomultiplier (PM),
which served also as a time reference.

Fig.1. Standard size detector suspended by

springs to prevent mechanical disturbances.
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schematically,
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Fig.3. Typical display of output signals.
From top to bottom, signals from T,, T,
PZT and photomultiplier.

10

oo
-

g°
»
b3

(=)}

velocity (km/s)
E-N

(38
bo
o

(=]

—

10 100 1000
ness (pg)

Fig.4. Mass vs velocity of the silver particles



The output signal was treated with a fast
amplifier of bandwidth ~400MHz, and it was
processed by a digital scope. One of the
typical events was monitored as in Figure 3,
where signals of Ty, T,, PZT element and PM
are represented.

As the result, we picked up samples shown
in Figure 4, from which the mass and velocity
ranges are from 2 to 100pg, and from 2 to
8km/s, respectively.

We found no appreciable deterioration in the
detector sensitivity due to the bombardment.

RESULT
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Fig.5. Typical output form of the S

detector at 6=0. The output amplitude is
defined as indicated by the bars.

One of the observed signals of the detector S at 6=0° is shown in Figure 5. Since we had a

priori no prescription how to define the output voltage, we regarded the amplitude across the
first peak-to-peak V,, as output voltage. Then the calibration of the kinetic energy E as a
function of Vi, is plotted in Figure 6, from which a linear relation is confirmed in the energy
range from 100 to 1000 nJ. In the following, the slope s=dV,/dE is used as a measure of the
detector sensitivity.

The slope parameters were measured by the detector S in the angular range 0°<6<30° as
shown in Figure 7. A significant angular dependence was not observed over the angular region.

As for the size effect, we checked possible effects of detector thickness and detector area to
the detector sensitivity. The E-V,, relation of the detector D is plotted in Figure 8, together
with the standard S. A significant reduction of the sensitivity is apparent, mainly due to the
capacitance of the detectors. The thickness effect was examined by using the three detectors S,
A and C. In Figure 9, the effect is expressed in the respective slope parameters. The result is that
the sensitivity is increasing with decreasing thickness.
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Fig.9. Effect of detector thickness on
the detector sensitivity is represented by
the slope parameters of the S, Aand C
detectors.



DISCUSSION

It is still open how to define the detector amplitude uniquely. In the present work, we fix V,,
by the output amplitude, which seems reasonable when the detector size is well defined.
Therefore, experimental results can be compared quantitatively with each other, if they were
calibrated well. ,

By assuming a linear relation between output amplitude (V,,in mV) and kinetic energy (E in
nJ), the kinetic energy is determined as E(nJ)= 19V(mV)+69. Consequently, the kinetic energies
were determined uniquely by a single PZT element.

The PZT element was sensitive to particles with kinetic energies above 100 nJ. This means
that the PZT element has a potential as a real-time detector. When the output signal was
analyzed in detail, we could extract information on the kinetic energy above 100 nJ by a single
PZT element. That is, the PZT element can be employed as an energy measuring device.

As for the energy resolution, the energy transferred to the detector could be separated within a
statistically significant level. The result of Figure 7 shows almost no angular dependence over
the measured range. This would reflect unknown processes inherent to this detector.

‘The effect of the detector thickness on the sensitivity is unclear. It is further required to
investigate not only physical processes between mechamcal and electrlcal conversion, but also
the generation mechanisms on nnpact

Using the output waveform, it is possible to extract information on impact. Therefore, it is
essential to measure the waveform as precisely as possible.

In conclusion, the PZT element is sensitive to microparticles of energies greater than 100 nJ.
In case of detection we determined the particle energy unambiguously. Thus, the PZT element
has a potential as a real-time detector that is not only a counter, but also an energy measuring
device for hypervelocity microparticles.
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ABSTRACT

We have been interested in a direct measurement. The term “ direct measurement”
means that the PZT element is used such a detector that absorbs kinetic energy of dust
on impact and subsequently outputs electric signal in itself. Presumably, useful
information on impact could be involved within the first one-cycle, in particular, in a
region of a rising region, when it seems free from effects of reflections of shock wave at
boundaries of the detector. We consider that the time behavior could reflect the velocity
at impact. Therefore, the mass of incident particle is obtained provided that the
momentum on impact is known by the amplitude analysis, independently. This paper
concerns further investigation using data by HIT and by MPI in Heidelberg.

In previous reports[1,2,3], we discussed fast responses in thickness expander mode
of piezoelectric lead-zirconate-titanate (PZT) to hypervelocity microparticles, in which
we proposed that a PZT element has potential as a realtime detector for space dust.
Indeed an output signal of the PZT element could have information on impact, that is,
its amplitude was proportional to its kinetic energy. In addition to amplitude analysis, it
is reasonable to extract other information, e.g. velocity and/or mass of the particles from

observed waveform. Since the particle energy is determined using an empirical relation,



we can obtain the mass and the velocity on impact with a single PZT element.

In order to measure the velocity, we improved experimental configuration, with
which events occurred outside a central part of the detector were ruled out, using a

collimator of a hole of 10mm in diameter, as shown in Fig.1.

The elements were fabricated by piezoelectric PZT, whose soft mechanical quality
factor was around 75. Its dimension was 20mm in diameter and 1mm in thickness. The
polarization axis was parallel to the thickness direction, along which hypervelocity

particle was incident.

In Fig.2, the output signal measured by a Imm thick element is shown for several
cycles of waves vibrating between both sides. The amplitude increases gradually and
begins to drop after several cycles. By Fourier analysis, this wave was decomposed into
several components. There appear a prominent peak at 2.3 MHz and satellite peaks at
around 6.9, 16.5MHz and so on. They are assigned as the fundamental, third and fifth
components of the reciprocal motion in the direction of the thickness.

Forms of the first cycle shown in Fig.3 of 1mm in thickness and 0.5 mm in thickness
for comparison. At a glance, the latter form is different from that of former. This would
suggest a fact that shock wave due to impact makes pressure constant until rarefaction
waves arrive in the element. When the shock wave is reflected at the opposite free
surface, it unloads the pressure while traveling the element. As the result, the observed
signal behaves like rectangular as shown. . On the other hand, it is unloaded before it
grows completely in the case of the latter element, Consequently, the first one cycle, in
particular, the rising portion is considered free from effects due to reflection of waves.
Furthermore, there is a restriction on thickness to accumulate its polarization

thoroughly.

In this report, the output amplitude is defined as a gap between bottom and top
across the rising portion. Then the output amplitudes are plotted as a function of the
particle momentum in Fig.4, from which it is found that its amplitude is exactly
proportional to the momentum on impact in the velocity range from 1.5 to 6.5 km/s.

As for the risetime, it seems positive that the rectangular pulse shape is sqeezed
with increasing the velocity in this velocity range. Owing to a comparatively narrow
velocity range, however, it is difficult to show a sizable effect between the particle
velocity and the risetime. According to an experiment carried at Max-Planck Institut at
Heidelberg, where it was available faster particles, we have obtained a correlation in

which the risetime shrinks with increasing the particle velocity as shown in Fig.5, from



which we anticipate a possible relation of a form in the observed velocity range
v=c/ At,
AtzTr +d,

where At is a relative risetime, T: risetime, v particle velocity and parameters ¢ and d.

In summary. the PZT element can be used as a realtime detector to hypervelocity
microparticles. The output waveform is closely related to the thickness of the element.
The amplitudes are exactly linear in the momentum. The first one cycle, in particular,
risetime is genius to find the particle velocity. Accordingly, a single PZT element has
potential as a realtime detector, which can measure energy and velocity, that is, mass

and ‘vélocity of hypervelocity dust in space.
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Figures

Fig.1 The element is masked by a hole of 10mm in diameter.
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Fig.2 Output waveform found in the 1 mm thick element over an interval of several
periods,( amplitude in vertical and time in horizontal).
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Fig.3 The first cycle observed in the Imm thick element, together with that in 05mm

thick element for a comparison (amplitude in vertical and time in horizontal).
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Real-time detector for hypervelocity microparticles using piezoelectric

material (II)
T.Miyachi and/for the MDM TEAM

This report is concerned with results on response of a piezoelectric lead-
zirconate-titanate (PZT) element, by which a possible relation of output
waveform to velocity at impact is studied. At first, we point out a meaning
of output waveform, in particular, a behavior of the output signal within a
few hundred nanoseconds immediately after impact (named as “first one
cycle”), which is free from interference with reflected waves and could
contain impact hysteresis. Accordingly, we deal with the first one cycle,
and analyze it with respect to its amplitude and frequency components.
We obtain the following results: 1. Output amplitude is proportional to
the momentum of particles below 6 km/s. 2. Its rise-time is related to the
particle velocity above 10km/s. 3. There exists a transition region in
between. 4. The sensitivity is confirmed to be independent of the element
thickness, contrary to the results in [1,2], in which the amplitude was
defined as the maximum peak-to-peak amplitude, which was outside the
first one cycle. We propose that a single PZT element can be used as a
velocity sensitive detector if the output signal is measured at a sampling
rate of ~50MHz. We discuss a PZT detector that is to be employed as a
real-time dust monitor to onboard the BepiColombo mission, MDM. This
could discriminate real and junk events by analyzing the waveform.
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